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SUMMARY

The main aim of this study is the construction of new,

efficient, and accurate numerical algorithms based on the finite

element method, for the solution of the Korteweg-de Vries

equation.

Firstly the theoretical background to the KdV equation is

discussed, and existing numerical methods based mainly on finite

differences are discussed.

In the following chapters finite element methods based on

Bubnov-Galerkin approach are set up. Initially we used cubic

Hermite interpolation functions, and in later methods cubic spline

and quadratic spline shape functions. The appropriate element

matrices were determined algebraically using the computer algebra

package REDUCE. Finally we set up a method based on collocation

using quintic spline interpolation functions.

The numerical algorithms have been validated by studying the

motion, interaction and development of solitons. We have

demonstrated that these algorithms can faithfully represent the

amplitude of a single soliton over many time steps and predict the

progress of the wave front with small error. In the interaction of

two solitons the numerical algorithms faithfully reproduce the

changes in amplitudes and phase shifts of the analytic solution.

We compare, in detai1 the L - and L -error norms of the2 00

present algorithms with published results. The conservative

properties of the algorithms are also examined in detail.

The modified and generalised Korteweg-de Vries equation have
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also been solved using collocation method with quintic splines

interpolation functions. Again, the solution method has been

validated by studying the motion, interaction, and development of

solitons.

We have concluded that all the new methods set up here are

capable of reproducing the solutions to the KdV equation

efficiently and accurately, the best amongst these methods are

collocation with quintic splines or Galerkin with quadratic

splines. The collocation method is also very efficient and

accurate for solving the modified KdV equation.
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CHAPTER 1

INTRODUCTION

The first recorded observation of the solitary wave was made

in 1834 by Scott Russell [1] when he saw a rounded, smooth, well

defined heap of water detached itself from the prow of a stopped

barge and proceeded without change of shape or diminution of speed

over two miles along a channel [2]. The words "solitary wave" were

coined by Scott Russell himself, mainly because this type of wave

motion stands apart from the other types of oscillatory wave

motion. There was subsequently a gap of more than sixty years

between Scott Russell's observation of the shallow water solitary

wave and any theoretical treatment of the phenomenon. Despite some

attempts by Scott Russell to guess at the analytical formula for

the wave profile, his observation went unexplained in his own life

time. In the following decades after him, the sol itary wave of

translation was briefly mentioned by various mathematicians

including Stokes [3] in 1847 and Boussinesq [4] in 1872. However,

initial theoretical confirmation of Scott Russell's work had to

wait until 1895 when Korteweg and de Vries [5] derived their now

famous equation for the propagation of waves in one direction on

the surface of a shallow canal. If the canal has normal depth L

and t + TJ TJ being small) represents the elevation of the surface

above the bottom, the partial differential equation which governs

the wave motion is:

[2]2 1 2 1 a- a TJ + - TJ + - ~ --~
3 2 3 ax ( 1 . 1 )

where; a is a small constant related to the uniform motion of the

liquid, ~ = t3/3 - Tt/pg is a parameter, T the surface tension and
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p the density of the fluid. Appropriate scalings will transform it

into a more manageable form. If we define:

1) = f3 <X U ~ =-~ xer T

then the equation (1.1) can be written in the form of the

Korteweg-de Vries (KdV) equation:

U
T

+ (1.2)

where; £ = .:: f3
2

and 11 are given parameters. Using the variable

transformation x = f; - T and writing t instead of T, equation

(1.2) becomes:

Ut + £ U U + 11 U = 0x xxx

A generalisation of the KdV equation is:

Ut + e uPu + 11 U = 0x xxx

( 1. J)

( 1. 4)

where P = 1,2, ...

The most simple generalisation of the KdV equation (1.4) is the

modified Korteweg-de Vries (mKdV) equation:

2
+ C U U + 11 U = 0x xxx ( 1 . 5)

This equation has been used to describe acoustic waves in certain

anharmonic lattices [6] and Alfen waves in a collisionless plasma

[7,8].

In spite of this early derivation of the Korteweg-de Vries

(KdV) equation, it was not until 1960 that a new application of

the equation was found in a study of collision free hydromagnelic

waves by Gardner and Morikawa [9]. This is surprising because, in

general, the KdV equation describes the unidirectional propagation

of small but fini te ampl itude waves in a nonl inear dispersi ve

medium. Gardner and Morikawa rederived the KdV equation and also

proved that it was the limiting equation describing long wave
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propagation perpendicular to a uniform magnetic field in a cold

lossless (collisionless) plasma [10]. Since 1963, many

researchers, e.g. Su and Gardner [11] have derived the KdV

equation as the relevant long wave asymptotic description of a

more complete set of model equations. Kruskal [12] and Zabusky

[6,13,14] showed that the KdV equation governs longitudinal waves

propagating in a one dimensional lattice of equal masses coupled

by nonlinear springs, the Fermi Pasta Ulam problem. Other

applications in plasma physics were given by Berezin and Karpman

[15] and by Washimi and Taniuti [16] in their study of ion

acoust ic waves in a cold plasma. Wijngaaden [17] found that it

described pressure waves in a liquid gas bubble mixture. Naraboli

[18] proved it governed waves in elastic rods. Shen [19] derived

the KdV equation in the study of three dimensional water waves and

Leibovich [20] proved it described the axial component of velocity

in a rotating fluid flow down a tube, and thermally excited phonon

packets in low temperature nonlinear crystals [21].

The current interest in the KdV equation stems from the fact

that it can be solved analytically by the inverse scattering

method, but numerical methods for this pure initial value problem

remain important. This is because the inverse scattering technique

still requires the solution of the time independent Schrodinger

equa tion, wi th a potential determined by the initial cond ition.

Since the Schrodinger equation can only be solved analytically for

a few special types of potential, the inverse scattering technique

can thus not be used to obtain an explicit analytical solution of

the KdV equation for arbitrary initial data [22]. The theoretical

aspects of the solution of the KdV equation have attracted

attention. In particular, the problem of existence and uniqueness

of solutions for certain classes of initial conditions have been
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studied by many authors including Lax [23]. Sjoberg [24] and

Gardner [25]. These authors have examined the existence of

solitary wave or soliton solutions.

The physical models described by the KdV equation represent

situations requiring large scale time calculations. Consequently.

any numerical method proposed for determining the solution of the

mathematical equation must possess at least two properties [26]:

(1) The method must represent faithfully amplitudes of the

solution for many time steps in the calculation; it must be

conservative. and

(2) The method must be capable of predicting such wave fronts with

minimal error. Hence. the phase error of the method must be small.

The KdV equation was solved numerically first by Zabusky and

Kruskal [27] using a finite difference method. In that study they

discovered the properties of the interaction of two solitary

waves. Zabusky and Kruska I [27] defined the concept of a sol iton

as a localised (solitary) wave that propagates at a uniform speed

and preserves its shape and speed when it interacts with a second

solitary wave but does suffer a phase shift. Greig and Morris [26]

proposed a Hopscotch finite difference method and compared it with

the original Zabusky and Kruskal [27] leap frog scheme and found

that it gave better results [26].

The application of spectral. Pseudospectral and Fourier

transform or series expansion methods to the KdV equation has been

studied by Schamel [28]. Abe and Inoue [29]. Gazdag [30]. and

Canosa and Gazdag [31]. Fo rnbe rg and Whitham [32] have discussed

the numerical solution of the KdV equation (1.3) using a

pseudospectal method in the x variable together with a leap frog

method in t. They have also studied the higher order general ised

KdV equation (1.4) and numerical results show that with p > 2 the
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soli ton collision is inelastic. Numerical calculations for the

generalised KdV equation (1.4) show that the solitons become

taller and narrower during an interaction, unlike those of the

KdV equation (1.3) which become wider and smaller during an

interaction [33].

Fini te element methods have also been used. The first of

those proposed was due to Wahlbin [34], who suggested a

dissipative Galerkin method in which the same trial and test

functions are used. The basis functions are smoothed splines

constructed from piecewise polynomials of order three or higher,

and the elements are of equal length h. Numerical computations for

this method were carried out by Alexander and Morris [35], who

used cubic splines and a range of dissipation coefficients from

zero to one. They studied the motion of a single sol i ton and a

double soliton taking the initial condition in each case from the

theoretical solution. The results particularly in the second

problem were not good [33]. Sanz-Serna and Christie [36] proposed

a modified Petrov-Galerkin method with piecewise linear trial and

cubic spline test functions. They compared their method to some of

those mentioned above, and showed that finite element methods for

the KdV equation are well worth considering. Further schemes using

Petrov-Galerkin methods have been given by Schoombie [22] which

can be either dissipative or nondissipative, and which contain the

Sanz-Serna and Christie method as a special case. The trial

functions were chosen to be linear and the test functions to be

B-splines of various orders. Higher accuracy is obtained by

shifting the support of the test functions. This differs from the

Wahlbin approach, where both trial and test functions have to be

at least cubic splines, and where the test functions are modified

rather than shifted to introduce dissipation into the numerical
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method. The important advantage of the shift test functions is

that piecewise linears can be used as both trial and test

functions, in spite of the third derivative in the KdV
equation (1.3), which would normally require at least the

continuity of the first derivative for either the trial or the

test functions. This method has the disadvantage that it is less

accurate than the modified Petrov-Galerkin method (Sanz-Serna and

Christie). However, it involves much less computational effort.

A different approach to the numerical study of the KdV
equation has been adopted by Osborne and Provenza Ie [37]. In this

study, direct use is made of the inverse scattering transformed to

solve the initial value problem, with initial data being

approximated by a piecewise constant function. This generalisation

of the usual spectral methods promises to be a useful technique,

with the only drawback being the fact that it is not applicable to

equations for which no inverse scattering problem is known.

The Korteweg-de Vries equation is an important nonlinear

partial differential equation which arises in the study of many

different physical systems for which analytic solutions have only

been found for a very restricted set of ini t lal condi tions. Thus

numerical methods are very necessary to effect solutions for a

wide range of initial conditions. In this thesis attempts are made

to produce numerical methods based on the fini te element method

which are superior to those already being used. We expect these

methods to have two advantages:

Firstly, the computed L - and L -error norms might be smaller in2 00

comparison with those of earlier authors, so that the numerical

solution will be more accurate.

Secondly, the computed values for the first three or four

conservative quantities of the KdV equation should change as
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little as possible during the computer run. Essentially the method

should be conservative.

In chapter 2, we describe how the Korteweg-de Vries equation

is set up for ion acoustic wave, and also how we derive the

analytic solution for the KdV equation under restricted initial

condi tions. We give a review of the interaction of two sol itary

waves and also of the conservation laws.

Early attempts at numerical solutions of the KdV equation are

outlined and discussed in chapter 3. These earlier methods were

mainly of four types; the finite difference methods, both

explicit and impl ic i t , transform methods such as the

pseudospectral or fourier transform, splitting method, fourier

expansion methods and finite element methods such as a dissipative

Galerkin method.

In chapter 4, we show how a finite element using the Galerkin

method with trial and test functions as cubic Hermite polynomials

can be set up. The element matrices are determined algebraically

using REDUCE [38]. Assembling the element matrices together and

using a Crank-Nicolson difference scheme for the time derivative

leads to a 7-banded system of nonlinear algebraic equations which

is solved by a septa-diagonal algori thm. The method is tested by

calculating how the L - and L -error norms vary during the motion2 00

of a single and double soliton and comparing this with the error

obtained by earlier authors for a similar experiment. The first

three conservative quantities are also computed for simulations

using a single soliton, double soliton, and Gaussian initial

condi tion.

In chapter 5, we set up a finite element using the

Bubnov-Galerkin method in which trial and test functions are cubic

spline polynomials. The element matrices are obtained analytically
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using REDUCE.Assembling element matrices together and using a

Crank-Nicolson difference scheme for the time derivative leads to

a system of nonlinear algebraic equations which is solved using a

septa-diagonal algorithm. A linear stabili ty analysis is used to

show that the scheme is uncondi tionally stable. Classical test

problems, including collisionless shocks and soli ton development

and interaction, are used to prove the method. The L - and
2

L -error norms have been computed for single and double soliton.
00

The first four conservative quantities have been computed. Two

schemes have been discussed; one using integration by parts and

the other without.

In chapter 6, a finite element method based on the

Bubnov-Galerkin method in which the trial and test functions are

quadratic spline polynomials is set up. The element matrices are

determined algebraically using REDUCE. Assembl ing together the

element matrices and again using a Crank-Nicolson difference

scheme for the time derivative lead to a system of nonlinear

algebraic equations which can be solved by a penta-diagonal

algori thm. A linear stabi 1i ty analysis is used to show that the

scheme is uncondi tionally stable. Classical problems concerning

the development and interaction of solitons are used to test the

method. The breakdown of a Gaussian initial condition into a train

of sol i tons is considered. The L - and L -error norms have been
2 00

determined for single and double soli ton. Also, the first three

conservative quantities have been calculated.

In chapter 7, a finite element method based on collocation

with quintic spline interpolation polynomials over the finite

elements is set up. This leads to a nonlinear algebraic system

with 5-banded matrices which can be solved using a penta-diagonal

algorithm. A linear stability analysis is set up which shows that
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the scheme is uncondi tionally stable. Classical initia 1

conditions, which model soliton interaction and undu lar bores in

shallow water, are used to evaluate the L - and L -error norms for2 CXl

single and double soliton and the first fourth conservative

quanti ties. The breakdown of a Gaussian ini tial condi tion into a

train of solitons is observed.

In chapter 8, a numerical method to solve the generalised KdV
equation (1.4) with p = 1,2,3 based on the collocation method

with quintic spline interpolation polynomials over the finite

elements is presented. The recurrence relationship obtained leads

to a nonlinear algebraic system of 5-banded matrices which can be

solved using a penta-diagonal algorithm. A linear stability

analysis is investigated. Classical test problems, including

collisionless shocks and soliton deve 1opmen t, motion and

interaction, are used to compute the first four (three if p ~ 3 )

conservative quantities. The L - and L -error norms for a single2 00

and double (for p 1,2) soliton solution are used to give an

indication that as p (the power of u in the nonlinear term uPu x

increases, the error increases. The breakdown of a Gaussian

initial condition into a train of solitons is demonstrated.
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CHAPTER 2

PHYSICAL REVIEW FOR THE KORTEWEG-DE VRIES EQUATION

2. 1 Introduction:

At the present time nonlinear wave phenomena are the subjecl

of intense study in many branches of applied mathematics, physics,

and engineering, e.g. in optics, plasma physics, radio physics,

acoustics, hydrodynamics ...etc [39].

One of the most important nonlinear wave equations is the

Korteweg-de Vries equation (KdV) which was originally derived in

1895 by Korteweg and de Vries [5] in order to describe the

behaviour of one-dimensional shallow water waves with small bul

fini te ampli tude. More recently the KdV equation has also been

found to describe various other kinds of phenomena such as

acoustic waves in anharmonic crystals, waves in bubble-liquid

mixtures, magnetohydrodynamics, waves in warm plasmas, and

ion-acoustic waves.

2.2 Some Applications in which the KdV Equation Arises:

In this section, we wi 11 study some of the cases where the

KdV equation arises as a realistic model governing the evolution

of waves in media in which weak nonlinear effects are considered.

We quote four examples: The first occurs in plasma physics where

the KdV equation governs the evolution of long compressive waves

in a plasma of cold ions and hot electrons; the second is the

shallow water waves problem; the third case occurs in meteorology

in studies of the propagation of nonlinear Rossby waves in a

homogeneous rotating fluid. The latter case is slightly different

than the earlier two in that a second space dimension (yl occurs

in the original equations and the coefficients of the final KdV

10



equation are found to be integrals over y. The fourth example is

from electric circuit theory in which a nonlinear capacitance is

used. In this case a generalised pth order KdV equation with the

nonlineari ty depending on the capacitance is obtained. We have

chosen this example to illustrate how the modified KdV equation

can arise in certain circumstances. It is well known that the KdV
equation is qui te simple in structure as it is a single scalar

equation involving one dependent variable and two independent

variables. However, the original equations of motion of most

physical systems are not simple and, generally, they contain

several dependent variables, so that we need a procedure which

reduces such sets of equations to simpler forms (perturbation

procedure). To apply this method, we try scal ing all var iables in

the problem to dimensionless form and we expand all the dependent

variables in terms of a perturbation parameter c [40]. To

illustrate this approach we show in the next section how

ion-acoustic waves are governed by the KdV equation

2.2.1 Ion-Acoustic Waves [40,41,42]:

Consider a one dimensional sea of electrons and ions, each of

mass m , m and charge -e, +e wi th density n , n per unit volume
e i e 1

respectively. This is technically known as a plasma of electrons

and ions, as in [40]. Since the electron mass is much lighter than

any ion mass, the electron inertia can be neglected but the

electrostatic effect of the electron charge cannot be neglected.

For this, the usual method is to treat the electrons as a gas

[43]. An electron gas can be thought of as a gas problem and in an

idealized situation may be described by the equation of the state:

P = KB T ne e
(2.2.1.1)

where KB is known as Boltzmann's constant, P is the pressure and

11



T is the value of the electron temperature which gives a measure
e

of how energetic (hot) the electrons in the gas are. Here we will

take the ion temperature T. as T « T
1 i e

For the electron gas, the

electrostatic force is related to the pressure gradient by an

equation:

an
= K T

9 e ax
e (2.2.1.2)

where ¢ is the electrostatic potential.

Integrate this equation to obtain:

eno exp(K1 ¢)
9 e

where no is the equilibrium background density.

n (2.2.1. J)
e

For the ions, the equations of conservation of mass and momentum

are:

an ai (n ) 0at + v =ax i i

( D ) a¢m Dt v = -e axi i

where the total derivative is given by:

D a a
Dt = + v axat i

(2.2. 1.4)

(2.2.1.5)

(2.2.1.6)

For the electrostatic potential ¢, Poisson's equation is:
a2¢
~2 = 4 n e(n - n ) (2. 2. 1. 7lax e I

Equations (2.2.1.3) and (2.2.1.7) indicate that ¢ and n can be

rescaled as:

n = n In
i 0

(2.2.1.8)

Substi tuting (2.2.1.3) into (2.2.1.7) and using (2.2.1.8),

gives:

[
Kg T ]

-----4 e2 ~ =exp(~)-n(2.2. 1.9)nn e xxo

Then, a new dimensionless x variable can be introduced as:

12



x
x = i\ i\ [

KB Te 2 ] 1/2

471n e
o

(2.2.1. 10)

where i\ is known as the Debye length of the plasma. Using the

expressions given above for ~, n, and x one can define lhe

non-dimensional variables:

t = w t
P

V
i

V = AW
P

(2.2.1.11)

where w is the plasma frequency, and i\ w is the ion sound speed.
p p

Using non-dimensional variables the equations (2.2.1.4), (2.2.1.5)

and (2.2.1.7) can be written in the form:

n + (nv) = 0-
t x

t x
= - ~

x
(2.2.1.12)v + vv

exp(~) - n
xx

The boundary condi tions are taken to be n -7 1; v, ~ -7 0 as

IXI-700 , so that asymptotic expansions for n, ~ and v are:

1
( 1 ) 2 (2 ) ( J ) 0 IXI-7n = + en + e n + n ----7 as 00

~ e~ (1) 2~(2) ~(j)----7 0 IXI-7= + e + as 00

( 1 ) 2 (2 ) ( J ) 0 IXI-7v = cv + e v + ... V ----7 as 00

j=1,2, ... (2.2.1.13)

where c is small parameter, the superscript denotes to the order'

of the perturbation.
( 1 )Using (2.2.1.13) to linearise (2.2.1.12) and eliminating nand

V(l) we have:

~ (1) + (2.2.1.14)- - -x x t t

which has the dispersion relation w2 = k2(1+k2)-1. Therefore, for

small k ( k = eP k , P > 0 ) the first two terms of w(k) are k and
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k3 terms. Then, we rescale x and t by defining ~ and T to be:

(2.2.1.15)

where a is the velocity of the frame of reference

After substitution into equation (2.2.1.12) we find that:

[ 3p a - aeP a ] [ 1 +
( 1 ) 2 (2) ]e a~ en + e n + ... +aT

cP a [ ( 1 ) 2 (2) ( 1 ) v (1 ») + ... ] (2.2.1.16)a~ cv + c (v + n 0

] [ ( 1 )cv 2+ e
(2 )

v +

1 eP a [ e2(v(1»)2 + ] + eP a [ e<1>(1) 2<1>(2)
... ] = 0- a~ ... a~ + e +2

(2.2.1.17)

e2p a2 [ e<1>(1) 2<1>(2) ] - d<1>(1) (1 ))-- + e + ... - n -a~2

= 0 (2.2.1.18)

Collecting terms together we can evaluate the coefficients of each

power of e, we obtain for equation (2.2.1.16):

p+l (1 ) ( 1 )
(2.2.1.19)c -an + v~~

p+2 (2) (2) (n ( 1 ) (1)) (2.2.1.20)£ -an + v~ + v E~

( 1 )
n
"-

and for equation (2.2.1.17):

3p+1e (2.2.1.21)
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p+l ( 1 ) 4>(1 )
(2.2.1.22)c -av +£; £;

p+Z (Z) 4>(Z) (1 ) ( 1 )
(2.2.1.23)c -av + + v v£;£; £;

3p+l
C

( 1 )
V
T

(2.2.1.24)

while for equation (2.2.1.18), we have:

_(4)(1)

Z _(4)(Z)
C

cZp+1 4> ( 1 )
£;£;

Zp+2 4> ( Z )
C £;£;

(2.2.1.25)

(Z) )
n - (2.2.1.26)

(2.2.1.27)

(2.2.1.28)

Considering the lowest terms (i.e. p+l
C and c and using the

boundary condition, we have:

( 1 ) ( 1 )
n = V (2.2.1.::>'9)

for a = 1 . To determine p, we go to the next order (i.e. cP+z and

2e where equations (2.2.1.19) - (2.2.1.24) indicate that if

3p+l > p+2 (i.e. 1
p > -

2
then no T-der i va ti ve occurs a t order

This is unsatisfactory because p > -
2

means tha t the

second derivative of <:>(1) is an order higher than 2; and if we

eliminate 4>(2), n(Z) and v(2) from the three equations, one can

show that n(l) = 0 Consequently, we must necessarily go to

higher orders of perturbation theory to obtain an evolution

( 1 )
equation for n . Therefore, setting p

Z
d 1· ( 1 )an rep a c i ng v

and 4> ( 1 ) b
(1 )

Y n , and equating terms of each order to zero, we

obtain:
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(2 ) (2 ) 2n ( 1 ) ( 1 ) ( 1 )
VE, nE, + nE, + n = 0 (2.2. 1.30)

T

<t> (2) (2 ) ( 1 ) ( 1 ) ( 1 ) 0vE, + n nE, + n = (2.2.1.31)E, T

( 1 ) 1 ( n (1 ) ) 2 ~ (2) (2 )

nE,E, = n (2.2.1. 32)
2

Different iating (2.2. 1.32) w.r.t E, and eliminating (2 ) (2 )

vE, nE,
~ (2) from equations (2.2. 1. 30) - (2.2. 1. 32) , we get:E,

+
( 1 )

n +
( 1 )

n
T

= 0 (2.2.1.33)

which is exactly the KdV equation, where the soliton velocities

are positive

In the case a = -1 .

( 1 )
V =

( 1 )
n

and the resulting KdV equation is:

+
( 1 )

n
( 1 )

n
T

o

and the solitons move to the left as indicated by (2.2.1.15)

2.3 The Solution of the Korteweg-de Vries Equation

2.3.1 Introduction:

The KdV equation for long waves in shallow water [44] can be

written as:

[
3 ] 1 .r:«: 2Ut + vgho 1 + 2- (u/ho) u + - vgh h u = 0 ;X 6 0 0 xxx (2.3. 1. 1)

Where; x denotes the coordinate along the horizontal bottom, t the

time, u(x, t) the local wave-height above the undisturbed depth h ,
o

and g the acceleration of gravity and the subscripts x and t

denote differentiation.

Let us define the non-dimensional parameters c and ~ to be:

16



o

1 2
IJ. = -Ch /It )

600
c = a/h

where a is the dominant ampl itude and It
o

the wave-Ieng tho

We introduce the dimensionless variables:

E; = xlA
o

-t = tvgFl /It
o 0

- 3
U = - u/ Ieh )

2 0

Substi tution of these new variables into equation C2.3. 1.1)

and omitting the bars gives:

+ + + = 0 (2.3.1.2)

Let us now define the new independent variable x:

x = S - t

into equation C2.3.1.2) which is thus transformed into the well

known KdV equation:

+ c u ux + " u = 0... xxx (2.3.1. J)

Let us look at the travelling wave problems where the ef"feets

of the nonlinearity and dispersion balance and, result in stable

solitary wave solutions called solitons. A soliton has the

following remarkable properties:

Ci) In a collision with another soliton it preserves its original

shape and speed, although a phase shift exists after the

collision, and

Cii) A general initial profile after a long time breaks up into a

train of solitons together with a disturbance which disperses with

time.

Let us look at the effect of the nonlinearity and the

dispersion of the KdV equation (2.3.1.3):

Ci) Linearity + no dispersion:

+ c u = 0x , c is constant

The initial profile is transmitted at constant speed without

change of shape. Collisions cannot take place since all the

17



initial profile travels with the same velocity

(ii) Linearity + dispersion:

+ 11 u = 0xxx
the solution can be expressed in the form:

u = a exp(i(kx - wt)) = a exp(i(x - ct)k)

where k is the wave number, w is the frequency and c = w/k is the

speed of the travelling wave. This leads to the dispersion

relation w = - I1k3 i. e. the group velocity depends on the wave

number. The effect of the dispersion on a wave is to make a wave

packet spread out as it travels. This dispersion rules out the

possibility of solitary waves

(iii) Nonlinearity + no dispersion:

+ E U U = 0x

The term c U plays the role of a wave veloci ty. Since this

velocity depends upon the solution itself, we may expect that

portions of the wave profile at which U is large will move more

rapidly than portions of the wave near the edge of the profi le

where U approaches zero. Thus the portion with large u will

overtake the portion with smaller u.

(iv) Nonlinearity + dispersion:

+ o

If there is a balance between nonlinearity and dispersion, then

we obtain a soliton which travels without change of shape.

The generalised KdV equation has the form:

+ = 0 (2.3.1.4)

where p is positive integer p = 1,2,3, ... [32,45,46). The most

important case after p = 1, is p = 2, when the resulting equation

has the form:

2+ c U u
x + 11 uxxx o (2.3.1.5)

18



and is known as the modified Korteweg-de Vries (mKdV) equation.

Moreover, the sign of the nonlinear term may be changed to obtain

the non-trivial alternative equation:

2
£: U Ux + II U = 0,...xxx (2.3.1.6)

Note that changing the sign of the nonlinear term in the KdV

equa tion itself yields nothing new, since the resul t ing equation

is reduced to (2.3.1.3) by changing the sign of U [45].

2.3.2 Single Soliton Solutions [40,41,42,47]:

The most interesting feature of the KdV equation is its

ability to produce steady travelling wave solutions. These can be

either solitary waves called solitons or the cno ida l wave, which

is a generalisation of the sinusoidal wave. These are obtained by

putting:

u I x , t ) = U{X) x = x - ct (2. 3.2. 1 )

where c represents the constant velocity of a wave travelling in

the positive direction of the x-axis. Substitution of (2.3.2.1)

lnto (2.3.1.4) leads to the ordinary differential equation:
III

- c U + £: uP U + 11 U = 0 (2.3.2.2)

where a prime denotes differentiation with respect to X. Equation

(2.3.2.2) can be integrated once immediately, to give:

"
11 U c U - e

p+l
(2.3.2.3)

where a is the constant of integration
1

Multiplying (2.3.2.3) by U and integrating, we obtain:

(p+l I (p+21
+ a U

1
+ a

2
(2. 3. 2. 4)

where a is a constant of integration. For a real solution of
2

(2.3.2.4), the right hand side must be non-negative, and so:
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J
1/2

±(x - et)
(p+1)(p+2)

+ a U
1

+ a
2

(2.3.2.5)

Two types of solution of (2.3.2.5) are cno ida I waves, which are

expressed as Jacobi elliptic functions (see [21] for more details

and the exact form), and solitary waves [7,33].

Now we are going to derive the solution of the equation
II

(2.3.2.5) for the soli tary waves. To do this, let U, U and

U ----,) 0 as Ixl ~ 00 • Then the constants of integration a and
1

a are zero, i.e.:
2

U U[l(C-= j.1
2c uP )J1/2

(p+1)(p+2)
(2.3.2.6)

Let

y [ J
1/2

1 - f3 uP , where f3 2C , then:=
C(p+l)(p+2)

and dU 2y
pf3

1 - p

J-p

(2.3.2.7)

Substitution of (2.3.2.7) into (2.3.2.6) leads to:

2- Y
(2.3.2.8)dy

and after integration of this equation, we obtain:
1

~ : ~ J = p [~J2 X + C
1

(2.3.2.9)

[ ]

1/2

Applying the initial condition leads to Cl = - P ~ Xo so that

equation (2.3.2.9) can be written as:
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1 - Y
1 + Y

1

exp [ P [~ ]
2 ( x - x 0) ] (7.3.2.10)

If we let X = X - x p - Y cl" we t0' - P ,...., ge:

1 - exp( pX
y = (2.3.2.11)

1 + exp( pX

Since uP 2(1 - y )/~ we find that:

1

f3

I 2exp( pX)) - ( 1 - exp(
I 2

( 1 + exp ( pX ))
]

1 4 exp( pX )
(2.3.2.12)

I 2
1 + exp( pX ))

or

4uP
(3 I I

) ) 2exp( pX/2) + exp(-pX/2

1 2 pX/2)= /3 sech ( (2.3.2.13)

which simplifies to:

P C(p+l)(p+2) h2[ p .r=r: J
U (x,l) = 2£ sec 2 yclp. ( x - ct - xo) (2.].2.14)

For p 1 we have the well known solution:

U(x, l) = 3c
e

(2.].2.15)

Equation (2.3.2.14) describes a soliton with amplitude 3clC '

which is proportional to its velocity. Hence, a larger soli ton

moves fasler than a smaller one. The solitons width is

proportional tolJl/c and the constant x plays the role of a phaseo
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shift.

If the coefficient of the nonlinear term in equation

(2.3.1.4) has a negative sign and p is odd then the solution is

negative, that is:

If n is even, the solution is not a solitary wave [32,41,45].

Chen [48] has used Galerkin's method to obtain analytic

solutions of the strongly nonlinear KdV equation:

3+ c u u
x

o (2.3.2.17)

2.3.3 Linear Bargmann Method [42]:

The Bargmann method is based on the assumption thal there

exists a potential for the Schrodinger equation:

y" +
2(k - u)y = 0 (2.3.3.1)

2where k is an eigenvalue parameter which remains constant as t

varies and u satisfies the KdV equation:

- 6 U U + U = 0x xxx (2.3.3.2)

such that the solution of the equation (2.3.3.1) can be expressed

in the form:

y = exp(ikx) F(k,x) (2.3.3.3)

where F'Ik,x ) is a polynomial in k, whose degree depends on the

case under consideration. If F'( k ,x ) is constant, then (2.3.3.1)

implies that u = 0 which is the trivial solution. For the

nontrivial solution let F'(k,x l = zk + ia Ix ) , then equation

(2.3.3.1) implies that:

at = - u (2.3.3.4)

and a" = u a (2.3.3.5)

Eliminating u from (2.3.3.4) and (2.3.3.5) and integrating we
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obtain:

a' +
1

2

2a (2.3.3.6)

where 2 ~2 is the constant of integration. The substitution:

a = (2 w' )/w (2.3.3.7)

leads to the linear equation:

w" 2
~ W = 0 (2.3.3.8)

which is a linear homogeneous equation of second order, whose

solution is:

w = a exp(~ xl + ~ exp( - ~ xl . (2.3.3.9)

From equations (2.3.3.4) and (2.3.3.7) we get:

u=-2(ln(w))" (2.3. J. 10)

Using equation (2.3.3.9) the solution (2.3.3.10) becomes:
2 2U = - 2 ~ sech (~ x - ¢) (2.3.3.11)

where ¢ = 1 In(~/a) which we take as a function of t. Substitution
2

of (2.3.3.11) into the KdV equation (2.3.3.2) leads to:

rp' (t) (2.3. J. 12)

Integrating this equation gives:

¢( t.) 34 ~ t + d (2.3.:3.13)

and hence we obtain:

U(X, t) = - 2 ~2 sech2(~ x - 4 ~j t - d)

If we se t ~ = ~ Vc
2

(2.3.3.14)

this form of u t x, t ) agrees with the

steady state solution given in (2.3.3.10). This linear Bargmann's

procedure thus yields the single soliton solution of the KdV
equa tion.

A wide class of exact solutions to the KdV equation have been

found, notably in recent times using the Inverse Scattering

method. This method generates the well known N-soliton solutions

possessing the property that amplitudes and velocities, as well as

the shapes, of individual solitons are preserved in a (nonlinear)

interaction [21,25,26,42,491.
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2.3.4 Interaction of two Solitons [42,47,49,50,51,52,53]:

Consider two solitary waves as initial condition placed on

the real line with the taller one to the left of the shorter one.

As the time increases, the greater speed of the taller wave means

that it eventually catches up with the shorter one and they

undergo a nonlinear interaction according to the KdV equation. The

surprising result is that they emerge from the interaction

completely preserved in shape and speed wi th only a shift in

positions relative to where they would have been had no

interaction taken place [21]. This phenomenon was observed first,

experimentally by Russell [1] and numerically by Zabusky and

Kr uska I [27]. Because of their preservation of for-m during

nonlinear interactions and their resemblance to particles, Zabusky

and Kruskal [27] coined the name soliton for such waves. Zabusky

[6] showed the exact interaction of two solitons numerically and

Lax [23) gave the analytic proof of the soliton properties. Dodd

(41), Lamb [42], Whitham [49], and Wadati [51] have derived an

analytic solution for the KdV equation with c = 6.0 , M = 1.0 when

the initial condition is two solitary waves. This solution has the

form:

u Ix , t) 2( In(F) )xx (2.3.4.1)

where:
F = + exp(n ) + exp(n ) + ~ exp(n + n )

1 2 1 2

(2.3.4.2)

I = 1,2 (2.3.4.3)

Before the interaction the solution will be:
122+ 2 a

2
sech ( n2 - 6 ) (2.3.4.4)
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where:

6 = l n I 1 / f3 ) (2.3.4.5)

After the interaction the solution becomes [41,49]:
1 2 2 1 2 2u(x t) = - a sech (l) - 6) + - a sech ( l) )

'21 1 22 2
(2.3.4.6)

The location of the solitary waves a and a are:
1 2

(i) before the interaction:

Soli tary wave a on x a2t d /a
1 1 1 1

Solitary wave a on x = a2t (d 6)/a
2 2 2 2

(ii ) after the interaction:

Solitary wave a on x = a
2t (d 6)/a

1 1 1 1

Solitary wave a on x a2t - d /a
2 2 2 2

The interaction occurs in the neighbourhood of:

(2.3.4.6a)

(Z.3.4.6b)

2 2s - s a s - a s
t 1 2 1 2 2 1 (2.3.4.7)= x

2 2 2 2
0: - 0: a - a

1 2 1 2

where: s = d /0:
i i

i = 1,2

The forward and the backward phase shifts are defined respectively

as:

6 = b /o:
1 1

6 = 6/a
2 2

for p = 1,2 (2.3.4.8)

For the initial conditions, equation (2.3.4.1) is used at t = o.

Similarly the exact solution of the mKdV equation (2.3.1.5)

wi t h c = 6.0 , IJ. = 1.0 for two sol itary waves has been found by

Taha and Ablowitz [52] as:

•
u t x, t ) = iC ln Cf / f) )x

(2.3.4.9)

•where denotes a complex conjugate, and

f = 1 + i expel) ) + i expel) ) - f3 expel) + l) ) ,
1 2 1 2

where f3 and l) (J=l,2l are defined by equations (2.3.4.2) and
J

(2.3.4.3) respectively.

Before the interaction the solution will be:
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U(X, t) = a sech ( 1) ) +
1 1

a sech (1) - ~ )2 2 (2.3.4.10)

After the interaction the solution becomes:

U(X,t) = a sech (1) -~) +
1 1

a sech
2

(2.3.4.11)

For the initial conditions, equation (2.3.4.9) is used at t = 0.0.

For the case of N-solitons, an analytic proof that they are

unchanged after interaction has been given by using the inverse

scattering method [45].

More generally, arbitrary initial condi tions used with the

KdV equation will evolve into a number of solitons moving off to

the right and an oscillatory dispersing state moving off to the

left. Because of the dependence of the soliton speed on its

amplitude, the solitons will sort themselves out, eventually

ending up as a parade of solitons moving to the right with

monotonically increasing amplitudes from left to right. Those

solutions involving only solitons, and showing no oscillatory

behaviour, are called pure sol iton solutions or N-sol i ton

solutions [21].

2.4 Conservation Laws for the Korteweg-de Vries Equation [6,10,54]:

The KdV equation can be written in the divergence form:
2

U+ (c - + J1 U ) = 02 XX X
(2.4.1)

which has the form of a conservation law for the momentum
00

11 = f u(x, t)dx . Multiplying both sides of equation (2.4.1) by U
-00

2and U , we obtain after simple calculation two more conservation

laws, of which the first reflects the energy conservation:
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uxx
2

u- -x
2

o (2.4.2)

IJ. 2u(; X
2

U U + 2 UtUxxx c
2

uXX (2.4.3)

This is not the complete number of conservation laws. It is shown

in [48J that there exist an infinite number of conservation

quanti ties (invariants) I
m

corresponding to the KdV equation,

gi ven by:

00

I = J Q (x, t) dxm m (2.4.4)

-00

whose densities Q (x, t) satisfy the relations of the form:
m

aQ(x,t)
m

+
a P (xv t )

m = 0 (2.4.5)
a t a x

m" 1,2,3 , ...

where Q and P (fluxes) are functions of u and its spatialm m

derivatives. Such relationships imply essentially that the

integral of Q over all x remains constant in time. That is Q ism m

a conserved quantity [55J.

Conservation laws can be used in deriving a priori estimates

and to obtain integrals of mot ion. For example, if the flux P is
m

zero as 1x 1--) 00 , then:

00J Qm(x, t) dx = constant (2.4.6)

-00

Furthermore, the existence of infini tely many conserva t ion laws

certainly indicates that t ho KdV equation is of immense physical

interest.

As examples, we present the first four densi ties of the

conserved quantities [6,10,39,54]:
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2
Q
1

Q = u= u , -
2 2

,

3 4 2
Q
3

U 11 2 Q
4

U
!:!: u 2 9

!:!:2
2

U = - - 3 U + U3 C X 4 e X 5 £ xx

Hence the quantities I (i 1, ... ,4) can be wr it ten as:

I
1

00

I I
2 dx= U

2
-00

00

I
I

(u3 3 2 ) dx- 11 u
3 £ X

-00

co
[u4

2

I I
12 2 36 11 2 J= - C 11 u u + -2 U dx

4 X 5£ XX
-co

(2.4.7)

(2. IJ. 8)

(2.4.9)

(2.1J.10)

(2.4. 11 )

polynomial conservation laws. The first

For a modified KdV equation (2.3.1.4) there are also many

four conserva tive

quantities have been found by [21,54] as:

co
I =

I
U dx (2.4. 12)

1
-co

I
I:co

2 dx (2.4.13 )= U
2

co
I I_co (u4 6 2 ) dx= - 11 U
3 £ X

I:co [u6
2

I
30 2 2 18 11 2]= 11 U U + -2 U dx.

4 e X £ XX

(2.4. 14 )

(2.4.15)

For p > 2 there are only three conservation laws, (the first three

conservative quantities) [6,10,21,32] which can be written as:

II = Jco U dx
-co
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I2 = f) u2 dx
-00

I
3 foo (Up+2 _ (p+l)(p+2) 2) dx

2 e 11 Ux
-00
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CHAPTER 3

A REVIEW OF NUMERICAL METHODS

FOR SOLVING THE KORTEWEG-DE VRIES EQUATION

3.1 Introduction:

The study of numerical methods for the solution of partial

differential equations has enjoyed an intense period of activity

over the last thirty years from both theoretical and practical

points of view. Improvements in numerical techniques, together

wi th the rapid advance in computer technology, have meant that

many of the partial differential equations arising from

engineering and scientific applications which were previously

intractable, can now be routinely solved [56).

In this chapter, we shall focus our attention on making a

survey of the numerical methods used by earlier authors for

solving the Korteweg-de Vries (KdV) equation:

u + c u u + ~ u = 0t x xxx (3. 1. 1 )

where; e and jl are positive parameters, Ut and Ux are the first

derivative of U with respect to time and space respectively and

U is the third derivative of u with respect to space.xxx
We shall give a brief discussion of these numerical methods

under 4 headings:

(1) Finite difference methods,

(2) Finite Fourier transform or pseudospectral methods,

(3) Fourier expansion methods, and

(4) Finite element methods.

3.2 Finite Difference Methods.

3.2.1 Introduction:

The finite difference methods are the most frequently used
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and universally appl icable. These methods are approxima te in the

sense that the derivatives at a point are approximated by

difference quotients over a small interval [57).

There are two types of finite difference method:

(1) Explicit methods which are conditionally stable,

(i) Zabusky and Kruskal difference scheme,

(2) Implicit methods which are sometimes unconditionally stable,

(i) Goda difference scheme,

(ii) Hopscotch difference scheme, and

(iii) Kruskal difference scheme.

Taha and Ablowi tz [58) have proposed a local difference scheme

which is based on the inverse scattering transform, and a global

difference scheme, both of which have a truncation error of order

In order to obtain a fini te difference replacement of the

KdV equation (3.1.1) the region to be examined is divided into

equal rectangular meshes with sides ~x and ~t parallel to the x-

and t- axes respectively (see Figure 3.1). The function u(x,t) is

approximated by un = u( j~X, n~t) where j and n are integers and
j

j = n = 0 is the origin.
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t-axis

n

j

n+1 n+1 n+1u- u- uJ -1 J J+1

n n nu- u- UJ-1 J J+1

n-1 n-1 n-1u- u- uJ -1 J J + 1

x-axis

Figure 3.1

Let us define

Ut I ( j, n )

n+1 n-1
U - U

J J
2l1t (3.2.1.1)

Ux I (J, n )

n nU - UJ+1 J-1= --'---:----=--
2l1x (3.2.1.2)

Uxxx I ( J , n )
1= 2(I1X)3 [

Un _ 2un + 2un
j+2 j+1 J-1 (3.2.1.3)

3.2.2 Explicit Scheme:

The explicit scheme computes the value of the numerical

solution at the forward time step in terms of known values at the

previous time step.

An explicit scheme for solving the KdV equation produced

originally by Zabusky and Kruskal [27,44] is centred in time and

space. Subst i tuting (3.2.1. 1), (3. 2. 1. 2) and (3. 2. 1. 3) in t 0
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(3.1.1) with ul = 1 (un + Un + Un )
(j,n) 3 j-1 j j+l leads to:

n+1 n-1 eflt (u n n
+ o" ) (Un nU = U + U - U )j j 3f1X j-1 j j +1 j +1 j -1

IlfI t [ n - 2un + 2un u~_2) (3.2.2.1)- (fix) 3 u j+2 j+1 j-l

For the ini tial step, we use a scheme which is forward in

time and centred in space:

1 0 eflt (u 0 0 0 ) (u0 0 )u = u + u + u - uj J 6f1x j-l j j +1 j +1 j - 1

jJ.fI t [ 0 2uO + 2uo u~ _2) (3.2.2.2)2(flx)3 u j+2 j +1 j -1

It is clear that equation (3.2.2.1) is a three-level scheme

of time, i. e. in order to obtain u at the time level n+l, we need
j

the following values of U
J-2

u
J + 1

and U j+2 at the

previous time level n in addition to the value of u at the time
j

level n-l.

The explicit difference scheme (3.2.2.1) has second order

accuracy in and fix as the truncation error is

O[(l1t)2] + O[(Ax)2] and is also consistent with equation (3.1.1).

A stability analysis of the nonlinear numerical scheme

(3.2.2.1) using the Fourier mode method is not easy to handle

unless it is assumed that u, in the nonlinear term, is locally

constant . This is equivalent to replacing the term

.!.. (u" + u" + u" ) in equation (3.2.2. 1) by u . This 1ineari sed
3 J-1 J J+1

scheme for the KdV equation has stability condition [44,58,59]:

fI t [c
fix

A 4 jJ. ]lui + (flx)2 1 (3.2.2.3)

Peregrine [60] has produced another finite difference scheme
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for the KdV equation which has only first order accuracy.

3.2.3 Implicit Methods:

Al though the expl ici t method is computationally simple, it

has one serious drawback. The time step is necessarily very small

to satisfy the stability condi tion (3.2.2.3) and the space step

must be kept small in order to attain reasonable accuracy.

We are going to give a brief discussion of the following

implicit methods:

(i) Goda scheme,

(ii) Hopscotch method, and

(iii) Kruskal scheme.

3.2.3.1 Goda Scheme:

Goda [59] has proposed an unconditionally stable implicit

scheme for approximating the KdV equation (3.1.1), namely:

1 (un+1
llt J

n- u
J

n-1,+ 2u -
J -1

= 0

(3.2.3.1.1)

where n , j are integers n , J = 0,1, ... , N . We can rearrange this

equation as:

n+l n+l n+l n+l n+l n
-a u + z u + u + y U + a u = uJ-2 J-l J-l J J+l J+l J+2 J

(3.2.3. 1.2)

where:

ell t
, f3 = 6llx '

If there are N+l internal mesh points along each row, then
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for n = 0 and j = O,l, ... ,N equation (3.2.3.1.2) gives N+l

simultaneous equations for N+1 unknown values of u along the first

time row in terms of known initial and boundary values. Similarly,

n = 1 and J = O,l, ... ,N gives us N+1 unknown values of u along the

second time row in terms of the calculated values along the first

row, and so on. Generally, the scheme (3.2.3.1.2) can be expressed

in terms of the matrix form:
n+ 1 nA u = u (3.2.3.1.4)

where A is a 5-banded matrix of order (N+1)x(N+5):

A =

-ex. z o

-ex. z 1N-2

-ex. z
- 1

1

-ex. z 1
N-1

n+1 is unknown vector:u an

n+1 [ n+1 n+1 n+1 n+1 JT (3.2.3.1.5)u u u , ... , u u
-2 -1 N+1 N+2

and n is the known vector:u

n
[ u~

n n n r (3.2.3.1.6)u u u
N -1 '

u
1 N

The 5-banded matrix can be reduced to penta-diagonal form by

applying the boundary condi tions at the end points, which means

reducing the system from N+1 simultaneous equations in N+5

unknowns to N+1 equations in N+1 unknowns. Hence, the system can

be solved by a penta-diagonal algorithm (see Appendix A2).

The implicit numerical scheme (3.2.3.1.2) is consistent and
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is first order accurate in ~t and second order accurate in ~x, as

the truncation error is O[(~t)] + O[(~x)2].

The stability analysis of the implicit numerical scheme

(3.2.3.1.2) has been discussed by Goda [59] who proved that
n+ 1 nlIu II~ lIu II, which implies that the scheme (3.2.3.1.2) is

unconditionally stable.

3.2.3.2 Hopscotch Method:

In 1976, Greig and Morris [26] proposed a Hopscotch scheme

for the KdV equation (3.1. 1). To describe the method, discretize

the space var iable x into steps of size !J.xand let x = j!J.x,

j = 0,1, ... , N . Let u = u( j~X,n~t) be the difference solution at

the mesh point (j,n) and denote feu) 2- - u at mesh point (j, nJ by
2

Their scheme is then:

n+1 n
U = U

J j

c~t (fn fn )2~X j+1 j-1

l1-~t [ n _ 2un + 2un n J- 2(~X)3 uj+2 - uj+1 j-1 j-2

c~t (fn+ 1 fn+1)
2~X j +1 j-1

l1-~t [ n+1 2un+1 2 n+1 un+1]2(~x)3 U + U -j+2 j+1 j-1 J-2

(3.2.3.2.1)

n + 1 n
U U

J J

(3.2.3.2.2)

To implement the scheme, we employ (3.2.3.2.1) for those mesh

points for which J+n is even and (3.2.3.2.2) for those for which

j+n is odd.

In their paper, Greig and Morris [26] have assumed that

u = u = u = u = 0 for all t. The values obtained from
-1 0 N N+l

equation (3.2.3.2.1) are now used in equation (3.2.3.2.2). Hence,

rearranging (3.2.3.2.2), we have:
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n+l 1111t [ n+l
U
n+ 1J n el1t (fn+l_ fn+l)U + 2(I1X)3 U = uJ J+2 J-2 J 2l1X j +1 j - 1

1111t [ n+l n+l ] (3.2.3.2.3)+ (l1x)3 u U
j +1 j-1

This algorithm, under the present assumption that n is even,

is to be applied for J = 1,3,5, ... ,N-2 . All the entries on the

right hand side of (3.2.3.2.3) are known, hence it can be written

as Kn . So (3.2.3.2.3) becomes:
J

n + 1 1111t [ n + 1 e"+ 1] __ x"u + ---- 3 U -J 2(l1x) J+2 j-2 j
(3.2.3.2.4)

This equation can be written in matrix form as:
n+lA u = K (3.2.3.2.5)

where

•1 0:

•-0: 1 •
0:

A =

-0: 1 •
0:

•

•-0: 1

• I1l1t
0: = 2(l1x)3

n+l [ n+l n+l
U = U u1 2

K = [ kl , k
2

n+l
UN-3

T
un+ 1 )
N-2

For n odd, we will obtain the obvious change of superscripts

in the vector u and K in equation (3.2.3.2.5), but the coefficient
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matrix A will remain unchanged.

The advantage of this scheme is that A is a tridiagonal

matrix which means the system is also tridiagonal and so can be

solved by the Thomas algorthim (see Appendix AI).

The stability of this Hopscotch method has been discussed by

Greig and Morris [26] and they proved that it is stable if:

~ 1 (3.2.3.2.6)

where u is the maximum value of u over the range of interest. Note

that the condition of stability (3.2.3.2.6), is considerably less

stringent than the stability condition for the Zabusky and Kruskal

method (3.2.2.3)

The Hopscotch method has a truncation error of order

O[ (At)2] + O[ (Ax)2] and is consistent with equation (3.1.1)

3.2.3.3 Kruskal Method:

Kruskal [61] has suggested the numerical scheme:

1 (un+1 n ) 11 [n+l 3un+1 3 n+l un+1]At - u + -- 3 U + U -
J J 2(Ax) J+2 J+1 J J-1

+ 2(~X)3[
n 3un + 3un u~ _2] = 0u
J +1 j j - 1

(3.2.3.3.1)

for solving the linear differential equation:

= 0 (3.2.3.3.2)

Kruskal did not suggest any particular numerical scheme for the

nonlinear term of the KdV equation (3.1.1). Taha and Ablowitz [58]

proposed a numerical scheme to solve the KdV equation based on

equation (3.2.3.3.1) and their own scheme for the nonlinear term.

This leads to:
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1 (un+1 n
) 2 (~x) 3 [

n+1 3un"1 3 n+1 un+!Jfit - u + u + u -J j j+2 j..1 j j-1

J.1f1t[ n - 3un 3un _ Un ]+ 2(flx)3 U +j..1 j J-1 j-2

+ e. [~ [ (U2)n+1 - (U2)n+1 +CU2)n _CU2)n ]4(flx) J +1 J - 1 J+1 J-1

+ (I-e) [(Un+1 _ un+1 )un+1 + (u"J+1 j-1 J j+1 un )U
n
]] = 0j-1 J

(3.2.3.3.3)

Several values of e were employed and experimentally it was
2found that 8 = - gave the best result.
3

Thi s scheme is uncondi tionally stable according to 1inear

stability theory, and has a truncation error of order

3.3 Finite Fourier Transform or Pseudospectral Methods.

3.3.1 Split Step Fourier Method by F. Tappert [58,62]:

For convenience, the spatial period 2p was normalised to

[O,2rr]. Then the KdV equation becomes:

+
err
p u Ux + = 0 (3.3.1.1)

with X = (x+p)rr
p

The essence of the solution method is to al ternate between

two steps:

Cl) Advance the solution using only the nonlinear term by means of

an implicit finite difference approximation, and

(2) Advance the solution using only the linear term by means of

the discrete fast Fourier transform CFFT).

To implement this method to solve the KdV equation (3.3.1.1)
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as the first step, we first approximate:

+ = 0 (3.3.1.2)

The discretisation of this equation can be written as:

~n+l
U
j

n= u
j

(3.3.1.3)

where u is a solution of equation (3.3.1.2) and u is the solution

of equation (3.3.1.1). For the second step, we would take:

333
u(X ,t+~t) = F-1( elk rr/p ~t F(~(X ,t)))

J j
(3.3.1.4)

where F denotes the discrete Fourier transform and F-1 its

inverse. This scheme is unconditionally stable according to linear

stability analysis, and has a truncation error of order

In order to find F(~) and F-1, the FFT

technique is used.

Taha and Ablowi tz [58] have found that an improved

discretisation of (3.3.1.2) works considerably bet ter.

Specifically, the truncation error of the split step Fourier

method is improved to the order of O[(~t)21 + O[(~x)41 instead of
2 2 (O[(~t) 1 + O[(~x) 1 by approximating equation 3.3.1.2) according

to:

~n+l n crr~t r [ ~2]n+l [~2Jn+l [~2]n+l [~2Jn+lU = U - ----- 8 u - 8 u - u + u
j J 48p~ X L J + 1 j - 1 J + 2 j - 2

(3. J. 1.5)
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3.3.2 Pseudospectral Method by Fornberg and Whitham [32,58]:

This method is a Fourier method in which u Ix ,t) is

transformed into Fourier space with respect to x [63,64]. For

convenience, the spatial period is normalised to [O,2nJ. This

interval is discretised by N equidistant points, wi th spacing

l1X = 2n
N

The function u(X,t) , numerically defined only on these

points, can be transformed to the discrete Fourier space by:

U(k, t) = Fu = 1

YN

N-1
~ u(Jl1X,t) e-2nlJk/N

J =0

N
k = - 2, ... ,-1,0,1""'2

N
- 1 (3.3.2.1)

The inverse formula is:

u(JtoX,t) 1 u (k, t )
2nljk/N

e
YN k

k
N N
2 , ... ,-1,0,1""'2 - 1 (3.3.2.2)

These transformations can be performed efficiently with the fast

Fourier transform algori thm [65,66, 67J. Wi th this scheme, "x can

be evaluated as F-1{lkFU} , "xxx as F-1{I?k3FU} and so on. Combined

with a leap-frog time step, the KdV equation (3.3.1.1) would then

be approximated by:

u(X,t+l1t) - u(X, t-l1t) + 21cnl1t u(X,t) F-1(kF(u))
p

3

21J.J.l1t~3 F-1(k3F(u)) = 0
p

(3.3.2.3)

Fornberg and Whi tham [32J make a modification in the last term,

and take:

u(X, t+l1t) - u(X, t-tot) + 21cnl1t u(X,t) F-1(kF(u))
r

-1{ n
3 3 }- 21~ F sine p3 k l1t) F(u) = 0

(3.3.2.4)
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The difference between equation (3.3.2.3) and equation (3.3.2.4)

is in the approximation of the linear equation:

+ o (3.3.2.5)

The linear part of equation (3.3.2.4) is exactly satisfied for any

solution of equation (3.3.2.5). It is found that the linearised

stability condi tion for the scheme (3.3.2.4) is less restrictive

than the scheme (3.3.2.3) in that we need only ensure

3< -3
271

f1t 1~ 0.1520 compared to (Ax)3 < -n3 ~ O. 0323 [32J.

Since the Fornberg and Whitham [32] scheme is explicit, Taha

and Ablowitz [58) consider a Crank-Nicolson implicit version e.g.:

u(X,t+~t) - u(X,t) + i~~~t {U(X,t+~t) F-1(kF(u(X, t+~t)))

{
-1 3F (k F(u(X,t+~t)))

-1 3 }+ F (k F(u(X,t))) = 0 (3.3.2.6)

Thi s scheme is uncondi tionally stable according to linear

stability theory.

Taha and Ablowitz [58) have tested various numerical methods

for solving the KdV equation (3.1. I), namely (i) Zabusky and

Kruskal's scheme, (Lil Goda's scheme, (iii) the Hopscotch method,

(iv) Kruskal's scheme, (v) the split step Fourier method of

Tappert, (vi) the pseudospectral method of Fornberg and Whi tham,

(vii) Taha and Ablowitz's local scheme, and (viii) Taha and

Ablowitz's global scheme. Two sets of initial conditions were

used: (a) 1-soliton with various amplitudes, (b) the collision of

two solitons with different values of the parameters M and c. From

their numerical computations, they have drawn the following
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conclusions:

(1) The scheme of Gada required more CPU time compared with

the other soheme s Lf L),(iii), (Lv),(v), (vi), (vli L) ,

(2) Zabusky and Kruskal's scheme was good for small

amplitudes but it needed more computing time than the other

remaining methods ((iii), (Lv), Iv J, (vi), (vLi )) when amplitudes were

large.

(3) The calculations for the above two methods, Gada's and

Zabusky and Kruskal's, were not carried out for the I-soliton case

with an amplitude of 4. The CPU time required was too large.

(4) The Tappert and Hopscotch schemes took less computing

time than the previous two schemes. For small amplitudes,

Hopscotch was more efficient than Tappert, and they behave in

almost the same way for medium amplitudes. On the other hand, for

relatively large amplitudes, the Tappert scheme turned out to be

bet ter.

(5) Kruskal's scheme is in general faster than the schemes

((i), (ii), (iii), (v l, (v l i i )l.

(6) The Fornberg and Whitham method is much faster than the

Kruskal scheme. It is roughly three times faster for small

amplitudes and six times faster for large amplitudes.

(7) Taha and Ablowitz's local scheme is the best amongst all

the described schemes above. It was roughly eight times faster

than the Kruskal scheme and also it was roughly one and a half

times faster than Fornberg and Whitham's scheme. Taha and

Ablowi tz's global scheme was faster than some of the uti 1ized

schemes, but much slower than its local version.
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3.4 Fourier Expansion Method:

There are several methods for solving the KdV equation

numerically, some of them are based on finite difference methods

where we approximate all of the differentials by appropriate

finite differences and reduce the partial differential equation to

a set of algebraic equations. A numerical procedure competitive

with the finite difference method is the Fourier expansion method.

In this method, the unknown function is expanded in terms of a

Fourier series and the original partial differential equation is

reduced to a set of ordinary differential equations for the

Fourier coefficients. We are going to give a summary of the

Fourier expansion method.

Consider the KdV equation (3.1.1), wi th £: ::: 1 ,

11 ::: 0.000484 , as followed in [29), where the initial periodic

condi tion is:

U(x,O) :::cos(Tlx) o 5: x ~ 2 (3.4. 1)

The Fourier expansion corresponding to this is:

00

U(x,t) :::~
k=-oo

a (t) exp Li m x )
k

(3.4.2)

with initial condition:

a (0) :::8 + 12k k,_l
(3.4.3)

where 8 is the Kronecker delta. Substituting equation (3.4.2)k,m
into equation (3.1.1), we obtain:

da 00

~
3 3

dt k
::: -iTl m a a + iTl 11 k ak-m m k

m= -00

00ITlk
~

3 3 (3.4.4)::: a a + ITl11 k a
2 k-m m km= -00

Using equations (3.4.3) and (3.4.4) leads to a (t ) ::: 0 for all t
0
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Abe and Inoue [29] used the Runge-Kutta-Gill method for

solving the set of ordinary differential equations (3.4.4). They

found that the Fourier expansion method is the most accurate and

effective method in comparison with the other methods [26,27,30].

In addition to the schemes noted above, there are other

numerical schemes due to Gazdag [30], and a Taylor Fourier

expansion method proposed by Canosa and Gazdag [31].

3.5 Finite Element Methods [68,69,70,71,72].

3.5.1 Introduction:

The term fini te element was first used by Clough [73] in

1960. Since its inception, the literature on finite element

applications has grown exponentially, and today there are numerous

journals which are primarily devoted to the theory and

applications of the finite element method [74].

The finite element method is now widely accepted as the first

choice numerical method in all kinds of structural engineering

applications in aerospace, naval architecture and the nuclear

power industry. Applications to fluid mechanics are currently

being developed for the study of tidal motion, thermal and

chemical transport and diffusion problems, as well as for

fluid-structure interactions.

Dur ing the nineteen-sixt ies, research on the fini te element

method was widely pursued simultaneously in various parts of the

world, particulary in the following directions:

1) The method was reformulated as a special case of the weighted

residual method,

2) A wide variety of elements were developed including bending

elements, curved elements and the isoparametric concept was

introduced, and
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3) The method was recognised as a general method for the solution

of partial differential equations. Its applicability to the

solution of nonlinear and dynamic problems of structures was amply

demonstrated as was its extension into other domains such as soil

mechanics, fluid mechanics and thermodynamics. Solutions were

obtained to engineering problems hitherto thought intractable

[75].

In the finite difference approximation of a differential

equation, the derivatives in the equation are replaced by

difference quotients which involve the values of the solution at

discrete mesh points of the domain. The resulting discrete

equations are solved, after imposing the boundary conditions, for

the values of the solution at the mesh points. Although the finite

difference method is simple in concept, it suffers from several

disadvantages. The most notable are the inaccuracy of the

derivatives of the approximated solution, the difficulty in

imposing the boundary conditions along nonstraight boundaries, the

difficul ty in accurately representing geometrically complex

domains, and the inability to employ nonuniform and nonrectangular

meshes.

The finite element method overcomes some of the difficulties

of the fini te difference method because it is based on integral

formulations. The geometrical domain of the problem is represented

as a collection of finite elements and can be divided into

nonuniform and nonrectangular elements if the need arises [74].

Modern finite element integral formulations are mainly

obtained by two different procedures: variational formulations and

weighted residual formulations [76].

Var latlona l models usually involve finding the nodal

parameters that yield a stationary (maximum or minimum) value of a
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specific integral relation known as a functional. It is well known

that the solution that yields a stationary value of the functional

and satisfies the boundary conditions, is equivalent to the

solution of an associated differential equation known as the Euler

equation. If the functional is known, then it is relatively easy

to find the corresponding Euler equation.

Most engineering and physical problems are initially defined

in terms of a differential equation. The fini te element method

requires an integral formulation so that one must search for the

functional whose Euler equation has been given. Unfortonately,

this is a difficult and sometimes impossible task, therefore there

is an increasing emphasis on the various weighted residual

techniques that can generate an integral formulation directly from

the original differential equations.

The generation of finite element models by weighted residual

techniques is a relatively recent development. However, these

methods are increasingly important in the solution of differential

equations.

Let us begin with finding an unknown function u which

satisfies a certain operator equation:

A u = f in n = (a,b) (3.5.1.1)

where f is a known function and n is the domain of interest. A is

a real differential operator of order 2m (m is po st Ive ). The

differential operator A is linear if u and its derivatives appear

linearly in A . Otherwise A is nonlinear.

The boundary condi tions can contain the derivatives up to

2m - and at each boundary point there are m boundary conditions.

If the boundary condi tions involve u and derivatives of order

less than m then they are called essential. Otherwise they are

na tura 1.

47



In the weighted residual method the solution u is

approximated by the interpolation functions ¢ through:
j

N

U = r
N

(3.5.1.2)
j=1

where c are unknown parameters to be determined.
j

The best choice of the approximated functions are

polynomials because polynomials are easy to manipulate, both

algebraically and computationally. Polynomials are also attractive

from the point of view of the Weierstrass approximation theorem

which states that any continuous function may be approximated,

arbitrarly closely, by a suitable polynomial.

The choice of the approximation ¢ is required to satisfy the
J

following conditions: The approximation must

(1) have geometrical invariance,

(2) contain a complete polynomial which includes all the lower

terms, and

(3) have sufficient continuity and parameters to represent the

solution.

Substi tute the approximate solution (3.5.1.2) into the

operator equation (3.5.1.1). This operation defines a residual R :
N

R = A u - f
N

(3.5.1. J)

where R is a function of the chosen independent functions ¢ andN N

the unknown parameters c
J

To determine the unknown parameters c.
J

using the weighted residual method one can set the integral, over

the domain n, of the product of the residual and some weight

functions ~J to be zero:

~ R dx = 0
j N

1 , •.. , N (3.5.1.4)

where the weight functions, in general, are not the same as the

approximation functions ¢ .
J
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The equation (3.5.1.4) can be simplified to the form:

N

Inz 1/1. A ¢ dx ) c J 1/11 f dx
1 j j

j = 1 n
or

N

~ A c = f (3.5.1.5)
1 j j 1

j=l

where:

A = J t/J A ¢ dx
1 J n 1 J

f = J I/J f dx
! n 1

For different choices of the weight functions we obtain

different types of the weighted residual technique (3.5.1.4).

For .I, = ~ , the weighted residual method (3.5.1.4) is
'P 1 'P 1

called the Galerkin method while the weighted residual approach is

called the Petrov-Galerkin method, if I/J ~ ¢
1 1

To obtain the Least square method one determines the

parameters c by minimising the integral of the square of the
1

residual (3.5.1.4):

: c) R2 dx = 0
N

1

or

J a RN R dx = 0 (3.5.1.6)
Na c

!

The equation (3.5.1.6) can be written in simplified form:

N

E
j = 1

¢ A
1

¢ dx
J

c = I (A ¢ ) f
J n 1

dx

or

N

E
J " 1

A c
1 J J

= f
1

(3.5.1. 7l
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where

A
i j

= J (A
Q

<P. ) (A
1

<P j ) dx

f
!

= J (A
Q

<P ) f dx
!

Another popular method for solving the boundary value problem

is the collocation method. The idea behind this approach is to

make the residual in equation (3.5.1. 3) identically zero at N

selected points in the domain Q:

R == 0 .
N

(3.5.1.8)
or

N

~
j = 1

c A
j

<P (x )
j !

= f(x )
!

! = 1, ... , N (3.5.1.9)

The equation (3.5.1.9) gives a system of N equations in the N

unknown parameters c which can be solved numerically.
j

For both variational and weighted residual formulations, the

following restrictions are generally accepted as a means of

establishing convergence of the finite element model as the mesh

is refined [76]:

(1) - (A necessary criterion) the element interpolation functions

must be capable of modelling any constant values of the dependent

variable, or its derivatives, to the order present in the defining

integral statement, in the limit as the element size decreases.

(2) - (A sufficient criterion) the element shape functions should

be chosen so that at element interfaces the dependent variable and

its derivatives, of up to one order less than those occurring in

the defining integral, statement, are continuous.

Let us introduce the basic terms which are used in the finite

element analysis of any problem [74]:

1. Fini te element discretisation. The continuous domain is
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represented as a collection of a fini te number N of subdomains,

say segments. Each of these segments is called an element. The

collection of elements is called the finite element mesh. If all

the elements are of the same size, the mesh is said to be uniform.

One can discretise the domain, depending on the shape of the

domain, into a mesh of more than one type of element.

2. Error estimate. There are three sources of errors in a

finite element solution:

(i) errors due to the approximation of the domain,

(ii) errors due to the approximation of the solution, and

(iii) errors due to numerical computation.

The est ima tion of these errors, in general, is not a simple task.

3. Number and location of the nodes. The number of the

location of the nodes in an element depends on

(a) the geometry of the element,

(b) the degree of the approximation, and

(c) the variational form of the equation.

4. Assembly of elements. The assembly of elements, in a

general case, is based on the idea that the solution and possibly

its derivatives are continuous at the interelement boundaries.

5. Accuracy and convergence. The accuracy and convergence of

the finite element solution depends on the differential equation

solved and the elements used. The accuracy is the difference

between the exact solution and the fini te element solution, and

the convergence is the accuracy as the number of elements in the

mesh is increased. The convergence depends on the governing

differential equation.

6. The time dependent problems. For time dependent problems,

there are two steps to be followed:

Firstly, the differential equations are approximated by the finite
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element method to obtain a set of ordinary differential equations

in time.

Secondly, the different ial equations in time are solved

approximately by fini te difference methods to obtain algebraic

equations, which are then solved for the nodal values.

The basic steps for the solution of a differential equation

using the finite element method is as follows [74]:

(1) Divide the given domain into a finite elements. Number the

nodes (the points of subdomains where the function is evaluated)

and the elements. Generate the geometric properties(e.g.

coordinates, cross-sectional area, ... ) needed for the problem.

(2) Evaluate the element equations by constructing a suitable

weighted residual formula of the given differential equation

using:
N

u = ~
1=1

(3.5.1.10)

where; ~ are the chosen interpolation functions.
1

If we substitute the equation (3.5.1.10) in the chosen

weighted residual formula, we will obtain the formula:

(3.5.1.11)

(3) Assemble the element contributions to obtain the equation for

the whole problem.

(4) Impose the boundary conditions of the problem.

(5) Solve the overall system of equations.

(6) Compute the solution and represent the resul ts in tabular

and/or graphical form.

In the following sections we will give a brief discussion

about the finite element approach by using the Galerkin method to

solve the Korteweg-de-Vries equation.
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3.5.2. Alexander and Morris Galerkin Method:

Alexander and Morris [35] proposed the Galerkin method, in

which Lhe trial and test functions were cubic splines for solving

the KdV equation:

+ u ux + = 0 (3.5.2.1)

Let Srn denote the space of smoothest splines, defined

piecewise on intervals of length h (mesh size) as polynomials of

order III (degree m-I l. These spline functions can be constructed

in trw usual way as an (m-I)-fOld convolution: Let:

M, [X) = {

_ ~ X ~ I
2 2

(3.5.2.2)
o otherwise

then

M (X) = M -M -M -
HI I I I .-M

1
(m-I) (3.5.2.3)

where:

00

(f*g)X J f(X) g(X-Y)dY (3.5.2.4)
-00

Using (3.5.2.2), we see that

X+.!..
M (X) = f 2

m x-.!..
2

The b.i sls functions if> (x) of s" are then defined by:
I

M (Y)dYm-I (3.5.2.5)

xif> (x ) = M (-h - i )
I m

I is integer (3.5.2.6)

Alexander and Morris proposed the generalised Galerkin method for

so lv ing the KdV equation (3.5.2.1): if V E Srn , and U denotes the

Galcrk i I) solution, then:

U U + J1 Ux xxx JdX = 0 (3.5.2.7)

where; q is an arbitrary parameter determining the amount of
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scheme) .

dissipation in the scheme (q = 0 corresponds to nondissipative

In order to undertake a Fourier analysis of the accuracy and

stability of (J.S.2.7), Alexander and Morris set U = d in the

nonlinear term u u in the equation (3.5.2.1). Then they rescalex

form:

x, t and u to remove the constant IJ. and obtain the linearised

+ Uxxx J [v + q+ d U
x JdX = 0 (3.5.2.8)

The Galerkin solution may be expressed as:

Ut x, t) = ~ 8, (t ) 1>. (x )
1 1

(3.5.2.9)

where; ¢ (x) are cubic spline basis functions defined [J5] by:
I

1> (x ) = M (~ - 1)
I 4 h

where:

0
3(Y+2)
3 3(Y+2) - 4 (y+1)

M (y) -' 3 3
4 -i. (-Y+2) - 4 ( -y+i )

3(-y+2)
0

(J.5.2.10)

y ~ -2
-2 < Y ~ -1

-1 < Y ~ 0

0 < y ~ 1

1 < Y ~ 2
2 < Y

(3.5.2.11)

8 (t) are the unknown parameters to be determined, and y is a
I

local variable. In addition to these cubic splines, quintic

boundary polynomia Is are were specially constructed to maintain

the continuity of the second derivative.

Substituting (J.5.2.9) into (J.5.2.8), setting V = 1> and
1

using Fourier analysis, Alexander and Morris proved that the

scheme (J. 5. 2. 8) is conditionally stable if d > 0.0 and

uncondi tionally stable if d < 0.0 . In the former case, they can

make the scheme stable by making the value of h sufficiently

small. This scheme is second order accurate.
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A numerical computational procedure used for implementing the

scheme (3.5.2.7) leads to the system:

A 8 + B 8 = 0 (3.5.2.12)

where A and Bare 7-banded matrices. This set of differential

equations was solved using the IMSL library routine DREBS.

This system has been discussed by Alexander and Morris [35]

for different values of q with initial conditions one soliton and

two solitons and boundary conditions in which the solutions have

their zeroth, first and second derivatives equal to zero on the

boundaries.

Alexander and Morris computed the maximum error for a single

soliton and they found that with h = 0.05 and t = 0.39 , and exact

time integration, a maximum error ranging between 0.025 and 0.059

according to the chosen value of the dissipation parameter; for

h = 0.033 and t = 0.046 the error presented is of the order

0.015 . Also they conclude that a comparison wi th the Hopscotch

method [26] shows that the Galerkin method has the advantage of

smaller errors, for the same mesh size.

3.5.3 Petrov-Galerkin Method:

The Petrov-Galerkin method is a Galerkin method in which the

test and trial functions are not the same. Sanz-Serna and Christie

[36) in 1981 proposed a Petrov-Galerkin method in which the trial

and test functions were chosen to be piecewise linear and cubic

splines respectively.

We attempt to solve the KdV equation (3.5.2.1) together with

the initial condition:

U(x,O) = f(x) (3.5.3.1)

Assume that the problem has a unique solution such that, for fixed
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t , U(x, t) , together with all its x derivatives, tends to zero as

Ixl~ 00 • Conditions on f Ix ) guaranteeing existence and

uniqueness are given by Lax [23] and Sjoberg [24].

If we employ the Galerkin method wi th weight function v (x )

and integrate by parts, we obtain:

U + U U )v + 11 U v ]dx :::0t x x xx (3.5.3.2)

We introduce finite elements in space in (3.5.3.2) and approximate

the exact solution by the interpolation functions:

U(x,t)
N

:::~ U (t) ¢ (x)
1 1

(3.5.3.3)
1 = °

where ¢ (x) , 1=0,1, ... , N , are piecewise linear trial functions
1

and U (t) are unknown parameters to be determined from the system
1

of ordinary differential equations:

b

I [(Ut + U U )~ + 11 U (~) ] dx::: 0
X J x J xx

a

(3.5.3.4)

where; ~ are piecewise cubic spline test functions defined [36]
J

by:

if' (x l = ~ ( (x - x ) Ih - J)
J ° , j 0,1, ... , N (3.5.3.5)

then:

~(x) :::~[~(X+l) + 4~(X) + ~(X-l) + 3p(x+l) - 3P(X-l)] (3.5.3.6)

__{O(IXI~(x)
I x lSI

otherwise

2

__{Xo(IXI -1)p(x)
I x I S 1

otherwise

and the trial functions ¢ (x) are defined [36] as a piecewise
1

linear hat function:
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et> Ix )
1 J

{ ,
o

if i = j

otherwise

Sanz-Serna and Christie have discussed the following two cases:

(1) Linearised case:

Consider the linearised KdV equation:

Ut + d U + M U = 0x xxx (3.5.3.7)

where; d is constant. With the test and trial functions defined

previously, the linear analogue of equation (3.5.3.4) is:

A U + B U = 0 (3.5.3.8)

where; U [Uo(t), U1 (t) , ...
T

UN(t)] and A, Bare 5-band

The system (3.5.3.8) is givenmatrices of order (N+1)x(N+1)

explicitly by:

1 [a U + a U + a U + a U + au]60 1 1+2 2 1+1 3 1 2 1-1 1 1-2

d [f31 U 1+2+ f32U1+1 - f3 U f31Ui_2]+ 24h -2 i-1

+ ~3 [ U2h 1+2 2U + 2U - U ]1+1 1-1 1-2 = 0 (3.5.3.9)

where:

0: = 90: - 1
1

0: = 9 + 240:
2

0: = 44 - 660: ,
3

f3 = 120: -
1

f32 = 14 - 240:

I = 0,1, ... ,N and we set U = U = U = U = 0-2 -1 N+l N+2
For general 0: using Taylor expansion the explici t scheme

(3.5.3.9) is second order accurate. But if 0: =
6

its accuracy

becomes fourth order [36].

The stabil ity analysis for the system (3.5.3.8) has been

discussed using the von Neuman stability test and it is found that

the system is unconditionally stable [36].
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(2) Nonlinear case:

Returning to the KdV equation (3.5.2.1), the system (3.5.3.8)

can be written as:

A U + B(U) = 0 (3.5.3.10)

where; A and U are as defined in the linear case and B(U) is a

nonlinear vector function. The ith component of equation

(3.5.3.10) is of the form (3.5.3.9) except for the fact that the

term involving d is replaced by:

l~Oh [ 2a U2 + 0 U U + r U21 1+2 1 1+2 1+1 2 1+1 + r U U - r U U
3 1+1 1 3 1 i-I

o U2 - 0 U U -2a U2 ]- 2 i-I 1 i-I 1-2 1 i-2 (3.5.3.11)

where:

0
1

= 24a - 1 o = 24 - 36a
2

Taylor expansion for any a renders the method second order

accurate [33,36]

To increase the accuracy of this method Sanz-Serna and

Christie have proposed an approximation to the nonlinear term:

2U (x , t) (3.5.3.12)
1 = 0

using this definition the nonlinear term u u~ can be replaced by:

_1_ [u2 + 10U2 _ 10U2 _ U2 ]
48h 1+ 2 i + 1 1-1 1-2

So the ith component of the equation (3.5.3.10) becomes:
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1 [ U 26U + 66U + 26U U i -2]+ +120 i + 2 i + 1 i 1 - 1

+ [ U2 + 10U2 - 10U2
U~-2]48h 1+2 1 + 1 1 - 1

+ [ U 1 + 2 - 2U 1 + 1 + 2U
1-1

- U ]
1-2 = 0 (3.5.3.13)

Using Taylor expansion, the truncation error of the method is

fourth order accurate [33,361.

The Sanz-Serna and Christie method has the disadvantage of a

slight background noise in the form of a short wave length ripple

of very small amplitude. It is only noticeable in those regions

where the solution itself is very small, and would often not be

considered to be a problem at all. In some applications, however,

it may be desirable to have a smoother solution. In these cases a

method which is slightly dissipative could be used [22,77,781.

The methods we propose in chapters four to eight are also

fini te element methods wi th some similarties to those discussed

here. The resul ts we obtain wi11 be compared in detail wi th those

obtained by previous authors.
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CHAPTER 4

GALERKIN METHOD WITH HERMITE CUBIC FUNCTIONS

4.1 Introduction:

The cubic Hermite interpolation functions have continuous

first derivatives, and for this reason one can chose them as basis

functions to approximate the solution of the KdV equation. Another

advantage of choosing the cubic Hermite functions as trial and

test functions is that the first derivative is automatically

computed at each mesh point.

The present chapter is devoted to solving the KdV equation

using Galerkin's method wi th piecewise cubic Hermi te trial and

test functions.

4.2 The Governing Equation [77,79]:

The Korteweg-de-Vries equation is:

(4.2. 1)

where; £ and j.l are positive parameters. The boundary conditions

will be chosen from:

u la , t ) = ~

u(b,t) = 0 (4.2.2)
u (av t ) = u (b,t ) = 0x x
u (a,t) = u (b,t ) = 0xx xx

and the initial conditions on u(x,t) will be prescribed in a later

section.

Applying Galerkin's method with weight function v(x), which

is also assumed to satisfy the boundary conditions (4.2.2), gives:
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bI v( Ut + £ U Ux + M uxxx )dx = O. (4.2.3)
a

Integrating by parts, the term involving the third derivative

and using the boundary conditions (4.2.2) leads to the equation:

bI [V(Ut + c U ux) - M vxuxxldx = 0 (4.2.4)
a

The condition the integral imposes upon the interpolation

functions, is now that those functions and their first derivatives

must be continuous throughout the region. To satisfy this

requirement we have chosen Hermi te cubic polynomials as shape

functions.

4.3 The Finite Element Solution:

Divide the region [a,b l into N equal finite elements of
length h by the points x where:

1

a = x < x ... <' X = b
0 1 N

There are N+l nodes at x , x x and a corresponding N+l
0 1 N

nodal parameters U , U ,...,uNo 1

It will be assumed here that the variables of interest can be

uniquely specified throughout the solution domain by the nodal

parameters associated with the nodal points of the system. These

nodal parameters will be the unknown parameters of the problem. It

is assumed also that the parameters at a particular node are

influenced only by the values of the quantity of interest within

the elements that are connected to that particular node. Next, an

interpolation function is assumed for the purpose of relating the

values of parameters at all the nodes that are connected to a

particular element.

To make these assumptions clear, let us consider initially a

typical cubic Hermite element Ix , x ] which has nodes at x
I 1+1 I
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and x and at those points the nodal parameters are the values
i ..1

of the function u and its first derivative u' (u': u ). Over the
i )(

element the function u is given by:

4

ue(x. t) = N(x) sett) = ~
1 = 1

(4.3.1)

where u • u •
1 1 .. 1

is the vector of nodal parameters which is a function of time only

and N is defined [74.75J as:

N [1 3~2 2~3 2~2 ~3 3~2 2~3 - 3.\ 3.
3
) (4.3.2)= - + -3' ~ - - +

~2'
- - -3'hZ h h h2 h h h2

which is the shape function expressed in terms of a local

coordinate ~ = x - x o ~ ~ ~ h
1

~
I
I

Jt-I

i \:
j ,
I, I
~~G- ~_

;X ...
I ~.

I

Figure 4.1 Typical ele~ent of shape function cubic Hermite.

Since equation (4.2.4) is valid over the whole region fa.hl.

it is valid in particular. over the element e so that the

contribution to the equation (4.2.4) can be written:

[v(u + c u u ) - ~ v u Jdxt x x xx (4.3.3)

which. If we identlfy the weight function v with a shape function

N . and use equation (4.3.1) becomes:
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4

~
J=l

4

~- IJ. J=l

4 4
~ ~

J=l k=l

Equation (4.3.4) can be written in matrix form as:
T

Ae Be Be Le Be e Be+ C - IJ. C

where the element matrices are given by the integrals:

h
= J NI N dx

J
0

Jh /I

= N N dx .
i J

0
and

h

L~Jk = J NI NJ Nk dx
o

I, J. k = 1, ... ,4

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.7)

(4.3.8)

The matrices Ae and Ce are square 4 x 4 and Le is a block 4x4x4

having an associated 4 x 4 square matrix defined by:

B
I j

4

= ~
k=l

L Be
I J k k

where Be = [ u
I

, U' ]TU U
I' 1+1' 1+1

The matrices haveelement

(4.3.9)

been computed

algebraically from equations (4.3.6) - (4.3.8) using the computer

Algebra package REDUCE [38] as:
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13h 11h2 9h 13h2

35 210 70 420
11h2 h3 13h2 h3

Ae= 210 105 420 140 (4.3.10)

9h 13h2 13h llh2--
70 420 35 210
13h2 h3 11h2 h3

420 140 210 105

0 1 0 1
h h

1 1 1 1
h 2 h 2

Ce
1 1 (4.3.11)

0 0
h h

1 1 1 1
h 2 h 2

and
Be 1 ( -70 2Sh 70 -17h ) 8e= , , ,11 210

Be Be h (-50 5h 50 -11h) 8e= = , , ,12 21 840

Be Be 1 (-35 -4h 35 ,-4h 8e= = , ,
13 31 210

Be Be h 34 3h -34 5h) 8e= = , , ,14 41 840

Be h2 -5 0 5 -h) 8e= , , ,22 420

Be Be h ( -34 -5h 34 ,-3h) 8e= = , ,23 32 840

Be Be h2 ( 8 h -8 ,h ) 8e= = , ,24 42 840
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Be 1 ( -70 -17h 70 ,25h ) 8
e, ,33 210

Be Be h ( 50 11h -50 -5h) 8
e= = ,34 43 , ,

840

Be h2 ( -5 -h 5 0 ) 8
e (4.3.12)= , , ,44 420

where
~(= [ u , u' , u u' ]T (4.3.13)

I I 1+1 1+1

Suppose that the solution region [a,b l is divided into N

elements of equal length h. Each element consists of two nodes and

each node has two unknown nodal parameters (one for the variable

and the other for its derivative). So each element has four

unknowns. Since these elements are connected at nodes

1,2, .•• , N-1 , so for the first element there are four unknowns
8(1) 8(1) 8(1)
1 ' 2 ' 3 '

8(2) 8(2) 8(2)
1 ' 2 'J'

(N) (N)unknowns 8 , B ,
1 2

8(1) and for the second element the unknowns are
4

8(2) and so on until the N-th element with
4

B(N) where the superscript denotes the
4

element number.

From the continuity of u and u' we get the following:

(4.3.14)

Now we are going to identify the local nodal parameters with

global nodal parameters B , 1=1,2, ... ,2N+2 which can be written
I

as:

8 ,
1

8(1) = 8 ,
3 5

(N)
8 , ... ,84 1 = 8

2N-l

8(N) = 8
2 2N

B(N) = B
3 2N+1

8(N) = 8
4 2N+2

(4.3.15)

Let us divide the region [a,b] into three elements of equal

length. Then assembling the matrices A , B , and C gives:
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( 1 ) ( 1 ) ( 1 ) ( 1 )
a a a a
1 1 12 13 14

( 1 ) ( 1 ) ( 1 ) ( 1 )
a a a a
21 22 23 24

( 1 ) ( 1 ) • (2) • (2) (2 ) (2 )
a a a a a a
31 32 1 1 12 13 14

( 1 ) ( 1 ) • (2) * (2) ( 2) (2)
a a a a a a

41 42 21 22 23 24

A
(2 ) (2 ) • (3) * (3) ( 3) (3) (4.3.16)= a a a a a a
31 32 11 12 13 14

(2 ) (2 ) * (3) * (3) (3 ) (3 )
a a a a a a
41 42 21 22 23 24

( 3) (3 ) (3) (3 )
a a a a
31 32 33 34

(3 ) (3 ) (3) (3 )
a a a a
41 42 43 44

b (1 ) b (1 ) b (1 ) b (1 )

1 1 12 13 14

b (1 ) b (1 ) b (1 ) b (1)

21 22 23 24

b (1 ) b (1 ) • (2) * (2) b (2) b (2)
b b

31 32 1 1 12 13 14

b (1 ) b ( 1 ) • (2) * (2) b (2) b (2)
b b

41 42 21 22 23 24

b (2) b (2) * (3) * (3) b (3) b (3) (4.3.17)B = b b
31 32 11 12 13 14

b(2) b(2) * (3) * (3) b (3) b (3)
b b

41 42 21 22 23 24

b (3) b (3) b(3) b(3)

31 32 33 34

b (3) b (3) b(3) b (3)

41 42 43 44

( 1 ) ( 1 ) ( 1 ) ( 1 )
C C C C
1 1 12 13 14

( 1 ) ( 1 ) ( 1 ) ( 1 )
c c c c
21 22 23 24

( 1 ) ( 1 ) • (2) * (2) (2 ) ( 2)
C c C c C C
31 32 1 1 12 13 14

( 1 ) ( 1 ) * (2) * (2) (2 ) ( 2)
c c c c c C

41 42 21 22 23 24

(2) ( 2) * (3) * (3) (3 ) (3 )
(4.3.18)C = c c c c c C

31 32 11 12 13 14

( 2) ( 2) *(3) * (3) (3 ) (3 )
C C C C C C
41 42 21 22 23 24

(3 ) (3 ) (3 ) (3 )
C C C C
31 32 33 34

(3 ) ( 3) (3) (3 )
C C C C
41 42 43 44
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where

• (2) (1) (2) • (2) (1) (2)a = a + a a a + a11 33 11 12 34 12

• (2) (1) (2) • (3) (2) (3)a = a + a a = a + a22 44 22 11 33 11

• (3) (2) (3) • (3) (2) (3)a a + a a = a + a21 43 21 22 44 22

• (2) b (1~ b (2) • (2) b (1)+ b (2)b = b =11 33 11 12 34 12

• (2) b (1)+ b(2) • (3) b(2~ b (3)b = b =22 44 22 1 1 33 11

• (3) b(2~ b(3) • (3) b(2)+ b (3)b = b =21 43 21 22 44 22

• (2) (1) (2 ) • (2) (1) (2)
C = C + C C C + C11 33 11 12 34 12

• (2) ( 1 ) (2) • (3) (2) (3)c = c + c c c + C
22 44 22 11 33 11

• (3) ( 2) (3) • (3) ( 2) (3)C C + C C = C + C21 43 21 22 44 22

8 = [8 ,8 ,8 ,8 ,8 ,8 ,8
7

8 1T1 2 3 4 5 6 ' 8

• (2)a
21

( 1 ) ( 2 )
a + a
43 21

• (3) (2) (3)a = a + a
12 34 12

(4.3.19)

(4.3.20)

• (2)c
21

( 1 ) ( 2 )
c + c
43 21

• (3)c
12

(2) (3)
c + c
34 12

(4.3.21)

(4.3.22)

Simi lar ly , assembl ing together contribution from N elements leads

to the matrix equation:

A 8 + c B(8) 8 ~ C 8 = 0 (4.3.23)

The matrices A , B(8) , and C are septa-diagonal in form. The

element matrices Ae , Ce are the same for every finite element and

remain constant throughout the run, so A and C are time

independent. Le is also the same for every element and remains
I j k

fixed, but Be(8) depends upon nodal parameters 8e which are time
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dependent, so that B(8) must be reconstructed for every time

step. Suppose that between time levels nand n+l 8 is interpolated

by:

8 = (( 1-8) , 8) [~n 1~ on+l (4.3.24)

where t=(n+8)~t with 0 ~ 8 ~ 1 Then:

d 8
1

M
( -1 , 1) [8 n 1

8n+1 (4.3.25)d t

Hence equation (4.3.23) can be written as:

on 1 [ 1 [n n n+l---~-t---- + c B(~ ) (1- 8)~ + 8~ - ~ C (1-

Rearranging we obtain the recurrence relationship:

[

Cl
A + 8 ~t(c B(~ )- (4.3.26)

The parameter 8 takes different values such that:

8 = 0

8 = -
2

e = 1

gives Forward Difference scheme

gives Crank-Nicolson scheme

gives Backward Difference scheme

Now letting 8 = 1 , equation (4.3.26) becomes:-
2

[A , ~t
(c B(8n) - ~ chn., + ~t

(c B(8n) - ~ c)l~n (4.3.27)
2 2

which is a recurrence relationship for updating the nodal

parameters from time level n to time level n+l which we shall use

exclusively in the following two equations.
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The matrix 8(8) is nonlinear so that the system (4.3.27) is

also nonl inear. Our approach to the solution is to replace the

system (4.3.27) by two equations [56,70]:

(4.3.28a)

and

(4.3.28b)

The predictor (4.3.28a) gives a first approximation 8 n+l

then the corrector (4.3.28b) may be used iteratively to improve

the approximation.

The solution of the system (4.3.28) we obtained will be

influenced by the boundary and initial conditions. So, firstly We

apply the boundary conditions u = a u = 0 u' = 0 u' = 0o ' N ' 0 ' N .

The initial conditions on u(x,O) and u' (x,0) determine the
ostarting nodal vector 8 .

The system (4.3.28) consists of two systems of 2(N+l)

equations of 2(N+l) unknowns. One can solve the 7-banded systems

(4.3.28) using Gaussian elimination .However, this algorithm is an

uneconomic method to apply because the matrices A , 8(8) , and C

contain a large number of zero elements. One can avoid these

difficulties by storing these matrices in rectangular form of

order 2(N+~x7 and then use the septa-diagonal algorithm based on

the Thomas algorithm for tridiagonal matrices( see Appendix A3).
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4.4 The Test Problems:

We first study the motion of a single soliton. This is

derived from the initial condition:

U(X,O) = J C sech2(A x + D )
1 1

This follows from the analytic solution of the KdV equation which

(a) (4.4. 1)

has been discussed in chapter 2 and it has the form:

U(X,t) = J C sech2(A x - B t
1 1

1/2c/~) and B = c cA
1 1

+ D )
1

(4.4.2)
1where; A = -Cc

1 2
To permit comparison with

Greig and Morris [26], we choose c = 1 -~~ = 4.84xlO ,c = 0.3 ,

D = -6. , h = 0.05 , 0.033 , 0.01 , and At = 0.025 , 0.01 , 0.005
1

We shall impose the boundary conditions:

u(O,t)
U (0, t)
x

= u(2,t) = 0
= U (2.t) = 0x

} for all time (4.4.3)

We show in Figure 4.2 our solution for times from t = 0.0 to

t = 3.0 These graphs compare exactly wi th those of Greig and

Morris [26] for corresponding times and if the exact solution is

plotted on the same figure the curves are indistinguishable:

1.0

0.' 0.8

' •• 5:ao•e I~.O "'0.'

a.o 1.1 I.. I.' 1.1 J.O 1.0 '.1 I,. I.' 1,1 •• 11

•
I.Z 1.1

Id Id

0.. a ••
~a.,

0•• 0••

0.1 0.. 0.' 0.'

hl<'

o.r 0.1

1.1 1.4 I.' I.' Z.O I.Z I.' I.' I.' zla

1.1 1.1

o.a 0.. o.e 0.' 1.0
1

1.0

0.'
"0,'

1.0

o.z 0.. 0.' 0.1

I.z.
D.'

:'o.e

0.4 0.'
0.1o.Z

Figure 4.2 Problem (a). The motion of a single soliton with
At = 0.005. h = 0.01.

70



Our second example concerns the interaction between solitons.

We use the initial condition:

(b) U(x,O) = 3 C sech2CA x + 0 ) + 3 C sech2(A x + D) (444)1 1 1 2 2 2 ..

Figure 4.3 shows the two solitons with larger on the left. As

the time increases, the larger soliton catches up with the smaller

until, at time t = 0.75, the smaller soliton is in the process of

being absorbed, having lost its solitary wave identity. The

overlapping process continues until, by time t = 1.5, the larger

soli ton has overtaken the smaller one and is in the process of

separating. At time t = 3, the interaction is complete and the

larger soliton has separated completely from the smaller one:

0.'
"0.1

0.6

o.a

I.a
1.0

0.'
r.o.O aD.,

0••

o.~

0.. D.. D.' 0.1 ~.11 I.l 1.. l.. ,.a
I

I.lI.a

I.'..,
a••, ,.a.l
I..

.. a

1.0

0.'
aD.,

0••

O.l

Figure 4.3 Problem (b). The interaction of two overlapping
solitons with ~t = 0.005, h = 0.01.

This solution represents two solitons of magnitudes c and c
1 2

sited initially at x = - 0 lA and - 0 lA
1 1 2 2

respectively with

11/2
1 C C

A = -rL -J ,
j 2 IJc = 0.3 ,

1
c = O. 1
2

and o = 0 = -6.
1 2 '

J = 1,2 .

Chosing Cl> C
2

ensures that the velocity, and magni tude of
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the soliton at x = - D /A is the larger and that the solitons
1 1

interact with increasing time.

u (O,t) u (2, t )

We take as boundary conditions:

=: } for all time (4.4.51
u (0,t) = u (2,t)x x

Our simulations (Figure 4.3) show that after the interaction of

two over lapping sol itons the large and small ampl itudes of the

solitons are altered from the original by about ;:::1%, ;:::0.39%

respectively as was also observed by Greig and Morris (26), the

agreement between the solutions is satisfactory.

( bl ) Consider the initial condition:

u(x,O) = 3 C sech2(A x + D ) + 3 C sech2(A x + D) (4.4.6)
1 1 1 2 2 2

where:

1, 2 B
1

1= - c A
2 1

~ = 0.000484 , C = 0.3 , C = 0.1
1 2

D = -6. ,D -9.
1 2

The boundary conditions are imposed:

u (0, t)

u (O,t)x

= u(4, t )

u (4,t)
x

o
= 0

} for all time (4.4.7)
=

The reason for chosing this initial condi tion is to produce an

initial condition in which the two solitons are well separated.

Figure 4.4 shows the two solitons with larger on the left. As

the time increases, the larger soliton catches up with the smaller

until, at time t = 3. The overlapping process continues until, by

time t = 4, the larger sol iton has overtaken the smaller one and

is in the process of separating. At time t = 6, the interaction is

complete and the larger soliton has separated completely from the

smaller one:
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Figure 4.4 Problem (bl). The interaction of two well separated
solitons for dt = 0.005, h = 0.01.

In this case, after the interaction the two solitons emerge
virtually unchanged in form and amplitude, the faster soliton now
being ahead. This poInt will be considered in detail in the
discussion of section 4.5.

Our third test example has an inibal condition:
( c ) 2u(x ,a) = exp( - x ) (4.4.8)

The boundary conditions we impose are:

u(+ lS,t) = 0 } for all t > 0
u (+ 15,t ) = 0x

We choose c = 1. 0 and each of:
( Cl ) ,.,. = 0.029 h = 0.1 , dt = 0.01

(4.4.9)

(C2 ,.,. = 0.01 ,h = 0.1 ,dt = 0.01
( Cl ) ,.,.= 0.0076 ,h = 0.1 ,dt = 0.01
( C4 ) ,.,.= 0.0037 , h = 0.1 ,dt = 0.01
successively, so that comparison with the work of Goda [59] is
possible for problem (cz).
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The balance between the dispersion and the nonlinearity

occurs when ~::::0.0625 [41,80] and from Figure 4.5 we see that
c

the initial condition with this value of ~ = ~ produces a pure
c

(single) soliton. It was found that the behaviour of the numerical

solutions was completely different according to whether ~ »~ or
c

The initial condition breaks up into two sol itons when

0.02 < ~ < 0.0625 • into three when 0.0083 < ~ < 0.02 , into four

when ~::::0.0083 , into six when ~::::0.0039 , and thereafter the

number of emergent solitons increases indefinitely with decreasing

numerical values of ~. On the other hand, if ~ ~ ~ , no solution
e

breaks up into sol1tons at all, but the solutions for ~ l> ~
c

exhibit rapidly oscillating wave packets. For certain intermediate

values of u, a mixed type of solution was found which consists of

a· leading sollton and an oscillating tail [15,39, 80 1 . Our

numerical results will be compared with their theoretical

predictlons:
... ..e
,.. ...,- '....

., I

•

......
.~:~.. ·f

.... 1
,
•

•••
,..
,..• ..... ., I,....

'...

., ....
...
,..
,....... ., ...
•••
10'......

.,
....1

'....

~' ..~r .....

• ••

Figure 4.5 The motion of a single soliton with balance initial
condition when ~ = 0.0625 h = 0.1 At = 0.01.

Figure 4.6 shows with ~ = 0.029 the numerical solution for times

up to t = 12.5 . We see that the initial condition resolves itself
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into two solitons plus an oscillatory tail in agreement with the
theoretical results:
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Figure 4.6 Problem (cl). The breakdown of the initial condition
into two solitons with ~ = 0.029 h = O. 1 ~t = 0.01.

Figure 4.7 shows similar results for ~ = 0.01 Now the

initial perturbation breaks up into three solitons. The graph

obtained in this case is identical with that given by Goda (59),

and again agrees with theoretical predictions:

I..

'....
••

,.
·1 I I.... .• ..

... ...
'... ,....

.. •• .. ..
... ...

• ,..... ••s A
... ) (

··'--~~l-"'"'--;-..A_~~__ .-:,,-:....._,,-:---::,..
r••u

~
"

Figure 4.7 Problem (c2). The breakdown of the initial condition
into 3 solitons when ~ = 0.01. h = 0.1, At = 0.01.

In Figure 4.8, we have plotted soliton profiles obtained from
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equation (4.4.1) using appropriate values of ~ and wave amplitude.

If these profiles are superimposed on Figure 4.7, we can confirm,

to within plotting error, that the solitary waves we have obtained

are in fact solitons:

t.o t.O

I.' I.'
1.2

_.0' ~ 0.' _.01

.... •J.I ·1.' 1.2 ••• -... 0.1.1 ~,.,-:.f~ I.~ ...
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I.' I.'

1.2

_.01 " D.
_.~I

e •

..... •J.2 .1.' I•• I•• ••• .... .J.I .1.' ..I J.I •••..... .....

Figure 4.8 Solitons of various amplitudes with ~ = 0.01. c = 1.0.

In Figure 4.9, we see that when the coefficient of the

dispersive term is decreased to jJ = 0.0076 the nonlinear term

dominates, hence the amplitude increases with time and we find

that the initial perturbation breaks up into 3 solitons, with the

amplitude increasing linearly:
... I.'

,.J
'.... f ••• S

., .1.... ....
... I••

,... T,'.S

.. ·1
.,

.... ....
1.1 I.'
,..

1\ ,.,...
,..

A,..
1\)\ ...

.:~
·1 .1 j I •,

-e, s ....
Figure 4.9 Problem (c3) . The breakdown of the initial perturbation

into 3 solitons with J..I. = 0.0076, h = 0.1, 6t = 0.01.
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Figure 4.10 shows that when the coefficient of the dispersive

term is decreased to Il = 0.0037, the initial perturbation breaks

down into 5 solitons whose amplitude increases linearly:

... ...
I.'

,.... r ... ~

., . " "
I.... ....

I.' ...
I.'

,.s. lal.'

.. . ,. .. ,.
I ........

... ...
I.' I.'

,..
"U.S

I••", ...,. ·f
,.

... ....

Figure 4.10 Problem (c4). The initial condition splits into 5
solitons when Il = 0.0037, h = O. 1, ~t = 0.01.

A comparison of our results with those obtained by [15,39,80) has

been made and we find that there is agreement when ~ ~ 0.01 . For

~ :II 0.0076, 0.0037, we obtained three and five solitons

respectively which does not agree wi th their theoretical

predictions [15,39,80].
As a final test example, we consider the development of an

undular bore in shallow water. This is characterised by the

initial condition:

(d) u(x,O) = ~[ 1 - tanh[ x -525 ] ] (4.4.10)

with two boundary condltions:

u(O,t} = 1

} for all t > 0(1) u(50,t) = 0

u (0,t) = u (SO,t) = 0
x x
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u(-50,t) = u(150,t) = 0

} for all t > 0 (4.4.12)(ii )

u (-50, t ) u (150, t )x x = 0

There is an earlier numerical solution to this problem by

Vliegenthart [44J who gives a graphical solution. We intended to

compare our approach with this solution by solving the same

problem, choosing c = 0.2, 11 = 0.1 and At = 0.05, h = 0.4.

Unfortunately the boundary conditions used were not stated

explicitly. Soon a study of the graphs presented we concluded that

these were most likely to be

u t ov t ) = 1 U(SO, t) = 0

U (o,t) = U (so,t) = o.x x
We adopted these boundary conditions and undertook two

simulations, the first using the method outlined here and the

second using Vliegenthart' s fini te difference scheme. The resul ts

were identical, but did not agree with the published figures. We

determined the veloci ty of the leading soli ton from the present

simulations and from the published graphs. We found that our

simulations produced a soliton moving slowly than the theoretical

result, whereas Vliegenthart soliton was moving more rapidly. We

finally decided to use the initial condition given in Figure 4.13

with boundary conditions (4.4.12). As expected the initial

perturbation has degenerated into a train of solitons, which move

steadily to the right with constant amplitude and veloclty. We see

that the amplitudes of the solitons vary approximately linearly.

We find that the velocity of the leading soliton is in complete

agreement wi th the theoretical value determined from its

amplitude:
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using finite difference scheme.
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4.5 Discussion:
When used to determine the solution of the KdV equation any

numerical scheme must be capable of faithfully representing the
ampU tude of the solution over many time steps and must also
predict the progress of the wave front with little error [26].

We have observed graphically that our numerical single
soliton solution for problem (a) is indistinguishable from the

analytic results.
To measure the accuracy of the numerical methods in solving

the KdV equation we compute the difference between the analytic
and numerical solutions at each mesh point after each specified
time step, and use this in the discrete L - and L - error norms2 co

which are defined by [29,36,59J:

II exact.L2" U

and

exact.
U
J

n- U
J

1/2

12] (4.5. 1)

L = max
co

J

exact.
U
J

n- U
J

(4.5.2)
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This error is used to compare 5 numerical methods in

Tables 4. I, 4.2 for the single soliton solution [36]. We see that

the Galerkin cubic Hermi te method compares very favourably wi th

the methods of references [27] and [26] and is a competitor to the

Petrov-Galerkin method (36):

Table 4. 1

The growth of the discrete L -error norm x 103 for single soliton
2

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Hermite
[27] [36] [36]

I:J.x= 0.05 At = 0.025 h = 0.05 I:J.t= 0.025

0.25 34.64 61. 21 81.39 52.15 1.20
0.50 122.68 122.41 102.54 64.90 2.45
0.75 210.44 181. 35 125.84 89.01 4.00
1.00 298.19 228. 10 150.57 107.20 5.79

h = 0.033 I:J.t= 0.01

0.25 31. 18 5.94 0.19
0.5 43.35 7.56 0.33
0.75 56.21 8.70 0.47
1. 00 74.08 9.49 0.62

I:J.x= 0.01 At = 0.0005 h = 0.01 I:J.t= 0.005

0.25 5.94 3.79 4.46 0.21 0.03
0.50 13. 17 9.28 7.01 0.38 0.05
0.75 21.08 14.14 10.08 0.57 0.07
1. 00 28.66 18.72 13.26 0.74 0.09

From Table 4.1 we see that the L -error norm calculated from
2

our scheme is smaller than that calculated by other authors and

when compared with the best method quoted in Table 4.1 it is still

smaller by a factor of at least 10:
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Table 4.2

The growth of the discrete L -error norm x 103 for single soliton
00

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Hermite
[27] [36] [36]

fJ.x= 0.05 fJ.t= 0.025 h = 0.05 fJ.t= 0.025

0.25 19.4 32.7 42.18 30.22 3.05
0.50 63.5 67.4 51.85 22.85 5.78
0.75 122.4 99.3 87.60 35.86 11.31
1. 00 161.4 141.6 100.41 39.39 14.61

h = 0.033 fJ.t= 0.01

0.25 14.27 2.80 0.43
0.5 21.65 4.53 0.81
0.75 29.78 4.85 1. 15
1. 00 39.37 5.85 1.66

fJ.x= 0.01 LH = 0.0005 h = 0.01 fJ.t= 0.005

0.25 2.05 1.11 1.21 0.07 0.06
0.50 4.22 2. 14 2.15 0.11 0.13
0.75 6.36 3.54 3.09 0.17 0.18
1.00 8.13 4.91 3.83 0.21 0.23

Table 4.2 shows us that the L -error norm computed from our
00

technique for a single soliton using the definition (4.5.2) has

been compared very well wi th all the method which are quoted in

Table 4.2. We observe that the L -error norm is greater than
00

L -error norm which disagrrees with the authors [26,27,36]. Also
2

we find that the value of L -error norm using our method is
ex)

smaller than even the best method (Modified Petrov-Galerkin) by

factor 0.3 and in the worst case it has the same magnitude.

Table 4.3 shows us that the error is still small by
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comparison with the other authors even when the time is increased

up to t = 3.0. So we conclude that our numerical scheme is

eminently suitable for the determination of solutions to the KdV
equation even when relatively large time and space steps are used:

Table 4.3
The growth of the error for a single soliton

h = 0.05 t.t =0.025 h = 0.033 t.t =0.0' h = 0.01 t.t =0.005

Time L x 103 L X 103 L X 103 L X 103 L X 103 L X 1032 00 2 00 2 00

1.25 7.75 21. 65 0.80 2.09 0.11 0.28

1.50 10.03 24.27 0.98 2.45 0.12 0.32

1.75 12.51 35.49 1. 16 2.99 O. 14 0.38

2.00 15.30 37.82 1. 33 3.61 0.16 0.41

2.25 18.25 51.35 1. 52 4.07 0.18 0.47

2.50 21.63 53.26 1. 71 4.38 0.20 0.54

2.75 24.81 68.56 1.89 4.86 0.22 0.59

3.00 28.63 69.54 2.12 5.80 0.24 0.64

It is important that any scheme used to solve the KdV
equation be conservative. To examine this property for our scheme

we have determined the quantities I ,
1

I and
2

I defined by
3

equations (2.4.8)-(2.4.10) respectively for problem (a) at various

times; see Table 4.4:
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Table 4.4
The computed value I , I , and I for a single sol iton

1 2 3

I I I
1 2 3

h = .033 h = .01 h = .033 h = .01 h = .033 h = .01
Time fit = .01 fit =.005 fit = .01 fit =.005 fit = .01 flt=.005

0.0 0.144597 0.144598 0.086759 0.086759 0.046850 0.046850
0.50 0.144588 0.144598 0.086743 0.086760 0.046745 0.046832
1. 00 0.144603 0.144599 0.086735 0.086760 0.046611 0.046821
1. SO O. 144604 0.144600 0.086730 0.086761 0.046637 0.046820
2.00 o. 144603 0.144601 0.086724 0.086762 0.046642 0.046822
2.50 o. 144608 0.144602 0.086716 0.086763 0.046595 0.046826
3.00 O. 144604 0.144604 0.086705 0.086764 0.046488 0.046831

From Table 4.4 we find that the quantities change by less than

0.008%, 0.063% , 0.773% respectively when h = 0.033 At 0.01,

and 0.005%, 0.006%, 0.065% respectively when h = 0.01 fit = 0.005

during the computer run. Thus even when h = 0.033 and At = 0.01,

they may be considered satisfactorily conserved.

A computer run on the single soliton solution with 200 nodes

and 200 time steps took 31 secs of CPU time on a VAX 8650.

With example (b) we have demonstrated the capability of this

algorithm to accurately represent the solution when solitons

coalesce for a short period and then separate with their profiles

unaltered and only their relative amplitudes and positions

changed. In fact, from our study of this problem (b) we found that

the large and small amplitudes have changed after the interaction

by amounts of ::::1% and::::0.39% respectively. This may be due to

the overlapping of the two solitons at time t = o. For this reason

we chose problem (b l) in which the solitons were initially well

separated and we found that after the interaction the two solitons

emerged with their profiles unchanged and only their relative
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positions changed. Their large and small amplitudes have been only

slightly affected (~ 0.004% ,0.033 respectively). We conclude that

the initial condition (b) is not an appropriate one when the

interaction of solitons is studied.

The quantities I ,
1

I and I have been computed for2 3

problem (b) and are listed in Table 4.5:

Table 4.5
The computed values I , I , and I for a double soliton (b)123

with h = 0.01, At = 0.005

Time I I I
1 2 3

0.0 0.228081 O. 107062 0.053316
0.50 0.228122 0.107063 0.053307

1. 00 0.227942 0.107064 0.053313
1. 50 0.227734 o. 107065 0.053311
2.00 0.227684 0.107066 0.053302
2.50 0.227725 0.107067 0.053291
J.OO 0.227870 0.107068 0.053293

From Table 4.5 we see that the quantities I (1 = 1,2,3) change by
1

less than O. 175% , 0.006% , and O.047% respectively during the

computer run and so may be considered invariant; this is

especially true for I .
2

We have also computed the first three conservative quantities

for problem (bl), these are given in Table 4.6:
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Table 4.6
The computed values I , I , and I for a double soliton (bl)

1 2 3

with h = 0.01, ~t = 0.005

Time I I I
1 2 3

0.0 0.228082 O. 103466 0.049864
1.0 0.228084 O. 103468 0.049835
2.0 0.228085 O. 103470 0.049840
3.0 0.228088 O. 103472 0.049864
4.0 0.228092 0.103474 0.049849
5.0 0.228094 O. 103476 0.049844
6.0 0.228098 O. 103478 0.049853
7.0 0.228101 O. 103480 0.049855
8.0 0.228105 O. 103482 0.049852

Table 4.6 shows us that the quantities I (1 = 1,2,3) change by
1

less than 0.011% , 0.016% , 0.059% respectively and so can be

considered conserved even over much longer periods than that used

above.

(b2) In this problem we consider the motion of two solitons

with the initial conditions determined from the analytic solutions

(2.3.4.1) with t = 0.0 in the following cases:

(i) problem (b) where a = vlc!/ P
1

d = - 12 , d = -12 + ~
1 2

(ii) problem (b1) where a
1

- 12 d, 2 = -18 + ~

(iii) a = 4.0
1

a = 2.0
2

d = d = 0.0
1 2

c = 6 11 = 1

The boundary conditions are chosen:

u(+ 12,t) = 0
u (+ 12,t) 0x

} for -0.5 ~ t ~ 0.5 (4.5.3)

Before the interaction the position of the smaller amplitude

is shifted forward by ~ . After the interaction the sol iton wi th
2

larger ampl itude is shifted forward by ~ and the sol iton with
1
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small amplitude is shifted backward by ~ .
2

The errors and the quantities I
i

( I = 1, ... ,3) have been

computed for the problem (b2) case (i) and are given in

Table 4.7:

Table 4.7
The computed values of the errors , I , I , and I for double

123

soliton case (i) with h = 0.01, ~t = 0.005, 0 ~ x ~ 2

Time L x103 L X 103 I I I2 co 1 2 3

0.0 0.228074 0.103456 0.049855
0.50 0.061 O. 130 0.228066 0.103457 0.049842
1. 00 0.066 O. 150 0.228068 0.103458 0.049858
1. 50 0.083 0.214 0.228075 0.103459 0.049853
2.00 O. 113 0.269 0.228077 O. 103460 0.049837
2.50 0.150 0.386 0.228079 0.103461 0.049830
3.00 O. 160 0.390 0.228076 O. 103462 0.049838

From this Table we note that the L - and L -error norms are still2 (Xl

small even when the time reaches 3, and the quantities I
I

( i = 1,2,3) are changed by less than 0.004% , 0.006% 0.051%

respectively during the computer run. We find that the computed

value I is better than that computed in problem (b l, We conclude
1

that the quantities I are virtually constants.
I

In case (i) the analytic solution (2.3.4.7) predicts that the

two solitons will coalese near x ~ 0.74 at a time of t ~ 0.85.In

our numerical solution this happens around at t ~ 0.85 and

x ~ 0.74 which agrees with the analytic results. After the

interaction the position of the maximum amplitudes at time 3 are

determined analytically. The larger amplitude is at x '"1. 49 and

the smaller amplitude at x '"0.95.

The numerical solution agrees exactly with these analytic values.
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It was found that after the interaction the solitary waves

reappeared with their original amplitudes, correct to a numerical

error of less than 0.8% 0.38% respectively. We have also

calculated the L - and L -error norms and the first three2 00

conservative quantities. They are listed in Table 4.8:

Table 4.8
The computed values of the errors , I ,

1
I , and I for double
2 3

soliton case (ii) with h = 0.01, ~t = 0.005, 0 ~ x ~ 4

Time L x 103 L X 103 I I I
2 00 1 2 3

0.0 0.228082 0.103456 0.049855

1.0 0.088 0.232 0.228084 O. 103458 0.049826
2.0 0.151 0.336 0.228086 O. 103460 0.049830
3.0 0.124 0.409 0.228088 0.103462 0.049855
4.0 0.199 0.504 0.228092 O. 103464 0.049840
5.0 0.253 0.669 0.228094 0.103466 0.049835
6.0 0.279 0.743 0.228097 O. 103467 0.049844
7.0 0.291 0.775 0.228100 0.103469 0.049845
8.0 0.296 0.793 0.228103 O. 103471 0.049842

We observe that the behaviour of the L - and L -error norms as the2 00

time increases to 8 are quite good, and the quantities I
I

(I = 1,2,3) change by less than 0.010% 0.015% 0.059%

respectively during the computer run. Comparing these quantities

with those obtained for problem (b l) we find that they are very

similar.
The analytic solution predicts that the two well separated

solitons wi11 interact in the neighbourhood of x '" 1.37 at time

t '"2.95. In the numerical solution, we observe the interaction of

x '" 1.37 at time t '"2.95. After the interaction the soliton

ampl itudes have been changed from their orIginal values by less

than 0.006% , 0.032% respectively.
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We have also studied the interaction of solitons of large

amplitudes. The L - and L -error norms and the quantities I for2 ro i

two well separated solitons of large amplitudes are recorded in

Table 4.9:

Table 4.9
The computed values of the errrors , I , I , and I for double123

soliton case (iii) with h = 0.1, At = 0.0005, -12 ~ x ~ 12

Time L x 103 L X 103 I I I
2 00 1 2 3

-0.5 11.99991 47.99998 211. 2000
-0.4 1.431 1.536 12.00003 48.00010 210.9441
-0.3 2.604 2.728 12.00010 48.00057 210.9020
-0.2 3.625 3.873 12.00018 48.00109 210.9023
-0. 1 4.273 4.521 12.00027 48.00162 210.9600
0.0 3.592 4.521 12.00038 48.00219 211.1746
O. 1 4.605 4.669 12.00045 48.00283 211.0532
0.2 5.694 6.006 12.00054 48.00340 210.9515
0.3 6. 110 6.580 12.00063 48.00395 210.9382
0.4 6.348 6.901 12.00075 48.00456 210.9532
0.5 6.426 6.901 12.00080 48.00508 210.9747

Table 4.9 shows us that the L - and L -error norms increase as the2 ro

time increases and these errors have the same magnitude, and that

the quantities I (i = 1,2,3) change by less than 0.008% , 0.011%
1

, 0.142% respectively during the computer run. We conclude that

these quanti ties are relatively constant, particulary I and I .
1 2

Therefore, this method has the capabi 1ity of deal ing wi th the

interaction of two solitons with large amplitudes.

The phase shifts A , A defined by equation (2.3.4.8) have
1 2

been determined theoretically for problems (b), (b l l, (b2 (i -i1) )

as:

a = ylc1/~ ~ 24.896 ,
1

a = ylc2/~ ~ 14.374
2

then
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tJ. "" O. 11,
1

and tJ. "" - 0.18
2

(4.5.4)

For problem (b2(iii))

tJ. "" 0.55,
1

and tJ. "" - 1.1
2

(4.5.5)

The forward and backward phase shifts have been computed from

the numerical solution for problems (b), (b l ) , (b2 (i-ii)) as

tJ. "" 0.11,
1

and !J. "" - 0.18
2

and for problem (b2(iii))

!J. '" 0.50,
1

and tJ. "" - 1.1
2

which agree exactly wi th the analytic resul ts except in problem

(b) there is error in the forward phase shift about 1%. Also in

problem (b2(iii)) tJ. does not agree with its analytic result since
1

h = 0.1.

From the analytic solution, we predict that the two well

separa ted sol i tons wi th large ampli tudes wi11 interact in the

neighbourhood of x = 0 at time t = O. This event is observed in

the numerical solution. the larger and smaller ampli tudes have

changed from their original values by less than 0.006% and 0.013%

respectively.

Similar results are given in Table 4.10 for the conservative

quantities I , I , I of problems (cl) and (cz ) . We found that
123

each of the quantities I are very satisfactorily constant, I
I 2

particular Iy so:
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Table 4.10
The computed values of 1

1
, 12 and 13 for u(x,O) 2= exp(-x )

I I I
1 2 3

Time J.1 =.04 J.1 =.01 J.1 = .04 J.1 = .01 J.1 =.04 J.1 =.01

0.0 1.772454 1.772454 1.253314 1.253314 0.872929 0.985728
2.5 1.772496 1. 772474 1.253332 1.253342 0.872364 0.983127
5.0 1.772603 1.772507 1.253352 1.253358 0.872281 0.982074
7.5 1. 771416 1.772538 1.253371 1.253367 0.871154 0.981986
10.0 1. 775650 1.772548 1.253389 1.253375 0.868684 0.982014
12.5 1.770914 1.772469 1.253406 1.253387 0.860662 0.982004

From Table 4.10 we observe that the quantities I. change by less
1

than 0.181%, 0.008%, 1. 406% respectively for J.1 = 0.04, and

0.006%, 0.006%, 0.378% respectively for J.1 = 0.01. Hence the degree

of conservation observed for I , I , and I could depend on the
123

magni tude of the coefficient of the dispersive term O. e. the

value of J.1 l.

The total number of solitons which are generated from a

Gaussian initial condition can be determined [80,811 from:

_ [ 1 ]1/2
N - --

13 Jl
(4.5.6)

We found this formula to be in agreement wi th the number of

solitons observed in Figures 4.5 - 4.7 and 4.9 - 4.10 above.

We have computed the first three conservative quantities I
i

for problem (d) with boundary conditions (ii). These are given in

Table 4.11:
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Table 4. 11
The computed values I , I , and I for problem (d) with

123

boundary conditions (ii) h = 0.4, ~t = 0.05, £ = 0.2, ~ = 0.1

Time I I I
1 2 3

0.0 50.00010 45.00046 42.30069
100.0 50.00142 45.00165 42.29480
200.0 50.00801 45.00554 42.23354
300.0 50.00586 45.00994 42.23244
400.0 49.99699 45.01448 42.25957
500.0 49.97831 45.01851 42.22482
600.0 49.96850 45.02282 42.22728
700.0 49.98072 45.02714 42.23331
800.0 50.00647 45.03198 42.30136

Table 4.11 shows us that even with computer runs of long duration

that the quantities I
i

(I = 1,2,3) have changed by less than

0.064% , 0.071% , 0.180% respectively and so may be considered to

be satisfactorily conserved. The analytic velocity c of a soliton
a

is determined from its amplitude a by the formula:

c = a £ /3
a

(4.5.7)

where c the coefficient of the nonlinear term. For this problem

a C:< 1. 96293, e = 0.2 so that c Q< 0.1309.
a

The observed velocity

has been found to be c ~ 0.128 which is consistent with c .n a

From the above discussion we deduce that Galerkin's method

with cubic Hermite polynomial trial and test functions is a useful

technique for solving the KdV equation with large space and time

5 teps.
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CHAPTER 5

CUBIC SPLINE INTERPOLATION FUNCTIONS

5. 1 Introduction:

As we know well, the best choice for approximation functions

are, in general, polynomials. As an alternative to the cubic

Hermite functions discussed in the previous chapter we now choose

an approximation polynomial which even has a continuous second

derivative across element boundaries. This is the cubic spline

interpolation polynomial.

We confine our attention in this chapter to finding a finite

element solution of the KdV equation based on the Bubnov-Galerkin

method using cubic splines as "shape" functions.

5.2 The Governing Equation:

We will study the Korteweg-de Vries equation:

Ut + c U Ux + M U = 0 ,xxx a 5: x :<;; b (5.2.1)

The boundary conditions will be chosen from:

u la , t ) = (31

u I b , t ) = (32 C5.2.2)
u (a , t ) u (b,t) 0x x
u (a, t ) = u (b, t ) = 0xx xx

If we apply the Galerkin approach, with continuous weight

functions v lx ) , to equation (5.2.1) it produces:

b

J v(ut
a

+ c u u + M ux xxx ) dx = 0 C5.2.3)

The presence of the third spatial derivative in the integral

implies that the interpolation functions together with their first

and second derivatives must be continuous throughout the region
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a :c:;: x :c:;: b . The order of the highes t der i va t i ve in the integra 1

can, in this case, be reduced using integration by parts to

obtain:

ra b

u )dx - J ~ v u dx =x x xx
a

b
- [ ~ v Uxx] a (5.2.4)

where; the right hand side of (5.2.4) is evaluated only at the

boundaries. The condi t ion on the interpolation functions is now

simply that only the functions and their first derivatives need to

be continuous throughout the region. Hermi te cubic polynomials,

and quadratic B-Splines are thus possible choices. However, we

have chosen to use, as trial functions in this chapter, the very

adaptable cubic spl ines wi th their well known advantages. We can

thus proceed to a solution using either equation (5.2.4) or

equation (5.2 ..3.).

5.3 The finite Element Solution [72,82,83,84]:

Now we are going to approximate the solution u Ix , t ) using

cubic B-Spline interpolation functions.

Let us consider

n: a = x (x
o 1

< x = b as a partition of [a,b] by the knots
N

Xi' and let I/>i (x l be those cubic B-Splines with knots at the

points of rr Then X = span I I/> , I/> • ..• , A.
N

' A. } form a
N -1 0 'I' 'l'N+l

basis for functions defined over [a,b]. We seek the approximation

U (x,t) to the solution u(x,t) which uses these splines as trial
N

functions:

U (x , t ) = 8 (t ) I/> (x ) + 8 (t ) I/> (x ) + ... + 8 (t) I/> (x)N -1 -1 0 0 N+l N+l

N+l

= r 8 (t) I/> (x)m m
(5.3.1)

m=-l
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where; the 8 are time dependent quanti ties to be determined from
m

the boundary conditions (5.2.2) and from conditions based on

either equation (5.2.3) or (5.2.4)

Cubic B-Splines ¢ with the required properties are defined
m

by the relationships [35,71,721:

3
(X-X )

m-2

¢ (X) =
m

2 3+3h(x-x ) -3(X-X )
m-l m-l lx ,X J

m-l m

[X ,X J
m-2 m-l

[X ,X I
m m+l

(X - x)3
m+2

[X ,X Im+l m+2

o otherwise

m = -l,O, ... ,N+l (5.3.2)

where; h = (X - X ) for all m ,
m+ 1 m

implying that all intervals

[X ,X are of equal size.
m m+l

The spline ¢ (x) and its two principle derivatives vanish
m

outside the interval [x ,x J.
m-2 m+2

In Table (5.1) we list for

convenience the values of ¢m(X) and its derivatives ¢~(X) ¢/I(X)
m

at the knots:

Table 5.1

X X X X X X
m-2 m-l m m+l m+2

¢ 0 1 4 1 0m

¢' 0
3 0

3 0m h - Fi
6 12 6
- - - -

¢/I 0 h2 h2 h
2 0

m

We now identify the finite elements for the problem with the

m
X J and the element nodes wi th the knots x ,
m+l mintervals [x
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x . Using equation (5.3.1) and Table 5.1, we see that the nodalm+l

parameters u are given in terms of the parameters 8 by:m m

u u(x ) 8 + 48 + 8

1
m m m-I m m+1

(5.3.3)
u = u(x = 8 + 48 + 8m+l m+l m m+1 m+2

and the variation of u over the element lx , x I is given by:
IY\ 1

m+2
u = ~ 8

j
¢j

j=m-I
(5.3.4)

In addi tion, we have the valuable property that 8 ,8
m-I m

8 8 determine also the first and second derivatives at them+l m+2

nodes (element boundaries) and that these are also continuous and

given by:

u' u' (x )
3

[8m+ I 8m_I] (5.3.5)= hm m

u" u"ex ) 6
[8 m-I 28 + 8 ] (5.3.6)m m

h2 m m+1

The fini te element equations we shall set up will not be

expressed in terms of the nodal parameters
m

u'
m

u" but in
m

u

terms of the element parameters 8
m

so we shall not directly

determine the nodal values as is the case with the usual finite

element formulations. However these can always be recovered using

equations (5.3.3), (5.3.5) and (5.3.6).

We now set up the element matrices relevant to equation

(5.2.4). For a typical element Ix ,x ]
m m+1

we have the

contr ibut ion:

(5.3.7)
m

From the equation (5.3.2) we see that each spline covers 4

elements so that each element (x ,x I is covered by 4 splines.m m+1
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We define a local coordinate system ~ for the element by

~ = x - x . where 0 ~ ~ ~ h. which enables the expressions for the
m

element splines to be expressed independently of the actual

element coordinates as:

¢Jm-I

¢Jm
1=

¢J h3

m+1

¢Jm+2

3 2 2· 3h + 3h ~ + 3h~ - 3~
(5.3.8)

These splines act like "shape" functions for the element (see

Figure 5.1) when we set up equations in terms of the element

t s".parame ers u
m

Figure 5.1 Cubic spline shape function for a typical element.

Now using (5.3.4) and (5.3.8) in (5.3.7) and identifyi~g the

weight functions ~ith cubic splines we obtain:

m+2
r

j=m-l

m+2
+ e r

j=m-l

m+2

k=m-l
m

- J.l (5.3.9)dx 1 s;
m
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which can be written in matrix form as:

T
Ae Be + £ Se Le Be - M CeBe (5.3.10)

where:

(8 • B
m-l m

S
m+l

The element matrices are given by the integrals:

¢ ¢ dx
i j

(5.3.11)

m

ce r ¢' ¢" dx
1 j 1 j

X
m

and

Le =r ¢ ¢ ¢' dx
i j k 1 j k

X
m

(5.3.12)

(5.3.13)

where; i • j • k take only the values m-l • m • m+l • m+2 for this

typi ca 1 element l x . x 1.m m+l
The matrices Ae

• c" are therefore

4x4 and the matrix Le is 4x4x4. An associated 4x4 matrix can be

defined as:

=
m+2

~ (5.3.14)
k=m-l

which also depends on the parameters. se wi11 be used in the
k

following theoretical discussions.

The element matr ices Ae • are independent of the

parameters Se and can be determined algebraically from equations
k

(5.3.11 )-(5. 3.13) using REDUCE[38] as:
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and
Be
m-I,m-I

Be
m-I,m

=
h

140

- 9

-15

20 129 60

(5.3.15)

=

129 1188

1

933 60

= Be
m,m-I

60 933 1188 129

1 60 129 20

15

9

21 -27

- 3

(5.3.16)

3 3

-3

27 -21

= .! 83 m-I

- 9 15

= 107 8
56 m-I

- 15 9

5 1 1-8 +-8 +-828 m 2 m+1 84 m+2

87 8 + 927 8 + 43 8
56 m 280 m+1 280 m+2

Be = Be = _ ~ 8 _ 33 8 + 219 8 + ~ 8
m-I,m+1 m+l,m-I 4 m-I 35 m 140 m+1 70 m+2

Be = Be
m-I,m+2 m+2,m-1

Be
m,m+1

Be
m,m+2

Be
m+I,m+1

Be
m+I,m+2

Be
m+2,m+2

= Be
m+I,m

= Be
m+2,m

= Be
m+2,m+1

_1_ 8
168 m-I

1 8
40 m

+__!_8 +_1_8
40 m+1 168 m+2

361 8 - 21 828 m-l m
+ 4167 8 + 289 8

140 m+l 70 m+2

58478 +280 m
58478 + 17838280 m+1 280 m+2

= _ 17838280 m-I

289 8
70 m-I

43 8
280 m-1

1 8
84 m-1

41678 + 218 +
140 m m+1

361 8
28 m+2

927 + 87 8 + 107 8
280 8m 56 m+1 56 m+2

+ 5 8 +28 m+1 -318 (5.3.17)m+2

Let us divide the region [a,b] into four elements of equal

length h and the corresponding KdV equation becomes:

Where:

A 8 + £ B(8) 8 - ~ 8 = 0 (5.3.18)

8 = (8
- 1

8 ,8 , 8 )T
345 (5.3.19)

the matrices A , B(8) , C assembled from the element matrices Ae ,
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Be(8) . Ce and are given in the form:

( 1 ) ( 1 ) ( 1 ) ( 1 )a a a a
1 1 12 13 14

( 1 ) • (2) • (2) • (2) (2 )a a a a a
21 11 12 13 14

( 1 ) • (2) * (3) * (3) * (3) (3)a a a a a a
31 21 1 1 12 13 14

A (5.3.20)( 1 ) • (2) • (3) • (4) * (4) • (4) (4 )a a a a a a a41 31 21 11 12 13 14

(2 ) * (3) * (4) • (4) • (4) (4 )a a a a a a
41 31 21 22 23 24

(3) • (4) • (lj) • (Lt) (4 )a a a a a
41 31 32 33 34

(4 ) (4 ) (4 ) (4 )a a a a
41 42 43 44

where

• (2) ( 1 ) (2 ) * (2) ( 1 ) (2 ) • (2) ( 1 ) (2 )a a + a a a + a . a = a + a
1 1 22 1 1 12 23 12 13 24 13

• (2) ( 1 ) (2 ) * (3) (3) ( 2) ( 1 ) • (3) a (1 ~ (2 ) (3 )a = a + a a = a + a + a a = a + a
21 32 21 1 1 11 22 33 12 34 23 12

• (2) ( 1 ) (2 ) • (3) ( 1 ) ( 2) (3 ) • (4) (4) (3) (2) ( 1 )a = a + a .a
21

= a + a + a . a = a +a +a +a
31 42 31 43 32 21 1 1 1 1 22 33 44

• (3) (2 ) (3 ) • (4 ) (2 ) (3 ) (4 ) • (4) (3) (4 )
a = a + a a = a + a +a a a + a
31 42 31

.
12 34 23 12

. 13 24 13

*(4) (2) (3) (4)
a = a + a + a

21
•

21 43 32

*(4) (2) (3) (4)
a = a + a + all'22 44 33

·(4) (3) (4)
a =a +a
23 34 23

* (4) (3) (4)
a = a + a
31 42 31

Similarly the matrices B(8) and C can be expressed in the

form (5.3.20).

Generally. dividing the region [a,b] into N elements of equal

length h and combining contributions from all elements and

following the procedure for four elements, produces the matrix

equation:

A 8 + c B(8) 8 - ~ C 8 o (5.3.21)

where 8 = (8
- 1

8o 8
1

(5.3.22)
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8 are element parameters to be determined and A , B(8) , Care

matrices assembled from the element matrices Ae , Be(8) ,Ce The

matrices A , B(8) , Care (N+3)x(N+3) 7-banded matrices.

We introduce a e family of approximations which give a

weighted average of the dependent variable and its time

der iva tive:

8 and 8 = (1 - e)8n + e8n+1 (5.3.23)

where; 8n are the parameters at time n~t, and ~t is the time step

Substituting (5.3.23) in (5.3.21), we have:

Giving the parameter e the values 0 , ~ , and 1 produces forward,
2

Crank-Nicolson and backward difference schemes respectively

2
and equation (5.3.24) becomes:Now let e

(5.3.25)

The matrices A , C are independent of the time so, they will

remain constant throughout the calculations. While the matrix B(8)

is dependent on the time, it must therefore be recalculated at

each time step.

Since the matrix B depends on the time through the parameter

8, the matrix equation (5.3.25) is nonlinear and our approach is

modified so that instead of solving the equation (5.3.25) we solve

an equivalent system [56,70):
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fit
2 (5.3.26a)

and
8n+1

fltCCB[ +
2 2

The predictor (S.3.26a) gives a first approximation 8n+1 then the

corrector (5.3.26b) may be used iteratively to improve the

approximation.

Before solving the system (5.3.26), we must apply the

boundary conditions which for the present formulation require the

products:

u(a,t)u (a,t)=u(b,t)u (b,t)=Oxx xx
In particular, if we choose to prescribe the boundary conditions:

uta, t) = f3
1

u(b,t) = f3
2

then

u (a,t)=u (bt)=Oxx xx '
and we must impose the conditions:

8 + 48 + 8 = f31- 1 0 1

8 28 + 8 = 0- 1 0 1 (5.3.27)

8 + 48 + 8 = (32N-1 N N+l

8 28 + 8 0N-1 N N+l

Eliminating 8 ,8
-1 0

8
N

8 from equations (S.3.26) whichN+l

then becomes a recurrence relationship for

Now equations (5.3.26) are (N-l)x(N-l) 7-banded matrices. In

solving equations (5.3.26) we first store these matrices in

rectangular form (N-1)x7 and then use a septa-diagonal algorithm,
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based on the Thomas algorithm for tridiagonal matrices (see

Appendix A3), to solve the equations directly. The boundary

parameters 8 ,8
0
, 8-1 N 8 can be calculated at each time

N+1

step from equations (5.3.27).

To start the solution procedure (5.3.26) a starting vector 80

must be determined from the initial condition on u(x, t) . Once the

parameters 8 have been found at a time t , then we can evaluate

the solution at each node from the formula:

U(x ,t) = 8 + 48 + 8
1 1-1 1 1+1

(5.3.28)

1 = ° , 1 , ... , N

5.4 An Alternative Formulation:

When inhomogenous boundary condi tions of the form

u I av t ) = 13 , u(b,t) = 13
2

hold and u is not prescribed zero at
1 xx

the ends Galerkin method wi th cubic spl ine shape functions can

still be used since the second derivative is continuous across

element boundaries. An alternative formulation based on equation

(5.2.3) :

b

J v(ut + C U
a

u + jl Ux xxx ) dx = 0 (5.4.1)

is used.

Proceeding as in section (5.3) we obtain the recurrence

relationship replacing (5.3.26) as:
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[A lit c8(8n)+ ~K)l~n'l [A - flt cB t s" l+ ~K)hn+ (S.4.2a)2 2

and

[A
Sn+l

8]+ ~K)l~n'l=[A _
An+l

8
n

1flt [ + flt(cBr + J+~K) ~n (5.4.2b)+ 2(c8
2 2 2

where; the matrix K has replaced the matrix C Matrix K is

obtained from element matrices Ke which have again been determined

using REDUCE [38]:

- 3 9 - 9 3
- 33 99 - 99 33 (5.4.3)Ke

2h2 - 33 99 - 99 33
- 3 9 - 9 3

Follow the procedure given in section (5.3) to obtain the solution

corresponding to this approach.

5.5 The Initial State:

From the initial condition U (x,D) on the function u(x,t) we

determine the initial vector 80 by interpolating U (x,D) using

cubic splines.

We firstly rewrite equation (5.3.1) for the initial

condi tion:

N+1

U (x,D)
N

= ~
i =-1

(5.5.1)

where the SO must be determined. To do this we require U (x,D) to
i N

satisfy the following constraints:

(a) It shall agree with the initial condition U (x,D) at the
N

knots x , i = 0 , 1 , ... , N ; leading to N+ 1 condi tions, and
I

Cb) The second derivative of the approximation initial condition
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shall agree with that of the exact initial condition at both ends

of the range and two futher conditions.

The above conditions (a) and (b) can be written as:

u" (x ,0) = 0

}
N °

U (x ,0) = u(x ,D) ° :.:::1 :.::: N (5.5.2)
N i 1

u" (x,D) = 0
N N

Using Table (5.1) the system (5.5.2) leads to a matrix

equation of the form:

A 8° b

where:

6 -12 6
1 4 1

1 4 1
1 4 1

(5.5.3)

A =

1 4
1
6

1
4
-12

(5.5.4)

1
6

8°o ' ... , J
T

8°N+l (5.5.5)

and

J
T

u I x ) , 0
N

(5.5.6)

To solve this matrix equation, first reduce it to tridiagonal

form by eliminating the first and last equations and then apply

the Thomas algorithm (see Appendix AI) to get the initial vector

5.6 Stability Analysis:

Like other authors [32,35,36,44]' our stability analysis will

be based on the Von Neumann theory in which the growth factor of a
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typical Fourier mode defined as:
~ i J x hon = on e

j

where; k is the mode number and h is the element size, is

(5.6.1)

determined for a linearisation of the numerical scheme.

The nonlinear term u u of the KdV equation cannot be handledx

by the Fourier mode method, therefore we linearise it

[32,35,36,441. To do this assume that the quantity u in the

nonlinear term u u is locally constant. This is equivalent to
x

assuming that all on are equal to a local constant d hence the
j

linearised matrix B can be computed using REDUCE [381 to be:

213 57 3 T
- 3 TO 5 10

27 - 45 549 27
10 10 5

B d 27 549 27 (5.6.2)
s TO 45 10
3 57 213 310 s- W

A typical member of equation (5.3.25), given that B is

determined from (5.6.2), is of the form:

a On+1 on+1 ~n+1 ~n+1 ~n+1 on+l ~n+l+ a + a u + a 0 + a u + a + a u1 1-3 2 1-2 3 1-1 4 1 5 1+1 6 1+2 7 1+3

(5.6.3)
where:

a = a - 6{3 - 0
1

a
2

120a ..336{3 - 80

a = 1191a - 1470{3 + 190
3

a = 2416a, a = 1191a f 1470{3 - 1904 5

a = 120a t 336f3 + 80
6

a = a t 6{3 + 0
7

a =
h

140
(3 = cdt.t

40

3"/ot
'Y = -""""'-2

,0 4h (5.6.4)

Substituting equation (5.6.1) into equation (5.6.3), we obtain:
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(5.6.5)
where:

i V-T

a = a(1208 + cos(3kh) + 120 cos(2kh) + 1191 cos(kh)

b = (6~ ~ 4)sin(3kh) + (336~ + 84)sin(2kh) + ( 1470~ -/~~)sin(kh)

(5.6.6)

Let 8n+1 = g 8n and substitute in (5.6.5) to give:

g
a - ib
a + ib (5.6.7)

where g is the growth factor for the mode.

The modulus of the growth factor is [s] =;;,:;: = 1 . Hence the

linearised scheme is unconditionally stable.

5.7 The Test Problems:

In this section we are going to test our algorithm by

studying four classical problems concerning the motion of

soli tons, their interactions and their generation from arbitrary

initial conditions.

(a) The initial condition:

2u(x,o) = 3 C sech (A x + 0 ) ,
1 1

(5.7.1)

follows from the analytic solution of the KdV equation which has

the form:

U(X,t) = 3 C sech2(A x - B t + 0 ) ,
111

(5.7.2)
1 1/2where A = - (C C/I1) and B = e cA

1 2 1 1
To permit comparison with

Greig and Morris [26] and Sanz-Serna [36] we choose c = 1 ,

-411 = 4.84xl0 ,c = 0.3 , 0
1

= -6 , h = 0.05 , 0.033 ,0.01 and

!J.t= 0.025 , 0.01 , 0.005 We shall impose the boundary

cond itions:
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u(O,t)
u (a, t)xx

= 0 }= 0
(5.7.3)= u(2,t)

= u (2, t)xx
for all time

These conditions represent a single soli ton moving to the

right with constant speed c and unchanged amplitude 3c. Our

solution is plotted in Figure 5.2 from time t = 0.0 to 3.0. When

the exact solution is plot ted on the same diagram the curves

cannot be distinguished. These graphs,compared exactly with those

of Greig and Morris [26] for corresponding times.
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'.1
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I
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•••

101• -0.1..'
1.1
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I

••• •••I.' 1.1 ...

Figure S.2 Problem (al. The moving of a single solitary wave from
t = 0.0 to t = 3.0 with h = 0.01 • ~t = O.OOS.

Our second example concerns the interaction between solitons.

We use the initial condition:

(b) u(x,o) = 3 C sech2(A x + 01) + 3 C sech2(A x + 0 )
1 1 2 2 2

(5.7.4)

and the boundary conditions:

u (a, t) = u(2,t) = 0
} for all time. (S.7.S)

u (a, t ) = u (2,t) = 0xx xx

For comparison with an earlier solution [26] we have chosen

• 0.3 c = 0.1 0 0 = -6. and A I [ cc jc = = - -J J = 1,21 • 2 1 2 J 2 I.l

lOS



This choice gives us two solitons initially sited at x = - 0 /A
1 1

and -0 /A with velocities proportional to their amplitudes, which2 2

interact as time increases. In Figure 5.3. we see that the two

soli tons with the taller one to the left of the shorter one.

Because of the greater speed, the taller soliton eventually

ea tches up with the shorter one and they undergo a nonl inear

interaction according to the KdV equation at time t = 0.75. The

overlapping process continues until, at time t = 1.5, the larger

soli ton has overtaken the smaller one and is in the process of

separating. At time t = 3.0 the interaction is complete and the

larger soliton has separated completely from the smaller one:

I.' I••

I•• I.'

'.1 ...
•••• ,.... .... ,•.IS

••• ....., •••
I.' I.' I.' I.' I.' I.t I.' 1.1 I.' t••

I.r lot

I.' I.'

••• ...,.,.1 .... !oJ.,-...
••• ...
'.t

...
I.' I.' I.' I.' ...

Figure 5.3 Problem (b). The interaction of the solitons with
At = 0.005, h = 0.01.

Our simulations in Figure 5.3 show that initially the two

soli tons overlap and that after the interaction the large and

small amplitudes of the soli tons are modified by about O.94~ .

0.45~ respectively as was also observed by Greig and Morris [26];

the agreement between the solutions is satisfactory.

Consider the initial condition of the two well separated
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solitons:

(b!) U(x,O) = 3 C sech2(A x + D ) + 3 C sech2(A x + D )
1 1 1 2 2 2

(5.7.6)

where; the values of the parameters are given in problem (b)

except that now we take Dz = -9. O. The boundary condi tions are

taken to be:

U (O,t)
U (0, t )
xx

= u(4,t)
= u (4,t)xx

= 0
= 0

} for all time. (5.7.7)

Figure 5.4 shows us that after the interaction of the two

well separated solitons the large and small amplitudes have

changed by only a very small amount (0.017% , 0.04%) respectively.

So, we can say that after the interaction the ampll tudes are

virtually unchanged:

'~11A A ,~~I~~
u ~ w y u U

I

:~I A ~~I
.:: loo. _:-:-_~M:---:-::~"""':"::---:-::_'''~'';-:, .::I-__'~--=-'~-:--~-:----:-:----;':'

~ ~ W M ~ U
I

'~I .s: '~~I ~I.. h' I.' &.. • ..•I••

l\ '.1.'

I.' ,.1 ... '.1 ... 1.1

•

r-; A~... '.1 ,.. ... I.' I••
I

Figure 5.4 Problem (b1).The motion of the two well separated
solitons with h = 0.01 ,~t = 0.005.

Figure 5.4 shows us that initially the two solitons placed up with

the larger to the left of and separated from the smaller. As the

time increases, the larger soliton catches up the smaller at time

t = 3. The larger soliton overtakes the smaller, accelerates

through it and emerges unaffected when the time reaches t = 4. By

time t = 61 the interaction is complete and the larger soliton has

separated completely from the smaller one.
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Our third test example has the inital condition:

( c ) (5.7.8)
The boundary conditions are taken as:

u(:;: 15. t ) = 0 } for all t > 0
u (:;: 15.t) = 0xx

\ole choose c = 1.0 and each of the following:

cl f.l = 0.04 h = O. 1 flt = 0.01

c2 f.l = 0.01 h = 0.1 flt = 0.01

c3 11 = 0.001 . h = 0.025 flt = 0.005

c4 ) f.l = 0.0005 • h = 0.025 flt = 0.005

(5.7.9)

Comparlson wlth the work of Goda [59] In the cases (cl) and

(cz) is made.

Figure 5.5 shows the numerical solution of problem (cl) for

times up to 12.5. We see that a mixed type of solution was found

which consists of a leading sol1 ton and an oscillating tail. We

observe the velocity of the sol1 ton to be c QC 0.4 which agrees
n

with the value calculated from its amplitude of c ~ 0.3993:
a

...
,.1

,...
.. ·1 ....

...
,.1

<.:: I\. ....
., r· ·....
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,..
,.t
I..

.,
....

.. ..

......
,~

·1 ..........
• ,.. ,.......

., ....
...
,..
,.,•
I.•

., ....

.. ..

.. ..

Figure 5.5 Problem (cl). A single soliton with oscillating tail
for f.l = 0.04 from t = 0.0 to t = 12.5.

Figure 5.6 shows similar results for 11 = 0.01. Now the

initial perturbation splits into three solitons. The graphs
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produced in both cases in the present work are identical with

those given by Goda [59]. The observed velocity of the leading

solution c !X 0.52 agrees with that calculated from its amplitude
n

(c ~ 0.5148):
a

"" ...
...

,.... '....
.. . •1 .. . .1

I I..... .....
... ...

'oO. ,.I.,

.. . .. .. .1
I..... .....

... ...

• ,_.
'.tU

.. .. .. .1.... ....
Figure 5.6 Problem (c2) . The sp11ting of the initial condition

in to 3 so11tons when Il = 0.01 , h = 0.1 , ~t = 0.01.

In Figure 5.7 we see that when the coefficient of the

dispersive term is decreased to Il = O. DOl, the nonlinear term

dominates. The initial perturbation breaks up into g solitons

moving to the right, decreasing in amplitude and velocity from

right to left:

... ..I...

.,
'....

•1 .. •
I

..

... ...... ...
'....1• '''' •

..__~+-~~~~. __~~ __~ __..~ ..__~+-~~~~.~U-~ __~ __~,.
I '.... ...,

... ""
••• '.1

'.1'"• ......
II., .. ..

Figure 5.7 Problem (c3). The breakdown of the initial perturbation
into 9 solitons with Il = 0.001 , h = 0.025 , ~t = 0.005.
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Figure 5.8 shows that when the coefficient of the dispersive

term is made smaller (~= 0.0005), the initial perturbation

breaks down into 12 solitons:

lA lA

,..
,- ,....

.. • .. .. . ••• •.... -4.1

... ...
,.J ..J

• ,... • ,....
.. · iI .. ••

I
.. J -4.1

I.. ...
,.. .01

,..... • , •• &.1

.. iI .. ..
.... ...

Figure 5.8 Problem (c4). The initial condition split into 12
solitons when ~ = 0.0005 , h = 0.025 , 6t = 0.005.

It was found that the behaviour of the numerical solutions

varied according to the value of I.l chosen. The initial

perturbation (5.7.8) was observed to split into a train of

solitons, the numbers of which increased as the coefficient of the

dispersive term was decreased.

A comparison between our nume~ical results and those obtained

In references [15,39,59,80] has been made for ~ = 0.04. 0.01 and

they were in complete agreement.

As a final test example, we consider the development of an

undular bore in shallow water. This is characterised by the

initial condition:

Cd) u (x,0) = ~ [1 - tanh [ x -525 ]] (5.7.10)

and the boundary conditions we impose are:
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(1)

u(O,t)
u(50,t)
u (0, t )xx

= 1

= 0
= u (50,t)xx

} for all t > 0 (5.7.11)
= 0

u(-50,t) = u(1S0, t )
= 0 } for all t > 0

= 0
(5.7.12)(ll )

u (-SO,t) = u (150,t)xx xx

To allow comparison of problem ·(d) boundary conditions (i)

with Vliegenthart [44], we have chosen c = 0.2 , ~ = 0.1 and taken

~t = 0.05 and h = 0.4 . The solution we obtained (see Figure 5.9)

shows all the general features obtained in the earlier solution

[44]. However, we cannot make a direct comparison with those

results since the boundary conditions used by Vliegenthart are not

given. Instead we have used his finite difference scheme and

parameters with our boundary condtions to produce comparable

figures. If these are plotted also on Figure 5.9, the graphs are

indistinguishable with those obtained in the present study:

... L•

,.. ,..
,.. I.'a roO•• a ,.so.... a••

I.. ...... I'" ,'.4 .... .... ••• IZ•• 11.4 .II•• ....
... Lo1

,.. I.'

I.' I.Z r.ICD.a rJ3. a... •••
I.. ...

... II.' ,'.l .II•• .... ••• II.' ....

Figure 5.9 Problem (d) boundary conditions (i). The solution
graphs for various times ~t = 0.05 , h = 0.4 • c = 0.2 • ~ = 0.1.

\ole find that the quanti ties I
1

of the problem (d) with
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boundary condi tions (i) are not conserved. Therefore, we have

chosen to use the boundary conditions (ii) together with an

alternative initial condition which can be seen in Figure 5.10:

"~j '.OD
1.11 1.15,... ,...
I.U

ff\ ' • G.a T • IGO

O.lJ

-.. -IS IS ,. ,. ,.. 'lS ,so -II -IS .. .. " '00 ,IS ,..
I •... z••
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1 • .t1 '.lS

.21•01 r • 2DO , ...
0."......

/0."
·so .lS IS II ,. ,. ,lS ,.. -.. -IS .. " ,00 It' ,..

I I

1,"1 z••
1.1'S I."I." I."
hZS I.IS,... ,.-

-so -lS ,. ,. ,IS 'so ... -IS IS ,. ,IS ,..

Figure 5.10 Problem Cd) boundary conditions (ii). The solution
graphs for various times At = 0.05 • h = 0.4 , c = 0.2 , ~ = 0.1.

As expected the initial perturbation of problem (d) with

boundary conditions (ii) degenerated into a la-train of solitons.

which move steadily to the right with constant ampli tudes and

velocities during the computer runs up to time t = SOO. The

agreement between the analytic velocity C ::! O. 131
a

and the

numerical velocity c ::IIi 0.128 for the leading sol iton was very
n

satisfactory.

S.S Discussion.

s.S.l Simulations Using Scheme (5.3.26):

We have found that our numerical single solution soliton of

problem (a) is indistinguishable from the analytic results to

within plotting error. To investigate more accurately how
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faithfully the numerical scheme calculates the amplitude and

position of the solution we use the L - and L -error norms to2 00

compare the numerical and exact solutions.

The L -error norm is defined by (4.5.1). This error is used
2

to compare 5 numerical methods in Table 5.2 for a single soliton

solution [36] with two different boundary conditions the first

(SpI) the function and its second derivative vanishing at the

endpoints, and the second (SpII) the function and its first

derivative vanishing at the endpoints:

Table 5.2

Th th f the L x 103e grow 0 2 for single soliton

Time Zabusky Hopscotch Petrov- Modified Galerkin Galerkin
Kruskal [26] Galerkin P-G cubic pline
[27] [36] [36] SpI SpII

t:.x = 0.05 flt= 0.025 h = 0.05 t:.t= 0.025

0.25 34.64 61.21 81.39 52.15 13.27 13.50
0.50 122.68 122.41 102.54 64.90 21.95 19.93
0.75 210.44 181.35 125.84 89.01 25.67 18.01
1. 00 298.19 228.10 150.57 107.20 29.45 18.44

h = 0.033 t:.t= 0.01

0.25 31.18 5.94 1.34 0.93
0.5 43.35 7.56 1. 82 0.97
0.75 56.21 8.70 2.30 0.94
1. 00 74.08 9.49 2.69 1. 60

t:.x = 0.01 t:.t = 0.0005 h = 0.01 flt= 0.005

0.25 5.94 3.79 4.46 0.21 0.02 0.02
0.50 13.17 9.28 7.01 0.38 0.04 0.04
0.75 21.08 14.14 10.08 0.57 0.06 0.06
1. 00 28.66 18.72 13.26 0.74 0.08 0.08

We find that the Galerkin cubic spline method (SpI) compares well
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with the best of the other methods and the error of this numerical

method is smaller than the best numerical method quoted in

Table 5.2 by a factor of at least 4, which increases to 10 when

h = 0.01, IIt = 0.005. Furthermore, the error calculated by the

method SpII is better than that calculated by the method spr when

h = 0.05 , llt = 0.025 and h = 0.033 , llt = 0.01. But for h = 0.01

, llt = 0.005 they have the same error of magnitude:

Table 5.3

The growth of the L
00

3X 10 for single soliton

Time Zabusky Hopscotch Petrov- Modified Galerkin Galerkin
Kruskal (26) Galerkin P-G cubic pline
[27) [36] [36] SpI SpI I

llx = 0.05 llt = 0.025 h = 0.05, llt = 0.025

0.25 19.4 32.7 42.18 30.22 15.36 15.44
0.50 63.5 67.4 51.85 22.85 56.28 26.47
0.75 122.4 99.3 87.60 35.86 52.54 29.52
1. 00 161.4 141.6 100.41 39.39 49.78 27.45

h = 0.033 llt = 0.01

0.25 14.27 2.80 4.02 1.77

0.5 21.65 4.53 3.40 2.06

0.75 29.78 4.85 3.63 2.10

1.00 39.37 5.85 3.78 2.66

llx = 0.01 llt = 0.0005 h = 0.01 llt = 0.005

0.25 2.05 1. 11 1. 21 0.07 0.07 0.07
0.50 4.22 2. 14 2.15 0.11 0.11 0.11

0.75 6.36 3.54 3.09 0.17 0.16 0.16

1. 00 8.13 4.91 3.83 0.21 0.20 0.20

Table 5.3 shows us that the L -error norm computed from the
00

methods sp t and SpI I for a single soli ton using the definition

(4.5.2) have been compared with all the method which are quoted in
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Table 5.3. We observe that the L -error norm is greater than
00

L2 +e rror norm which disagrrees wi th the authors [26,27,36]. Also

we find that the value of L -error norm using spr scheme for all
00

the values of space and time sterps is smaller than all the other

methods quoted in Table 5.3 except Modified Petrov-Galerkin when

h = 0.05, l1t = 0.025 is still smaller and has the same error of

magnitude when the space and the time steps decrease. The L -error
00

using the scheme sprr is smaller than all other method quoted in

Table 5.3 especially when h = 0.05 , l1t = 0.025 and h = 0.033 •

l1t = 0.01. It has the same error of magnitude wi th the best method

(Modified Petrov-Galerkin) when h = 0.01 , l1t = 0.005.

Table 5.4 gives the error for a single soliton problem (a)

and from it we can say that the cubic spline method (SpII) gives

an acceptably small error even when the time is increased to

t = 3.0, particular for the small values of hand l1t:

Table 5.4
The growth of the errors x 103 for a single soliton

h = 0.05 l1t = 0.025 h =0.033 l1t=O.Ol h = 0.01 l1t = 0.005

Time L Lp L L L L
SpI SpI I SpI SpI I SpI SpII SPIcPSPII SpI SpI I SpI PSPI I

1.25 40.2 23.4 69.5 37.7 3.2 1.3 5.1 2.2 0.09 0.09 0.24 0.23

1.50 44.0 23.6 106. 1 32.9 4.0 1.6 6.2 4.3 0.10 0.10 0.26 0.28

1.75 46.2 24.4 70.9 41.9 4.6 1.8 6.4 2.9 0.11 0.11 0.30 0.29

2.00 63.2 33.7 153.4 75.9 5.2 2.1 8.2 4.2 0.12 0.12 0.32 0.32

2.25 67.0 36.3 146.4 61. 1 5.6 2.3 7.5 4.3 0.13 0.13 0.35 0.35

2.50 72.7 33.6 121.4 47.3 6.5 2.3 11. 4.1 0.14 0.14 0.39 0.39

2.75 89.0 38.8 169.3 56.4 7.3 3.2 13. 7.6 O. 15 0.15 0.42 0.41

3.00 99.3 48.4 200.4 91.0 7.4 2.9 10. 4.5 0.16 0.16 0.44 0.43

This Table shows us that the error computed by the scheme sprI is

better than that computed by the scheme spr especially for large
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space and time steps. For small space and time steps they the same

error of magnitude.

It is important that any numerical scheme used to solve the

KdV equation satisfies at least the lower order conservation laws

which they are for the present shape functions the quantities I
I

(I = 1, ... ,4) defined by (2.4.8)-(2.4.11) respectively.

The quan tit ies I , I , I have been computed and are given
123

in Table 5.5:

Table 5.5
The computed value 11, 12, and 13 for a single soliton

scheme SpI

I I I
1 2 3

h = .033 h = .01 h = .033 h = .01 h = .033 h = .01
Time lit = .01 lit =.005 lit = .01 lit =.005 lit = .01 lIt=.005

0.0 O. 144597 O. 144598 0.086759 0.086759 0.046850 0.046850
0.50 O. 144539 0.144599 0.086752 0.086761 0.046933 0.046852
1. 00 O. 144738 O. 144601 0.086748 0.086762 0.046918 0.046853
1. 50 O. 144464 0.144602 0.086747 0.086764 0.046898 0.046855
2.00 o. 144304 O. 144604 0.086746 0.086765 0.046870 0.046856
2.50 O. 144926 O. 144605 0.086747 0.086767 0.046800 0.046858
3.00 0.144679 O. 144606 0.086749 0.086768 0.046770 0.046859

From Table 5.5 we found that the computed quantities 11 ' 12 ' 13

have been changed by less than 0.23%, 0.015%, 0.18% for

h = 0.033, lit = 0.01 respectively, and 0.006%, 0.011%, 0.020%

for h = 0.01, lit = 0.005 respectively during the computer run.

They are satisfactorily constant even with relatively large values

of h = 0.033 and lit = 0.01:
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Table 5.6

Computed value of I for a single soliton with h = .01 ~t = .005
4

scheme SpI

T 0.0 0.5 0 1 .0 1 .5 2.0 2.5 3.0

I .024094 .024215 .024216 .024217 .024218 .024219 .02422
4

The computed value of the conservative quantity I is changed by
4

less than 0.52% during the computer run. We consider this very

satisfactory.

A computer run on the single soliton solution with 200 nodes

and 200 time steps took 22 secs of CPU time on a VAX 8650.

With example (b) we have verified that our algorithm copes

adequately when two overlapping solitary waves coalesce for a

brief period and then separate with their original profiles

intact, but with their large and small amplitudes affected by

= 0.94% = 0.45% respectively and their positions interchanged.

The four conservative quantities I i = 1, ... ,4 have been listed
i

in Table 5.7:

Table 5.7
The computed values I , I , I and I for two overlapping

123 4

poblem (b) solitons with h = 0.01, ~t = 0.005 scheme SpI

Time I I I I
1 2 3 4

0.0 0.228081 O. 107062 0.053316 0.027181
0.50 0.228085 0.107064 0.053317 0.027240
1. 00 0.228082 O. 107066 0.053318 0.027187
1. 50 0.228085 0.107068 0.053321 0.027237
2.00 0.228089 O. 107071 0.053323 0.027296
2.50 0.228093 O. 107073 0.053325 0.027316
3.00 0.228094 O. 107074 0.053327 0.027326

Tab le 5.7 shows that the conservative quant ities I
1

I
2

I
3
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and I are changed by less than 0.006% , 0.012% , 0.021% , and
4

0.54% respectively during the computer run. So these quantities

can be considered as constant.

From the study of problem (b) we observed that after the

interaction the large and small amplitudes have been changed from

the original by 0.94% and 0.45% respectively possibly because the

two solitons are overlapping. So we chose two well separated

solitons as the initial condition problem (bl). We found that

after the interaction, their large and small amplitudes have been

changed by less than 0.017% , 04% respectively, which gives a more

satisfactory result.

We have also computed the first four conservative quantities

for problem (bI) which are given in Table 5.8:

Table 5.8
The computed values I , I , I and I for two well separated

1 2 3 4

solitons problem (bl) with h = 0.01, At = 0.005 scheme SpI

Time I I I I
1 2 3 4

0.0 0.228082 0.103466 0.049864 0.024616
1.0 0.228086 O. 103469 0.049868 0.024738
2.0 0.228090 O. 103473 0.049870 0.024721
3.0 0.228095 O. 103477 0.049872 0.024628
4.0 0.228099 O. 103481 0.049876 0.024709
5.0 0.228103 O. 103484 0.049879 0.024744
6.0 0.228108 O. 103488 0.049882 0.024749
7.0 0.228112 O. 103492 0.049885 0.024751
8.0 0.228117 O. 103495 0.049888 0.024753

Table 5.8 shows us that the quantities I (1 = 1, ... ,4) change by
1

less than 0.016% , 0.029% , 0.049% , 0.56% respectively during the

computer run. So they can be considered as conserved.

(b2) Let us study the interaction of two soli ton initial

conditions which follow from the analytic solution (2.3.4.1) when
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t = 0.0 in the following cases:

(i) problem (b) where ex = JCII 11
i

d =
1

12 , d
2

-12 + II

(ii ) problem (bl) where ex
i

= j cl/" d,.., 1 = - 12 , d = -18 + II
2

(iii) ex = 4.0 , ex = 2.0 , d = d = O. 0 , e = 6, 11 = 1. The
1 212

boundary conditions are chosen:

u(+ 12,t) = 0
u (:t 12, t ) = 0xx

} for -0.5 ~ t ~ 0.5 (5.8.1.1)

Before the interaction the posi tion of the smaller ampl itude is

shifted forward by ll. After the interaction the phase of the
2

soliton with larger amplitude is shifted forward by II while the
1

phase of the soliton with small amplitude is shifted backward by

II .
2

The values of the L - and L -error norms and the first four2 00

conservative quantities are given in Table 5.9:

Table 5.9
3The compute values of errors x 10 , and I for double

4

soliton poblem (b2) case (i) with h = 0.01, llt = 0.005 scheme SpI

Time L x 103 L X 103 I I I I
2 00 1 2 3 4

0.0 0.228074 O. 103456 0.049855 0.024610
0.50 0.040 0.100 0.228077 O. 103458 0.049857 0.024661
1. 00 0.045 O. 113 0.228079 0.103460 0.049857 0.024615
1. 50 0.057 O. 121 0.228081 O. 103462 0.049859 0.024652
2.00 0.083 0.208 0.228083 0.103464 0.049862 0.024705
2.50 0.106 0.280 0.228086 O. 103466 0.049864 0.024728
3.00 O. 109 0.278 0.228088 O. 103467 0.049865 0.024735

From this Table. we find that the error is still very small even

when the time reaches t = 3 and that the quantities I
i

(I = 1 •... ,4) are changed by less than 0.007% , 0.011% • 0.021%

and 0.51% respectively during the computer run. We consider these
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quanti ties as virtually constants, particularly I , I , and I .
123

After the interaction, two overlapping solitons (problem (b2)

case (i)) reappeared with their amplitudes unchanged, correct to a

numerical error of less than 0.8% and 0.4% respectively.

The L - and L -error norms and the first four invariant2 co

quanti ties for problem (b2) case (Li ) for times up to t = 8 are

listed in Tanble 5.10:

Tabe 5. 10
3The computed values of errors x 10 ,I ,I ,I and I for double

123 4

soliton problem (b2) case (ii) with h =.01, ~t =.005 scheme spr

Time L x 103 L X 103 I I I I
2 co 1 2 3 4

0.0 0.228082 O. 103456 0.049855 0.024610
1.0 0.081 0.214 0.228086 O. 103459 0.049859 0.024731
2.0 0.129 0.344 0.228090 O. 103463 0.049861 0.024715
3.0 O. 100 0.276 0.228095 0.103467 0.049863 0.024621
4.0 O. 128 0.323 0.228099 O. 103471 0.049867 0.024702
5.0 O. 128 0.342 0.228103 O. 103474 0.049870 0.024738
6.0 O. 106 0.270 0.228107 O. 103478 0.049873 0.024742
7.0 0.086 O. 169 0.228108 0.103482 0.049876 0.024744
8.0 O. 117 0.238 0.228116 O. 103485 0.049879 0.024746

Table 5.10 shows us that the errors remain satisfactorily small

even when the time reaches 8. Also, the quanti ties I
1

(I = 1, ... ,4) change by less than 0.015% , 0.029% , 0.049% and

0.56% respectively during the computer run. We conclude that these

quantities are virtually constants especially I ,
1

and I .
3

After their interaction, they reappeared with their original large

and small ampl itudes correct to a numerical error of less than

0.009% and 0.041% respectively.

We have also computed the L - and L -error norms and the2 co

first four conservative quantities for double solitons with large
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amplitudes for problem (b2) case (iii). They are given in

Table 5.11:

Table 5. 11
3The computed values of errors x10 , I , I , I , and I for double

123 4

soliton prblem (b2) case (iii) with h =. 1, ~t =.0005 scheme SpI

Time L x 103 L X 103 I I I I2 00 1 2 3 4

-0.5 11.99991 47.99998 211. 2000 943.5421
-0.4 1.273 1.496 12.00002 48.00067 211. 2253 956.2892
-0.3 2.276 2.526 12.00015 48.00148 211. 2353 956.3051
-0.2 3.039 3. 166 12.00022 48.00227 211. 2366 956.0941
-0. 1 3.445 3.517 12.00034 48.00298 211.2372 953.8008
0.0 2.824 3.001 12.00045 48.00352 211. 2242 944.7191
O. 1 3.300 3.314 12.00056 48.00454 211.2414 950.2620
0.2 3.684 3.799 12.00068 48.00548 211.2580 955.7248
0.3 3.553 3.709 12.00082 48.00636 211. 2658 956.4736
0.4 3.215 3.456 12.00088 48.00714 211.2715 956.5763
0.5 2.657 2.749 12.00100 48.00793 211.2772 956.6202

Table 5.11 shows us that the errors are still small even when the

time goes to t = 0.5, and the quantities I
1

(1 = l, ... , 4) change

by less than 0.01 % , 0.017% 0.037% and 1.387% respectively

during the computer run. We consider these quantities as virtually

conserved, particularly I , I and I . After the interaction, the
1 2 3

two well separated solitons reappeared with their original large

and small amplitudes changed by less than 0.95% and 0.012%

respec tive ly.

Using equation (2.3.4.8), the forward and backward phase

shifts have been computed numerically for problems (b), (b l),

(b2(i-ii)) and obtained as:

~ '"0.11,
1

and ~ "" - O. 18
2

which agree with the analytic results equation (4.5.4).

For problem (b2(iii)):
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~ ~ 0.50, and ~ ~ -1.1
t 2

we find that ~ agrees with the analytic result given by equation
2

(4.5.5) but ~ does not agree because h = 0.1.
t

Similar results are given in Table 5.12 for the quantities I
!

of problems (cl) and (c2). We found that each of the quantities I
1

are very satisfactorily constant.

Table 5. 12
2The computed values of I , I and I for u(x,O) = exp(-x )

t 2 3

problems (cl), (c2) for h = 0.1 ~t = 0.01 scheme (5.3.26) (SpI)

I I I
t 2 3

Time 11 =.04 11 =.01 11 = .04 11 = .01 11 =.04 11 =.01

0.0 1.772454 1.772454 1.253314 1. 253314 0.872929 0.985728
2.5 1.772492 1.772527 1.253344 1.253420 0.872990 0.986513
5.0 1.772488 1.772345 1.253370 1. 253478 0.873026 0.986923
7.5 1.772065 1.772629 1.253392 1.253504 0.873058 0.986950
10.0 1.772340 1.772491 1.253434 1.253527 0.873083 0.986940
12.5 1.773357 1.772293 1.253442 1. 253547 0.873110 0.986953

Table 5. 12 shows that the quantities I (1 = 1,2,3) are changed
1

by less than 0.051% , 0.011% , 0.021% respectively when 11 = 0.04

and 0.010%, 0.019% , 0.13% respectively when 11 = 0.01 during

the computer run. Hence, we can consider these quantities as

conserved.

The total number of solitons which are generated from a

Gaussian initial condition has been determined using

equation (4.5.6) for different values of 11 and we found an

agreement with those given in the above Figures 5.5-5.8.

The computed values of the first four conservative quantities

for problem (d) boundary conditions (ii) are given in Table 5.13

up to time t = 800:
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Table 5. 13
The computed values I , I , I and I for problem (d) boundary

1 2 3 4

conditions (ii) when h = 0.4, ~t = 0.05, c = 0.2, ~ = 0.1 using
scheme (5.3.26) (SpI)

Time I I I I
1 2 3 4

0.0 50.00010 45.00046 42.30069 40.44194
100.0 50.00573 45.01091 42.31632 40.55037
200.0 50.01130 45.01989 42.33185 40.86950
300.0 50.01472 45.02795 42.34541 41.05238
400.0 50.01933 45.03569 42.35786 41. 12419
500.0 50.02303 45.04345 42.37004 41.16071
600.0 50.02792 45.05129 42.38197 41. 18266
700.0 50.03316 45.05902 42.39391 41.20121
800.0 50.03825 45.06654 42.40585 41.22260

Table 5.13 shows us that the quantities I
i

(i = 1, ... , 4 ) are

changed by less than 0.0763% O. 147% 0.249% 1.94%

respectively during the computer run. So they can be considered as

conserved even with this very large time and large space step.

5.8.2 Simulations Using Scheme (5.4.2):

All the simulations undertaken using scheme (5.3.26) have

been repeated using scheme (5.4.2).

The discrete norm for problem (a) usingL -error
2

scheme (5.4.2) is given in Table 5.14:
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Table 5.14

The growth of the discrete L -error norm x 103 for single soliton
2

problem (a) Scheme (5.4.2)

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G cubic
[27] [36] [36] spline

Ax = 0.05 At = 0.025 h = 0.05 At = 0.025

0.25 34.64 61.21 81.39 52.15 13.15
0.50 122.68 122.41 102.54 64.90 21.79
O.75 210.44 181.35 125.84 89.01 25.55
1. 00 298.19 228.10 150.57 107.20 29.31

h = 0.033 At = 0.01

0.25 31.18 5.94 1.34
0.5 43.35 7.56 1.82
0.75 56.21 8.70 2.30
1. 00 74.08 9.49 2.69

Ax = 0.01 At = 0.0005 h = 0.01 At = 0.005

0.25 5.94 3.79 4.46 0.21 0.02
0.50 13.17 9.28 7.01 0.38 0.05
0.75 21.08 14.14 10.08 0.57 0.07
1. 00 28.66 18.72 13.26 0.74 0.09

If we compare the magnitudes of the L -error norm given in
2

Tables 5.2 and 5.14 we see that in most cases they are the same

whether we use scheme (5.3.26) or (5.4.2) . Only when h and At

have smaller values of h = 0.01 and At = 0.005 is there a

difference. In that case, scheme (5.3.26) leads to slightly

smaller errors.

Table 5.15 gives the error for a slngle sollton problem (a)

and we observed that this error has the same magnitudes as the

error given in Table 5.2 . It has been found that for h = 0.01 and
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~t = 0.005 there is a small increase in the errors given in

Tables 5.14 and s. 15 compared with those given in Tables 5.2 and

5.4:

Table 5.15
L -error x 103 of a single soliton problem (a) for the scheme( 5.4.2)
2

T 1. 25 1. 50 1. 75 2.00 2.25 2.50 2.75 3.00

h = 0.05
~t 0.025 40.37 44.69 47.01 63.11 70.15 78.90 98.48 110.27=

h = 0.033
~t 0.01 3.25 4.01 4.57 5.22 5.64 6.55 7.32 7.49=

h = 0.01
M 0.005 o. 11 0.13 0.15 0.18 0.20 0.23 0.26 0.28=

The quantities I , I , I have also been determined and are
123

given in Table 5.16:

Table 5.16
The computed value I , I , and I for a single soliton

123

problem (a) using scheme (5.4.2)

I I I
1 2 3

h = .033 h = .01 h = .033 h = .01 h = .033 h = .01
Time llt = .01 ~t =.005 llt = .01 ~t =.005 ~t = .01 ~t=.005

0.0 O. 144597 0.144598 0.086759 0.086759 0.046850 0.046850
0.50 O. 144539 0.144598 0.086753 0.086759 0.046933 0.046851
1. 00 O. 144739 0.144598 0.086749 0.086759 0.046919 0.046851
1.50 0.144465 0.144599 0.086748 0.086760 0.046899 0.046851
2.00 O. 144305 0.144599 0.086748 0.086760 0.046871 0.046851
2.50 O. 144927 0.144599 0.086749 0.086759 0.046802 0.046851
3.00 o. 144680 0.144599 0.086751 0.086759 0.046772 0.046851

From Table 5.16 we found that the computed quantities I , I , I3
1 2

have been changed by less than 0.21%, 0.013%, 0.18% for

h = 0.033, At = 0.01 respectively and 0.0007% , 0.0012% , 0.0022%

for h = o. 01, ~t = 0.005 respectively during the computer run.
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This conservation is even better than the very good results quoted

in Table 5.5:

Table 5.17

Computed value of I for a single soliton with h = .01 ~t = .005
4

T 0.0 0.5 1 .0 1 .5 2.0 2.5 3.0

I .024094 .024214 .024214 .024215 .024215 .024215 .0242144

The value of the quantity I changed by less than 0.50% during
4

the computer run compares well with the value of 0.52% found for

Table 5.6.

The four conservative quantities I (I = 1 •...• 4) for
I

problem (b) have been computed and are listed in Table 5.18:

Table 5. 18
The computed values I • I • I and I for two overlapping solitons

1 2 3 4

problem (b) with h = 0.01. ~t = 0.005 using scheme (5.4.2)

Time I I I I
1 2 3 4

0.0 0.228081 O. 107062 0.053316 0.027181
0.50 0.228083 0.107062 0.053317 0.027239
1. 00 0.228079 0.107062 0.053315 0.027185
1. 50 0.228080 0.107063 0.053316 0.027234
2.00 0.228081 0.107063 0.053317 0.027291
2.50 0.228083 0.107063 0.053318 0.027310
3.00 0.228083 0.107063 0.053318 0.027320

Table 5.18 shows that the conservative quantities I • I I
123

and I
4

changed by less than 0.0009% 0.001% , 0.004% , and

0.52% respectively during the computer run. So these quanti ties

can be considered as constant. Moreover, the quanti ties I , I ,
1 2

I are constant to 5 decimal places. This conservative quantities
3

are better than the very good results obtained in Table 5.7. After
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the interaction of the two overlapping solitons, their large and

small amplitudes are changed from their original values by less

than 0.94% and 0.46% respectively.

We have also computed the first four conservative quantities

for problem (b1). these are given in Table 5.19:

Table 5.19
The computed values I • I . I and I for a two well

123 4

separated solitons with h = 0.01. 6t = 0.005 using scheme (5.4.2)

Time I I I I
1 2 3 4

0.0 0.228082 O. 103466 0.049864 0.024616
1.0 0.228082 O. 103466 0.049865 0.024736
2.0 0.228083 O. 103466 0.049865 0.024718
3.0 0.228084 O. 103467 0.049864 0.024622
4.0 0.228084 O. 103467 0.049865 0.024701
5.0 0.228084 O. 103467 0.049866 0.024735
6.0 0.228085 O. 103467 0.049866 0.024737
7.0 0.228086 O. 103467 0.049866 0.024737
8.0 0.228086 O. 103467 0.049866 0.024737

Table 5.19 shows us that the quantities I (I", 1 ..... 4) changed
1

by less than 0.0018% . 0.001% . 0.0041% 0.492% respectively

during the computer run. So they can be considered as conserved.

Moreover. the quantities I
1

I
2

I are constant to 5 decimal
3

places. This conservation is even better than the very good

results quoted in Table 5.8. After the interaction of the two well

separated solitons, their large and small amplitudes have changed

by very small amounts, less than 0.009% and 0.024% respectively.

So we can take it that after the interaction the amplitudes are

virtually unchanged.

We have calculated the L - and L -error norms and the first2 00

four conservative quantities for the two overlapping solitons

130



(problem (b2) case (i)). These are recorded in Table 5.20:

Table 5.20
3The computed values of the error x 10 , I ,I , I and I for

1 2 3 4

double soliton problem (b2) case (i) with h = 0.01, ~t = 0.005

Time L x103 L x103 I I I I2 00 1 2 3 4

0.0 0.228074 0.103456 0.049855 0.024610
0.50 0.042 0.103 0.228075 O. 103456 0.049855 0.024660
1. 00 0.049 0.111 0.228075 O. 103456 0.049855 0.024613
1. 50 0.070 O. 168 0.228075 O. 103457 0.049856 0.024649
2.00 O. 117 0.291 0.228076 O. 103457 0.049857 0.024702
2.50 0.167 0.442 0.228077 O. 103457 0.049857 0.024723
3.00 0.198 0.519 0.228076 O. 103457 0.049857 0.024729

In Table 5.20 we give the values of the errors and I
1

I
2

I
3

and I .
4

The error is still small even when the time is increased

up to t = 3.0. The change in the quantities I during the computer
I

run are less than 0.0014% 0.001% 0.0041% and 0.484%

respectively. Therefore, we conclude that these quantities may be

considered as constants. Furthermore, the quantities I , I , I
123

are constant to 5 decimal places. The conservation of these

quantities is even better than the very good results obtained in

Table 5.9, with the error having the same magnitude. After the

interaction of the two overlapping solitons problem (b2) case (i)

their large and small amplitudes have changed by only small

amounts of about 0.81% and 0.37% respectively.

The first four conservative quantities and the L - and
2

L -error norms have been determined for the two well separated
00

solitons (problem (b2) case (ii)) and are listed in Table 5.21:
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Table 5.21
3The computed values of the errors x 10 , I, I, I and I for

123 4

double soliton problem (b2) case (ii) with h = 0.01, ~t = 0.005

Time L xl03 L xl03 I I I I2 CX! 1 2 3 4

0.0 0.228082 0.103456 0.049855 0.024610
1.0 0.093 0.247 0.228082 0.103456 0.049856 0.024711
2.0 0.171 0.445 0.228083 O.103456 0.049856 0.024711
3.0 O.148 0.367 0.228084 O.103457 0.049855 0.024616
4.0 0.269 0.707 0.228084 O.103457 0.049857 0.024695
5.0 0.374 0.987 0.228085 0.103458 0.049857 0.024729
6.0 0.455 1.198 0.228085 0.103458 0.049857 0.024731
7.0 0.534 1.404 0.228086 0.103457 0.049857 0.024731
8.0 0.615 1.621 0.228086 0.103457 0.049857 0.024731

Table 5.21 shows us that the error is still small even when the

time reaches t = 8. The quantities I (1
1

1, ... ,4) change during

the computer run by less than 0.0018% 0.002% , 0.0041% and

0.492% respectively making them virtually constants. Moreover, the

first three quantities are constant to 5 decimal places. After the

interaction of two well separated solitons in problem (b2)

case (Li I, their large and small amplitudes have changed by less

than 0.018% and 0.024% respectively so that we can say they are

virtually unchanged. We find that conservation of the first four

quantities is even better than the very good results obtained in

Table 5.10 with, the error having the same magnitude.

The first four conservative quantities and the L - and
2

L -error norms for two well separated solitons with large
CX!

amplitudes (problem (b2) case (Ll Ll ) have been computed and are

given in Table 5.22:
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Table 5.22
The computed values of the errors x 103 , and the conservative

quantities for double solitons problem (b2) case (iii)
with h = 0.1 , ~t = 0.0005

Time L x103 L x103 I I I I2 co 1 2 3 4

-0.5 11.99991 47.99998 211.2000 943.5421
-0.4 1.273 1.494 12.00002 48.00070 211.2255 956.2907
-0.3 2.279 2.530 12.00015 48.00146 211.2307 956.3029
-0.2 3.063 3.202 12.00022 48.00218 211.2358 956.0893
-0.1 3.497 3.568 12.00033 48.00287 211.2365 953.7959
0.0 2.885 3.053 12.00044 48.00336 211.2229 944.7109
0.1 3.406 3.430 12.00056 48.00444 211.2406 950.2565
0.2 3.847 3.987 12.00066 48.00534 211.2569 955.7175
0.3 3.776 3.930 12.00080 48.00615 211.2641 956.4627
0.4 3.499 3.758 12.00086 48.00694 211.2700 956.5660
0.5 2.995 3.099 12.00097 48.00769 211.2754 956.6082

We found that the error is still small, and quantities I
i

(i = 1, ... ,4) have changed during the computer run by less than

0.009% , 0.0161% , 0.036% and 1.385% respectively so that they are

very satisfactorily constants particularly the first three

invariant quantities. After the interaction, the large and small

amplitudes of the two well separated solitons in problem (b2)

case (iii) have changed by less than 0.95% and 0.013%

respectively. We notice that the conservation of the first four

invariant quantities is even better than the very satisfactory

results quoted in Table 5.11 while the error has the same

magnitude.

The last results are given in Table 5.23 for the first three

conservative quantities of problems (cl) and (cz ). We found that

each of the quantities I are satisfactorily constant:
i
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Table 5.23
The computed values of I , I and I for u(x,O)

123
2exp(-x )

problems (cl) (c2) for h = o. 1 ~t = 0.01

I I I
1 2 3

Time 11 =.04 11 =.01 11 = .04 11 = .01 11 =.04 11 =.01

0.0 1.772454 1.772454 1. 253314 1. 253314 0.872929 0.985728
2.5 1. 772491 1.772535 1.253344 1.253433 0.872990 0.986529
5.0 1.772488 1.772359 1.253371 1.253501 0.873027 0.986951
7.5 1.772066 1.772654 1.253395 1.253538 0.873060 0.986994
10.0 1.772339 1.772524 1.253435 1.253572 0.873084 0.986998
12.5 1.773353 1.772333 1.253442 1.253600 0.873110 0.987022

Table 5.23 shows that the quantities I (1 = 1,2,3) are changed
I

by less than 0.051% , 0.011% , 0.021% respectively when 11 = 0.04

and by less than 0.012% 0.023% 0.13% respectively when

11 = 0.01 during the computer run. Therefore, we can consider that

these quantities are conserved. These quantities have the same

magnitude as the results given in Table 5.12 .

The first four conservative quantities for problem (d) using

boundary conditions (ii) are listed in Table 5.24:
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Table 5.24
The computed values I , I , I and I for problem (d) with

1 2 3 4

boundary conditions (ii) h = 0.4, ~t = 0.05 using scheme (5.4.2)

Time I I I I
1 2 3 4

0.0 50.00010 45.00046 42.30069 40.44194
100.0 50.00229 45.00484 42.30769 40.53928
200.0 50.00456 45.00779 42.31437 40.84664
300.0 50.00464 45.00981 42.31874 41.01703
400.0 50.00592 45.01152 42.32178 41.07610
500.0 50.00625 45.01318 42.32444 41.09961
600.0 50.00786 45.01502 42.32704 41.10881
700.0 50.00979 45.01677 42.32954 41.11444
800.0 50.01158 45.01818 42.33188 41.12217

Table 5.24 shows us that the quantities I
1

(1 ,; 1, ... ,4) are

changed by less than 0.023% 0.040% 0.074% 1.682%

respectively during the very long computer run. So they are

virtually conserved, particularly the qantities I , I , I . This
123

conservation is even better than the very good results quoted in

Table 5.13. The agreement between the analytic velocity

c ""0.1308 and the observed velocity c ""0.128 was verya n

satisfactory even with this large space step (h = 0.4).

In summary it can be stated that Galerkin's method with a

cubic spline interpolation polynomial as trial and test

functions is a suitable algorithm for determining the solution of

the KdV equation for runs of long duration.
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CHAPTER 6

QUADRATIC SPLINE INTERPOLATION FUNCTIONS

6.1 Introduction:

In the previous chapter we set up a finite element solution

to the KdV equation using cubic splines as trial functions. That

choice was made with the knowledge of the special properties that

such spl ines possess. However, there are advantages to be gained

by choosing lower order polynomials if possible. One such benefit

is the reduction of the order of the stiffness matrix. The only

lower order fuctions, that we are aware of, which possess the

required first order continuity, are quadratic splines.

In this chapter we will investigate the finite element

approach using Galerkin's method with quadratic spline

interpolation functions.

6.2 The Governing Equation:

Consider the KdV equation:

+ c u ux + " u,...xxx = 0 (6.2.1)

where; c , 11 are positive parameters.

The boundary conditions will be chosen from:

u Ia , t ) = f31

)u(b,t) = f32 for all t > 0 (6.2.2)
u (a,t ) = u (b,t ) = 0x x
u (a,t) = u (b,t ) 0xx xx

Let us apply the Galerkin technique to equation (6.2.1) with

weight functions v(x). Integrating by parts leads to the

equation:
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b

( ut+ £ U U )dx - I M v U dx =x x xx
a

(6.2.3)

and using the boundary conditions (6.2.2) equation (6.2.3) reduces

to:

(.
a

v U dxx xx = 0 . (6.2.4)

The presence of the second spatial derivative within the integrand

means that the interpolation functions and their first derivatives

must be continuous throughout the region. Quadratic B-splines as

trial functions satisfy this requirement.

6.3 The Finite Element Solution [82,84,851:

In this section we approximate the solution ut x, t) using

quadratic B-spline interpolation functions.

Parti tion the region [a,b l into N fini te elements of equal

length h by knots x such that
I

a=x s xo 1
s: x = b and let ¢ (x) be those quadratic

N I

B-splines with knots at x
I

Then the spl ines { ¢-1 ' ¢ , ... ,o
~ ~ } form a basis for functions defined over [a,b1. Our aim'PN_1 ' 'PN

is to find an approximate solution U (x,t) to the solution u(x,t)
N

which can be expressed in terms of quadratic spline trial

functions:

U (x,t) = 8 (t ) ¢ (x ) + 8 (t) ¢ (x ) + ... + 8 (t) tP (x )
N -1 -1 0 0 N N

N

= r 8 (t) ¢ (x)m m (6.3.1)
m=-l

where; ¢ are quadratic spline functions and 8 are time dependentm m

quantities to be determined from the boundary conditions (6.2.2)

and from conditions based on equation (6.2.4).
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Quadratic B-splines ¢ with the required properties are
m

defined by [71,72,73]:

¢ Ix ) =
m

(x - X )2_ 3( X - X )2+ 3(X - x)2 [X ,X]
m+2 m+1 m m-I m

2(X -X)m+2
23(X -X)m+1 [X ,X ]m m+1

(X - X)2
m+2 [X ,X ]m+ I m+2

o otherwise

m=-I,O, ... ,N (6.3.2)

where; h = (X - x ) for all m ,m+ 1 m assuming that all intervals

[X ,X ] are of equal size.m m+l

The quadratic spline ¢ (x) and its first derivative vanish
m

outside the interval [x ,X l. In Table 6.1 we list the valuesm-I m+2,
of ¢ (X) and its derivative ¢ (x) at the knots:~ ~

Table 6. 1

X X X X Xm-l m m+l m+2

¢ (X)
Im ° I °

¢' (X) 2 2m 0 h - h 0

We shall identify the intervals Ix ,X ] with finitem m+1

elements wi th nodes at the knots X ,x Discussing only them m+1

internal elements from equation (6.3.2) we see that each spline

covers 3 intervals so that 3 splines ~ ~ ~ cover each'f'm_l • 'f'm ' 'f'm+1

f ini te element [X All other spl ines are zero in thi s,x ].m+l

region. These 3 splines act as "shape" functions for the element

m

(see Figure 6.1). Using equation (6.3.1) and Table 6.1 the nodal

values u can
ITt

by:

be expressed in terms of the parameters
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u = u(x ) = 8 + 8

1
m m m-I m

(6.3.3)
u = u(x 8 + 8m+1 m+1 m m+1

and the variation of u over the element [xM' X~ilJ] is defined by:

u
m+1

8 et> + 8 et> + 8 et> = ~ oJ et>Jm-l m-l m m m+l m+l J=m-l
(6.3.4)

where; 8 ,0, 8 act as element parameters with the elementm-I m m+1

"shape" functions et>m-I , et>
m

,et> . Defining a local coordinatem+1

system E for the finite element Ix ,x ] by E = x - Xm m+1 m where
o ~ E ~ h , we obtain for the shape functions expressions that

are independent of the elements position:

et>m-l
(h _E;)2

et>
1

= h2 + 2 (6.3.6)m h2 2hE; - 2f;

et>m+l
E2

05: f; ~ h

These " shape " functions are the same for every element (see

Figure 6.1). An element contributes to equation (6.2.4) through

the following integral which can be written in terms of the
eelement parameters 8 as:

] dx = 0 (6.3.7)

m
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Figure 6.1 Quadratic spline shape function for a typical element.

So identifying the weight functions v with quadratic splines

~J and using (6.3.5) and (6.3.6) we obtain:

~
J=m-l

m+l
+ C i:

J=m-l

m+l [r::
x

m+l

k=m-l
m

- J.L (6. J. S)

where cS e = (0 . cS .:s ) T
m-1 m r.I+1

(6. J. 9)

are the relevant element parameters.

Equation (6.3.3) can be written in matrix form as:

r
Ae Se + c Se Le Se - J.L CeSe (6.J.:Ol

where Se is given by (6.3.9) and the element matrices aie given by

the integral formulas:

1';0



Ae .: ¢! ¢j dx!j
X
m

Ce r" ¢' ¢" dx!j ! j
X
m

and
Le r" ¢! ¢J ¢~ dxi j k

X
m

(6.3.11)

(6.3.12)

(6.3.13)

where; !. j • k take only the values m-l • m • m+l for the
typical element [x

m
. x ]. The matrices Ae • Ce are thus 3x3 andm+l

the matrix Le 3x3x3 It is convenient to associate a 3x3 matrix
Be wl·thLe d f' d be i ne y:

m+l

k=m-l
(6.3.14)=

which also depends on th t Bee parame ers
k

will be used in the
following theoretical discusions.

The element matrices Ae • Ce • Le are independent of the
eparameters B and can be determined algebraically from equations
k

(6.3.11)-(6.3.13) using REDUCE [38] as:
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6 13 1

Ae h 13 54 13
30

1 13 6

- 1 2 - 1

Ce 2 0 0 0=
h2

1 - 2 1

and
Be .!_ B 4 1+ - B + 15 Bm-I,m-I 3 m-I 15 m m+l

Be Be 19
B 2

B 7
8+ +

30m-I,m m,m-l 30 m-l 5 m m+l

(6.3.15)

(6.3.16)

Be Be 1
8 1

8= = -
30

+
30m-t,m+l m+I,m-1 m-I m+1

Be 9 (5 9
B5 +m,m m-l 5 m+1

Be Be 7 (5 2
B 19 (5=

30 5 +
30m,m+l m + I, m m-l m m+1

Be 1
8

4
8 1

8 (6.3.17)= + 3m+I,m+t 15 m-I 15 m m+1

If we partition the region [a,b] into three elements of equal

length h and combine together the contributions from each element

we obtain:

A 8 + C B(8) 8 - ~ 8 = 0 (6.3.18)

where:
8 = (8 , 8 , 8 , 8 , 8

-1 0 1 2 3
(6.3.19)

The matrices A, 8(8) , C, assembled from the element matrices

A e , Ce have the form:,
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(1) (1) (1)a a a11 12 13
(1) • (2) • (2) (2)a a a a21 11 12 13

A
(1) • (2) • (3) • (3) (3) (6.3.20)= a a a a a31 21 11 12 13

(2) • (3) • (3) (3)a a a a31 21 22 23

(3) (3) (3)a a a31 32 33

where
• (2) (1) (2) • (2) ( 1 ) (2)a a + a a = a + a11 22 11 12 23 12

• (2) (1) (2) •(3) (3) (2) (1)a = a + a a = a + a + a21 32 21 11 11 22 33

•(3) (2) (3) •(3) (2) (3)a = a + a , a = a + a12 23 12 21 32 21

• (3)a22
(2) (3)= a + a33 22

Matrices 8(8) and C can be expressed in the same way

(6.3.20).

Generally, dividing the region [a,b] into N elements of equal

length h and combining contributions from all elements and

following the procedure for three elements produces the matrix

equa tion:

A 8 + c 8(8) S - ~ C S = 0 (6.3.21)

where S = (8
- 1

8o 8
1

(6.3.22)

8 are element parameters to be determined and A , B(8) , Care

matrices assembled from the element matrices Ae , Be(S) , Ce . The

matrices A , B , Care (N+2)x(N+2) 5-banded matrices.

Let S be linearly interpolated between two levels nand n+1

by:
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(6.3.23)

where t (n+e)~t and 0 ~ e ~ 1 . Then the time derivative of 8

is:

8 = (6.3.24)
6t

Using the defini tions (6.3.23) and (6.3.24), equation

(6.3.21) becomes:

Giving the parameter e the values 0 , ~ , and 1 produces forward,
2

Crank-Nicolson and backward difference schemes respectively.

If let e = 1 t' (6.3.25) becomes:we J. equa i on

[ 6t " " c}n., = [A - ~t(CB(~nl_ clhn (6.3.26)A + 2" (CB(~ )- 11

Since the matrix B(8) depends on 8, the matrix equation

(6.3.26) is nonlinear. We handle this problem not by solving

equation (6.3.26) directly but by setting up an equivalent system

and then solving that [56,70]. Such a system is:

(6.3.27a)

and

The predictor (6.3.27a) gives a first approximation 80+1 then the

corrector (6.3.27b) is used iteratively to improve the

approxima tion.

Before solving the system (6.3.27) we must apply the boundary

conditions which are chosen to be
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u (a, t) = f3
1

f32

u (b,t) = 0x

uIbv t )

u (a, t )x

and from the Table 6.1 these conditions become:

0 + 0 = f3
1- 1 0

0 0 = 0
-1 0 (6.3.28)

0 + 0 = f3
2N-1 N

0 0 = 0
N-1 N

By eliminating 0 0 0 8 from equation (6.3.27) we
- 1 ° N-l N

obtain a recurrence relationship for (on , on , ... , 8n )T.
1 2 N-2

Equation (6.3.27) contains (N-2)x(N-2) 5-banded matrices, so

to solve these equations we store the matrices in rectangular form

(N-~)x5 and then use a penta-diagonal algorithm (see Appendix A2).

The boundary parameters 8 , 8 0 0 can be computed at
-1 0' N-1' N

each time step from equations (6.3.28).

To start the iterative procedure (6.3.27), a starting vector

80 must be determined from the initial condition on u(x,t). Once

the parameters 8 have been found at a specified time then we can

compute the solution at the knots from the formula:

U(x ,t) = 0 + 0
I i - 1

(6.3.29)

i = 0 , 1 , ... , N

6.4 The Initial State:

1 .;:-0The starting va ue 0 is determined from the initial

condi tion u lx.D) on uIx,t) which can be calculated by

interpolating u(x,O) using quadratic splines. We firstly rewrite

equation (6.3.1) for the initial condition as:
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u (x,O)
N

N

~
1=-1

(6.4.1)

owhere; the 8 are unknowns to be determined. To do so we require
i

U (x,O) to satisfy the following two conditions:
N

(a) It shall agree with the initial condition u(x,O) at the knots

Xi' 0 , 1 , ... , N ; leading to N+1 conditions,

(b) Its first derivative shall agree with that of the exact

initial condition at x i.e. u' (x ,0) = o.o 0

These two conditions (a) and (b) can be written as:

ut (x ,0) = 0 }N 0

(6.4.2)
u (x ,0) = u(x ,0) o s: i s: N

N i i

Using Table 6.1 the system (6.4.2) can be written in a matrix

equation of the form:
A 80 ::;;: b

where:

1 -1

1
1

A =

1 1
1 1

1 1

8
0 = ( 8° 8° , ... , 80 ]T

- 1 0 N

(6.4.3)

(6.4.4)

(6.4.5)

and
b = u Ix ,0) , u Ix ,0)o 1

, ... , (6.4.6)

This system of equations can be solved directly using the

following technique:
Let u = u(x , 0) J 0 , 1 , ... , N

J J

8
U 8 ~o= -0

- 1 2 0 2
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for 1 to N do

o = u - 0
j J J-1

So the initial vector 0° is computed by this algorithm.

6.5 Stability Analysis:

The stability analysis of nonlinear partial differential

equations is not an easy task to undertake. Most researchers cope

with the problem by linearising the partial differential equation.

Our stability analysis will be based on the von Neuman theory

in which the growth factor of a typical Fourier mode defined as:

= (6.5.1)

where; k is the mode number and h is the element size, is

determined for a linearisation of the numerical scheme.

To linearise the KdV equation (6.2.1) assume that the

quantity u in the nonlinear term u u is locally constant. This isx

equivalent to assuming that all the ..,n 1u are equa
J

to a local

constant d, so that the matrix B in equation (6.3.25) is

determined from (6.3.7) to be:

8 1 T
- 1 "33

d
2 0 2 (6.5.2)

B = "3 "3
1 8 1"3 3

A typical member of equation (6.5.3), using the linearised

matrix B (6.5.2), is given by:

a on+1 + a on+1 + a on+1 + a on+1 + a on+1
1 1-2 2 1-1 3 I 4 1+1 5 1+2

=

a on + a on + a on + a on + a on (6.5.3)
5 1-2 4 1-1 3 I 2 I + 1 1 1+2

where:
a = a - /3 - r a 26a - 10/3 + 2'1
1 2

a = 66a a = 26a + 10/3 - 2'1
3 4
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a = a ~ ~ + 0,

a = h
30

~ = cdAt
, 6 , 'Y = I-lAt

a --h2. (6.5.4)

The Fourier method (6.S.1) applied to equation (6.5.3) leads to:

Equation (6.5.5) is thus of the form:

(a + ib)8n+ 1 = (a - ib)8n (6.5.6)
where:

i V-T
a = a(33 + cos(2kh) + 26 cos(kh))

} ( 6.5.7)
b = (~ f o)sin(2kh) + (10~ - 2o)sin(kh)

Write Sn+l = g on where g is the amplification factor and

substitute in (6.S.6) to obtain:

g = a - ib
a + ib (6.5.8)

Taking the modulus of this equation gives:

Igl = ~ = 1 ,

therefore the linearised scheme is unconditionally stable.

6.6 The Test Problems:

The purpose of this section is to examine our algorithm using

different test problems concerned with the development, migration

and interaction of solitons.

Let us compute the solution of the KdV equation for the

following problems:

(a) Consider the motion of a single soliton with initial condition

given by:

148



2U(X,O) = 3C sech (A x + 0 )
1 1

This can be derived from the analytic solution of the KdV equation

which has the form:

(6.6.1)

U(X,t) = 3 C sech2CA x - B t + D )
111

(6.6.2)

1 1/2where' A = - (ccvu) and B = ecA, 1 2'" 1 1
To make a comparison with

Sanz-Serna and Christie [36] we choose e = 1 ,
-4P. = 4.84xlO •

c = 0.3 , D = -6, h = O. 05
1

0.033 , and 6t = O. 0250.01

0.01 , 0.005 .

We shall impose the boundary conditions:

U(O,t)
U (o,t)
x

= U(2,t)
=U(2,t)

x
::} for all time (6.6.3)

Figure 6.2 shows us the behaviour of the computed solution

for times from t = 0.0 to t = 3.0. These graphs have been

compared with those of Greig and Morris [26] for corresponding

times and if the exact solution is plotted on the same figure all

curves are indistinguishable.

'~IA -
.. ... ... .. ,.. I.' h. ,.. ,.. ...

•

loll,"... A
.~ I-:-:--::~-:-::-~~"':-~~~--:-:':-"'-:' ":'

.. , ... ... •• ..1 1.1 h. I.' 1.1 L'
a

'~I A ~
~"~.-'~.'~'.~.~"~.~I.~'~'~.'~I.~'~I~d~'.•~W":'

a

Figure 6.2 Problem (al. The motion of a single soliton with
h = 0.01 6t = 0.005.

149



(b) The interaction of two solitons with initial condition:

U(x,O) = 3 C sech2(A x + 0 ) + 3 C sech2(A x + 0 )1 1 1 2 2 2 (6.6.4)

U (o,t) = U(2,t)
together with the boundary conditions which are given

= 0 } for all time
U (o,t) = U (2,t) = 0x x

(6.6.5)

by:

These conditions represent two soli tons, one wi th ampli tude

.s c sited initially at x = - 0 lA and a second with amplitude jC
1 1 1 2

placed at x = - 0 lA2 2
It is well known that the velocity of a

soliton depends directly upon its amplitude. So choosing c > c1 2

and - 0 lA < - 0 lA ensures that these solitary waves interact
1 1 2 2

with increasing time. For comparison with the Greig and Horr is

1.1
I.a

I" 10'... ...,.... a.. , I.on
·0••... ...
.., 101

1.1 I" I.' LI 101 I.' •••I.'

I.'
102

... I"

1.1
..I

'.102 a...
TeL

-0.'
I••

...
..I

..a .., ... 0.' 0.'

[26] solution we have chosen c = 0.3

h = 0.01 • At • 0.005 and AJ • ~( :CJr = 0 = -6. ,
2

J::l,2.

Figure 6.3 Problem (b). The interaction of the overlapping solitons
with h = 0.01 ~t = O.OOS.

The interaction of overlapping solitons produced by our

algorithm is shown in Figure 6.3 and agrees well with those

obtained by [26]. We find that the solitons emerge from the

interaction with large and small amplitudes only sllghtly changed
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from their original values by ~ 1%, ~ 0.39% respectively. The

agreement with Greig and Morris [26] is very satisfactory. Figure

6.3 shows us that the two solitons placed with the larger one on

the left of the smaller one. The larger soliton catches up the
smaller soliton at time t = O.7S. The overlapping process
continues until, at time t = 1.S the larger soliton has overtaken

the smaller one. At time t = 3, the interaction is complete and

the larger soliton has separated completely from the smaller one.

(bl) Consider the motion of two well separated solitons as an
initial condition:

2 2
U(X,O) = J C sech (A x + 0 ) + J C sech (A x + 0 )

1 1 1 2 2 2
(6.6.6)

where:

C
1

C I A , A
212

o are given in problem (b)
1

o = - 9.0 , B = e cA, I = 1,2
2 I I I

the boundary conditions are chosen to be:

=
U(4,t)

U (4 ,t)
x

= 0 } for all time (6.6.7)U (0, t )

U (o,t)x = °

Figure 6.4 shows that after the interaction of the two well

separated solitons the large and small amplitudes change from

their original values by a small amount (~0.029%, ~ 0.049%

respectivly). Therefore we emphasise that after the interaction

the amplitudes are virtually unchanged. From Figure 6.4 we see

that the larger soliton is placed on and separated from the

smaller one. As the time increases, the larger soliton catches up

with the smaller when the time t = 3. The overlapping process

continues and the larger soliton overtakes the smaller one at time

t = 4. About time t = 6 the interaction process is complete and

the larger soliton has separated completely from the smaller one:
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Figure 6.4 Problem (bl).The interaction of a two well separated
solitons with h = 0.01 At = 0.005.

(c) Another interesting ini tial value problem for the KdV

equation is given by the Gaussian distribution function:

U(X ,0) = exp( - x2) (6.6.8)
This is a typical symmetric function which tends to zero as Ixl

tends to infinity. The finite boundary conditions imposed are:

U(; 15,t)

U (; 15,t) = 0x
We choose c = 1.0 and we discuss each of the following cases:

= 0 } for all t > 0 (6.6.9)

(cl ~ = 0.04 h = 0.1 At = 0.01

c2 ~ = 0.01 h = 0.1 At = 0.01

c3 ~ = 0.001 • h = 0.025 • At = 0.005

c4 ) ~ = 0.0005 • h = 0.025 ,At = 0.005

A comparison has been made with the work of Goda [59) in the

first two cases. Figure 6.5 depicts the behaviour of numerical

solutions of problem (cl) for times up to 12.5 . We see that the

initial perturbation splits up into a soliton plus an oscillating
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tail. The values of the analytic velocity c ~ 0.4 and the
a

numerical velocity c ~ 0.4 agreed very well:
n
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Figure 6.5 Problem (cl).A single soliton with oscillating tail
for ~ = 0.04 h = 0.1 6t = 0.01.

Figure 6.6 shows similar resul ts for ~ = O.01 We observe

that the initial perturbation breaks up into three soli tons. The

graphs obtained by our algorithm in the cases (cl) and (c2) are

identical with those given by Goda [59]. The agreement between the

analytic velocity c ~ 0.5145 and the observed velocity c ~ 0.52
• n

for the leading soliton was very satisfactorily:

I.. ...
•• S .~ '.Lt
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Figure 6.6 Problem (c2). The breakdown of the initial condition
into 3 solitons when ~ = 0.01 h = 0.1 6t = 0.01.
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In Figure 6.7 for ~ = 0.001 we see that the ini t Lal

perturbation breaks up into 9 solitons, whose magnitude decreases

linearly to the left:
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Figure 6.7 Problem (c3). The breakdown of the initial perturbation
into 9 solitons with ~ = 0.001 h = 0.1 At = 0.01.

Figure 6.8 shows that for u = 0.0005 a train of solitons is

genera ted when the initial perturbation spl1 ts itself into 12

solitons moving to the right:
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Figure 6.8 Problem (c4). The breakdown of the initial condition
into 12 solitons when ~ = 0.0005 h = 0.025 At = 0.005.
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It was found that the behaviour of the numerical solution

depended upon the value of J.l chosen. The ini tial perturbation

breaks up into a train of solitons in the course of time, the

actual number of soli tons depending on the value of J.l used. A

comparison has been made of our results with those obtained by

[15,39,80] and we found that there was agreement when J.l = 0.04 ,

0.01, but disagreement in other cases.

(d) As a final test example we shall consider the development

of an undular bore in shallow water. This is represented by the

initial condition:

1 [ [ X - 25 ] ]u(x 0) = - I - tanh (6.6.10), 2
5

and the boundary conditions we impose are:

u(o,t) = I

}U(50,t) = 0 for all t > 0 (6.6.11)

U (o,t) = U (50,t) = 0
x x

Let us consider the last example test:

I(dl) U(x,O) =-
2

- tanh -25 ]] (6.6.12)

and the boundary conditions are chosen to be:

U(-50, t ) = U(150,t) = 0

} for all t > 0 (6.6.13)

U (-so,t) = U Li s ov t ) = 0x x
For comparison with Vliegenthart [44] for problem (d) we have

chosen £ = 0.2, J.l = 0.1 with ~t = 0.05 and h = 0.4 . The computed

solution reproduced in Figure 6.9 shows all the general features

obtained by the earlier the solution [44]. However we cannot make

a direct comparison wi th VI iegenthart [44] figures because the

boundary condit ions used by him are not given. We can, however,

repeat his computations using his fini te difference scheme and

parameters together with our boundary conditions to produce

comparable figures. If these are plot ted also on Figure 6.9 the
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graphs are indistinguishable with those obtained in the present

study:
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Figure 6.9 Problem (d). The solution graphs for various times

with h = 0.4. At = 0.05. c = 0.2. ~ = 0.1.

The conservative quantities have been computed for

problem Cd) and it was found that these quantities varied somewhat

with time. For this reason we have chosen the problem Cdl).

Figure 6. 10 shows us that the initial perturbation problem (dl)

has broken up into a regular sequence of sol1 tons. which move

steadily to the right with constant speeds whose magnitude depends

upon their individual amplitude:
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Figure 6.10 Problem Cdl)
of solitons with h

The solution graphs splits into a train
= 0.4, 6t = 0.05, £ = 0.2, ~ = 0.1.
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'We observe that the ampl itude of the soli tons vary

approximately linerly. Physically these resul ts represent among

other things the development of an undular bore in shallow water

and a collisionless shock in plasmas [44).

6.7 Discussion:

Any numerical scheme for computing the solution of the KdV

equation must represent faithfully the amplitude and the position

of the solution over many time steps with minimum errors [36), and

also it should be conservative.

To examine the accuracy of our numerical scheme we have used

the error in the form of the discrete L - and L -error norms to
2 00

compare the numerical and exact solutions. The L - and L -error
2 00

norms are defined by (4.5. 1), (4.5.2 ) respectively. This error is

used to compare 5 numerical methods in Tables 6.2, 6.3 for the

single sol i ton solution [36]. We find from Table 6.2 that the

Galerkin quadratic spl ine method compares well in accuracy wi th

the best of the other methods. In fact, the L -error norm is
2

factor 0.1 smaller than that of the modified Petrov-Galerkin

method:
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Table 6.2

The growth of the discrete L -error norm x 103 for single soliton
2

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Quadratic
[27] [36] [36] spline

6x = 0.05 6t = 0.025 h = 0.05 6t = 0.025

0.25 34.64 61.21 81. 39 52. 15 12.72
0.50 122.68 122.41 102.54 64.90 16.78
0.75 210.44 181.35 125.84 89.01 19.52
1. 00 298.19 228. 10 150.57 107.20 22.80

h = 0.033 6t = 0.01

0.25 31.18 5.94 1.07
0.5 43.35 7.56 1.57
0.75 56.21 8.70 1.90
l. 00 74.08 9.49 2.24

Ilx = 0.01 Ilt = 0.0005 h = 0.01 6t = 0.005

0.25 5.94 3.79 4.46 0.21 0.02
0.50 13. 17 9.28 7.01 0.38 0.04
0.75 21.08 14.14 10.08 0.57 0.05
1. 00 28.66 18.72 13.26 0.74 0.06

Table 6.3 shows us that the L -error norm computed from our
00

technique for a single soli ton has been compared wi th all the

method which are quoted in Table 6.3. We observe that the L -error
00

norm is greater than L -error norm which disagrrees with the
2

authors [26,27,361. Also we find that the value of L -error norm
00

using our method is smaller than even the best method (Modified

Petrov-Galerkin) and in the worst case it has the same error of

magni tude:
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Table 6.3

The growth of the discrete L -error norm x 103 for single soliton
00

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Quadratic
[27] [36] [36] spline

t:.x = 0.05 t:.t = 0.025 h = 0.05 t:.t= 0.025

0.25 19.4 32.7 42. 18 30.22 35.79
0.50 63.5 67.4 51.85 22.85 42.68
0.75 122.4 99.3 87.60 35.86 45.92
1. 00 161.4 141.6 100.41 39.39 38.94

h = 0.033 t:.t= 0.01

0.25 14.27 2.80 2.96
0.5 21.65 4.53 3.24
0.75 29.78 4.85 3.79
l. 00 39.37 5.85 5.85

Ilx = 0.01 Ilt = 0.0005 h = 0.01 t:.t= 0.005

0.25 2.05 l. 11 1. 21 0.07 0.06
0.50 4.22 2.14 2.15 0.11 O. 10
0.75 6.36 3.54 3.09 0.17 O. 13
l. 00 8.13 4.91 3.83 0.21 0.15

Table 6.4 shows us that the error measured in terms of the

discrete L - and L -error norms is satisfactorily small for the2 00

motion of a single sol iton even when the time is increased to

t = 3.0:
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Table 6.4
The growth of the error for a single soliton

h = 0.05 !J.t=0.025 h = 0.033!J.t =0.01 h = 0.01 !J.t=0.005

Time L x 103 L X 103 L X 103 L X 103 L X 103 L X 1032 00 2 00 2 00

1. 25 24.15 43.38 2.26 3.54 0.07 0.19

1. 50 22.03 34.65 2.18 5.66 0.08 0.21

1. 75 31.08 84.91 2.37 4.45 0.08 0.23

2.00 34.70 65.50 2.39 4.65 0.09 0.22

2.25 35.05 57.52 2.47 4.33 0.09 0.26

2.50 39. 18 71.96 2.49 4.27 0.10 0.27

2.75 41.82 82.24 2.45 6.19 O. 11 0.29

3.00 44.24 97.93 2.80 8.04 O. 11 0.30

To show that our scheme is conservative we have computed the

the three invariant quantities I ,
1 I given by equations

3

(2.4.8)-(2.4.10), for the single soliton problem. Values are listed

in Table 6.5 for the two cases h = 0.033 , At = 0.01 and h = 0.01

, At = 0.005:

Table 6.5
The computed values I , I ,and I for a single soliton

1 2 3

I I I
1 2 3

h = .033 h = .01 h = .033 h = .01 h = .033 h = .01
Time At = .01 At =.005 At = .01 At =.005 At = .01 At=.005

0.0 0.144597 O. 144598 0.086759 0.086759 0.046850 0.046850
0.50 O. 144687 0.144598 0.086749 0.086761 0.045322 0.046735
1. 00 0.144618 O. 144602 0.086742 0.086763 0.045299 0.046737
1. 50 0.144562 O. 144604 0.086734 0.086765 0.045232 0.046739
2.00 O. 144847 O. 144606 0.086731 0.086767 0.045340 0.046740
2.50 O. 144569 O. 144607 0.086722 0.086769 0.045278 0.046742
3.00 O. 144560 O. 144610 0.086715 0.086771 0.045263 0.046744
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From Table 6.5 we find that with our numerical scheme the three

quanti ties I
1

I
2

I are sensibly constant. Indeed even when
3

fairly large time and space steps of h = 0.033 , At = 0.01 are

used the changes are less than 0.173% 0.051% 3.4541%

respectively while for smaller values h = 0.01 At = 0.005 the

changes are 0.009% 0.014% 0.25% respectively during the

computer run. A computer run on the single sol iton solution wi th

200 nodes and 200 time steps took 13 secs of CPU time on a

VAX 8650.

Further we have verified that our algorithm can adequately

cope when two solitary waves coalesce for a short period and then

separate with their original profiles intact, but their positions

changed. By evaluating the quantities

in Table 6.6

I , I , 13 which are given
1 2

We find that these quantities are changed by less

than 0.172%, 0.015% , 0.227% respectively during the computer

run; therefore, we can consider them as relatively constant:

Table 6.6

The computed values I
1

I , I for a two overlapping2 3

solitons with h = 0.01 At = 0.005

I I ITime 1 2 3

0.0 0.228081 O. 107062 0.053316
0.50 0.228124 0.107065 0.053253
1. 00 0.227949 0.107068 0.053309
1. 50 0.227740 O. 107070 0.053262
2.00 0.227689 0.107073 0.053213
2.50 0.227732 O. 107075 0.053198
3.00 0.227880 O. 107078 0.053195

We have also determined the error and conserved quantities for the

case when the two solitons are well separated. The three quantities

11 ' 12 . 13 are listed in Table 6.7:
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Table 6.7
The computed values It' 12 I for a two well separated

3

solitons with h = 0.01 ~t = 0.005

Time I I I
1 2 3

0.0 0.228082 0.103466 0.049864
1.0 0.228088 O. 103471 0.049750
2.0 0.228092 0.103476 0.049766
3.0 0.228098 0.103482 0.049864
4.0 0.228106 O. 103487 0.049788
5.0 0.228112 0.103492 0.049767
6.0 0.228119 O. 103496 0.049769
7.0 0.228124 0.103501 0.049773
8.0 0.228131 0.103506 0.049777

We observe that the three quantities I , I , I have changed by
i 2 3

less than 0.022% 0.039% 0.229% respectively during the

computer run. So, we can consider them as constants; this is

especially true for 11 ' 1
2
,

(b2) Let us consider the two soliton initial conditions which

are determined from the analytic solution (2.3.4.1) when t = 0.0

in the following cases:

(i l problem (b) where a. = I cif Jl
I

d = - 12 , d = -12 + ~
1 2

(i 1) problem (bl) where a = I c!/ Jl
!

d = - 12
1

d = -18 + ~
2

(ii L) at = 4.0 , a
2

= 2.0 , d1 = d2 = 0.0, e = 6, Il = 1. The

boundary conditions are chosen as:

u(+ iz.r : = 0

u (=t 12,tJ 0x
} for -0.5 ~ t ~ 0.5 (6.7.1J

The first three conservative quantities I and the error for
!

the problem (b2) case (i) are listed in Table 6.8:
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Table 6.8
3The computed vlues of the error x 10 , I , I and I for

123

double soliton problem (b2) case (i) with h = 0.01, ~t = 0.005

Time L XIO 3
L

3
IXIO I I2 00 1 2 3

0.0 0.228074 O. 103456 0.049855
0.50 0.082 0.165 0.228065 O. 103459 0.049798
1. 00 0.085 O. 148 0.228071 0.103462 0.049851
1. 50 0.090 O. 182 0.228081 O. 103464 0.049813
2.00 0.096 0.209 0.228084 O. 103467 0.049766
2.50 0.098 0.180 0.228086 O. 103469 0.049751
3.00 0.093 0.199 0.228083 O. 103472 0.049749

We see from this Table that the errors measured in terms of the

discrete L - and L -error norms are satisfactorily small for a two2 00

overlapping solitons even when the time is increased to t = 3 .

Also the quantities ( 1 = 1,2,3) are changed by less than

0.006% , 0.016% , 0.213% respectively during the computer run. We

note that the conservation of I is better than that obtained in
1

problem (b). Computationally the two overlapping solitons interact

in the neighborhood of x ~ 0.74 at t ~ 0.85 which agrees with the

analytic results given in equation (2.3.4.7).

After the interaction the position of the maxima of the

larger and smaller solitons when t = 3 are 1.49 and 0.95

respectively which agree wi th the analytic values determined in

equation (2.3.4.6b) . Also the larger and smaller amplitudes are

changed from their original values by less than 0.792% and 0.367%

respecti ve ly.

The L - and L -error norms and the quanti ties I have also
2 00 1

been determined for two well separated solitons problem (b2)

case (ii) and are given in Table 6.9:
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Table 6.9
3The computed values of the error x10 , I , I and I for

1 2 3

double soliton probem cas (ii) with h = 0.01, ~t = 0.005

L XIO 3 L 3
I I ITime XI0

2 00 1 2 3

0.0 0.228082 O. 103456 0.049855
1.0 0.063 O. 163 0.228088 0.103461 0.049741
2.0 0.087 0.248 0.228093 O. 103466 0.049757
3.0 0.068 0.206 0.228099 0.103471 0.049855
4.0 0.062 0.122 0.228107 0.103477 0.049778
5.0 0.090 0.204 0.228112 0.103481 0.049757
6.0 0.172 0.446 0.228118 0.103486 0.049760
7.0 0.293 0.781 0.228122 0.103491 0.049763
8.0 0.443 1.176 0.228129 0.103495 0.049767

Table 6.9 shows us that the L - and L -error norms are2 00

sa ti sfactor ily small for two well separated sol itons even wi th

runs up to a time of t = B . The quanti ties I
1

(i = 1, 2, 3) are

changed by less than 0.021% , 0.038% , 0.229% respectively during

the computer run. A comparison has been made between these

quantities and those obtained from problem (bl), we find that they

are the same.

The interaction of the two well separated solitons occurs in

the neighborhood of x ~ 1.37 when t ~ 2.95 which agrees with the

analytic results. After the interaction the two separated solitons

reappeared with their original amplitudes, correct to a numerical
-5error of less than 7.78x10 % and 0.044% respectively.

When the two well separated soli tons have large ampli tudes

problem (b2) case (iii), the values of the L - and L -error norms2 00

and the first three invariant quantities are given in Table 6.10:
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Table 6.10

The computed values of the error xl03, I , I and I for
1 2 3

double soliton problem (b2) case (iii)
with h = O. 1, ~t = 0.0005, c = 6, ~ = 1

L XIO 3
L

3
I ITime XIO I

2 00 1 2 3

-0.5 11.99991 47.99998 211. 2000
-0.4 0.908 1.103 11.99998 48.00003 209.8457
-0.3 1.255 1.512 11.99985 48.00008 209.8476
-0.2 1.637 1.948 12.00010 48.00021 209.8661
-0.1 1.918 2.121 12.00019 48.00054 210.0601
0.0 1.443 1.335 12.00034 48.00174 211.0252
0.1 1.861 1.857 12.00040 48.00139 210.4111
0.2 2.880 3.241 12.00038 48.00100 209.9110
0.3 3.482 3.890 12.00032 48.00102 209.8573
0.4 4.179 4.659 12.00041 48.00115 209.8533
0.5 4.778 5.217 12.00026 48.00126 209.8538

We observe that the method has coped well with this problem. From

Table 6.10 we find that the L - and L -error norms are small and2 00

the quantities I (1 = 1,2,3) are changed by less than 0.005% ,
1

0.004% and 0.642% respectively during the computer run, therefore

we consider the quantities I and I are virtually constants. After
1 2

the Interaction of these two well separated solitons (problem (b2)

case (iii)) the larger and smaller amplitudes are changed from the

original values by ~ 0.97% and ~ 0.006% respectively.

The forward and backward phase shifts defined by equation

(2.3.4.8) have been calculated for problem (b), (b l}, (b2(i-il))

and we found that

~ '" O. 11
1

~ '" -0. 18
2

These agree wi th the values obtained analytically from equation

(4.5.4) except in problem (b) where there is an error in the

forward phase shift about 1%.
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For problem (b2(iii»

II '"0.50
1

II "'-1.1
2

We observe that II agrees with the value obtained analytically
2

from equation (4.5.5) while II does not.
1

The quantities I
1

I of problems (cl) and (c2) are
3

given in Table 6.11. We see that conservation is better in problem

(cl) than in problem (C\), which may indicate that the

conservation of energy could depend on the coefficient of the

dispersive term (i. e. the value of I-L):

Table 6.11

The computed values of I , I
1 2

I for u(x,o)
3

2= exp(-x )

with h = 0.1 llt= 0.01

I I I
1 2 3

Time I-L =.04 I-L =.01 I-L = .04 I-L = .01 I-L =.04 Jl =.01

0.0 1.772454 1.772454 1.253314 1. 253314 0.872929 0.985728
2.5 1.772532 1.772487 1.253379 1.253348 0.872261 0.982454
5.0 1.772677 1.772521 1.253445 1.253383 0.872220 0.981137
7.5 1. 771568 1. 772557 1.253512 1.253422 0.871163 0.981090
10.0 1. 775931 1.772579 1.253580 1.253461 0.868774 0.981122
12.5 1.770864 1. 772518 1.253645 1.253500 0.860989 0.981166

Table 6.11 shows that over the computer run the quantities I ,
1

I
2

I are changed by less than
3

0.197% 0.027% 1.368%

respectively when I-L = 0.04 and by 0.008% 0.015% 0.471%

respectively when I-L = 0.01 So we can consider them as constants.

The total number of solitons which are generated from the

Gaussian initial condition has been determined from equation

(4.5.6) and we found that it agrees with those given above in

Figures 6.5-6.8

The first three conservative quantities for problem (d1)

boundary conditions((,.o.l3)arelisted in Table 6.12:
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Table 6.12
The computed values I , I ,13 for problem (d l,' boundary

1 2

conditions t'-".lJ)wi th h = 0.4, l1t = O.OS, c = 0.2, I-L = 0.1

Time I I I
1 2 3

0.0 50.00010 45.00046 42.30069
100.0 50.00427 45.00789 42.25728
200.0 50.01289 45.01431 42.11004
300.0 50.01280 45.02113 42.04109
400.0 50.00404 45.02817 42.03289
500.0 49.98812 45.03519 42.03796
600.0 49.97722 45.04222 42.04924
700.0 49.98970 45.04924 42.05655
800.0 50.01744 45.05622 42.06376

We observe that the three quantities I , I , I have changed by
123

less than 0.046%, 0.124% , 0.634% respectively during the long

time computer runs. So, we can consider them as relatively

constant up to time t = 800. The values of the analytic and

numerical velocities are computed to be c '"0.1305, c '"0.128
a n

respectively and so gree with one another.

We conclude that Galerkin's method with quadratic spline

interpolation polynomials is a useful technique for the

computation of KdV solutions over long periods of time, with small

space and time steps.
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CHAPTER 7

COLLOCATION WITH QUINTIC SPLINES

7.1 Introduction:

So far the KdV equation has been solved numerically using

Galerkin's method with Hermi te cubic interpolation, cubic spl ine

interpolation, and quadratic spline interpolation which have been

described and studied in the previous chapters. The main

disadvantage of these methods is the tedious calculations involved

in the initialization and the complexity of the computations,

especially that of the nonlinear term. For the above reasons we

have searched for a more economic technique suitable for solving

the KdV equation and have decided on the method of collocation

using splines. The collocation approach to solving partial

differential equations has two great benefits in that it does not

involve integrations and it leads to banded matrices with a small

band width.

At this stage we ask the question, "Is a cubic spl ine

collocation technique suitable for solving the KdV equation 7" The

answer is no because cubic spline interpolation has third order

derivative discontinuity at the knots and so cannot represent a

solution to the KdV equation.

We need a spline which has at least its third order

derivative continuous, so we are lead to chose quintic splines

which have up to the fourth order derivatives continuous.

In this chapter therefore a fini te element solution of the

KdV equa lion, using collocation with quintic splines as

interpolation functions is set up.
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7.2 The Governing Equation:

Again we are going to set up a numerical solution of the KdV
equa tion:

+ £ U U
X

+ " U = 0,...xxx (7.2.1)

where; £ and J.l are positive parameters. Appropriate boundary

conditions will be chosen from the following:

u(a,t) = (31

u(b,t) = (32
(7.2.2)

U (a,t ) = u (b,t ) = 0x x

u (a,t) = u (b,t ) = 0xx xx

and the initial conditions to be used will be prescribed later, in

section 7.6.

7.3 The Collocation Solution [81,82]:

Quintic splines will be used to approximate the solution

u Ix ,t) . Let n: a = x o < X
1

< ... < x = b be a partition of [a,b]
N

by the knots xI' and let ¢I (x) be those quintic splines with knots

at the points of n. Now

X
N

= span { ¢-2
form a basis for functions defined over [a,b). Our task is to find

out the approximate solution U (x,t) to the solution u(x,t) which
N

is given by:

U(x,t)=8 (t)¢ (x)+8 (t)¢ (x)+ ...+8 (t)¢ (x)N -2 -2 -1 -1 N+2 N+2

N+2
= r 8 (t) ¢ Ix ) ,

1 1
(7.3.1)

1=-2

where the 8 are unknown time dependent parameters to be
1

determined using the boundary conditions:
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u (a,t ) = «N

U (a,t ) 0NX (7.3.2)
u (b,t) = /32N

u (b,t ) = 0NX

and the collocation conditions given by:

u t(x ,t) +N J
u (x ,t)N J

u (x, t )NX J
+ u (X,t)=O

NXXX J

J = 0,1, ... ,N (7.3.3)
The quintic spline ¢1 (x) is defined by the relationships [36,73]:

5
(x+x ) Ix ,x ]

1-3 1-3 1-2

¢ (x)=__l (x-x )5 -6(X-X )5 + 15(X- x )5_20(X-X)5 [X,X ]
1 h5 1-3 1-2 1-1 1 1 1+1

(x-x )5 -6(X-X )5 [x ,x ]
1-3 1-2 1-2 1-1

(X-X )5 -6(X-X )5+ 15(X -x )5 [x ,X]
1-3 1-2 1-1 1-1 1

[x ,x ]
1 + 1 1 + 2

5-6(X-X )
1+2 [x ,X ]

1+2 1+3

o otherwise

(7.3.4)
where; h = (x -x ) for all 1 , implying that all intervals

1 1 - 1

[x ,x 1 are of equal size.
I - 1 I

The quintic spline ¢ (x) and its three principle derivatives
1

vanish outside the interval Ix ,x J. In Table 7.1 the values
1-3 1+3

of ¢ (x) and its principle derivatives at the relevant knots are
I

listed for convenience:
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Table 7.1

x x x x x x x X1-3 1-2 1-1 1 1+1 1 +2 1+3

¢. (x) 0 1 26 66 26 1 0
1

¢' (X) 5 50 50 51 0 - 0 - }1 - h 0h h
¢"(X) 20 40 120 40 201 0 }12 -2 - -2 -2 -2 0h h h h
¢':'(X) 0 60 120 120 60

1 }13 - h3 0 h3 - -3 0h

Substituting (7.3.1) into (7.3.3) leads to the equation:

N+2
~
1=-2

¢ (x ) 8
1 j 1

+ c
N+2
~
1=-2

¢' (x ) 0
1 j 1

N+2
~ ¢ (x ) 0

k=-2 k j k

N+2
+ 11 ~

1 = - 2

«: (X )
1 J

s
1

= 0 0, ... ,N (7.3.5)

Suppose that 0 is linearly interpolated between two time
1

levels nand n+l by:

8 = (1-8)on + 8 on+lII!
where 0 ~ 0 ~ 1 and on are the parameters at the time nllt . The

1

(7.3.6)

time derivative is discretised using the standard finite

difference formula:

(7.3.7)

Hence equation (7.3.5) can be written as:

N+2
[ ¢I

N+2 )]~ + 8 IIt( e ¢' z ¢k On + 11 ¢/I, on+1
1 k 1 11= - 2 k=-2

N+2
[ ¢!

N+2
)]o~= r - (1-8 )llt (c ¢' ~ ¢k On + 11 ¢'" (7.3.8)! k !1=-2 k=-2
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where the basis functions and their derivatives are evaluated at

the N+1 knots x , j = 0,1, ... ,N.
j

Giving the parameter 8 the values 0 , 1

2
produces explicit,

Crank-Nicolson and backward difference schemes respectively.

Now assume e = ~ then the equation (7.3.8) takes the form:
2

N+2
[ ¢I

H
N+2 )]r + (c ¢' r ¢k

On + ~ ¢'" on+l
2 1 k 1 11=-2 k=-2

N+2
[ ¢I

l1t N+2
)]87= r - (c ¢' r ¢k 8n + fl ¢'" (7.3.9)

2 1 k 11=-2 k=-2

Using the values given in Table 7.1 equation (7.3.9) can be

calculated at the knots x
j

at x = x equation (7.3.9) gives:
o

j = 0,1, ,N , so that

(X01 + (X02
+ (X03 On+l + (X

o 04 + (X05

(X On + (X 8n + (X 8n + (X On + a on (7.3.10)
05 -2 04 -1 03 0 02 1 01 2

where:

a = 1 - R Z R a = 26 - lOR Z + 2R a = 66 ,
01 1 -2 2 02 1 -2 2 03

a = 26 + lOR Z 2R04 1 -2 2
a = 1 + R Z + R05 1 -2 2

Z =8 +260 +660 +268 +8-2 -2 -1 0 1 2
(7.3.11)

at x x equation (7.3.9) becomes:
1

a
1 1

+ a12
+ a13 On+1 + a

1 14
+ a15

a 15
+ a

14
(7.3.12)

where:
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ex
1 1

1 - R Z
1 - 1

R
2

ex = 26 - lOR Z + 2R
12 1 -1 2 ex 66,

13

ex 26 + lOR Z 2R
14 1 -1 2 ex

15 1 + R Z + R ,
1 -1 2

Z
-1

(7.3.13)

at x x equation (7.3.9) becomes:
N

ex
NI

+ ex 8n+1

N2 N-1
+ ex 8n+1 + ex

N3 N N4
+ ex

NS
8n+1 =
N+2

ex 8n + ex 8n + ex 8n
+ ex 8n + ex 8n (7.3.14)NS N-2 N4 N-I N3 N N2 N+1 NI N+2

where:

ex = 1 - R Z R ex = 26 - lOR Z + 2R ex 66,NI 1 N-2 2 N2 1 N-2 2 N3

ex 26 + lOR Z 2R
N4 1 N-2 2

ex = 1 + R Z + R
NS 1 N-2 2

ZN-2 (7.3.15)

Generally, these equations can be written as a recurrence

relationship:

ex
I 1

+ ex
12

+ ex
13

,;:,n+1
u + ex

I 14
+ ex

15
8n+1 =

1+2

(X 8n + ex 8n + ex 8n
+ ex 8n + ex 8n (7.3.16)

15 1- 2 14 1-1 13 I i 2 1+1 i 1 1+2

where:

0 , 1 , N

ex = 1 - R Z R ex = 26 - lOR Z + 2R ex = 66,
11 1 1- 2 2 12 1 1-2 2 13

ex = 26 + lOR Z 2R
14 1 1-2 2

ex = 1 + R Z + R ,
15 1 1-2 2
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z = 8n + 268n + 668n + 268n + 8n1- 2 1-2 1 - 1 1 i + 1 i + 2'

R
5 cl1t R

30 1J.l1t (7.3.17)
1 2h 2 t?

The system (7.3.16 ) consists of N+l linear equations in N+5

unknowns (8-2 8
-1

8o To obtain a

unique solution to this system we need 4 additional constraints.

These are obtained from the boundary conditions (7.3.2) which

require that:

8 + 268 + 668 + 268
-2 -1 0 1

+ 8
2 = ~1

(7.3.18)
-58 -2 508

-1
+ 508

1
+ 58

2
= 0

8 + 268 + 668 + 268 + 8 - ~
N-2 N-1 N N+l N+2 - 2

-58 508 + 508 + 58 = 0
N-2 N-l N+l N+2

By solving the first two equations of (7.3.18) simultaneously in

8 and 8 , we obtain:
-2 -1

8 5 165 8 + 65 8 9 8

}
= - 8 ~1 + 4 +

-2 0 2 1 4 2

(7.3.19)

8 (31
33 I) ~ 8 .!_ 8- 8- 1 16 0 4 1 8 2

Similarly, solve the last two equations of (7.3.18) simultaneously

for (') 8 , to get:
N+1' N+2

5 165 8 65 8 + ~ 8

}
8 = - 8 ~2 + 4 +
N+2 N 2 N-l 4 N-2

(7.3.20)
1 _ 33 I) 9 .!_ 88 = 16 ~2

- - 8
N+l 8 N 4 N-1 8 N-2

El iminating 8 and 8 from the first two equations of the
- 2 - 1

system (7.3.16) using equations (7.3.19) to obtain:
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-49.58n+l- 398n+l_ 1.58n+l=49.58n +398n +1.58n_ 1.5~
o 1 2 0 1 2 1

(7.3.21)

S1 8n+l +S2 8n+1 +S3 8n+l +S4 8n+1 = ss 8n +S6 8n +S7 8n+S8 8n+~.
0 1 2 3 0 1 2 3 1

where:
~( 175SI - 47R Z + 49R ) , S2 = 1(255 +9(R Z +R »1 -1 2 1 -1 2

S3 = ~(207 + 81R Z 15R ) , S4 = 1 + R Z + R1 -1 2 1 -1 2

SS = ~(175 + 47R Z + -49R ) , S6 = 1(255 9R Z 9R )1 -1 2 1 -1 2

57 = ~(207 - 81R Z + 15R ) , S8 = 1 - R Z R
1 - 1 2 1 -1 2

• 8~1 (R Z~1 = + R ) (7.3.22)
1 - 1 2

Similarly, eliminating 8 and 8 from the last two equationsN+ 1 N+2
of (7.3.16) and using equations (7.3.20) to obtain:

8n+1 8n+1 8n+1 8n+1 n n n 8n_~.y1 +y2 +y3 +Y4 = ys 8 +y6 8 +y7 8 + y8N-3 N-2 N-l N N-3 N-2 N-1 N 2

where:
~( 175 1(255yl = - 47R Z + 49R ) , y; = +9(R Z +R»

1 N-3 2 1 N-3 2

Y" = ~(207 + 81R Z - 15R ) , y, = 1 + R Z + R
1 N-3 2 1 N-3 2

Y~ = .!.( 175 + 47R Z + -49R ) , Y~ = ~(255 - 9R Z - 9R )8 1 N-3 2 1 N-3 2

Yl = ~(207 - 81R Z + 15R ) , Y, = 1 - R Z R
1 N-3 2 1 N-3 2

Q. = ~2(R Z + R )
~2 8 1 N-3 2

(7.3.23)

(7.3.24)

The equation (7.3.21 )-(7.3.24) together with the third through

(N-l)th equations of (7.3.16) give N+l equations in N+l unknowns

(8 ,8 ,8 , ... , 8 )T which can be written in a matrix form
013 N

as:
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(7.3.25)

and 8(8n) are penta-diagonal (N+1)x(N+1) matrices

and r is N+1 vector:

r = [-1. 5(3 • (3•• O. O. ... • -(3 • , 1 . 5(3 ]
1 1 2 2 (7.3.26)

Since the matrices A(8n) • and 8(8n) depend on 8n• the matrix

equation (7.3.25) is nonlinear. We handle the problem by solving

not equation (7.3.25) directly but by setting up and solving an

equivalent system [50,68). Such a system is:

A(8n) 8n+1 = 8(8n)8n + r (7.3.27a)

A[ (7.3.27b)

where; equation (7.3.27a) predicts the first approximation 8n+1

then equation (7.3.27b) corrects iteratively the improved

approximation.

Our approach to the solution of the nonlinear system (7.3.27)

is to store the pentadiagonal matrices A(8n) and 8(8n) in
~

rectangular form (N+1)xS and then use the penta-diagonal algorithm

(sec Appendix A2) to solve the system (7.3.27). The boundary

parameters 8 , 8 , 8
-2 -1 N+1

and 8 can be computed at each
N+2

time step from equations (7.3.19)-(7.3.20).

To start the iterative procedure (7.3.27) an initial vector

80 must be determined from the initial condition on u(x.t). Once

the parameters 8 have been determined at a specified time then we

can compute the solution at the required knots from the formula

u (x .n~t) = 8n + 268n + 668n + 268n + 8n
N 1 1-2 1-1 1 1+1 1+2

(7.3.28)

1 = O. 1 •... , N
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7.4. The Initial State:

From the initial condition u(x,O) on the function u(x,t) we

must determine the initial vector 8° in order that the

determination of the time evolution of 8 and hence U can be

started.

We firstly rewri te equation (7.3.1) for the initial

condi tion:

U (x.D) =
N

N+2

~
1=-2

8° ¢ (x )
1 i 1

(7.4.1)

owhere; 8 are unknown parameters to be determined. To do this we
I

require U (x,D) to satisfy the following constraints:
N

(a) It must agree with the initial condition u(x,O) at the knots;

leading to N+l conditions, and

(b) The first and second derivatives of the approximate initial

condition shall agree with those of the exact initial condition at

both ends of the range: 4 further conditions.

These two conditions (a) and (b) can be expressed as:

u' (x ,D) = 0
N 0

u"(x 0) = 0
'" 0'

u (x ,D) = ut x ,0) = 0,1, ... , N (7.4.2)
N I I

u"(x 0) = 0
N N'

u' (x ,0) = 0
N N

From Table 7.1 the system (7.4.2) can be reduced to:
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-58 - 508
-2 -1 + 508 + 58

1 2
o

208 + 408 - 1208 + 408 + 208 0
-2 -1 0 1 2

8 + 268 + 668 + 268 + 8 u(x ,0) (7.4.3)1-2 1-1 1 1+ 1 1+2 1

208 + 408 - 1208 + 408 + 208 = 0N-2 N-1 N N+1 N+2

-58 - 508 + 508 + 58 = 0N-2 N-1 N+l N+2

The equations (7.4.3) can be written as a matrix equation of the

form:

A 8° = b (7.4.4)

where:

-5 -50 0 50 5
20 40 -120 40 20
1 26 66 26 1

1 26 66 26 1

A =

1 26 66 26 1

20 40 -120 40 20
-5 -50 0 50 5

, ••• t While the vector b

has the form

b = [0 , 0 , u Ix ,0) , u l x ,0) , ...
o 1

(7.4.5)

To solve the system (7.4.4), reduce the matrix A to

penta-diagonal form by the following steps:

(1) Solve the first two equations of the system (7.4.4)

simultaneously in 8 and 8 to obtain:
-2 -1
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8 = 7.58 58 - 1.58-2 0 1 2 } (7.4.6)
8 = -0.758 + 1.58 + 0.258
-1 0 1 2

Eliminating 8 and 8 from the third and fourth equations of
-2 -1

(7.4.4) gives:

548 + 608 + 68 = u(x ,0)
o 1 2 0 } (7.4.7)

25.258 + 67.58 + 26.258 + 8 = u(x ,0)o 1 2 3 1

(2) Similarly, by solving the last two equations of the system

(7.4.4) simultaneously we get:

8 = 7.58N+2 N 58 - 1.58 }N-1 N-2
+ 1.58 + 0.258N-l N-2

(7.4.8)
8 = -0.758N+1 N

Eliminating 8 and 8 from the (N+llth and N-th equations ofN+1 N+2
the system (7.4.4) gives:

8N-3 + 26.258 N-2 + 67.58 N-1 + 25.258
N

=U(x ,0)
N-1 }

= u(x ,0)
N

(7.4.9)

68 N-2 + 608 N-l + 548
N

Hence the system (7.4.4) is reduced to penta-diagonal (N+llx(N+ll

form. To solve that system apply the penta-diagonal algorithm (see

Appendix A2) to obtain the computed solution (8 , 8 ,o 1
... ,

and hence compute 8-2
and 8 from equationsN+2

(7.4.6) and (7.4.8). So the initial vector 80 is determined.

7.5 The Stability Analysis:

The investigation of the stability of the KdV equation will

be based on the von Neuman theory in which the growth factor of a
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typical Fourier mode defined as:
",n ~n i j xh
u = u e
j

(7.5.1)

where; k is the mode number and h is the element size, is

determined from the numerical scheme (7.3.16)-(7.3.17).

The nonlinear term u u of the KdV equation cannot be handledx

by the Fourier mode method. Therefore we tackle this problem by

linearising this term [26,32,35,53]. We assume that the quantity u

in the nonlinear term u u is locally constant which is equivalentx
nto supposing that in equation (7.3.17) all the 0 are equal to a
j

local constant d so that the equation (7.3.16) can now be

written as:

a: on+1 + a: on+1 + a: on+1 + a: on+1 + a: On+1 =1 J-2 2 J -1 3 J 4 J + 1 5 j+2

a: On + a: On + a: On + a: On + a on (7.5.2)
5 j-2 4 J-1 3 J 2 j+1 1 j+2

where:

0 , 1 , N

• •a = 1 - R R a = 26 - lOR + 2R a = 66,
1 1 2 2 1 2 3

• •a = 26 + lOR 2R a: = 1 + R + R
4 1 2 5 1 2

• 5 30
Ilfl t (7.5.3)R = eM (120d) R = 1131 2h 2

If we insert the Fourier mode (7.5.1) in equation (7.5.2) we

obtain:

8n+1 [ -z i ah -!kh !kh 21kh ] 8n [ -2!kha e + a: e + a: + a e + a e = a e +
1 2 3 4 5 5

-Ikh !kh 2!kh ] (7.5.4)a e + a + a e + a e
4 3 2 1
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Rewrite this equation in simple form:
(a + ib)in+

1 = (a - ib)on (7.5.5)
where:

i = v'="l

}a = 33 + cos(2kh) + 26cos(kh) (7.5.6)
• •b (R + R Is InLz eh ) + (lOR - 2R )sin(kh)
1 2 1 2

Let in+1 = g On where g is the amplification factor for the
mode and substitute in (7.5.5) to get:

a - ib
a + ibg = (7.5.7)

Taking the modulus of this equation gives:

Igl = ~ = 1

Therefore the linearised numerical scheme is unconditionally

stable.

7.6 The Test Problems:

The principal purpose of the work reported in this section is

the thorough testing of the collocation quintic spline algorithm

based on the method which has been described in this chapter.

For the tests we shall compute the numerical solution of the

KdV equation with different initial and boundary conditions which

are chosen as follows.

(a) The initiaI condition which represents the motion of a

single soliton given by:

2u(x.o) = 3 C sech (A x + D )
1 1

<7.6.1)

where; A
1

o and c are given constants,
1

together with the

boundary conditions:

U (0, t l
U (0, t )x

= U(2,t)
= U (2,t)

x
::} for all time (7.6.2)
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Since the KdV equation has an analytic solution of the form [26]:

U(X,t) = 3 c sech2(A x - B t + D )
111

(7.6.3)

provided:

A = :(c C/~}1/2 and B = c c A
1 2 1 1

(7.6.4)

equation (7.6.1) is a possible initial condi tion if

A = :(c c/~)1/2 and in fact represents a single soliton moving to
1 2

the right.

To make comparison with the work of Sanz-Serna and Christie

[36] we choose e = 1 , -4
Jl = 4.84x10 , c = 0.3 D =-6

1 '

h = 0.05, 0.033, 0.01 , and ~t = 0.025, 0.01, 0.005 We observe

in Figure 7. 1, the computed solution. The sol1 ton moves to the

right at constant speed with unchanged amplitude for times from

t = 0.0 to t = 3.0 When the exact solution (7.6.3) 1s plotted on

the same figure, we find that the curves are indistinguishable.

These graphs have been compared exactly with those of Greig and

Morris [26] for corresponding times and the agreement is also

excellent:
1.1 1.1

I.'
•••

I... " ••1

•••
'.1

r•• s

I.'
a ••
-e.,
0.'
'.1

1.0 1.1 a.. l.1 l.1 1.0 0.1 0.. D.' 0.1 1.0 •• 1 a.. I.' a.1 ••
I

1.1 1.1

I.'1.0

0.'
"a.c

0.1

L-.-.I--O~••--~••I~~•.~I~I.'~~I.'~~I••~~I.I~~I.I~'~.•
I

•• a.

0•• •••
'.1

~.-••~.- .•--.-.,--~a.~'--~~I.~I~I.-'~I.~I~I.~I~I.I

••l ••• ..a '.1 I.' 1.1 I.' 1.1 I.' ...•

1.1

I.'
•••

O.Z 0.. 0.' 0.' ••0
I

hI.

I••

I.'

•••,..., I•••

•..
•••

~O.I

I.'
I.'

Figure 7.1 Problem (a). The motion of single soliton with
h z 0.01 ~t = 0.005.
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Cb) The interaction of two overlapping solitons with initial

condition given by:

uex,o) = 3 C sech2CA x + D ) + 3 C sech2eA x + 0 )
1 1 1 2 2 2

(7.6.5)

together with the boundary condi tions:

u (o,t) = U(2,t) = 0 } for all time
u (o,t) = u (2,t) = 0x x

(7.6.6)

These conditions represent two solitons, one with amplitude

3C sited initially at x = - D lA and a second with amplitude3c
1 1 1 2

placed at x = - 0 lA . As is well known that the velocity of a2 :2

soliton depends directly upon its amplitude. So choosing c > c
1 2

and
with increasing time. For comparison with Greig and Morris [26)

D lA > 0 lA ensures that these soli tary waves interact
1 1 2 2

solution

h :II 0.01

•••...
1.1

I.'

I••...

we have chosen c = 0.3, c = 0.1 ,

• 4 t - O.005 and AJ '. H :C Jt.2J ., • 2 ,
o = D = -6. ,
1 2

'.2 1.' 1.' 1.1 ..

1.4 1.1

1.0I.' ...
r•• ;~a~••...

..4
0.1 a.. 0.' 0.' 10<1 I.' Io' I.' I.' lo'

I

I.!.

1.4

I.'
•••

r.l.s a••,

•••
'.4

..~ l.' I.. hi Lt 0.. 0., 0.' 0. •

Figure 7.2 Problem Cb). The interaction of the two overlapping
solitons with h = 0.01 ~t = 0.005.
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From Figure 7.2 we observe that the two solitons are placed where

the larger one on the left. As the time increases, the larger

soliton catches up with the smaller one at time t = 0.75. At time

t = 1.5, the larger sol iton, overtakes the smaller one and is in

the process of separating. Around time t = 3, the interaction

process is complete and the larger soliton has sparated completely

from the smaller one.

The interaction of two overlapping solitons observed in our

computations is shown in Figure 7.2 and agrees well with those

obtained by other authors [26,35). We see that the solitons emerge

from the interaction wi th large and small ampl itudes slightly

changed from the original by ~ 0.99% , ~ 0.28% respectively. The

agreement with Greig and Morris [26] is very satisfactory.

(bl) Consider the motion of two well separated solitons as an

initial condition:

u Ix , 0) 2= 3 C sech (A x + 0 )
1 1 1

+ 3 C sech2(A x + 0 )222 (7.6.7)

where:

c , C , A , A ,Dare given in problem (b)
1 2 1 2 1

o = - 9.0 , B
2 1

c c A
1 1

I = 1 , 2

The boundary conditions are:

U (0, t )

U (o,t)x

= U(4,t)

= U (4,t)x

= 0 } for all time (7.6.8)
= 0

Figure 7.3 shows us that the two solitons with the larger on

the left. As the time increases, the larger soliton catches up

with the smaller until, at time t = 3. Around time t = 4, the

larger soliton has overtaken the smaller one and is in the process

of separating. By time t = 6, the interaction process is complete

and the larger soliton has separated completely from the smaller
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one. Also we see that after the interaction of the two well

separated solitons the larger and smaller ampli tudes alter from

the originals by very small amounts of 0.002%, 0.037%

respectively. Therefore we emphasise that after the interaction

the amplitudes are unchanged as required by theory:

·~11A A ,-'~IA.0
'.J ,A r, , 1.1 La 1.8 1---;.;-;'••..4--:'••.;0. ~-;- •• 7. ~-:- •••:--~ ••• ,..---I~.•

I J

'~I ~ ,..'~I 1\
I---;~;-;'.--~,~.•---;-,.~.~-:-I~:--~LI,..---,~.. 1---;,;-;",---:,17.,~-;-,.~1~~•.•:--~ ••':--~1 .•

I J

'~!L---:-:---:-::I ~/J\~'..'f:~1 ~/\.~A'~·
... ,.. 1.1 LI '.1 J.' 1.1... 1.1 t.. t.' I.'

I J

1...1••

Figure 7.3 Problem (bl). The interaction of two well separated
solitons with h = 0.01 6t = 0.005.

(c) Another interesting initial value problem for the KdV

equation is given by using the Gaussian distribution function as

the initial condition:

2u(X ,0) • exp( - x ) (7.6.9)

This is a typical symmetric function which tends zero as Ixl tends

to infinity. The boundary conditions imposed are:

U(; 15,t) = 0

u (; 15,t) II: 0x
} for all t > 0 (7.6.10)

We choose c = 1.0 and we discuss each of the following cases:

cl J.I. = 0.04 , h ...0.1 , At = 0.01

c2 J.I. :II 0.005 , h = 0.05 , At = 0.01

( c3 J.I. • 0.001 , h == 0.025 , At = 0.005

c4 J.I. ... 0.0005 , h = 0.025 , At = 0.005
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A comparison has been made with the work of Goda [59].

Figure 7.4 depicts the behaviour of numerical solution of problem

(cl) for times up to 12.5 . We see that the initial perturbation

splits itself into a soliton plus an oscillating tail. The values

of the analytic and numerical velocities are c ~ 0.401, c ~ 0.4
a n

respectively, so they agree:

-,

1.1

,.~
'~ ..J

-, ....
'.1

,.~
,.0

'.1.1...
-, ....

I..

,.0
,.....

-,
".1

...
,....

...

-. ....
c ••

I.'
,.I

..I

-.
41

...
,..

,....

-, -.

Figure 7.4 Problem (cl). A single soliton with oscillating tail
for Il = 0.04.

Figure 7.5 shows similar results for J.1 = 0.005 . We observe

that the initial perturbation breaks up into four solitons. The

graphs obtained by our algorithm for the case (cl) is identical

with that given by Goda [59]. The agreement between the analytic

velocity c ~ 0.5589 and the observed velocity c ~ 0.558 for thea n

leading soliton is very satisfactorily:
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Figure 7.5 Problem (c2). The breakdown of the initial condition
into 4 soliton when ~ = 0.005.

In Figure 7.6, for ~ = 0.001, we see that the initial

perturbation breaks up into 9 solitons moving to the right. The

agreement between the analytic velocity c Qji 0.616
a

and the

observed velocity c Qji 0.62
n

for the leading soliton is very

satisfactorily:
I.' I.'
I.a I.a

,.... 1.I.a

-I "
-I •

I "
- •• a ... a

1.1

I.'I.'
I.S

101.1101.

"••
II -I-I

-'.1 -'.S

I.'

I•••.•

1.1

•I "-I

... a -'.S

Figure 7.6 Problem (c3). The breakdown of the initial perturbation
into 9 solitons with ~ = 0.001.
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Figure 7.7, for ~ = 0.0005, shows another train of solitons

generated when the initial perturbation spli ts into 12 solitons

moving to the right with constant velocity. for the leading

sol iton this is c :.:0.64 and ampli tude ( ~ 1.91). The analyt ic
n

velocity c :.:0.637 agrees very well with the numerical one c :a n

I~.'
,i -I

... S

I.'

I.S

_v1AAHHHI.'I"'" a
.. S

"
-I Z •I

... S

I••

I.'
r.'I.1 a

,. -I ....

r..a.s

•••
I.S

,0·1

".S

I.'
I.S

101.1

,.-. •
I....

...
I.'

a

-, ....
,••t.s

,.

FIgure 7.7 Problem (c4). The breakdown of the initial condition
Into 12 solItons when ~ = 0.0005.

It was found that the behaviour of the numerical solutions

differed according to the value of ~ The lnltial perturbation

breaks up into a number of solitons in the course of time

depending on the value of ~ chosen. So, if we decrease the value

of ~ then the number of solitons, the amplitude, and the velocity

increase. Also. it appears that the amplitudes vary approximately

linearly.

(d) As a final test example we shall as take initial

condition:

u(x,o} = i[1 - tanh[ x : 2S ]] (7.6.11)
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and as boundary conditions:

U(O,t)
u t s ov t )

U (O,t)x

= 1

} for all t > 0 (7.6.12)= 0

=U (so,t) = 0x

(dl) Let us consider the symetric initial condition as given

by:

U(x,O) = ~ [ 1 - tanh [ l_x......1 :_2_5_] ] (7.6.13)

and the boundary conditions are impose:

U(-lSO,t) = U(lSO, t) = 0

} for all t > 0 (7.6.15)

U (-ISO, t ) = U (r s o.rt ) = 0x x

To allow comparison with Vliegenthart [44] for problem (d) we

have chosen c = 0.2 , M = 0.1 and used ~t = 0.05 and h = 0.4 . The

solution we compute, reproduced in Figure 7.8 shows us all the

general features obtained in the earlier solution [44]. We cannot

make a direct comparison with Vliegenthart's [44] figures because

the boundary condi tions used are not given. We can, however,

repeat his computations using his finite difference scheme and

parameters together with our boundary conditions to produce

comparable figures. If these are plotted also on Figure 7.8 the

graphs are indistinguishable wi th those obtained in the present

study:
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Figure 7.8 Problem (d). The solution graphs for varoius times
with h = 0.4, ~t = 0.05, ~ = 0.1, c = 0.2.

We found that his numerical velocities for the solitons were
greater than ours and also that the amplitudes differed. Also, the
conservative quantities varied somewhat. We suspected the boundary
conditions. So, we dec1ded to chose alternative problem (d1). The
behaviour of this solution is given in Figure 7.9:

... I........ '."•••
,.d '.'., ....
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I I... ....
,... ,...,.•

,._ r ...
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,. .a ,.

Figure 7.9 Problem (d1).The 1nitial perturbat10n spl1ts 1nto train
of solitons with c = 0.2, ~ = 0.1, h = 0.4, ~t = 0.05.
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It is observed from Figure 7.9 that the initial perturbation

problem (dl) as broken up into a train of sol itons, which move

steadily to the right with constant speeds whose magnitude depends

upon their individual amplitude. It appears that the amplitudes of

the solitons vary approximately linearly. The agreement between

the values of the analytic velocity c ~ 0.1302 and the numerical
a

velocity c ~ 0.128 for the leading soliton are very satisfactory;
n

especially with these long time and large space steps.

7.7 Discussion:

Any numerical scheme for computing the solution of the KdV
equation must represent faithfully the amplitude and the position

of solution over many time steps wi th minimum errors [36], and

also it should be conservative.

To examine the accuracy of our numerical scheme we have used

the L - and L -error norms to compare the numerical and exact2 00

solutions. The L -error is used to compare 5 numerical methods in
2

Table 7.2 for the single soliton problem [36]. We find that the

collocation quintic spline method compares well in the accuracy

wi th the best of the other methods. In fact, the error in the

single soliton solution is less than that of the modified

Petrov-Galerkin method by a factor 10, when h = 0.01, ~t = 0.005.
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Table 7.2

The growth of the discrete L -error norm x 103 for single soliton
2

Time Zabusky- Hopscotch Petrov- Modified Collocation
Kruskal [26] Galerkin P-G Quintic
[27] [36] [36] [present]

!J.x= 0.05 !J.t= 0.025 h = 0.05 !J.t= 0.025

0.25 34.64 61.21 81.39 52. 15 37.39
0.50 122.68 122.41 102.54 64.90 38.97
0.75 210.44 181. 35 125.84 89.01 52.97
1.00 298.19 228. 10 150.57 107.20 63.72

h = 0.033 !J.t= 0.01

0.25 31.18 5.94 2.35
0.5 43.35 7.56 3.25
0.75 56.21 8.70 2.23
1. 00 74.08 9.49 2.88

!J.x= 0.01 !J.t= 0.0005 h = 0.01 !J.t= 0.005

0.25 5.94 3.79 4.46 0.21 0.022
0.50 13.17 9.28 7.01 0.38 0.041
0.75 21. 08 14.14 10.08 0.57 0.054
1. 00 28.66 18.72 13.26 0.74 0.067

Table 7.3 shows us that the L -error norm computed from our
00

technique for a single soli ton using the defini tion (4.5.2) has

been compared wi th all the method which are quoted in

Table 7.3. We observe that the L -error norm is greater than
00

L -error norm which disagrrees with the authors [26,27,36]. Also
2

we find that the value of L -error norm using our method is
00

greater than Modified Petrov-Galerkin when h = O.OS , !J.t= 0.025

and it has the same error of magnitude for h = 0.033 , !J.t= 0.01

and h = 0.01 , !J.t= 0.005:
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Ta17.3

The growth of the discrete Loo-error norm x 103 for single soliton

Time Zabusky- Hopscotch Petrov- Modified Collocation
Kruskal [26] Galerkin P-G Quintic
[27] [36] [36] [present]

Ax = 0.05 At = 0.025 h = 0.05 At = .025

0.25 19.4 32.7 42.18 30.22 57.54
0.50 63.5 67.4 51.85 22.85 65.26
0.75 122.4 99.3 87.60 35.86 76.69
1.00 161.4 141.6 100.41 39.39 100.96

h = 0.033 At = .01

0.25 14.27 2.80 4.80
0.5 21.65 4.53 4.83
0.75 29.78 4.85 4.83
1. 00 39.37 5.85 4.83

Ax = 0.01 At = 0.0005 h = 0.01 At = .005

0.25 2.05 1. 11 1. 21 0.07 0.07
0.50 4.22 2.14 2. 15 0.11 0.11

0.75 6.36 3.54 3.09 0.17 0.16

1. 00 8.13 4.91 3.83 0.21 0.20

Further results for times up to t = 3.0 are listed in Table 7.4:
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Table 7.4
errors x 103 for a single soliton

T 1. 25 1. 50 1. 75 2.00 2.25 2.50 2.75 3.00
L 3.62 3.31 2.55 2.35 2.102 2.89 3.11 2.94

h = 0.033
f1t = 0.01

L 6.47 8. 14 8.14 8.14 8.14 8.14 8.14 8.14to

L 0.08 0.09 0.09 0.10 0.122 0.13 0.14 0.15
h = .01
f1t=0.005

L 0.22 0.24 0.25 0.28 0.32 0.33 0.37 0.4100

Table 7.4 shows us that the error is still small even when

the time is increased up to t = 3.0.

The KdV equation has an infinite number of conservative

quantities. For this reason it is important for any proposed

numerical scheme for solving the KdV equation to have at least the

lower order quantities conserved. We will study how the four

quantities I (1 = 1, ... ,4) defined by equations (2.4.8)-(2.4.11)
1

respectively behave.

We have computed the first four invariant quantities for the

single soliton solution. These are given in Tables 7.5 and 7.6:

Table 7.5
The computed value I , I

1 2
I for a single soliton
3

I I I
1 2 3

h = .033 h = .01 h = .033 h = .01 h = .033 h = .01
Time f1t = .01 f1t =.005 f1t = .01 f1t =.005 f1t = .01 f1t=.005

0.0 0.144597 O. 144598 0.086759 0.086759 0.046850 0.046850
0.50 0.144599 O. 144602 0.086785 0.086761 0.046871 0.046851
1. 00 0.144562 O. 144601 0.086794 0.086762 0.046878 0.046853
1. 50 O. 144584 0.144603 0.086788 0.086764 0.046876 0.046854
2.00 0.144570 O. 144604 0.086767 0.086765 0.046861 0.046855
2.50 0.144635 0.144605 0.086771 0.086767 0.046864 0.046857
3.00 0.144604 0.144606 0.086783 0.086768 0.046873 0.046858
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In Table 7.5 we give the values of I
1

I
2

I
3

The change in

these quantities during the computer run are less than 0.027%,

0.041% 0.060% respectively for h = 0.033, ~t = 0.01 and

0.006% , 0.011% , 0.018% respectively for h = 0.01 , ~t = 0.005 .

We observe that they are satisfactorily constant even when h, ~t

are relatively large.

Table 7.6 shows us that 14 is almost constant when h = 0.01 ,

~t = 0.005:

Table 7.6
The numerical value of I for a single soliton

4

T 0.0 .50 1. 00 1. 50 2.00 2.50 3.00

h =0.033 .024089 .025466 .024955 .025234 .024438 .024693 .024475
~t =0.01
h = 0.01 .024094 .024101 .024101 .024098 .024099 .024100 .024104
~t=0.005

We find that the change in I is less than 5.72% when h = 0.033
4

~t = 0.01 and 0.042% when h = 0.01 ~t = 0.005 during the computer

run.

A computer run on the single soliton solution with 200 nodes

and 200 time steps took 4 secs of CPU time on a VAX 8650.

With example (b) we have verified that our numerical method

can adequately cope when two overlapping solitary waves coalesce

for a short period and then separate with their original profiles

intact but their large and small amplitudes affected by 0.99% ,

0.28% respectively and their relative positions changed. The

quantities I , I , I and I have been computed for problem (b)
1 2 3 4

and are listed in Table 7.7:

195



Table 7.7
The computed values I1 • I2 • I • and I for two

3 4

overlapping solitons with h ~ 0.01 ~t ~ 0.005

Time I I I I1 2 3 4

0.0 0.228081 0.107062 0.053316 0.027083
0.50 0.228081 0.107064 0.053317 0.030863
1. 00 0.228262 O.107074 0.053321 0.034886
1. 50 0.228222 O.107075 0.053323 0.031270
2.00 0.228037 0.107070 0.053323 0.027651
2.50 0.227816 0.107073 0.053325 0.026696
3.00 0.227658 0.107079 0.053328 0.026292

Also Table 7.7 indicates to us that the quantities I
I

(I = 1 •...• 4) are changed about 0.186% • 0.016% • 0.023% and

28.82% respectively during the computer run.

The discrete L -error norm is evaluated for the two well
2

separated solitons problem (bl) up to t ~ 2.0 and is given in

Table 7.8:

Table 7.8
3The growth of the discrete L -error norm x 10 for two well

2

separated solitons with h ~ 0.01 ~t ~ 0.005

T 0.25 0.50 0.75 1.00 1.25 1. 50 1. 75 2.00

L X10
3 0.029 0.090 0.195 0.421 0.883 1.824 3.740 7.598

2

We have also calculated the first four conservative

quantities for problem (b1) which are recorded in Table 7.9:
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Table 7.9
The computed values I , I , I ,and I for two well

123 4

separated solitons with h = 0.01 ~t = 0.005

Time I I I I1 2 3 4

0.0 0.228082 O. 103466 0.049864 0.024616
1.0 0.228085 0.103467 0.049865 0.024617
2.0 0.228086 O. 103468 0.049865 0.024617
3.0 0.228088 O. 103470 0.049866 0.024628
4.0 0.228091 0.103473 0.049869 0.024620
5.0 0.228092 0.103474 0.049870 0.024642
6.0 0.228093 O. 103475 0.049870 0.024622
7.0 0.288094 0.103476 0.049870 0.024628
8.0 0.228095 0.103476 0.049870 0.024648

Table 7.9 shows us that the quantities I (I = 1, ... , 4 ) change
i

by less than 0.006% , 0.01% , 0.013% , 0.13% respectively during

the computer run. So they can be considered as constant.

Using equation' (2.3.4.8) the forward and backward

phase shifts have been evaluated numerically and obtained as

~ = O. 11 ,
1

and ~ = - O.18
2

which agree with the analytic results equation (4.5.7) .

(b2) Let us study the two solitary waves initial conditions

which are followed from the analytic solutions (2.3.4.1) when

t = 0.0 in the following cases:

(i) problem (b) where a = vlci/ ~ d = - 12 , d = -12 + ~
I 1 2

(ii) problem (bl) where a = vlci/ ~ , d = - 12
i 1

d = -18 + ~
2

(t i i ) a = 4.0
1

a = 2.0
2

d = d = 0.0
1 2

The boundary

conditions are chosen as
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u(+12,t) =0
u (+ 12,t) = 0x

} for -0.5 ~ t ~ 0.5 (7.7.1)

The present technique has been used to compute the errors in

the solution using the discrete L - and L -error norms and also the fir~
2 <XI

four conservative quantities which are given in Table 7.10:

Table 7.10
3The computed values of the errors x10 , and I to I for two

1 4
overlapping soliton problem (bl) case (i) with h = 0.01, ~t =0.005

Time L X10
3

L 3
I I I IX10

2 <XI 1 2 3 4

0.0 0.228074 O. 103456 0.049855 0.024610
0.50 0.217 0.309 0.228096 O. 103457 0.049856 0.025336
1. 00 0.081 0.309 0.228097 O. 103459 0.049857 0.024655
1. 50 0.114 0.309 0.228101 0.103461 0.049859 0.024743
2.00 O. 100 0.309 0.228099 O. 103462 0.049860 0.024619
2.50 O. 128 0.309 0.228100 O. 103463 0.049860 0.024689
3.00 0.172 0.452 0.228094 O. 103463 0.049860 0.024699

Table 7.10 shows us that the errors measured in terms of the

discrete L - and L -error norms are satisfactorily small even when2 <XI

the time achieves 3. The quantities I (I
I

1, ... ,4) are changed

by less than 0.012%, 0.0068%, 0.011% , 0.541% respectively

during the computer run. These quantities are virtually constants

especially I , I , I . After the collision the larger and smaller
123

ampl itudes are changed from their original by values less than

0.8% and 0.4% respectively.

The L - and L -error norms and the first four conservative
2 OJ

quantities have been computed for two well separated solitons

problem (b2) case (ii) and are listed in Table 7.11:
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Table 7.11
The computed values of the errors x 103, and I to I for a1 4

double soliton problem(b2) case (ii) with h=.Ol, ~t = 0.005

L Xl0
3 L X10

3
I I ITim I

2 co 1 2 3 4

0.0 0.228082 0.103456 0.049855 0.024610
1.0 0.078 0.225 0.228084 0.103457 0.049856 0.024612
2.0 O.142 0.375 0.228086 O.103458 0.049856 0.024611
3.0 O.141 0.375 0.228089 0.103460 0.049857 0.024617
4.0 0.238 0.621 0.228093 O.103463 0.049860 0.024619
5.0 0.321 0.799 0.228095 0.103464 0.049861 0.024618
6.0 0.386 1.016 0.228096 O.103465 0.049861 0.024632
7.0 0.448 1.170 0.228097 0.103466 0.049861 0.024614
8.0 0.512 1.332 0.228098 0.103466 0.049861 0.024619

Table 7.11 shows us that the L - and L -error norms are2 co

satisfactorily small for two well separated solitons even with

runs up to a time of t = 8. The quantities I (1 = 1, ... , 4) are
1

changed by less than 0.0071%, 0.0097%, 0.0121%, 0.0894%

respectively during the computer run. These quantities are

virtually constants. After the interaction the larger and smaller

amplitudes are altered from their original by values less than

0.008% and 0.045% respectively.

For the two well separated solitons with large amplitudes

Problem (b2) case (iii), the values of the L - and L -error norms2 co

and the first four conservative quantities are given in

Table 7.12:
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Table. 7.12
3The computed values of the errors x 10 , and I to I for a

1 4

double soliton problem (b2) case (iii) with h = O. 1, ~t =.0005

L Xl0 3 L 3 I I ITime Xl0 I
2 00 1 2 3 4

-0.5 11.99991 47.99998 211. 2000 943.5421
-0.4 1.937 1.470 12.00011 48.00021 211.2014 944.0864
-0.3 1.520 1.814 11.99994 48.00042 211. 2023 943.7606
-0.2 1.812 1.814 11.99981 48.00063 211.2036 944.0063
-0. 1 2.890 1.816 11.99982 48.00094 211. 2062 944.9952
0.0 1.292 1.816 12.00005 48.00158 211. 2134 943.7791
0.1 1.395 1.816 12.00029 48.00239 211.2170 943. 7485
0.2 2.088 1.975 12.00035 48.00280 211.2181 943.8973
0.3 2.559 2.743 12.00041 48.00303 211.2190 943.8876
0.4 3.205 3.400 12.00068 48.00323 211.2200 944. 1334
0.5 3.704 4.437 12.00060 48.00343 211. 2209 943.9015

We see that over the computer run the method has coped very well

wi th this problem. Table 7. 12 shows us that the L - and L -error2 00

norms are satisfactorily wi th large ampli tudes. Also the

quanti ties I
1

(1 = 1 •...• 4) are changed by less than 0.007%,

0.0072%, O.01, 0.155% respectively. Therefore, we conclude that

these quanti ties are virtually constant, particular ly 1
1
, I2' I3·

After the collision of these two well separated solitons

(problem (b2) case (iiil) the larger and smaller amplitudes are

changed from their original values by 0.96% and 0.006%

respecti vely.

Similar results are given in Table 7.13 for the conservative

quanti ties I , I , I of problems (cl) and (c2). We found that
1 2 3

each of the quantities I are very satisfactorly constants:
1
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The computed values of I
1

Table 7.13
I and I for u(x, 0)
2 3

2= exp(-x )

I I I1 2 3
Time 11 =.04 11 = .005 11 = .04 11 =.005 11 =.04 11 = .005
0.0 1.772454 1.772454 1. 253314 1. 253314 0.872929 1.004527
2.5 1.772475 1.772475 1.253344 1.253345 0.872955 1.004562
5.0 1.772488 1. 772496 1.253371 1.253376 0.872984 1.004594
7.5 1.772537 1. 772518 1.253400 1.253407 0.873015 1.004635
10.0 1.772525 1.772542 1.253424 1.253438 0.873046 1.004677
12.5 1.772536 1.772561 1.253481 1.253469 0.873082 1. 004719

Table 7.13 shows that the quantities I (I = 1, ... ,4) are changed
I

by less than 0.005% , 0.014% , 0.018% respectively when 11 = 0.04

and 0.006%, 0.0124% , 0.0192% respectively when 11 = .005 during

the computer run. Therefore they can be considered as invariant.

Table 7.13a gives the numerical value of I :
4

Table 7.13a
The computed value of I for u(x,O)

4
2= exp(-x )

T 0.0 2.50 5.00 7.50 10.00 12.50

Ii = .04 0.602077 0.602117 0.603916 0.606560 0.609052 0.617424

11 = .005 0.845971 0.846186 0.846324 0.846377 0.846432 0.846548

Table 7.13a shows us that the change in the quantity I is less
4

than 2.55% when 11 = 0.04 and 0.0682% when 11 = . 005 during the
computer run.

From Tables 7.13 ,7.13awe observe that the four computed

conserved quantities are constants and have magnitude dependent on

the coefficient of the dispersive term (i.e. the value of 11 ).

The total number of solitons which are generated from a
GauSSian initial condition has been determined using
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equation (4.5.6) for different values of ~ and we found an

agreement with those given in the above Figures 7.4 - 7.7

The first four conservative quantities for problem (dt) with

boundary conditions (1.6"/4) are given in Table 7.14 up to time
t = 800:

Table 7.14
The computed values I , I , I ,and I for problem (d.)boundary123 4

condltions(1.,.,~)with h = 0.4, flt = O.OS, e = O.2, ~ = 0.1

Time I I I I1 2 3 4

000.0 50.00022 45.00045 42.30069 40.44194
100.0 50.00456 45.00827 42.31154 40.45628
200.0 50.00883 45.01594 42.32193 40.47181
300.0 50.01307 45.02349 42.33296 40.48888
400.0 50.01719 45.03096 42.34436 40.51368
500.0 50.02153 45.03846 42.35592 40.57836
600.0 50.02568 45.04593 42.36752 40.57206
700.0 50.03011 45.05344 42.37922 40.61868
800.0 50.03298 45.06098 42.39087 41.20851

Table 7.14 shows us that the quantities I (I = 1, ... ,4) change by
I

less than 0.066% , 0.135% , 0.214% , 1. 896% respectively during

this long computer run. So they can be considered as relatively

constant.

Finally, we conclude that the collocation method using

quintic polynomial spline interpolation functions is a suitable

technique for the computation of KdV equation solutions over long

periods of time with small space and time steps.
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CHAPTER 8

A COLLOCATION METHOD FOR THE GENERALISED EQUATION

8.1 Introduction:

The generalised KdV equation has been studied analytically by

several authors [6,32] and numerical solutions using finite

difference methods [6,32,80,88], a fourier or psedospectral method

[32] and Galerkin methods have been presented [35,48].

Our aim in this chapter is to compute the finite element

solution of the generalised KdV equation using collocation with

quintic splines as interpolation functions.

8.2 The Governing Equation:

We seek to solve numerically the generalised Korteweg-de Vries

equation, in the normalised form:

+ II U = 0,..xxx (8.2.1)

where; p (p = 1,2, ... ) is positive integer, e and Il are positive

parameters and the subscripts t and x denote differentiation.

Appropriate boundary conditions will be chosen from the following:

u(a,t) (31
u(b,t) = (32 for all t > 0 (8.2.2)
u (a,t) = u (b,t) = 0x x

u (a,t ) = u (b,t) = 0xx xx

and the initial conditions to be used will be prescribed later, in

section 8.6 .

8.3 The Collocation Solution [52,82,84,85,86,87,88]:

We intend to use quintic B-splines to approximate the

solution u (x,t ) of equation (8.2.1). If we apply the collocation

method to equation (8.2.1), we obtain:
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U t(x ,t) + £ uP(x ,t) u (x ,t) + ~ U (x ,t) = 0N J N j NX j NXXX j

J = 0,1, ... ,N (8.3.1)

Using the definition and properties of quintic B-splines described

in section 7.3, equation (8.3.1) becomes:

N+2 N+2 [ N+2
Ok]P~ ¢ (x ) 8 + £ ~ ¢' (x ) 0 ~ ¢k(XJ)1 j 1 1 j 11=-2 1=-2 k=-2

N+2
+ ~ ~ «: (x ) 0 = 0 J 0, ... ,N1 j 11=-2

(8.3.2)

Suppose that 0 is linearly interpolated between two time1
levels nand n+1 by:

(8.3.3)

where 0 ~ 8 ~ 1 and Sn are the parameters at the time n6t . The
1

time derivative is discretised using the standard finite

difference formula:

(8.3.4)

Hence equation (8.3.2) can be written as:

N+2
= ~ (8.3.5)

1=-2

where the basis functions and their derivatives are evaluated at

the N+l knots x , J = 0,1, ... ,N. Giving the parameter 8 the
J

values 0 , 2' 1 produces explicit, Crank-Nicolson and backward

difference schemes respectively.

In the present analysis we will take 8 = 1 so that equation
2

(8.3.5) takes the particular form:
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N+2
[ 4\ +

flt
(c -: {

N+2
on}P+ 11 ¢" )]~ ~ ¢k on+1

2 k 1 11=-2 k=-2

N+2
[ ¢ 1 -

flt
(£ ¢~{

N+2
On}P + 11 ¢'" )]On= ~ 2 ~ ¢k (8.3.6)k 1 11=-2 k=-2

Using the properties of quintic splines, equation (8.3.6) can

be calculated at the knots x , J = 0,1, ... ,N , so that
J

at x = Xo we have:

ex01 + ex02 + ex03 + ex05

ex On + ex On + ex On + ex On + ex On (8.3.7)05 -2 04 -1 03 0 02 1 01 2
where:

ex = 1 - R zP R ex = 26 - lOR zP + 2R ex = 6601 1 -2 2 02 1 -2 2 03

ex = 26 + lOR zP - 2R ex = 1 + R zP + R04 1 -2 2 05 1 -2 2

z =0 +260 +668 +268 +8
-2 -2 -1 0 1 2

(8.3.8)

and at x = x equation (8.3.6) becomes:
1

+ ex12 + ex13
..,n+l
u + ex
1 14 + ex15

(8.3.9)

where:

ex = 1 - R zP11 1 -1 R
2

ex = 26 - lOR zP + 2R12 1 -1 2 ex = 6613

Q: = 26 + lOR zP - 2R ex = 1 + R zP + R14 1 -1 2 15 1 -1 2

Z = 8n + 26Bn + 66Bn + 26Bn + on
-1 -1 0 1 2 3
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at x = x equation (8.3.6) becomes:
N

aN1 + aN2 + aN3
on+1 + a
N N4 + aN5

a on + a on + a on + a on + a on (8.3.11)Ns N-2 N4 N-1 N3 N N2 N+1 Nl N+2

where:

a = 1 - R zP - R a = 26 - lOR zP + 2R a = 66N1 1 N-2 2 N2 1 N-2 2 N3

a = 26 + lOR zP 2RN4 1 N-2 2 a = 1 + R zP + RNs 1 N-2 2

z = On + 260n + 660n + 260n + On
N-2 N-2 N-l N N+1 N+2 (8.3.12)

Generally. these equations can be written as a recurrence

relationship:

a
I 1

+ a 12 + a 13
on+1 + a
I 14 + a15

a on + a on + a on + a on + a on (8.3.13)
15 1-2 14 1-1 13 I 12 1+1 I1 1+2

where:

0 • 1 . ... . N

a = 1 - R zP R a = 26 - lOR zP + 2R a = 66
I1 1 1-2 2 12 1 1-2 2 13

a = 26 + lOR zP 2R14 1 1-2 2
a = 1 + R zP + R15 1 1-2 2

R
2

(8.3.14)
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The system (8.3.13) consists of N+1 linear equations in N+5

unknowns (8 • 8-2 -1 • 8 •...o To obtain a

unique solution to this system we need 4 additional constraints.

These are obtained from the boundary conditions (8.2.2) which

require that:

8 + 268 + 668 + 268
-2 -1 0 1

+ 8
2

= f3
1

(8.3.15)
-58-2 508

-1
+ 508

1
+ 58

2
= 0

8 + 268 + 668 + 268 + 8 - ~N-2 N-1 N N+l N+2 - 2

-58 508 + 508 + 58 = 0N-2 N-1 N+1 N+2

By solving the first two equations of (8.3.15) simultaneously for

8 and 8-2 -1 we obtain:

5 165 65 8 9

}
8 = - - ~ + 4 8 + 2 + - 8
-2 8 1 0 1 4 2

(8.3.16)
1 _ 33 8 9 1 88 = 16 ~1

- - 8 8-1 8 0 4 1 2

Similarly, solving the last two equations of (8.3.15)

simultaneously for 8 ,gives:N+2

8 5 165 8 65
8

9 8

}
= - - ~ + + 2 + 4"N+2 8 2 4 N N-l N-2

(8.3.17)
1 33 8 ~ 8 .!. 88 16 ~2 - 8N+1 N 4 N-1 8 N-2

Eliminating 8 and 8 from the first two equations of the
- 2 -1

system (8.3.13) using equations (8.3.16) we obtain:
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-49.58n+l_ 398n+l_ 1.58n+l=49.S8n +398n +1.S8n_ I.S~
o 1 2 0 1 2 1

(8.3.18)

SI 8n+l +S2 8n+l +S3 8n+l +S4 8n+1 = SS 8n +S6 On +S7 On+S8 8n+~.
0 1 2 3 0 1 2 3 1

where
~( 175 i(Z55SI = _ 47R zP + 49R ) S2 = +9(R zP +R »,

1 -1 2 1 -1 2

S3 = ~(207 + 81R zP _ lSR ) S4 = 1 + R zP + R1 -1 2
, 1 -1 2

1 47R zP -49R ) i(Z5S 9R zPss = S( 175 + + S6 = 9R )1 -1 2 ,
1 -1 2

S7 = ~(207 81R zP + lSR ) , sa = 1 - R zP - R
1 -1 2 1 -1 2

• ~1(R zP
~1 = + R ) (8.3.19)8 1-1 2

Similarly, eliminating o and 8 from the last two equationsN+l N+2
of (8.3.13) and using equations (8.3.17) we obtain:

y1 8n+1 +y2 on+l +y3 8n+1 +y4 on+l = y5 On +y6 8n +y7 on+ ya on_~.
N-3 N-2 N-l N N-3 N-2 N-l N 2

where:
1 47R zP + 49R ) i(ZSS +9(R zP ) )Y8 = -( 175 - , Yl = +R8 1 N-3 2 1 N-3 2

Yl. ~(Z07 + 81R zP - 15R ) , Y~ = 1 + R zP + R
1 N-3 2 1 N-3 2

Y4 = ~( 175 + 47R zP + -49R ) Y3 = i(255 - 9R zP 9R )
1 N-3 2 ,

1 N-3 2

Yl = ~(207 SIR zP + lSR ) , Yt = 1 - R zP - R
1 N-3 2 1 N-3 2

Q. = ~2(R zP + R )
~2 S 1 N-3 2

(S.3.20)

1.58n+l+ 390n+l+49.58n+l=-1.50n -390n -49.SSn+ 1.5~N-2 N-l N N-2 N-l N 2 (S.3.21)

The equations (8.3.18)-(8.3.21) together with the third to the

(N-l)th equation of (S.3.13) give N+l equations in the N+l

unknowns (8 ,8o 1
8 , .,. , 0 )T which can be written in a
3 N

matrix form as:
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(8.3.22)

where; A(8n) , and 8(8n) are penta-diagonal (N+1)x(N+1) matrices

and r is N+1 vector:

r = [-l.Sa , a·, 0,0, ...,
1 1

0, -a·, 1. sa ]2 2 (8.3.23)

Since the matrices A(8n) , and 8(8n) depend on 8n the matrix

equation (8.3.22) is nonlinear. We handle the problem by solving

not equation (8.3.22) directly but by setting up an equivalent

system [50,681. Such a system is:

A(8n) 6n+1 = 8(8n) 8n + r (8.3.24a)

[
8n+ 1 + s" 1

8 ~---2---- ~n + r (8.3.24b)

where equation (8.3.24a) predicts the first approximation 8n+1

then equation (8.3.24b) corrects iteratively the improved

approximation.

To solve the nonlinear system (8.3.24) we store the

penta-diagonal matrices A(8n) and 8(8n) in rectangular form

(N+ 1) x5 and then use the penta-diagonal algorithm (see Appendix

A2) to obtain the solution. The boundary parameters 8 , 8 ,
-2 -1

and 8 can be computed at each time step from equationsN+2

(8.3.16)-(8.3.17).

To start the iterative procedure (8.3.24) a starting vector

80 must be determined from the initial condition on u l xv t ). Once

the parameters 8n have been determined at a specified time we can

compute the solution at the required knots from the formula:

U (x , n6t) = 8n + 268n + 668n + 268n + 8n
N 1 1-2 1-1 1 1+1 1+2 (8.3.25)

1 = 0,1, ... , N
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8.4. The Initial State:

From the initial condition u(x,O) on the function u(x,t) we

determine the initial vector aO so that the evaluation of the time

development of an and hence U can be undertaken. For more details

see section 7.4 .

8.5 The Stability Analysis:

The investigation of the stability of the algorithm will be

based on the von Neuman theory in which the growth factor of a

typical Fourier mode defined as:
an = 8n e1Jkh

J
(8.5.1)

where k is the mode number and h is the element size, is

determined from the numerical scheme (8.3.13)-(8.3.14) .

The nonlinear term uPu of the KdV equation is not easy tox

handle it by Fourier method, therefore we linearise it

[26,32,35,44]. To do this assume that the quantity u in the

nonlinear term uPu is locally constant. This is equivalent tox

assuming that in (8.3.14) all the an are equal to a local constant
J

d, so that 2 = 120d . Hence equation (8.3.13) can be written:1-2

IX
1

+ IX
2

+ IX
3

an+1
j + 1

+ IX
5

an+1 =
j+2

IX
5

(8.5.2)

where:

0 , 1 , ... , N

• •
IX = 1 - R R a = 26 - lOR + ZR a = 66
1 1 2 2 1 2 3

• •
IX = 26 + lOR 2R IX = 1 + R + R
4 1 2 5 1 2
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(8.5.3)

If we insert the Fourier mode (8.5.1) into equation (8.5.2),

we obtain:

;;n[ -2lkh
o a e +

5

-Ikha e + a4 3
Ikh

+ a e
2

21kh+ a e
1 ] (8.5.4)

This equation has the simple form:

(a + ib)8n+1 = (a - ib)8n (8.5.5)

where:

i = 1=1

a = 33 + COS(2kh) + 26cos(kh) } (8.5.6)

• •b = (R + R )sin(2kh) + (loR - 2R )sin(kh)
1 2 1 2

Let 8n+ 1 = g Bn, where g is the amplification factor, and

substitute in (8.5.5) to get:
a - ib
a + ibg = (8.5.7)

Taking the modulus of this equation gives:

ls] = ~ = 1,

Therefore the linearised numerical scheme (8.5.2) is

unconditionally stable.

8.6 The Test Problems:

The principal purpose of the work reported in this section is

the testing of the collocation quintic spline algorithm based on

the method which has been investigated in this chapter. For the
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testing we shall compute the numerical solution of the generalised

KdV equation for p = 1, 2, and 3 using different ini tial and

boundary conditions.

As a first test we investigate how well the numerical scheme

determines the motion of a single soliton. It is well known that

when p = 1 the KdV has the single soliton analytic

solution:

u Ix, t ) 2= c sech (A x - B t + D )111 (8.6.1)

provided:
1 1/2 C cA = -Cc C/3 ~) and B = -- A

1 2 1 3 1
(8.6.2)

We shall take the following numerical values in the test:

c = 1. 3 A = 0.5(1.3)1/2
1

D = -15A
1 1

Similarly we find that if p = 2 the single soliton analytic

solution is:

U(X,t) = c sech (A x - B t + D )111 (8.6.3)

provided:
2

A ( 2/ ) 112 d B e c A
1

= £ C 6 ~ an = --
1 6 1

(8.6.4)

We wi 11 take:

c = 1. 3 A = 1.3/12
1

D = -15A
1 1

While if p = 3 the analytic solution is:

213 - B t + D )u(x,t) = c sech (A x
1 1 1

provided: 3
3 3/ )1/2 and B cc AA = -( e C 10 ~ =

1 2 1 10 1
This time we take:

(8.6.5)

(8.6.6)

c = 1.3 A = 1.5(0.6591)1/2
1

D = -15A
1 1

the boundary conditions for the cases p = 1,2,3 with C = 3.0 and

~ = 1. 0 are given by:

u(o,t) = U(200,t) = 0 } for all time
U (o,t) = U (200,t) = 0
x x

(8.6.7)
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and the initial conditions can be obtained from these analytic

solutions at t = 0 for the appropriate generalisation of the KdV
equation. The solitary waves move steadily to the right unchanged

in form. To examine the accuracy of the numerical method we have

used the L - and L -error norms to compare the numerical and exact2 00

solutions.

The L -and L -error norms, defined by (4.5.1), (4.5.2)2 00

respectively, have been computed and are given in Table 8.1:

Table 8. 1

The growth of the errors for single soliton

with h = 0.2 , At = 0.025 , 0 ~ x ~ 200

L X 103 L X 1032 00Time
p = 1 P = 2 p = 3 P = 1 P = 2 p = 3

1.0 0.159 0.250 0.396 0.091 0.099 0.191
2.0 0.286 0.352 0.699 0.154 0.168 0.425
3.0 0.352 0.390 1.148 0.206 0.251 0.831
4.0 0.435 0.507 2.034 0.259 0.357 1.425
5.0 0.519 0.750 3.260 0.308 0.514 2.159
6.0 0.623 1. 019 4.747 0.368 0.673 3.140
7.0 0.712 1. 315 6.542 0.415 0.849 4.211
8.0 0.799 1.664 8.669 0.457 1.069 5.559
9.0 0.862 2.032 11.114 0.494 1.296 6.977

10.0 0.925 2.449 13.880 0.534 1.547 8.637

We find that the method has a small error even when p 3. The

L -error norm is smaller than L -error norm.
00 2

Our second test will involve the interaction of two solitons

with c = 3, ~ = 1 and initial condition given for p = 1 by:

u(x,O) = c sech2(A x + D ) + c sech2(A x + D )
1 1 1 2 2 2 (8.6.8)

where:

c = 1.3
1

A
1

0.50.3)1/2 D = -15A
1 1
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c = 0.9 A = 0.5(0.9)1/2 0 = -35A2 2 2 2

for p 2:

u(x,O) = c sech (A x + 0 ) + c sech (A x + 0 ) (8.6.9)1 1 1 2 2 2
where:

c 1.3 A = 1.3/ff 0 = -15A1 1 1 1

C = 0.9 A = 0.9/V2 0 = -35A2 2 2 2

and for p = 3:

U(x,O) = c sech2/3(A x + 0 ) + C sech2/3(A x + 0 )
1 1 1 2 2 2

(8.6.10)
where:

c = 1.3 A = 1.5(O. 3c3)1/2 0 = -15A1 1 1 1 1

C = 0.9 A = 1. 5(O. 3c3)1/2 0 = -35A2 2 2 2 2
together with the boundary conditions:

U (0, t)

U (0, t lx

= U(2oo,t)
= U (2oo,t)x

: :} for all time (8.6.11)

These conditlons represent two solltons, one with amplitude

c placed initially at x = - 0 /A and a second with amplitude c1 1 1 2
placed initially at x = - 0 /A

2 2

All the waves move to the right with a veloci ty dependent

upon their amplitude. To ensure interaction with increasing time

we choose c > c and
1 2

o /A > 0 /A
1 1 2 2

The results of our

computations for p = 1,2,3 are shown in Figures 8. I, 8.2 and 8.3;

we see that in each of the 3 cases the solitons emerge from the

interaction and resume their former shape, amplitude and velocity.

Figures 8.I, 8.2, and 8.3 show the two solitons with large

amplitude on the left. As the time increases, the larger soliton

catches up with the smaller until, at time t = 40, the smaller

soliton is being absorbed. The overlapping process continues

until, by time t = 60, the larger soliton has overtaken the

smaller one and is in the process of separating. At time t = lOa,
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the interaction is complete and the larger soliton has separated
completely from the smaller one:

'~~I ~11 .. - ~j ~ ~...
~=a~~.~~~~I.~~la~I~.~ln~~_ ~~a~.~~~~-I.--I-a-WI.---I~~-_

• I

Figure 8.1 p .. 1 The interaction of two solitons with
h = 0.2 • ~t = 0.025 • £ = 3.0 • ~ = 1.0.

I••

::: i\ A......
'..
'..
•••~~...!.::-~::o---:=--::;----:-;;---;-:;---:;;'a _ " ,. III IV \0' .te

•

Figure 8.2 p .. 2 The interaction of two solitons with

h = 0.2 • At = 0.025 • £ = 3.0 • ~ = 1.0.
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I

~II-~,,"-£:l~~)~il.=.~I"--::':'I:L~I"~'.'""='.~ '~I-I-.=-. _17-, :>...:-....J.L="'-\~I-=-..-I~" .....,-::-11._'··=-~
•

......

... j

Figure 8.3 p a 3 The interaction of two solitons with
h • 0.2 • ~t • 0.025 , e = 3.0 , ~ = 1.0.

The generallsed KdV equatIon with p ,. 2 allows solltons of
negat1ve amplltude which also move steadUy to the right since
their velocity depends on their amplitude squared. equation
(8.6.4). We have chosen the initial condition of the interaction
of two solltons where the large ampU tude has positive sign and

the small amplitude has negative sign. For the initial condition

we use equation (2.3.4.9) when t = 0 with a = I,
1

a = -0.5,
2

d = 14a d = 2a e = 6, II. 1. The results of the interaction
1 i ' 2 2' ,.

are recorded in Figure 8.4. The waves behave exactly as solitons

are expected too:
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1.>1 I.»
I." I."

r • '.1 , •• 1.
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1.311 I.!II

I." I."I.-
•• TS

~ a.SI ' • lI. r ; II.....
_» -I. .. 10 .. .. -II 10 ....... .....

... >1 ....
I." I.•
I." I."I.• I.-
O.lS '.TS

~ a.5I r • .0. 2 ....... ....
-.. -II .. .. -I'..... .......... ....

Figure 8.4 p = 2 The interaction of a positive and a
negative soliton with h = 0.2 , ~t = 0.005 , C = 6.0 , ~ = 1.0.

From the graphs of Figure 8.4 we see that the two solitons are
placed with the soliton of larger positive amplitude separated and
on the left of the soliton of smaller negative amplitude. As the
time increases, the larger soliton catches up with smaller around
time t = 20. The merging process continues and around time t = 30,
the larger soliton overtakes the smaller one and is in the process
of separating. Around time t = 40, the interaction process is

complete and the larger soliton has separated completely from the

smaller one.
The third problem we shall consider has the initial

condition:

Cl) 1 [ [ x - 25 ]] (8.6.12)uf x,0) = 2 1 - tanh . 5
and the boundary conditions we impose are:

u(-SO,t) = 1
} foru( 50,t) = 0 all t > 0 (8.6.13)

u (-SO,t) = u (SO,t) = 0x x
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or (11) u(x,O) = ~ [ 1 - tanh[lxl~ 25J ] (S. 6.14)

and the boundary condltlons are chosen to be:

u(+1S0, t) = 0 } for all t > 0 (S. 6.15)
u (+1S0,t) = 0x

Physically this condition (1) can represent among other

things, the development of an undular bore in shallow water and a

collisionless shock in plasmas. To allow comparison of problem (i)

with other authors we have taken e = 0.2, ~ = 0.1 with ~t = 0.05

and h = 0.4. The numerical solution has been determined for the

finite range -50 ~ x ~ SO with the boundary conditions, given

above, applied at x = +50.

Snapshot solution curves that we have obtained using the

present method for the cases p a 2,3 (p • 1 has been discussed in

section 7.6) are given in Figures S.S and 8.6 for times of

t • 0, SO, 75, 100:

I.'
1.0

1.1

'.' ~••• 1,,4

104.0

i'., ••.•

.'.41- _

0.'
••• .... ....

,.<1 z.o

I••

J\J~
1.1

rV\/\j~1.4 a.!
• ,.". , f.,ro.1... 0.',
~.. 0.'

... u., .!.l .;,.. I;.~ !I.' u•• ,.. u... ,'.l ';1•• r •• ~ 1••• " ..
• c

Figure 8.5 Problem (i) p a 2 The evolution of the tanh initial

condltion with h = 0.4, ~t= 0.05 ,e =0.2. ~ =0.1.

218



... ...
,." ,.ts,.• ,."....

r • '.1 , ..•
ronI··........ " ,. ,a ,. ... ... d .. 7S ,. ,.. ".• I.... ....
,.",...
'.d

r ... r ...

....... ... IS • 7S ,. ,.. ,. ... • 7S ,. ,a ,.
I I

r ...

lA

I."I."....
~),a, .• 1.-

I.IS...-- - ..•... 11 1J •• la IS. -SI II
I

Figure 8.6 Problem (ii) p = 2 The evolution of the tanh initial
condition with h = 0.4 , At = 0.05 ,e = 0.2 . ~ = 0.1.

It is observed that the initial perturbation problem (i) has
broken up into a regular sequence of waves all of which are
moving steadily to the right with constant speeds whose magnitude
depends upon their individual amplitude. We find that the
conservative quantities vary as time increases. The problem (Ii)
has been used to satisfy the correct boundary condltions and we

have used it to calculate the conservative quantities for p = 2,3

as we did before for p = 1 in chapter 7. For p = 2 we observe that

when the time reaches t = 800 the initial perturbation
problem (il) has broken up into a train of 9 solitons.

The final test problem arises from considering the Gaussian
distribution function as the initial condition:

2u(x , 0) = exp(-x ) (8.6.16)
The boundary conditions imposed are:

u(. IS, t) = 0

u (+ 1S,t) = 0
} for all t > 0 (8.6.17)
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We choose c = 1. 0 and we discuss the following cases
1 ) I.l. = 0.04 , h = 0.1 , 6t = 0.01
11 ) I.l. = 0.01 h = 0.1 , 6t = 0.01

( 111 ) I.l. = 0.005 h = 0.025 6t = 0.005
Iv ) I.l. = 0.0025 h = 0.025 6t = 0.005

( v ) I.l. = 0.001 h = 0.025 6t = 0.005
vi) I.l. = 0.0005 h = 0.025 6t = 0.005

For the case p = 1, the problems (l) ,(iii), (vl and (vi)

have been discussed in section 7.6. When I.l. = 0.01, 0.0025

problem (ii) and (iv) ) the initial condition evolves into three

and five solitons respectively which are shown in Figures

8.7-8.8:

... ...
••a .- fel.1

.. • .. .. • ..
• •.... -4. •

... I.•

.- '''.1•

•• .. "·a .
• -4.t.a.a

... I.•

• I..... ......
II .. .... -6., -6.1

Figure 8.7 2
P = 1 The evolution of u(x.O) = exp(-x )

h = 0.1 , 6t = 0.01 • c = 1.0 I I.l. = 0.01.

Figure 8.7 shows us that the initial condition (ii) breaks down

Into three solitons which agrees with those produced by Goda [591
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and we find a very satisfactorily agreement. The agreement between
the analytic velocity c ~ 0.514, a ~ 1. 542033 and the numerical

a

velocity c ~ 0.52 for the leading soliton was very satisfactory:
n

r.' r..

I.' I.'
'.... ,_•• 1

·r • It ·1 • "• I.... ...,
r.' ...
I.' I.'

'.o. r.,.s

o. . It .. It•.... ....
••• ...
I.'

• t ..... r•• I.'

01 II ..
".... -0..

Figure 8.8 The evolution of u(x,O) 2
p • 1 = exp(-x )

with h = 0.025 ~t = 0.005 I e = 1.0 , Jl = 0.0025.I

From Figure 8.8 we observe that the initial condition (iv) splits
into a train of 6 solitons. For the leading soliton the analytic

velocity C QI: 0.589,
a

a QI: 1.767439 and the observed velocity

C QI: 0.588 and so agree closely.
n

For p = 2 and 3 similar simulations are reported in
Figures (8.9)-(8.15). These show substantially the same behaviour
as for the case p = 1 simulations.

It has been shown theoretically that the break up of the

initial condition (8.6.16) depends on the value of Jl [15.39,80).

As Il is increased above Il = 0.04 no solution breaks up into

solitons at all. but the solutions for Il » 0.04 exhibit rapidly
oscillating wave packets. When Jl is decreased below Jl = 0.04 the
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initial condition (8.6.16) evolves into more and more solitons.
The relative spacing between the solitons increases as the value

of IJ. is decreased:
t.O 1.0

l.l I.S

r.o.o r.._s

-. -2 . . '"'
-0.5 -0.5

1.0 1.0

1.5 1.5

'as. 1.0

" ~J •.J

O.S

-C -. -l

-O.s -O.s

t.1 1.0

1.5 1.5

1.0 1.0

" r•• a. " r.l'.S
0.5 0.5

-I -C -l

-0..1 -0.5

Figure 8.9 The evolution of u(x,O) 2
p • 2 = exp(-x )

h = 0.1 ~t = 0.01 , e = 1.0 , IJ. = 0.04.

From Figure 8.9 we see that the initial perturbation (i) for p = 2

breaks down into a soliton and tail. The analytiC velocity for a
soliton of mKdV equation is given by:

c = c a2/6 , a is the amplitude
a

(8.6.18)

The agreement between the analytic veloci ty c Cl 0.268, derived
a

from the solittons amplitude a Cl 1.268807 and the numerical
velocity c Cl 0.26 for the leading soliton was very satisfactory.

n

Also we observed that the velocity of the soliton in this case is
smaller than that obtained from the case p = 1, IJ. = 0.04.

Figure 8.10 shows that the initial condition (ii) p = 2

splits into three solitons. A comparison has been made between the
analytic velocity c Cl 0.447,

a
derived from the amplitude

a III 1.637368 and the numerical velocity cilia. 44: agreement is
n

satisfactory. The soliton has large amplitude and the velocity of

222



the soliton is smaller than that obtained from case when p = 1.

1'= O.01:
loO 1.0

I.S

'..,.0 r.il."

-, • 10 ..z •I ,0
I.....1 .....1

1.0 '.0

l.s.' '.'.~
-I • 10 -I ,a

I
.....s .....s

loO l.~

• '.'0.' '.U.!'

-. 10 -I ,.
....1 .a.s

Figure of u(x,O) 28.10 p '" 2 The evolution = exp(-x )
h = 0.1. At = 0.005 , e = 1.0 ,I' = 0.01.

Figure 8.11 shows that the initial perturbation (111) for p = 2

breaks down into a train of 4 solitons. The leading soliton has
analytic velocity C QI O. SIS,

a
calculated from its amplitude

a QI 1.757362 and numerical velocity
~.oI
1.1

.;4"
C QI 0.52:
n

jJ~ r ••• s.... J

I..,.,
.J -l •

I

1.0

1.1

'o.S •

•J .:••
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A j\ A !\.-s ~..IO.

·l I
...;.1

.. "~:\_
.J -l I

....1

•
J

Figure 8.11 p. 2
with h = 0.025

The evolution of u(x.O)
• At = 0.005 • c = 1.0

= exp(-x2)
fJ. = 0.005.
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From Figure 8.12 we see that the initial condition (i v ) spl its

into a train of 5 solitons. The analytic veloci ty of leading

soliton c ~ 0.533, calculated from its amplitude a ~ 1.788146 and
a

the observed velocity c ~ 0.535 are consistent:
n

l.O ~.O

r.o.o

•
J

10 -I I-
-O.S

I.S

1.0 1.0

r.s.o

•
J

.0_, •
I

10 -I

-0.5

1_" 1.0

I_S I.S

r.u.s'.to.G

•
I

.0-, •
J

10 -.

•• S

Figure 8.12
with h =

p • 2
0.025

The evolution of u(x,O) = exp(-x2)
6t = 0.005 , c = 1.0 • ~ = 0.0025.

The analytic velocity of the soliton produced from the solution of

the generalised KdV (p • 3) equation is defined by:
3C • C a 110 , a is the amplitude•

(8_6.19)
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Figure 8.13 The evolution of U(X,O) 2
p ,. 3 = exp(-x )

with h = 0.025 , 4\t= 0.005 , e = 1.0 • I.l = 0.04.

Figure 8.13 shows us that the initial condition (1) for p ,. 3

splits into a single soliton and a tail. This soliton has analytic
velocity C QI 0.220,

•
(a QI 1. 30141) and numerical velocity

C QI 0.20:
n
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2Figure 8.14 p" 3 The evolution of u(x,O) = exp(-x )
with h = 0.025 ,4\t = 0.005 • c = 1.0 • I.l = 0.01.
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From Figure 8.14 we see that the initial condition (ii) for p = 3

breaks down into a two solitons. The leading soliton has analytic

velocity c ~ 0.590,
a

(a ~ 1. 807182) and numer ical velocity
c ~ 0.59 which are consistent.
n

Figure 8.15 shows us that the initial condition (iii) for

p = 3 splits into 3 solitons. The agreement between the analytic

velocity c ~ 0.622, (a ~ 1.838717) and the numerical velocity
a

c ~ 0.62 for the leading soliton is very satisfactory.
n
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Figure 8.15 p = 3 The evolution
with h = 0.025 ,f1t= 0.005
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2of u(x,O) = exp(-x )
, c = 1.0, ~ = 0.005.
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8.7 Discussion:

Any numerical scheme proposed for computing the solution of

the generalised KdV equation should be capable of:

(a) following accurately the motion of a soliton, and

(b) representing accurately the interaction of solitons.

In addition since the KdV equation possesses an infinity of

conservation properties. at least the lower order ones should also

be exhibited by the recurrence relationship.

The accuracy of our numerical method for the first problem

(single soliton) has been tested using the L - and L -error norms2 co
and we found from Table 8.1 that the present method leads to

acceptably low error magnitudes and that the error increases as p

increases but remains acceptable.

The KdV equation and the mKdV (p = 2) equation have an

infinite number of conservation quantities. We will concentrate on

the first four invariant quantities I (1 = 1, ... ,4) which were
1

defined in equations (2.4.8)-(2.4.11) respectively for the KdV

equation. and (2.4.12)-(2.4.15) respectively for the mKdV

equation. The generalised KdV (p = 3) equation has only three

conservation quantities I , I , I which were defined in equations
123

(2.4.16)-(2.4.18) respectively.

The first four conservative quantities I , I , I and I for
1 2 3 4

the KdV and mKdV equations and the only first three conservative

quanti ties I , I . I for the generalised KdV (p = 3) equation
1 2 3

have been computed and are given in Tables 8.2 and 8.3 for times

up to t = 100.
We have found from Table 8.2 over the computer runs that the

quanti ties I
1

and I for p = 1,2,3 have changed by less than
2

0.006%, 0.095%, 0.286% and 0.022%, 0.235%, 0.778% respectively

which means that they are virtually constants:
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Table 8.2
The computed values of the quantities I • I for a single soliton

1 2

with h = 0.2 • ~t = 0.025 0 ~ x ~ 200

I I
Tim 1 2

p = 1 P = 2 p = J p = 1 P = 2 P = J

0.0 4.560699 4.442879 4.490562 3.952607 3.676954 3.590333
10.0 4.560732 4.442445 4.488997 3.952693 3.676078 3.587124
20.0 4.560771 4.442041 4.487892 3.952788 3.675214 3.584017
30.0 4.560798 4.441658 4.486920 3.952876 3.674337 3.581008
40.0 4.560815 4.441242 4.485755 3.952958 3.673473 3.578097
50.0 4.560837 4.440826 4.484492 3.953033 3.672602 3.575284
60.0 4.560872 4.440398 4.483160 3.953126 3.671737 3.572557
70.0 4.560895 4.439972 4.481803 3.953209 3.670884 3.569919
80.0 4.560914 4.439530 4.480422 3.953305 3.670033 3.567347
90.0 4.560942 4.439094 4.479072 3.953386 3.669178 3.564854

100.0 4.560971 4.438664 4.477744 3.953467 3.668322 3.562426

Table 8.3
The computed values of the quantities I • I for a single

J 4

soliton with h = 0.2 • ~t = 0.025 0 ~ x ~ 200

I I
J 4

Time
p = 2 P = J P - 1 P = 2P = 1

0.0 3.083033 2.071351 1.126853 2.290254 1. 050175
10.0 3.083146 2.069869 1. 119820 2.290396 1.050754
20.0 3.083268 2.068411 1. 113043 2.290540 1.048035
30.0 3.083383 2.066930 1.106503 2.290639 1.051200
40.0 3.083488 2.065473 1. 100214 2.290997 1.048351
50.0 3.083587 2.064005 1. 094163 2.290924 1.050258
60.0 3.083707 2.062545 1.088328 2.290988 1.054222
70.0 3.083816 2.061107 1.082707 2.291145 1.054919
80.0 3.083939 2.059675 1.077253 2.291444 1.045329
90.0 3.084045 2.058237 1. 071990 2.291590 1. 044967

100.0 3.084152 2.056797 1.066882 2.291479 1.043393
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From Table 8.3 we observe over the computer runs that the quantity

I for p = 1.2.3 is changed by less than 0.037%. 0.703%. 5.322%
3

respectively and so is relatively constant. While the quantity I
4

for p = 1.2 is changed by less than 0.059% and 0.646% respectively

and so is satisfactorily constant.

From these tables we conclude that our method leads to very

satisfactory results for the values of the conservation quantities

for single soliton problem for the KdV. mKdV, and generalised KdV

equations.

The L - and L -error norms and also the conervative
2 00

quantities I (I = 1 •...• 4) for the two solitons problem (8.6.8)
I

of the KdV equation are listed in Table 8.4. To compute the errors

we use the formula for the exact solution of the KdV equation for

two solitons which is defined by (2.3.4.1):

Table 8.4
The computed values of the errors and II (1=1, ...• 4) of two soliton

for equation (8.6.8) with h = 0.2, ~t = 0.025, c = 3.0. ~ = 1.

Time L x 103 L X 103 I I I I
2 00 1 2 3 4

0.0 8.355434 6.229448 4.312527 2.922565
20.0 1.659 0.926 8.355734 6.229887 4.312990 2.923004
40.0 0.952 0.926 8.356101 6.230476 4.313579 2.923550
60.0 3.561 1.867 8.356461 6.231020 4.314230 2.924619
80.0 6.612 3.475 8.356751 6.231462 4.314695 2.924619

100.0 11.023 5.566 8.357059 6.231904 4.315172 2.925019
120.0 16.684 8.116 8.357321 6.232340 4.315627 2.925865

We observe over the computer runs that the errors are still

acceptable at time t = 120. The quantities II (I = 1, .•. ,4) have

changed from their original values by less than 0.023%, 0.047%,

0.072% and 0.114% respectively. Hence we consider them as

constants. After the interaction of the two solitons their large
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and small amplitudes have slightly changed from their original

values by less than 0.0011%, 0.005% respectively. So we can say

that the amplitudes are virtually unchanged.

To compute the errors for the mKdV equation for two solitons

we have used the formula for the exact solution which is defined

by (2.3.4.9). The first four conservative quantities and the

errors for the mKdV equation problem (8.6.9) are given in

Table 8.5:

Table 8.5
The computed values of the errors and I (1=1, ... ,4) of two solitons1

for equation (8.6.9) with h = 0.2, At = 0.025, c = 3.0, ~ = 1.

Time L x 103 L X 103 I I I I
2 co 1 2 3 4

0.0 8.885759 6.222641 2.758833 1.217337
20.0 8.727 5.281 8.885230 6.221246 2.756189 1. 215616
40.0 12.994 7.908 8.885428 6.221223 2.755854 1. 217136
60.0 46.377 27.450 8.885139 6.220260 2.753982 1.227959
80.0 86.531 51.160 8.884581 6.218845 2.751315 1. 218175

100.0 142.530 83.472 8.883999 6.217449 2.748680 1.209365
120.0 214.213 125.743 8.883410 6.216068 2.746078 1.207956

Table 8.5 shows us that the errors are still acceptable up to time

t = 120. The quantities I (1 = 1, ... ,4) have changed from their
1

original values by less than 0.027% 0.106%, 0.463% and 0.771%

respectively. Therefore we may consider them as relative

constants. After the interaction of the two solitons the large and

small amplitudes have changed from their original values by less

than 0.18% and 0.02% respectively.

The mKdV equation has soliton solutions with both positive

and negative amplitudes. If we make the smaller amplitude in the

previous problem negative then the error and the first four

conservative quantities are given in Table 8.6:
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Table 8.6
The computed values of the errors and I (1;1, ... ,4) of two solitons

1

for equation (8.6.9) with amplitudes 1 and -0.5 also -25 ~ x ~ 45

h = 0.2, ~t = 0.005, c = 6.0, ~ = 1.

Time L x 103 L X 103 I xl04 I I I
2 00 1 2 3 4

0.0 -3.1027 3.000000 0.750000 0.206250
10.0 2.607 1.568 3.4736 3.000751 0.750562 0.223425
20.0 28.015 20.538 1.5000 3.001247 0.750439 0.226546
30.0 17.237 20.538 -1. 7878 3.001531 0.750785 0.213519
40.0 22.590 20.538 -1. 6846 3.002282 0.751352 0.209881
50.0 32.056 20.538 -7.0913 3.003035 0.751916 0.239530

From Table 8.6 we see that the errors are still acceptable up to

time t = 50. The quantity I has negative sign at the beginning
1

and during the interaction the sign changes to positive and after

the interaction changes to the negative. The quantities I , I
2 3

, I have changed from their original values by less than 0.101%,
4

0.256%, 16.136% respectively. After the interaction, of two

solitons the positive large and negative small amplitudes have

changed from their original values by less than 0.004% and 0.087%

respectively. Therefore, we consider them as virtually conserved.

The computed values of the only three conservative quantities

for the generalised KdV (p = 3) equation (8.6.10) are recorded in

Table 8.7:
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Table 8.7
The computed quantities I (1=1, ... ,3) of two solitons for the

I

generalised KdV equation with equation (8.6.10) with h =0.2,

dt = 0.025, C = 3.0, ~ = 1.0

Time I I I1 2 3

0.0 9.887562 6.579399 1. 441773
20.0 9.885179 6.574164 1.429899
40.0 9.886597 6.574096 1. 429201
60.0 9.890670 6.573255 1.425755
80.0 9.874264 6.566907 1.412527

100.0 9.799949 6.640472 1. 419819
120.0 9.832812 6.594644 1.396324

This Table indicates that over the computer runs the only three

conservative quantities have changed from their original values by

less than O.886~, 0.929%, 3.153% respectively. We may consider

these quantities as relatively constants. After the interaction of

the two solitons the large and small amplitudes have changed from

their original values by less than 1.12%, 2.19% respectively.

Using equation (2.3.4.8) the analytic values of the forward

and backward phase shifts are given by

For the KdV (p = 1) equation:

d '" 4.19,
1

For the mKdV (p = 2) equation:

A Q< - 5.04
2

d Q< 3.71,
1

d Q< - 5.36
2

The numerical values of the forward and backward phase shifts are

obtained to be

For p = 1:

d '" 4.20,
1

A Q< - 5.00
2

For p 2:

d '" 3.60,
1

d "" - 5.40
2
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The agreement between the analytic and numerical values of A and1

A2 is very satisfactory because of the space step h = 0.2.

The first four conservative quantities for the case (il) of

the KdV (p = 1) equation have been computed in chapter 7 (section

7.7). For the mKdV (p = 2) equation we compute the first four

conservative quanti ties up to a time t = 800. These are given in

Table 8.8:

Table 8.8
The computed quantities I (1=1, ... ,4) of the problem (8.6. 14) for

1

mKdV equation with h = 0.4, At = 0.05, C = 0.2, ~ = 0.1 case (ii)

Time I I I I
1 2 3 4

0.0 50.00022 45.00045 40.43423 38.00389

100.0 50.00456 45.00834 40.44621 38.08762

200.0 50.00867 45.01721 40.45752 40.69348

300.0 50.01367 45.02948 40.48748 45.55713

400.0 50.&)7191 45.04237 40.52482 43.25512

500.0 50.02417 45.06118 40.58363 44.64506

600.0 50.02927 45.06668 40.59357 62.91012

700.0 50.03747 45.08215 40.63359 117.2612

800.0 50.03485 45.09077 40.66845 48.27955

We have found over the computer runs that the quantities I
1

(I = 1, ... ,3) have changed from their original values by less than

0.075%, 0.201%, and 0.580% respectively. Therefore we may consider

them as relatively constants while the quantity I does vary
4

somewhat. The analytic velocity of the soliton in the mKdV

c = a2c/6 where a is the amplitude. Inequation is defined by a

this case a = 1.9884 C = 0.2 Hence c '"O.1318 while the
a

numerical veloeity is c = 0.132
n

Therefore we find that the

analytic and numerical velocities are consistent.

The only three conservative quantities for the generalised
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KdV (p = 3) equation are computed up to time t = 100 and shown in

Table 8.9:

Table 8.9
The computed quantities I (1=1, ... ,3) of the prblem (ii) for

1

generalised KdV equation with h = 0.4, ~t = 0.05, C = 0.2,~ = 0.1

Time I I I
1 2 3

0.0 50.00022 45.00045 38.91780
25.0 50.00221 45.00401 38.92548
50.0 50.00424 45.00762 38.93293
75.0 50.00648 45.01146 38.93885
100.0 50.01132 45.04535 39.08813

We have observed over the computer runs that the quantities I
1

(1=1, ... ,3) for the generalised KdV equation have changed from

their original values by less than 0.023%, 0.1%, and 0.44%

respectively. So we can consider them as relatively constants.

The conservative quantities of the generalised KdV equation

with p = 1,2,3 for a problem with initial and boundary conditions

given by the equations (8.6.16),(8.6.17) are listed in Tables

8.10 , 8.11:
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Table 8. 10
The computed values of I , I for problem exp(-x2) with c = 11 2 .

and IJ. = 0.01

I I
1 2

P = 1 P = 2 P = 3 P = 1 P = 2 P = 3

h = 0.05 h = 0.05 h = 0.025 h = 0.05 h = 0.05 h = 0.025
Time At = 0.01 At=0.005 At=0.0025 At = 0.01 At=0.005 At=0.0025

0.0 1.772454 1.772454 1.772454 1.253314 1.253314 1.253314
2.5 1.772470 1. 772490 1.772596 1.253350 1.253362 1.253509
5.0 1.772532 1.772496 1.772569 1.253395 1.253335 1.253233
7.5 1.772460 1.772486 1.772523 1.253440 1.253279 1. 252510

10.0 1.772564 1.772550 1. 771866 1.253483 1.253224 1. 251853
12.5 1.772535 1.772536 1.772505 1.253526 1. 253163 1.251124

From Table 8.10 we find that the quantities I , I have changed
1 2

from their original values by less than 0.007%, 0.006%, O.034%,

0.017%, 0.013%,0.175%for p = 1,2,3 respectively. These quantities

can be considered as conserved.

Table 8.11
The computed values of I

3
2I for problem exp(-x ) with

4

e = 1. 0, IJ. = 0.01

I I
3 4

P = 1 p = 2 p = 3 p = 1 P = 2

h = 0.05 h = 0.05 h = 0.025 h = 0.05 h = 0.05
Time At = 0.01 At=0.005 At=0.0025 At = 0.01 At=0.005

0.0 0.985728 0.811029 0.667334 0.807068 0.597435
2.5 0.985622 0.811017 0.667654 0.808045 0.597985
5.0 0.985606 0.810845 0.665598 0.811226 0.599993
7.5 0.985656 0.810648 0.660797 0.812439 0.613422

10.0 0.985709 0.810450 0.655996 0.812436 0.727596
12.5 0.985762 0.810253 0.651394 0.812494 0.628906
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This Table shows us over the computer runs that the quantity 13

for p = 1.2.3 has changed from its original value by less than

0.013%, 0.096%, and 2.389% respectively and we can consider it as

constant while I has changed from its original value by less than
4

0.673% for p = 1 but for p = 2 the variation was much larger (
about 21% ).

Finally, we conclude that the collocation method with quintic

spline polynomial interpolation functions is useful technique for

the computation of solutions to the generalised KdV equation over

long period of time particularly when space and time steps are

small.
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CHAPTER 9

CONCLUSIONS

We have set up four fini te element solutions to the KdV
equation. Three of these are based on the Galerkin method but

involve different trial functions. These are:

(a) Cubic Hermite polynomials,

(b) Cubic splines, and

(c) Quadratic splines.

A fourth method is based on collocation over finite elements using

quintic spline trial functions.

This latter approach has also been used to construct a finite

element solution to the generalised KdV equation. The cases p = 2

and 3 are discussed in detail.

It has been shown analytically that solutions of the KdV
equation obey an infinity of conservation laws. It is therefore

important that any numerical solution shall satisfy, at least, the

lower order conservation laws. We choose to evaluate those

appropriate to the trial functions being employed.

Solutions to the generalised KdV equation (p > 1) obey

different conservation laws and we have used the appropriate ones.

We have shown, in earlier chapters, that in all the

simulations presented here these conservation laws are all

satisfactorily obeyed.

Probably the important solutions of the KdV equation are the

solitons. Any numerical scheme must be capable of accurately

representing the position and amplitude of a soliton as it moves

throughout a simulation. The interaction of solitons must also be

well described. To evaluate how well our algorithms perform we

have used the L - and L - error norms. Again we have shown that2 00

throughout the simulations these error norms are satisfactorily

small.
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Taha and Ablowitz [58] have made a comparison of a large

number of numerical algorithms and rated them for efficiency. We

will now compare the algorithms presented in this thesis with the

method rated the best by Taha and Ablowitz [58] call hereafter,
the TA scheme:

The first test problem is the single soliton solution:

u(x,t) = 3c sech2(Ax - Bt + D) (9. 1)

of the KdV equation:

Ut + C U Ux + M Uxxx o (9.2)

where:

c = 6 ,
2 3

M = 1 , 3c = 2A ,B = 4A , D = 0 .

The initial condition is equation (9.1) with t = 0 and the

boundary conditions are chosen from:

u(+20,t) = U (+20,t) = U (+20,t) = 0x xx (9.3)

For a soliton with unit amplitude 3c = 1 and we require the
-3L -error norm to remain below 5x10 throughout the simulation up

00

until time t = I, and evaluate the CPU time taken. The L - and L -2 00

error norms and the relative errors in the conserved quantities I
2

and I are recorded. The results are presented in Table 9.1.
3

It has been found that the speed of the VAX 8650 is 6 mps,

and that of the IBM 4341 is 2 mps. Suppose that all the

computations have been carried out on the same computer, say, the

VAX 8650 then according to Table 9.1 the computing times would be

1.63 secs, 1.76 secs, 0.47 secs, 0.41 secs, and 2.33 secs for

Galerkin cubic Hermite, Galerkin cubic spline, Galerkin quadratic

spline, collocation quintic spline, and the TA scheme

respectively:
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Table 9.1
Comparison of the computing time which is required· with an

accuracy (L ) < O.OOS for the numerical methods in solving the KdV
!Xl

Method Mesh Time L x103 L xl03 V V CPU
size 2 eo 1 2 secs

Hermite h =0.7 0.2S 1. 22 0.97 -4 -3-1. 34xl0 -3.09xl0
cubic f1t= O.S 1. 33 0.97 -4 -3 1.63-2.28xl0 -5.47xlO

VAX 86S0 0.025
1. 00 1. 72 0.97 -4 -2-4.06xl0 -1. 01xl0

cubic h =0.5 0.25 1. 29 0.95 -5 -3-3.04xl0 1.01xl0
spline f1t= 0.50 1. 68 0.96 -5 -4

1. 76-4.02xl0 9.95xl0
VAX 8650 0.02S

1. 00 2.16 1. 02 -5 -4-6.02xl0 9.56xl0
quadratic h =0.5 0.25 1. 50 0.80 -4 -2-4.39x10 -2.30xlO
spline f1t=.050.50 1. 70 0.68 -4 -2 0.47-6.57x10 -2.34x10
VAX 8650

1. 00 2.30 1. 46 -3 -2-1.09xlO -2.41xl0
quintic h =0.4 0.25 0.91 0.62 -5 -5-I.97x10 -2.21x10
spline f1t= 0.50 0.98 0.62 -5 -5 0.41-4.00x10 -5.58xl0
VAX 8650 0.025 1. 00 1. 30 0.68 -5 -4-8.07xl0 -1.24xl0

TA f1x=.16 1. 46 -5 -30.2S 5.00x10 4.13x10
scheme f1t= 0.5 1. 62 -5 -37.00x10 4.19x10 7
IBM 4341 0.125 1. 73 -4 -31. 00 1. lOx10 4.26x10

where:

v = (I - I )/1 ,
1 2 20 20

v = (I - I )/12 3 30 30

I
20

2= the exact value of J u dx,

= the exact value of J (2u3 - u2) dx ,xI30

I , I are the second and the third conservative quantities2 3

defined by equations (2.4.9), (2.4.10) respectively.

From Table 9.1 we see that the collocation method is roughly

four times faster than the Galerkin cubic Hermite, four times

faster than the Galerkin cubic spline, slightly faster than the

Galerkin quadratic spline, and six times faster than the TA scheme

[58]. We find that all our methods are more accurate and more

efficient than the TA scheme and we conclude that the best method
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to chose according to efficiency and accuracy is the collocation

method with quintic splines as shape functions.

We have made a comparison based on accuracy and efficiency

for a single soliton solution with various amplitudes of the KdV
equation (9.2) between the following numerical methods:

(1) the TA scheme (finite difference) [58],

(2) the BDK methods (a finite element fully discrete Galerkin

method) [90] are based on a standard semi-discretisation in the

spatial variable x using smooth splines over uniform mesh. For the

temporal discretisation various procedures are proposed, mainly

second and third order accurate Runge-Kutta methods coupled with

Newton's method to handle the nonlinear systems arising from the

nolinear term at each time step, and

(3) the finite element methods presented in this thesis.

If it is assumed that all calculations had been executed on

the same computer (VAX 8650) and we evaluate the computing time

need to attain an accuracy (L ) of less than 5x10-3,
00

-21xlO , and

2.2x10-2 for solitons of amplitudes 1, 2, and 4 respectively

throughout a run up to time t = 1, we obtain the results given in

Table 9.2 for the time t = 1:
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Table 9.2

A comparison between several numerical methods based on the
accuracy and efficiency

Method TA BDK Galerki Galerki Galerki Collocat Ampl[58] [90] Cubic Cubic Quadrat Quintic
Hermite Spline Spline Spline

Mesh I1x=.16 I1x=1/96 h = 0.7 h = 0.5 h = 0.5 h = 0.4size 6t=.125 6t=.04 6t=.025 6t=.025 6t=.05 6t=.025
L x103 1

1.73 1. 78 0.97 1. 02 1. 46 0.6800

CPU secs 2.33 2 1. 63 1. 76 0.47 0.41
Mesh 6x=.1 6x=1I144 h = 0.4 h = .35 h = 0.2 h = 0.25
size 6t=.1 6t=1I45 6t=.005 6t=.005 6t=.01 6t=.005

2
L x103 3.32 2.88 1. 75 2.10 2.10 1. 07
00

CPU secs 7.67 5.67 14.37 12.62 4.63 3.03

Mesh 6x=.05 6x=1/172 h = 0.3 h = .25 h =.225 h =.225
size 6t=.0275 6t=1/140 6t = 0.0025 6t = 0.0025

4
L x103 17.47 17.10 15.02 10.07 13.19 7.33
00

CPU secs 46.67 20.33 38.79 34.83 20.00 6.34

From Table 9.2 we see that for a single soliton with amplitude one

the collocation method is roughly six times faster than the TA
scheme, five times faster than the BDK method, four times faster

than Galerkin cubic Hermite, four times fatser than Galerkin cubic

spline, and slightly faster than Galerkin quadratic spline. We

conclude that the methods prsented here are more accurate and

efficient than the others and also that the collocation method

using quintic splines is the most accurate and efficient method of

all.

For a soliton with amplitude two the collocation method is roughly

two and half times faster than the TA scheme, two times faster

than the BDK method, five times faster than Galerkin cubic

Hermite, four times faster than Galerkin cubic spline, and one and
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half times faster than Galerkin quadratic spline. Again we reach

the same conclusions.

For a soliton with amplitude four the collocation method is

roughly seven times faster than the TA scheme, three times faster

than the BDK method, six times faster than Galerkin cubic Hermite,

five times faster than Galerkin cubic spline, and three times

faster than Galerkin quadratic spline. One more the same

conclusions are reached.

We have also made a comparison between the following

numerical methods:

-Zabusky and Kruskal scheme [27] (finite difference),

-Self-Adaptive conservative scheme SACS [91] (finite difference),

and

-The finite element methods presented here for the single soliton

solution (9.1) of the KdV equation (9.2) with c = 1, /-L = 0.000484,

c = 0.3, A = ~(~)1/2, B = c c A D = -0.55A The initial
2 /-L

condition is equation (9.1) with t = 0, and the boundary

conditions are u(O,t) = u(2,t) = 0, u (O,t) = u (2,t) = O. The L -x x 00

error norms have been computed and are listed in Table 9.3:

Table 9.3
Growth of the L xl03 for several numerical methods for a single

00

soliton

Time Zabusky SASC Cubic Cubic Quadratic Quintic
Kruskal Hermite Spline Spline Spline

h = 0.01 h = 0.01 h = .033 h = .033 h = .033 h = .033
flt=.0005flt=.0008flt=.0125 flt=.0125flt=.0125 flt=.0125

[27) [911
1.5 13.8 13.2 3.8 6.44 4.7 5.5
2.0 17.9 16.9 5.7 6.8 7.9 5.6
2.5 21.8 20.1 7.1 9.1 6.5 6.0
3.0 26.4 24.2 9.6 9.8 6.4 7.6

Table 9.3 shows that the accuracy of our methods is roughly about
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three times better than that of the Zabusky and Kruskal method

[27] and of the SASe method [91] even with space and time steps

about three and twenty five times larger than those used for the

Zabusky and Kruskal [27J and the SASe method [91].

We have also made a comparison of methods for the interaction

of two solitons. The initial condition is determined from the

analytic solution (2.3.4.1) when t = 0 and

(1) two solitons as initial condition with amplitudes 0.5 and 1
respectively where; ex=l ex=v'2

1 '2 '
d = 0
1 '

d = 2ex
2 2'

e = 6,

/1 = 1 (9.4)

(II) two solitons as initial condition with amplitudes 0.5 and 2.5

respectively where; ex = 1
1 '

ex = v'5
2 '

d
1

0, d2 = 10.73, e = 6,

/1 = 1 (9.5)

The boundary conditions are chosen from:

u(+20,t) = u (+20,t) = u (+20,t) = 0x xx (9.6)

For case (I) we determined the computing time which is

required to maintain an accuracy (L) of less than 0.002
00

throughout the computations. The L -error norm, and the relative
2

errors in the second and third conservative quantities are also

given in Table 9.4. Assuming that all the computations have been

executed on the same computer (VAX 8650) then from Table 9.4 we

find that the computing times required to achieve an accuracy (L )
00

of less than 0.002 for the numerical methods Galerkin cubic

Hermite, Galerkin cubic spline, Galerkin quadratic spline,

collocation quintic spline, and the TA scheme are 4.96 secs,

5.38 secs, 1.51 secs, 1.50 secs, and 6.33 secs respectively:
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Table 9.4
Comparison of the computing time which is required with an
accuracy CL ) < 0.002 for the numerical methods in solving the KdV

00

Method Mesh Time L xl03 L xl03 u u CPU
size 2 00 1 2 secs

h =0.7 0.10 1. 36 0.97 -4 -2
Hermite -3.64xlO -1. l5xlO

flt= 0.5 1. 13 0.64 -4 -3-1.60xlO -3.93xlO
cubic 0.025

1. 00 1. 34 0.64 -4 -3 4.96-2.84x10 -6.75x10
VAX 8650 2.00 1. 62 0.88 -4 -3-2.60xlO -3.59xl0

3.00 1. 41 0.88 -4 -3-2.62xlO -3.6lxlO
h =0.5 0.10 0.69 0.48 -5 -4

cubic -1.38xlO 6.73xlO
flt= 0.50 1. 07 0.56 -5 -4-2.60xl0 5.55xl0

spline 0.025
1. 00 1. 22 0.52 -5 -4 5.38-4.08xlO 3.85xlO

VAX 8650 2.00 1. 48 0.80 -5 -5-6.44xlO 3.01x10
3.00 1. 36 0.49 -6.25xlO-5 -57.5lxlO

h =0.5 0.10 0.88 0.71 -1. 60xlO-4 -2
quadratic -1.71xlO

-2.75xl0-4 -2flt=.050.50 1. 18 0.50 -1.57xl0
spline

1. 00 1. 43 0.78 -4 -2-3.61xlO -1.34xlO 1. 51
VAX 8650 2.00 1. 90 1. 02 -3.83xlO-4 -3-8.l3xlO

3.00 1. 89 1. 03 -4 -3-4.10xlO -8.02xlO
h =0.4 0.10 0.57 0.43 -6 -6-3.46xlO 1.07xlOquintic -5 -5flt= 0.50 0.75 0.44 -1.6lxl0 -2.l0xlO

spline 0.98 0.58 -5 -5
1. 500.025 1. 00 -2.70xl0 -4.62xl0

1. 29 0.58 -5 -5VAX 8650 2.00 -3.57xlO -6.56xlO
0.87 0.58 -5 -53.00 -3.67xlO -6.64xlO

0.80 -5 -3TA flx=.10 0.10 -1. 00xl0 1. 19x10
1. 13 -5 -3scheme 6t = 0.5 -4.00xl0 1.04x10
1. 35 -4 -4 190.14 1. 00 -1.80x10 6.20x10

IBM 4341 1. 38 -4 -42.00 -4.30x10 -1. 80xl0
1. 48 -4 -43.00 -4.40x10 -2.30x10

Again we find that all the methods prsented here are more

accurate and efficient than the TA scheme and that the collocation

method with quintic splines as shape functions is once more the

best of all.

For case (II) we report in Table 9.5 the CPU time (on

VAX 8650) required to attain an accuracy of less than 0.02 when

the time reaches t = 2.4:

244



Table 9.5
A comparison between TA scheme and our numerical methods based

on the accuracy and efficiency
Method TA Galerkin Galerkin Galerkin Collocati Amplitude

[58] Cubic Cubic Quadrat Quintic
Hermite Spline Spline Spline

Mesh Ax=.075 h = 0.45 h = 0.35 h = 0.3 h = 0.3
size At=.055 At=.005 At=.005 At=.005 At=.005
L x103

0.5, 2.5
15.02 14.06 8.85 10.02 5.86

Cl)

CPU secs 23.67 31.60 31.16 19.30 6.60

For this problem Galerkin cubic Hermite and Galerkin cubic spline

methods are slightly slower than the TA scheme but Galerkin

quadratic spline and collocation quintic spline are faster.

The following numerical methods are compared for the mKdV

equation:
(9.7)

(i) the collocation method (finite element method) with quintic

splines as shape functions, and
(ii) the TA scheme (finite difference scheme) suggested by Taha

and Ablowitz [52].
We compare the computing time required to maintain a certain

accuracy throughout the run for various choices of parameters. In

this comparison we will use two initial conditions:

(a) The exact solution for a single soliton of the mKdV equation

(9.7) is given by:

U(x,t) = A sech (Ax - Bt + D) (9.8)

For the initial condition, put t = 0, A = 1, 3B = A = I, and

D = 0 in equation (9.8). The boundary conditions are imposed:

u(+20,t) = U (+20,t) = 0x
(9.9)

The L - and L -error norms, the relative errors in the second2 Cl)
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and the third conserved quantities, and the computing time

are listed in Table 9.6:

Table 9.6

Comparison of the computing time which is required with an

accuracy (Loo) < 0.005 for the numerical methods in solving the mKdV

Method Mesh Time L x103 L x103 1.) 1.) CPU
size 2 00 1 2 secs

quintic h =0.5 0.25 6.94 2.86 -5 -41. 37x10 2.16x10
spline f1t= 0.50 5.37 2.93 -5 -45.10x10 3.72xlO 0.36
VAX 8650 0.025 1. 00 6.25 3.30 -5 -49.39x10 4.47x10

TA f1x=.10 0.25 1. 87 9.00x10-5 -34.86x10
scheme f1t=.250.5 2.79 1. 70x10-4 -35.08x10 6
IBM 3081

1. 00 4.48 3.30xlO-4 -35.56x10

Where:
4 2

I = the exact value of f (u - u ) dx ,
30 X

12 ' 13 are the second and the third conservative quantities
defined by equations (2.4.13), (2.4.14) respectively.

It has been found that the speed of the VAX 8650 is 6 mps,

and that of the IBM 3081 is 12 mps. Suppose that all the

computations had been run on the same computer (VAX 8650) then

from Table 9.6 we see that the computing time required to attain

an accuracy (L ) of less than 0.005 are 0.36 secs, and 12 secs for
00

numerical methods (i) and (Li ) respectively. Then the method (i)

is thirty three times faster than the method (it ) (the fastest

scheme amongst all the finite difference schemes considered in

reference [52]).

(b) The exact solution for the collision of two solitons of the

equation (9.7) is given by the equation (2.3.4.9). For the initial

condition take t = 0, and

a = 0.5, a = 2 d = 0.625, d = 8.75, C = 6, II = 1 (9.10)1 2' 1 2 ,....
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The boundary conditions are chosen from:

u(+20,t) = u (+20,t) = u (+20,t) = 0x xx (9.11)

The L - and L -error norms, the relative errors in the second
2 IX)

and the third conserved quantities, and the computing time

are recorded in Table 9.7. If all the computations had been made

on the same computer (VAX 8650) then from Table 9.7 we find that

the computing time required to attain an accuracy (L ) of less
IX)

than 0.02 are 10.50 secs, and 436 secs for numerical methods (i)

and (ii) respectively:

Table 9.7
Comparison of the computing time which is required with an

accuracy (L ) < 0.02 for the numerical methods in solving the mKdV
IX)

Method Mesh Time L xl03 L xl03 tJ u CPU
size 2 co 1 2 secs

h=0.25 0.50 5.61 3.73 -4 -4
quintic -2.48xlO -4.7lxl0

t.t= 1. 00 4.50 3.73 -4 -4-2.95xlO -4.55xlO
spline 0.005 1.50 4.94 3.73 -4 -4-3.27xlO -6.64xlO 10.50

4.05 -4 -4VAX 8650 2.00 5.09 -5.42xl0 -1. 62xl0
4.05 -4 -32.50 10.77 -9.75x10 -3.35x10
9.35 -3 -33.00 14.97 -1. 63xlO -5.88xl0

4.57 -4 -3TA t.x = 0.50 -5.30x10 -1.27xlO
0.0565 7.08 -4 -3scheme 1. 00 -9.90xlO -4.92xlO

-4 -3 218t.t= 1. 50 9.95 -7.30x10 -2.28x10
IBM 3081 -4 -30.0565 2.00 13.32 -3.10xI0 1.89xl0

-4 -32.50 15.41 1.60x10 5.61xlO
-4 -33.00 19.93 5.60xl0 8.01xl0

The collocation method (i) with quintic splines as shape functions

is roughly fourty two times faster than The TA scheme (ii). Hence

the collocation method with quintic splines as shape functions is

the most accurate and efficient method tested for solving the mKdV
equation.
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We have shown that all four methods described in detail in

this thesis are well able to provide efficient and accurate

numerical solutions to the KdV equation. From above discussion we

further conclude that the collocation method with quintic splines

as shape functions is the most efficient and accurate numerical

method discussed here for solving the KdV, mKdV, and generalised

KdV equations. We therefore recommended its use.

Note Added

The single soliton simulations, using the method of

collocation with quintic spline shape functions, were repeated

with double precision arithematic and no significant effect on the

results was obtained. Thus the conclusions already made concerning

the efficiency are independent of the computer word length used in

the computations.
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Appendix Al

Algorithm for the solution of tridiagonal system of equations.

Assume the tridiagonal systems of equations has the general

form:

- a 6 + b 6 - c 6 = d
1 1-1 1 1 1 1+1 1

o ~ 1 s N

with:

a = c = 0
o N

~ = b ~ = do 0 0 0

Then compute the following parameters:

~ = b - a c /~
1 1 1 1-1 1-1

~ = d + a ~ /~
1 1 1 1-1 1-1

for 1 = 1 • 2 • ••. • N

Then the solution is given by:

8 = ~N / ~N N

8 = ~I + c 8 )/~
I I 1+1 I

for I = N-l . N-2 • ... . 0
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Appendix A2

Algori thm for the direct solution of a penta-diagonal system of

equations.

Suppose the penta-diagonal systems of equations has the form:

a 0 + b 0 + c 0 + d 0 + e 0 = f
1 1-2 1 1-1 1 1 1 1+1 1 1+2 1

where 0 ~ 1 ~ N and a = b = a = e = d = e = O.o 0 1 N-l N N

Firstly. let:
Q = b
1-'0 0 11 = co 0

(X = d /11000 A = e /11
000 ° = f /11o 0 ""0

and

f3 = b
1 1

11 = c - f3 (X
1 1 1 0

A = e /11
1 1 1 ° = (f - f3 ° )/111 1 1 0 1

Then compute the following parameters:

- a (X
1 1- 2

III C f31 (X - a A
1 i -1 1 1-2

(X = (d f3. A )/11
1 1 1 1- 1 i

A = e /11
1 1 1

°1 = (f - f3101-1
- a °1_2)/1111 1

for 1 = 2 • 3 • ... • N

The solution is then given by:

8 = oNN

8 = °N_l - (X 0N-l N-l N

and

8 = °1
- 8 A - 8 (X

1 1+2 1 1+1 1

for = N-2 • N-3 • ... • 0 .
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Appendix A3

Algori thm for the direct solution of a septa-diagonal system of

linear equations.

Suppose the septa-diagonal systems of equations has the

general form:

a B + b B + c 0 + d B + e B + f B + g 0 = h
1 1-3 1 1-2 1 1-1 1 1 1 1+1 1 1+2 1 1+3 i

where 0 ~ 1 ~ Nand

a = b = c = a = b = a = 0a a 1 1 1 2

gN = f = e = g = fN N N-1 N-1 o

Firstly, let:

a: = b f3a c Ila = d
0 0 0 0

<0 = e III A- = foillo Tlo = g III ;ro=h /Iloo 0 0 o 0

a: = b f3 = C III = d - f31<01 1 1 1 1

l:1 = (e f3 A )11l A (f - f31ao)11l11 1 0 1 1 1

TIl = g1/1l1 a
1

= (h - f3 ;r )11l
1 1 0 1

and

a: = b f32 = C - a:< 112 = d A- a: - f32<12 2 2 2 0 2 0 2

r = (e - TI a: - A- f3 )/11~2 2 0 2 1 2 ~2

= (h2 - a:a - f3 a )11l
2 a 2 1 2

Then compute the following parameters:

a: = b - a <1-31 1 1

f31 = C - a A- - a:
<1-21 1 1-3 1

III = d - a
1
T1

1
_
3
- A- a: f3

1 <1-11 1-2 1

l:1 = (e - 1l
1
_
2

a: -PA- )111
i 1 , i -1 1

A- = (f - f31T11_1 )11111 1

TIl = g/1l1

a1 = (h - f31a1_1
- a:;r - a al_3)11l11 1 1 - 2 1

for 1 = 3 . 4 , ... , N
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The solution is then given by:

8 = aNN

8 = aN_1
- <:N-1 8N-1 N

8 = a
N
_
2

A 8 - <:N-2 8N-2 N-2 N N- I

and

8 = aJ
- <:. 8 - 8 A 8 1IJJ J J+1 J+2 J J+3

for I = N-3 , N-4 , ... , 0
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