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SUMMARY

The main aim of this study is the construction of new,
efficient, and accurate numerical algorithms based on the finite
element method, for the solution of the Korteweg-de Vries
equation.

Firstly the theoretical background to the KdV equation is
discussed, and existing numerical methods based mainly on finite
differences are discussed.

In the following chapters finite element methods based on
Bubnov-Galerkin approach are set up. Initially we used cubic
Hermite interpolation functions, and in later methods cubic spline
and quadratic spline shape functions. The appropriate element
matrices were determined algebraically using the computer algebra
package REDUCE. Finally we set up a method based on collocation
using quintic spline interpolation functions.

The numerical algorithms have been validated by studying the
motion, interaction and development of solitons. We have
demonstrated that these algorithms can faithfully represent the
amplitude of a single soliton over many time steps and predict the
progress of the wave front with small error. In the interaction of
two solitons the numerical algorithms faithfully reproduce the
changes in amplitudes and phase shifts of the analytic solution.

We compare, in detail the L2- and Lm-error norms of the
present algorithms with published results. The conservative
properties of the algorithms are also examined in detail.

The modified and generalised Korteweg-de Vries equation have

iv



also been solved using collocation method with quintic splines
interpolation functions. Again, the solution method has been
validated by studying the motion, interaction, and development of
solitons.

We have concluded that all the new methods set up here are
capable of reproducing the solutions to the KdV equation
efficiently and accurately, the best amongst these methods are
collocation with quintic splines or Galerkin with quadratic
splines. The collocation method is also very efficient and

accurate for solving the modified KdV equation.
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CHAPTER 1

INTRODUCTION

The first recorded observation of the solitary wave was made
in 1834 by Scott Russell [1] when he saw a rounded, smooth, well
defined heap of water detached itself from the prow of a stopped
barge and proceeded without change of shape or diminution of speed
over two miles along a channel [2]. The words "solitary wave'" were
coined by Scott Russell himself, mainly because this type of wave
motion stands apart from the other types of oscillatory wave
motion. There was subsequently a gap of more than sixty years
between Scott Russell’s observation of the shallow water solitary
wave and any theoretical treatment of the phenomenon. Despite some
attempts by Scott Russell to guess at the analytical formula for
the wave profile, his observation went unexplained in his own life
time. In the following decades after him, the solitary wave of
translation was briefly mentioned by various mathematicians
including Stokes [3] in 1847 and Boussinesq [4] in 1872. However,
initial theoretical confirmation of Scott Russell’s work had to
wait until 1895 when Korteweg and de Vries [5] derived their now
famous equation for the propagation of waves in one direction on
the surface of a shallow canal. If the canal has normal depth £
and £ + 5 { » being small) represents the elevation of the surface
above the bottom, the partial differential equation which governs

the wave motion is:

2
n = % v % 8 [ % an + n2 + =0 Q_Q ] (1.1)

where; o is a small constant related to the uniform motion of the

liquid, ¢ = £3/3 - Tt/pg is a parameter, T the surface tension and



p the density of the fluid. Appropriate scalings will transform it
into a more manageable form. If we define:
3
‘n:Bau’ g:- Mx ) T:\/Mt
c ot
then the equation (1.1) can be written in the form of the

Korteweg-de Vries (KdV) equation:

u + u, + € uu, + 0 (1.2)

u =

T g g " M Yeee
where; ¢ = 2 B and p are given parameters. Using the variable
transformation x = § - T and writing t instead of 71, equation

(1.2) becomes:

u + guu +uu =0 (1.3)

u + guu + uu =0 (1.4)

where p = 1,2,...
The most simple generalisation of the KdV equation (1.4) is the

modified Korteweg-de Vries (mKdV) equation:
2
u + guu +puu =0 (1.5)

This equation has been used to describe acoustic waves in certain
anharmonic lattices [6] and Alfén waves in a collisionless plasma
[7,8].

In spite of this early derivation of the Korteweg-de Vries
(KdV) equation, it was not until 1960 that a new application of
the equation was found in a study of collision free hydromagnetic
waves by Gardner and Morikawa [9]. This is surprising because, in
general, the KdV equation describes the unidirectional propagation
of small but finite amplitude waves in a nonlinear dispersive
medium. Gardner and Morikawa rederived the KdV equation and also

proved that it was the limiting equation describing long wave



propagation perpendicular to a uniform magnetic field in a cold
lossless (collisionless) plasma [10]. Since 1963, many
researchers, e.g. Su and Gardner [11] have derived the KdV
equation as the relevant long wave asymptotic description of a
more complete set of model equations. Kruskal [12] and Zabusky
[6,13,14] showed that the KdV equation governs longitudinal waves
propagating in a one dimensional lattice of equal masses coupled
by nonlinear springs, the Fermi Pasta Ulam problem. Other
applications in plasma physics were given by Berezin and Karpman
[15] and by Washimi and Taniuti [16] in their study of ion
acoustic waves In a cold plasma. Wijngaaden [17] found that it
described pressure waves in a liquid gas bubble mixture. Naraboli
[18] proved it governed waves in elastic rods. Shen [19] derived
the KdV equation in the study of three dimensional water waves and
Leibovich [20] proved it described the axial component of velocity
in a rotating fluid flow down a tube, and thermally excited phonon
packets in low temperature nonlinear crystals [21].

The current interest in the KdV equation stems from the fact
that it can be solved analytically by the inverse scattering
method, but numerical methods for this pure initial value problem
remain important. This is because the inverse scattering technique
still requires the solution of the time independent Schrodinger
equation, with a potential determined by the initial condition.
Since the Schrodinger equation can only be solved analytically for
a few special types of potential, the inverse scattering technique
can thus not be used to obtain an explicit analytical solution of
the KdV equation for arbitrary initial data {22]. The theoretical
aspects of the solution of the KdV equation have attracted
attention. In particular, the problem of existence and uniqueness

of solutions for certain classes of initial conditions have been



studied by many authors including Lax [23], Sjoberg [24] and
Gardner [25]. These authors have examined the existence of
solitary wave or soliton solutions.

The physical models described by the KdV equation represent
situations requiring large scale time calculations. Consequently,
any numerical method proposed for determining the solution of the
mathematical equation must possess at least two properties [26]:
(1) The method must represent faithfully amplitudes of the
solution for many time steps in the calculation; it must be
conservative, and
(2) The method must be capable of predicting such wave fronts with
minimal error. Hence, the phase error of the method must be small.

The KdV equation was solved numerically first by Zabusky and
Kruskal [27] using a finite difference method. In that study they
discovered the properties of the interaction of two solitary
waves. Zabusky and Kruskal [27] defined the concept of a soliton
as a localised (solitary) wave that propagates at a uniform speed
and preserves its shape and speed when it interacts with a second
solitary wave but does suffer a phase shift. Greig and Morris [26]
proposed a Hopscotch finite difference method and compared it with
the original Zabusky and Kruskal [27] leap frog scheme and found
that it gave better results [26].

The application of spectral, Pseudospectral and Fourier
transform or series expansion methods to the KdV equation has been
studied by Schamel [28], Abe and Inoue ([29], Gazdag [30], and
Canosa and Gazdag [31]. Fornberg and Whitham [32] have discussed
the numerical solution of the KdV equation (1.3) wusing a
pseudospectal method in the x variable together with a leap frog
method in t. They have also studied the higher order generalised

KdV equation (1.4) and numerical results show that with p > 2 the



soliton collision 1is inelastic. Numerical calculations for the
generalised KdV equation (1.4} show that the solitons become
taller and narrower during an interaction, unlike those of the
Kdv equation (1.3) which become wider and smaller during an
interaction [33].

Finite element methods have also been used. The first of
those proposed was due to Wahlbin [34], who suggested a
dissipative Galerkin method in which the same trial and test
functions are used. The basis functions are smoothed splines
constructed from piecewise polynomials of order three or higher,
and the elements are of equal length h. Numerical computations for
this method were carried out by Alexander and Morris [35], who
used cubic splines and a range of dissipation coefficients from
zero to one. They studied the motion of a single soliton and a
dcuble soliton taking the initial condition in each case from the
theoretical solution. The results particularly in the second
problem were not good [33]. Sanz-Serna and Christie [36] proposed
a modified Petrov-Galerkin method with piecewise linear trial and
cubic spline test functions. They compared their method to some of
those mentioned above, and showed that finite element methods for
the KdV equation are well worth considering. Further schemes using
Petrov-Galerkin methods have been given by Schoombie [22] which
can be either dissipative or nondissipative; and which contain the
Sanz-Serna and Christie method as a special case. The trial
functions were chosen to be linear and the test functions to be
B-splines of various orders. Higher accuracy is obtained by
shifting the support of the test functions. This differs from the
Wahlbin approach, where both trial and test functions have to be
at least cubic splines, and where the test functions are modified

rather than shifted to introduce dissipation into the numerical



method. The important advantage of the shift test functions is
that piecewise 1linears can be wused as both trial and test
functions, in spite of the third derivative in the KdV
equation (1.3), which would normally require at least the
continuity of the first derivative for either the trial or the
test functions. This method has the disadvantage that it is less
accurate than the modified Petrov-Galerkin method (Sanz-Serna and
Christie). However, it involves much less computational effort.

A different approach to the numerical study of the KdV
equation has been adopted by Osborne and Provenzale [37]. In this
study, direct use is made of the inverse scattering transformed to
solve the 1initial value problem, with 1initial data being
approximated by a piecewise constant function. This generalisation
of the usual spectral methods promises to be a useful techniqgue,
with the only drawback being the fact that it is not applicable to
equations for which no inverse scattering problem is known.

The Korteweg-de Vries equation 1is an 1important nonlinear
partial differential equation which arises in the study of many
different physical systems for which analytic solutions have only
been found for a very restricted set of initial conditions. Thus
numerical methods are very necessary to effect solutions for a
wide range of initial conditions. In this thesis attempts are made
to produce numerical methods based on the finite element method
which are superior to those already being used. We expect these
methods to have two advantages:

Firstly, the computed L2— and Lm-error norms might be smaller in
comparison with those of earlier authors, so that the numerical
solution will be more accurate.

Secondly, the computed values for the first three or four

conservative quantities of the KdV equation should change as



little as possible during the computer run. Essentially the method
should be conservative.

In chapter 2, we describe how the Korteweg-de Vries equation
is set up for 1ion acoustic wave, and also how we derive the
analytic solution for the KdV equation under restricted initial
conditions. We give a review of the interaction of two solitary
waves and also of the conservation laws.

Early attempts at numerical solutions of the KdV equation are
outlined and discussed in chapter 3. These earlier methods were
mainly of four types; the finite difference methods, both
explicit and implicit, transform methods such as the
pseudospectral or fourier transform, splitting method, fourier
expansion methods and finite element methods such as a dissipative
Galerkin method.

In chapter 4, we show how a finite element using the Galerkin
method with trial and test functions as cubic Hermite polynomials
can be set up. The element matrices are determined algebraically
using REDUCE [38]. Assembling the element matrices together and
using a Crank-Nicolson difference scheme for the time derivative
leads to a 7-banded system of nonlinear algebraic equations which
is solved by a septa-diagonal algorithm. The method is tested by
calculating how the L2— and Lm—error norms vary during the motion
of a single and double soliton and comparing this with the error
obtained by earlier authors for a similar experiment. The first
three conservative quantities are also computed for simulations
using a single soliton, double soliton, and Gaussian 1initial
condition.

In chapter 5, we set up a finite element wusing the
Bubnov-Galerkin method in which trial and test functions are cubic

spline polynomials. The element matrices are obtained analytically



using REDUCE. Assembling element matrices together and using a
Crank-Nicolson difference scheme for the time derivative leads to
a system of nonlinear algebraic equations which is solved using a
septa-diagonal algorithm. A linear stability analysis is used to
show that the scheme is unconditionally stable. Classical test
problems, including collisionless shocks and soliton development
and interaction, are used to prove the method. The L2— and
Lw—error norms have been computed for single and double soliton.
The first four conservative quantities have been computed. Two
schemes have been discussed; one using integration by parts and
the other without.

In chapter 6, a finite element method based on the
Bubnov-Galerkin method in which the trial and test functions are
quadratic spline polynomials is set up. The element matrices are
determined algebraically using REDUCE. Assembling together the
element matrices and again using a Crank-Nicolson difference
scheme for the time derivative lead to a system of nonlinear
algebraic equations which can be solved by a penta-diagonal
algorithm. A linear stability analysis is used to show that the
scheme 1s unconditionally stable. Classical problems concerning
the development and interaction of solitons are used to test the
method. The breakdown of a Gaussian initial condition into a train
of solitons is considered. The L2— and Lm-error norms have been
determined for single and double soliton. Also, the first three
conservative quantities have been calculated.

In chapter 7, a finite element method based on collocation
with quintic spline interpolation polynomials over the f{inite
elements is set up. This leads to a nonlinear algebraic system
with S5-banded matrices which can be solved using a penta-diagonal

algorithm. A linear stability analysis is set up which shows that



the scheme is unconditionally stable. Classical initial
conditions, which model soliton interaction and undular bores in
shallow water, are used to evaluate the LZ- and Lw—error norms for
single and double soliton and the first fourth conservative
quantities. The breakdown of a Gaussian initial condition into a
train of solitons is observed.

In chapter 8, a numerical method to solve the generalised KdV
equation (1.4) with p = 1,2,3 based on the collocation method
with quintic spline interpolation polynomials over the finite
elements is presented. The recurrence relationship obtained leads
to a nonlinear algebraic system of 5-banded matrices which can be
solved wusing a penta-diagonal algorithm. A linear stability
analysis 1is 1investigated. Classical test problems, including
collisionless shocks and soliton development, motion and
interaction, are used to compute the first four (three if p 2 3 )
conservative quantities. The Lz— and Lw-error norms for a single
and double (for p = 1,2) soliton solution are used to give an
indication that as p (the power of u in the nonlinear term upuX )
increases, the error increases. The breakdown of a Gaussian

initial condition into a train of solitons is demonstrated.



CHAPTER 2

PHYSICAL REVIEW FOR THE KORTEWEG-DE VRIES EQUATION

2.1 Introduction:

At the present time nonlinear wave phenomena are the subject
of intense study in many branches of applied mathematics, physics,
and engineering, e.g. in optics, plasma physics, radio physics,
acoustics, hydrodynamics ...etc [39].

One of the most important nonlinear wave equations is the
Korteweg-de Vries equation (KdV) which was originally derived in
1895 by Korteweg and de Vries [5] in order to describe the
behaviour of one-dimensional shallow water waves with small but
finite amplitude. More recently the KdV equation has also been
found to describe various other kinds of phenomena such as
acoustic waves in anharmonic crystals, waves in bubble-liquid
mixtures, magnetohydrodynamics, waves in warm plasmas, and

ion-acoustic waves.

2.2 Some Applications in which the KdV Equation Arises:

In this section, we will study some of the cases where the
KdV equation arises as a realistic model governing the evolution
of waves in media in which weak nonlinear effects are considered.
We quote four examples: The first occurs in plasma physics where
the KdV equation governs the evolution of long compressive waves
in a plasma of cold ions and hot electrons; the second is the
shallow water waves problem; the third case occurs in meteorology
in studies of the propagation of nonlinear Rossby waves in a
homogeneous rotating fluid. The latter case is slightly different
than the earlier two in that a second space dimension (y) occurs

in the original equations and the coefficients of the final KdV
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equation are found to be integrals over y. The fourth example is
from electric circuit theory in which a nonlinear capacitance is
used. In this case a generalised pth order KdV equation with the
nonlinearity depending on the capacitance is obtained. We have
chosen this example to illustrate how the modified KdV equation
can arise in certain circumstances. It is well known that the KdV
equation is quite simple in structure as it is a single scalar
equation 1involving one dependent variable and two independent
variables. However, the original equations of motion of most
physical systems are not simple and, generally, they contain
several dependent variables, so that we need a procedure which
reduces such sets of equations to simpler forms (perturbation
procedure). To apply this method, we try scaling all variables in
the problem to dimensionless form and we expand all the dependent
variables in terms of a perturbation parameter e [40]. To
illustrate this approach we show in the next section how

ion-acoustic waves are governed by the KdV equation

2.2.1 Ton-Acoustic Waves [40, 41,42]:

Consider a one dimensional sea of electrons and ions, each of

mass m , m
R .

and charge -e, +e with density n , n, per unit volume
1 e 1

respectively. This is technically known as a plasma of electrons
and ions, as in [40]. Since the electron mass is much lighter than
any ion mass, the electron inertia can be neglected but the
electrostatic effect of the electron charge cannot be neglected.
For this, the usual method is to treat the electrons as a gas
[43]. An electron gas can be thought of as a gas problem and in an
idealized situation may be described by the equation of the state:

P=K, Tn (2.2.1.1)

B e e

where KB is known as Boltzmann’s constant, P is the pressure and

11



T 1is the value of the electron temperature which gives a measure
€
of how energetic (hot) the electrons in the gas are. Here we will
take the ion temperature T,L as T << T . For the electron gas, the
1 1 e

electrostatic force 1is related to the pressure gradient by an

equation:

en 22 -k 7T ° (2.2.1.2)
ax

where ¢ is the electrostatic potential.

Integrate this equation to obtain:

= €
n_ = ng exp(K 7 @) (2.2.1.3)
B e

where n, is the equilibrium background density.

For the ions, the equations of conservation of mass and momentum

are:
ani 3
= .2.1.4
5% + 3% (nivi) 0 (2.2.1.4)
D _ _.9¢
mi ( ——'Dt Vi ) = e 5; (2215)

D 3
= = =— .2.1.6
Dt ~ a5t ' Vi &% (2.2.1.6)
For the electrostatic potential ¢, Poisson’s equation is:
2
é—92 =4 meln-n) (2.2.1.7)
ax e i
Equations (2.2.1.3) and (2.2.1.7) indicate that ¢ and n.can be
rescaled as:
= ; = 2.1.
¢ e ¢/(KB Te) : n nl/nO (2.2.1.8)

Substituting (2.2.1.3) into (2.2.1.7) and wusing (2.2.1.8),
gives:

[KB T,

~————2]¢ =exp(®)-n(2.2.1.9)
4nnoe XX

Then, a new dimensionless x variable can be introduced as:

12



A= (2.2.1.10)

%1
i

{ KB Te2 ]1/2
4ntn e
o

>~ X

where A is known as the Debye length of the plasma. Using the
expressions given above for ¢, n, and X one can define the

non-dimensional variables:

(]
[
b
-
<
1]

|

v, ame?n 1172
;W =[ o] (2.2.1.11)
P m

i

where w is the plasma frequency, and A w 1is the ion sound speed.
P p

Using non-dimensional variables the equations (2.2.1.4}, (2.2.1.5)

and (2.2.1.7) can be written in the form:

n_ + (nv)_ =0
t X
v+ vw_ = - ¢ (2.2.1.12)
t X X
¢ = exp(®) - n
XX

The boundary conditions are taken to be n — 1; v, & — 0 as

|x|—> « , so that asymptotic expansions for n, ¢ and v are:

n=1+en""" +e%n'® + nV 50 as |-

o = et 4 %! + .. o' _ 50 as |x|—

v = ev't 4 3@ + oL v 50 as |x|—
jo= 1,2, (2.2.1.13)

where € is small parameter, the superscript denotes to the order

of the perturbation.

Using (2.2.1.13) to linearise (2.2.1.12) and eliminating n''’ and

(1)
\Y% , we have:

(1) (1)

¢ + ¢ - ¢

- - - D o=o0 (2.2.1.14)
x xtt X X t t

which has the dispersion relation w° = k°(1+k°)”'. Therefore, for

small k ( k = €?P x , p > 0 ) the first two terms of w(k) are k and

13



k> ternms. Then, we rescale x and t by defining &£ and T to be:
£ = e’(x - at) ; T =¢ePt (2.2.1.15)

where a is the velocity of the frame of reference

After substitution into equation (2.2.1.12) we find that:

[ €3p g; - aef gz ][ 1 + cn(l) + 92 n(2)+ ] +
eP S ev LR cz(v(Z) + (l)v(l)) + =0 (2.2.1.16)
ag
3p 3 paﬁ (1) 2 (2)
[C a—_[ at ag][(,\/ + € v + ]‘*
3 1) 2.(2)
éepg—[z(v“))2+ ]+epa—€[e®( + %% ]=O
(2.2.1.17)
2
o2p 8 _ [Cq)(n . 202 ] Do) Z 1y L
ag
- LZ[ o'?) - nt? . ; (012 ] + =0 (2.2.1.18)

Collecting terms together we can evaluate the coefficients of each

power of £, we obtain for equation (2.2.1.16):

p+1 (1) (1)
€ : -an + vV (2.2.1.19)
£ '3
p+2 (2) (2) (1) (1)
€ : -an + v + (n v ) (2.2.1.20)
€ € €
gt n't (2.2.1.21)
("

and for equation (2.2.1.17):
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p+1 (1) (1)
€ : -av + & 2.2.
£ '3 (2.2.1.22)
p+2 (2) (2) (1) (1)
€ : -av + ¢ + v
£ £ vg (2.2.1.23)
3p+1 (1)
Pt v (2.2.1.24)
while for equation (2.2.1.18), we have:
1
e L ) (2.2.1.25)
2 (2) (2)
€ -(® )~ 2 eh)” (2.2.1.26)
2p+1 (1)
€ : d
€€ (2.2.1.27)
2p+2 (2)
€ : d 2.2.1.
£e ( 28)
Considering the lowest terms (i.e. e”"! and ¢ ) and using the
boundary condition, we have:
ntt o=y o gt (2.2.1.29)
for a =1 . To determine p, we go to the next order (i.e. cp+2 and
e ) where equations (2.2.1.19) - (2.2.1.24) indicate that if
3p+1 > p+2 (i.e. p > % ) then no T-derivative occurs at order
( cp’z) . This 1is unsatisfactory because p > - means that the

second derivative of ®(1) is an order higher than 2; and if we

. (2) (2) (2) .
eliminate ¢ , N and v from the three equations, one can

(1)

show that n 0 . Consequently, we must necessarily go to

higher orders of perturbation theory to obtain an evolution

. 1 . 1 .
equation for n( ). Therefore, setting p = 3 and replacing v(
and ®(1) by n(l), and equating terms of each order to zero, we
obtain:
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(2) (2) (1) (1) (1)
- n 2n n + =
£ £ ¢ n_r 0 (2.2.1.30)
(2) (2) (1) (1) (1)
P - v + n + =0
£ £ £ nT (2.2.1.31)
(1) o1 (1),2 e (2) (2)
ngg 5 ( n ) = @ n (2.2.1.32)
Differentiating (2.2.1.32) w.r.t £ and eliminating véZ), né2),
@éz) from equations (2.2.1.30) - (2.2.1.32), we get:
(1) (
L R TN (2.2.1.33)

1

- n + n n

2 £Eg € T
which is exactly the KdV equation, where the soliton velocities

are positive

In the case a = -1 ,

and the resulting KdV equation is:

(1) (1) (1 1
S S I

1
2 Nege n Mg T

and the solitons move to the left as indicated by (2.2.1.15)

2.3 The Solution of the Korteweg-de Vries Equation

2.3.1 Introduction:

The KdV equation for long waves in shallow water [44] can be

written as:

vgh hzu =0, (2.3.1.1)

[ X

3
u, + Vgho[ 1 + 5 {u/ho) ] u +
Where; x denotes the coordinate along the horizontal bottom, t the
time, u(x,t) the local wave-height above the undisturbed depth h ,
Qo

and g the acceleration of gravity and the subscripts x and t

denote differentiation.

Let us define the non-dimensional parameters € and u to be:
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€ = ash , mo= l(h /A )2
[} 6 o o
where a 1s the dominant amplitude and A the wave-length
o]

We introduce the dimensionless variables:

£ = x/A_ ., t = tvgh /A ., u-= g u/(eh )

Substitution of these new variables into equation (2.3.1.1)

and omitting the bars gives:

u + u + g u ug + U u€§€ =0 (2.3.1.2)

Let us now define the new independent wvariable x:
x =& -t
into equation (2.3.1.2) which is thus transformed into the well
known KdV equation:
u t euu tupua o= 0 (2.3.1.3)
Let us look at the travelling wave problems where the effects
of the nonlinearity and dispersion balance and, result in stable
solitary wave solutions called solitons. A soliton has the
following remarkable properties:
(i) In a collision with another soliton it preserves its original
shape and speed, although a phase shift exists after the
collision, and
(1i) A general initial profile after a long time breaks up into a
train of solitons together with a disturbance which disperses with
time.
Let us 1look at the effect of the nonlinearity and the
dispersion of the KdV equation (2.3.1.3):
(i) Linearity + no dispersion:
uy + C u,oo= 0 , ¢ is constant

The initial profile 1is transmitted at constant speed without

change of shape. Collisions cannot take place since all the

17



initial profile travels with the same velocity

(ii) Linearity + dispersion:

the solution can be expressed in the form:
u = a exp(i(kx - ot)) = a exp(i(x - ct)k)
where k is the wave number, w is the frequency and ¢ = w/k 1is the
speed of the travelling wave. This leads to the dispersion
relation w = - uk3 , 1.e. the group velocity depends on the wave
number. The effect of the dispersion on a wave is to make a wave
packet spread out as it travels. This dispersion rules out the
possibility of solitary waves
(iii) Nonlinearity + no dispersion:
u, + € u u = 0
The term € u plays the role of a wave velocity. Since this
velocity depends upon the solution itself, we may expect that
portions of the wave profile at which u is large will move more
rapidly than portions of the wave near the edge of the profile
where u approaches zero. Thus the portion with large u will
overtake the portion with smaller u.
(iv) Nonlinearity + dispersion:
up + gu u + uu = 0
If there is a balance between nonlinearity and dispersion, then

we obtain a soliton which travels without change of shape.

The generalised KdV equation has the form:

u + ¢ ulu + pu =0 (2.3.1.4)
t X XXX
where p is positive integer p = 1,2,3,... [32,45,46]. The most

important case after p = 1, is p = 2, when the resulting equation

has the form:
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and is known as the modified Korteweg-de Vries (mKdV) equation.
Moreover, the sign of the nonlinear term may be changed to obtain

the non-trivial alternative equation:
u - guu + Jou =0 (2.3.1.6)

Note that changing the sign of the nonlinear term in the KdV
equation itself yields nothing new, since the resulting equation

is reduced to (2.3.1.3) by changing the sign of u [45].

2.3.2 Single Soliton Solutions [40,41,42,47]:

The most interesting feature of the KdV equation 1is 1its
ability to produce steady travelling wave solutions. These can be
either solitary waves called solitons or the cnoidal wave, which
is a generalisation of the sinusoidal wave. These are obtained by
putting:

u(x,t) = U(X) . X =x - ct (2.3.2.1)
where c represents the constant velocity of a wave travelling in
the positive direction of the x-axis. Substitution of (2.3.2.1)
into (2.3.1.4) leads to the ordinary differential equation:

—cU o+ eUP U + “U,,, =0 (2.3.2.2)

where a prime denotes differentiation with respect to X. Equation

(2.3.2.2) can be integrated once immediately, to give:

pU =cu--Su"" +a (2.3.2.3)
p+1 1

where a, is the constant of integration

Multiplying (2.3.2.3) by U and integrating, we obtain:

vl - — & "% s auU + a (2.3.2.4)
(p+1) (p+2) 1 2

N
—
C
—
N
n
(SRR}

where a, is a constant of integration. For a real solution of

(2.3.2.4), the right hand side must be non-negative, and so:
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]1/2 = *+(x - ct)

[ { g V- e U a, U+ a,
(2.3.2.5)

Two types of solution of (2.3.2.5) are cnoidal waves, which are
expressed as Jacobl elliptic functions (see [21] for more details
and the exact form), and solitary waves [7,33].

Now we are going to derive the solution of the equation
(2.3.2.5) for the solitary waves. To do this, let U”, UI and

U-— 0 as |x] ——> o . Then the constants of integration a  and

a2 are zero, i.e.:

; 1 oe o 1/2
Uu =U (¢~ ——— U ) (2.3.2.6)
v (p+1) (p+2)
Let
1/2 e
_ _ P = 5
y = [ 1 g U ] , where 8 e (e then
1-p
_2 1/p _2
U=[l— y] and dU=—2—§[-1—y]p
B P 8

(2.3.2.7)

Substitution of (2.3.2.7) into (2.3.2.6) leads to:

1
_2 [E]Z J_ﬂ_ - [dx (2.3.2.8)
p C 2
1 -y

and after integration of this equation, we obtain:

1 -y c J2
— = | = = .3.2.9
In [ T+ y ] P [ i ] X + c, (2 2.9)
c 172
Applying the initial condition leads to c, = - p[ﬁ] X, S° that

equation (2.3.2.9) can be written as:
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1
]2 (X - x) J (2.3.2.10)

| —
+ 1
<
1]
()
X
go]
oY
he)
TN
rTIO

If we let X = X - x , P p c/u , we get:

1 - exp( pX )
y = (2.3.2.11)

1 + exp( pX )

Since UP = (1 - y2)/B we find that:

(1 + explpX )% - (1 - expl pX’J)?i

uP = 1
B (1 + expl pX ))°
1
-1 _fexplpX) (2.3.2.12)
B ( 1 + exp( pX ))°?
or
4
uP = 1
B ’ ’ 2
( exp( pX/2) + exp(-pX/2 ))
1 2 !
= B sech™ ( pX/2) (2.3.2.13)
which simplifies to:
uwix, t) = Clpr1) (per2) Sechz[ P Ve/p (x - ct - x )] (2.3.2.14)
2¢ 2 0
For p = 1 we have the well known solution:

u(x,t) = sechz[ % Ve/u (( x - ct - xo)] (2.3.2.15)

Equation (2.3.2.14) describes a soliton with amplitude 3c/. ,
which 1is proportional to its velocity. Hence, a larger soliton
moves faster than a smaller one. The solitons width 1is

proportional tovu/c and the constant X, plays the role of a phase
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shift.
If the coefficient of the nonlinear term in equation
(2.3.1.4) has a negative sign and p is odd then the solution is

negative, that is:

_ C(p+1)(p+2)

p
u (x,t) P

sechz[ g Ye/u ((x - ct - XO)] (2.3.2.16)

If n is even, the solution is not a solitary wave [32,41,45].
Chen [48] has used Galerkin’s method to obtain analytic

solutions of the strongly nonlinear KdV equation:

u + g uu + uou =0 i (2.3.2.17)

2.3.3 Linear Bargmann Method [42]:

The Bargmann method is based on the assumption that there
exists a potential for the Schrodinger equation:
y* o+ (k¥ -uwy =0 (2.3.3.1)
where k2 is an eigenvalue parameter which remains constant as t
varies and u satisfies the KdV equation:

u -6 uu + u =0 (2.3.3.2)
t X XXX

such that the solution of the equation (2.3.3.1) can be expressed
in the form:

y = exp(ikx) F(k,x) (2.3.3.3)
where F(k,x) is a polynomial in k, whose degree depends on the
case under consideration. If F(k,x) is constant, then (2.3.3.1)
implies that u = 0 which 1is the trivial solution. For the
nontrivial solution let F(k,x) = 2k + ia(x) , then equation

(2.3.3.1) implies that:

a’ = -u (2.3.3.4)

"

{2.3.3.5)

]
c
o

and a

Eliminating u from (2.3.3.4) and (2.3.3.5) and integrating we
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obtain:

2 2

a’ + a =2 (2.3.3.6)

1
2
where 2 “2 is the constant of integration. The substitution:

a= (2 w)l/w (2.3.3.7)
leads to the linear equation:

W - MW = 0 (2.3.3.8)
which 1is a linear homogeneous equation of second order, whose
solution is:

w=oaexplp x) + Bexp{ - ux). (2.3.3.9)
From equations (2.3.3.4) and (2.3.3.7) we get:

u= -2 (In(w))” (2.3.3.10)
Using equation (2.3.3.9) the solution (2.3.3.10) becomes:
2 2

u=-2pu sech (g x - ¢) (2.3.3.11)
where ¢ = % In(B/«) which we take as a function of t. Substitution
of (2.3.3.11) into the KdV equation (2.3.3.2) leads to:

¢’ (L) = a p” (2.3.3.12)

Integrating this equation gives:

¢(t) = a uyt + d (2.3.3.13)
and hence we obtain:
2 2 3
u(x,t) = - 2 pu° sech®(p x - 2 p7 t - d) (2.3.3.14)
If we set u = % vCc , this form of u(x,t) agrees with the

steady state solution given in (2.3.3.10). This linear Bargmann’s
procedure thus yields the single soliton solution of the KdV
equation.

A wide class of exact solutions to the KdV equation have been
found, notably in recent times using the Inverse GScattering
method. This method generates the well known N-soliton solutions
possessing the property that amplitudes and velocities, as well as
the shapes, of individual solitons are preserved in a (nonlinear)

interaction [21,25,26,42,49].
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2.3.4 Interaction of two Solitons [42,47,49,50,51,52,53]:

Consider two solitary waves as initial condition placed on
the real line with the taller one to the left of the shorter one.
As the time increases, the greater speed of the taller wave means
that it eventually catches up with the shorter one and they
undergo a nonlinear interaction according to the KdV equation. The
surprising result 1is that they emerge {from the interaction
completely preserved in shape and speed with only a shift in
positions relative to where they would have been had no
interaction taken place [21]. This phenomenon was observed first,
experimentally by Russell [1] and numerically by Zabusky and
Kruskal [27]. Because of their preservation of form during
nonlinear interactions and their resemblance to particles, Zabusky
and Kruskal [27] coined the name soliton for such waves. Zabusky
[6] showed the exact interaction of two solitons numerically and
Lax [23] gave the analytic proof of the soliton properties. Dodd
[41], Lamb [42]), Whitham [49], and Wadati [51] have derived an

analytic solution for the KdV equation with € = 6.0 , p = 1.0 when

the initial condition is two solitary waves. This solution has the

form:
ul(x,t) = 2( In(F) ) (2.3.4.1)
XX
where:
F=14+ exp(nl) + exp(nz) + B exp(n1+ nz)
« -« 2
oo i) 25.0.0
1
n=ax - a?t + dl i o= 1,2 (2.3.4.3)
Before the interaction the solution will be:
12 2 12 2 _
ulx,t) = 5 sech” ( nl) * g sech” ( n, A ) (2.3.4.4)
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where:
A=1n( 1/ 8) . (2.3.4.5)
After the interaction the solution becomes [41, 49]:

_ 2 2 _ 12 2
u(x,t) = al sech™ ( nl A) + 3 a2 sech™ ( nz) . (2.3.4.6)

1
2
The location of the solitary waves o, and o are:
(i) before the interaction:
Solitary wave a on x =«
Solitary wave @, onXx =« t - (d2 - A)/oc2 (2.3.4.6a)
(ii) after the interaction:
Solitary wave a on x = «

Solitary wave @, on x =« t - d /a_ . (2.3.4.6Db)

2
s1 - s2 « s2 - azsl
t = - X = (2.3.4.7)
2 2 2 2
a -« o« -«
1 2 1 2
where: si = di/a1 i = 1,2

The forward and the backward phase shifts are defined respectively

as:

A = Ao A = A for p = 1,2 (2.3.4.8)
1 1 2 2

For the initial conditions, equation (2.3.4.1) is used at t = 0.

Similarly the exact solution of the mKdV equation (2.3.1.5)
with ¢ = 6.0, o = 1.0 for two solitary waves has been found by
Taha and Ablowitz [52] as:

ulx,t) = i( In(f/ £) ) (2.3.4.9)
where ! denotes a complex conjugate, and
f=1+1 exp(nl) + i exp(nz) - B exp(n1+ n2) ,

where B and nJ (y=1,2) are defined by equations (2.3.4.2) and

(2.3.4.3) respectively.

Before the interaction the solution will be:
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ui(x,t) = @ sech ( nl) + @, sech ( n, - A ) (2.3.4.10)
After the interaction the solution becomes:

ul(x,t) = « sech ( L A) + «, sech ( n2) . (2.3.4.11)
For the initial conditions, equation (2.3.4.9) is used at t = 0.0.

For the case of N-solitons, an analytic proof that they are
unchanged after interaction has been given by using the inverse
scattering method [45].

More generally, arbitrary initial conditions used with the
KdV equation will evolve into a number of solitons moving off to
the right and an oscillatory dispersing state moving off to the
left. Because of the dependence of the soliton speed on its
amplitude, the solitons will sort themselves out, eventually
ending up as a parade of solitons moving to the right with
monotonically increasing amplitudes from left to right. Those
solutions involving only solitons, and showing no oscillatory
behaviour, are called pure soliton solutions or N-soliton

solutions [21].

2.4 Conservation Laws for the Korteweg-de Vries Equation [6,10,54]:

The KdV equation can be written in the divergence form:

2

u -
u, ¥ (e Stuu )x = 0 (2.4.1)

which has the form of a conservation law for the momentum
00

I1 = J u(x, t)dx . Multiplying both sides of equation (2.4.1) by u

-0
2 : . : .
and u° , we obtain after simple calculation two more conservation

laws, of which the first reflects the energy conservation:

26



-2 3 2
u + e ¥ o+ ul uu - Y =0 (2.4.2)
2 t 3 XX 2 T

[ 93' K Uz + |€ 94* UZU + 2 + (2.4.3)
3 £ X 4 H XX = utux H uxx ’
t € 3 X

This is not the complete number of conservation laws. It is shown

in [48] that there exist an infinite number of conservation

quantities (invariants) I corresponding to the KdV equation,
m

given by:

I = f Q (x,t) dx (2.4.4)

whose densities Q (x,t) satisfy the relations of the form:
m

3 Q (x,t) 3 P (x,t)
m . m =0 (2.4.5)
at d0 x

where Qm and Pm (fluxes) are functions of u and its spatial
derivatives. Such relationships 1imply essentially that the
integral of Qm over all x remains constant in time. That is Qm is
a conserved quantity [55].

Conservation laws can be used in deriving a priori estimates

and to obtain integrals of motion. For example, if the flux P 1is
m

zero as |x| » o , then:

o0

J Q (x,t) dx = constant (2.4.6)
m

-0

Furthermore, the existence of infinitely many conservation laws

certainly indicates that the KdV equation is of immense physical

interest.

As examples, we present the first four densities of the

conserved quantities [6,10,39,54]:
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- -u
Q =u, Q=5
u’ [T u’ M 2 9 pz 2
03 =5 "YU Q4 =g 3guu v u (2.4.7)
Hence the quantities I (i = 1,...,4) can be written as:
1
0
I1 = J u dx (2.4.8)
-0
* 2
I =f u? dx (2.4.9)
-0
® 3 3 2
13 = j (u” - MU ) dx (2.4.10)
-0
* 4 12 2 36 p°
I = j [u - —pupuu o+ 20H w2 ]dx . (2.4.11)
4 € X 5¢€ XX

For a modified KdV equation (2.3.1.4) there are also many
polynomial conservation laws. The first four conservative

quantities have been found by [21,54] as:

00
I =f u dx (2.4.12)
-0
* 2
12 = j u” dx (2.4.13)
-0
* 4 6 2
I = j (" - = pu ) dx (2.4.14)
3 € P
-
. 30 2 2 18 p° 2
1 = I [u6 - puu o+ 18,0 4 ]dx . (2.4.15)
4 . € X € XX

For p > 2 there are only three conservation laws, (the first three

conservative quantities) [6,10,21,32] which can be written as:

I = J u dx (2.4.16)
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(p+1)(p+2)

2 £
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) dx .
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CHAPTER 3
A REVIEW OF NUMERICAL METHODS

FOR SOLVING THE KORTEWEG-DE VRIES EQUATION

3.1 Introduction:

The study of numerical methods for the solution of partial
differential equations has enjoyed an intense period of activity
over the last thirty years from both theoretical and practical
points of view. Improvements in numerical techniques, together
with the rapid advance in computer technology, have meant that
many of the partial differential equations arising from
engineering and scientific applications which were previously
intractable, can now be routinely solved [56].

In this chapter, we shall focus our attention on making a
survey of the numerical methods wused by earlier authors for
solving the Korteweg-de Vries (KdV) equation:

u teuu +tpu 0= 0 (3.1.1)
where; € and p are positive parameters, u, and u are the first
derivative of u with respect to time and space respectively and
uxxx is the third derivative of u with respect to space.

We shall give a brief discussion of these numerical methods
under 4 headings:

(1) Finite difference methods,
(2) Finite Fourier transform or pseudospectral methods,

(3) Fourier expansion methods, and

(4) Finite element methods.

3.2 Finite Difference Methods.

3.2.1 Introduction:

The finite difference methods are the most frequently used
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and universally applicable. These methods are approximate in the
sense that the derivatives at a point are approximated by
difference quotients over a small interval [57].

There are two types of finite difference method:
(1) Explicit metheds which are conditionally stable,

(i) Zabusky and Kruskal difference scheme,
(2) Implicit methods which are sometimes unconditionally stable,

(i) Goda difference scheme,

(i1) Hopscotch difference scheme, and

(iii) Kruskal difference scheme.
Taha and Ablowitz ([58] have proposed a local difference scheme
which is based on the inverse scattering transform, and a global
difference scheme, both of which have a truncation error of order
ol(At)?] + 0l (Ax)?] [S8].

In order to obtain a finite difference replacement of the
KdV equation (3.1.1) the region to be examined is divided into
equal rectangular meshes with sides Ax and At parallel to the x-
and t- axes respectively (see Figure 3.1). The function u(x,t) is
approximated by u: = u(jAx,nAt) where j and n are integers and

J = n =0 is the origin.
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Figure 3.1
Let us define
n+1 n-1
J u)
“t'u,n) = TTAt (3.2.1.1)
n
u)+1 - uj—l
uxl(j,n) = A% (3.2.1.2)

_ 1 n n n _ n
uXXXI(j,n) = 5a%)° [u 2“j+1+ Zuj_l UJ_Z} (3.2.1.3)

3.2.2 Explicit Schenme:

The explicit scheme computes the wvalue of the numerical
solution at the forward time step in terms of Known values at the
previous time step.

An explicit scheme for solving the KdV equation produced
originally by Zabusky and Kruskal [27,44] is centred in time and

space. Substituting (3.2.1.1), (3.2.1.2) and (3.2.1.3) into
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(3.1.1) with u| =2 (u" +u” +u” ) leads to:
(j,n) 3 j-1 j j+1
n+1 n-1 eAt n n n n n
= - == + -
j uj 3AX (uj—l uj * uj+1)(uj+1 uj-l
_ pAt n _ n n n
TK§)3 uJ+2 2uj+1 + 2uj_1 uj_2 (3.2.2.1)

For the initial step, we use a scheme which is forward in

time and centred in space:

1 0 €At o) 0 o] 0 0
u = u —— (u u (u - ) -
J J 64x j=-1 3 j+1 j+1 §j-1
_ pAt  TL o _ .o
2(Ax)3{ uj+2 2uj+l 2uj_1 uj_z] (3.2.2.2)

It is clear that equation (3.2.2.1) is a three-level scheme
of time, i.e. in order to obtain uJ at the time level n+1, we need
the following values of uj_2 s uJ_1 R uJ+1 and uJ+2 at the
previous time level n in addition to the value of uj at the time
level n-1.

The explicit difference scheme (3.2.2.1) has second order
accuracy in At and Ax as the truncation error is
O[(At)Z] + O[(Ax)2] and is also consistent with equation (3.1.1)}.

A stability analysis of the nonlinear numerical scheme
(3.2.2.1) using the Fourier mode method is not easy to handle
unless it is assumed that u, in the nonlinear term, is locally
constant. This is equivalent to replacing the term
1 (u" +u” +u" ) in equation (3.2.2.1) by ; . This linearised

j-1 j j+1
scheme for the KdV equation has stability condition [44,58,59]:

At - 4
A_)?[e Iul +m2] < 1 (3.2.2.3)

Peregrine [60] has produced another finite difference scheme
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for the KdV equation which has only first order accuracy.

3.2.3 Implicit Methods:

Although the explicit method is computationally simple, it
has one serious drawback. The time step is necessarily very small
to satisfy the stability condition (3.2.2.3) and the space step
must be kept small in order to attain reasonable accuracy.

We are going to give a brief discussion of the following
implicit methods:

(i) Goda scheme,
(ii) Hopscotch method, and

(iii) Kruskal scheme.

3.2.3.1 Goda Scheme:
Goda [59] has proposed an unconditionally stable implicit

scheme for approximating the KdV equation (3.1.1), namely:

-1__ (un+1 _ un )+ € (un + un )un+1 _(un . un)un+1

At J j] 6Ax 3 j+17 31 j-1 3731
M n+ n o+ + 2 Nty _ n-¢hs =0

+Z(Ax)3[ Yjez T My T j—z]

(3.2.3.1.1)
where n , j are integers n , j = 0,1,...,N . We can rearrange this
equation as:

n+1l n+l n+1 n+1 n+1 n
- + + = 2.3 1.
o uj_2 + zj_luj_1 + u, yj”uJ+1 o uJ+2 u, (3.2.3.1.2)
where:
_ pAt _ At
= Sx)” B = Gox
z =20 - B(W" +u") , y = -20 + Bu” + u” ) (3.2.3.1.3)

j-1 j-1 J j+1 j j+1

If there are N+1 internal mesh points along each row, then
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for n =0 and j = 0,1,...,N , equation (3.2.3.1.2) gives N+1
simultaneous equations for N+1 unknown values of u along the first
time row in terms of known initial and boundary values. Similarly,
n=1and j = 0,1,...,N gives us N+1 unknown values of u along the
second time row in terms of the calculated values along the first
row, and so on. Generally, the scheme (3.2.3.1.2) can be expressed
in terms of the matrix form:

n+1 n

A u =u (3.2.3.1.4)

~

where A is a S5-banded matrix of order (N+1)x(N+5):

[ -« z 1 a N
-1 yo
- Z o
0 y1
A =
-6 Z 1 a
N-2 yN—1
-a Z 1 o
- N-1 yN J
n+l .
u is an unknown vector:
i 1 1 1 1 1 T
n+ n+ n+ n+ n+
u = u , U , ... , u , u (3.2.3.1.5)
-2 -1 N+1 N+2
and u” is the known vector:
- T
n
u" = L uw ,u (3.2.3.1.6)
0 1 N-1 N

The S5-banded matrix can be reduced to penta-diagonal form by
applying the boundary conditions at the end points, which means
reducing the system from ~N+1 simultaneous equations in N+5
unknowns to N+1 equations in N+1 unknowns. Hence, the system can
be solved by a penta-diagonal algorithm (see Appendix A2).

The implicit numerical scheme (3.2.3.1.2) is consistent and

35



is first order accurate in At and second order accurate in Ax, as
the truncation error is O[(At)] + O[(ax)?].
The stability analysis of the 1implicit numerical scheme
(3.2.3.1.2) has been discussed by Goda [59] who proved that
n+1

la < HunH, which implies that the scheme (3.2.3.1.2) 1is

unconditionally stable.

3.2.3.2 Hopscotch Method:

In 1976, Greig and Morris [26] proposed a Hopscotch scheme
for the KdV equation (3.1.1}). To describe the method, discretize

the space variable x into steps of size Ax and let x = jAx,

j = 0,1,...,N . Let u = u(jAx,nAt) be the difference solution at
the mesh point (j,n) and denote f(u) = % u2 at mesh point (j,n) by

{F = f(u?) . Their scheme is then:

un+l = d" _ cAt P £ )
J J 2AX j+1 j-1
_ pAt n _ n + n . n

ETK§)3[ uj+2 2u“1 2uj_1 uj_2 (3.2.3.2.1)

n+1 n cAt n+1 n+1

=u _— —— -
J ] 2Ax j+1 j-1

_ uAt n+l n+1 n+l_  n+1
2TK§)3[ Yie2 aup Ly uj_z] (3.2.3.2.2)

To implement the scheme, we employ (3.2.3.2.1) for those mesh
points for which j+«n is even and (3.2.3.2.2) for those for which
j+#n is odd.

In their paper, Greig and Morris ({26] have assumed that
u_ =T u _=u =1u =0 for all t. The values obtained {from

-1 0 N N+1

equation (3.2.3.2.1) are now used in equation (3.2.3.2.2). Hence,

rearranging (3.2.3.2.2), we have:
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] 2(Ax) j+2 j-2 j A% je1 -1
pAt n+1l n+1
¥ (Ax)3[ Ui ToY, ] (3.2.3.2.3)

This algorithm, under the present assumption that n is even,
is to be applied for j = 1,3,5,...,N-2 . All the entries on the
right hand side of (3.2.3.2.3) are known, hence it can be written

as K? . So (3.2.3.2.3) becomes:

n+1 uAt n+1 _ n+1 _ n
uJ * 2(AX)3[ uj+2 uj_z] Kj (3.2.3.2.4)

This equation can be written in matrix form as:

Autt = K (3.2.3.2.5)
where
[ 1 o )
» *
- 1 o
A=
»* »*
- 1 o
*
\ - 1 J
*_ uAt
« 5(ax)>
1 1 1 +1 T
n+1 n+ n+ n+ n
= . , 4 »
[ u1 ’ u2 ! ’ uN-3 N-2 ]
T
= C. , k
K [ kl ! kz ’ ! kN-3 N-2 ]

For n odd, we will obtain the obvious change of superscripts

in the vector u and K in equation (3.2.3.2.5), but the coefficient

~ ~
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matrix A will remain unchanged.

The advantage of this scheme is that A is a tridiagonal
matrix which means the system is also tridiagonal and so can be
solved by the Thomas algorthim (see Appendix A1l).

The stability of this Hopscotch method has been discussed by

Greig and Morris [26] and they proved that it is stable if:

Bt ] e u- 2H

Ax TZ§)2 < 1 (3.2.3.2.6)

where G is the maximum value of u over the range of interest. Note
that the condition of stability (3.2.3.2.6), is considerably less
stringent than the stability condition for the Zabusky and Kruskal
method (3.2.2.3)

The Hopscotch method has a truncation error of order

O[(At)2] + O[(AX)Z] and is consistent with equation (3.1.1)

3.2.3.3 Kruskal Method:

Kruskal [61] has suggested the numerical scheme:

1 n+1 n M n+1 n+1 n+1 n+1
—_— - -3 + 3 -
AT (uJ u )+ 2(Ax)3[ uLs w u uj_l]
H n _ n " n _ .n -
* 2(Ax)3[uj+1 3, My J-Z] 0
(3.2.3.3. 1)
for solving the linear differential equation:
u, + pu =0 . (3.2.3.3.2)

t XXX

Kruskal did not suggest any particular numerical scheme for the
nonlinear term of the KdV equation (3.1.1). Taha and Ablowitz [58]
proposed a numerical scheme to sclve the KdV equation based on

equation (3.2.3.3.1) and their own scheme for the nonlinear term.

This leads to:
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1 n+1 n H n+1 n+1 n+1 n+1
ol - + - -
AT (uj u ) 2(Ax)3[ U, 3uj+1 + 3uj uj_l}
uAt n n n n
+ 3 - -
5 (A%) [ uj+1 3uJ + 3uj_1 uj_z]

é e 2 n+1 2,n+1 2yn . 2.n
. (5[ 60h - @ e 7]

+ (1—6) [(un+1 _ un«rl )un+1 + (un _ un )un] ] -0
+ -1 )
(3.2.3.3.3)

Several values of 8 were employed and experimentally it was

found that 6 = gave the best result.

win

This scheme 1s unconditionally stable according to linear

stability theory, and has a truncation error of order

o[(at)?] + o[ (ax)?].

3.3 Finite Fourier Transform or Pseudospectral Methods.

3.3.1 Split Step Fourier Method by F.Tappert [58,62]:

For convenience, the spatial period 2p was normalised to

(0,2n]. Then the KdV equation becomes:

3
en n _
u, o+ - uu, 4 p[ 5 ] Uyyy = 0 (3.3.1.1)

with x = (x*pim

The essence of the solution method is to alternate between
two steps:
(1) Advance the solution using only the nonlinear term by means of
an implicit finite difference approximation, and
(2) Advance the solution using only the linear term by means of
the discrete fast Fourier transform (FFT).

To implement this method to solve the KdV equation (3.3.1.1)
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as the first step, we first approximate:

u, + 5 u uX =0 (3.3.1.2)

Gn*l _ un ) C_TlAt, G2 n+1 ) GZ n+1+ > n _ 5 n
j j 8pAy j+1 j-1 u j+1 u j-1

(3.3.1.3)

where u is a solution of equation (3.3.1.2) and u is the solution

of equation (3.3.1.1). For the second step, we would take:

1

33,3
u(Xj,t+At) = F etk T /p At F

(G(Xj,t))) (3.3.1.4)

where F denotes the discrete Fourier transform and F & its

inverse. This scheme is unconditionally stable according to linear
stability analysis, and has a truncation error of order
o[(at)?] + ol (ax)?) In order to find F(u) and F ', the FFT
technique is used.

Taha and Ablowitz [58] have found that an improved
discretisation of (3.3.1.2) works considerably better.
Specifically, the truncation error of the split step Fourier
method is improved to the order of o[(at)?] + 0[(ax)*] instead of
ol (at)%] + ol (ax)?] by approximating equation (3.3.1.2) according

to:

~n+1 n endt [ ~2 n+l ~21" ! ~2M )Y
= - - 8 - u +
R U I i I e e
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3.3.2 Pseudospectral Method by Fornberg and Whitham [32,58]:

This method 1is a Fourier method in which ul(x,t) is
transformed into Fourier space with respect to x [63,64]. For
convenience, the spatial period is normalised to [0,2n). This
interval 1is discretised by N equidistant points, with spacing

2n

AX = - - The function wu(X,t)} , numerically defined only on these

points, can be transformed to the discrete Fourier space by:

» 1 Nt -2m1 jk/N
u(k,t) =Fu=— & u(jaXt) e ]
vV N j=0
T L T T (3.3.2.1)
2 2
The inverse formula is:
w(iax, t) = Flu= - & ulkt) e2™HIKN
vV N k
kK = - N , .,—1,0,1,...,E -1 (3.3.2.2)
2 2

These transformations can be performed efficiently with the fast
Fourier transform algorithm [65,66,67]. With this schenme, uX can

be evaluated as F_l{ikFu} s uXXX as F_l{fk3Fu} and so on. Combined
with a leap-frog time step, the KdV equation (3.3.1.1) would then
be approximated by:
-1
ulX, t+At) - u(X, t-At) + Eifgéﬁ u(X,t) F ' (kF(u))
-1, 3
- 21puAt 53 F "(x"F(u)) = 0
(3.3.2.3)

Fornberg and Whitham [32] make a modification in the last term,

and take:

u(X, t+At) - u(X, t-At) + 31%253 u(X, t) F ' (kF(u)
TI3 3
- 21 F_l{ sin( o3 At) F(u) } =0

(3.3.2.4)
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The difference between equation (3.3.2.3) and equation (3.3.2.4)

is in the approximation of the linear equation:

3
U, + u[ - ] Ugyy = 0 (3.3.2.5)

The linear part of equation (3.3.2.4) is exactly satisfied for any
solution of equation (3.3.2.5). It is found that the linearised
stability condition for the scheme (3.3.2.4) is less restrictive

than the scheme (3.3.2.3) in that we need only ensure

At 3 At 1
J— < — x —_— — =3
(Ax)3 2n3 0.1520 compared to (Ax)3 < n3 0. 0323 [32].

Since the Fornberg and Whitham [32] scheme is explicit, Taha

and Ablowitz [58] consider a Crank-Nicolson implicit version e.g.:

ul(X, t+At) - u(X,t) + —iggéﬁ {u(X,t+At) F U (kF(u(X, t+At)))
iuAt n3 1, 3
+ u(X, t) F—l(kF(u(X.t)))} - EE— 53 {F- (k"F(u(X, t+at)))
+ FLOCFuX, £)) } =0 (3.3.2.6)

This scheme is unconditionally stable according to linear
stability theory.

Taha and Ablowitz [58] have tested various numerical methods
for solving the KdV equation (3.1.1), namely (i) Zabusky and
Kruskal’s scheme, (ii) Goda’s scheme, (iii) the Hopscotch method,
(iv) Kruskal’s scheme, (v) the split step Fourier method of
Tappert, (vi) the pseudospectral method of Fornberg and Whitham,
(vii) Taha and Ablowitz's local scheme, and (viii) Taha and
Ablowitz’s global scheme. Two sets of 1initial conditions were
used: (a) 1-soliton with various amplitudes, (b) the collision of
two solitons with different values of the parameters p and €. From

their numerical computations, they have drawn the following
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conclusions:

(1) The scheme of Goda required more CPU time compared with
the other schemes((i), (iii), (iv), (v), (vi), (vii)).

(2) Zabusky and Kruskal’s scheme was good for small
amplitudes but it needed more computing time than the other
remaining methods ((iii), (iv), (v}, (vi), (vii)) when amplitudes were
large.

(3) The calculations for the above two methods, Goda's and
Zabusky and Kruskal’s, were not carried out for the 1-soliton case
with an amplitude of 4. The CPU time required was too large.

(4) The Tappert and Hopscotch schemes took less computing
time than the previous two schemes. For small amplitudes,
Hopscotch was more efficient than Tappert, and they behave in
almost the same way for medium amplitudes. On the other hand, for
relatively large amplitudes, the Tappert scheme turned out to be

better.

(5) Kruskal's scheme is in general faster than the schemes
((1), (11), (iii), (v), (viii)).

(6) The Fornberg and Whitham method is much faster than the
Kruskal scheme. It 1is roughly three times faster for small
amplitudes and six times faster for large amplitudes.

(7) Taha and Ablowitz’s local scheme is the best amongst all
the described schemes above. It was roughly eight times faster
than the Kruskal scheme and also it was roughly one and a half
times faster than Fornberg and Whitham’s scheme. Taha and
Ablowitz’s global scheme was faster than some of the utilized

schemes, but much slower than its local version.
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3.4 Fourier Expansion Method:

There are several methods for solving the KdV equation
numerically, some of them are based on finite difference methods
where we approximate all of the differentials by appropriate
finite differences and reduce the partial differential equation to
a set of algebraic equations. A numerical procedure competitive
with the finite difference method is the Fourier expansion method.
In this method, the unknown function is expanded in terms of a
Fourier series and the original partial differential equation is
reduced to a set of ordinary differential equations for the
Fourier coefficients. We are going to give a summary of the
Fourier expansion method.

Consider the Kdv equation (3.1.1), with € =1,
pu = 0.000484 , as followed in [29], where the initial periodic
condition is:

u(x,0) = cos(nx) 0 < x< 2 (3.4.1)
The Fourier expansion corresponding to this is:
>3]
u(x,t) = g ak(t) exp (1mkx) (3.4.2)

k=-00

with initial condition:

ak(O) = Sk,il 72 (3.4.3)

where Sk is the Kronecker delta. Substituting equation (3.4.2)

, M

into equation (3.1.1), we obtain:

da 2 3 3
—k = -in m a a +inmn k a
dt Z k-m m H k
m=-0
ik e 3 3
= - — X a a + imp k a (3.4.4)
2 k-m m k
m=-0m

Using equations (3.4.3) and (3.4.4) leads to ao(t) =0 for all t
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Abe and Inoue [29] wused the Runge-Kutta-Gill method for
solving the set of ordinary differential equations (3.4.4). They
found that the Fourier expansion method is the most accurate and
effective method in comparison with the other methods (26,27, 30].

In addition to the schemes noted above, there are other
numerical schemes due to Gazdag [30], and a Taylor Fourier

expansion method proposed by Canosa and Gazdag [31].

3.5 Finite Element Methods [68,69,70,71,72].

3.5.1 Introduction:

The term finite element was first used by Clough [73] in
1960. Since its 1inception, the 1literature on finite element
applications has grown exponentially, and today there are numerous
Journals which are primarily devoted to the ‘theory and
applications of the finite element method [74].

The finite element method is now widely accepted as the first
choice numerical method in all kinds of structural engineering
applications in aerospace, naval architecture and the nuclear
power industry. Applications to fluid mechanics are currently
being developed for the study of tidal motion, thermal and
chemical transport and diffusion problems, as well as for
fluid-structure interactions.

During the nineteen-sixties, research on the finite element
method was widely pursued simultaneously in various parts of the
world, particulary in the following directions:

1) The method was reformulated as a special case of the weighted
residual method,
2) A wide variety of elements were developed including bending

elements, curved elements and the isoparametric concept was

introduced, and
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3) The method was recognised as a general method for the solution
of partial differential equations. Its applicability to the
solution of nonlinear and dynamic problems of structures was amply
demonstrated as was its extension into other domains such as soil
mechanics, fluid mechanics and thermodynamics. Solutions were
obtained to engineering problems hitherto thought intractable
[751].

In the finite difference approximation of a differential
equation, the derivatives in the equation are replaced by
difference quotients which involve the values of the solution at
discrete mesh points of the domain. The resulting discrete
equations are solved, after imposing the boundary conditions, for
the values of the solution at the mesh points. Although the finite
difference method is simple in concept, it suffers from several
disadvantages. The most notable are the 1inaccuracy of the
derivatives of the approximated solution, the difficulty in
imposing the boundary conditions along nonstraight boundaries, the
difficulty in accurately representing geometrically complex
domains, and the inability to employ nonuniform and nonrectangular
meshes.

The finite element method overcomes some of the difficulties
of the finite difference method because it is based on integral
formulations. The geometrical domain of the problem is represented
as a collection of finite elements and can be divided into
nonuniform and nonrectangular elements if the need arises [(74].

Modern finite element integral formulations are mainly
obtained by two different procedures: variational formulations and
weighted residual formulations [76].

Variational models usually involve finding the nodal

parameters that yield a stationary (maximum or minimum) value of a
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specific integral relation known as a functional. It is well known
that the solution that yields a stationary value of the functional
and satisfies the boundary conditions, 1is equivalent to the
solution of an associated differential equation known as the Euler
equation. If the functional is known, then it is relatively easy
to find the corresponding Euler equation.

Most engineering and physical problems are initially defined
in terms of a differential equation. The finite element method
requires an integral formulation so that one must search for the
functional whose Euler equation has been given. Unfortunately,
this is a difficult and sometimes impossible task, therefore there
is an increasing emphasis on the various weighted residual
techniques that can generate an integral formulation directly from
the original differential equations.

The generation of finite element models by weighted residual
techniques 1is a relatively recent development. However, these
methods are increasingly important in the solution of differential
equations.

Let us begin with finding an unknown function u which
satisfies a certain operator equation:

Au=1f in Q = (a,b) (3.5.1.1)
where f is a known function and Q is the domain of interest. A is
a real differential operator of order 2m (m 1is postive). The
differential operator A is linear if u and its derivatives appear
linearly in A . Otherwise A is nonlinear.

The boundary conditions can contain the derivatives up to
2m - 1 and at each boundary point there are m boundary conditions.
If the boundary conditions involve u and derivatives of order

less than m then they are called essential. Otherwise they are

natural.
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In the weighted residual method the solution u is

approximated by the interpolation functions ¢j through:

N
u = ¥ c¢c ¢ (3.5.1.2)

where ¢ are unknown parameters to be determined.

The best choice of the approximated functions ¢j are
polynomials because polynomials are easy to manipulate, both
algebraically and computationally. Polynomials are also attractive
from the point of view of the Welerstrass approximation theorem
which states that any continuous function may be approximated,
arbitrarly closely, by a suitable polynomial.

The choice of the approximation ¢j is required to satisfy the
following conditions: The approximation must
(1) have geometrical invariance,

(2) contain a complete polynomial which includes all the lower
terms, and

(3) have sufficient continuity and parameters to represent the
solution.

Substitute the approximate solution (3.5.1.2) into the
operator equation (3.5.1.1). This operation defines a residual RN:

RN =Au-f (3.5.1.3)
where RN is a function of the chosen independent functions ¢N and
the unknown parameters cj . To determine the unknown parameters cj

using the weighted residual method one can set the integral, over

the domain Q , of the product of the residual and some weight

functions wj to be zero:

f Yy R dx =0 j=1,...,N (3.5.1.4)
o ' "

where the weight functions, in general, are not the same as the

approximation functions ¢J

48



The equation (3.5.1.4) can be simplified to the form:

N
2(jw,A¢ dx ) c =J-¢ifdx
j=1 Q S J Q
or
N
S A =f (3.5.1.5)
P 1] ] i
j=1
where:
A = j Y A ¢ dx
1] Q i J

f1=J.wifdx
Q

For different choices of the weight functions we obtain
different types of the weighted residual technique (3.5.1.4).

For ¢y =¢ , the weighted residual method (3.5.1.4) Iis
called the Galerkin method while the weighted residual approach is
called the Petrov-Galerkin method, if wi # ¢i

To obtain the Least square method one determines the

parameters < by minimising the integral of the square of the

residual (3.5.1.4):

L_[RZ dx =0
3 c,
i
or
é—BN R dx =20 (3.5.1.6)
N
3 ¢
i
The equation (3.5.1.6) can be written in simplified form:
N
SO A g A ¢ o Je,=[ e 11
j=1 Q ] Q
or

N
S A ¢ = f (3.5.1.7)
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where

>
[}

f(A 6 ) (A ¢ ) dx
Q ! J

[,
U

j (A ¢i ) f dx
Q

Another popular method for solving the boundary value problem
is the collocation method. The idea behind this approach is to
make the residual in equation (3.5.1.3) identically zero at «

selected points in the domain Q:

RN = 0 . (3.5.1.8)

or

M=z

c, A ¢j(xi) = f(xi) t=1,...,N {3.5.1.9)

The equation (3.5.1.9) gives a system of N equations in the N
unknown parameters cJ which can be solved numerically.

For both variational and weighted residual formulations, the
following restrictions are generally accepted as a means of
establishing convergence of the finite element model as the mesh
is refined [76]:

(1) - (A necessary criterion} the element interpolation functions
must be capable of modelling any constant values of the dependent
variable, or its derivatives, to the order present in the defining
integral statement, in the limit as the element size decreases.

(2) - (A sufficient criterion) the element shape functions should
be chosen so that at element interfaces the dependent variable and
its derivatives, of up to one order less than those occurring in
the defining integral, statement, are continuous.

Let us introduce the basic terms which are used in the finite

element analysis of any problem [74]):

1. Finite element discretisation. The continuous domain is
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represented as a collection of a finite number N of subdomains,
say segments. Each of these segments is called an element. The
collection of elements is called the finite element mesh. If all
the elements are of the same size, the mesh is said to be uniform.
One can discretise the domain, depending on the shape of the
domain, into a mesh of more than one type of element.

2. Error estimate. There are three sources of errors in a
finite element solution:

(1) errors due to the approximation of the domain,

(ii) errors due to the approximation of the solution, and

(iii) errors due to numerical computation.

The estimation of these errors, in general, is not a simple task.

3. Number and location of the nodes. The number of the
location of the nodes in an element depends on
(a) the geometry of the element,

(b) the degree of the approximation, and
(c) the variational form of the equation.

4. Assembly of elements. The assembly of elements, in a
general case, is based on the idea that the solution and possibly
its derivatives are continuous at the interelement boundaries.

5. Accuracy and convergence. The accuracy and convergence of
the finite element solution depends on the differential equation
solved and the elements used. The accuracy is the difference
between the exact solution and the finite element solution, and
the convergence is the accuracy as the number of elements in the
mesh 1s increased. The convergence depends on the governing
differential equation.

6. The time dependent problems. For time dependent problems,
there are two steps to be followed:

Firstly, the differential equations are approximated by the finite
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element method to obtain a set of ordinary differential equations
in time.
Secondly, the differential equations in time are solved
approximately by finite difference methods to obtain algebraic
equations, which are then solved for the nodal values.

The basic steps for the solution of a differential equation
using the finite element method is as follows [74}:
(1) Divide the given domain into a finite elements. Number the
nodes (the points of subdomains where the function is evaluated)
and the elements. Generate the geometric properties(e.g.
coordinates, cross-sectional area ,...) needed for the problem.
(2) Evaluate the element equations by constructing a suitable
weighted residual formula of the given differential equation
using:

N
u= § u y (3.5.1.10)
i=1

where; w‘ are the chosen interpclation functions.

If we substitute the equation (3.5.1.10) in the chosen

welighted residual formula, we will obtain the formula:

{ Ky { u®) = { F} (3.5.1.11)

(3) Assemble the element contributions to obtain the equation for
the whole problem.
(4) Impose the boundary conditions of the problem.
(5) Solve the overall system of equations.
(6) Compute the solution and represent the results in tabular
and/or graphical form.

In the following sections we will give a brief discussion
about the finite element approach by using the Galerkin method to

solve the Korteweg-de-Vries equation.
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3.5.2. Alexander and Morris Galerkin Method:

Alexander and Morris [35] proposed the Galerkin method, in
which the trial and test functions were cubic splines for solving
the KdV equation:

u tuu o+ pu = 0 (3.5.2.1)
et S" denote the space of smoothest splines, defined
piecewise on intervals of length h (mesh size) as polynomials of

order w (degree m-1 ). These spline functions can be constructed

in the usual way as an (m-1)-fold convolution: Let:

1 -1 < X g 1
2 2
M1(X) = (3.5.2.2)
0 otherwise
then
M (X) =M *M *M * | *M (m-1) {(3.5.2.3)
n 1 1 1 1
where:
[o9]
(f*g)X = j £(X) g(X-y)dy (3.5.2.4)

bt 7]
Using (3.5.2.2), we see that

X+1
M_(X) =J ‘f M (Y)dY (3.5.2.5)

w1 -
2

The basis functions ¢1(X) of S" are then defined by:

¢1(x) = Mm(; - 1) t is integer (3.5.2.6)

Alexander and Morris proposed the generalised Galerkin method for
solving the KdV equation (3.5.2.1): if Ve S” , and U denotes the
Galerkin solution, then:

b
3 —
J [UL + U Ux + [ Uxxx ][V +quh VXxx ]dx =0 (3.5.2.7)

a

where; q is an arbitrary parameter determining the amount of
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dissipation in the scheme (q = O corresponds to nondissipative
scheme).

In order to undertake a Fourier analysis of the accuracy and
stability of (3.5.2.7), Alexander and Morris set U =d in the

nonlinear term u u in the equation (3.5.2.1). Then they rescalec

x , t and u to remove the constant g and obtain the linearised
form:
b

J [Ut tdu o+ U ][v +q h3vxxx ]dx =0 (3.5.2.8)
a

The Galerkin solution may be expressed as:

Ulx,t) = & 8 (t) ¢ (x) (3.5.2.9)
i

where; ¢1(x) are cubic spline basis functions defined {35] by:

_ X_
¢i(x) = M4(E i) (3.5.2.10)
where:
r O y £ -2
(y+2)3 -2 <y < -1
3 3
- -1 <
R (y+2) . a(y+1) , 1 y <o (3.5.2.11)
oY T (-y+2)7- a(-y+1) 0<y<1
(-y+2)3 1 <y<o2
‘o 2 <y

Si(t) are the unknown parameters to be determined, and y is a
local wvariable. In addition to these cubic splines, quintic
boundary polynomials are were specially constructed to maintain
the continuity of the second derivative.

Substituting (3.5.2.9) into (3.5.2.8), setting V = ¢i and
using Fourier analysis, Alexander and Morris proved that the
scheme (3.5.2.8) 1is conditionally stable if d > 0.0 ; and
unconditionally stable if d < 0.0 . In the former case, they can

make the scheme stable by making the value of h sufficiently

small. This scheme is second order accurate.
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A numerical computational procedure used for implementing the

scheme (3.5.2.7) leads to the system:

AS +B& =0 (3.5.2.12)

~ ~

where A and B are 7-banded matrices. This set of differential
equations was solved using the IMSL library routine DREBS.

This system has been discussed by Alexander and Morris [35]
for different values of q with initial conditions one soliton and
two solitons and boundary conditions in which the solutions have
their zeroth, first and second derivatives equal to zero on the
boundaries.

Alexander and Morris computed the maximum error for a single
soliton and they found that with h = 0.05 and t = 0.39 , and exact
time integration, a maximum error ranging between 0.025 and 0.059
according to the chosen value of the dissipation parameter; for
h = 0.033 and t = 0.046 the error presented is of the order
0.015 . Also they conclude that a comparison with the Hopscotch

method [26] shows that the Galerkin method has the advantage of

smaller errors, for the same mesh size.

3.5.3 Petrov-Galerkin Method:

The Petrov-Galerkin method is a Galerkin method in which the
test and trial functions are not the same. Sanz-Serna and Christie
[36] in 1981 proposed a Petrov-Galerkin method in which the trial
and test functions were chosen to be piecewise linear and cubic
splines respectively.

We attempt to solve the KdV equation (3.5.2.1) together with

the initial condition:

u(x,0) = f(x) asx<b (3.5.3.1)

Assume that the problem has a unique solution such that, for fixed
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t , ulx,t) , together with all its x derivatives, tends to zero as
[X]—> o . Conditions on f(x) guaranteeing existence and
uniqueness are given by Lax [23] and Sjoberg [24].
If we employ the Galerkin method with weight function v(x)
and integrate by parts, we obtain:
b

J [( u, + u ux)v + u u v ]dx = 0 (3.5.3.2)

a

We introduce finite elements in space in (3.5.3.2) and approximate

the exact solution by the interpolation functions:

N
Ulx,t) = & Ui(t) ¢i(x) (3.5.3.3)
i=0

where ¢1(X) , i=0,1,...,N , are piecewise linear trial functions

and Ui(t) are unknown parameters to be determined from the system

of ordinary differential equations:

b

J [( Uy + UU G+ u U ) ] dx = 0 (3.5.3.4)

a

where; wj are plecewise cubic spline test functions defined [36]

by:
WJ(X) = y((x - xo)/h - 3) , §J = 0,1, ...,N (3.5.3.5)
then:
W(x) = é[cr(xﬂ) v ac(x) + o(x-1) + 3p(x+1) - 3p(x—1)] (3.5.3.6)
o (Ixl - 1)2%(21x] + 1) Ixl < 1
o(x) =
0 otherwise
) x(xl -1 )° Ix] <1
x) =
’ o) otherwise

and the trial functions ¢1(X) are defined [36] as a piecewise

linear hat function:
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1 if i=j
¢1(xj) =
0 otherwise
Sanz-Serna and Christie have discussed the following two cases:
(1) Linearised case:
Consider the linearised KdV equation:
u, * d u o tweu o= 0 {(3.5.3.7)

where; d is constant. With the test and trial functions defined

previously, the linear analogue of equation (3.5.3.4) is:

AU +BU =0 (3.5.3.8)

T
where; U = [Uo(t), U1(t) s e, UN(t) ] and A, B are 5-band
matrices of order (N+1)x(N+1) . The system (3.5.3.8) is given

explicitly by:

M - - =
+ 2h3 [ U1+2 2U1+1 + 2U1-1 Ui_2 ] 0 (3.5.3.9)
where:

«a=9ax -1 , «_ =T 9 + 24 , O = 44 - 660 ,

2 3
B1 = 1200 = 1, 82 = 14 - 240 ,
t = 0,1, ...,N and we set U = U =U = U =0
-2 -1 N+1 N+2

For general « , using Taylor expansion the explicit scheme

(3.5.3.9) is second order accurate. But if a = its accuracy

1
6
becomes fourth order [36].

The stability analysis for the system (3.5.3.8) has been

discussed using the von Neuman stability test and it is found that

the system is unconditionally stable [36].
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(2) Nonlinear case:
Returning to the KdV equation (3.5.2.1), the system (3.5.3.8)

can be written as:

A U +B(U) =0 (3.5.3.10)

~ ~

where; A and U are as defined in the linear case and B(U) is a
nonlinear vector function. The 1ith component of equation
(3.5.3.10)} is of the form (3.5.3.9) except for the fact that the

term involving d is replaced by:

1 [Zauz +yU U +7U2 + U U -9y UU

120h 1 1+2 1 1+2 1+1 2 1+1 37i+1 1 31 i-1
-y U® -yU U _ -2aU? (3.5.3.11)
72 i-1 71 i-1 -2 1 i1-2 T
where:
= - = -— 6 = -
. 241 1 , 7, 24 36Q , 73 23 720

Taylor expansion for any o renders the method second order

accurate [33,36]

To 1increase the accuracy of this method Sanz-Serna and

Christie have proposed an approximation to the nonlinear term:
2 N>
US(x,t) = Ui(t) ¢i(x) (3.5.3.12)
i=0

using this definition the nonlinear term u u,  can be replaced by:

| 2 2 2 2
48h [ U1¢2 * 10Ui+1 10Ux-1 Ui-2 ]

So the ith component of the equation (3.5.3.10) becomes:

58



J—[U,+26U + 66U + 26U  + U ]
i+2 i+1 i i-1 i-2

120
1 2 2 2 2
* 48h [ Ui+2+ 10Ui+1 1OU1—1 - Ui—2]
+ E5 U - 2U + 2U -u -
2h i+2 i+1 i-1 i-2 =0 (3.5.3.13)

Using Taylor expansion, the truncation error of the method is
fourth order accurate (33,36].

The Sanz-Serna and Christie method has the disadvantage of a
slight background noise in the form of a short wave length ripple
of very small amplitude. It is only noticeable in those regions
where the solution itself is very small, and would often not be
considered to be a problem at all. In some applications, however,
it may be desirable to have a smoother solution. In these cases a
method which is slightly dissipative could be used [22,77,78].

The methods we propose in chapters four to eight are also
finite element methods with some similarties to those discussed

here. The results we obtain will be compared in detail with those

obtained by previous authors.
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CHAPTER 4

GALERKIN METHOD WITH HERMITE CUBIC FUNCTIONS

4.1 Introduction:

The cubic Hermite interpolation functions have continuous
first derivatives, and for this reason one can chose them as basis
functions to approximate the solution of the KdV equation. Another
advantage of choosing the cubic Hermite functions as trial and
test functions is that the first derivative is automatically
computed at each mesh point.

The present chapter is devoted to solving the KdV equation
using Galerkin’s method with piecewise cubic Hermite trial and

test functions.

4.2 The Governing Equation [77,79]:

The Korteweg-de-Vries equation is:
u+ecuu +puu =0 a<x<b (4.2.1)
t b XXX

where; € and u are positive parameters. The boundary conditions

will be chosen from:

ula, t) =B
u(b, t) =0 (4.2.2)
u (a,t) =u (b,t) =0
X X
u (a,t) =u (b,t) =0
XX XX ]

and the initial conditions on u(x,t) will be prescribed in a later

section.

Applying Galerkin’s method with weight function v(x), which

is also assumed to satisfy the boundary conditions (4.2.2), gives:
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b

I v u teuu +p LN Jdx = 0. (4.2.3)

a
Integrating by parts, the term involving the third derivative

and using the boundary conditions (4.2.2) leads to the equation:

b
J [v(ut + €gu ux) -u vxuxxldx =0 (4.2.4)

a
The condition the integral imposes wupon the interpolation

functions, is now that those functions and their first derivatives
must be continuous throughout the region. To satisfy this
requirement we have chosen Hermite cubic polynomials as shape

functions.

4.3 The Finite Element Solution:

Divide the region [a,b] into N equal finite elements of

length h by the points x1 where:

a =X <X ...< X =0b
0 1 N
There are N+1 nodes at xO , xl,..., xN and a corresponding N+1
nodal parameters u0 , u1 ,...,uN

It will be assumed here that the variables of interest can be
uniquely specified throughout the solution domain by the nodal
parameters associated with the nodal points of the system. These
nodal parameters will be the unknown parameters of the problem. It
is assumed also that the parameters at a particular node are
influenced only by the values of the quantity of interest within
the elements that are connected to that particular node. Next, an
interpolation function is assumed for the purpose of relating the
values of parameters at all the nodes that are connected to a
particular element.

To make these assumptions clear, let us consider initially a

typical cubic Hermite element [xi , xi+1] which has nodes at X,
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and x“1 and at those points the nodal parameters are the values

of the function u and its first derivative u’(u’'s=s u{). Over the
t p

element the function u is given by:

4
u®(x,t) = N(x) 8°(t) = % N, sj (4.3.1)

~ ~ i=1

]
where & =[u , u , u , u ]
- t i 1«1 l+1

is the vector of nodal parameters which is a function of time only

and N is defined (74,75} as:

~

2 3 2 3 2 3 2 3
N = [1 - 352 + 253, £ - 5 + —EZ' 25.2— §3' - —E- + -—E-Z] (4.3.2)
~ h h h h h h h h

which is the shape function expressed in terms of a local

coordinate § = x - X, 0< €< h

M [

A N3

i
i
]

¥

\
|
)
)
]
I
|
|

x 2ak\

L

Figure 4.1 Typical element of shape function cubic Hermite.

Since equation (4.2.4) is valid over the whole region [a,b],
it is valid in particular, over the element e so that the
contribution to the equation (4.2.4) can be written:

h

J.o [v(ut +£u ux) - MV ldx (4.3.3)

which, if we identify the weight function v with a shape function

N , and use equation (4.3.1) becomes:

~



h h h

4 a4 4

z J e z z I 4 e e z a7

N N dx[& + ¢ N N N dx|8 -
j=1 o 1) j j=1 k=1 o ! Ik % ksj oo ONidex ®
(4.3.4)
Equation (4.3.4) can be written in matrix form as:
. T

A° 8% + €8 L°8° - ucC®8° (4.3.5)

~ ~ ~ ~

where the element matrices are given by the integrals:

h

K= J N, N dx (4.3.6)
0
h s rZs

e

c; = J NN dx (4.3.7)
0

and

h

e ’

Ly, = J N, NN dx (4.3.8)
0

i, ., k=1, y &

. e e € .
The matrices A- and C  are square 4 x 4 and L~ is a block 4x4x4

having an associated 4 x 4 square matrix defined by:

4
_ e
Blj = 3 LiJk Sk (4.3.9)
k=1
where 8 = [ u , u , u ’ ]T
N i 1+1 1+1
The element matrices A , c® . L°® have been computed

algebraically from equations (4.3.6) - (4.3.8) using the computer

Algebra package REDUCE [38] as:
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[ 13h
35
11h°
. Iih
A= 210
9h
70
_13n°
L 420
)
0
1
h
c® =
0
1
h
and
e 1
B 11
210
Be - BC =
12 21
B =B =
13 31
e (-]
814 - B41 -
2
e h
822 = e
420
e - =
B23 - B32
B =B =
24 42

= —— ( -70,

11h° 9h _ 13 )
210 70 420
n’ 13 n°
105 420 140
13h° 13h _11n°
420 35 210
_n’ _11n° h’
140 210 105
1 0 -
h h
1 1 1
2 h 2
- b 0 L
h h
1 o1 1
2 h 2
25h , 70, -17h ) &°

D (50, sn, 50, -11n) 5°
840 ~
1 (35, -4h, 35 ,-4h ) 5°
210 ~

=P (31,30, -32, sn) s°

840 ~

h e

'8—@'('34, 5h,34;3h)§
2

D (8, n, -8,n)5

840 ~
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B, = — ( -70 , -17h , 70 ,25h ) &°
210 ~
e e h e
BS4=B43=—-—(SO, 11h , -50 , -5h) &
840 ~
e h2
B“:—(—S,—h,S,O)Se (4.3.12)
420 ~
where T
e ’ ’,
? = [ uo,u, U, u1+1] (4.3.13)

Suppose that the solution region [a,bl] is divided into w
elements of equal length h. Each element consists of two nodes and
each node has two unknown nodal parameters (one for the variable
and the other for 1its derivative). So each element has four
unknowns. Since these elements are connected at nodes

1,2,...,N-1 , so for the first element there are four unknowns

8(1),8(1), 8(1) , 8(1) and for the second element the unknowns are

1 2 3

(2) (2) (2) (2
5 .5 52 gt
1 2 3 4

and so on until the N-th element with

N N N N
unknowns 8: ), 8( ), 8( ), 8; ) where the superscript denotes the

2 3

element number.

From the continuity of u and u’ we get the following:

521 g1 g2 g1 SN g(N-1) SN (=) (4.3.14)
1 3 2 4 1 3 2 4

Now we are going to identify the local nodal parameters with

global nodal parameters 8i , i1=1,2,...,2N+2 which can be written
as:
8(1) =5, 8(1) - ' 8(1) =5, 8(1) =5, ’S(N) - ’
1 1 2 2 3 5 4 4 1 2N-1
s =5 5" =5 8™ =5 (4.3.15)
2 2N 3 2N+1 q 2N=+2

Let us divide the region [a,b] into three elements of equal

length. Then assembling the matrices A, B, and C gives:
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(1)
11
a(1)
21
(1)
31
(1)
41

b(l)
11
(1)
21
(1)
31
(1)

41

(1)
11
(1)
C
21
(1)
31
(1)
C
41

(1)
12

(1)
a

22
(1)

a
32
(1)
a

42

(1)
12
(1)
22
(1)
32

1
b( )

42

(1)
12
(1)

C
22

(1)

C
32

(1)
42

(1)
13
(1)
23
*(2)

a
11

*(2)
21

(2)
a

31
(2)
41

b(1)
13
(1)
23
*(2)
11
*(2)

21
(2)
31
(2)
41

(1)
C

13

(1)
C

23

*(2)

11

*(2)
C

21

(2)

31

(2)
(o4

41

(1)

14
(1)
24
*(2) _(2) (2)
12 13 14
*(2) _(2) (2)
a a
22 23 24
() _*(3) _*(3)
32 11 12
(2) _*(3) _*(3)
42 21 22
(3) (3)
31 32
(3) (3)
a1 a2
(1)
14
(1)
24
*(2) () (2)
12 13 14
*(2)  (2) (2)
b22 b23 24
(2) *(3) _*(3)
32 11 12
(2) *(3) _*(3)
a2 21 22
P63 (3)
31 32
(3) (3)
a1 42
(1)
14
(1)
24
*(2) _(2) (2)
12 13 14
*(2) () (2)
22 23 24
(2) Y3 @
32 11 12
(2) *(3) *(3)
a2 21 22
(3) (3)
31 32
(3) (3)
41 42
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(3)
a

13
(3)

a
23

(3)
33
(3)
43

(3)
13
(3)
23
(3)
33
b(3)
43

(3)
13
(3)
23
(3)
33
(3)
43

(3)
a

14

(3)

24

(3)
a

34

(3)

44 -

(3)
14
(3)
24
(3)
34
(3)
44 7

(3)
C
14
(3)
24
(3)
34
(3)

44 -

(4.3.16)

(4.3.17)

(4.3.18)



where

*(2)
a =
11

*(2)_
22

*(3)
21

*(2)_
11

b

*(2)_
22

b

*(3)
21

b

v(2)_
11

*(2)_
22

*(3)
C =
21

Similarly,

to the matrix equation:

The matrices A

(1)
3
33

(1)+
44

(2)
<+
43

b(l-)k

33

(1)+
44

(24)+
43

(1)
+
33

(1)+
44

(21
43

(2)
a
11

(2
a
22

(3)
21

b(2)
11

b(2
22

(3)
b
21

(2)
C
11

(2
22

(3)
21

)

)

)

’

’

*(2)
a =
12

*(3)_
11

*(3)_
22

*(2)_
12

b

*(3)_
11

b

*(3)_
22

b

*(2)
C =
12

*(3)
C =
11

*(3)_
22

(1) (2) *(2)
+ , a =

34 12 21
(2) _(3) *(3) _
33 “11 ’ 12
(2)+ (3)
a4 22
(1)+ (2) ) b*(2):
34 12 21
2 *
( ‘)P b(3) ’ b (3)=
33 11 12
(2) , , (3)
44 22
(1, (2 ) C*(z)=
34 12 21
(2) (3 *(3) _
33 11 ! 12
(2) 3

c + c( )
44 22

T

,8_ ,8_ 1]

7 8

(1) _(2)
43 21
(2), _(3)
34 12
(4.3.19)
b1} @)
a3 21
(2, (3)
34 12
(4.3.20)
(1) _(2)
43 21
(2), _(3)
34 12
(4.3.21)
(4.3.22)

assembling together contribution from y elements leads

~

~

~

B(8) ,

~

element matrices A€ , c*®

remain

independent.

fixed, but B®(8)

constant

e
Lljk

~

throughout

A8+eB(8) 8 -ucCs

~

¢]

and C are septa-diagonal in form.

(4.3.23)

The

are the same for every finite element and

the

run,

so A

~
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are time

is also the same for every element and remains

depends upon nodal parameters 5° which are time



dependent, so that B(8) must be reconstructed for every time

~

step. Suppose that between time levels n and n+1 8 is interpolated

~

by:
8 = ((1-8) , 8) ~ (4.3.24)

where t=(n+6)At with 0 < 8 < 1 . Then:

d & 1 8
— T — ( —1 , 1) ~
dt At sht! (4.3.25)

Hence equation (4.3.23) can be written as:

8n+1 8n
Al =" o |+ e B(8™)|(1- 0)8™+ 08" |- u cl(1- 6)8™+ 08™*}| = 0
At ~ ~ ~ ~ ~

Rearranging we obtain the recurrence relationship:

A+ 0 At(e B(8™)- p C)|{8" '=|A+(1-8)At (- B(8") + u C)|8" (4.3.26)

~ ~ ~

The parameter 8 takes different values such that:

9 =0 gives Forward Difference scheme

6 = % gives Crank-Nicolson scheme

0 =1 gives Backward Difference scheme
Now letting 6 = % , equation (4.3.26) becomes:

~ ~

Ax “%E (¢ B(8") - pc|s"" =|a - ‘%E (e B(8") - p C)|8" (4.3.27)

~

which is a recurrence relationship for wupdating the nodal
parameters from time level n to time level n+1 which we shall use

exclusively in the following two equations.
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The matrix B(8) is nonlinear so that the system (4.3.27) is

~

also nonlinear. Our approach to the solution is to replace the

system (4.3.27) by two equations [56,70]:

At -
A+ =le B(s") - po)fs™! = |a - g—t(c B(8") - uC)|8™ (4.3.28a)

~ ~

and
8n&l 8n 8n+1 8n
At
A + —2(8 B[—m—+_m_] -— “ C) 8n+1= A - %(8 B[—n_.'-_a‘] ind ’_[ C) Sn
2 ~ 2 ~

(4.3.28b)

~

The predictor (4.3.28a) gives a first approximation & n+l

then the corrector (4.3.28b) may be used iteratively to improve
the approximation.
The solution of the system (4.3.28) we obtained will be
influenced by the boundary and initial conditions. So, firstly we
N 0 N

apply the boundary conditions u, = B ,u =0,u =0, u =0.

The initial conditions on u(x,0) and u’ (x,0) determine the

starting nodal vector 80.

~

The system (4.3.28) consists of two systems of 2(N+1)
equations of 2(N+1) unknowns. One can solve the 7-banded systems
(4.3.28) using Gaussian elimination .However, this algorithm is an

uneconomic method to apply because the matrices A, B(8) , and C

~

contain a large number of zero elements. One can avoid these
difficulties by storing these matrices in rectangular form of
order 2(N+yx7 and then use the septa-diagonal algorithm based on

the Thomas algorithm for tridiagonal matrices( see Appendix A3).
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4.4 The Test Problems:

We first study the motion of a single soliton.

derived from the initial condition:

(a) u(x,0)

This follows from the analytic solution of the KdV equation which

=3 c sechz(Aix + DI)

This

has been discussed in chapter 2 and it has the form:

u(x,t) =

Nl

where; A1=

(e c/;z)“2 and B1

3 csech’(Ax -Bt +D )
1 1 1

Greig and Morris [26], we choose ¢

D = h =0.05,

-6. ,
1

0.033 ,

0.01

0.3

We shall impose the boundary conditions:

u(0,t)
ux(O,t)

We show 1in Figure 4.2 our solution for times from t =

t =3.0.

Morris (26] for corresponding times and if the exact solution is

u(2,t)

u (2,t)
X

€ cA1 . To permit comparison with
=1, p=4.8x10", ¢c=
and At = 0.025 , 0.01 ,
for all time
0.0

These graphs compare exactly with those of Greig and

plotted on the same figure the curves are indistinguishable:
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Figure 4.2 Problem (a). The motion of a single soliton with
At = 0.005, h = 0.01.
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Qur second example concerns the interaction between solitons.

We use the initial condition:
(b) u(x,0) = 3 ¢ sechz(A x+D)+3c SechZ(A x +D) (4.4.4)
1 1 1 2 2 2

Figure 4.3 shows the two solitons with larger on the left. As
the time increases, the larger soliton catches up with the smaller
until, at time t = 0.75, the smaller soliton is in the process of
being absorbed, having lost its solitary wave 1identity. The
overlapping process continues until, by time t = 1.5, the larger
soliton has overtaken the smaller one and is in the process of
separating. At time t = 3, the interaction is complete and the

larger soliton has separated completely from the smaller one:
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0.0 3g¢

[N ]
f8.78

0.4 8.4

0.2

e Oe8 06 0 1,3 ded  1ed 16 18 20 Qed o6 06 0.3 1D [P S W) 1.6 l.a

1.2 1ad

o8
s 3 tal,

1.0

.2

&2

Ged 008 06 0.0 1.0 1l des bé Md WD Qea Gt 0.6 00 103 12 Mee tee  1ed

Figure 4.3 Problem (b). The interaction of two overlapping
solitons with At = 0.00S, h = 0.01.

This solution represents two solitons of magnitudes < and <,

sited initially at x = - Dl/A1 and - Dz/Az respectively with

= 0.3 c_=0.1 and D =D_= -6 A = 1fec e
T T T T 1 2 ST '
] =1,2

Chosing c1> c, ensures that the velocity, and magnitude of
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the soliton at x = - Dl/A1 is the larger and that the solitons

interact with increasing time. We take as boundary conditions:

u (0, t)
u (0,t)
X

u(2,t)
u (2,t)
X

for all time (4.4.5)

0

Our simulations (Figure 4.3) show that after the interaction of
two overlapping solitons the large and small amplitudes of the
solitons are altered from the original by about =~ 1%, = 0.39%
respectively as was also observed by Greig and Morris [26], the
agreement between the solutions is satisfactory.

( bl ) Consider the initial condition:

u{x,0) = 3 ¢ sechZ(A x+D)+3c¢c sechZ(A Xx +D ) (4.4.6)
1 1 1 2 2 2
where:
1] € ¢ 172 1

= —[ — ] it = 1, 2 , B =—-¢A
1 2 u i 2 i

M = 0.000484 , ¢ = 0.3, ¢ =0.1, D= -6. , D = -9,

1 2 1 2

The boundary conditions are imposed:

u (0,t)
u (0,t)
X

u(4,t)
u (4,t)
X

for all time (4.4.7)

"
o

The reason for chosing this initial condition is to produce an
initial condition in which the two solitons are well separated.
Figure 4.4 shows the two solitons with larger on the left. As
the time increases, the larger soliton catches up with the smaller
until, at time t = 3. The overlapping process continues until, by
time t = 4, the larger soliton has overtaken the smaller one and
is in the process of separating. At time t = 6, the interaction is

complete and the larger soliton has separated completely from the

smaller one:
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Figure 4.4 Problem (bl). The interaction of two well separated
solitons for At = 0.005, h = 0.01.

In this case, after the interaction the two solitons emerge

virtually unchanged in form and amplitude,

being ahead.

discussion of section 4.5.

Our third test example has an inital condition:

(c)

u(x ,0) = exp( - x2)

The boundary conditions we impose are:

u(¥ 15,t)
u (¥ 15,t)
X

We choose € =

(c1 ) p=0.029 h=0.1 , At =0.01

(c2)pu=0.01 , h=0.1 , At =0.01

(c3 ) u=0.007 , h=0.1 , At = 0.01

(ce ) u=0.0037, h=0.1 , At =0.01

successively, so that comparison with the work of Goda [59]

0

} for all t >0

1.0 and each of:

possible for problem (c2).
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This point will be considered in detail

the faster soliton now

in the

(4.4.8)

(4.4.9)

is



The balance between the dispersion and the nonlinearity
occurs when H = 0.0625 (41,80] and from Figure 4.5 we see that
the initial condition with this value of pu = M produces a pure
(single) soliton. It was found that the behaviour of the numerical
solutions was completely different according to whether u » u_or
Bep . The initial condition breaks up into two solitons when
0.02 < u < 0.0625 , into three when p.oosa < B < 0.02 , into four
when u = 0.0083 , into six when u = 0.0039 , and thereafter the
number of emergent solitons increases indefinitely with decreasing
numerical values of u. On the other hand, if u» B, ., no solution
breaks up into solitons at all, but>4the solutions for u » M
exhibit raplidly oscillating wave packets. For certain intermediate
values of u, a mixed type of solution was found which consists of
a. leading soliton and an oscillating tail [15,39,80]. Our

numerical results will be compared with their theoretical

predictions:
1.0 [
[ [
> y 1l > o 4.3
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- N [ [ . ‘ . - -4 ] l. ) . 0
88 ' 43
X} .8
13 [
' . 2 ' .
%) [ ’
- n 7 . . 0 . 1) 1 . . 0
L] 1
-3 a3
.. 18
W] [
» (¥} Tetond PR restos
[X} (%}
- N : s 0 ) . t 0 o 0 »
1 ] ]
o3 -3

Figure 4.5 The motion of a single soliton with balance initial
condition when p = 0.0625 h = 0.1 At = 0.01.

Figure 4.6 shows with p = 0.029 the numerical solution for times

up to t = 12.5 . We see that the initial condition resolves itself
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into two solitons plus an oscillatory tail in agreement with the

theoretical results:
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Figure 4.6 Problem (cl). The breakdown of the initial condition
into two solitons with g = 0.029 h = 0.1 At = 0.01.
Figure 4.7 shows similar results for u =0.01 . Now the
initial perturbation breaks up into three solitons. The graph
obtained in this case is identical with that given by Goda (59],

and again agrees with theoretical predictions:
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Figure 4.7 Problem (c2). The breakdown of the initial condition
into 3 solitons when o = 0.01, h = 0.1, At = 0.01.

In Figure 4.8, we have plotted soliton profiles obtained from
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equation (4.4.1) using appropriate values of u and wave amplitude.
If these profiles are superimposed on Figure 4.7, we can confirm,
to within plotting error, that the solitary waves we have obtained

are in fact solitons:

t.0 2.0
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Figure 4.8 Solitons of various amplitudes with u = 0.01, € = 1.0.

In Figure 4.9, we see that when the coefficient of the
dispersive term 1is decreased to u = 0.0076 the nonlinear term
dominates, hence the amplitude increases with time and we find

that the initial perturbation breaks up into 3 solitons, with the

amplitude increasing linearly:
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Figure 4.9 Problem (c3). The breakdown of the initial perturbation
into 3 solitons with u = 0.0076, h = 0.1, At = 0.01.
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Figure 4.10 shows that when the coefficient of the dispersive
term is decreased to u = 0.0037, the initial perturbation breaks

down into S solitons whose amplitude increases linearly:

e

Figure 4.10 Problem (c4). The initial condition splits into S
solitons when g = 0.0037, h = 0.1, At = 0.01.

A comparison of our results with those obtained by [15, 39,80} has
been made and we find that there is agreement when p 2 0.01 . For
p = 0.0076, 0.0037, we obtained three and five solitons
respectively which does not agree with their ‘theoretical
predictions [(15,39,80].

As a final test example, we consider the development of an
undular bore in shallow water. This is characterised by the
initial condition:

(d) u(x,0) = %[1 - tanh[ %] ] (4.4.10)

with two boundary conditions:

u(o, t) =1
(1) u(s50,t) =0 } for all t > 0 (4.4.11)
u (0,t) =4 (50,t) =20
X X
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I
o

u(-50,t) u(150,t)
(ii) for all t > 0 (4.4.12)
u (-50,1t) u (150,t)

X X

n
o

1l

There 1s an earlier numerical solution to this problem by
Vliegenthart [44] who gives a graphical solution. We intended to
compare our approach with this solution by solving the same
problen, choosing € =0.2, pu=0.1 and At = 0.05, h = 0.4.
Unfortunately the boundary conditions used were not stated
explicitly. Soon a study of the graphs presented we concluded that
these were most likely to be

u(o,t) =1 , wu(so,t) =o0

ux(o,t) = ux(so,t) = 0.

We adopted these boundary conditions and undertook two
simulations, the first using the method outlined here and the
second using Vliegenthart’'s finite difference scheme. The results
were identical, but did not agree with the published figures. We
determined the velocity of the leading soliton from the present
simulations and from the published graphs. We found that our
simulations produced a soliton moving slowly than the theoretical
result, whereas Vliegenthart soliton was moving more rapidly. We
finally decided to use the initial condition given in Figure 4.13
with boundary conditions (4.4.12). As expected the initial
perturbation has degenerated into a train of solitons, which move
steadily to the right with constant amplitude and velocity. We see
that the amplitudes of the solitons vary approximately linearly.
We find that the velocity of the leading soliton is in complete

agreement with the theoretical value determined from its

amplitude:
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Figure 4.11 Problem (d) boundary conditions (i).The solution
graphs for varlous times with 4t= 0.05, h = 0.4,¢ =0.2, u =0.1.
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Figure 4.12 Problem (d) boundary conditions (i). The solution

= 0.1

graphs for various times with At = 0.0S5, h = 0.4, € = 0.2, u
using finite difference scheme.
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Figure 4.13 Problem (d) boundary conditions (ii).The initial
perturbation breaks into 10 solitons At=.05, h =.4, € =.2, u =.1.

4.5 Discussion:

When used to determine the solution of the KdV equation any
numerical scheme must be capable of faithfully representing the
amplitude of the solution over many time steps and must also
predict the progress of the wave front with little error (26].

We have observed graphically that our numerical single

soliton solution for problem (a) is indistinguishable from the

analytic results.

To measure the accuracy of the numerical methods in solving
the KdV equation we compute the difference between the analytic
and numerical solutions at each mesh point after each specified
time step, and use this in the discrete Lz- and Lw- error norms

which are defined by [29,36,59]:
172
t N t 2
L, =1l ut* e -l = L h 2 u et - | (4.5.1)

J=1 J J
and

exact n

L =max | u -u (4.5.2)
CHE J
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This error 1is used to compare S numerical methods 1in
Tables 4.1, 4.2 for the single soliton solution [36]. We see that
the Galerkin cubic Hermite method compares very favourably with
the methods of references [27] and [26] and is a competitor to the
Petrov-Galerkin method [36]:

Table 4.1

The growth of the discrete Lz—error norm x 10° for single soliton

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Hermite
(27] [36] [36]

Ax = 0.05 At = 0.025 h = 0.05 At = 0.025

0.25 34.64 61.21 81.39 52.15 1.20
0.50 122.68 122. 41 102.54 64.90 2.45
0.75 210. 44 181.35 125.84 89.01 4.00
1.00 298.19 228.10 150.57 107.20 5.79

h = 0.033 At = 0.01

0.25 31.18 5.94 0.19
0.5 43. 35 7.56 0.33
0.75 56.21 8.70 0.47
1.00 74.08 9.49 0.62
Ax = 0.01 At = 0.0005 h = 0.01 At = 0.005

0.25 5.94 3.79 4.46 0.21 0.03
0.50 13.17 9.28 7.01 0. 38 0.05
0.75 21.08 14.14 10.08 0.57 0.07
1.00 28.66 18.72 13.26 0.74 0.09

From Table 4.1 we see that the Lz—error norm calculated from
our scheme is smaller than that calculated by other authors and
when compared with the best method quoted in Table 4.1 it is still

smaller by a factor of at least 10:
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Table 4.2

The growth of the discrete Lm—error norm x 10° for single soliton

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Hermite
[271] [36] [36]
Ax = 0.05 At = 0.025 h = 0.05 At = 0.025
0.25 19.4 32.7 42.18 30.22 3.05
0.50 63.5 67.4 51.85 22.85 5.78
0.75 122.4 99.3 87.60 35.86 11.31
1.00 161.4 141.6 100. 41 39.39 14.61
h = 0.033 At = 0.01
0.25 14.27 2.80 0.43
0.5 21.65 4.53 0.81
0.75 29.78 4.85 1.15
1.00 39.37 5.85 1.66
Ax = 0.01 At = 0.0005 h = 0.01 At = 0.005
0.25 2.05 1.11 1.21 0.07 0.06
0.50 4.22 2.14 2.15 0.11 0.13
0.75 6.36 3.54 3.09 0.17 0.18
1.00 8.13 4.91 3.83 0.21 0.23
Table 4.2 shows us that the Lm-error norm computed from our
technique for a single soliton using the definition (4.5.2) has

been compared very well with all the method which are quoted in

Table 4.2. We observe that the Lm-error norm 1is greater than

L2—error norm which disagrrees with the authors [26,27,36]. Also
we find that the value of Lm-error norm using our method is

smaller than even the best method (Modified Petrov-Galerkin) by

factor 0.3 and in the worst case it has the same magnitude.

Table 4.3 shows us that the error 1is still small by
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comparison with the other authors even when the time is increased
up to t = 3.0. So we conclude that our numerical scheme is
eminently suitable for the determination of solutions to the KdV

equation even when relatively large time and space steps are used:

Table 4.3

The growth of the error for a single soliton

h = 0.05 At =0.025|h = 0.033 At =0.04|h = 0.01 At =0.005
Time | L x 10 | L x 10° Lx 10° L x 10° L x 10%| L x 10°
1.25 | 7.75 21.65 | 0.80 2.09 0.11 0.28
1.50 | 10.03 | 24.27 | 0.98 2.45 0.12 0.32
1.75 | 12.51 | 35.49 | 1.16 2.99 0.14 0.38
2.00 | 15.30 | 37.82 | 1.33 3.61 0.16 0. 41
2.25 | 18.25 | 51.35 | 1.52 4.07 0.18 0. 47
2.50 | 21.63 | 53.26 | 1.71 4.38 0.20 0.54
2.75 | 24.81 | 68.56 | 1.89 4.86 0.22 0.59
3.00 | 28.63 | 69.54 | 2.12 5.80 0.24 0.64

It is 1important that any scheme used to solve the KdV
equation be conservative. To examine this property for our scheme
we have determined the quantities I1’ 12 and I3 defined by
equations (2.4.8)-(2.4.10) respectively for problem (a) at various

times; see Table 4.4:
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The computed value Il, 12, and 13

Table 4.4

for a

single soliton

1 I2 3
h = .033 = .01lh = .033] h=.01/h = .033|h = .01
Time {At = .01|At =.005|At = .01{At =.005]At = .01 |At=.005
0.0 0.144597]0.144598/0. 086759 0. 086759 0. 046850(0. 046850
0.50 |0.144588(0.144598(0.086743|0.086760}0.046745]0. 046832
1.00 [0.144603|0.144599|0.086735(0.086760|0.0466110.046821
1.50 |0.144604|0.144600|0.086730{0.086761|0.046637|0. 046820
2.00 |0.144603|0.144601{0.086724|0.086762|0.046642|0. 046822
2.50 [0.144608|0.144602|0.086716|0.086763|0.046595|0. 046826
3.00 |0.14460410.144604|0.086705/0.0867640.046488(0. 046831

From Table 4.4 we find that the quantities Ii change by less than

0.008%, 0.063% , 0.773% respectively when h = 0.033 , At = 0.01,
and 0.005%, 0.006%, 0.065% respectively when h = 0.01 , At = 0.005
during the computer run. Thus even when h = 0.033 and At = 0.01,
they may be consldered satisfactorily conserved.

A computer run on the single soliton solution with 200 nodes

and 200 time steps took 31 secs of CPU time on a VAX 8650.
With example (b) we have demonstrated the capability of this

algorithm to accurately represent the solution when solitons

coalesce for a short period and then separate with their profiles

unaltered and only their relative amplitudes and positions

changed. In fact, from our study of this problem (b) we found that

the large and small amplitudes have changed after the interaction
by amounts of = 1% and % 0.39% respectively. This may be due to
the overlapping of the two solitons at time t = 0. For this reason

we chose problem (bl) in which the solitons were initially well
separated and we found that after the interaction the two solitons

emerged with their profiles unchanged and only their relative
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positions changed. Their large and small amplitudes have been only
slightly affected (= 0.004% ,0.033 respectively). We conclude that
the initial condition (b) is not an appropriate one when the
interaction of solitons is studied.

The quantities 11’ 12 and 13 have been computed for

problem (b) and are listed in Table 4.5:

Table 4.5

The computed values 11’ 12, and I3 for a double soliton (b)

with h = 0.01, At = 0.005

Time I1 I2 I3

0.0 0.228081 | 0.107062 0.053316
0.50 | 0.228122 | 0.107063 0. 053307
1.00 | 0.227942 | 0.107064 0.053313
1.50 | 0.227734 | 0.107065 0.053311
2.00 | 0.227684 | 0.107066 0.053302
2.50 0.227725 0.107067 0.053291
3.00 0.227870 0.107068 0.053293

From Table 4.5 we see that the quantities Ii (1 = 1,2,3) change by

less than 0.175% , 0.006% , and 0.047% respectively during the

computer run and so may be considered 1invariant; this 1is

especially true for Iz'

We have also computed the first three conservative quantities

for problem (bl), these are given in Table 4.6:
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Table 4.6

The computed values I1’ 12, and 13 for a double soliton (bl)

with h = 0.01, At = 0.005

Time Il I2 I3

0.0 0.228082 0. 103466 0.049864
1.0 0.228084 0.103468 0.049835
2.0 0.228085 0.10347C 0.049840
3.0 0.228088 0.103472 0.049864
4.0 0.228092 0.103474 0.049849
5.0 0.228094 0. 103476 0.049844
6.0 0.228098 0.103478 0.049853
7.0 0.228101 0.103480 0. 049855
8.0 0.228105 0.103482 0. 049852

Table 4.6 shows us that the quantities Il (1 = 1,2,3) change by

less than 0.011% , 0.016% , 0.059% respectively and so can be
considered conserved even over much longer periods than that used
above.

(b2) In this problem we consider the motion of two solitons
with the initial conditions determined from the analytic solutions

(2.3.4.1) with t = 0.0 in the following cases:

(i) problem (b) where « = v S/ [T d1 =-12 , d2 =-12 + A
(11) problem (bl) where a =V v/ u, d =-12,d =-18 + A
(iii) o« =4.0 , o =20, d =d, =00, e=6 , p=1

The boundary conditions are chosen:

I
o

u(F 12,t)
u (7 12,t)
X

for -0.5 < t € o.s (4.5.3)

1
o

Before the interaction the position of the smaller amplitude
is shifted forward by A2. After the interaction the soliton with

larger amplitude 1s shifted forward by Al and the soliton with
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small amplitude is shifted backward by Az'
The errors and the quantities Ii (i =1,...,3) have been
computed for the problem (b2) case (i) and are given in

Table 4.7:

Table 4.7

The computed values of the errors , Il, 12, and 13 for double

soliton case (i) with h = 0.01, At = 0.005, 0 < x < 2

Time | L x10° L x 10° I I, I,

0.0 0.228074 | 0.103456 | 0.049855
0.50 | 0.061 | 0.130 | 0.228066 | 0.103457 | 0.049842
1.00 | 0.066 | 0.150 | 0.228068 | 0.103458 | 0.049858
1.50 | 0.083 | 0.214 | 0.228075 | 0.103459 | 0.049853
2.00 | 0.113 | 0.269 | 0.228077 | 0.103460 | 0.049837
2.50 | 0.150 | 0.386 | 0.228079 | 0.103461 | 0.049830
3.00 | 0.160 | 0.390 | 0.228076 | 0.103462 | 0.049838

From this Table we note that the L2— and Lw—error norms are still
small even when the time reaches 3, and the quantities Ii
( + = 1,2,3) are changed by less than 0.004% , 0.006% , 0.051%
respectively during the computer run. We find that the computed
value I1 is better than that computed in problem (b). We conclude
that the quantities Ix are virtually constants.

In case (i) the analytic solution (2.3.4.7) predicts that the
two solitons will coalese near x = 0.74 at a time of t = 0.85.1In
our numerical solution this happens around at t = 0.85 and
x % 0.74 which agrees with the analytic results. After the
interaction the position of the maximum amplitudes at time 3 are
determined analytically. The larger amplitude is at x = 1.49 and
the smaller amplitude at x = 0.95.

The numerical solution agrees exactly with these analytic values.
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It was found that after the 1interaction the solitary waves
reappeared with their original amplitudes, correct teo a numerical
error of less than 0.8% , 0.38% respectively. We have also
calculated the L2- and Lm-error norms and the first three

conservative quantities. They are listed in Table 4.8:

Table 4.8

The computed values of the errors , Il, 12, and 13 for double

soliton case (ii) with h 0.01, At = 0.005, 0 < x £ 1

Time | L% 10| L x 10’ I L 1

0.0 0.228082 | 0.103456 | 0.049855
1.0 | 0.088 | 0.232 | 0.228084 | 0.103458 | 0.049826
2.0 | 0.151 | 0.336 | 0.228086 | 0.103460 | 0.049830
3.0 | 0.124 | 0.409 | 0.228088 | 0.103462 | 0.049855
4.0 | 0.199 | 0.504 | 0.228092 | 0.103464 | 0.049840
5.0 | 0.253 | 0.669 | 0.228094 | 0.103466 | 0.049835
6.0 | 0.279 | 0.743 | 0.228097 | 0.103467 | 0.049844
7.0 | 0.291 | 0.775 | 0.228100 | 0.103469 | 0.049845
8.0 0.296 0.793 0. 228103 0.103471 0.049842

We observe that the behaviour of the L2— and Lm—error norms as the
time increases to 8 are quite good, and the quantities Ii
(1 = 1,2,3) change by less than 0.010% , 0.015% , 0.059%
respectively during the computer run. Comparing these quantities
Wwith those obtained for problem (bl) we find that they are very
similar.

The analytic solution predicts that the two well separated
solitons will interact in the neighbourhood of x = 1.37 at time

2.95.  In the numerical solution, we observe the interaction of

P
R

x ~ 1.37 at time t = 2.95. After the interaction the soliton
amplitudes have been changed from their original values by less

than 0.006% , 0.032% respectively.
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We have also studied the interaction of solitons of large
amplitudes. The L2— and Lw—error norms and the quantities Ii for
two well separated solitons of large amplitudes are recorded in
Table 4.9:

Table 4.9

The computed values of the errrors , 11' 12, and I3 for double

soliton case (iii) with h = 0.1, At = 0.0005, -12 < X < 12

time | L% 10’} L x 10° I, I, 1,
-0.5 11.99991 | 47.99998 | 211.2000
-0.4 | 1.431 | 1.536 | 12.00003 | 48.00010 | 210.9441
0.3 | 2.604 | 2.728 | 12.00010 | 48.00057 | 210.9020
0.2 | 3.625 | 3.873 | 12.00018 | 48.00109 | 210.9023
~0.1 | 4.273 | 4.521 | 12.00027 | 48.00162 | 210.9600

0.0 | 3.592 | 4.521 | 12.00038 | 48.00219 | 211.1746

0.1 | 4.605 | 4.669 | 12.00045 | 48.00283 | 211.0532

0.2 | 5.694 | 6.006 | 12.00054 | 48.00340 | 210.9515

0.3 | 6.110 | 6.580 | 12.00063 | 48.00395 | 210.9382

0.4 | 6.348 | 6.901 | 12.00075 | 48.00456 | 210.9532

0.5 | 6.426 | 6.901 | 12.00080 | 48.00508 | 210.9747

Table 4.9 shows us that the L2— and Lm—error norms increase as the
time increases and these errors have the same magnitude, and that
the quantities I1 (1 = 1,2,3) change by less than 0.008% , 0.011%
, 0.142% respectively during the computer run. We conclude that
these quantities are relatively constant, particulary I1 and 12.
Therefore, this method has the capability of dealing with the
interaction of two solitons with large amplitudes.

The phase shifts A1 , A2 defined by equation (2.3.4.8) have
been determined theoretically for problems (b), (bl), (b2(i-ii))
as:

o« =V “1/px24.8% , « =V Ca/p ~ 14.374

then
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A1 ~ 0.11, and A2 ~ - 0.18 (4.5.4)
For problem (b2(iii))
A1 ~ 0.55, and A2 = - 1.1 (4.5.5)

The forward and backward phase shifts have been computed from
the numerical solution for problems (b), (bl), (b2(i-ii)) as

A1 = 0.11, and A2 = - 0.18
and for problem (b2(iii))

A1 ~ (.50, and A2 ~ - 1.1
which agree exactly with the analytic results except in problem
(b) there is error in the forward phase shift about 1%. Also in
problem (b2(iii)) A1 does not agree with its analytic result since
h = 0.1.

From the analytic solution, we predict that the two well
separated solitons with large amplitudes will interact in the
neighbourhood of x = 0 at time t = 0. This event is observed in
the numerical solution. the larger and smaller amplitudes have
changed from their original values by less than 0.006% and 0.013%
respectively.

Similar results are given in Table 4.10 for the conservative
quantities I1 , 12 , 13 of problems (cl) and (c2). We found that

each of the quantities I1 are very satisfactorily constant, 12

particularly so:
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Table 4.10

The computed values of Il, I2 and 13 for u(x,0) = exp(-xa)

I1 12 13
Time u =.04 u =.01 u= .04 p = .01 p =.04 p =.01
0.0 1.772454|1.772454( 1.253314 1.253314 [0.872929|0.985728
2.5 1.772496(1.772474| 1.253332 1.253342 [0.872364{0.983127
5.0 1.772603(1.772507| 1.253352 1.253358 |0.872281)|0.982074
7.5 1.771416{1.772538| 1.253371 1.253367 [0.871154|0.981986
10.0 [1.775650(1.772548] 1.253389 1.253375 |0.868684{0.982014
12.5 |[1.770914|1.772469| 1.253406 1.253387 |0.860662|0. 982004

From Table 4.10 we observe that the quantities Ii change by less
than 0.181%, 0.008%, 1.406% respectively for pu = 0.04, and
0.006%, 0.006%, 0.378% respectively for pu = 0.01. Hence the degree
of conservation observed for Il, 12, and I3 could depend on the
magnitude of the coefficient of the dispersive term (i.e. the

value of u ).

The total number of solitons which are generated from a

Gaussian initial condition can be determined [80,81] from:

1 1/2

We found this formula to be 1in agreement with the number of
solitons observed in Figures 4.5 - 4.7 and 4.9 - 4.10 above.

We have computed the first three conservative quantities Ii
for problem (d) with boundary conditions (ii). These are given in

Table 4.11:
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Table 4.11

The computed values Il, 12, and 13 for problem (d) with

boundary conditions (ii) h = 0.4, At = 0.05, € = 0.2, p=0.1

Time Il I2 I3
0.0 50. 00010 45. 00046 42. 30069
100.0 50.00142 45.00165 42. 29480
200.0 50. 00801 45. 00554 42.23354
300.0 50. 00586 45.00994 42.23244
400.0 49.99699 45.01448 42. 25957
500.0 49.97831 45.01851 42.22482
600.0 49. 96850 45.02282 42. 22728
700.0 49.98072 45.02714 42.23331
800.0 50. 00647 45.03198 42.30136

Table 4.11 shows us that even with computer runs of long duration
that the quantities Ix (i = 1,2,3) have changed by less than
0.064% , 0.071% , 0.180% respectively and so may be considered to
be satisfactorily conserved. The analytic velocity c, of a soliton
is determined from its amplitude a by the formula:

c =ae/3 (4.5.7)
where ¢ the coefficient of the nonlinear term. For this problenm
a = 1.96293, € = 0.2 so that ca = 0.1309. The observed velocity

has been found to be ¢ = 0.128 which is consistent with ca.
n

From the above discussion we deduce that Galerkin's method
with cubic Hermite polynomial trial and test functions is a useful

technique for solving the KdV equation with large space and time

steps.
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CHAPTER S

CUBIC SPLINE INTERPOLATION FUNCTIONS

5.1 Introduction:

As we know well, the best choice for approximation functions
are, 1in general, polynomials. As an alternative to the cubic
Hermite functions discussed in the previous chapter we now choose
an approximation polynomial which even has a continuous second
derivative across element boundaries. This is the cubic spline
interpolation polynomial.

We confine our attention in this chapter to finding a finite
element solution of the KdV equation based on the Bubnov-Galerkin

method using cubic splines as "shape" functions.

5.2 The Governing Equation:

We will study the Korteweg-de Vries equation:

u +euu +puu =0, a<x <b (5.2.1)
t X XXX

The boundary conditions will be chosen from:

ula,t) = 31
u(b, t) = 32 (5.2.2)
u (a,t) =u (b, t) =
X X
u (a,t) =u (b,t) =
XX XX

If we apply the Galerkin approach, with continuous weight
functions v{x), to equation (5.2.1) it produces:
b

[ v(ut teuu tpu ) dx = O (5.2.3)

a
The presence of the third spatial derivative in the integral
implies that the interpolation functions together with their first

and second derivatives must be continuous throughout the region
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a < x <b. The order of the highest derivative in the integral

can, in this case, be reduced using integration by parts to

obtain:
b b
b
+ - = -
v ( uteu ux)dx 1] vxuxxdx [ TR uxx]a (5.2.4)
a a

where; the right hand side of (5.2.4) is evaluated only at the
boundaries. The condition on the interpolation functions is now
simply that only the functions and their first derivatives need to
be continuous throughout the region. Hermite cubic polynomials,
and quadratic B-Splines are thus possible choices. However, we
have chosen to use, as trial functions in this chapter, the very
adaptable cubic splines with their well known advantages. We can
thus proceed to a solution using either equation (5.2.4) or

equation (5.2.3).

5.3 The Finite Element Solution (72,82,83,84]:

Now we are going to approximate the solution u(x,t) using
cubic B-Spline interpolation functions.

Let us consider

moa=x X <X = b as a partition of [a,b] by the knots

X and let ¢1(x) be those cubic B-Splines with knots at the
points of m . Then XN = span{ ¢_1 , ¢0 . e ¢N , ¢N*1} form a
basis for functions defined over [a,b]. We seek the approximation

uN(x,t) to the solution u{x,t) which uses these splines as trial

functions:
uN(x,t) = 8_1(t) ¢_1(x) + SO(t) ¢O(x) + ...+ 8N+1(t) ¢N+1(X)
N+1
=2 5 (t) ¢m(x) (5.3.1)
m=-1
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where; the Sm are time dependent quantities to be determined from

the boundary conditions (5.2.2) and from conditions based on
either equation (5.2.3) or (5.2.4)
Cubic B-Splines ¢m with the required properties are defined

by the relationships [35,71,72]:

[(x~-x 3
( m-2) [Xm—2'xm-1]
3 2 2 3
h™ + 3h™(x-x ) +3h{x-x )} -3 (x-x ) [x , X )
m-1 m-1 m-1 m-1 m
¢ (x) = 1 h® + 3n%(x  -x) +3h(x —x)2—3(x -x)3 [x ,x 1
m h3 m+1 m+1 m+1 m m+1
(x - x)3 [x Y ]
m+2 m+1 m+2
0 otherwise
m = -1,0, ,N+1 (5.3.2)
where; h = (x o x ) for all m , implying that all intervals
m m
[x , x ] are of equal size.
m m+1

The spline ¢m(x) and its two principle derivatives vanish

outside the interval [x , X ]. In Table (5.1) we 1list for
m-2 m+2

convenience the values of ¢m(x) and its derivatives ¢;(x) , ¢;(x)

at the knots:

Table 5.1
X X X X X X
m-2 m-1 m m+1 m+2
¢m 0 1 4 1 0
¢’ 3 -3
m 0 h 0 h 0
& . 12 6
¢m 0 h2 h2 h2 0

We now identify the finite elements for the problem with the

intervals

[xm

X

m+1

] and the element nodes with the knots X
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X oy Using equation (5.3.1) and Table 5.1, we see that the nodal

m+

parameters u are given in terms of the parameters 8 by:
m

(5.3.3)

and the variation of u over the element (x,, x'“|] is given by:
+
m+2
u = z S ¢ (5.3.4)

j=m-1

In addition, we have the valuable property that & L s
m

- m

Sm+1 , 8m+2 determine also the first and second derivatives at the

nodes (element boundaries) and that these are also continuous and

given by:

’ —_ 4 - 3 -
u =u' (x ) = 5 [8m+1 Sm_l] (5.3.5)

m m

u =u’(x ) = [8 - 28 + 8 ] (5.3.6)
m m-1 m m+1

The finite element equations we shall set up will not be

’ "

expressed in terms of the nodal parameters u , u , u
m m m

but in
terms of the element parameters Sm , SO0 we shall not directly
determine the nodal values as is the case with the usual finite
element formulations. However these can always be recovered using

equations (5.3.3), (5.3.5) and (5.3.6).

We now set up the element matrices relevant to equation

(5.2.4). For a typical element [xm , xm’ll we have the
contribution:

Kot

Jx [ v( U teu ux) MV ou ]dx (5.3.7)

m

From the equation (5.3.2) we see that each spline covers 4

elements so that each element [xm , xm#ll is covered by 4 splines.
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We define a local coordinate system € for the element by
£ =x - X where 0 < § < h, which enables the expressions for the
element splines to be expressed independently of the actual
element coordinates as:

r

m-1 (h - &)°
? . h> + 3h®(h -€) + sh(h - €)% = 3(h - &)°
et ” h + 3n%¢ + 3he? - 3€° (5.3.8)
me2 £
‘ 0<§<h

These splines act like "shape" functions for the element (see

Figure S.1) when we set up equations in terms of the element

e
parameters & .
m

P

(Pm +2

X

ma

Figure S.1 Cubic spline shape function for a typical element.

Now using (5.3.4) and (5.3.8) in (5.3.7) and identifying the

weight functions with cubic splines we obtain:

mel mel
me2 m+2 m+2 .
b [¢‘¢dx § +¢ z J ¢, ¢ 6,dx5 5
J=m-1 < ) J=m-1  k=m-1 X
m m
X
m+l
m+2
-u 2 J ¢’ ¢ dx | 8° (5.3.9)
i) J
J=m=1 <



which can be written in matrix form as:

. T
A° 8% + £ 8° L® 8° - u C°5° (5.3.10)

where:

§° = (5 , 8 , 8 , 8

m-1 m m+1 m+2

The element matrices are given by the integrals:

e m+1
Aij = J ¢1 ¢j dx (5.3.11)
X
m
. [‘xm+l
cij = ¢ ¢ dx (5.3.12)
“x
m
and
X
m+1
e ’
Dk ?, ¢j ¢, dx (5.3.13)
X
m
where; 1+ , j , k take only the values m-1 , m , m+1 , m+2 for this
typical element [xm , Xm+1]' The matrices A®° , C° are therefore

. e . . .
4x4 and the matrix L  1is 4x4x4. An associated 4x4 matrix can be

defined as:

ij = ijk 8: (5.3.14)

which also depends on the parameters. 8: will be used in the

following theoretical discussions.

The element matrices A , ok , L® are independent of the

parameters 8: and can be determined algebraically from equations

(5.3.11)-(5.3.13) using REDUCE [38] as:
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[ 20 129 60 1
e _ h 129 1188 933 60
At = (5.3.15)
60 933 1188 129
I | 60 129 20 J
( -9 15 - 3 -3
-15 9 -
ct =L 27 21 (5.3.16)
2h?
21 -27 -9 15
- 3 3 - 15 9 J
and
. 1 s 1 1
Bm-l.m-l -3 8m-1 8 8m t3 8m+1 M7 8m+2
e e 107 87 927 43
Bm—l,m - Bm,m-l T —gg 8m--1 gg 8m * 280 8m+1 * 280 8m+2
. e _ 3 33 219 9
Bm—l,m+1 - Bm+l,m—l_ 4 “m-1 35 8m * 120 8m+1 70 8m+2
e - g° - -t o1 1 1
Bm-l,m¢2 - Bm+2,m—l_ 168 8m-—l 40 8m * 40 8m+1 * 168 8m+2
e _ 361 _ 4167 289
Bm,m B 28 8m-l 21 8m * 140 8m+1 * 70 8m+2
e e _ 1783 _ 5847 5847 1783
Bm,m+1 B Bm+1,m - 280 " m-1 280 5m * 2805m+T 280 8m+2
B® = B® 9 219 33 3
mym+2 mra,m = - 70 8m-l ~ 140 8m * 35 8m+1 * 4 8m+2
289 4167 361
B® = - 2°7 - 20 w0l
mel,me1 76" Om-1 ~ 140 °m T 2131 * 28 Bn.
927 87 107
B® - B - .43 _ 227 87 107
mel,me2 - Cme2,me1- 280 Om-1 " 280 On ¥ 56 Omer T 56 Opea
1 1 S 1
B® = - -z > = .
o2, me2 82 On-1 T2 %% T 38 Bner T3 % (5317

Let us divide the region [a,b] into four elements of equal

length h and the corresponding KdV equation becomes:

A& +¢B(8) 8-ud=0 (5.3.18)
Where:
T
8=(5,.8,.,8 .5,,8 .5 ,8) (5.3.19)
the matrices A , B(8) , C assembled from the element matrices A® ,

~
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B°(8) , C° and are given in the form:

~

Fo (1) (1) (1) (1) |
a a a
11 12 13 14
(1) *(2) *(2) *(2) (2)
a a a a a
21 11 12 13 14
(1) *(2) *(3) *(3) *(3) (3)
a a a a a
31 21 11 12 13 14
A =
(1) *(2) *(3) *(q) *(4) *(4) (4) (5.3.20)
a a a a a a a
a1 31 21 11 12 13 14
(2) *(3) *(4) * (1) *(4) (a)
a a a
a1 31 21 22 23 24
(3) *(4) *(4) *(4) (4)
a a a a
a1 31 32 33 34
(4) (4) (4) (a)
a a J
L 41 42 43 44
where
*(2) (1) (2) *(2) (1) (2) *(2) (1) (2)
= + a y = + s = a + a
11 22 11 12 23 12 13 24 13
b 1 2 * (3 3 (2 (1 *(3
At (2L (@) , (3) 3, (@ )’ (3) a1 (2) (3
21 32 21 11 11 22 33 12 34 23 12
* * *
(2) (1), (2)’a (3) (1), (), a(3)’ (a) (&) (3), _(2) (1)
31 q2 31 21 43 32 21 11 11 22 33 44
*(43) (3) (4)
() 2 3 T (21, (3 ) g - +a
31 42 31 " T12 34 23 12 * 13 24 13
. 2) 3 4 *(4) (2) (3) (4) *(4) _ (3), (a)
a (Mo g3, 3 ! ), a =a '+a '+ , a =a " +a
21 43 32 21 22 44 33 11 23 34 23
“(3) (3) (4)  _*(4) (3) (4) _*(4) (3) (4) ) = A
=a '+ , a = +a , a =a '+ a o :42,.*43
31 42 31 32 43 32 33 44 33 7 Ty |

Similarly the matrices B{8) and C can be expressed in the

~

form (5.3.20).

Generally, dividing the region [a,b] into N elements of equal

length h and combining contributions from all elements and

following the procedure for four elements, produces the matrix

equation:

AS+¢cB(8) 8 -uCs8=0 (5.3.21)

T (5.3.22)
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8 are element parameters to be determined and A , B(S) , C are

~ ~

e

matrices assembled from the element matrices A® , B°(8) , C The

~

matrices A, B(8) , C are (N+3)x(N+3) 7-banded matrices.

~

We introduce a © family of approximations which give a

weighted average of the dependent variable and its time

derivative:
8n+1 _ 8n
& = e e and & = (1 -0)8" + es™! (5.3.23)
~ At ~ ~ ~

where; 8" are the parameters at time nAt, and At is the time step

~

Substituting (5.3.23) in (5.3.21), we have:

n

A+ 6 At(eB(8")- u C)|8" = |A -(1-8)At(eB(8™)- u C)|8" (5.3.24)

~ ~ ~

Giving the parameter 6 the values o , % , and 1 produces forward,
Crank-Nicolson and backward difference schemes respectively

Now let 6 = and equation (5.3.24) becomes:

N -

n

A+ St (eB(B™) - p )8 = |a - 2 (eB(B™) - p 018" (5.3.25)

~ ~

The matrices A, C are independent of the time so, they will

remain constant throughout the calculations. While the matrix B(S8)

~

is dependent on the time, it must therefore be recalculated at

each time step.

Since the matrix B depends on the time through the parameter

8, the matrix equation (5.3.25) is nonlinear and our approach is

~

modified so that instead of solving the equation (5.3.25) we solve

an equivalent system [56,70]:
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At Zn+
A+ eB(8")- po) 8™t = |A - %3 ( eB(8")- uC)|{8"  (5.3.26a)
and
én+1 8n n+1 8n
At +
A+ ——(eB[ax———mJ— pc)|s™* ! =[a - %E(CB[m——:—m]—uC) 8"(5.3.26b)
2 ~ 2 ~

The predictor (5.3.26a) gives a first approximation 8“+1 then the

~

corrector (5.3.26b) may be used iteratively to improve the
approximation.

Before solving the system (5.3.26), we must apply the
boundary conditions which for the present formulation require the

products:
u(a,t) u (a,t) =ulb,t) u (b,t) =0
XX XX
In particular, if we choose to prescribe the boundary conditions:

u(a, t) = Bl , u(b,t) = 82

then

u f{a,t) =u (b,t) =0
XX XX

and we must impose the conditions:

8_1 + 480 + 51 = Bl
S, T By 3 =0 (5.3.27)
5 + 48 + 8 = B
N-1 N N+1 2
5 - 28 + 8 = 0
N-1 N N+1
Eliminating 8_1 , 80 , SN , SN+1 from equations (5.3.26) which
then becomes a recurrence relationship for
(s" , 8", D
1 2 N-1

Now equations (5.3.26) are (N-1)x(N-1) 7-banded matrices. In
solving equations (5.3.26) we first store these matrices in

rectangular form (N-1)x7 and then use a septa-diagonal algorithm,
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based on the Thomas algorithm for tridiagonal matrices (see
Appendix A3), to solve the equations directly. The boundary

parameters 8_1 , 80 , SN , 8N+1 can be calculated at each time

step from equations (5.3.27).

To start the solution procedure (5.3.26) a starting vector 5°

~

must be determined from the initial condition on u(x,t) . Once the

parameters & have been found at a time t, then we can evaluate

~

the solution at each node from the formula:
u(x ,t) =8 + 45 + O (5.3.28)
i i i 1+1

i =0, 1, ... , N

5.4 An Alternative Formulation:

When inhomogenous boundary conditions of the form
u(a,t) = Bl , u(b,t}) = 82 hold and u is not prescribed zero at
the ends Galerkin method with cubic spline shape functions can
still be used since the second derivative is continuous across
element boundaries. An alternative formulation based on equation
(5.2.3):

b

Ja v(ut teuwu +pu ) dx = 0 (5.4.1)

is used.

Proceeding as in section (5.3) we obtain the recurrence

relationship replacing (5.3.26) as:
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At -
At eB(8™)+ pK) 8" = |A - ‘; ( eB(8")+ pK)|8" (5.4.2a)
{ ~ ~ ~ ~
and
, n+1 n n+1l n
) 8 )
At +
A+ 2—(88[_~_—_~]+ pK) 8™t =[A - ‘2‘—"(813[8 * ]+uK) 8" (5.4.2Db)
L A ~ 2 ~
where; the matrix K has replaced the matrix C . Matrix K is

obtained from element matrices K° which have again been determined

using REDUCE [38]:

-3 9 -9 3
- 33 99 - 99
e o 1 33 (5.4.3)
2h2 - 33 g9 - 99 33
- 3 9 -9 3

Follow the procedure given in section (5.3) to obtain the solution

corresponding to this approach.

5.5 The Initial State:

From the initial condition u (x,0) on the function u(x,t) we

determine the 1initial vector 80 by interpolating u (x,0) using

cubic splines.

We firstly rewrite equation (5.3.1) for the initial
condition:
N+1 0
uN(x,O) = z 8i ¢ (x) (5.5.1)
i=-1 '
where the 8? must be determined. To do this we require uN(x,O) to

satisfy the following constraints:
(a) It shall agree with the initial condition uN(x,O) at the
knots Xx' f{ =0, 1, ... , N; leading to n+1 conditions, and

(b) The second derivative of the approximation initial condition
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shall agree with that of the exact initial condition at both ends
of the range and two futher conditions.

The above conditions (a) and (b) can be written as:

u’ (x ,0) =0

N 0
uN(xi,O) = u(xl,O) 0<1 <N (5.5.2)
u’ (x ,0) =0

N N

Using Table (5.1) the system (5.5.2) 1leads to a matrix

equation of the form:

As’ =b (5.5.3)
where:
( -12 6 A
1 4 1
1 4 1
1 4 1
A = SRR (5.5.4)
1 1
1 4 1
| -12 6
0 0 ) 0 T
5 = [ e} , 8, ..., 0 ] (5.5.5)
~ -1 0 N+1
and
T
b = [ 0, ulx ), ulx), ... ,ulx ), 0 ] (5.5.6)
N 0 1 N

To solve this matrix equation, first reduce it to tridiagonal
form by eliminating the first and last equations and then apply

the Thomas algorithm (see Appendix Al) to get the initial vector

s°.

~

5.6 Stability Analysis:

Like other authors [32,35,36,44], our stability analysis will

be based on the Von Neumann theory in which the growth factor of a
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typical Fourier mode defined as:

n

5 - én eijkh
j

(5.6.1)
where; k 1s the mode number and h is the element size, |is
determined for a linearisation of the numerical scheme.

The nonlinear term u ux of the KdV equation cannot be handled
by the Fourier mode method, therefore we linearise it
[32,35,36,44}. To do this assume that the quantity u in the
nonlinear term u u is locally constant. This is equivalent to
assuming that all 8: are equal to a local constant d hence the

linearised matrix B can be computed using REDUCE [38] to be:

(5 _ 213 _ 57 34T
10 5 10
27 549 27
" 10 - 45 T 10 5
B =4d gz §£2 25 %Z (5.6.2)
) 10 10
3 57 213 3
. 10 5 10 /

A typical member of equation (5.3.25), given that B Iis

determined from (5.6.2), is of the form:

o 8n¢1 n+1 + n+1 v« n+1l + a n+1 + o n+1 + a n+1
1 1-3 2 1-2 3 i-1 41 5 1+1 6 1+2 7 1+3
n n n n n n n
= a78i_3 + a681_2 + ocSSi_1 + oc48l + a38i+1 + a28i+2 + a181+3
(5.6.3)
where:
al = - 68 -7 , a2 = 120a +~ 3368 - 8y ,
a3 = 1191« ~ 14708 + 197y , «,= 2416q, a5= 1191« ¢+ 14708 - 197
a6 = 120x + 3368 + 8y , a7 =oa + 68 + 7
h edAt 3uAt
= — = = 5.6.4
« 140 > B 40 ¥ 4h2 ( )

Substituting equation (5.6.1) into equation (5.6.3), we obtain:
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(a + ib)8""! = (a - ib)s" (5.6.5)
where:
i=v-1

a = «(1208 + cos(3kh) + 120 cos(2kh) + 1191 cos(kh)
b = (68 + ¥)sin(3kh) + (3368 + 8¥)sin(2kh) + ( 14708 ~/9¥)sin(kh)
(5.6.6)

Let "' = g 8" and substitute in (5.6.5) to give:
- A - ib

& a + ib (5.6.7)

where g is the growth factor for the mode.
The modulus of the growth factor is ]gl =V gé = 1 . Hence the

linearised scheme is unconditionally stable.

5.7 The Test Problems:

In this section we are going to test our algorithm by
studying four classical problems concerning the motion of

solitons, their interactions and their generation from arbitrary
initial conditions.

(a) The initial condition:

u(x,0) = 3 ¢ sechZ(Alx + D1) , (5.7.1)
follows from the analytic solution of the KdV equation which has
the form:

u(x,t) = 3 ¢ sechz(Alx - Blt + Dl) , (5.7.2)

(e c/u)l/2 and B1 =€ cA1 . To permit comparison with

N

where A1=

Greig and Morris [26] and Sanz-Serna [36] we choose £ =1 ,

p=4.8ax10"% , ¢ =0.3, D =6, h=005, 0033, 0.01, and

At = 0.025, 0.01, 0.005. We shall impose the boundary

conditions:
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u(2,t)
uxx(Z.t)

]
]

u(0, t)

uxx(O,t)

0 } for all time (5.7.3)
0

These conditions represent a single soliton moving to the
right with constant speed c¢ and unchanged amplitude 3c. Our
solution is plotted in Figure 5.2 from time t = 0.0 to 3.0. When
the exact solution is plotted on the same diagram the curves
cannot be distinguished. These graphs compared exactly with those

of Greig and Morris (26] for corresponding times.
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Figure 5.2 Problem (a). The moving of a single solitary wave from
t =0.0tot=23.0withh=0.01, At = 0.005.

Our second example concerns the interaction between solitons.

We use the initial condition:

_ 2 2
(b) u(x,0) = 3 clseCh (Aix + Dx) + 3 czsech (Aax + Dz) (5.7.4)

and the boundary condlitions:

u (0,t)

uz, t) O | for all time. (5.7.5)
u (0,t) 0
XX

u (2,t)
XX

For comparison with an earlier solution [26] we have chosen
1{ ec

c, = 0.3, c, = 0.1, D1 = D2 = -6. and AJ = 5[7I-{T , J =1,2
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This choice gives us two solitons initially sited at x = - Dl/A1
and -DZ/AZ with velocities proportional to their amplitudes, which
interact as time increases. In Figure 5.3. we see that the two
solitons with the taller one to the left of the shorter one.
Because of the greater speed, the taller soliton eventually
catches up with the shorter one and they undergo a nonlinear
interaction according to the KdV equation at time t = 0.75. The
overlapping process centinues until, at time t = 1.5, the larger
soliton has overtaken the smaller one and is in the process of
separating. At time t = 3.0 the interaction is complete and the

larger soliton has separated completely from the smaller one:

1.2 [ 1
1.0 1.0
0.0 0.0
%8 8.0 P05, 10,73
0.4 [ )
0.2 [ 34
0.8 84 08 00 ).l' 1.8 1.4 3.8 b 20 e 0.4 0.6 0.0 |.l' [T I B I B 1
1.2 1.2
1.0 (2]
() 0
L) tel.$ LY fale
[ ] [ Y]
0.2 [ 3 ]
68 04 68 0.0 M8 LT L M6 s e

0.2 04 0.6 00 1.0 18 1 16 20 LD s

Figure 5.3 Problem (b). The interaction of the solitons with
At = 0.005, h = 0.01.

Our simulations in Figure 5.3 show that initially the two
solitons overlap and that after the interaction the large and
small amplitudes of the solitons are modified by about 0.94% ,
0.45% respectively as was also observed by Greig and Morris [26];
the agreement between the solutions is satisfactory.

Consider the initial condition of the two well separated
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solitons:

2 2

bl u(x,0) = h
(b1) ( ) =3 c, sec (Aix + Dx) *+ 3 c_sech (Azx + Dz) (5.7.6)
where; the values of the parameters are given in problem (b)
except that now we take D2 = -9.0. The boundary conditions are

taken to be:

u(4, t)
uxx(4,t)

u (0,t)
uxx(O,t)

} for all time. (5.7.7)

Figure 5.4 shows us that after the interaction of the two
well separated solitons the large and small amplitudes have
changed by only a very small amount (0.017% , 0.04%) respectively.

So, we can say that after the interaction the amplitudes are

virtually unchanged:
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Figure 5.4 Problem (bl).The motion of the two well separated
solitons with h = 0.01 ,At = 0.00S.

Figure 5.4 shows us that initially the two solitons placed up with
the larger to the left of and separated from the smaller. As the
time increases, the larger soliton catches up the smaller at time
t = 3. The larger soliton overtakes the smaller, accelerates
through it and emerges unaffected when the time reaches t = 4. By
time t = 6, the interaction is complete and the larger soliton has

separated completely from the smaller one.
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Our third test example has the inital condition:

(c) u(x ,0) = exp( - xz) (5.7.8)

The boundary conditions are taken as:

u(¥ 15,t)
u (¥ 15,t)
XX

0 } for all t > o . (5.7.9)
0

We choose € = 1.0 and each of the following:

(cl1)u=0.04 , h=01 , At =0.01
(c2)u=0.01 , h=01 , At =0.01
(e3)p=0.001 , h=0.025 , At = 0.005
(c4 ) u=0.0005 , h=0.025 , At =0.005

Comparison with the work of Goda [S9] in the cases (cl) and
(c2) is made.

Figure 5.5 shows the numerical solution of problem (cl) for
times up to 12.5. We see that a mixed type of solution was found
which consists of a leading soliton and an oscillating tail. We
observe the velocity of the soliton to be c = 0.4 which agrees

with the value calculated from its amplitude of c, = 0.3993:
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Figure 5.5 Problem (cl). A single soliton with oscillating tail
for u = 0.04 fromt = 0.0 to t = 12.5.

Figure 5.6 shows similar results for u =0.01 . Now the

initial perturbation splits into three solitons. The graphs
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produced in both cases in the present work are identical with
those given by Goda [S9]. The observed velocity of the leading
solution c = 0.52 agrees with that calculated from its amplitude

(ca =~ 0.5148):
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Figure 5.6 Problem (c2). The spliting of the initial condition
into 3 solitons when u =0.01 , h =0.1, At = 0.01.

In Figure 5.7 we see that when the coefficient of the
dispersive term is decreased to u = 0.001, the nonlinear term
dominates. The initial perturbation breaks up into 9 solitons
moving to the right, decreasing in amplitude and velocity from

right to left:

N = -

Figure S.7 Problem (c3). The breakdown of the initial perturbation
into 9 solitons with y = 0.001 , h = 0.025 , At = 0.00S.
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Figure 5.8 shows that when the coefficient of the dispersive
term is made smaller ( u = 0.0005 ), the initial perturbation

breaks down into 12 solitons:

Hagullll = Al

Figure 5.8 Problem (c4). The initial condition split into 12
solitons when g = 0.000S , h = 0.025 , At = 0.00S.

It was found that the behaviour of the numerical solutions
varied according to the value of u chosen. The initial
perturbation (5.7.8) was observed to split into a train of
solitons, the numbers of which increased as the coefficient of the
dispersive term was decreased.

A comparison between our numerical results and those obtained
in references [15,39,59,80) has been made for u = 0.04, 0.01 and
they were in complete agreement.

As a final test example, we consider the development of an
undular bore in shallow water. This 1is characterised by the

initial condition:
(d)  ulx,0) =% [1 - tanh [’-‘—Zﬁ-] ] (5.7.10)
5

and the boundary conditions we impose are:
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u(0, t)
u(s0,t)
uxx(O,t)

(1)

u(-50,t)
(i1)
uxx(—SO,t)

0
u_ (S0,t)
XX

u(150, t)

uxx(ISO,t)

} for all t > o (5.7.11)
0

0]
} for all t > o (5.7.12)
0

To allow comparison of problem (d) boundary conditions (i)

with Vliegenthart [44], we have chosen ¢

At = 0.05 and h = 0.4 .

0.2, o =0.1 and taken

The solution we obtained (see Figure 5.9)

shows all the general features obtained in the earlier solution

[44]. However,

we cannot make a direct comparison with those

results since the boundary conditions used by Vliegenthart are not

given.

parameters with our boundary condtions

figures.

If these are plotted also on Figure 5.9,

Instead we have used his finite difference scheme and

to produce comparable

the graphs are

indistinguishable with those obtained in the present study:
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Figure 5.9 Problem (d) boundary conditions (i). The solution
graphs for various times At = 0.05, h=0.4, €¢=0.2, u =0.1.

We find that the quantities
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boundary conditions (i) are not conserved. Therefore, we have

chosen to use the boundary conditions (ii) together with an

alternative initial condition which can be seen in Figure 5. 10:
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Figure $5.10 Problem (d) boundary conditions (ii). The solution
graphs for various times At = 0.05, h=0.4, € =0.2, u =0.1.

initial perturbation of problem (d) with

As expected the
boundary conditions (ii) degenerated into a 10-train of solitons,
which move steadily to the right with constant amplitudes and

velocities during the computer runs up to time t = 800. The

between the analytic = 0.131 and the

agreement velocity <,

numerical velocity c = 0.128 for the leading soliton was very

satisfactory.

5.8 Discussion.

5.8.1 Simulations Using Scheme (5.3.26):

We have found that our numerical single solution soliton of

problem (a) is Iindistinguishable from the analytic results to

within plotting error. To Iinvestigate more accurately how
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faithfully the numerical scheme calculates the amplitude and
position of the solution we use the L2- and Lm—error norms to
compare the numerical and exact solutions.

The Lz—error norm is defined by (4.5.1). This error is used
to compare S numerical methods in Table 5.2 for a single soliton
solution [36] with two different boundary conditions the first
(spr1) the function and its second derivative vanishing at the
endpoints, and the second (sprr) the function and its first

derivative vanishing at the endpoints:

Table 5.2

The growth of the L2x 10°  for single soliton

Time|Zabusky|Hopscotch|Petrov- |Modified|Galerkin|Galerkin
Kruskal | [26] Galerkin P-G cubic sgpline
[27] [36] [36] spl Sp11
Ax = 0.05 At = 0.025|h = 0.05 At = 0.025
0.25{34.64 61.21 81.39 52.15 13.27 13.50
0.50[122.68 |122.41 102.54 64. 90 21.95 19.93
0.75(210.44 |181.35 125.84 89.01 25.67 18.01
1.00(298.19 |228.10 150. 57 107.20 |29.45 18.44
h = 0.033 At = 0.01
0.25 31.18 5.94 1.34 0.93
0.5 43. 35 7.56 1.82 0.97
0.75 56.21 8.70 2.30 0.94
1.00 74.08 9.49 2.69 1.60
Ax = 0.01 At = 0.0005 |h = 0.01 At = 0.005
0.25(5.94 3.79 4. 46 0.21 0.02 0.02
0.50(13.17 9.28 7.01 0.38 0.04 0.04
0.75}21.08 14.14 10.08 0.57 0.06 0.06
1.00(28.66 18.72 13.26 0.74 0.08 0.08

We find that the Galerkin cubic spline method (spi) compares well
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with the best of the other methods and the error of this numerical

method is

smaller

than

the best

Table 5.2 by a factor of at least 4,

h 0.01,

method spil

h 0.05 ,

At

is better than that calculated by the method sp! when

At

= 0.005.

Furthermore,

0.025 and h = 0.033 ,

Table 5.3

At

numerical

which increases to 10 when

= 0.01.

method quoted

At = 0.005 they have the same error of magnitude:

The growth of the L_ x 10° for single soliton

the error calculated by the

But for h = 0.01

Time |Zabusky|Hopscotch|Petrov- |Modified|GalerkinjGalerkin
Kruskal| [26] Galerkin{ P-G cubic $pline
[27] [36] [36] spl spll
Ax = 0.05 At = 0.025| h = 0.05, At = 0.025
0.25|19.4 32.7 42.18 30.22 15.36 15.44
0.50]63.5 67.4 51.85 22.85 56.28 26.47
0.75|122.4 99.3 87.60 35.86 52.54 29.52
1.00(161.4 141.6 100. 41 39. 39 49.78 27.45
h = 0.033 At = 0.01
0.25 14.27 2.80 4.02 1.77
0.5 21.65 4.53 3.40 2.06
0.75 29.78 4.85 3.63 2.10
1.00 39.37 5.85 3.78 2.66
Ax = 0.01 At = 0.000S h = 0.01 At = 0.005
0.25|2.05 1.11 1.21 0.07 0.07 0.07
0.50(4.22 2.14 2.15 0.11 0.11 0.11
0.75|6.36 3.54 3.09 0.17 0.16 0.16
1.00|8.13 4.91 3.83 0.21 0.20 0.20

Table 5.3 shows us that the Lm—error norm computed from the

methods spr and spi! for a single soliton using the definition

(4.5.2) have been compared with all the method which are quoted in
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Table 5.3. We observe that the Lm—error norm is greater than
L2—error norm which disagrrees with the authors [26,27,36]. Also
we find that the value of Lm—error norm using sp! scheme for all
the values of space and time sterps is smaller than all the other
methods quoted in Table 5.3 except Modified Petrov-Galerkin when
h = 0.05, At = 0.025 is still smaller and has the same error of
magnitude when the space and the time steps decrease. The Lm~error
using the scheme spl1 is smaller than all other method quoted in
Table 5.3 especially when h = 0.05 , At = 0.025 and h = 0.033 ,
At = 0.01. It has the same error of magnitude with the best method
(Modified Petrov-Galerkin) when h = 0.01 , At = 0.00S.

Table 5.4 gives the error for a single soliton problem (a)
and from it we can say that the cubic spline method (spri) gives
an acceptably small error even when the time is increased to
t = 3.0, particular for the small values of h and At:

Table 5.4

The growth of the errors X 10° for a single soliton

h = 0.05 At = 0.025 |h =0.033 At=0.01|h = 0.01 At = 0.005

. L L L L L L
Time 2 [+ 2 P 2 o
spl [spl1|spl spll|spl{spII|spl|spll|spl [spll|spl |SpII

1.25140.2/23.4(69.5 |37.7|3.2|1.3 |5.1]2.2 [0.09{0.09]0.24|0.23

1.50/44.0/23.6|106.1(32.9|4.0{1.6 |6.2{4.3 [0.10|0.10|0.26|0.28

1.75146.2124.4(70.9 [41.9]|4.6[1.8 |6.4]|2.9 [0.11]|0.11]0.30|0.29

2.00/63.2133.7/153.4|75.9(5.2|2.1 [8.2{4.2 |0.12|0.12(0.32|0.32

2. 25(67.0!36.3]146.4|61.1(5.6|2.3 |7.5[4.3 |0.13[0.13[0.35|0.35

2.50|72.7|33.6/121.4|47.3|6.5|2.3 |11. [4.1 [0.14|0.14|0.39|0.39

2.75/89.0(38.8/169.3|56.4(7.3|3.2 [13.|7.6 |0.15|0.15|0.42|0. 41

3.00/99.3|48.4|200.4{91.0(7.4|2.9 |10.]4.5 |0.16|0.16|0.44|0.43

This Table shows us that the error computed by the scheme spIl is

better than that computed by the scheme spr especially for large
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space and time steps. For small space and time steps they the same
error of magnitude.

It is important that any numerical scheme used to solve the
KdV equation satisfies at leaét the lower order conservation laws
which they are for the present shape functions the quantities I1
(1t = 1,...,4) defined by (2.4.8)-(2.4.11) respectively.

The quantities I1 , 12 ) I3 have been computed and are given

in Table 5.5:

Table 5.5
The computed value Il, 12, and 13 for a single soliton

scheme spI

1 I I
1 2 3
h = .033] h=.01fh=.033] h=.01lh=.033}h = .01

Time |At = .01|At =.005/At = .01[At =.005|At = .01|At=.005
0.0 0.144597|0.144598(0.086759|0.086759{0.046850{0. 046850
0.50 {0.144539]0.144599(0.086752|0.086761|0.046933|0. 046852
1.00 [0.144738)0.144601(0.086748]0.086762]0.046918{0. 046853
1.50 |0.144464|0.144602|0.086747|0.086764|0.046898|0. 046855
2.00 |0.144304{0.144604;0.086746]0.086765|0.046870{0.046856
2.50 |0.144926|0.144605|0.086747(0.086767|0.046800|0. 046858
3.00 [0.144679|0.144606]0.086749{0.086768;0.046770(0. 046859

From Table 5.5 we found that the computed quantities I1 , I2 , I3
have been changed by less than 0.23% , 0.015% , 0.18% for
h = 0.033, At = 0.01 respectively, and 0.006% , 0.011% , 0.020%
for h = 0.01, At = 0.005 respectively during the computer run.

They are satisfactorily constant even with relatively large values

of h = 0.033 and At = 0.01:
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Table 5.6
Computed value of 14 for a single soliton with h = .01 At = .005
scheme sp1
T 0.0 0.5 0| 1.0 1.5 2.0 2.5 3.0
I4 .024094(.024215,.024216|.024217].024218|.024219|.02422

The computed value of the conservative quantity I4 is changed by

less than 0.52% We consider this very

during the computer run.
satisfactory.

A computer run on the single soliton solution with 200 nodes
and 200 time steps took 22 secs of CPU time on a VAX 8650.

With example (b) we have verified that our algorithm copes
adequately when two overlapping solitary waves coalesce for a

brief period and then separate with their original profiles

intact, but with their large and small amplitudes affected by

0.45% respectively and their positions interchanged.

=~ 0.94% , =
The four conservative quantities Ii i = 1,...,4 have been listed

in Table 5.7:

Table 5.7

The computed values 11’ 12, I3 and I4 for two overlapping
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poblem (b) solitons with h = 0.01, At = 0.005 scheme spI
Time I1 I2 I3 I4
0.0 0.228081 0.107062 0. 053316 0.027181
0.50 0.228085 0.107064 0.053317 0.027240
1.00 0.228082 0. 107066 0. 053318 0.027187
1.50 0.228085 0. 107068 0.053321 0.027237
2.00 0.228089 0.107071 0. 053323 0.027296
2.50 0.228093 0.107073 0. 053325 0.027316
3.00 0.228094 0.107074 0. 053327 0.027326
Table 5.7 shows that the conservative quantities I1 . 12 , 13 )



and 14 are changed by less than 0.006% , 0.012% , 0.021% , and
0.54% respectively during the computer run. So these quantities
can be considered as constant.

From the study of problem (b) we observed that after the
interaction the large and small amplitudes have been changed from
the original by 0.94% and 0.45% respectively possibly because the
two solitons are overlapping. So we chose two well separated
solitons as the initial condition problem (bl). We found that
after the interaction, their large and small amplitudes have been
changed by less than 0.017% , 04% respectively, which gives a more
satisfactory result.

We have also computed the first four conservative quantities
for problem (bl) which are given in Table 5.8:

Table 5.8

The computed values 11’ I, 13 and 14 for two well separated

2
solitons problem (bl) with h = 0.01, At = 0.005 scheme spI

Time I1 Iz I3 14

0.0 0.228082 | 0.103466 0.049864 | 0.024616
1.0 0.228086 | 0.103469 0.049868 | 0.024738
2.0 0.228090 | 0.103473 0.049870 | 0.024721
3.0 0.228095 | 0.103477 0.049872 | 0.024628
4.0 0.228099 | 0.103481 0.049876 | 0.024709
5.0 0.228103 | 0.103484 0.049879 | 0.024744
6.0 0.228108 | 0.103488 0.049882 | 0.024749
7.0 0.228112 | 0.103492 0.049885 | 0.024751
8.0 0.228117 | 0.103495 0.049888 | 0.024753

Table 5.8 shows us that the quantities I1 (+ = 1,...,4) change by

less than 0.016% , 0.029% , 0.049% , 0.56% respectively during the
computer run. So they can be considered as conserved.

(b2) Let us study the interaction of two soliton initial

conditions which follow from the analytic solution (2.3.4.1) when
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t = 0.0 in the following cases:

(i) problem (b) where « = v i/ [T d1 = - 12 , d2 =-12 + A
(ii) problem (b1) where a =V “v/u, d, =-12,d, =-18 + A
2

(iii) « = 4.0 , «, = 2.0 , dl = d2 =0.0 , €¢=6, pu=1. The

boundary conditions are chosen:

]
(@)

ul(+ 12, t)
u (¥ 12,t)
XX

for -0.5 <t < o.5 (5.8.1.1)

1
o

Before the interaction the position of the smaller amplitude is
shifted forward by A2. After the interaction the phase of the
soliton with larger amplitude is shifted forward by A1 while the

phase of the soliton with small amplitude is shifted backward by

A
2

The values of the L2— and Lm-error norms and the first four
conservative quantities are given in Table 5.9:

Table 5.9

The compute values of errors x 103, 11,12 ,13, and I4 for double

soliton poblem (b2) case (i) with h = 0.01, At = 0.005 scheme spI

Time |L_x 10°|L_x 10° I I 1, I,

0.0 0.228074|0. 103456 |0. 049855 | 0. 024610
0.50 |0.040 |0.100 |0.228077|0.103458|0.049857|0.024661
1.00 [0.045 [0.113 |0.228079|0.103460|0.049857|0. 024615
1.50 [0.057 |0.121 |0.228081|0.103462|0.049859]0. 024652
2.00 |0.083 |0.208 |0.228083|0.103464|0.049862|0.024705
2.50 |0.106 |0.280 |0.228086|0.103466|0.049864|0.024728
3.00 |0.109 |0.278 |0.228088|0.1034670.049865|0.024735

From this Table, we find that the error is still very small even
when the time reaches t =3 and that the quantities Ii
(t = 1,...,4) are changed by less than 0.007% , 0.011% , 0.021%

and 0.51% respectively during the computer run. We consider these
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quantities as virtually constants, particularly I1’ 12, and I3

After the interaction, two overlapping solitons (problem (b2)
case (1)) reappeared with their amplitudes unchanged, correct to a
numerical error of less than 0.8% and 0.4% respectively.

The L2- and Lm—error norms and the first four invariant
quantities for problem (b2) case (ii) for times up to t = 8 are
listed in Tanble 5.10:

Tabe 5.10
The computed values of errors x 103,11,12,13 and 14 for double

soliton problem (b2) case (ii) with h =.01, At =.005 scheme spI

S 10° L x 10° I, 8 1, I,

0.0 0.228082|0. 103456 |0. 049855 | 0. 024610
1.0 [0.081 |0.214 |0.2280860.103459|0.049859|0.024731
2.0 |0.129 |0.344 |0.228090|0.103463[0.0498610.024715
3.0 |0.100 |0.276 |0.228095|0.103467|0.049863|0. 024621
4.0 |0.128 [0.323 |0.228099|0.103471|0.049867|0. 024702
5.0 |0.128 [0.342 |0.228103|0.103474|0.049870|0. 024738
6.0 |0.106 |0.270 |0.228107|0.103478|0.049873|0. 024742
7.0 |0.086 |0.169 |0.228108|0.103482|0.049876 0. 024744
8.0 |0.117 ]0.238 |0.228116|0.103485|0.049879(0. 024746

Table 5.10 shows us that the errors remain satisfactorily small
even when the time reaches 8. Also, the quantities I1
(t = 1,...,4) change by less than 0.015% , 0.029% , 0.049% and
0.56% respectively during the computer run. We conclude that these
quantities are virtually constants especially 11, 12, and 13
After their interaction, they reappeared with their original large
and small amplitudes correct to a numerical error of less than
0.009% and 0.041% respectively.

We have also computed the L2— and Lm~error norms and the

first four conservative quantities for double solitons with large
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amplitudes for problem (b2) case (iii). They are given in

Table 5.11:

Table 5. 11

The computed values of errors x103, I1’ 12, 13, and I4 for double

soliton prblem (b2) case (iii) with h =.1, At =.0005 scheme spI

Time |L,X 107[L_x 10 I I, 1, I,
-0.5 11.99991{47. 99998 | 211. 2000 943. 5421
-0.4 [1.273 [1.496 |12.00002|48.00067|211.2253|956.2892
-0.3 {2.276 |2.526 |12.00015|48.00148|211.2353|956.3051
-0.2 [3.039 |[3.166 [12.0002248.00227(211.2366|956.0941
-0.1 |3.445 [3.517 {12.00034|48.00298|211.2372|953.8008

0.0 |2.824 [3.001 |12.00045{48.00352(211.2242|944.7191

0.1 |3.300 |3.314 |12.00056|48.00454|211.2414]950.2620

0.2 |3.684 |3.799 |12.00068|48.00548|211.2580|955.7248

0.3 |3.553 |3.709 |12.00082|48.00636|211.2658|956.4736

0.4 |3.215 |3.456 |12.00088(48.00714|211.2715|956.5763

0.5 |2.657 |2.749 |12.00100]|48.00793|211.2772|956.6202

Table 5.11 shows us that the errors are still small even when the
time goes to t = 0.5, and the quantities Ix (i = 1,...,4) change
by less than 0.01% , 0.017% , 0.037% and 1.387% respectively
during the computer run. We consider these quantities as virtually
conserved, particularly I1 , 12 and 13. After the interaction, the
two well separated solitons reappeared with their original large

and small amplitudes changed by less than 0.95% and 0.012%

respectively.

Using equation (2.3.4.8), the forward and backward phase
shifts have been computed numerically for problems (b), (bl),

(b2(i-i1)) and obtained as:

Al « 0.11, and A2 = - (.18
which agree with the analytic results equation (4.5.4).

For problem (b2(iii)):
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A = -1.1

0.50, and A =
1 2

we find that A2 agrees with the analytic result given by equation
(4.5.5) but A1 does not agree because h = 0.1.

Similar results are given in Table 5.12 for the quantities Ii
of problems (cl) and (c2). We found that each of the quantities I’

are very satisfactorily constant.

Table 5.12

The computed values of Il, 12 and 13 for u(x,0) = exp(—xz)

problems (c1), (c2) for h = 0.1 At = 0.01 scheme (5.3.26) (spr1)
I I
1 2 3

Time p =.04 p o=.01 p = .04 p = .01 u =.04 p =.01

0.0 1.772454(1.772454] 1.253314 1.253314 |0.872929(0.985728

2.5 1.772492(1.772527| 1.253344 1.253420 |0.872990|0.986513

5.0 1.77248811.772345| 1.253370 1.253478 |[0.873026|0.986923

7.5 1.772065|1.772629| 1.253392 1.253504 |0.873058|0. 986950

10.0 |1.772340|1.772491} 1.253434 1.253527 |0.873083!0.986940

12.5 |1.773357|1.772293| 1.253442 1.253547 |0.873110|0. 986953
Table 5.12 shows that the quantities Ii (1t =1,2,3) are changed

by less than 0.051% , 0.011% , 0.021% respectively when p = 0.04

and 0.010% , 0.019% , 0.13% respectively when u = 0.01 during

the computer run. Hence, we can consider these quantities as

conserved.
The total number of solitons which are generated from a

Gaussian initial condition has been determined using

equation (4.5.6) for different values of p and we found an
agreement with those given in the above Figures 5.5-5.8.

The computed values of the first four conservative guantities
for problem (d) boundary conditions (ii) are given in Table 5.13

up to time t = 800:
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Table 5.13

The computed values 11’ 12, 13 and I4 for problem (d) boundary

conditions (ii) when h = 0.4, At = 0.05, € = 0.2, u = 0.1 using
scheme (5.3.26) (spi1)

Time I1 I2 I3 I4

0.0 S0. 00010 45, 00046 42. 30069 40. 44194

100.0 50. 00573 45.01091 42.31632 40. 55037

200.0 50.01130 45,01989 42.33185 40. 86950

300.0 50.01472 45. 02795 42. 34541 41.05238

400.0 50.01933 45. 03569 42.35786 41.12419

500.0 50.02303 45.04345 42 . 37004 41. 16071

600.0 50.02792 45, 05129 42.38197 41.18266

700.0 50. 03316 45. 05902 42.39391 41.20121

800.0 50. 03825 45, 06654 42 . 40585 41.22260
Table 5.13 shows us that the quantities Ii (i = 1,...,4) are
changed by less than 0.0763% , 0.147% , 0.249% 1.947%

respectively during the computer run. So they can be considered as

conserved even with this very large time and large space step.

5.8.2 Simulations Using Scheme (5.4.2):

All the simulations undertaken using scheme (5.3.26) have

been repeated using scheme (S5.4.2).

The discrete Lz—error norm for problem (a) using

scheme (5.4.2) is given in Table 5. 14:
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Table 5.14
The growth of the discrete Lz—error norm X 103 for single soliton

problem (a) Scheme (5.4.2)

Time Zabusky- Hopscotch Petrov- Modified Galerkin

Kruskal [26] Galerkin P-G cubic

[27] [36] (36] spline
Ax = 0.05 At = 0.025 h = 0.05 At = 0.025
0.25 34.64 61.21 81.39 52.15 13.15
0.50 122. 68 122. 41 102.54 64.90 21.79
0.75 210.44 181.35 125.84 89.01 25.55
1.00 298.19 228.10 150.57 107.20 29.31
h = 0.033 At = 0.01

0.25 31.18 5.94 1.34
0.5 43.35 7.56 1.82
0.75 56.21 8.70 2.30
1.00 74.08 9.49 2.69
Ax = 0.01 At = 0.0005 h = 0.01 At = 0.005
0.25 5.94 3.79 4. 46 0.21 0.02
0.50 13.17 9.28 7.01 0.38 0.05
0.75 21.08 14.14 10. 08 0.57 0.07
1.00 28.66 18.72 13.26 0.74 0.09

If we compare the magnitudes of the Lz-error norm given in
Tables 5.2 and 5.14 we see that in most cases they are the same
whether we use scheme (5,3.26) or (5.4.2) . Only when h and At
have smaller values of h = 0.01 and At = 0.005 1is there a
difference. In that case, scheme (5 3 26) leads to slightly

smaller errors.
Table 5.15 gives the error for a single soliton problem (a)
and we observed that this error has the same magnitudes as the

error given in Table 5.2 . It has been found that for h = 0.01 and
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At = 0.005 there is a small increase in the errors given in
Tables 9-14 and 5.15 compared with those given in Tables 5.2 and

5.4:

Table 5.15

Lz-error x 10° of a single soliton problem (a) for the scheme{ 5.4.2)

T 1.25| 1.50| 1.75 | 2.00 | 2.25 | 2.50 | 2.75 | 3.00
h =0.05 1,0 37]44.69]47.01 |63.11 |70.15 |78.90

At = 0.025 : . . . . . 98.48 [110.27
h = 0.033

At = 0.01 3.25 |4.01 {4.57 5.22 5.64 6.55 7.32 7.49
h = 0.01

At = 0.005 0.11 |(0.13 {0.15 0.18 0.20 0.23 0.26 0.28

The quantities 11 , 12 , I3 have also been determined and are

given in Table 5.16:

Table 5.16

The computed value Il, 12, and I3 for a single soliton

problem (a) using scheme (5.4.2)

I 1 I
1 2 3
h =.033] h=.01lh=.033 h=.01lh=.033h=.01
Time |At = .01|At =.005[At = .01|At =.005|At = .01|At=.005
.0 0.144597}0.144598|0.086759{0.086759|0.046850|0. 046850
0.50 {0.144539|0.144598(0.086753(0.086759|0.046933]0. 046851
1.00 |0.144739|0.144598|0.086749(0.086759|0.046919|0.046851
1.50 |0.144465]0.144599|0.086748(0.086760|0.0468990. 046851
2.00 |0.144305|0.1445990.08674810.086760|0.046871|0. 046851
2.50 {0.144927(0.144599|0.086749(0.086759]{0.046802|0. 046851
3.00 |0.144680(0.144599!0.086751|0.086759|0.046772|0.046851

From Table 5.16 we found that the computed quantities I1 , I2 , 13
have been changed by less than 0.21% , 0.013% , 0.18% for
h = 0.033, At = 0.01 respectively and 0.0007% , 0.0012% , 0.0022%

for h = 0.01, At = 0.005 respectively during the computer run.
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This conservation is even better than the very good results quoted

in Table 5.5:

Table 5.17
Computed value of I4 for a single soliton with h = .01 At = .005
T 0.0 0.5 1.0 1.5 2.0 2.5 3.0
I4 .024094|.024214|.024214|.024215/.024215].024215|.024214
The value of the quantity 14 changed by less than 0.50% during

the computer run compares well with the value of 0.52% found for

Table 5.6.

The

four

conservative

quantities I (

i

1,...

,4) for

problem (b) have been computed and are listed in Table 5.18:

The computed values Ix' I

problem (b) with h

Table 5

, 1
2 3

.18

and I4 for two overlapping solitons

0.01, At = 0.005 using scheme (5.4.2)

Time Il Iz Ia I4

0.0 0.228081 0.107062 0.053316 0.027181

0.50 0.228083 0.107062 0.053317 0.027239

1.00 0.228079 0.107062 0.053315 0.027185

1.50 0. 228080 0.107063 0.053316 0.027234

2.00 0. 228081 0.107063 0.053317 0.027291

2.50 0.228083 0.107063 0.053318 0.027310

3.00 0.228083 0.107063 0.053318 0.027320
Table 5.18 shows that the conservative quantities I1 s 12 , 13,
and I4 changed by less than 0.0009% , 0.001% , 0.004% , and
0.52% respectively during the computer run. So these quantities

can be considered as constant. Moreover, the quantities I1 , 12 ,

13 are constant to 5 decimal places. This conservative quantities

are better than the very good results obtained in Table 5.7. After
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the interaction of the two overlapping solitons, their large and
small amplitudes are changed from their original values by less
than 0.94% and 0.46% respectively.

We have also computed the first four conservative quantities

for problem (bl), these are given in Table 5.19:

Table S5.19

The computed values 11’ Iz' 13 and I4 for a two well

separated solitons with h = 0.01, At = 0.005 using scheme (5.4.2)

Time I1 I2 I3 14

0.0 0.228082 | 0.103466 0.049864 | 0.024616
1.0 0.228082 | 0.103466 0.049865 | 0.024736
2.0 0.228083 | 0.103466 0.049865 | 0.024718
3.0 0.228084 | 0.103467 0.049864 | 0.024622
4.0 0.228084 | 0.103467 0.049865 | 0.024701
5.0 0.228084 | 0.103467 0.049866 | 0.024735
6.0 0.228085 | 0.103467 0.049866 | 0.024737
7.0 0.228086 | 0.103467 0.049866 | 0.024737
8.0 0.228086 | 0.103467 0.049866 | 0.024737

Table 5.19 shows us that the quantities Ix (1 = 1,...,4) changed

by less than 0.0018% , 0.001% , 0.0041% , 0.492% respectively
during the computer run. So they can be considered as conserved.
Moreover, the quantities I1 , 12 , 13 are constant to S decimal
places. This conservation 1is even better than the very good
results quoted in Table 5.8. After the interaction of the two well
separated solitons, their large and small amplitudes have changed
by very small amounts, less than 0.009% and 0.024% respectively.
So we can take it that after the interaction the amplitudes are
virtually unchanged.

We have calculated the Lz- and Lw~error norms and the first

four conservative quantities for the two overlapping soclitons
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(problem (b2) case (i)). These are recorded in Table 5. 20:

Table 5.20

The computed values of the error x 103, 11,12, 13 and I4 for

double soliton problem (b2) case (i) with h = 0.01, At = 0.005

Time|L_x10”|L_x10’ I I, I, I,

0.0 0.228074(0.103456|0. 049855|0. 024610
0.50}0.042 |0.103 {0.228075|0.103456|0.049855{0. 024660
1.0010.049 [0.111 }0.228075|0.103456{0.049855|0. 024613
1.50|0.070 |0.168 {0.228075|0.103457|0.049856|0. 024649
2.00|0.117 |0.291 [0.228076|0.103457|0.049857|0.024702
2.50(0.167 |0.442 [0.228077|0.103457{0.049857|0.024723
3.00(0.198 [0.519 [0.228076(0.103457|0.049857{0.024729

In Table 5.20 we give the values of the errors and I1 , I2 R 13

and 14. The error is still small even when the time is increased
up to t = 3.0. The change in the quantities I1 during the computer
run are less than 0.0014% , 0.001% , 0.0041% and O0.484%
respectively. Therefore, we conclude that these quantities may be
considered as constants. Furthermore, the quantities I1 , I2 R I3
are constant to S5 decimal places. The conservation of these
quantities is even better than the very good results obtained in
Table 5.9, with the error having the same magnitude. After the
interaction of the two overlapping solitons problem (b2) case (i)
their large and small amplitudes have changed by only small
amounts of about 0.81% and 0.37% respectively.

The first four conservative quantities and the L2— and

L ~error norms have been determined for the two well separated
o«

solitons (problem (b2) case (ii)) and are listed in Table 5.21:
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Table 5.21

The computed values of the errors x 103, Ix’ 12, I3 and I4 for

double soliton problem (b2) case (ii) with h = 0.01, At = 0.005

Time L2x103 L_x10° I I, 1, I,

0.0 0.228082{0. 103456 | 0. 049855 | 0. 024610
1.0 {0.093 [0.247 |0.228082|0.103456|0.049856|0.024711
2.0 |0.171 |0.445 |0.228083|0.103456|0.049856|0.024711
3.0 |0.148 |0.367 |0.228084|0.103457|0.049855|0. 024616
4.0 {0.269 |0.707 |0.228084|0.103457]0.049857|0.024695
5.0 |0.374 |0.987 |0.228085|0.103458|0.049857{0.024729
6.0 |0.455 {1.198 |0.228085|0.103458|0.049857|0. 024731
7.0 |0.534 |1.404 |0.228086|0.103457|0.049857|0.024731
8.0 [0.615 |1.621 |0.228086|0.103457|0.049857|0.024731

Table 5.21 shows us that the error is still small even when the
time reaches t = 8. The quantities Ix (1 = 1,...,4) change during
the computer run by less than 0.0018% , 0.002% , 0.0041% and
0.492% respectively making them virtually constants. Moreover, the
first three quantities are constant to 5 decimal places. After the
interaction of two well separated solitons 1in problem (b2)
case (ii), their large and small amplitudes have changed by less
than 0.018% and (o, 024% respectively so that we can say they are
virtually unchanged. We find that conservation of the first four
quantities is even better than the very good results obtained in
Table 5.10 with, the error having the same magnitude.

The first four conservative quantities and the LZ— and
Lm—error norms for two well separated solitons with large

amplitudes (problem (b2) case (iii)) have been computed and are

given in Table 5.22:
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Table 5.22

The computed values of the errors x 103 , and the conservative

quantities for double solitons problem (b2) case (iii)

with h = 0.1 , At = 0.0005

Time|LoX107 [Lx10°| 1) I I, I,

-0.5 11.9999147.99998|211.2000({943. 5421

-0.4 11.273 |1.494 [12.00002|48.00070(211.2255{956.2907

-0.3 {2.279 12.530 |12.00015|48.00146}211.2307956. 3029

-0.2 |3.063 {3.202 [12.00022|48.00218|211.2358|956. 0893

-0.1 |3.497 |3.568 [12.00033]48.00287|211.2365|953. 7959

0.0 }2.885 |3.053 |12.00044(48.00336[211.2229]/944.7109

0.1 [3.406 |3.430 [12.00056|48.00444{211.2406|950.2565

0.2 |3.847 |3.987 |12.00066{48.00534|211.2569|955.7175

0.3 |3.776 |3.930 [12.00080[48.00615|211.2641|956. 4627

0.4 (3.499 |3.758 [12.00086|48.00694(211.2700|956.5660

0.5 {2.995 |3.099 |12.00097|48.00769]211.2754{956. 6082
We found that the error is still small, and quantities Ii
(1t = 1,...,4) have changed during the computer run by less than

0.009% , 0.0161% , 0.036% and 1.385% respectively so that they are
very satisfactorily constants particularly the first three
invariant quantities. After the interaction, the large and small
amplitudes of the two well separated solitons in problem (b2)
case (iii) have <changed by less than 0.95% and 0.013%
respectively. We notice that the conservation of the first four
invariant quantities is even better than the very satisfactory
results quoted in Table 5.11 while the error has the same
magnitude.

The last results are given in Table 5.23 for the first three
conservative quantities of problems (c1) and (c2). We found that

each of the quantities Ii are satisfactorily constant:
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Table 5.23

The computed values of 11' I2 and I3 for u(x,0) = exp(—xz)

problems (cl} (c¢c2) for h = 0.1 At = 0.01

I1 12 13
Time p =.04 p =.01 u= .04 u = .01 u =.04 u =.01
0.0 1.7724541.772454| 1.253314 1.253314 {0.872929|0.985728
2.5 1.772491|1.772535| 1.253344 1.253433 [0.872990|0.986529
5.0 1.772488|1.772359| 1.253371 1.253501 (0.873027}0.986951
7.5 1.772066|1.772654| 1.253395 1.253538 {0.873060|0.986994
10.0 [1.772339|1.772524} 1.253435 1.253572 |0.873084|0.986998
12.5 |1.773353|1.772333| 1.253442 1.253600 |0.873110|0.987022
Table 5.23 shows that the quantities Ii (1 =1,2,3) are changed

by less than 0.051% , 0.011% , 0.021% respectively when u = 0.04
and by less than 0.012% , 0.023% , 0.13% respectively when
= 0.01 during the computer run. Therefore, we can consider that
these quantities are conserved. These quantities have the same
magnitude as the results given in Table 5.12 .

The first four conservative quantities for problem (d) using

boundary conditions (ii) are listed in Table 5.24:
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Table 5.24
The computed values 11’ IZ, 13 and I4 for problem (d) with

boundary conditions (ii) h = 0.4, At = 0.05 using scheme (5.4.2)

Time I1 I2 I3 I4
0.0 50.00010 45. 00046 42. 30069 40. 44194
100.0 50.00229 45, 00484 42, 30769 40. 53928
200.0 50. 00456 45, 00779 42.31437 40. 84664
300.0 50.00464 45. 00981 42.31874 41.01703
400.0 50. 00592 45.01152 42.32178 41.07610
500.0 50. 00625 45.01318 42. 32444 41.09961
600.0 S50. 00786 45, 01502 42.32704 41.10881
700.0 50. 00979 45.01677 42.32954 41.11444
800.0 50.01158 45, 01818 42. 33188 41.12217
Table 5.24 shows wus that the quantities Ii (1 = 1,...,4) are
changed by less than 0.023% , 0.040% , 0.074% , 1.682%

respectively during the very long computer run. So they are
virtually conserved, particularly the gantities I1 ) 12 , I3. This
conservation is even better ﬁhan the very good results quoted in
Table 5.13. The agreement between the analytic velocity

¢ =~ 0.1308 and the observed velocity ¢ = 0.128 was very
a n

satisfactory even with this large space step (h = 0.4).

In summary it can be stated that Galerkin's method with a
cubic spline interpolation polynomial as trial and test
functions is a suitable algorithm for determining the solution of

the KdV equation for runs of long duration.
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CHAPTER 6

QUADRATIC SPLINE INTERPOLATION FUNCTIONS

6.1 Introduction:

In the previous chapter we set up a finite element solution
to the KdV equation using cubic splines as trial functions. That
choice was made with the knowledge of the special properties that
such splines possess. However, there are advantages to be gained
by choosing lower order polynomials if possible. One such benefit
is the reduction of the order of the stiffness matrix. The only
lower order fuctions, that we are aware of, which possess the
required first order continuity, are quadratic splines.

In this chapter we will investigate the finite element
approach using Galerkin's method with quadratic spline

interpolation functions.

6.2 The Governing Equation:

Consider the KdV equation:

u teuu tpu =0 as<x<b (6.2.1)

where; € , u are positive parameters.

The boundary conditions will be chosen from:

u(a, t) = B1

u(b, t) = B, for all t > 0 (6.2.2)
u (a,t) =u (b, t) =0

b4 X

u (a,t) = u (byt) =0

XX XX

Let us apply the Galerkin technique to equation (6.2.1) with
weight functions v(x) . Integrating by parts leads to the

equation:
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b b

b
J v ( uteu ux)dx - J K vxuxxdx = - [ [TIRY uxx] (6.2.3)
a a

and using the boundary conditions (6.2.2) equation (6.2.3) reduces

to:
b b
J v uteu ux)dx - J i vxuxxdx =0 . (6.2.4)

a a

The presence of the second spatial derivative within the integrand
means that the interpolation functions and their first derivatives
must be continuous throughout the region. Quadratic B-splines as

trial functions satisfy this requirement.

6.3 The Finite Element Solution [82,84,685]:

In this section we approximate the solution u(x,t) using

quadratic B-spline interpolation functions.

Partition the region [a,b] into N finite elements of equal

length h by knots X, such that

a=x <X ... < x = b and let ¢1(X) be those quadratic
B-splines with knots at X, Then the splines { ¢_1, ¢0 e
¢N - ¢N) form a basis for functions defined over [a,b]. Our aim

is to find an approximate solution uN(x,t) to the solution u{x,t)

which can be expressed in terms of quadratic spline trial

functions:

il

uN(x.t) 8_{t) ¢_£x) + 80(t) ¢0(x) + ... 0+ SN (t) ¢N (x)

N
z Sm(t) ¢m(X) (6.3.1)

m=-1

where; ¢ are quadratic spline functions and 8m are time dependent
m
quantities to be determined from the boundary conditions (6.2.2)

and from conditions based on equation (6.2.4).
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Quadratic B-splines ¢m with the required properties are

defined by [71,72,73]:

- _ 2 _ 2 _ 2
(xm*2 ) 3( X 7 X )7+ 3(xm X ) [xm_l,xm]
¢ (x) = L (x %)% - 3(x  -x)2 [x ,x ]
m h2 m+2 m+1 m' Tm+1
2
% -
( m+2 X) [Xm+1’xm+2]
0 otherwise
m = -1,0,...,N (6.3.2)
where; h = (Xm+1— x ) for all m , assuming that all intervals
m

[x ,x ] are of equal size.
m m+1

The quadratic spline ¢m(x) and its first derivative vanish

outside the interval [x 1,xm+2]. In Table 6.1 we list the values
m-

of q"(x) and its derivative @h(x) at the knots:

Table 6.1
X X X X X
m-1 m m+1 m+2
¢m(X) [o] 1 1 o]
¢’ (x) 2 _2
m (o] h h o]

We shall 1identify the intervals [x ,x 1] with finite

m m+

elements with nodes at the knots X oo X Discussing only the

internal elements from equation (6.3.2) we see that each spline

covers 3 intervals so that 3 splines ¢ , @, @ cover each
m-1 m m+1
finite element [x ,x +1]. All other splines are zero in this
m m
region. These 3 splines act as "shape" functions for the element

(see Figure 6.1). Using equation (6.3.1) and Table 6.1 the nodal

values u _can be expressed In terms of the parameters .

by:
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(6.3.3)

and the variation of u over the element [xm, X )] is defined by:

M

m+1
vo= 8m-1¢m-1 * 8m¢m * 8m+1¢m+1 = Z SJ ¢j (6.3.4)
j=m-1
where; & - 5 , 8 " act as element parameters with the element
m- m m
“shape" functions ¢m_1 , ¢m , ¢m+1 . Defining a local coordinate

system & for the finite element [xm,xm+1] by € = x - x , where
m

0 < € <h, we obtain for the shape functions expressions that

are independent of the elements position:

( 2
¢ (h -€)
m-1
1) = ! < 2 2
mo h2 h® + 2h€ - 2€ (6.3.6)
2
¢m+1 - g o< £ < h
These " shape " functions are the same for every element (see

Figure 6.1). An element contributes to equation (6.2.4) through
the following 1integral which can be written in terms of the

e
element parameters & as:

m+1
J [ vi(u +guu ) -puv u ] dx = 0 (6.3.7)
t X X XX
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Figure 6.1 Quadratic spline shape function for a typical element.

So identifying the weight functions v with quadratic splines

¢J and using (6.3.5) and (6.3.6) we obtain:

X X
mel m+1

m+1 . m+1 m+1
) J ¢ ¢de SJ +re Z X J ¢, ¢J¢;dx 5, sJ

j=m=-1 % j=m-1 kK=m=-1 %
m m
X
m+1
me1l
-u £ ¢’ @ dx | 8° (6.3.8)
_ ) J
J=m-=1
X
m
where 8°=(5 ., 8 .5 ) (6.3.9)
m-1 m mel

-~

are the relevant element parameters.

Equation (6.3.8) can be written in matrix form as:

. T
A §% + £ 8% L° 8° - uC®5° (6.3.10)

~ ~ ~ ~

where 8° is given by (6.3.9) and the element matrices are given dy

~

the integral formulas:



e m+1
AL, s J b, ¢, dx (6.3.11)
X
m
X
e m+1
o, = J ¢, ¢ dx (6.3.12)
X
m
and
X
m+1
e ’
ijk = J ¢i ¢j ¢k dx (6.3.13)
X

where; 1, j , k take only the values m-1 , m , m+t for the
typical element [x , x +1]. The matrices A® , C° are thus 3x3 and
m m

< e . . . .
the matrix L~ 3x3x3 . It is convenient to associate a 3x3 matrix

B® with L® defined by:

B® = L s° (6.3.14)

which also depends on the parameters 8: will be used in the

following theoretical discusions.

The element matrices A® , C° , L® are independent of the

parameters 8: and can be determined algebraically from equations

(6.3.11)-(6.3.13) using REDUCE [38] as:
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( 6 13 1 ]
e h 13 S4 13
A = -5 (6.3.15)
- 1 13 6 J
r 3
-1 2 -1
2 0 0 0
ct == (6.3.16)
h ot -2 1 J
and
e _ 1 4 1
Bm-l,m—l - § 8m—l * T 8m * 15 8m+1
e _ 19 2 7
B -1, m B m,m-1 - 30 m-1 * 5_ 8m * % 8m+1
_ e _ 1 1
Bm-1,m+1 " Tm+l,m-1 30 -1 30 8m+1
_ 9 9
Bm,m - T 8m—l * _5 8m+1
e _ e __ 7 _ 2 19
momel  Pmet,m 30 Om-a 5%, " 30 %
e _ 1 _ 4 1 _
m+1,m+1 - 15 8m-l 15 8m+ 3 8m+1 (6.3.17)

If we partition the region [a,b] into three elements of equal

length h and combine together the contributions from each element

we obtain:

AB +eB(B)S-pus=0 (6.3.18)
where: i o -

8=(5,.58,.5 .5,.3, ! (6.3.19)
The matrices A, B(8) , C, assembled from the element matrices

~

A® , B°(8) , C° have the form:

~
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r a(l) a(1) a(1) 3

11 12 13
(1) *(2 *
a a (2) (2) a(2)
21 11 12 13
(1) *(2) *(3) *(3) (3)
A = a a a a a
31 21 11 12 13 (6.3.20)
(2) *(3 *
a a (3) a (3) a(3)
31 21 22 23
(3) (3) (3)
a a a
L 31 32 33 J
where
*(2) (1 2 *
a0, @ LT(2) L (D (@
11 22 11 12 23 12
*(2) (1) (2) *(3) (3) 2 1
a = a + a , a = a + a( " a( )
21 32 21 11 11 22 33
*(3) (2) (3) *(3) (2) (3)
a = a + , a = a + a
12 23 12 21 32 21
3 (2), _(3)
22 33 22
Matrices B(8) and C can be expressed in the same way
(6.3.20).

Generally, dividing the region [a,b] into N elements of equal
length h and combining contributions from all elements and

following the procedure for three elements produces the matrix

equation:

AS + €B(B)8 -pCs8 =0 (6.3.21)

T
= sE , ... , & . . 3.
where & (8_l , 80 . 8, N) (6.3.22)

8 are element parameters to be determined and A, B(8) , C are

~

matrices assembled from the element matrices A° , B°(8) , c® . The

~

matrices A, B, C are (nN+2)x(N+2) 5-banded matrices.

Let 8 be linearly interpolated between two levels n and n+1

~

by:
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n+1

8§ = (1 -86)8" + 65 (6.3.23)

where t = (n+8)At and 0 € 8 < 1 . Then the time derivative of &

~

is:
. st - 8"
8 D VD VI (6.3.24)
~ At

Using the definitions (6.3.23}) and (6.3.24), equation

(6.3.21) becomes:

n+1

A+ BAt(eB(8")- p C)[8" "= |A -(1 -8)At(eB(8™)- u C)|s

~ ~ ~

" (6.3.25)
Giving the parameter 6 the values o , % , and 1 produces forward,
Crank-Nicolson and backward difference schemes respectively.

If we let 8 = - equation (6.3.25) becomes:

I

A+ —%t(eB(Sn)— po)s"t = (A - —%t(eB(Sn)— pC)|s

~ ~

n

(6.3.26)

Since the matrix B(8) depends on &, the matrix equation

~ ~

(6.3.26) is nonlinear. We handle this problem not by solving
equation (6.3.26) directly but by setting up an equivalent system

and then solving that [56,70]. Such a system is:

A+ %E ( eB(8")- puC)f8""" = [A - %E ( €B(8")- uC)|8"  (6.3.27a)
and
“n+1 _n an+1 n
5 S S
A+ lth(cB[ + ]_ uC) st =fa - 2_t(€B[._+__~]-pC) 8"(6.3.27b)
2 ~ 2 -

The predictor (6.3.27a) gives a first approximation 5"*! then the

~

corrector (6.3.27b) is used iteratively to improve the

approximation.

Before solving the system (6.3.27) we must apply the boundary

conditions which are chosen to be
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u(a,t) =8,

u(b, t)

il
W

u (a,t) u (b,t) =0 ,
X X

and from the Table 6.1 these conditions become:

8_1 + 80 = 81 N
8_1 - 80 =0
. (6.3.28)
8N-1 * 8N = Bz
) - 8 =0 /
N-1 N
By eliminating 8_1 , 80 , SN_1 , SN from equation (6.3.27) we
. . . n n n T

obtain a recurrence relationship for (81 , 82 y e, SN_Z)

Equation (6.3.27) contains (N-2)x(N-2) 5-banded matrices, so
to solve these equations we store the matrices in rectangular form
(N-2)x5 and then use a penta-diagonal algorithm (see Appendix A2)}.
The boundary parameters 8_1 , 80 , SN_1 , SN can be computed at
each time step from equations (6.3.28).

To start the iterative procedure (6.3.27), a starting vector

80 must be determined from the initial condition on u(x,t). Once

~

the parameters & have been found at a specified time then we can

~

compute the solution at the knots from the formula:

u(xi,t) =35, + 8 {(6.3.29)

6.4 The Initial State:

The starting value 80 is determined from the initial

~

condition wu(x,0) on u(x,t) which <can ©be calculated by
interpolating u(x,0) using quadratic splines. We firstly rewrite

equation (6.3.1) for the initial condition as:

145



N
u (x,0) = b 8?¢i(x), (6.4.1)
i=-1

where; the 8? are unknowns to be determined. To do so we require
uN(x,O) to satisfy the following two conditions:

(a) It shall agree with the initial condition u(x,0) at the knots
X , 1=0,1, ..., N; leading to N+1 conditions,

{b) Its first derivative shall agree with that of the exact
initial condition at X i.e. u'(xo,O) = 0.

These two conditions (a) and (b) can be written as:

=
x
o

]
o]

(6.4.2)

c
X
o

il

U(Xi’O) 0< i <N

Using Table 6.1 the system (6.4.2) can be written in a matrix

equation of the form:

A8’ =b (6.4.3)
where:
fl - T
1
1 1
1 1
A= R (6.4.4)
1 1
1 1
| 1 1
0 0] T
5°=[s° 8%, ..., 5 ] (6.4.5)
o -1 [0} N
and I
= e, , 6.4.6)
E [0 , u(xo,o) , u(xl.o) , u(xN o) ] (

This system of equations can be solved directly using the

following technique:

J

u u
& = —o , 8 = —°=
-1 2

Let uJ =u(x ,0) , 3=0,1, ... , N
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for j =1 to N do
5 =u -8
] J -1

So the initial vector 8° is computed by this algorithm.

~

6.5 Stability Analysis:

The stability analysis of nonlinear partial differential
equations is not an easy task to undertake. Most researchers cope
with the problem by linearising the partial differential equation.

Our stability analysis will be based on the von Neuman theory
in which the growth factor of a typical Fourier mode defined as:

n

8 = o e! kP (6.5.1)
where; k 1is the mode number and h 1is the element size, is
determined for a linearisation of the numerical scheme.

To linearise the KdV equation (6.2.1) assume that the
quantity u in the nonlinear term u u, is locally constant. This is
equivalent to assuming that all the 8? are equal to a local

constant d, so that the matrix B 1in equation (6.3.25) 1is

determined from (6.3.7) to be:

() _8 EEEEN
3 3
- 2 2 (6.5.2)
B =4d 3 0 3
1 8
| 3 3 ro)

A typical member of equation (6.5.3), using the linearised

matrix B (6.5.2), is given by:

8n+1 n+1 8n~1r1 n+1 n+1 _
1 §1-2 2 i-1 31 4 1+1 5 1+2
n n n
o 8" a 8" + a8 +asd + B (6.5.3)
5 1-2 4 1-1 31 2 1+1 1 1+2
where:
al =a-~-B8-7 , a2 = 260t = 108 + 27 ,
o = 66 , a4= 260 + 108 - 27y ,
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a=a‘8+7)

_n _ edAt At
@ = 30 » B - 6 y ¥ = h2 . (6.5.4)

The Fourier method (6.5.1) applied to equation (6.5.3) leads to:

3 + o + a4e +

~

Sn+1 -2ikh -ixh ixh 2 -
[ale ‘ae i o e21kh] _ Zn y o~ 21kh
5 5

+ aqe-ikh + oo+ azeikh + alezikh] (6.5.5)

Equation {6.5.5) is thus of the form:

(a + ib)8™*! = (a - ib)8" (6.5.6)
where:
i=v-1
a = a(33 + cos(2kh) + 26 cos(kh))
} ( 6.5.7)
b = (B + ¥)sin(2kh) + (108 ~ 2y)sin(kh)

Write 8"*!' = g 8" where g is the amplification factor and

substitute in (6.5.6) to obtain:

- _a- ib
g a + ib (6.5.8)

Taking the modulus of this equation gives:
lg| =V egg =1,

therefore the linearised scheme is unconditionally stable.

6.6 The Test Problems:

The purpose of this section is to examine our algorithm using
different test problems concerned with the development, migration

and interaction of solitons.

Let us compute the solution of the KdV equation for the

following problems:

(a) Consider the motion of a single soliton with initial condition

given by:
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u(x,0) = 3c sechz(Alx +D) (6.6.1)

This can be derived from the analytic solution of the KdV equation

which has the form:

u(x,t) =3¢ sechz(Alx - B1t + Dx) (6.6.2)

172

(ec/u) and B = ¢€cA . To make a comparison with

1
where; A = -
1 2

Sanz-Serna and Christlie [36] we choose € =1, u = 4.84x10” "%,
c=0.3, D =-6, h=0.05, 0.033, 0.01, and At = 0.025 ,
0.01 , 0.00S .

We shall impose the boundary conditions:

u(2,t)

ux(z,t) =

)
[=]

u(o, t)

ux(o.t)

for all time (6.6.3)

|
o

Figure 6.2 shows us the behaviour of the computed solution
for times from t =0.0 to t =3.0. These graphs have been
compared with those of Greig and Morris ([26] for corresponding
times and if the exact solution is plotted on the same figure all

curves are indistinguishable.
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Figure 6.2 Problem (a). The motion of a single soliton with
h = 0.01 At = 0.005.
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(b) The interaction of two solitons with initial condition:
2 2
u(x,0) =3 c¢c.s
) . ech (Alx + D1) + 3 czsech (Azx + Dz) (6.6.4)

together with the boundary conditions which are given by:
u (o,t) = wu(z,t)

ux(o,t) = ux(z,t)

0

"

} for all time (6.6.5)
0

These conditions represent two solitons, one with amplitude
3¢, sited initially at x = - DI/A1 and a second with amplitudejc2
placed at x = - Dz/Az . It is well known that the velocity of a
soliton depends directly upon its amplitude. So choosing < > c,
and - DI/A1 < - DZ/A2 ensures that these solitary waves interact
with increasing time. For comparison with the Grelg and Morris

[26] solution we have chosen c = 0.3, c.=0.1, D =D_=-6.,

h = 0.01, At =0.005 and A =%

1.3 1.2
1.0 1.0
0.8 [ %]
5.8 1e0.0 a8 Te3
[ W] [ X
2 [ B}
0.3 &4 08 8D h‘l led leé 1ob 18 G Gd 0d 06 0o 1.4. Bed led o8  1od
1.2 1.2
1.8 [ ]
[ ) 8.8
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0.3 06 88 &2 1.0' Tod  les L 38 LB 0e2 Qo6 06 03 x.nl bed Lot L6 el

Figure 6.3 Problem (b). The interaction of the overlapping solitons
with h = 0.01 At = 0.00S.

The interaction of overlapping solitons produced by our
algorithm is shown in Figure 6.3 and agrees well with those
obtained by [26]. We find that the solitons emerge from the

interaction with large and small amplitudes only slightly changed
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from their original values by ~ 1%, = 0.39% respectively. The
agreement with Greig and Morris [26] is very satisfactory. Figure
6.3 shows us that the two solitons placed with the larger one on
the left of the smaller one. The larger soliton catches up the
smaller soliton at time t = 0.75. The overlapping process
continues until, at time t = 1.5 the larger soliton has overtaken
the smaller one. At time t = 3, the interaction is complete and
the larger soliton has separated completely from the smaller one.
(bl) Consider the motion of two well separated solitons as an

initial condition:

ulx,0) = 3 ¢ sech®(A x + D ) + 3 c_sech®(A x + D ) (6.6.6)
1 1 1 2 2 2
where:
c,,.c¢c_ , A , A, D are given in problem (b)
1 2 1 2 1
D =-90,B =¢gcA , 1 =1,2
2 i 11

the boundary conditions are chosen to be:

I
(]

u (o, t) u(a,t)

for all time (6.6.7)

1
(o]

u (o, t) u (a4,t)
X X

Figure 6.4 shows that after the interaction of the two well
separated solitons the large and small amplitudes change from
their original values by a small amount ( = 0.029% , =~ 0.049%
respectivly). Therefore we emphasise that after the interaction
the amplitudes are virtually unchanged. From Figure 6.4 we see
that the larger soliton is placed on and separated from the
smaller one. As the time increases, the larger soliton catches up
with the smaller when the time t = 3. The overlapping process
continues and the larger soliton overtakes the smaller one at time
t = 4. About time t = 6 the interaction process is complete and

the larger soliton has separated completely from the smaller one:
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Figure 6.4 Problem (bl).The interaction of a two well separated
solitons with h = 0.01 At = 0.00S.

(c) Another interesting initial value problem for the KdV

equation is given by the Gaussian distribution function:

(6.6.8)

This 1s a typical symmetric function which tends to zero as |x]|

u(x ,0) = exp( - x2)

tends to infinity. The finite boundary conditions imposed are:

u(® 1s,t) =0 for all t > 0 (6.6.9)

u (¥ 1s5,t) 0
p'e

We choose € = 1.0 and we discuss each of the following cases:

(cl )u=0.04 , h=0.1 , At =0.01

(c2 ) pu=0.01 , h=0.1 , 4t =0.01

(c3)u=0.001 , h=0.025 , At =0.005
(c4 ) pu=0.0005 , h=0.025 , At = 0.005

A comparison has been made with the work of Goda [59] in the
first two cases. Figure 6.5 depicts the behaviour of numerical
solutions of problem (c1) for times up to 12.5 . We see that the

initial perturbation splits up into a soliton plus an oscillating
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tail.

The values of the analytic velocity ¢ = 0.4 and
a

numerical velocity c. = 0.4 agreed very well:

1.8

AN -

8.3

1.0
L] 2.3
.y /\

Figure 6.5 Problem (cl1).A single soliton with oscillating tail

Flgure 6.6 shows similar results for p = 0.01 .

that the initial perturbation breaks up into three solitons.

4.3

for u = 0.04 h = 0.1 At = 0.01.

the

We observe

The

graphs obtained by our algorithm in the cases (cl) and (c2) are

identical with those given by Goda [59]. The agreement between the

analytic velocity c, * 0.5145 and the observed velocity c. = 0.52

for the leading soliton was very satisfactorily:

AN

Figure 6.6 Problem (c2). The breakdown of the initial condition
into 3 solitons when ¢ = 0.01 h = 0.1 At = 0.01.

AN -
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In Figure 6.7 for pu = 0.001 we see that the initial
perturbation breaks up into 9 solitons, whose magnitude decreases

linearly to the left:

Figure 6.7 Problem (c3). The breakdown of the initial perturbation
into 9 solitons with p = 0.001 h = 0.1 At = 0.01.

Figure 6.8 shows that for u = 0.000S a train of solitons is
generated when the initial perturbation splits itself into 12
solitons moving to the right:

1.0

- (PR

.ijib‘_ ,".J 4—253 —

1.3

Ll -

1.4

;:;,\AMAMMA

g3}

Figure 6.8 Problem (c4). The breakdown of the initial condition
into 12 solitons when u = 0.0005 h = 0.025 At = 0.00S.
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It was found that the behaviour of the numerical solution
depended upon the value of u chosen. The initial perturbation
breaks up into a train of solitons in the course of time, the
actual number of solitons depending on the value of u used. A
comparison has been made of our results with those obtained by
[15,39,80] and we found that there was agreement when p = 0.04 ,
0.01, but disagreement in other cases.

(d) As a final test example we shall consider the development
of an undular bore in shallow water. This is represented by the

initial condition:

u(x,o0) = % [ 1 - tanh [ X~ 25 ] ] (6.6.10)
5

and the boundary conditions we impose are:

ulo, t) =1
u(so, t) = 0 for all t > o0 (6.6.11)
u (o, t) =u (s0,t) = o0

X X

Let us consider the last example test:

(d1) ul(x,0) = % [ 1 - tanh [ Lil—:ii ] ] (6.6.12)

5

and the boundary conditions are chosen to be:

u(-s50,t) u(1s0,t) = o

for all t > o (6.6.13)

0

u (-s0,t) u (150,t)
X X

For comparison with Vliegenthart (44] for problem (d) we have
chosen € = 0.2, pu = 0.1 with At = 0.05 and h = 0.4 . The computed
solution reproduced in Figure 6.9 shows all the general features
obtained by the earlier the solution [44]. However we cannot make
a direct comparison with Vliegenthart [44] figures because the
boundary conditions used by him are not given. We can, however,
repeat his computations using his finite difference scheme and
parameters together with our boundary conditions to produce

comparable figures. If these are plotted also on Figure 6.9 the
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graphs are indistinguishable with those obtained in the present

study:
0 L0
1.8 14
o o0 2l Tass,
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Figure 6.9 Problem (d). The solution graphs for various times
with h = 0.4, At = 0.0S5, € = 0.2, u = 0.1.

The <conservative quantities have been computed for
problem (d) and it was found that these quantities varied somewhat
with time. For this reason we have chosen the problem (d1).
Figure 6.10 shows us that the initial perturbation problem (d1l)
has broken up into a regular sequence of solitons, which move

steadily to the right with constant speeds whose magnitude depends

upon their individual amplitude:
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Figure 6.10 Problem (d1) . The solution graphs splits into a train
of solitons with h = 0.4, At = 0.05, € = 0.2, u=0.1.
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We observe that the amplitude of the solitons vary
approximately linerly. Physically these results represent among
other things the development of an undular bore in shallow water

and a collisionless shock in plasmas [44].

6.7 Discussion:

Any numerical scheme for computing the solution of the KdV
equation must represent faithfully the amplitude and the position
of the solution over many time steps with minimum errors {36], and
also it should be conservative.

To examine the accuracy of our numerical scheme we have used
the error in the form of the discrete L2— and Lm—error norms to
compare the numerical and exact solutions. The LZ— and Lw-error
norms are defined by (4.5.1), (4.5.2) respectively. This error is
used to compare 5 numerical methods in Tables 6.2, 6.3 for the
single soliton solution [36]. We find from Table 6.2 that the
Galerkin quadratic spline method compares well in accuracy with
the best of the other methods. In fact, the Lz—error norm 1is

factor 0.1 smaller than that of the modified Petrov-Galerkin

method:
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Table 6.2

The growth of the discrete Lz—error norm X 103 for single soliton

Time Zabusky- Hopscotch Petrov- Modified | Galerkin
Kruskal [26] Galerkin P-G Quadratic
[27] [36] [36] spline
Ax = 0.05 At = 0.025 h = 0.05 At = 0.025
0.25 34.64 61.21 81.39 52.15 12.72
0.50 122. 68 122. 41 102.54 64.90 16.78
0.75 210. 44 181.35 125.84 89.01 19.52
1.00 298.19 228.10 150. 57 107. 20 22.80
h = 0.033 At = 0.01
0.25 31.18 5.94 1.07
0.5 43.35 7.56 1.57
0.75 56.21 8.70 1.90
1.00 74.08 9.49 2.24
Ax = 0.01 At = 0.0005 h = 0.01 At = 0.005
0.25 5.94 3.79 4.46 0.21 0.02
0.50 13.17 9.28 7.01 0.38 0.04
0.75 21.08 14.14 10.08 0.57 0.05
1.00 28.66 18.72 13.26 0.74 0.06
Table 6.3 shows us that the Lm-error norm computed from our

technique for a single soliton has been compared with all the

method which are quoted in Table g, 3. We observe that the Lm~error

norm is greater than Lz-error norm which disagrrees with the

authors [26,27,36]. Also we find that the value of Lm—error norm

using our method is smaller than even the best method (Modified

Petrov-Galerkin) and in the worst case it has the same error of

magnitude:
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Table 6.3

The growth of the discrete Lw—error norm x 10° for single soliton

Time Zabusky- Hopscotch Petrov- Modified Galerkin
Kruskal [26] Galerkin P-G Quadratic
[27] [36] [36] spline

Ax = 0.05 At = 0.025 h = 0.05 At = 0.025

0.25 19.4 32.7 42.18 30.22 35.79
0.50 63.5 67.4 51.85 22.85 42. 68
0.75 122.4 99.3 87.60 35.86 45. 92
1.00 161.4 141.6 100. 41 39.39 38.94

h = 0.033 At = 0.01

0.25 14.27 2.80 2.96
0.5 21.65 4.53 3.24
0.75 29.78 4.85 3.79
1.00 39.37 5.85 5.85
Ax = 0.01 At = 0.0005 h=0.01 At = 0.005

0.25 2.05 1.11 1.21 0.07 0.06
0.50 4.22 2.14 2.15 0.11 0.10
0.75 6.36 3.54 3.09 0.17 0.13
1.00 8.13 4.91 3.83 0.21 0.15

discrete Lz- and Lm—error norms

Table 6.4 shows us that the

error measured in terms of the

is satisfactorily small for the

motion of a single soliton even when the time is increased to

t

= 3.0:
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Table 6.4

The growth of the error for a single soliton

h = 0.05 At =0.025|h = 0.033 At =0.0l|h = 0.01 At =0.005
Time | L x 10” | Lx 10’ Lx 107 L x 10° Lx 10°| L x 10°
1.25 | 24.15 | 43.38 | 2.26 3.54 0.07 0.19
1.50 | 22.03 | 34.65 | 2.18 5.66 0.08 0.21
1.75 | 31.08 | 84.91 | 2.37 4.45 0.08 0.23
2.00 | 34.70 | 65.50 | 2.39 4.65 0.09 0.22
2.25 | 35.05 | 57.52 | 2.47 4.33 0.09 0.26
2.50 | 39.18 | 71.96 | 2.49 4.27 0.10 0.27
2.75 | 41.82 | 82.24 | 2.45 6.19 0.11 0.29
3.00 | 44.24 | 97.93 | 2.80 8.04 0.11 0.30

To show that our scheme is conservative we have computed the

the three invariant quantities I1 , 12 , 13 given by equations

(2.4.8)-(2.4.10), for the single soliton problem. Values are listed
in Table 6.5 for the two cases h = 0.033

, 4t = 0.01 and h = 0.01

, At = 0.005:

Table 6.5
The computed values Il , 12 , and 13 for a single soliton
I1 12 I3
h = .033] h=.01lh=.033] h=.01lh=.033h = .01

Time |At = .01|At =.005|At = .01|{At =.005[At = .01|At=.005
0.0 |0.144597(0.144598|0.086759|0.086759|0.046850|0. 046850
0.50 ]0.144687(0.144598|0.086749|0.0867610.045322|0.046735
1.00 ]0.1446180. 144602 (0.086742|0.086763|0.045299|0.046737
1.50 {0.144562|0.144604|0.086734|0.086765|0.045232|0.046739
2.00 |0.144847(0.144606|0.086731|0.086767{0.045340|0. 046740
2.50 |0.144569]0.144607]0.086722|0.086769|0.045278|0.046742
3.00 ]0.144560/0.144610/0.086715(0.086771|0.045263{0. 046744
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From Table 6.5 we find that with our numerical scheme the three

quantities I1 , I, 13 are sensibly constant. Indeed even when

2
fairly large time and space steps of h = 0.033 , At = 0.01 are
used the changes are 1less than 0.173% , 0.051% , 3.454%
respectively while for smaller values h = 0.01 , At = 0.005 the
changes are 0.009% , 0.014% , 0.25% respectively during the
computer run. A computer run on the single soliton solution with
200 nodes and 200 time steps took 13 secs of CPU time on a
VAX 8650.

Further we have verified that our algorithm can adequately
cope when two solitary waves coalesce for a short period and then
separate with their original profiles intact, but their positions
changed.By evaluating the quantities I1 , 12 , 13 which are given
in Table 6.6 . We find that these quantities are changed by less
than 0.172% , 0.015% , 0.227% respectively during the computer
run; therefore, we can consider them as relatively constant:

Table 6.6

The computed values I1 , I2 , I3 for a two overlapping

solitons with h = 0.01 At = 0.005

Time I1 Iz I3

0.0 0.228081 0.107062 0.053316
0.50 0.228124 0.107065 0.053253
1.00 0.227949 0.107068 0.053309
1.50 0.227740 0.107070 0.053262
2.00 0.227689 0.107073 0.053213
2.50 0.227732 0.107075 0.053198
3.00 0.227880 0.107078 0. 053195

We have also determined the error and conserved quantities for the
case when the two solitons are well separated. The three quantities

I, 1, 13 are listed in Table 6.7:
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Table 6.7

The computed values I1 , 12 , 13 for a two well separated

solitons with h = 0.01 At = 0.005

Time I1 Iz I3

0.0 0.228082 0.103466 0.049864

1.0 0.228088 0.103471 0.049750

2.0 0.228092 0.103476 0.049766

3.0 0.228098 0.103482 0.049864

4.0 0. 228106 0.103487 0.049788

5.0 0.228112 0.103492 0.049767

6.0 0.228119 0.10349%96 0.049769

7.0 0.228124 0.103501 0.049773

8.0 0.228131 0.103506 0.049777
We observe that the three quantities I1 , 12 , 13 have changed by
less than 0.022% , 0.039% , 0.229% respectively during the

computer run. So, we can consider them as constants; this is
especially true for I1 , 12.

(b2) Let us consider the two soliton initial conditions which

are determined from the analytic solution (2.3.4.1) when t = 0.0

in the following cases:

(1) problem (b) where « = v S/ TR d1 = - 12, d2 = -12 + A
(i1) problem (b1) where a« =V “ou, d =-12,d =-18 +4A

T3 = = = = . = = . Th
(iii) @ 4.0 , @, 2.0 , d1 d2 0.0, € =6, u 1 e

boundary conditions are chosen as:

[}
(@]

uls 12,t)
u (¥ 12,t)
X

for -0.5 <t € o.5 (6.7.1)

1]
o

The first three conservative quantities I’ and the error for

the problem (b2) case (i) are listed in Table 6.8:
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Table 6.8

The computed vlues of the error x 103, I1 s 12 and 13 for

double soliton problem (b2) case (i) with h 0.01, At = 0.005

Time L2x1o3 me1o3 I . I 5 I 3

0.0 0.228074|0. 103456 (0. 049855
0.50(0.082 |0.165 {0.228065|0.1034590.049798
1.00}0.085 {0.148 (0.228071|0.103462{0.049851
1.50(0.090 [0.182 [0.228081/0.103464|0.049813
2.00{0.096 [0.209 {0.228084(0.103467[0.049766
2.50]0.098 {0.180 [0.228086(0.103469{0.049751
3.00{0.093 |0.199 |0.228083(0.103472|0.049749

We see from this Table that the errors measured in terms of the
discrete L2- and Lw—error norms are satisfactorily small for a two
overlapping solitons even when the time is increased to t = 3
Also the quantities Ii (1 =1,2,3) are changed by less than
0.006% , 0.016% , 0.213% respectively during the computer run. We
note that the conservation of I1 is better than that obtained in
problem (b). Computationally the two overlapping solitons interact
in the neighborhood of x = 0.74 at t =% 0.85 which agrees with the
analytic results given in equation (2.3.4.7).

After the interaction the position of the maxima of the
larger and smaller solitons when t =3 are 1.49 and 0.95
respectively which agree with the analytic values determined in
equation (2.3.4.6b) . Also the larger and smaller amplitudes are
changed from their original values by less than 0.792% and 0.367%
respectively.

The L2— and Lw-error norms and the quantities Il have also
been determined for two well separated solitons problem (b2)

case (ii) and are given in Table 6.9:
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Table 6.9

The computed values of the error x103, 11, 12 and 13 for

double soliton probem cas (ii) with h = 0.01, At = 0.005

Time L2x1o3 me1o3 I . I > I 3

0.0 0.228082|0. 103456 (0. 049855
1.0 0.063 [0.163 |0.228088|0.103461|0.049741
2.0 0.087 [0.248 [0.228093|0.1034660. 049757
3.0 0.068 {0.206 [0.228099{0.103471]0.049855
4.0 0.062 [0.122 [0.228107]0.103477|0.049778
5.0 0.090 [0.204 |0.228112]0.103481|0. 049757
6.0 0.172 |0.446 [0.228118(0.103486(0.049760
7.0 0.293 {0.781 }0.228122]0.103491(0.049763
8.0 0.443 |1.176 |0.228129|0.103495(|0. 049767

Table 6.9 shows wus that the L2— and Lm—error norms are

satisfactorily small for two well separated solitons even with
runs up to a time of t = 8 . The quantities I1 (i = 1,2,3) are
changed by less than 0.021% , 0.038% , 0.229% respectively during
the computer run. A comparison has been made between these
quantities and those obtained from problem (bl), we find that they
are the same.

The interaction of the two well separated solitons occurs in
the neighborhood of x = 1.37 when t = 2.95 which agrees with the
analytic results. After the interaction the two separated solitons
reappeared with their original amplitudes, correct to a numerical
error of less than 7.78x10-5% and 0.044% respectively.

When the two well separated solitons have large amplitudes
problem (b2) case (iii), the values of the LZ— and Lw—error norms

and the first three invariant quantities are given in Table 6.10:
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Table 6.10
The computed values of the error x103, 11’ 12 and 13 for

double scliton problem (b2) case (iii)

with h = 0.1, At = 0.0005, ¢ =6, u=1

Time L2x1o3 me1o3 I . I 5 I 3
-0.5 11.99991|47.99998(211. 2000
-0.4 0.908 |1.103 {11.99998{48.00003|209. 8457
-0.3 1.255 }1.512 |11.99985/48.00008|209. 8476
-0.2 1.637 [1.948 [12.00010/|48.00021 |209. 8661
-0.1 1.918 12.121 [12.00019{48.00054(210. 0601

0.0 1.443 [1.335 [12.00034|48.00174{211.0252

0.1 1.861 |1.857 |12.00040|48.00139(210.4111

0.2 |2.880 |3.241 |12.00038(48.00100|209.9110

0.3 [3.482 [3.890 [12.00032(48.00102{209.8573

0.4 [4.179 [4.659 [12.00041|48.00115{209.8533

0.5 4.778 15.217 |12.00026(48.00126|209. 8538

We observe that the method has coped well with this problem. From
Table 6.10 we find that the L2— and Lm—error norms are small and
the quantities Ii (t = 1,2,3) are changed by less than 0.005% ,
0.004% and 0.642% respectively during the computer run, therefore
we consider the quantities Il and 12 are virtually constants. After
the interaction of these two well separated solitons (problem (b2)
case (iii)) the larger and smaller amplitudes are changed from the
original values by = 0.97% and = 0.006% respectively.

The forward and backward phase shifts defined by equation
(2.3.4.8) have been calculated for problem (b}, (bl), (b2(i-ii))
and we found that

A1 = 0.11 , A2 ~ -0.18
These agree with the values obtained analytically from equation
(4.5.4) except in problem (b) where there is an error in the

forward phase shift about 1%.
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For problem (b2(iii))
A =050 , A =-1.1
1 2

We observe that A2 agrees with the value obtained analytically
from equation (4.5.5) while A1 does not.

The quantities I1 , 12 , 13 of problems (cl) and (c2) are
given in Table 6.11. We see that conservation is better in problem
(c) than in problem (cv), which may indicate that the

conservation of energy could depend on the coefficient of the

dispersive term (i.e. the value of u):

Table 6.11
The computed values of 11’ I, 13 for u(x,o0) = exp(—xz)

with h = 0.1 At = 0.01

Il I2 I3
Time pn=.04 p =.01 n=.04 u = .01 u =.04 pu =.01
0.0 1.772454)1.772454| 1.253314 1.253314 |0.872929(0.985728
2.5 1.772532|1.772487| 1.253379 1.253348 [0.872261(0.982454
5.0 1.772677|1.772521| 1.253445 1.253383 |0.872220]0.981137
7.5 1.771568|1.772557| 1.253512 1.253422 [0.871163]0.981090
10.0 |1.775931|1.772579| 1.253580 1.253461 {0.868774{0.981122
12.5 [1.770864|1.772518| 1.253645 1.253500 [0.860989|0.981166

Table 6.11 shows that over the computer run the quantities I1 ,
12 , 13 are changed by less than 0.1974 , 0.027% , 1.368%
respectively when u = 0.04 and by 0.008% , 0.015% , 0.471%
respectively when u = 0.01 . So we can consider them as constants.

The total number of solitons which are generated from the
Gaussian initial condition has been determined from equation
(4.5.6) and we found that it agrees with those given above in
Figures 6.5-6.8 .

The first three conservative quantities for problem (d1)

boundary conditions({g.p-/3)are listed in Table 6.12:
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Table 6.12

The computed values I1 , 12 , I3 for problem (dV boundary

conditions{éuL)with h = 0.4, At = 0.05, € = 0.2, u = 0.1

Time I1 I2 I3

0.0 50. 00010 45.00046 42. 30069
100.0 50.00427 45.00789 42.25728
200.0 50.01289 45.01431 42.11004
300.0 50.01280 45.02113 42.04109
400.0 50. 00404 45.02817 42.03289
500.0 49.98812 45.03519 42.03796
600.0 49.97722 45.04222 42.04924
700.0 49. 98970 45.04924 42.05655
800.0 50.01744 45.05622 42.06376

We observe that the three quantities I1 , 12 , 13 have changed by

less than 0.046% , 0.124% , 0.634% respectively during the long
time computer runs. So, we can consider them as relatively
constant up to time t = 800. The values of the analytic and

numerical velocities are computed to be c, = 0. 1305, c = 0.128

respectively and so gree with one another.

We conclude that Galerkin’s method with quadratic spline
interpolation polynomials is a useful ‘technique for the
computation of KdV solutions over long periods of time, with small

space and time steps.
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CHAPTER 7

COLLOCATION WITH QUINTIC SPLINES

7.1 Introduction:

So far the KdV equation has been solved numerically wusing
Galerkin’s method with Hermite cubic interpolation, cubic spline
interpolation, and quadratic spline interpolation which have been
described and studied in the previous chapters. The main
disadvantage of these methods is the tedious calculations involved
in the initialization and the .complexity of the computations,
especially that of the nonlinear term. For the above reasons we
have searched for a more economic technique suitable for solving
the KdV equation and have decided on the method of collocation
using splines. The collocation approach to solving partial
differential equations has two great benefits in that it does not
involve integrations and it leads to banded matrices with a small
band width.

At this stage we ask the question, "Is a cubic spline
collocation technique suitable for solving the KdV equation ?" The
answer is no because cubic spline interpolation has third order
derivative discontinuity at the knots and so cannot represent a
solution to the KdV equation.

We need a spline which has at least its third order
derivative continuous, so we are lead to chose quintic splines
which have up to the fourth order derivatives continuous.

In this chapter therefore a finite element solution of the
KdV  equation, using collocation with quintic splines as

interpolation functions is set up.
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7.2 The Governing Equation:

Again we are going to set up a numerical solution of the KdV
equation:
u +teuwu  Ftpu =0 a<x<b (7.2.1)

where; € and p are positive parameters. Appropriate boundary

conditions will be chosen from the following:

u(a, t) = 81
u(b, t) = BZ
. (7.2.2)
u (a,t) =u (b, t) =0
X X
uxx(a,t) = uxx(b,t) =0 |

and the initial conditions to be used will be prescribed later, in

section 7.6.

7.3 The Collocation Solution {81,82]:

Quintic splines will be used to approximate the solution

u(x,t) . Let m: a = X <X, < ... < Xy = b be a partition of [a,b]

by the knots X and let ¢1(X) be those quintic splines with knots

at the points of n. Now

xN=span(¢_2,¢ »¢r-"v¢ ’¢ 1¢ }

-1 [0} N N+1 N+2

form a basis for functions defined over [a,b]. Our task is to find

out the approximate solution uN(x,t) to the solution u(x,t) which

is given by:
uN(x,t) = 8_2(t) ¢_2(x) + 8_1(t) ¢_1(x) + ..+ 8N+2(t) ¢N+2(X)
N+2
= I 8 (t)¢ (x), (7.3.1)

i

where the 8l are unknown time dependent parameters to be

determined using the boundary conditions:
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uN(a,t) = Bl )
u (a,t) = 0
NX
> (7.3.2)
uN(b,t) = 82
uNx(b,t) = 0 J

and the collocation conditions given by:

uNt(xj,t) + € uN(xj,t) uNx(xj,t) + U unxxx(xj’t) =0

j = 0,1, ... ,N . (7.3.3)

The quintic spline ¢x(X) is defined by the relationships [36, 73]:

[ (x-% )® [x _,x 1
i-3 1-3""1-2
5 5
(x Xi—3) -6(x X]-z) [x _2,x1_1]
5 5 5
(x Xx-3) 6(x xl_z) + 15(x xi_l) [xl_l,x 1
_ 1 _ 5 _ _ 5 _ 5_ _ 5
¢1(x)—;§ (x X1-3) 6 (x Xl—Z) + 15(x Xx-1) 20(x xl) [xi,xi*ll
(x-x )® -6 {xX-x )° + 15(x- x )°-20(x-x )%+15(x-x )°
i-3 i-2 i-1 i 1+1
[x1¢1’x1+2]
5 5 5 5 5
(x—xi_3) -6(x xi_z) + 15(x x1-1) 20(x xi) +15(x xi+1)
5
6(x Xi+2) [xi+2'xi+3]
- 0 otherwise ,
(7.3.4)
where; h = (xl—xi_l) for all 1+ , implying that all intervals
{x ,xi] are of equal size.

1-1
The quintic spline ¢1(X) and its three principle derivatives
vanish outside the interval [xi_3,xi+3]. In Table 7.1 the values

of ¢1(x) and its principle derivatives at the relevant knots are

listed for convenience:
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Table 7.1

P X X X X X
i-3 i-2 i-1 i i+1 xi+2 Xi+3
¢1(X) 0 1 26 66 26 1 0
f
(x) 5 50
¢, 0 2 2= 0 - 50 -5 o
h h h h
o” (x) 20 40 120 10 20
i 0 = —2 - =2 =2 222 0
h h h h h
7 (x) o) 60 120 120 0
¢i —3 - =23 0 ~°.3 - 89, 0
h h h h

N+2 . N+2 N+2
> ¢1(XJ) 81 + e 'Z ¢1(XJ) 8l ) ¢k(xj) 8k
i=-2 i=-2 k=-2
N+2
+ e Z ¢f’(xj) § =0 =0, ... ,N(7.3.5)
=-2

Suppose that 8l is linearly interpolated between two time

levels n and n+1 by:

n+1
i

5 = (1—9)8? +08 (7.3.6)

where 0 < 6 < 1 and 8? are the parameters at the time nAt . The

time derivative is discretised wusing the standard finite

difference formula:

ad - _ 1 gnt LM (7.3.7)

Hence equation (7.3.5) can be written as:

N+2 N+2 n nel
b [ ¢, + 6 Atle ¢ £ ¢ 8 +u ¢! )] 1
f=-2 k=-2
N+2 N+2 n n
= ‘5_2 [ ¢, - (1-0)at(e ¢ k§_2¢k 5+ u ¢ )]s1 (7.3.8)
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where the basis functions and their derivatives are evaluated at
the N+1 knots xj , j = 0,1, ... ,N.

Giving the parameter 6 the values o , % , 1 produces explicit,
Crank-Nicolson and backward difference schemes respectively.

Now assume 6 = % then the equation (7.3.8) takes the form:

N+2 At N+2 ,
/ n ”i n+
2 [ ¢ (e ¢ z ¢ 5, tu ¢ )] 5
f=-2 k=-2
N+2 At N+2
= - - ’ n " n
i§-2 [ 3 — (e ¢ k§_2¢k 5% + ¢! )]81 (7.3.9)

Using the values given in Table 7.1 equation (7.3.9) can be
calculated at the knots xj , j = 0,1, ... ,N, so that

at x = x_ equation (7.3.9) gives:

8n+1 + n+1 8n«i-l 8n+1 . n+l -
01 -2 02 -1 03 o0 04 1 05 2
« 8" +o 8" +a 8" +a_8" +a 8" (7.3.10)
05 -2 04 -1 03 0 0z 1 01 2
where:
= - - = - + =
a01 1 R1 2_2 R2 . a02 26 1OR1 Z_2 2R2 s ao3 66 ,
= - = + +
=26+ 10R Z _~2R, , o« =1+R 2 _+R,
2 =5 4265 +665 +265 +6_, R =—_ eAt , R_=-U3 pAt (7.3.11)
-2 -2 -1 0 1 "2 ' 1 2h * 27 h T
at x = X equation (7.3.9) becomes:
8n+1 . n+1 + 8n+1 n+1 8n+1 -
11 -1 12 0 13 1 14 2 15 3
n n n n + n .3. 12
%is 8—1 e, 8o T, 81 T 82 a1183 (7 )

where:
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all =1 - R1 Z_1 - R2 s a12 = 26 - 1OR1 Z_1+ 2R2 R al3= 66,
« =26 + 10R 2 - 2R_ , o =1+R Z + R,
14 1 T-1 2 15 1 T-1 2
Z  =38" + 265" + 665" + 268" + 8" (7.3.13)
-1 -1 ) 1 2 3
at x = x_ equation (7.3.9) becomes:
o 8n+l n+1 + n+1 + n+1 + n+1
N1 N-2 N2 N-1 N3 N N4 N+l NS " N+2
o 8" +a 8" +a 8 +a & +oa 8" (7.3.14)
NS5 “N-2 N4 N-1 N3 N N2 "N+1 N1 N+2
where:
vl =1-R 2 - R , =26 - 10R Z + 2R , o« = 66,
N1 N-2 2 N2 1 N- N3
a =26 + 10R Z - 2R, o =1+R Z + R_,
N4 1 TN-2 2 N5 1 TN-2 2
Z = 8" + 268" + 668" + 268" + 8" (7.3.15)
N-2 N-2 N-1 N N+1 N+2

Generally, these equations can be written as a recurrence

relationship:

o 8n+1 + o 8n+1 + 8n#l + 8n#l + o 8n+1 -
11 1-2 12 1-1 13 1 14 1+1 15 142
8"+ s 8" + o 8" + 8" (7.3.16)
15 1-2 14 i-1 i3 i2z 1+1 i1 1+2
where:
f =0, 1, , N
= - - = - + = 66,
ali 1 R1 21-2 R2 , aiz 26 IOR1 2‘_2 2R2 , aia
a =26 + 10R 2 - 2R_, o =1+R 2Z + R,
14 1 1-2 2 i5 1 T i-
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z = 8" + 268" + 668" + 268" + 8"
i-2 i-2 i-1 i i+1 i+2
5 _ 30
Rl = 'Z—h cAt y R2 = h3 IJ.At (7 3. 17)

The system (7.3.16) consists of N+1 linear equations in N+s

unknowns (8 , O , 8 , ..., 8 , & )T . To obtain a
-2 -1 0 N+1

unique solution to this system we need 4 additional constraints.

These are obtained from the boundary conditions (7.3.2) which

require that:

8 + 268 + 668 + 263 + 3 =R ]
-2 -1 0 1 2 1
-58 , 508 . + 5081 + 582 =0
- i . (7.3.18)
5 + 265 + 665 + 268 + 8 = B
N-2 N-1 N N+1 N+2 2
-58 - 508 + 508 + 53 =0 J
N-2 N-1 N+1 N+2

By solving the first two equations of (7.3.18) simultaneously in

5 5 and 8_1 , Wwe obtain:

_ 5 165 65 9
8 ,= " ghB * 7 8 7% *158
(7.3.19)
1 33 9 1
8-1 = 16 B g 8o a4 81 38 82

Similarly, solve the last two equations of (7.3.18) simultaneously

for bN+1 , 6N*2 , to get:
S 165 65 9
%2 =7 8 B, * 71 R TR L
(7.3.20)
1 33 91
%1 " 16 B, g By 7 %-1 8 %-2

Eliminating & 5 and & . from the first two equations of the

system (7.3.16) using equations (7.3.19) to obtain:
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—49.58n*1— n+1_ ) n+1= n n n_
o 3981 1 582 49.58o +3981 +1.582 1.581 (7.3.21)
8n+1 + 8n+1 n+1 n+1 _ n n n n, . *
s1 8 s2 8 +s3 82 +s4 83 S5 80 +s6 81 +s7 82+ss 83+B1
where:
1 1
= _ 7 - = =
sS1 8(1 5 47R12-1 + 49R2) , S2 4(255 +9(R12_1+R2))

s3 = l(207 +8RZ -1SR) , s4=1+RZ +R
8 1 -1 2 1 -1 2

=1 - =1
s5 = 8(175 + 47R12_1+ 49R2) , 86 = Z(ZSS - 9R12_1— 9R2)

i
It

s7 = l(207 81R Z + 15R_ ) , ss 1 -R2Z2 -R
8 1 -1 2 1 -1 2

g’ = §91(R Z +R) (7.3.22)

Similarly, eliminating Sm1 and 8N+2 from the last two equations

of (7.3.16) and using equations (7.3.20) to obtain:

y1 Szt; +y2 Szt; +y3 Szj: +ya 8:+1 = ys 8:_§y6 8:_5y7 8:f1ya 8:-8;
where: 1 1
yg = §(175 - 47R12N-3+ 49R2) ,y Y3 = 5(255 +9(R12N-§R2))
_ 1 _ -
Yé = §(207 + 81R12N-3 15R2) , ¥y =1 + RIZN-§ Rz
1 1
G = — + + - = .. - -
vy 8(175 47RIZN-3 49R2) N 1 4(255 9R12N_3 9R2)
_ 1 - =1 - _
y2 = §(207 81R12N_; 15R2) , Yy =1 RIZN_ R2
+_ B
B, =g2RZ +R) (7.3.23)

1.58" 1+ 398" 14+49.58" " 1=-1.55" -395" -49.55"+ 1.58 (7.3.24)
N-1 N N-2 N-1 N 2

The equation (7.3.21)-(7.3.24) together with the third through
(N-1)th equations of (7.3.16) give N+1 equations in N+1 unknowns
(80 , 81 , 83 y e, SN)T which can be written in a matrix form

as:
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As™) 8™ = BG™MSE" + ¢ (7.3.25)

~ ~ ~ ~ ~

where; A(8") , and B(8") are penta-diagonal (N+1)x(N+1) matrices

~ ~

and r is N+1 vector:

ro= [—1.531,3:, 0,0, ... . —3;,1.532] (7.3.26)

Since the matrices A(8") , and B(8") depend on 8", the matrix

~ ~ ~

equation (7.3.25) is nonlinear. We handle the problem by solving
not equation (7.3.25) directly but by setting up and solving an

equivalent system [50,68]. Such a system is:

A(s™) 8™ = B(8")8" + r (7.3.27a)
gnol+ 8n én+1 . 8n
Al = . z 8"*1= B 3——5———1— 8" + r (7.3.27b)

where; equation (7.3.27a) predicts the first approximation s"t!

~

then equation (7.3.27b) corrects iteratively the improved

approximation.

Our approach to the solution of the nonlinear system (7.3.27)

is to store the pentadiagonal matrices A(8") and B(8") in

\ ~ ~

rectangular form (N+1)x5 and then use the penta-diagonal algorithm
(see Appendix A2) to solve the system (7.3.27). The boundary

parameters 8_2 , O , , and 8N+2 can be computed at each

5
-1 N+1

time step from equations (7.3.19)-(7.3.20).
To start the iterative procedure (7.3.27) an initial vector

8° must be determined from the initial condition on wu(x,t). Once

~

the parameters & have been determined at a specified time then we

~

can compute the solution at the required knots from the formula

u (x ,nAt) = 8" + 268" + 668" + 268" + &" (7.3.28)
N i i-2 i-1 i 1+1 i+2
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7.4. The Initial State:

From the initial condition u(x,0) on the function u{(x,t) we

must determine the initial vector 80 in order that the

~

determination of the time evolution of & and hence u can be

~

started.

We firstly rewrite equation (7.3.1) for the initial

condition:
_ 0
uN(x,O) = 2 5 ¢ (xl) , (7.4.1)

where; 8? are unknown parameters to be determined. To do this we
require uN(x,O) to satisfy the following constraints:

(a) It must agree with the initial condition u(x,0) at the knots;
leading to N+1 conditions, and

(b) The first and second derivatives of the approximate initial
condition shall agree with those of the exact initial condition at
both ends of the range: 4 further conditions.

These two conditions (a) and (b) can be expressed as:

uN(xo.O) =0 N
uﬂ(xo,O) =0
uN(xi,O) = u(xi,O) i = 0,1, ,N > (7.4.2)
u’(x ,0) =0
N
J
u' (x ,0) =0

From Table 7.1 the system (7.4.2) can be reduced to:
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-58 - 508 + 508 + 58 =0
2 -1 1 2

205 + 408 - 1208 + 408 + 208 =0
2 -1 0 1 2

+ 668 + 266 = .
1 ) i+1+ 81+2 u(xi,O) (7.4.3)

5 + 268
2 i

208 + 405
N-2 N

- 1208 + 408 + 208 =0
1 N N N

+1

-1 N+1 N+2

—SSN - 508N + 508 + 55 =0

The equations (7.4.3) can be written as a matrix equation of the

form:
0
A S = b (7.4.4)
where:
F =S -50 0 50 5 )
20 40 -120 40 20
1 26 66 26 1
1 26 66 26 1
A =
1 26 66 26 1
20 40 -120 40 20
L -5 -50 0 50 5 ]
o} 0 0 o} 0 T
and & = [ ) , o , .. , O , O ] . While the vector b
- -2 -1 N+1 N+2 ~
has the form
T
b = [0 , 0, u(xo,O) , u(xl,O) y e, u(xN,O) , 0, O] (7.4.5)

To solve the system (7.4.4), reduce the matrix A to

penta-diagonal form by the following steps:

(1) Solve the first two equations of the system (7.4.4)

simultaneously in 8_2 and 8_1 to obtain:
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o]
It

7.58 - 55 - 1.58
0 1 2
(7.4.6)

[o/]
]

-0.756_ + 1.586_  + 0.255
[¢] 1 2

Eliminating & and 8_1 from the third and fourth equations of

(7.4.4) gives:

5480 + 6081 + 682 = U(XO,O)
(7.4.7)

25.258 + 67.58 + 26.258_ + & = u(x‘,O)
0] 1 2 3 1

(2) Similarly, by solving the last two equations of the system

(7.4.4) simultaneously we get:

8 =7.58 - 5% - 1.58
N N-1 N

-2

(7.4.8)

8 =-0.758 + 1.58 + 0.258
N N-1 N

Eliminating 8N+l and SN*Z from the (N+1)th and N-th equations of

the system (7.4.4) gives:

U(XN-I'O)

) + 26.258 + 67.58 + 25.258
3 N-2 N-1 N

(7.4.9)

63 + 608
2 N-1

+ 548 u(x ,0)
N N

Hence the system (7.4.4) is reduced to penta-diagonal (N+1)x(N+1)

form. To solve that system apply the penta-diagonal algorithm (see

T

Appendix A2) to obtain the computed solution (80 , 81 . e, SN)

and hence compute & , O ,0 , and 8 from equations
-2 -1 N+1 N+2

(7.4.6) and (7.4.8). So the initial vector 80 is determined.

~

7.5 The Stability Analysis:

The investigation of the stability of the KdV equation will

be based on the von Neuman theory in which the growth factor of a
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typical Fourier mode defined as:

n

5" = én eijkh
j

(7.5.1)
where; k 1s the mode number and h is the element size, is
determined from the numerical scheme (7.3.16)-(7.3.17).

The nonlinear term u u, of the KdV equation cannot be handled
by the Fourier mode method. Therefore we tackle this problem by
linearising this term ([26,32,35,53]. We assume that the quantity u
in the nonlinear term u u is locally constant which is equivalent
to supposing that in equation (7.3.17) all the 8? are equal to a
local constant d, so that the equation (7.3.16) can now be

written as:

8n+1 + o n+1 . o 8n«v'l + o n+1 + n+1 -
al j-2 2 j-1 3 J 4 j+1 ) j+2
« 8" +a 8" +a 8 +a 8" +a 8" (7.5.2)
5 j-2 4 j-1 3 3 2 j+1 1 j+2
where:
y =0, 1, , N
« =1-R -R , « =26- 10R + 2R . « = 66,
1 2 2 1 3
« =26 + 10R -2R, o« =1+R + R,
4 1 S 2
30
rR" = > eAt(120d) , R_ = =3 uaAt (7.5.3)
1 2 2 h

If we insert the Fourier mode (7.5.1) in equation (7.5.2) we

obtain:

~ - -1kh 1kh 2ikh n -2ikh
Sm1 a e 21kh + o e +a +tae + a e =8 |a e +
1 2 3 4 5 5

« e-“'(h Y a o+t eikh + @ eaikh ] (7.5.4)
4 3 2 1
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Rewrite this equation in simple form:

(a + i0)8™*! = (a - ib)s" (7.5.5)
where:
i = V-1
a = 33 + cos(2kh) + 26cos(xh) (7.5.6)

b = (R: + R )sin(2xh) + (1OR: - 2R_)sin(kh)

Zn+1

Let & =g 8" where g 1s the amplification factor for the
mode and substitute in (7.5.5) to get:
_a - 1ib
g 1 (7.5.7)

Taking the modulus of this equation gives:

leg| =V gg =1,

Therefore the linearised numerical scheme 1is wunconditionally

stable.

7.6 The Test Problems:

The principal purpose of the work reported in this section is
the thorough testing of the collocation quintic spline algorithm
based on the method which has been described in this chapter.

For the tests we shall compute the numerical solution of the
KdV equation with different initial and boundary conditions which
are chosen as follows.

(a) The initial condition which represents the motion of a
single soliton given by:

u(x,0) = 3 c sechZ(Alx + Dl) (7.6.1)
where; A1 , D1 and ¢ are given constants, together with the

boundary conditions:

u(2,t)

u (2,t)
X

ulo, t) for all time (7.6.2)

H
(=]

u (o, t)
X
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Since the KdV equation has an analytic solution of the form (26}]:

ulx,t) =3 c secha(Alx - Blt + 01) (7.6.3)
provided:

21 172 -

A1 2(c c/u) and B1 €c A1 (7.6.4)
equation (7.6.1) is a possible initial condition  if
A1 = %(e c/u)“2 and in fact represents a single soliton moving to
the right.

To make comparison with the work of Sanz-Serna and Christie
(36] we choose e=1, pu=4.84x10"", c=0.3, D1 = -6 ,
h = 0.05, 0.033, 0.01 , and At = 0.025, 0.01, 0.00S . We observe

in Figure 7.1, the computed solution. The soliton moves to the

right at constant speed with unchanged amplitude for times from
t = 0.0 tot=3.0. When the exact solution (7.6.3) is plotted on

the same figure, we find that the curves are indistinguishable.

These graphs have been compared exactly with those of Greig and

Morris [26] for corresponding times and the agreement 1is also

excellent:

1.1
1.0
0.4

8.4
0.4
0.1

12
1.0
0.8

208
0.
.t

0.2 [ M) 0.8 [N ] 1.0 1.3
1.1
1.0
a.0

20.c
0.4

0.2 0.4

1.2
1.0
(N )
0.
0.4

[ X1

[ ) 1.8 1.0 &8

Tal.

1.2
1.8
0.0
0.8
0.4
(X

88 1.0 2
3

0.2 8.4 0.8

Figure 7.1 Problem (a).
h = 0.01

0.2 0.4 0.6 0.3 1.0 1.2 e

The motion of single soliton with
At = 0.00s.
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(b) The interaction of two overlapping solitons with initial

condition given by:

= 2 2
u(x,0) = 3 C1se°h (Alx + Dx) *+ 3 c_sech (Azx + Dz) (7.6.5)
together with the boundary conditions:
u (o, t) = ulz,t) =o for all time (7.6.6)
ux(o,t) = ux(z,t) =0

These conditions represent two solitons,

4C
31

placed at x =

soliton depends directly upon its amplitude.

- D_/A_ .
2 2

sited initially at x =

- D /A
1

one with amplitude

and a second with amplitude3c2

As is well known that the velocity of a

So choosing c, > c,

and Dl/A1 > DZ/A2 ensures that these solitary waves interact

with increasing time.

For comparison with Greig and Morris (26]

solution we have chosen c, = 0.3, 5 = 0.1, D1 = D2 = -6. ,
1{ ec )*
h=0.01, At =0.005 and A = 3|—)| , J=1,2
;j 2l u
ted 1.2
1.8 1.0
0.4 0.9
25,4 tab.0 358 foe)!
0.4 [ Y]
[ %] 0.2
0.2 06 08 0.0 1 bd b M6 M4 0 Y W Y T 1 DR TY N 1Y R P Y
H 4
1.2 1.4
1.0 1.8
.. 2.8
35.¢ te).S 5.6 tal.
[ ) 8.4
[ 3] 03
LT S Y S PY-SER TY B ¥ | U Y - T ¥ B 7Y S PY R PR T |

0.6 0.0

1.0
t

Figure 7.2 Problem (b). The interaction of the two overlapping
solitons with h = 0.01 At = 0.00S.
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From Figure 7.2 we observe that the two solitons are placed where
the larger one on the left. As the time increases, the larger
soliton catches up with the smaller one at time t = 0.75. At time
t = 1.5, the larger soliton, overtakes the smaller one and is in
the process of separating. Around time t = 3, the interaction
process is complete and the larger soliton has sparated completely
from the smaller one.

The interaction of two overlapping solitons observed in our
computations is shown in Figure 7.2 and agrees well with those
obtained by other authors [26,35]. We see that the solitons emerge
from the interaction with large and small amplitudes slightly
changed from the original by ®» 0.99% , =~ 0.28% respectively. The
agreement with Greig and Morris [26] is very satisfactory.

(bl) Consider the motion of two well separated solitons as an

initial condition:

u(x,0) = 3 ¢ sechz(A x+D ) +3c¢c secha(A x + D) (7.6.7)
1 1 1 2 2 2
where:
¢c ,c_, A , A , D are given in problem (b)
1 2 1 2 1
D =-90,B =¢€cA , 1=1, 2 s

The boundary conditions are:

|
]

ula,t)

u (a,t)
X

u (o,t)

u (o, t)
X

for all time (7.6.8)

]
(o]

Figure 7.3 shows us that the two solitons with the larger on
the left. As the time increases, the larger soliton catches up
with the smaller until, at time t = 3. Around time t = 4, the
larger soliton has overtaken the smaller one and is in the process
of separating. By time t = 6, the interaction process is complete

and the larger soliton has separated completely from the smaller
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one. Also we see that after the interaction of the two well

separated solitons the larger and smaller amplitudes alter from

the by small amounts of 0.002%, 0.037%

originals very

respectively. Therefore we emphasise that after the interaction

the amplitudes are unchanged as required by theory:

i
)
[¥]
0.8
[ X3

Vd
1.8

LX)
&l

2.3 1.8

.3

1.3
.8
.

.8 12,8

[ 3]

.
(N ]
[X)
e 14.8
.

Figure 7.3 Problem (bl). The interaction of two well separated
solitons with h = 0.01 At = 0.00S.

(c) Another Iinteresting initial value problem for the KdV

equation is given by using the Gaussian distribution function as
the initial condition:

u(x ,0) = exp( - xz) (7.6.9)

This is a typical symmetric function which tends zero as |x| tends

to infinity. The boundary conditions imposed are:

u (¥ 1s5,t) =o0
X

We choose € = 1.0 and we discuss each of the following cases:

(¢l )u=004 , h=0.1 , At =0.01
(c2 ) pu=0005 , h=0.05 , At = 0.01

(e3 ) pu=0.001 , h=0.025 , At = 0.005
(c4 ) p=0.0005 , h=0.025 , At = 0.005
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A comparison has been made with the work of Goda [59].
Figure 7.4 depicts the behaviour of numerical solution of problem
(cl) for times up to 12.5 . We see that the initial perturbation
splits itself into a soliton plus an oscillating tail. The values
of the analytic and numerical velocities are ca = 0. 401, c_ = 0.4

respectively, so they agree:
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Figure 7.4 Problem (cl). A single soliton with oscillating tail
for u = 0.04.

)

Figure 7.5 shows similar results for u = 0.005S . We observe
that the initial perturbation breaks up into four solit&ﬁs. The
graphs obtained by our algorithm for the case (cl) is ldentical
with that given by Goda ([S59]. The agreement between the analytic
velocity c, = 0.5589 and the observed velocity c = 0.558 for the

leading soliton is very satisfactorily:
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Figure 7.5 Problem (c2). The breakdown of the initlal condition
into 4 soliton when p = 0.00S.
In Figure 7.6, for u = 0.001, we see that the 1initial
perturbation breaks up into 9 solitons moving to the right. The
agreement between the analytic velocity c, = 0.616 and the

observed velocity c = 0.62 for the leading soliton 1is very

satisfactorily:
e e
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Figure 7.6 Problem (c3). The breakdown of the initial perturbation
into 9 solitons with up = 0.001.
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Figure 7.7, for u = 0.000S, shows another train of solitons
generated when the initial perturbation splits into 12 solitons
moving to the right with constant velocity, for the leading
soliton this is c = 0.64 and amplitude ( = 1.91). The analytic

velocity c, = 0.637 agrees very well with the numerical one c :
n

’:ﬁ_EEEX_____v s -44;2;//AWA f.qa

Figure 7.7 Problem (c4). The breakdown of the initial condition
into 12 solitons when u = 0.000S. '

It was found that the behaviour of the numerical solutions
differed according to the value of p . The initial perturbation
breaks up Into a number of solitons in the course of time
depending on the value of u chosen. So, if we decrease the value
of u then the number of solitons, the amplitude, and the velocity

increase. Also. it appears that the amplitudes vary approximately

linearly.

(d) As a final test example we shall as take initial

condition:

[ y - tanh[ X-25 ] ] (7.6.11)
S

N

u(x,0) =
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and as boundary conditions:

u(o, t) = 1
u(so, t) =0 for all t > 0 (7.6.12)
u (o, t) =u (s0,t) = o0

X pe

(d1) Let us consider the symetric initial condition as given

by:

u(x, 0) = % [ 1 - tanh [ |§l:—32— ] ] (7.6.13)
5

and the boundary conditions are impose:

u(i1s0,t) = o

u(-150,t)
for all t > 0 (7.6.15)

u (-1s50,t) u (1s0,t) = o
X X

To allow comparison with Vliegenthart [44] for problem (d) we
have chosen € = 0.2 , p = 0.1 and used At = 0.05 and h = 0.4 . The
solution we compute, reproduced in Figure 7.8 shows us all the
general features obtained in the earlier solution [44]. We cannot
make a direct comparison with Vliegenthart's [44] figures because
the boundary conditions used are not given. We can, however,
repeat his computations using his finite difference scheme and
parameters together with our boundary conditions to produce
comparable figures. If these are plotted also on Figure 7.8 the

graphs are indistinguishable with those obtained in the present

study:
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Figure 7.8 Problem (d). The solution graphs for varoius times
with h = 0.4, At = 0.05, o =0.1, € = 0.2.

We found that his numerical velocities for the solitons were
greater than ours and also that the amplitudes differed. Also, the
conservative quantities varied somewhat. We suspected the boundary
conditions. So, we decided to chose alternative problem (dl). The

behaviour of this solution is given in Figure 7.9:

L. 100

1.%% 1.0
% e
1.4 1ed8

- "e0.0 sl_,.% .
(X} 8,4
(X ) .38
= A

-3 o o » ) ) [T 18 - -5 ) s. ” ) 1) .

]

1.8 1.8
1.73 (¢}
1.9 | 1.
(7Y 1ed3

LI Tem >0 Teun
o."y 0.1
1 X"

'] - [) » ) ) ) ) - ) 18 - 5 [ 1) )

T ]

.08 1.00
1 (B3¢
LW 1%
i i3

x:: | ) 2. e
[ Be) .3

i =V
» =) 1) » s (L] £ 1% - -8 -] » 14 ) 190 1. 1.
x

Figure 7.9 Problem (d1).The initial perturbation splits into train
of solitons with € = 0.2, o0 =0.1, h = 0.4, At = 0.0S.
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It is observed from Figure 7.9 that the initial perturbation
problem (d1) as broken up into a train of solitons, which move
steadily to the right with constant speeds whose magnitude depends
upon their individual amplitude. It appears that the amplitudes of
the solitons vary approximately linearly. The agreement between
the values of the analytic velocity c, = 0.1302 and the numerical
velocity c = 0.128 for the leading soliton are very satisfactory;

especially with these long time and large space steps.

7.7 Discussion:

Any numerical scheme for computing the solution of the KdV
equation must represent faithfully the amplitude and the position
of solution over many time steps with minimum errors (36}, and
also it should be conservative.

To examine the accuracy of our numerical scheme we have used
the L2— and Lm—error norms to compare the numerical and exact
solutions. The L2—error is used to compare 5 numerical methods in
Table 7.2 for the single soliton problem [36]. We find that the
collocation quintic spline method compares well in the accuracy
with the best of the other methods. In fact, the error in the
single soliton solution 1is less than that of the modified

Petrov-Galerkin method by a factor 10, when h = 0.01, At = 0.005.
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Table 7.2

The growth of the discrete Lz—error norm x 10° for single soliton

Time Zabusky- Hopscotch Petrov- Modified} Collocation
Kruskal [26] Galerkin P-G Quintic
[27] [36] [36] [present]

Ax = 0.05 At = 0.025 h = 0.05 At = 0.025
0.25 34.64 61.21 81.39 52.15 37.39
0.50 122.68 122. 41 102.54 64.90 38.97
0.75 210.44 181.35 125.84 89. 01 52.97
1.00 298.19 228.10 150.57 107. 20 63.72

h = 0.033 At = 0.01
0.25 31.18 5.94 2.35
0.5 43.35 7.56 3.25
0.75 56.21 8.70 2.23
1.00 74.08 9.49 2.88
Ax = 0.01 At = 0.000S h = 0.01 At = 0.005
0.25 5.94 3.79 4.46 0.21 0.022
0.50 13.17 9.28 7.01 0. 38 0.041
0.75 21.08 14.14 10.08 0.57 0.054
1.00 28.66 18.72 13. 26 0.74 0.067

Table 7.3 shows us that the Lm—error norm computed from our

technique for a single soliton using the definition (4.5.2) has

been compared with all the method which are quoted in

Table 7. 3.

Lz-error norm which disagrrees with the authors [26,27,36].

We observe that the Lm—error norm 1is greater than

Also

we find that the wvalue of Lm-error norm using our method 1is

greater than Modified Petrov-Galerkin when h

and it has the same error of magnitude for h

and h =

0.01 ,

At

= 0. 005:
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Tal 7.3

. 3
The growth of the discrete L -error norm x 10° for single soliton

Time Zabusky- Hopscotch| Petrov- Modified|Collocation
Kruskal [26] Galerkin P-G Quintic
(271 [36] [36] [present]
Ax = 0.05 At = 0.025 h = 0.05 At = .025
0.25 19.4 32.7 42.18 30.22 57.54
0.50 63.5 67.4 51.85 22.85 65. 26
0.75 122. 4 99.3 87.60 35.86 76.69
1.00 161. 4 141.6 100. 41 39.39 100. 96
h = 0.033 At = .01
0.25 14.27 2.80 4.80
0.5 21.65 4.53 4.83
0.75 29.78 4.85 4,83
1.00 39. 37 5.85 4.83
Ax = 0.01 At = 0.0005 h = 0.01 At = .005S
0.25 2.05 1.11 1.21 0.07 0.07
0.50 4,22 2.14 2.15 0.11 0.11
0.75 6.36 3.54 3.09 0.17 0.16
1.00 8.13 4.91 3.83 0.21 0.20
Further results for times up to t = 3.0 are listed in Table 7.4:
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Table 7.4

3 s .
errors x 10° for a single soliton

T 1.25 1.50 1.75 2.00 2.25 2.50 2.75| 3.00
L2 3.62 3.31 2.55 2.35 2.10 2.89 3.11 2.94
h = 0.033
At = 0.01
Lm 6.47 8.14 8.14 8.14 8.14 8.14 8.14 8.14
L2 0.08 0.09 0.09 0.10 0.12 0.13 0.14 0.15
h = .01
At=0.005
L 0.22 0.24 0.25 | 0.28 0.32 0.33 0.37 0.41

Table 7.4 shows us that the error is still small even when
the time is increased up to t = 3.0.

The KdV equation has an infinite number of conservative
quantities. For this reason it is important for any proposed
numerical scheme for solving the KdV equation to have at least the
lower order quantities conserved. We will study how the four
quantities I1 (1 = 1,...,4) defined by equations (2.4.8)-(2.4.11)
respectively behave.

We have computed the first four invariant quantities for the

single soliton solution. These are given in Tables 7.5 and 7.6:

Table 7.5
The computed value I1 , 12 R I3 for a single soliton
I1 Iz 13

h=.033] h=.01lh=.033] h=.01lh=.033]h =.01
Time |At = .01|at =.005|At = .01[At =.005|At = .01 |At=.005
0.0 0.1445970.144598(0. 086759 (0. 086759 (0. 046850 |0. 046850
0.50 |0.144599|0.144602]0.086785|0.086761[0.046871]0. 046851
1.00 |0.144562|0.1446010.086794|0.086762|0.046878|0. 046853
1.50 |0.144584|0.144603|0.086788(0.086764|0.0468760. 046854
2.00 |0.144570]/0.144604|0.086767|0.086765|0. 046861 |0. 046855
2.50 |0.144635]0.14460S5|0.086771[0.086767|0. 046864 (0. 046857
3.00 |0.144604|0.144606|0.086783{0.086768|0.046873|0. 046858
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In Table 7.5 we give the values of I1 , 12 , 13 . The change in
these quantities during the computer run are less than 0.027% ,
0.041% , 0.060% , respectively for h = 0.033, At = 0.01 and
0.006% , 0.011% , 0.018% respectively for h = 0.01 , At = 0.005 .
We observe that they are satisfactorily constant even when h, At
are relatively large.

Table 7.6 shows us that I4 is almost constant when h = 0.01 ,

At = 0.005:
Table 7.6
The numerical value of I4 for a single soliton
T 0.0 .50 1.00 1.50 2.00 2.50 3.00

h =0.033

. 024089 . 025466 .024955|.025234|.024438(.024693}.024475
At =0.01
h = 0.01

.024094,.024101|.024101.024098}.024099|.024100|.024104
At=0. 005

We find that the change in I4 is less than 5.72% when h = 0.033

At = 0.01 and 0.042% when h = 0.01 At = 0.005 during the computer

run.

A computer run on the single soliton solution with 200 nodes

and 200 time steps took 4 secs of CPU time on a VAX 8650.

With example (b) we have verified that our numerical method
can adequately cope when two overlapping solitary waves coalesce
for a short period and then separate with their original profiles
intact but their large and small amplitudes affected by 0.99% ,
0.28% respectively and their relative positions changed. The

quantities I1 , 12 , 13 and I4 have been computed for problem (b)

and are listed in Table 7.7:
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Table 7.7

The computed values I1 , 12 , I3 , and I4 for two

overlapping solitons with h = 0.01 At = 0.005

Time I1 Iz I3 I4
0.0 0. 228081 0.107062 0.053316 0.027083
0.50 | 0.228081 0.107064 0.053317 0.030863
1.00 | 0.228262 | 0.107074 0.053321 0.034886
1.50 | 0.228222 0. 107075 0.053323 0.031270
2.00 | 0.228037 | 0.107070 0.053323 0.027651
2.50 | 0.227816 0.107073 0.053325 0.026696
3.00 0.227658 0.107079 0.053328 0.026292
Also Table 7.7 indicates to wus that the quantities Ii
(t = 1,...,4) are changed about 0.186% , 0.016% , 0.023% and

28.82% respectively during the computer run.

The discrete Lz-error norm is evaluated for the two well
separated solitons problem (bl) up to t = 2.0 and is given in

Table 7.8:

Table 7.8

3
The growth of the discrete Lz-error norm x 10~ for two well

0. 005

separated solitons with h = 0.01 At

T 0.25 | 0.50 | 0.75 | 1.00 1.25 1.50 [ 1.75{ 2.00

L2x1o3 0.029| 0.090] 0.195; 0.421| 0.883| 1.824|3.740|7.598

We have also calculated the first four conservative

quantities for problem (bl) which are recorded in Table 7.9:
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Table 7.9

The computed values I1 , 12 , I3 , and I4 for two well

separated solitons with h = 0.01 At = 0.005

Time Il I2 I3 I4

0.0 0.228082 | 0.103466 0. 049864 0.024616
1.0 0.228085 0.103467 0.049865 0.024617
2.0 0.228086 | 0.103468 0.049865 0.024617
3.0 0.228088 | 0.103470 0.049866 0.024628
4.0 0.228091 | 0.103473 0.049869 0.024620
5.0 0.228092 | 0.103474 0.049870 0.024642
6.0 0.228093 | 0.103475 0.049870 0.024622
7.0 0.288094 | 0.103476 0.049870 0.024628
8.0 0.228095 | 0.103476 0. 049870 0.024648

Table 7.9 shows us that the quantities Ii (1 = 1,...,4) change

by less than 0.006% , 0.01% , 0.013% , 0.13% respectively during
the computer run. So they can be considered as constant.
Using equation” = (2.3.4.8) the forward and backward
phase shifts have been'evaluated numerically and obtained as
A1 =0.11 , and A2 = - 0.18

which agree with the analytic results equation (4.5.7)

(b2) Let us study the two solitary waves initial conditions
which are followed from the analytic solutions (2.3.4.1) when

t = 0.0 in the following cases:

(1) problem (b) where a =V v/, d =-12,d =-12 + A

(ii) problem (bl).where a = v Ci/ [T d1 = - 12 , d2 = -18 + A

(iii) o« =4.0 «, = 2.0 , d1 = d2 = 0.0 . The boundary
1

conditions are chosen as
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u(¥ 12,1t)
u (¥ 12,t)
X

for —0.5 <t < o.5 (7.7.1)

]
o

The present technique has been used to compute the errors in
the solution using the discrete L2- and Lw—error norms and also the firs

four conservative quantities which are given in Table 7.10:

Table 7.10
The computed values of the errors x103, and I1 to I4 for two

overlapping soliton problem (bl) case (i) with h = 0.01, At =0.005

Time L2x1o3 me1o3 I1 12 13 I4

0.0 0.228074|0. 103456 0.049855|0. 024610
0.50(0.217 |0.309 |0.228096|0.103457|0.049856]0. 025336
1.00|0.081 |0.309 |0.228097|0.103459|0.049857(0. 024655
1.50|0.114 |0.309 [0.228101(0.103461|0.0498590.024743
2.00(0.100 |0.309 |0.228099|0.103462|0.049860]0.024619
2.50/0.128 |0.309 |0.228100|0.103463|0.049860|0.024689
3.00(0.172 (0.452 |0.228094|0.103463|0.049860|0. 024699

Table 7.10 shows us that the errors measured in terms of the
discrete L2— and Lm—error norms are satisfactorily small even when
the time achieves 3. The quantities Il (i = 1,...,4) are changed
by less than 0.012% , 0.0068% , 0.011% , 0.541% respectively
during the computer run. These quantities are virtually constants
especially 11’ 12, I3. After the collision the larger and smaller
amplitudes are changed from their original by values less than

0.8% and 0. 4% respectively.

The L2— and Lw—error norms and the first four conservative
quantities have been computed for two well separated solitons

problem (b2) case {(ii) and are listed in Table 7.11:
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Table 7.11

The computed values of the errors x 103, and I1 to 14 for a

double soliton problem(b2) case (ii) with h=.01, At = 0.005

Tim |Lp¥100 [Lgxio’| L I, I, I,

0.0 0.228082|0.103456(0.049855|0.024610
1.0 |0.078 (0.225 |0.228084}0.103457|0.049856]0.024612
2.0 |0.142 |0.375 |0.228086(0.103458|0.049856|0.024611
3.0 |0.141 [0.375 |0.228089(0.103460}0.049857{0.024617
4.0 |0.238 |0.621 |0.228093(0.103463|0.049860(0.024619
5.0 [0.321 {0.799 |0.228095|0.103464]0.049861|0.024618
6.0 [0.386 |{1.016 (0.228096|0.103465|0.049861)0.024632
7.0 }0.448 |1.170 }0.228097]0.103466]0. 049861 |0.024614
8.0 [0.512 |1.332 [0.228098|0.103466)0.0498610.024619

Table 7.11 shows us that the L2- and Lm—error norms are

satisfactorily small for two well separated solitons even with
runs up to a time of t = 8. The quantities Il(x = 1,...,4) are
changed by less than 0.0071%, 0.0097%, 0.01217%, 0.0894%
respectively during the computer run. These quantities are
virtually constants. After the interaction the larger and smaller

amplitudes are altered from their original by values less than

0.008% and 0.045% respectively.

For the two well separated solitons with large amplitudes
problem (b2) case (iii), the values of the L2- and Lm-error norms
and the first four conservative quantities are given in

Table 7.12:
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Table.7.12

The computed values of the errors x 103, and I1 to 14 for a

double soliton problem (b2) case (iii) with h = 0.1, At =.0005

Time L2x103 L_x10” L, I, I, I,
-0.5 11.99991[47.99998|211. 2000 [ 943. 5421
~0.4 [1.937 [1.470 |[12.00011|48.00021|211.2014|944. 0864
-0.3 [1.520 |1.814 |11.99994|48.00042|211.2023|943. 7606
-0.2 [1.812 [1.814 |[11.99981|48.00063|211.2036|944.0063
-0.1 {2.890 [1.816 |11.99982|48.00094|211.2062|944.9952

0.0 [1.292 |1.816 |12.00005|48.00158{211.2134|943.7791

0.1 |1.395 {1.816 |12.00029|48.00239|211.2170|943. 7485

0.2 |2.088 |1.975 |12.00035|48.00280{211.2181{943.8973

0.3 |2.559 |2.743 |12.00041|48.00303|211.2190|943. 8876

0.4 |3.205 |3.400 |12.00068]|48.00323|211.2200|944.1334

0.5 |3.704 |4.437 |12.00060|48.00343|211.2209|943.9015

We see that over the computer run the method has coped very well
with this problem. Table 7.12 shows us that the Lz- and Lw—error
norms are satisfactorily with 1large amplitudes. Also the
quantities Ix (t+ = 1,...,4) are changed by less than 0.007%,
0.0072%, 0.01, 0.155% respectively. Therefore, we conclude that
these quantities are virtually constant, particularly I1' Iz' 13.
After the collision of these two well separated solitons
(problem (b2) case (iii)) the larger and smaller amplitudes are
changed from their original values by 0.96% and 0.006%
respectively.

Similar results are given in Table 7.13 for the conservative
quantities I, I, I of problems (cl) and (c2). We found that

2

each of the quantities Il are very satisfactorly constants:
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Table 7.13

The computed values of I1 , 12 and I3 for u(x,o0) = exp(—xz)
I1 12 I3

Time =.04 u = .005 u=.04 u =.005 M =.04 u = .005

0.0 1.772454)1.772454| 1.253314 1.253314 |0.872929(1.004527

2.5 1.77247S5|1.772475| 1.253344 1.253345 [0.872955]1.004562

5.0 1.772488(1.772496| 1.253371 1.253376 |0.872984]1.004594

7.5 1.77253711.772518| 1.253400 1.253407 {0.873015|1.004635

10.0 [1.772525(1.772542] 1.253424 1.253438 |0.873046(1.004677

12.5 [1.772536{1.772561| 1.253481 1.253469 |0.873082|1.004719
Table 7.13 shows that the quantities Ix (¢ = 1,...,4) are changed

by less than 0.005% , 0.014% , 0.018% respectively when u = 0.04

and 0.006% , 0.0124% , 0.0192% respectively when p = .005 during

the computer run. Therefore they can be considered as invariant.

Table 7.13a gives the numerical value of I .

Table 7, 13a
The computed value of I4 for u(x,0) = exp(—xz)
T 0.0 2.50 5.00 7.50 10. 00 12.50
u = .0410.602077[0.602117({0.603916]0. 606560|0.609052(0.617424
B = ,005|0.845971|0.846186|0.846324(0.846377|0.846432|0. 846548

Table 7. 132 shows us that the change in the quantity I4 is less

than 2.55% when u =004 and 0.0682% when pu = 005 during the

Computer run.

From Tables 7.13 , 7.13a we observe that the four computed
Conserved quantities are constants and have magnitude dependent on
the coefficient of the dispersive term (i.e. the value of u ).

The total number of solitons which are generated from a

Gaussian initial condition has been determined using
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equation (4.5.6) for different values of u and we found an
agreement with those given in the above Figures 7.4 - 7.7 .

The first four conservative quantities for problem (df) with
boundary conditions(3:.4-/4) are given' in Table 7.14 up to time

t = 800:

Table 7.14
The computed values I1 , I2 , 13 , and I4 for problem (d}) boundary

conditions{z¢#)with h = 0.4, At = 0.05, € = 0.2, p = 0.1

Time 11 I2 I3 I4
000.0 | 50.00022 | 45.00045 42. 30069 40. 44194
100.0 | 50.00456 | 45.00827 42.31154 40. 45628
200.0 50. 00883 45.01594 42.32193 40. 47181
300.0 | 50.01307 | 45.02349 42. 33296 40. 48888
400.0 | 50.01719 | 45.03096 42.34436 40.51368
500.0 | 50.02153 | 45.03846 42. 35592 40. 57836
600.0 50. 02568 45. 04593 42. 36752 40. 57206
700.0 50. 03011 45. 05344 42. 37922 40. 61868
800.0 | 50.03298 | 45.06098 42. 39087 41. 20851

Table 7.14 shows us that the quantities Ii (i = 1,...,4) change by

less than 0.066% , 0.135% , 0.214% , 1.896% respectively during
this long computer run. So they can be considered as relatively
constant.

Finally, we conclude that the collocation method using
quintic polynomial spline interpolation functions is a suitable
technique for the computation of KdV equation solutions over long

periods of time with small space and time steps.
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CHAPTER 8

A COLLOCATION METHOD FOR THE GENERALISED EQUATION

8.1 Introduction:

The generalised KdV equation has been studied analytically by
several authors [6,32] and numerical solutions using finite
difference methods [6,32,80,88], a fourier or psedospectral method
[32] and Galerkin methods have been presented [35, 48].

Our aim in this chapter is to compute the finite element
solution of the generalised KdV equation using collocation with

quintic splines as interpolation functions.

8.2 The Governing Equation:

We seek to solve numerically the generalised Korteweg-de Vries

equation, in the normalised form:
P —

u, teu u +u U x 0 a<x<b (8.2.1)

where; p (p = 1,2,...) is positive integer, £ and u are positive

parameters and the subscripts t and x denote differentiation.

Appropriate boundary conditions will be chosen from the following:

u(a, t) = B1
u(b, t) = 32
y for all t > O (8.2.2)
u (a,t) =u (b, t) =0
X P
u (a,t) =u_(b,t) =0 ]
XX XX

and the initial conditions to be used will be prescribed later, in

section 8.6 .

8.3 The Collocation Solution [52,82, 84,85, 86, 87, 88]:

We intend to use quintic B-splines to approximate the
solution u(x,t) of equation (8.2.1). If we apply the collocation

method to equation (8.2.1), we obtain:
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P —
uNt(xj,t) + € uN(xj,t) uNx(xj,t) + uNXXX(xj,t) =0
j = 0,12, ... ,N (8.3.1)

Using the definition and properties of quintic B-splines described

in section 7.3, equation (8.3.1) becomes:

N+2 . N+2 N+2 P
S 6 (x)5 +e T ¢(x)8 [ S 6 (x) 5 ]
PRSI 1 o, v t s T K
N+2
+u 2 ¢M(x) 8 =0 j =0, ... ,N
RS 3 1
(8.3.2)

Suppose that 81 is linearly interpolated between two time

levels n and n+1 by:

n+1
i

5 = (1—9)8’; +08 (8.3.3)
where 0 € 8 < 1 and 8? are the parameters at the time nAt . The

time derivative is discretised wusing the standard finite

difference formula:

d5 _ 1 ,.n+l _ n
T = (8 57 ) (8.3.4)

Hence equation (8.3.2) can be written as:

N+2 N+2 n P he1
s [ b, + 0 At ¢;{ g, o } g )] 5"
i=-2 k=-2
N+2 N+2 n p .
= E_Z [ ¢, - (1-e)At (e "’1{ .E-z ¢ Sk} tu e )]zsi (8.3.5)

where the basis functions and their derivatives are evaluated at

the N+1 knots xJ , J = 0,1, ... ,N . Giving the parameter @ the
values o , % , 1 produces explicit, Crank-Nicolson and backward

difference schemes respectively.

In the present analysis we will take 6 = so that equation

1
2

(8.3.5) takes the particular form:
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N+2 p
z [¢i+ %(w;{ Z ¢k8:}+u¢'; )] 5"t
2

k=-2

N+2 At N+2 [o)
— _ at ’ n Y n
= Z [ . 5= (e ¢1{ Z ¢ Sk} * g )]8i (8.3.6)
k=-2
Using the properties of quintic splines, equation (8.3.6) can
be calculated at the knots xJ , J = 0,1, ... ,N, so that

at x = xO we have:

n+1t n+1 n+1 n+1 n+1
o ) + + o + + o =
01 -2 02 -1 03 0 04 1 05 2
« 8" +a 8" +a_ 8" +a_ 8 +a 8" (8.3.7)
05 -2 04 -1 03 0 02 1 01 2
where:
- - P - = - P =
a01 =1 R1 Z_2 R2 R a02 26 IOR1 Z_2+ 2R2 , a03 66
= P _ = P
« =26+ 10R 2P - 2R, , o« =1+R 2' +R
2 =85 _+268 +668 +268 +8 R =§— eAt R =§93 MAL (8.3.8)
-2 -2 -1 0 1 2’ 1 2h 72 h T
and at x = X equation (8.3.6) becomes:
n+1 n+l n+l n+1 n+l _
%14 8-1 %2 5, e, 81 Y, % 15 83 -
n n n n n
alS 8-1 * %q 8o * %3 81 * %2 82 * o‘1183 (8.3.9)
where:
=1 - P - = - P =
o« R 2% -R, , @, =26-10R 2" + 2R, , « =66
= 6 + P _ = P +
Q14 2 lOR1 Z_1 ZR2 , als 1+ R1 Z_1 R2
2 =8 + 265" + 665" + 265" + &" (8.3.10)
-1 -1 o) 1 2 3
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at x = X equation (8.3.6) becomes:

o 8n+1 + o n+1 - n+1 + n+1 . n+1 _
N1 N-2 N2 N-1 N3 N N4 N+1 N5 N+2
n n n n n
aNS 8N-2+ aN4 8N-1+ aN3 8N * aNZ 8N+T aN18N+2 (8'3'11)
where:
« =1-R 2P -R , a =26-10R 2° +2R , « = 66
N1 1 N-2 2 N2 1 N-2 2 N3
« =26+ 10R 2° -2R , a =1+R 2P +R
N4 1 N-2 2 NS 1 N-2 2
Zz = 8" + 268" + 668" + 268" + 8" (8.3.12)
N-2 N-2 N-1 N N+1 N+2

Generally, these equations can be written as a recurrence

relationship:
o n+1 + 8n+1 + n+1l . n+1 + n+1 -
11 1-2 12 1-1 13 1 14 i+l i5 i1+2
n n n n n
ais 81-2+ ai4 81-1+ a13 81 * a12 81+T a1181+2 (8.3.13)
where:
f =0, 1, , N
p P
= - - = 26 - 10R + =
“11 1 R1 21-2 Rz v %2 1 21-2 2R2 » %5 66
- P _ - + p
ai4 26 + IOR1 2:-2 2R2 , als 1 R1 21—z+ R2
Z = 8" + 265" + 668" + 268" + &"
i-2 1-2 i-1 i i+1 1+2
S _ 30
Rl = Z_{ eAt , RZ = —h'3 ’J.At (83 14)

206



The system (8.3.13) consists of N+1 linear equations in N+5

Kk 8 5 T
unknowns 0 B 80 , , SN+1 , 8N+2 )7 . To obtain a

unique solution to this system we need 4 additional constraints.

These are obtained from the boundary conditions (8.2.2) which

require that:

) + 268 + 665 + 268 + 8 =B )
-2 -1 o] 1 2 1
-538 - 508 + 508 + 58 =0
-2 -1 1 2
y (8.3.15)
s} + 268 + 668 + 2638 + 3 =B
- N-1 N N+1 N+2 2
-58 - 5086 + 508 + 58 =0 J
N- N-1 N+1 N+2

By solving the first two equations of (8.3.15) simultaneously for

) 5 and 8_1 , we obtain:

5 165 65 9
8 ,=-§B *t 3 8 798 *715%,
(8.3.16)
_ 1, 33 9. 1
8—1 - 16 61 8 8o 4 81 8 82

Similarly, solving the last two equations of (8.3.15)

simultaneously for & , O , glves:
N+1 N+2
5 165 65 9
8N+2 -8 Bz * 8y * 7 8N-1+ i 8N-2
(8.3.17)
1 33 9 1
51 " 16 B, g 5y 2 %7 8§°%:-2

Eliminating & 2 and 8_1 from the first two equations of the

system (8.3.13) using equations (8.3.16) we obtain:
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_ n+1_ n+1_ n+1= n n n
49.580 3981 1.582 49.580 +3981 +1.582— 1.581 (8.3.18)
n+1 n+1 n+1 n+1 n n n n b4
+ + + =
s1 80 s2 81 sS3 82 sS4 83 S5 80 +s6 81 +s7 82+sa 83+B1
where 1 1
= — - p = - P
s1 8(175 47R12_1 + 49R2) , S2 4(255 +9(R12_1+R2))
s3 = %(207 +8R2°P -15R) , sa=1+RZ° +R
171 2 17-1 2
=1 P, - =1 - P _
S5 8(175 + 47R12_1+ 49R2) , S6 4(255 9R12-1 9R2)
&7 = (207 - 81R 2> + 1SR.) , ss =1 - R Z° - R
8 1 -1 2 1 -1 2
»
B = L1 2P+ R) (8.3.19)

Similarly, eliminating Sm1 and 8N+2 from the last two equations

of (8.3.13) and using equations (8.3.17) we obtain:

n+1 n+1 n+1 n+l _ n n n n . *
y1 SN_3 ty2 SN_2 +y3 SN_1 +y4 SN = ys 8N_§y6 SN_5y7 SNtlya 8N-82
where:

_1 _ P - l P

Vg = §(175 47R12N_3+ 49R2) y V3 4(255 +9(R12N_;R2))
=1 P _ = P

Y6 8(207 + 81R12N—3 15R2) 71 1 + RIZN—§ R2

=1 Py - =1 - P _
vy = g(175 + 47R Z_ + -49R ) , y3 = 7(255 - 9R Z' - 9R )

21 - P =1 - P _
y2 = §(207 81R12N_§ 1SR2) y Y 1 RIZN—3 R2

. _E p
B, = g2R2Z +R) (8.3.20)

n+1 n+1 n+l_ n _ n n
1.58 + 398 +49.58N = 1.58N_2398N_149.58N+ 1.582 (8.3.21)

The equations (8.3.18)-(8.3.21) together with the third to the

(N-1)th equation of (8.3.13) give N+1 equations in the N+1

unknowns (80 , 81 , 83 s e SN)T which can be written in a

matrix form as:
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A(8") 8™ = B(8™)8" + r (8.3.22)

~ ~ ~ ~

where; A(8") , and B(8") are penta-diagonal (N+1)x(N+1) matrices

~ ~

and r is N+1 vector:

~

r = [-1.531, B:, 0,0, ..., O, -32,1.532] (8.3.23)

Since the matrices A(8") , and B(8") depend on 5" the matrix

~ ~ ~

equation (8.3.22) is nonlinear. We handle the problem by solving
not equation (8.3.22) directly but by setting up an equivalent

system [50,68]. Such a system is:

AB") 8" = B(8") 8" + r (8.3.24a)
An+1+ 8n én+1 + 8n
A ‘““5““‘ s"*l= B “"‘;““‘ 8" + r (8.3.24b)

where equation (8.3.24a) predicts the first approximation s"*t

~

then equation (8.3.24b) corrects 1iteratively the improved

approximation.

To solve the nonlinear system (8.3.24) we store the

penta-diagonal matrices A(8") and B(8") in rectangular form

~ ~

(N+1)x5 and then use the penta-diagonal algorithm (see Appendix

A2) to obtain the solution. The boundary parameters 8_2 , 8_1,

SN - and SN can be computed at each time step from equations
+

(8.3.16)-(8.3.17).

To start the iterative procedure (8.3.24) a starting vector

80 must be determined from the initial condition on u(x,t). Once

~

the parameters 8" have been determined at a specified time we can

~

compute the solution at the required knots from the formula:

u (x , nAt) = 8" + 268" + 668" + 268" + 8" (8.3.25)
N i 2 i i+1 i+2

i = 0,1, ... ,N
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8.4. The Initial State:

From the initial condition u(x,0) on the function u(x,t) we

determine the initial vector 80 so that the evaluation of the time

~

development of 8" and hence u can be undertaken. For more details

~

see section 7.4 .

8.5 The Stability Analysis:

The investigation of the stability of the algorithm will be
based on the von Neuman theory in which the growth factor of a

typical Fourier mode defined as:

8" =8
j

where kx 1is the mode number and h 1is the element size, is

n olJkh (8.5.1)

determined from the numerical scheme (8.3.13)-(8.3.14)

The nonlinear term upux of the KdV equation is not easy to
handle it by Fourier method, therefore we linearise it
[26,32,35,44). To do this assume that the quantity u in the
nonlinear term upux is locally constant. This is equivalent to

assuming that in (8.3.14) all the 8? are equal to a local constant

d, so that 21 5 = 120d . Hence equation (8.3.13) can be written:

n+1 n+1 n+l n+1 n+1
S + ] + S =
oc1 8)—2 * a2 8)-1 * a3 3 ® 4 j+1 ® 5 j+2
n n n n n
+ + .5.
o, 8J_2+ «, 8j_1+ «, SJ @, 8j+1 x 8j+2 (8.5.2)
where:
j =0, 1, , N
* 26 - 10R. 2R 66
- - - = - + =
a1 1 R1 R2 ) az 1 . a3
* R 1+R R
= - = +
a4 26 + IOR1 2 s as 1 2
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* _ 5 p _ 30
Rl = 55 eAt(120d)" , R2 =53 pAt (8.5.3)

If we insert the Fourier mode (8.5.1) into equation (8.5.2),

we obtain:
8n+1[a1e_21kh R aze—ikh va v a4elkh v a e21kh ] - én[a e—Zlkh .
5 5
e-ikh + + a e“‘h + o e21kh ] (8.5.4)
3 2 1
This equation has the simple form:
(a + ib)8™'! = (a - ib)s" (8.5.5)
where:
i=v-1
a = 33 + cos(z2kh) + 2ecos(kh) (8.5.6)

b = (R: + Rz)sin(zkh) + (10R: - 2R2)sin(kh)

Let 8"+1 =g 8", where g is the amplification factor, and

substitute in (8.5.5) to get:
a - 1ib

g= - (8.5.7)
Taking the modulus of this equation gives:

lg] =V e =1,
Therefore the linearised numerical scheme (8.5.2) is

unconditionally stable.

8.6 The Test Problems:

The principal purpose of the work reported in this section is
the testing of the collocation quintic spline algorithm based on

the method which has been investigated in this chapter. For the
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testing we shall compute the numerical solution of the generalised
KdV equation for p =1, 2, and 3 using different initial and
boundary conditions.

As a first test we investigate how well the numerical scheme
determines the motion of a single soliton. It is well known that

when p =1 the KdV has the single soliton analytic

solution:
ulx,t) = c sechz(Alx - Bt +D) (8.6.1)
provided:
1 172 _€Ec
Al— 5(e c/3 u) and B1 3 A1 (8.6.2)

We shall take the following numerical values in the test:

c=1.3 A, = 0.5(1.3)'? D, = -15A,
Similarly we find that if p = 2 the single soliton analytic

solution is:

ul(x,t) = c sech (Alx - B1t + D) (8.6.3)

provided:

A1 = (¢ ¢/ u)“2 and B1 = %— A (8.6.4)

We will take:

c=1.3 A= 1.3/V2 D = -15A
While if p = 3 the analytic solution is:
273
u(x,t) = c sech (Alx - Blt + D1) , (8.6.5)
provided: 3
3 3 1/2 _ €C
A1 = 5( € c /10 p) and B1 =35 A1 . (8.6.6)
This time we take:
172

c=13 A1 = 1.5(0.6591) D1 = —15A1

the boundary conditions for the cases p = 1,2,3 with € = 3.0 and

p = 1.0 are given by:

u(z200,t) =0

[}

u(o, t)

u (o, t)
X

for all time (8.6.7)

I
o

u (200,t)
X
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and the initial conditions can be obtained from these analytic
solutions at t = 0 for the appropriate generalisation of the KdV
equation. The solitary waves move steadily to the right unchanged
in form. To examine the accuracy of the numerical method we have
used the LZ— and Lw—error norms to compare the numerical and exact
solutions.

The Lz—and Lm—error norms, defined by (4.5.1), (4.5.2)

respectively, have been computed and are given in Table 8.1:

Table 8.1

The growth of the errors for single soliton

with h = 0.2, At = 0.025, o0 < x £ 200

L x 10° L x 10°

Time 2 el
p=1]p=2]|p=3|p=1|p=2|p-=3
1.0 | 0.159 | 0.250 | 0.396 | 0.091 | 0.099 | 0.191
2.0 | 0.286 | 0.352 | 0.699 | 0.154 | 0.168 | 0.425
3.0 | 0.352 | 0.390 | 1.148 | 0.206 | 0.251 | 0.831
4.0 | 0.435 | 0.507 | 2.034 | 0.259 | 0.357 | 1.425
5.0 | 0.519 | 0.750 | 3.260 | 0.308 | 0.514 | 2.159
6.0 | 0.623 | 1.019 | 4.747 | 0.368 | 0.673 | 3.140
7.0 | 0.712 | 1.315 | 6.542 | 0.415 | 0.849 | 4.211
8.0 | 0.799 | 1.664 | 8.669 | 0.457 | 1.069 | 5.559
9.0 | 0.862 | 2.032 | 11.114]| 0.494 | 1.296 | 6.977
10.0 | 0.925 | 2.449 | 13.880| 0.534 | 1.547 | 8.637

We find that the method has a small error even when p = 3. The

L -error norm is smaller than Lz—error norm.
[+ ]

Our second test will involve the interaction of two solitons

with € = 3, p = 1 and initial condition given for p = 1 by:

2 2
u(x,0) = clsech (Alx + Dl) + Czsech (A2x + Dz) (8.6.8)

where:

172

c. =1.3 A1 = 0.5(1.3) D1 = -—15A1
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1/2

0
"
(@]
O

A_ =0.5(0.9) D_ = -35A_ ,
2 2 2

ulx,0) = clsech (Alx + Dl) + czsech (Azx + D2) (8.6.9)

where:
c =1.3 A = 1.3/V2 D. = -15A
1 1 1 1
c =0.9 A = 0.9V2 D= -35A
2 2 2 2
and for p = 3

_ 2/3 2/3
u(x,0) = clsech (Alx + DI) + czsech (A2x + D2) (8.6.10)

where: 3.1/
c =1.3 A =1.5(0.3c)'2 D = -15A
1 1 1 1 1
_ - 3,172 -
c, = 0.9 A2 1.5(0.302) D2 = 35A2
together with the boundary conditions:
u (o, t) = wlzoo,t) =0 o 1 iine (8.6.11)
ux(o,t) = ux(zoo,t) =0

These conditions represent two solitons, one with amplitude
c, placed initially at x = - D1/A1 and a second with amplitude c,
placed initially at x = - D2/A2 .

All the waves move to the right with a velocity dependent
upon their amplitude. To ensure interaction with increasing time
we choose c,>c, and Dx/A1 > D2/A2 . The results of our
computations for p = 1,2,3 are shown in Figures 8.1, 8.2 and 8.3;
we see that in each of the 3 cases the solitons emerge from the
interaction and resume their former shape, amplitude and velocity.

Figures 8.1, 8.2, and 8.3 show the two solitons with large
amplitude on the left. As the time increases, the larger soliton
catches up with the smaller until, at time t = 40, the smaller
soliton is being absorbed. The overlapping process continues

until, by time t = 60, the larger soliton has overtaken the

smaller one and is in the process of separating. At time t = 100,
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the interaction is complete and the larger soliton has separated

completely from the smaller one:

v
) ) A’ e ) I.l -] . s e ..‘ 33 50 s 100 [§-] (+ ] s e
" v
” o » s I.. 129 1. (22 ] ] e 5] » 23 108 13 (} ] 173 E )
::: /\ } T o100 3::: A PRY ]
¥ s » k] |-' 1 1. s tJ - -] » r 108 IT-) s;l 3:1 an
Figure 8.1 p =1 The interaction of two solitons with

h=02, ot =0.025, ¢ = 3.0, p = 1.0.
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Figure 8.2 p = 2 The interaction of two solitons with

h=0.2, At =20.025, ¢ =3.0, u=1.0.
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Figure 8.3 p =3 The interactlon of two solitons with
h=02, At =0.025, ¢ =3.0, u=1.0.

The generalised KdV equation with p = 2 allows solitons of
negative amplitude which also move steadily to the right since
their velocity depends on their amplitude squared, equation
(8.6.4). We have chosen the initial condition of the interaction
of two solitons where the large amplitude has positive sign and
the small amplitude has negative sign. For the initial condition
we use equation (2.3.4.9) when t =0 with @ = 1, @, = -0.5,
d1= 14a1. d2= Zaz, € =6, u=1. The results of the interaction

are recorded in Figure 8.4. The waves behave exactly as solitons

are expected too:
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Figure 8.4 p =2 The interaction of a positive and a

negative soliton with h=0.2, At =0.005, ¢ =6.0, p=1.0.

From the graphs of Figure 8.4 we see that the two solitons are
placed with the soliton of larger positive amplitude separated and
on the left of the soliton of smaller negative amplitude. As the
time increases, the larger soliton catches up with smaller around
time t = 20. The mergling process continues and around time t = 30,
the larger soliton overtakes the smaller one and is in the process
of separating. Around time t = 40, the interaction process is
complete and the larger soliton has separated completely from the

smaller one.

The third problem we shall consider has the initial

condition:

(1) u(x,0) = % [ 1 - tanh [ 57:—35— ] ] (8.6.12)
S

and the boundary conditions we impose are:

u(-50,t) =1
u( 50,t) =0 } for all t >0 (8.6.13)
u (-50,t) =y (50,t) =0

X x
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(8.6.14)

u(x,0) = % [ | - tanh[.li‘LZ_s] ]
5

and the boundary conditions are chosen to be:

or (ii)

u(¥150, t) =0

} for all t >0 (8.6.15)
ux (¥150,t) =0

Physically this condition (i) can represent among other

things, the development of an undular bore in shallow water and a
collisionless shock in plasmas. To allow comparison of problem (i)

with other authors we have taken € = 0.2, u = 0.1 with At = 0.05

and h = 0.4. The numerical solution has been determined for the
given

finite range -50 < x € SO with the boundary conditions,

above, applied at x = ¥50.
Snapshot solution curves that we have obtained using the
present method for the cases p = 2,3 (p = 1 has been discussed in

section 7.6) are given in Figures 8.5 and 8.6 for times of

t =0, 50, 75, 100:
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Figure 8.6 Problem (ii) p = 2 The evolution of the tanh initial

condition with h =0.4, At =0.05 , €=0.2 , u=0.1.

It is observed that the initial perturbation problem (i) has
broken up into a regular sequence of waves all of which are
moving steadlly to the right with constant speeds whose magnitude
depends upon their individual amplitude. We find that the
conservative quantities vary as time increases. The problem (ii)
has been used to satisfy the correct boundary conditions‘and we
have used it to calculate the conservative quantities for p = 2,3
as we did before for p = 1 in chapter 7. For p = 2 we observe that
when the time reaches t =800 the 1initial perturbation
problem (ii) has broken up into a train of 9 solitons.

The final test problem arises from considering the Gaussian
distribution function as the initial condition:

u(x , 0) = exp(-x°) (8.6.16)

The boundary conditions imposed are:

u® 15,t) =0 for all t > 0 (8.6.17)
u (¥ 15,t) =0

219



We choose ¢ = 1.0 and we discuss the following cases :

(1)u=0.04 , h=0.1 , At = 0.01

(ii ) p=0.01 , h=0.1 , At = 0.01

( 111 ) p = 0.005 , h =0.025 , At = 0.005
(iv ) p=0.0025 , h =0.025 , At = 0.005
(v )u=0.001 ,h =0.025 , At = 0.005
( vi) p=0.0005 , h =0.025 , At = 0.00S

For the case p =1, the problems (i) ,(iil), (v) and (vi)
have been discussed in section 7.6. When u = 0.01, 0.0025 (
problem (ii) and (iv) ) the initial condition evolves into three

and five solitons respectively which are shown in Figures

8.7-8.8:
:;’\ . . '““ ) }A/\\ . . . fol.8 I.
- - ! \ - \
28 0 '
[} 1.3
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-8 2 4. [} [} 1) -8 ] " [ ] ] )
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Figure 8.7 p =1 The evolution of u(x,0) = exp(-xz)
h=01, At =0.01 , =10 , u=0.01.

Figure 8.7 shows us that the initial condition (ii) breaks down

into three solitons which agrees with those produced by Goda [S9]
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and we find a very satisfactorily agreement. The agreement between
the analytic velocity c, = 0.514, a = 1.542033 and the numerical

velocity c. = 0.52 for the leading soliton was very satisfactory:

s 't (X% > "'\/\_/\j\ A rer.3
(3] [ 3]
"] e
- 0 0 0 0 "
]

Figure 8.8 p =1 The evolution of u(x,0) = exp(-xz)

with h =0.025 , At =0.005, € =1.0 , u = 0.0025.

From Figure 8.8 we observe that the initial condition (iv) splits
into a train of 6 solitons. For the leading soliton the analytic
velocity c, = 0.589, a = 1.767439 and the observed velocity
c = 0.588 and so agree closely.

For p =2 and 3 similar simulations are reported in
Figures (8.9)-(8.15). These show substantially the same behaviour

as for the case p = 1 simulations.

It has been shown theoretically that the break up of the
initial condition (8.6.16) depends on the value of u [15,39,80].
As u 1is increased above p = 0.04 no solution breaks up into
solitons at all, but the solutions for u >> 0.04 exhibit rapidly

oscillating wave packets. When p is decreased below p = 0.04 the
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initial condition (8.6.16) evolves into more and more solitons.
The relative spacing between the solitons increases as the value

of u is decreased:
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Figure 8.9 2 The evolution of u(x,0)

p = = ex
h=01 , At =0.01, e =1.0 , u = 0.04.

From Figure 8.9 we see that the initlial perturbation (i) for p = 2
breaks down into a soliton and tail. The analytic velocity for a
soliton of mKdV equation is given by:

c,=¢ a®/6 , a ils the amplitude (8.6.18)
The agreement between the analytic velocity c, = 0.268, derived
from the solittons amplitude a = 1.268807 and the numerical
velocity c = 0.26 for the leading soliton was very satisfactory.
Also we observed that the velocity of the soliton in this case is
smaller than that obtained from the case p = 1, p = 0.04.

Figure 8.10 shows that the initial condition (ii) p = 2
splits into three solitons. A comparison has been made between the
analytic velocity c, = 0.447, derived from the amplitude
a = 1,637368 and the numerical velocity cn = 0.44: agreement is

satisfactory. The soliton has large amplitude and the velocity of
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the soliton is smaller than that obtained from case when p =1,
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Figure 8.10 p = 2 The evolution of u(x,0) = exp(-xz)
h=20.1, At =0.005, € = 1.0 ,u0 = 0.01.

Figure 8.11 shows that the initial perturbation (iii) for p = 2

breaks down into a train of 4 solitons. The leading soliton has

analytic velocity c, = 0.515, <calculated from its amplitude

a = 1,757362 and numerical velocity c, = 0.52:
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Figure 8.11 p = 2 The evolution of u(x,0) = exp(-xz)
with h = 0.025 , At = 0.005, ¢ =1.0 , u = 0.005.
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From Figure 8.12 we see that the initial condition (iv) splits
into a train of 5 solitons. The analytic velocity of leading
soliton ca = (0.533, calculated from its amplitude a = 1.788146 and

the observed velocity c = 0.53S are consistent:
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Figure 8.12 p = 2 The evolution of u(x,0) = exp(-xa)
with h =0.025 , At =0.005 , ¢ =1.0 , u = 0.0025.

The analytic velocity of the soliton produced from the solution of
the generalised KdV (p = 3) equation is defined by:

c =¢ 33/10 , a is the amplitude (8.6.19)
a
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Figure 8.13 = 3
0.025 , At =0.005 , e=1.0 , u=0.04.

with h

Ho

Figure 8.13 shows us that the initial condition (i) for p = 3
splits into a single soliton and a tail. This soliton has analytic

velocity c, = 0.220, (a = 1.30141) and numerical velocity

c = 0.20:
n
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Figure 8.14 p = 3 The evolution of u(x,0) = exp(-xz)

with h =0.025 , At =0.005 , € =1.0 , u = 0.01.
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From Figure 8.14 we see that the initial condition (ii) for p = 3
breaks down into a two solitons. The leading soliton has analytic

velocity c, = 0.590, (a = 1.807182) and numerical velocity

c = (0.59 which are consistent.
n

Figure 8.15 shows us that the initial condition (iii) for
p = 3 splits into 3 solitons. The agreement between the analytic

velocity ¢ = 0.622, (a = 1.838717) and the numerical velocity
a

¢ = 0.62 for the leading soliton is very satisfactory.

i
-
)
i

2
Figure 8.15 p = 3 The evolution of u(x,0) = exp(-x")

with h = 0.025 ,At = 0.005 , € = 1.0, u = 0.005.
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8.7 Discussion:

Any numerical scheme proposed for computing the solution of

the generalised KdV equation should be capable of:

(a) following accurately the motion of a soliton, and

(b) representing accurately the interaction of solitons.

In addition since the KdV equation possesses an infinity of
conservation properties, at least the lower order ones should also
be exhibited by the recurrence relationship.

The accuracy of our numerical method for the first problem
{single soliton) has been tested using the Lz— and Lm—error norms
and we found from Table 8.1 that the present method leads to
acceptably low error magnitudes and that the error increases as p
increases but remains acceptable.

The KdV equation and the mKdV (p = 2) equation have an
infinite number of conservation quantities. We will concentrate on
the first four invariant quantities I1 (1 =1,...,4) which were
defined in equations (2.4.8)-(2.4.11) respectively for the KdV
equation, and (2.4.12)-(2.4.15) respectively for the mKdV
equation. The generalised KdV (p = 3} equation has only three

conservation quantities I1’ Iz’ 13 which were defined in equations

(2.4.16)-(2.4.18) respectively.

The first four conservative quantities 11’ 12. I3 and I4 for
the KdV and mKdV equations and the only first three conservative
quantities I1 , I_, 13 for the generalised KdV (p = 3) equation

2

have been computed and are given in Tables 8.2 and 8.3 for times
up to t = 100.

We have found from Table 8.2 over the computer runs that the
quantities I1 and I2 for p = 1,2,3 have changed by less than
0.006%, 0.095%, 0.286% and 0.022%, 0.235%, 0.778% respectively

which means that they are virtually constants:
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Table 8.2

The computed values of the quantities Il, I2 for a single soliton

with h = 0.2, At = 0.025 o0 < x < 200

I I

Tim p =1 p =2 p =3 p =1 p2= 2 p =3

0.0 [4.560699(4.442879(4.490562(3.952607|3.676954|3. 590333
10.0[4.560732|4.442445{4.48899713.952693|3.676078|3.587124
20.0(4.560771(4.442041(4.487892{3.952788|3.6752143.584017
30.0{4.560798{4.441658|4.486920;3.952876}3.674337{3. 581008
40.0[4.560815(4.441242}4.485755|3.952958{3. 673473} 3. 578097
50.0(4.560837{4.440826|4.4844923.953033{3. 672602 3. 575284
60.0{4.560872{4.440398|4.483160{3.953126{3.671737|3. 572557
70.0(4.560895|4.43997214.481803|3.953209(3. 670884 | 3. 569919
80.0/4.560914 (4. 439530|4.480422|3. 953305 |3. 670033 3. 567347
90.0|4.560942 (4. 439094 |4.479072|3. 953386 | 3. 669178 3. 564854
100.0{4.560971|4.438664(4.477744|3.953467 3. 668322(3. 562426

Table 8.3

The computed values of the quantities 13, I for a single

4

soliton with h = 0.2 , At = 0.025 o0 £ x £ 200

Ti £ g
me p =1 p = 2 p = 3 p =1 p = 2
0.0 {3.083033{2.071351{1.126853|2.290254(1.05017S
10.0/3.083146]2.069869|1.119820(2. 290396 1. 050754
20.0{3.083268(2.068411(1.113043|2.290540|1.048035
30.0}3.083383|2.066930|1.106503|2.290639(1.051200
40.0]3.083488|2.065473|1.100214}2.290997(1.048351
50.0{3.0835872.064005|1.094163|2.290924|1.050258
60.0(3.083707|2.062545|1.0883282.290988]1.054222
70.0|3.08381612.061107|1.082707|2.291145|1.054919
80.0|3.083939|2.059675|1.077253|2.291444]1.045329
90.0/|3.08404512.058237|1.071990{2.291590}1. 044967
100.0(3.084152(2.056797|1.066882|2.291479|1.043393
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From Table 8.3 we observe over the computer runs that the quantity
I3 for p = 1,2,3 is changed by less than 0.037%, 0.703%, 5.322%
respectively and so is relatively constant. While the quantity I4
for p = 1,2 is changed by less than 0.059% and 0.646% respectively
and so is satisfactorily constant.

From these tables we conclude that our method leads to very
satisfactory results for the values of the conservation quantities
for single soliton problem for the KdV, mKdV, and generalised KdV
equations.

The L2— and Lm-error norms and also the conervative
quantities Ii (it = 1,...,4) for the two solitons problem (8.6.8)
of the KdV equation are listed in Table 8.4. To compute the errors
we use the formula for the exact solution of the KdV equation for

two solitons which is defined by (2.3.4.1):

Table 8.4

The computed values of the errors and Ii(i=1,...,4) of two soliton

0.2, At = 0.025, € = 3.0, u = 1.

for equation (8.6.8) with h

Time | L x 107 L_ x 10° 1, I, I, I,

0.0 8.355434|6.229448 4. 312527|2. 922565
20.0 | 1.659 | 0.926  |8.355734|6.229887|4.312990|2. 923004
40.0 | 0.952 | 0.926 |8.356101|6.230476|4.313579|2. 923550
60.0 | 3.561 | 1.867 |8.356467|6.231020|4.314230|2.924619
80.0 | 6.612 | 3.475  |8.356751(6.231462|4.314695|2.924619
100.0 | 11.023 | 5.566 |8.357059(6.231904(4.315172{2. 925019
120.0 | 16.684 | 8.116  |8.357321|6.232340|4. 315627 |2. 925865

We observe over the computer runs that the errors are still

acceptable at time t = 120. The quantities Ix (1 = 1,...,4) have
changed from their original values by less than 0.023%, 0.047%,

0.072% and 0.114% respectively. Hence we consider them as

constants. After the interaction of the two solitons their large
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and small amplitudes have slightly changed from their original

0.005% respectively. So we can say

values by less than 0.0011%,
that the amplitudes are virtually unchanged.
To compute the errors for the mKdV equation for two solitons

we have used the formula for the exact solution which is defined

by (2.3.4.9). The first four conservative quantities and the
errors for the mKdV equation problem (8.6.9) are given 1in
Table 8.5:
Table 8.5
The computed values of the errors and Il(1=1,...,4) of two solitons
for equation (8.6.9) with h = 0.2, At = 0.025, € = 3.0, p =1
T} Lx 10°| L x 10° | 1T I I I
1me 2% © 1 2 3 4
0.0 8.885759(6.222641|2.758833|1. 217337
20.0 | 8.727 5.281 8.885230(6.221246|2.756189|1.215616
40.0 12.994 | 7.908 8.88542816.221223(2.755854|1.217136
60.0 | 46.377 | 27.450 [8.885139(6.220260|2.753982|1.227959
80.0 | 86.531 51.160 [8.884581|6.218845|2.751315|1.218175
100.0 142.530| 83.472 |8.8839996.217449|2.748680]|1.209365
120.0 | 214.213] 125.743 |8.883410(|6.216068|2.746078{1. 207956
Table 8.5 shows us that the errors are still acceptable up to time
t = 120. The quantities Il (t = 1,...,4) have changed from their
original values by less than 0.027% 0.106%, 0.463% and 0.771%
respectively. Therefore we may consider them as relative

constants. After the interaction of the two solitons the large and

small amplitudes have changed from their original values by less
than 0.18% and 0.02% respectively.
The mKdV equation has soliton solutions with both positive

and negative amplitudes. If we make the smaller amplitude in the
previous problem negative then the error and the first four

conservative quantities are given in Table 8.6:

230



Table 8.6

The computed values of the errors and Ii(1=1,...,4) of two solitons
for equation (8.6.9) with amplitudes 1 and -0.5 also -25 < x < 45

h=0.2, &t = 0.005, € = 6.0, p = 1.

Time | L x 10°| L _x 10’ le104 I, I, I,

0.0 -3.1027 |3.000000]|0.750000|0. 206250
10.0 | 2.607 | 1.568 3.4736 {3.000751|0.750562|0. 223425
20.0 | 28.015 | 20.538 | 1.5000 |3.001247|0.750439]0.226546
30.0 | 17.237 | 20.538 |-1.7878 |3.0015310.750785|0.213519
40.0 | 22.590 | 20.538 |-1.6846 |3.002282|0.751352|0.209881
50.0 | 32.056 | 20.538 |-7.0913 |3.003035|0.7519160.239530

From Table 8.6 we see that the errors are still acceptable up to
time t = 50. The quantity I1 has negative sign at the beginning
and during the interaction the sign changes to positive and after
the interaction changes to the negative. The quantities I2 . 13
, I4 have changed from their original values by less than 0.101%,
0.256%, 16.136% respectively. After the interaction, of two
solitons the positive large and negative small amplitudes have
changed from their original values by less than 0.004% and 0.087%
respectively. Therefore, we consider them as virtually conserved.

The computed values of the only three conservative quantities

for the generalised KdV (p = 3) equation (8.6.10) are recorded in

Table 8.7:
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Table 8.7

The computed quantities Ii(i=1,...,3) of two solitons for the
generalised KdV equation with equation (8.6.10) with h =0.2,

At = 0.025, € = 3.0, u=1.0

Time I1 12 I3

0.0 9.887562 6.579399 1.441773
20.0 9.885179 6.574164 1. 429899
40.0 9. 886597 6. 574096 1. 429201
60.0 9. 890670 6.573255 1. 425755
80.0 9.874264 6.566907 1.412527
100.0 9. 799949 6.640472 1.419819
120.0 9.832812 6.594644 1.396324

This Table indicates that over the computer runs the only three
conservative quantities have changed from their original values by
less than 0.886%, 0.929%, 3.153% respectively. We may consider
these quantities as relatively constants. After the interaction of
the two solitons the large and small amplitudes have changed from
their original values by less than 1.12%, 2.19% respectively.
Using equation (2.3.4.8) the analytic values of the forward

and backward phase shifts are given by

For the KdV (p = 1) equation:

R

Al =~ 4,19, A - 5.04

For the mKdV (p = 2) equation:

R

A = 3,71, A - 5.36
1 2

The numerical values of the forward and backward phase shifts are

obtained to be

n
-

For p

A =~ 4.20, A = -5.00
1 2

1}
]

For p

A = 3.60, A =~ -5.40
1 2
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The agreement between the analytic and numerical values of A1 and
A2 is very satisfactory because of the space step h = 0.2.

The first four conservative quantities for the case (1i) of
the KdV (p = 1) equation have been computed in chapter 7 (section
7.7). For the mKdV (p = 2) equation we compute the first four

conservative quantities up to a time t = 800. These are given in

Table 8.8:

Table 8.8
The computed quantities Il(1=1....,4) of the problem(8.6.14) for

mKdV equation with h = 0.4, At = 0.05, ¢ = 0.2, p = 0.1 case (11)

Time I1 I2 13 I4

0.0 50. 00022 45. 00045 40. 43423 | 38.00389
100.0 50. 00456 45. 00834 40. 44621 38.08762
200.0 50. 00867 45.01721 40.45752 | 40.69348
300.0 50.01367 45. 02948 40. 48748 45.55713
400.0 50.07191 45. 04237 40. 52482 43. 25512
500.0 50. 02417 45.06118 40.58363 | 44.64506
600.0 50. 02927 45. 06668 40.59357 | 62.91012
700.0 50. 03747 45.08215 40. 63359 117.2612
800.0 50.03485 45. 09077 40. 66845 | 48.27955

We have found over the computer runs that the quantities Ix
({ = 1,...,3) have changed from their original values by less than
0.075%, 0.201%, and 0.580% respectively. Therefore we may consider
them as relatively constants while the quantity I4 does vary
somewhat. The analytic velocity of the soliton in the mKdVv
equation is defined by c = a’e/6 where a is the amplitude. In
this case a =1.9884 , € =0.2 . Hence c,6 = 0.1318 while the
numerical velocity is c. = 0.132 . Therefore we find that the
analytic and numerical velocities are consistent.

The only three conservative quantities for the generalised
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KdVv (p = 3) equation are computed up to time t = 100 and shown in

Table 8.9:

Table 8.9

The computed quantities Ii(i=1,...,3) of the prblem (ii) for

generalised KdV equation with h = 0.4, At = 0.05, € = 0.2,u = 0.1

Time I1 12 13

0.0 50. 00022 45. 00045 38.91780
25.0 50. 00221 45. 00401 38. 92548
50.0 50. 00424 45.00762 38.93293
75.0 50. 00648 45.01146 38.9388S
100.0 50.01132 45. 04535 39.08813

We have observed over the computer runs that the quantities Ix
(1=1,...,3) for the generalised KdV equation have changed from
their original values by less than 0.023%, 0.1%, and O.44%
respectively. So we can consider them as relatively constants.

The conservative quantities of the generalised KdV equation
with p = 1,2,3 for a problem with initial and boundary conditions
given by the equations (8.6.16),(8.6.17) are listed in Tables

8.10 , 8.11:
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Table 8.10

The computed values of 11’ I2 for problem exp(—xz) with £ = 1.

and p = 0.01

I1 I2

p = 1 p =2 p = 3 p = 1 p = 2 p = 3
h =0.05 h=0.05/h=0.025 h=0.05{h = 0.05|h = 0.025
Time |At = 0.01[At=0.005 |At=0.0025[At = 0.01|At=0.005|At=0.0025
0.0 1.772454| 1.772454| 1.772454| 1.253314(1.253314/1.253314
2.5 1.772470| 1.772490| 1.772596| 1.253350(1.253362|1.253509
5.0 1.772532| 1.772496 1.772569| 1.253395(1.253335|1.253233
7.5 1.772460| 1.772486| 1.772523| 1.2534401.253279{1.252510
10.0 1.772564} 1.772550] 1.771866] 1.253483{1.253224|1.251853
12.5 1.772535( 1.772536| 1.772505| 1.253526|1.25316311.251124

From Table 8.10 we find that the quantities I1 , 12 have changed
from their original values by less than 0.007%, O0.006%, 0.034%,
0.017%, 0.013%,0.175%for p = 1,2,3 respectively. These quantities

can be considered as conserved.

Table 8.11

The computed values of 13 , 14 for problem exp(-xz) with

€ =1.0, p=0.01

I3 I4

p =1 p = 2 p =3 p =1 p = 2

h =005} h=0.05{h=0.025 |[h =005 [h=0.05
Time |At = 0.01 [At=0.005 [At=0.0025 |At = 0.01 |At=0.005
0.0 0.985728 0.811029 0.667334 0.807068 0.597435
2.5 0.985622 0.811017 0.667654 0.808045 0.597985
5.0 | 0.985606 | 0.810845 | 0.665598 | 0.811226 | 0.599993
7.5 | 0.985656 | 0.810648 | 0.660797 | 0.812439 | 0.613422
10.0 | 0.985709 | 0.810450 | 0.655996 | 0.812436 | 0.727596
12.5 | 0.985762 | 0.810253 | 0.651394 | 0.812494 | 0.628906
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This Table shows us over the computer runs that the quantity 13
for p = 1,2,3 has changed from its original value by less than
0.013%, 0.096%, and 2.389% respectively and we can consider it as
constant while I4 has changed from its original value by less than
0.673% for p =1 but for p = 2 the variation was much larger (

about 21% ).

Finally, we conclude that the collocation method with quintic
spline polynomial interpolation functions is useful technique for
the computation of solutions to the generalised KdV equation over
long period of time particularly when space and time steps are

small.
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CHAPTER 9
CONCLUSIONS

We have set up four finite element solutions to the KdV
equation. Three of these are based on the Galerkin method but
involve different trial functions. These are:

(a) Cubic Hermite polynomials,

(b) Cubic splines, and

(c) Quadratic splines.

A fourth method is based on collocation over finite elements using
quintic spline trial functions.

This latter approach has also been used to construct a finite
element solution to the generalised KdV equation. The cases p = 2
and 3 are discussed in detail.

It has been shown analytically that solutions of the KdV
equation obey an infinity of conservation laws. It is therefore
important that any numerical solution shall satisfy, at least, the
lower order conservation laws. We choose to evaluate those
appropriate to the trial functions being employed.

Solutions to the generalised KdV equation (p > 1) obey
different conservation laws and we have used the appropriate ones.

We have shown, 1in earlier chapters, that 1in all the
simulations presented here these conservation laws are all
satisfactorily obeyed.

Probably the important solutions of the KdV equation are the
solitons. Any numerical scheme must be capable of accurately
representing the position and amplitude of a soliton as it moves
throughout a simulation. The interaction of solitons must also be
well described. To evaluate how well our algorithms perform we
have used the L2- and Lm— error norms. Again we have shown that

throughout the simulations these error norms are satisfactorily

small.
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Taha and Ablowitz [58] have made a comparison of a large
number of numerical algorithms and rated them for efficiency. We
will now compare the algorithms presented in this thesis with the
method rated the best by Taha and Ablowitz [58] call hereafter,
the TA scheme:

The first test problem is the single soliton solution:

u(x,t) = 3c sech®(Ax - Bt + D) (9.1)
of the KdV equation:
U, +eguu +pu =0 (9.2)

t X XXX

where:

The initial condition is equation (9.1) with t =0 and the
boundary conditions are chosen from:
u(¥20,t) = ux($20,t) = uxx(IZO,t) =0 (9.3)

For a soliton with unit amplitude 3c =1 and we require the
Lw—error norm to remain below 5x1073 throughout the simulation up
until time t = 1, and evaluate the CPU time taken. The La— and Lm—
error norms and the relative errors in the conserved quantities 12
and 13 are recorded. The results are presented in Table 9.1.

It has been found that the speed of the VAX 8650 is 6 mps,
and that of the IBM 4341 1is 2 mps. Suppose that all the
computations have been carried out on the same computer, say, the
VAX 8650 then according to Table 9.1 the computing times would be
1.63 secs, 1.76 secs, 0.47 secs, 0.41 secs, and 2.33 secs for
Galerkin cubic Hermite, Galerkin cubic spline, Galerkin quadratic

spline, collocation quintic spline, and the TA scheme

respectively:
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Table 9.1

Comparison of the computing time which is required ' with an

accuracy (Lm) < 0.005 for the numerical methods in solving the KdV

Method | Mesh [Time[L x103%|L x10° v v CPU
; 2 [ 1 2
size secs
Hermite |h =0.7[0.25| 1.22 | 0.97 |-1.34x10™*|-3.09x10™>
bi = - -
cubic At 0.5 | 1.33 | 0.97 [-2.28x107*|-5.47x107%| 1.63
VAX 86 . - -
01002511 00| 1.72 | 0.97 |-4.06x10™%|-1.01x1072
cubic  |h =0.5/0.25| 1.29 | 0.95 |-3.04x10"°| 1.01x107°>
spline |,y = 1o.50| 1.68 | 0.96 |-4.02x1075| 9.95x107%| 1.76
VAX 86501 0.02511 00| 2.16 | 1.02 |-6.02x10"%| 9.56x107*
quadratic{h =0.5[0.25| 1.50 | 0.80 |-4.39x10™%|-2.30x1072
SPLIne la¢- 05(0.50| 1.70 | 0.68 |-6.57x10™*|-2.34x10"2| 0.47
VAX 8650 3 2

1.001 2.30 1.46 |-1.09x10 ~|-2.41x10"

quintic |h =0.4[0.25| 0.91 | 0.62 |-1.97x10" >|-2.21x10"

spline 14t = 10.50] 0.98 | 0.62 [-4.00x10"%|-5.58%10"%| 0.41
VAX 8650} ( 025/1.00] 1.30 | 0.68 [-8.07x10™5|-1.24x10"*
TA Ax=.16|0. 25 1.46 | 5.00x10"°| 4.13x10”°
scheme 1) = o5 1.62 | 7.00x10"°| 4.19x107 3| 7
IBM 43411 4 125(1.00 1.73 | 1.10x107%| 4.26x107°
where:
vy T (12 - I20)/120’ v, T (13 - I30)/130’
I20 = the exact value of [ u® ax ,
130 = the exact value of [ (2u3 - ui) dx ,
I_, I_ are the second and the third conservative quantities

2
defined by equations (2.4.9), (2.4.10) respectively.

From Table 9.1 we see that the collocation method is roughly
four times faster than the Galerkin cubic Hermite, four times
faster than the Galerkin cubic spline, slightly faster than the
Galerkin quadratic spline, and six times faster than the TA scheme
[58]. We find that all our methods are more accurate and more

efficient than the TA scheme and we conclude that the best method
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to chose according to efficiency and accuracy is the collocation
method with quintic splines as shape functions.

We have made a comparison based on accuracy and efficiency
for a single soliton solution with various amplitudes of the KdV
equation (9.2) between the following numerical methods:

(1) the TA scheme (finite difference) [58],

(2) the BDK methods (a finite element fully discrete Galerkin
method) [90] are based on a standard semi-discretisation in the
spatial variable x using smooth splines over uniform mesh. For the
temporal discretisation various procedures are proposed, mainly
second and third order accurate Runge-Kutta methods coupled with
Newton’s method to handle the nonlinear systems arising from the
nolinear term at each time step, and

(3) the finite element methods presented in this thesis.

If it is assumed that all calculations had been executed on
the same computer (VAX 8650) and we evaluate the computing time
need to attaln an accuracy (Lm) of less than 5x10-3, 1x10-2, and
2.2x10_2 for solitons of amplitudes 1, 2, and 4 respectively

throughout a run up to time t = 1, we obtain the results given in

Table 9.2 for the time t = 1:
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Table 9.2

A comparison between several numerical methods based on the

accuracy and efficiency

Method TA BDK Galerkli [Galerki|Galerki|Collocat | Ampl
(58] (90] Cubic Cubic Quadrat [Quintic
Hermite|Spline |Spline [Spline
Mesh  |Ax=.16 [Ax=1/96 |h = 0.7|h = 0.5|h = 0.5|h = 0.4
size
At=.125 |At=.04 |At=.025|At=.025|At=.05 |At=.025
5 1
L x10° | 1.73 1.78 0.97 | 1.02 | 1.46 | 0.68
CPU secs| 2.33 2 1.63 | 1.76 | 0.47 | 0.41
Mesh Ax=.1 Ax=1/144|h = 0.4/h = .35/h = 0.2|lh = 0.25
S1Z€  1pt=.1  |At=1/45 |At=.005|At=.005|At=.01 |at=.005
2
me1o3 3.32 2.88 1.75 | 2.10 | 2.10 | 1.07
CPU secs| 7.67 567 | 14.37 | 12.62 | 4.63 | 3.03
Mesh Ax=.05 Ax=1/1721h = 0.3lh = .25 h =.225(h =.225
size  |\i- 0275|at=1/140| &t = 0.0025 At = 0.0025
4
L x10° | 17.47 | 17.10 | 15.02 | 10.07 | 13.19 | 7.33
CPU secs| 46.67 | 20.33 | 38.79 | 34.83 | 20.00 | 6.34

From Table 9.2 we see that for a single soliton with amplitude one
the collocation method is roughly six times faster than the TA

scheme, five times faster than the BDK method, four times faster
than Galerkin cubic Hermite, four times fatser than Galerkin cubic
spline, and slightly faster than Galerkin quadratic spline. We
conclude that the methods prsented here are more accurate and
efficient than the others and also that the collocation method
using quintic splines is the most accurate and efficient method of
all.

For a soliton with amplitude two the collocation method is roughly
two and half times faster than the TA scheme, two times faster
than the BDK method, five times faster than Galerkin cubic

Hermite, four times faster than Galerkin cubic spline, and one and
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half times faster than Galerkin quadratic spline. Again we reach
the same conclusions.
For a soliton with amplitude four the collocation method is
roughly seven times faster than the TA scheme, three times faster
than the BDK method, six times faster than Galerkin cubic Hermite,
five times faster than Galerkin cubic spline, and three times
faster than Galerkin quadratic spline. One more the same
conclusions are reached.

We have also made a comparison between the following
numerical methods:
-Zabusky and Kruskal scheme [27] (finite difference),
-Self-Adaptive conservative scheme SACS [91] (finite difference),
and
-The finite element methods presented here for the single soliton

solution (9.1) of the KdV equation (9.2) with € = 1, pu = 0.000484,

c=023 A=+(ES)? B=gecA , D=-0.5A. The initial
condition is equation (9.1) with t =0, and the boundary

conditions are u(0,t) = u(2,t) =0, uX(O,t) = uX(Z,t) = 0. The Lw-

error norms have been computed and are listed in Table 9.3:

Table 9.3
Growth of the walo3 for several numerical methods for a single

soliton

Time Zabusky| SASC Cubic Cubic Quadratic| Quintic
Kruskal Hermite |Spline |Spline Spline

h =0.01lh =0.01{ h =.033/h =.033|h = .033 h = .033

At=.0005|At=.0008]|At=.0125 [At=.0125|At=.0125 |At=.0125

[27] [91]
1.5 13.8 13.2 3.8 6.44 4.7 5.5
2.0 17.9 16.9 5.7 6.8 7.9 5.6
2.5 21.8 20.1 7.1 9.1 6.5 6.0
3.0 26.4 24.2 9.6 9.8 6.4 7.6

Table 9.3 shows that the accuracy of our methods is roughly about
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three times better than that of the Zabusky and Kruskal method
[27] and of the SASC method [91] even with space and time steps
about three and twenty five times larger than those used for the
Zabusky and Kruskal [27] and the SASC method [91].

We have also made a comparison of methods for the interaction
of two solitons. The initial condition is determined from the
analytic solution (2.3.4.1) when t = 0 and
(I) two solitons as initial condition with amplitudes 0.5 and 1
respectively where; a1 =1, a =vV2, d = 0, d_= 2a2, € = 6,

2 1 2

p =1 (9.4)
(IT}) two solitons as initial condition with amplitudes 0.5 and 2.5
respectively where; o« =1, a = V5, d =0, d =10.73, € =6,

=1 (9.5)
The boundary conditions are chosen from:
u(¥20,t) = ux($20,t) = uxx(izo,t) =0 (9.6)
For case (I) we determined the computing time which is
required to maintain an accuracy (Lm) of less than 0.002
throughout the computations. The Lz—error norm, and the relative
errors in the second and third conservative quantities are also
given in Table 9.4. Assuming that all the computations have been
executed on the same computer (VAX 8650) then from Table 9.4 we
find that the computing times required to achleve an accuracy (Lm)
of less than 0.002 for the numerical methods Galerkin cubic
Hermite, Galerkin cubic spline, Galerkin quadratic spline,

collocation quintic spline, and the TA scheme are 4.96 secs,

5.38 secs, 1.51 secs, 1.50 secs, and 6.33 secs respectively:
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Table 9.4
Comparison of the computing time which is required with an

accuracy (Lm) < 0.002 for the numerical methods in solving the KdV

Method | Mesh |Time L2x103 L_x10’ v, v, CPU

S1zZe secs
Hermite 2t=2.7 0.10] 1.36 | 0.97 -3.64x10:: —1.15x10::

0.5 | 1.13 | 0.64 [-1.60x10"%|-3.93x10

cuble | 0.0251) 9] 1.3a | 0.64 [-2.84x107%|-6.75x10"3| 4.96
VAX 8650 2.00| 1.62 | 0.88 |-2.60x10"*|-3.59x107°
3.00| 1.41 | 0.88 [-2.62x10"%|-3.61x10">
cubic | =0-5/0.10| 0.69 | 0.48 |-1.38x107°%| 6.73x10" "
At = |0.50] 1.07 | 0.56 |-2.60x10"°| 5.55x10"*

spline 1 0.02514 59| 1.22 | 0.52 |-4.08x10°%| 3.85x10°%] 5.38
VAX 8650 2.00| 1.48 | 0.80 |-6.44x10™°| 3.01x10"°
3.00| 1.36 | 0.49 |-6.25x10"°| 7.51x10™>
quadratic|® =0-5(0-10| 0.88 | 0.71 -1.60x10"*|-1. 71x10"2
At=.05]0.50] 1.18 | 0.50 [-2.75x107%{-1.57x10"2

spline 1.00| 1.43 | 0.78 |-3.61x10"*|-1.34x107%| 1.51
VAX 8650 2.00| 1.90 | 1.02 |-3.83x107%{-8. 13x10"3
3.00| 1.89 | 1.03 |-4.10x10"*|-8.02x10"3
quintic |P =0-4[0.10 0.57 | 0.43 —3.46x10:: 1.07x10::

At = |0.50] 0.75 | 0.44 |-1.61x10"%|-2. 10x10

spline | 4 025(1.00| 0.98 | 0.58 |-2.70x107%|-4.62x1075| 1.50
VAX 8650 2.00| 1.29 | 0.58 [-3.57x10"°|-6.56x10"°
3.00| 0.87 | 0.58 [-3.67x10"°|-6.64x10"°
TA Ax=.10(0.10 0.80 [-1.00x10"°| 1.19x107°
scheme |At = [0.5 1.13 |-4.00x10"°| 1.04x107°

0.14 |1.00 1.35 |-1.80x10™*| 6.20x107*%| 19

IBM 4341 2.00 1.38 |-4.30x10™*[-1.80x107*
3.00 1.48 |-4.40x10"*|-2.30x107*

Again we find that all the methods prsented here are more
accurate and efficient than the TA scheme and that the collocation

method with quintic splines as shape functions is once more the

best of all.

For case (II) we report in Table 9.5 the CPU time (on
VAX 8650) required to attain an accuracy of less than 0.02 when

the time reaches t = 2.4:
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Table 9.5
A comparison between TA scheme and our numerical methods based

on the accuracy and efficiency

Method TA Galerkin|Galerkin|Galerkin|Collocati|Amplitude
[58] Cubic Cubic Quadrat |Quintic
Hermite |Spline Spline Spline

Mesh |Ax=.075 |h = 0.45|h = 0.35/h = 0.3 |h = 0.3
S12€  1At=.055 [At=.005 |At=.005 |At=.005 |At=.005

. 0.5, 2.5
L_x10 15.02 14.06 | 8.85 10.02 | 5.86

CPU secs| 23.67 31.60 1 31.16 19. 30 6. 60

For this problem Galerkin cubic Hermite and Galerkin cubic spline
methods are slightly slower than the TA scheme but Galerkin
quadratic spline and collocation quintic spline are faster.

The following numerical methods are compared for the mKdV
equation:

u, ¥ 6u2ux tu = 0 (9.7)

(i) the collocation method (finite element method) with quintic
splines as shape functions, and

(11i) the TA scheme (finite difference scheme) suggested by Taha

and Ablowitz [52].

We compare the computing time required to maintain a certain
accuracy throughout the run for various choices of parameters. In

this comparison we will use two initial conditions:
(a) The exact solution for a single soliton of the mKdV equation
(9.7) is given by:
u(x,t) = A sech (Ax - Bt + D) (9.8)
For the initial condition, put t =0, A=1, B=A" =1, and
D = 0 in equation (9.8). The boundary conditions are imposed:
u(¥20,t) = ux(¥20,t) =0 (9.9)

The Lz_ and Lw—error norms, the relative errors in the second
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and the third conserved quantities, and the computing time

are listed in Table 9.6:

Table 9.6
Comparison of the computing time which is required with an

accuracy (Lm) < 0.005 for the numerical methods in solving the mKdV

Method | Mesh |Time|L x10°|L x10° v v CPU
. 2 0 1 2
slze secs
quintic |h =0.5(0.25| 6.94 | 2.86 | 1.37x10°°] 2.16x10"*
spline {,. _ o.s0| 5.37 | 2.93 | 5.10x10°%| 3.72x10"%| 0.36
VAX 8650\ 4, 025(1.00] 6.25 | 3.30 | 9.39x10"%| 4. a7x10"*
TA Ax=.10|0.25 1.87 | 9.00x10"%| 4.86x10”3
scheme 1, _.25l0.5 2.79 | 1.70x107*| 5.08x107%| 6
0 i .
IBM 3081 1.00 4.48 | 3.30x10"%| 5.56x10"°
Where:
4 2
I = the exact value of [ (u - u”) dx ,
30 X
I_, I_ are the second and the third conservative quantities

2
defined by equations (2.4.13), (2.4.14) respectively.

It has been found that the speed of the VAX 8650 is 6 mps,
and that of the IBM 3081 1is 12 mps. Suppose that all the
computations had been run on the same computer (VAX 8650) then
from Table 9.6 we see that the computing time required to attain
an accuracy (Lm) of less than 0.005 are 0.36 secs, and 12 secs for
numerical methods (i) and (ii) respectively. Then the method (i)
is thirty three times faster than the method (ii) (the fastest
scheme amongst all the finite difference schemes considered in
reference [52]).

(b) The exact solution for the collision of two solitons of the
equation (9.7) is given by the equation (2.3.4.9). For the initial
condition take t = 0, and

a =0.5 o =2, d1 = 0.625, d2 =8.75 € =6, pu=1 (9.10)

246



The boundary conditions are chosen from:

u(¥20,t) = u_(¥20,t) = u_ (720,t) =0 (9.11)
X XX

The L2— and Lw—error norms, the relative errors in the second
and the third conserved quantities, and the computing time
are recorded in Table 9.7. If all the computations had been made
on the same computer (VAX 8650) then from Table 9.7 we find that
the computing time required to attain an accuracy (Lm) of less

than 0.02 are 10.50 secs, and 436 secs for numerical methods (i)

and (ii) respectively:

Table 9.7

Comparison of the computing time which is required with an

accuracy (Lm) < 0.02 for the numerical methods in solving the mKdV

Method | Mesh |Time L2x103 L x10° v v CPU
size ® 1 2 secs
= _ -4 -4
quintic |P=0-25(0.50| 5.61 | 3.73 |-2.48x10*(-4.71x10
At = |1.00| 4.50 | 3.73 |-2.95%x10"%|-4.55x10"*
spline -a -4
0.005/1.50| 4.94 | 3.73 |-3.27x10 " |-6.64x10 10. 50
VAX 8650 5. 00| 5.00 | 4.05 |-5.42x10"*%|-1.62x107%
>.50| 10.77| 4.05 [-9.75x10™%|-3.35x107°
3.00] 14.97| 9.35 |-1.63x10"°|-5.88x10">
TA Ax = |0.50 4.57 |-5.30x10"%|-1.27x1073
scheme 0.0565 1.00 7.08 |-9.90x10"%|-4.92x1073
At = |1.50 9.95 |-7.30x10"*|-2.28x107°| 218
IBM 3081 14 0s65/2.00 13.32|-3.10x10™*| 1.89x107>
2.50 15.41] 1.60x10"*| 5.61x107°
3.00 19.93| 5.60x10"*%| 8.01x1073

The collocation method (i) with quintic splines as shape functions
is roughly fourty two times faster than The TA scheme (ii). Hence

the collocation method with quintic splines as shape functions is

the most accurate and efficient method tested for solving the mKdV

equation.
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We have shown that all four methods described in detail in
this thesis are well able to provide efficient and accurate
numerical solutions to the KdV equation. From above discussion we
further conclude that the collocation method with quintic splines
as shape functions is the most efficient and accurate numerical
method discussed here for solving the KdV, mKdV, and generalised

KdV equations. We therefore recommended its use.

Note Added

The single soliton simulations, wusing the method of
collocation with quintic spline shape functions, were repeated
with double precision arithematic and no significant effect on the
results was obtained. Thus the conclusions already made concerning

the efficiency are independent of the computer word length used in

the computations.
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Appendix Al

Algorithm for the solution of tridiagonal system of equations.

Assume the tridiagonal systems of equations has the general

form:
- ad + b & - cd =d 0< 1 <N
1 1-1 11 1 1+1 1
with:
a =¢ =0
o} N
ao = bo ! Bo = do

Then compute the following parameters:

a =Db -ac /x
i i i 4-1" i1-1
=d + a /a
Bl { 181—1 1-1
for 1 =1, 2, ... , N

Then the solution is given by:

& = BN / ay

[+2)
1

( Bi + clS )/ai
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Appendix A2

Algorithm for the direct solution of a penta-diagonal system of
equations.
Suppose the penta-diagonal systems of equations has the form:
a181—2 ¥ bi81-1 * Clsi ¥ di8i+1 * e181+2 - fi

where o €1 £ N and a0 =b =a =e =d =e = 0.

Firstly , let:

B, =by, » Ky =c,
a =d/m . A =e/u v ¥, =1 /u
and
81 - b1 ’ “1 = C1 h 31ao
“1 = (dl - B1Ao)/“1 ’ A1 = ex/“1 ? 71 = (f1 - 3170)/“1

Then compute the following parameters:

By = ¢ 7 Bi o1 T Ax—z

@ = (di - Bi Ai )/ u

Ai = el/pi

(A (fx B 8171 1 T3 71-2)/“1
for 1 =2, 3, » N

and
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Appendix A3

Algorithm for the direct solution of a septa-diagonal system of

linear equations.
Suppose the septa-diagonal systems of equations has the

general form:

where o € t £ N and

) 0 1 1 1 2
&y T fN TS T Byor T fN-l T 8y.2 T 0
Firstly , let:
% T bo ’ Bo =% Ko T do
Co = eo/“o ’ Ao = fo/“o ’ T'o - go/“'o ’ 3’o =l'\o/“o
% = b1 ’ 81= € Hy T dl - Blco
€ = (ey =B A, v A= U - By )
mo= gl/“1 ’ = (h1 B 8170)/“1
and
® 7 bz ’ Bz =T azco » My T dz - Aoaz - 32c1
g, = (e, = mpx, = A8, )7m,
AZ = (f2 - anl)/u2 » M, = gz/u2 ¥, = (h2 -y, - 8271)/u2

Then compute the following parameters:

1 i i1 °1-3
Bl =% T Al-3 e c1—2
By = dl Ta M T Aa-z - Bi c1—1
g, = leg =m0 _ﬁ PR
Ai = (fi - ani- )/u
no= gx/“i
[ (hl - 6171 R A T W1-3)/“1
for 1 =3, &, , N
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The solution is then given by:

8N -y

8N-1 T Vo T ¢ 1 5

3 = - -

N-2 In-2 N-2 8N cN 2 8N4
and
8 = - 8 - & -
j 7} CJ j+1 j+2 AJ 8J+3 nJ

for + = N-3 , N-2 , , O
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