Temperature-mediated shifts in salamander transcriptomic responses to the amphibian-killing fungus
Ellison, Amy; Zamudio, Kelly R.; Lips, Karen R.; Muletz-Wolz, Carly

Molecular Ecology

DOI:
10.1111/mec.15327

Published: 31/01/2020

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Temperature-mediated shifts in salamander transcriptomic responses to the amphibian-killing fungus

Authors:

Amy Ellison 1*, Kelly Zamudio 2, Karen Lips 3, Carly Muletz-Wolz 3,4

Affiliations:

1 School of Natural Sciences, Bangor University, Bangor, UK (*corresponding author)
2 Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
3 Department of Biology, University of Maryland, College Park, MD, USA
4 Center for Conservation Genomics, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA

Keywords: Batrachochytrium dendrobatidis, MHC, salamanders, temperature-dependent immunity, transcriptomics

Running title: Temperature alters chytridiomycosis responses
Abstract

Life processes of ectothermic vertebrates are intimately linked to the temperature of their environment, influencing their metabolism, reproduction, behaviour, and immune responses. In amphibians infected by the generalist chytrid pathogen *Batrachochytrium dendrobatidis* (*Bd*), host survival, infection prevalence, and infection intensity are often temperature- and/or seasonally-dependent. However, the transcriptional underpinnings of thermal differences in infection responses are still unknown. Measuring the impact of temperature on host responses to infection is a key component for understanding climatic influences on chytrid disease dynamics. *Bd*-responsive gene pathways in frogs are well documented, but our understanding of salamander immune expression profiles during infection with chytrids remains limited. We characterize the transcriptomic responses of *Plethodon cinereus* using RNAseq by comparing skin and splenic gene expression of individuals uninfected, succumbing to *Bd* infection, and naturally cleared of *Bd* infection at three temperatures. We propose amphibian temperature-dependant susceptibility to *Bd* is likely driven by shifts in expression of innate and adaptive immune axes. Our study shows increased expression of transcripts associated with inflammation at cooler temperatures and a shift towards increased expression of adaptive immune genes, including MHC, at higher temperatures. In the face of climate change, and as concerns for the spread of emergent chytrid pathogens increase, our results provide important functional genomic resources to help understand how these pathogenic fungi may continue to affect amphibian communities globally in the future.
Introduction

Temperature influences the metabolism, reproduction, behaviour, and immune responses of ectothermic vertebrates, and this has implications for disease susceptibility. Temperatures at the low end of thermal tolerances are generally considered immunosuppressive, reducing lymphocyte numbers (Raffel, Rohr, Kiesecker, & Hudson, 2006), T cell activity (Maniero & Carey, 1997), rates of antibody production (Mikkelsen, Lindenstrøm, & Nielsen, 2006), and serum complement activity (Maniero & Carey, 1997). In some species, underlying individual thermal preferences may be a predictor of infection susceptibility (Sauer et al., 2018), while in others ectotherm behavioural fever (active preference for warmer environments) appears to be important in enhancing survival during infections (Boltana et al., 2013). Widespread thermal-dependence of parasite and pathogen life-history traits (Bakke, Cable, & Harris, 2007, Voyles et al., 2012, Muletz-Wolz et al., 2019) indicate that temperature is key to understanding infection processes and disease dynamics in ectotherm hosts.

Temperature has profound effects on the transcriptional activity of organisms; from prokaryotes (Smoot et al., 2001), plants (Winfield, Lu, Wilson, Coghill, & Edwards, 2010), fungi (Steen et al., 2002), invertebrates (Wang, Espinosa, Tanguy, & Allam, 2016) to vertebrates (Gracey et al., 2004). In multicellular organisms, temperature dependent gene expression responses are often tissue specific (Gracey et al., 2004). In vertebrates, temperature effects on gene expression are well known in terms of temperature-dependent sex determination (Shen & Wang, 2014) and acclimation to thermal stress (Quinn, McGowan, Cooper, Koope, & Davidson, 2011). However, we know far less about the effects of temperature on gene expression during infection, despite its likely impact on immune function. To fully appreciate the significance of temperature on infection processes and disease dynamics of vertebrate hosts, studies of transcriptional infection responses under different thermal regimes are needed.
The aquatic fungal pathogen *Batrachochytrium dendrobatidis* (*Bd*) is one of the most devastating emergent pathogens of ectotherms, widely implicated in global amphibian population declines and extinctions (Bellard, Genovesi, & Jeschke, 2016, Scheele et al., 2019). Among frogs, hundreds of species are known hosts and *Bd* has a wide range of disease outcomes, ranging from high susceptibility to tolerance and resistance (Scheele et al., 2019). Salamanders, particularly terrestrial species, are typically at less risk from *Bd* (Lips, Reeve, & Witters, 2003, Bancroft et al., 2011) often exhibiting low natural prevalence (Hossack et al., 2010, Muletz, Caruso, Fleischer, McDiarmid, & Lips, 2014), relatively low susceptibility, and higher rates of infection clearance in laboratory studies (Vazquez, Rothermel, & Pessier, 2009, Pasmans et al., 2013). Despite this, salamander declines have been linked to *Bd* emergence (Cheng, Rovito, Wake, & Vrendenburg, 2011) and infections can induce high mortality rates in some species (Weinstein, 2009).

Temperature is also key to *Bd* physiology. In culture, optimal growth of *Bd* is in the range of 17 to 25 °C, with substantially reduced growth rates below 10 °C or above 28 °C (Piotrowski, Annis, & Longcore, 2004). Moreover, environmental temperature is an important predictor of geographic distribution of *Bd* infections and amphibian mortality rates (Kriger, Pereoglou & Hero, 2007, Longo, Burrowes, & Joglar, 2010, Savage, Sredl, & Zamudio, 2011). Elevated body temperature in frogs can clear infections (Woodhams, Alford, & Marantelli, 2003), and individual preference for warmer temperatures has been linked to increased resistance to *Bd* (Rowley & Alford 2013, Sauer et al., 2018). Yet, even within the optimal thermal range of *Bd*, anuran mortality rates vary considerably (Andre, Parker, & Briggs, 2008), suggesting that temperature-dependent host responses contribute to disease outcome. Indeed, expression profiling of *Xenopus tropicalis* revealed differential activation of innate immune genes in response to infection at two temperatures (Ribas et al., 2009). However, despite evidence of temperature-dependent survival in salamanders (Vazquez et al., 2009, Muletz-Wolz et al., 2019), we do not yet have any study of temperature-
dependent gene expression responses of salamanders to *Bd*. More broadly, we have limited
knowledge of how salamander immune expression responses to *Bd* infection – regardless of
temperature - compare to those in anurans (Farrer et al., 2017). While frog diversity far exceeds
that of salamanders, a substantial proportion of salamander species studied have experienced
severe declines (>90% reductions) due to chytrid pathogens (Scheele et al., 2019), and therefore
it is critical *Bd* immunity and pathogenesis is understood across all amphibian groups. Frog and
salamander immune systems are broadly similar, however there are sufficient differences in
immunological tissues (e.g. spleen structure, lymphomyeloid organs, immunoglobulin types)
(Zapata & Amemiya 2000, Miller & Fowler 2014) to suggest distinct infection responses.

Many species of *Plethodon* salamanders have experienced widespread declines in the eastern
United States (Highton, 2005). *Plethodon cinereus* is well studied with respect to chytrid infections,
typically exhibiting low *Bd* infection prevalence in the wild (Muletz, Caruso, Fleischer, McDiarmid,
& Lips, 2014), and capable of clearing moderate laboratory experimental infections (Muletz et al.,
2012). This species is a popular model for studying the protective role of commensal skin
microbiota against *Bd* infection (e.g. Harris et al., 2009, Loudon et al., 2014, Muletz-Wolz et al.,
2018, Muletz-Wolz et al., 2019). However, we do not know their functional genetic responses to
infection that control disease outcomes, especially under variable temperatures. In this study we
use this temperate species to capture transcriptional responses of individuals succumbing to
chytridiomycosis and those cleared of infection, under relevant seasonal temperatures. We
characterized the transcriptomic responses of *P. cinereus* to infection with a novel (non-North
American) *Bd* strain. By comparing gene expression of individuals uninfected, succumbing, or
naturally cleared of *Bd* infection at three different temperatures, we address the hypothesis that
amphibian temperature-dependent variation in survival to *Bd* infection is due to underlying
differences in expressed genes.
Materials & Methods

Experimental infections

The salamanders used in this study represent a subset of a larger study investigating temperature-dependent mortality in response to Bd infection (Muletz-Wolz et al., 2019). Briefly, adult *P. cinereus* (> 35 mm snout-vent length) were acclimatized for 47 days to either 13 (n = 29), 17 (n = 29), or 21 °C (n = 29). These temperatures represent average body temperature for *Plethodon* in spring (13 °C) and summer (17 °C), and a higher temperature (21 °C) within their natural range (Caruso, Sears, Adams, & Lips, 2014). In addition, the three treatment temperatures are within the range that *Bd* grows and reproduces (Piotrowski, Annis, & Longcore, 2004).

Salamanders were individually exposed for 24 hours to a *Bd* inoculum (*Bd*-exposed: 5 ml of 5.3 x 10^6 zoospores/ml solution of strain JEL423, 15 per temperature) or sham exposed (*Bd*-control: 5 ml sterile water, 14 per temperature). JEL423, a Panamanian strain, was chosen because wild salamanders from our collecting site should all be naïve to this chytrid lineage (Muletz, Caruso, Fleischer, McDiarmid, & Lips, 2014). Salamanders were monitored for morbidity (abnormal posture, excess skin sloughing, loss of appetite, lethargy, and loss of righting reflex) daily for 42 days and individuals were euthanized if they lost their right ability, or displayed all four of the other clinical signs, by applying 20% benzocaine to their dorsal side. *Bd* infection status and infection intensity (number of zoospore genomic equivalents, ZGE) were measured at 5, 11, 25, and 42 days post inoculation using skin swabs as described in Muletz-Wolz et al. (2019). Moribund salamanders were also swabbed immediately prior to euthanasia. All salamanders surviving the length of the experiment were euthanized 42 days post-inoculation.

Immediately after euthanasia, we dissected salamanders using sterilized instruments and harvested skin and spleen tissues from each individual. Tissue samples were immediately placed
in RNAlater (Invitrogen), stored at 4 °C for 24 hours, and then stored at −80 °C until RNA extraction and library preparation. All animal use was approved by IACUC protocol UMD # R-14-04. We used qPCR to confirm that individuals euthanized due to clinical signs of chytridiomycosis were “infected”, control individuals were “uninfected”, and Bd-exposed individuals that survived had “cleared” their infections. Because the individuals used in this experiment were part of a larger Bd-survival study (Muletz-Wolz et al., 2019) and because progression of chytridiomycosis varies widely among individuals even under controlled inoculation doses (Carey et al., 2006), we opted for a tissue sampling regime that maximized the opportunity to capture expression responses in a broadly comparable “mature” stage of infection, i.e. when hosts were actively shedding zoospores. Thus we sampled hosts over a range of days post-inoculation (Figure 1, Supplementary File 1). This sampling strategy – allowing resolution of disease outcome, either morbidity or clearance - provides opportunity to compare critical late-stage responses to Bd (Grogan et al., 2018a) across a temperature range. However, we recognise that one shortcoming of this design is that we cannot detect early-stage responses in the first few days post-inoculation, which can also have important consequences for disease outcome (Grogan et al., 2018b).

Transcriptome sequencing

We performed RNAseq on four to five randomly selected salamanders from those that were sham-infected (“uninfected”), Bd-challenged succumbing to infection (“infected”), and Bd-challenged cleared infection (“cleared”) at each of the three temperatures (Figure 1, Supplementary File 1). Because only one salamander survived infection at 13 °C, we excluded this animal from sequencing, as no statistical tests could be applied. We followed RNA extraction and transcriptome sequencing methods of Ellison et al. (2015). Briefly, total RNA was extracted from each tissue sample separately using RNAdvance tissue kit (Beckman Coulter, Inc.). Libraries were generated using the Illumina TruSeq RNA sample preparation kit v2 (low throughput protocol)
according to the manufacturer’s instructions (Illumina, San Diego, CA). Randomly pooled
equimolar samples were run on 8 lanes of the Illumina HiSeq flowcell (8 samples per lane). All
sequencing runs were 100-bp single-end reads. After read quality controls (Ellison et al., 2015),
reads from all individuals and tissues were pooled to assemble a consensus transcriptome.
Assemblies were performed using Trinity (Grabherr et al., 2011) with default parameter settings
on a high-performance cluster with 64 central processing units and 512 GB random access
memory. We filtered out transcripts with expression support of less than two reads per million
mappable reads in at least five samples, to eliminate low-level expression noise (Harrison, Mank,
& Wedell, 2012; Moghadam, Harrison, Zachar, Székely, & Mank, 2013). Genes were annotated
using the BLASTX, BLAST2GO, and InterPro pipelines described in Ellison et al (2015). Any
transcript aligning to the Bd transcriptome (Bd Sequencing Project, Broad Institute of Harvard and
MIT, www.broadinstitute.org, accessed January 2, 2015) was removed from downstream
analyses. Only salamander genes that had significant BLASTX alignments (E-value of 1 × 10⁻⁶
and minimum bit score of 55) were used for subsequent gene expression analyses.

Differential expression and gene network analyses

Gene expression was determined using the Trinity pipeline, using BWA read mapping (Li & Durbin
2009) and RSEM read count normalization (Li & Dewey 2011). We analysed differential gene
expression (DGE) of control (uninfected), infected, and cleared individuals at each temperature
separately using the edgeR (Robinson, McCarthy, & Smyth, 2010) R package (R version 2.15.2,
R Development Core Team). This consisted of estimating tagwise dispersion and normalization
factors and differentially expressed (DE) testing using an exact test. A false discovery rate (FDR)–
corrected P value of less than 0.05 was considered to be evidence of DGE. To quantify the overlap
of differentially expressed genes between temperatures, we constructed Venn diagrams for each
tissue using VENNY (Oliveros 2007) for significantly increased and decreased expressed genes
separately. We tested for enrichment of biological process GO terms in each group of DE genes (e.g., specific to one temperature or shared among two or more temperatures) using BLAST2GO. To compare gene expression between infected salamanders and those cleared of infection at day 42, we excluded genes found to be differentially expressed between controls and infected samples. This method excludes genes that may have returned to baseline (i.e. non-infected) levels since clearing infection.

Differential gene expression analyses consist of exact tests on each gene separately and thus necessitate multiple test correction methods (e.g., FDR), and typically only genes with the largest differences in expression are identified. An alternative for quantifying systematic transcriptional responses of salamanders to temperature and infection challenge by *Bd* is weighted gene coexpression network analysis (WGCNA), which identifies networks (modules) of coexpressed genes (i.e., genes that show consistent expression profiles across samples), and thus potentially identifies functionally important genes with only subtle changes in expression that may not be detected in typical DGE analyses. First, read counts were TMM normalized using a Trinity-provided Perl script to produce fragments per kilobase per million mapped expression values. Next, the R package WGCNA was used for network constructions (Langfelder & Horvath 2008). Our modules were defined using the dynamicCutTree function and TOMType “signed” with a minimum module size of 100. A module eigengene distance threshold of 0.25 was also used to merge highly similar modules. Modules were then correlated with log-transformed *Bd* infection intensity (ZGE), days post-inoculation (DPI), and temperature to identify gene networks significantly involved in temperature-dependent responses to *Bd* infection. GO term enrichment tests of each gene module that significantly correlated with *Bd* load were performed using BLAST2GO as described above. Each gene within a module was ranked by its module membership (kME), calculated by WGCNA. Network hub genes were defined as those ranked in
the top 100 module membership values and with the highest 150 network connection weights. Hub gene network connections were exported to Cytoscape (Shannon et al., 2003) for visualization. Gene modules were labelled numerically with the prefix “SK” for skin networks and “SP” for spleen networks (Table 2).

Results

Bd infection challenge

All uninfected control salamanders remained Bd-negative for the duration of the experiment. In the larger survival study, from which we sampled individuals for this study, survival of uninfected salamanders was 100%, 100% and 86% at 13 °C, 17 °C, and 21 °C, respectively. Survival of Bd-challenged salamanders was 6.6%, 26.7%, and 33.3% at 13 °C, 17 °C, and 21 °C respectively (Muletz-Wolz et al., 2019). We found a significant effect of Bd exposure on survival rate for Bd-exposed vs. Bd-control; exposed individuals had lower survival rates. Bd-exposed salamanders at 13°C had a higher mortality rate compared to other temperature treatments, although this difference was not statistically significant (post-hoc p > 0.33, Muletz-Wolz et al., 2019). However, at 11 days post-exposure Bd-exposed salamanders at 13 °C had significantly higher loads than at 17 °C and 21 °C (Supplementary Figure 1). We found a significant negative correlation between Bd load and sampling day; salamanders with higher loads had shorter survival (Pearson’s R = -0.762, P = 0.004). The studied individuals succumbing to infection were sampled between 5 and 21 days post-inoculation (Figure 1, Supplementary File 1), with surviving salamanders and non-exposed controls sampled at day 42.

Transcriptome assembly

Skin and spleen tissue samples were sequenced on eight lanes of Illumina HiSeq, resulting in more than 2,099 million 100 bp single-end reads after quality controls and trimming, with an
average of 33.51 million reads per sample. Sequences are deposited in the NCBI Short Read Archive under submission accession number PRJNA559247 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA559247). Our de novo assembly of the transcriptome, after filtering out low expression transcripts (threshold of at least two reads per million mappable reads in at least five samples), yielded 117,812 transcripts, with a mean length of 1084 bp and N50 length of 2345 bp. We expect that the vast number of minimally expressed contigs that fall below our threshold to largely represent transcriptional errors such as intron expression, exon chimaeras, and sequencing and assembly errors common to current de novo assembly techniques (Moghadam et al., 2013). Of the assembled genes, 38,266 (32.48%) had at least one significant hit against the nonredundant NCBI protein database, and of these, 19,975 (52.20%) were successfully annotated with GO terms.

Responses to infection at all temperatures

Infected moribund salamanders had distinct transcriptome-wide gene expression profiles compared to both uninfected and cleared groups in both tissues (Figure 2). At this broad scale, separation of cleared and uninfected samples, and by temperature (in any treatment group) was not apparent (Figure 2). Yet, there were many genes that showed differential expression among infection status and temperature levels. Moreover, by excluding genes showing expression differences between infected and control individuals, we could separate key genes with ongoing responses to Bd-challenge in the cleared groups from those returned to a “healthy” state. Full lists of differentially expressed genes and enrichment of gene groups and modules are provided as supplementary material (Supplementary Files 2-4).

Skin responses
For skin samples, we found 3,318 genes at 13 °C, 4,538 genes at 17 °C, and 3,305 genes at 21 °C with significant expression differences between uninfected and infected individuals. Of these, 1,071 exhibited increased expression in infected salamanders compared to uninfected controls at all temperatures. For the purposes of this study, we focus the presentation of our results on genes of known immune function in vertebrates and/or highlighted in previous amphibian Bd infection studies. We found significant gene ontology (GO) term enrichment of these genes to include numerous immune-related terms including “metalloendopeptidase activity” (the top molecular function, Table 1), “cytokine production”, “inflammatory response”, “neutrophil migration”, “lysozyme activity”, “T cell activation”, “macrophage activation”, and “detection of fungus”. The 397 genes sharing significant decreases in expression in infected skin samples (compared to uninfected) were enriched for GO terms related to skin integrity such as “intermediate filament organization”, “skin development”, and “keratinization”.

We found 19 gene modules in the skin significantly correlated with Bd load and not temperature (Table 2). Eight modules were positively correlated with Bd load (increased expression with higher infection intensity) and negatively with days post-inoculation (DPI, lower expression with increasing days), of which three were enriched for immune-related GO terms. The top molecular function enrichment of module SK15 was threonine-type peptidase activity and included the GO terms antigen processing & presentation via MHCI and MHCII receptor activity. SK16 was enriched for several cytokine terms including regulation of INF-γ production, interleukin-2 production, and regulation of TLR3 signalling pathway. Four of the ten modules negatively correlated with Bd load (decreased expression with increased infection intensity) and positively with DPI (increased expression in later samples) were enriched for immune-related GO terms (Table 2). These included cytokine responses (SK4; IL5 and IL13 secretion, SK8; cytokine production), chitinase activity (SK5), NF-kB responses (SK6; NF-kB signaling and FC-γ complex
binding), lymphocyte signaling (SK8; T cell aggregation and B cell activation), and MHC activity (SK8; antigen presentation via MHC I). We also found a gene module (SK6), enriched for skin integrity terms (e.g. extracellular matrix organization, collagen binding, and skin morphogenesis), to be negatively correlated with Bd load and positively with DPI.

Spleen responses

For spleen samples, we found 2,958 genes at 13 °C, 2,204 genes at 17 °C, and 2,587 genes at 21 °C with significant expression differences between uninfected and infected individuals. We found 887 of these genes had higher expression in infected salamanders compared to uninfected controls at all temperatures. These transcripts were enriched for several immune-related GO terms including leukocyte migration, IL2 production, and acute inflammatory response (Table 1). In contrast, only 75 genes shared significant decreases in expression in infected spleen samples (compared to uninfected). These genes were also enriched for GO terms related to immune functions, notably activation of immune response, cytokine secretion, toll-like receptor signaling pathway, inflammatory response, B cell receptor signaling pathway, and T-helper 1 type immune response (Table 1).

We found 15 gene modules in the spleen significantly correlated with Bd load and not temperature (Table 2). Five modules were positively correlated with Bd load and negatively with DPI, all of which were enriched for immune-related GO terms including negative regulation of B cell activity (SP13), regulation of wound healing (SP14), establishment of T cell polarity (SP15), response to cytokine (SP16), and MHC II receptor activity (SP17). Six of the ten modules negatively correlated with Bd load and positively with DPI were enriched for immune-related GO terms (Table 2). These were predominantly related to B and T cell responses such as positive regulation of T cell receptor signaling (SP1), positive regulation of T cell cytokine production (SP2), immature B cell differentiation (SP3), T cell cytotoxicity (SP4), and B cell signaling pathway (SP6).
Temperature-dependent responses to infection

Skin

To determine temperature-dependent differential gene expression responses to infection, we compared gene expression between uninfected (control) and infected salamanders within each temperature treatment separately. Then, differentially expressed gene lists were compared across temperatures. We found 482 genes with higher expression in infected salamanders compared to uninfected controls at only 17 °C and 21 °C. GO term enrichment testing revealed threonine-type peptidase activity as the most significant molecular function and also included antigen processing and presentation via MHC I (Table 1, Figure 3). The 357 genes sharing increases in expression in infected salamanders at 13 °C and 17 °C were enriched for a number of immune-related terms including response to INF-γ, B cell apoptotic process, innate immune response, and mast cell proliferation (Table 1). The 156 genes with higher expression in infected salamanders at 13 °C and 21 °C were enriched for serine-type peptidase activity. Genes exhibiting higher expression at only 17 °C were enriched for negative regulation of activation-induced cell death of T cells.

Further interrogation of specific immune genes showing temperature-dependent responses in the skin revealed a number involved in MHC presentation (Figure 3). MHC II beta chain (TR517114|c0_g5) was only significantly increased in expression in infected salamanders at 13 °C, whereas four MHC I antigens (20% of those in our transcriptome assembly) had higher expression at 17 °C or 21 °C. Furthermore, expression of heat-shock proteins (HSPs) and proteasome genes involved in MHC antigen presentation were temperature-dependent (Figure 3). Of note, 26S proteasome subunits were consistently only significantly higher at 17 °C and 21 °C. In addition, components of immunoglobulins exhibited significantly higher expression in infected samples (compared to controls) at one of the three temperatures (Figure 3). Innate immune genes
influenced by temperature included anti-microbial peptides (cathelecidin), chitinase, and lysozymes (Figure 3).

We found one skin gene module significantly correlated with both temperature and *Bd* infection (SK3, Table 2). This module, negatively correlated with *Bd* load yet positively correlated with temperature and days post-inoculation, was found to be enriched for the GO terms MHC II protein binding and type I interferon signaling.

Spleen

We examined gene expression patterns that were unique to specific temperatures and found 361 genes sharing increases in expression in infected salamanders at 13 °C and 17 °C, which were enriched for regulation of I-kappaB kinase/NF-kappaB signalling and negative regulation of interleukin-8 biosynthetic process (Table 1). In contrast, we found the genes sharing increases in expression of infected spleen samples at 13 °C and 17 °C (n = 204) and 17 °C and 21 °C (n = 185) were not enriched for any known immune function (Table 1). However, the genes with significantly lower expression in infected salamanders at 13 °C and 17 °C (n = 44) were enriched for a number of immune related GO terms including MyD88-dependent toll-like receptor signalling pathway and negative regulation of lymphocyte differentiation (Table 1). We also found a number of immune GO terms enriched in infected/uninfected comparisons at only one of the three experimental temperatures. At 21 °C, genes with higher expression in infected salamanders (n = 497) were enriched for chitinase activity, whilst genes with lower expression (n = 445) included alpha-beta T cell activation, interleukin-4 production, and NK T cell differentiation. At 13 °C, genes with higher expression in infected salamanders (n = 411) were enriched for T cell homeostasis, negative regulation of activation-induced cell death of T cells, and T cell apoptotic process. No immune-related GO term enrichment was found in genes only differentially expressed at 17 °C.
We found two spleen gene modules significantly correlated with both temperature and Bd infection (Table 2), yet neither showed significant enrichment of any immune related GO terms. However, the “hub” genes (genes with strongest co-expression connections) of module SP12 (top GO enrichment: “cAMP binding”) included interleukin 1β and a number of matrix metalloproteases (Figure 4). The genes in this module, while predominantly significantly upregulated in infected salamanders in all temperature groups, show stronger over-expression at lower temperatures.

Survivors of infection

Broad-scale skin expression profiles of control salamanders and salamanders that had cleared infection 42 days post-inoculation were very similar (Figure 2). Therefore, we excluded genes found to be differentially expressed between controls and infected samples to identify differences between salamanders clearing infection from those succumbing to infection. This method excludes genes that may have returned to baseline (i.e. non-infected) levels since clearing infection, and reveals genes with ongoing expression changes post-infection. Only a single individual survived Bd-challenge at 13 °C, and so was excluded from these analyses.

We found 1,456 and 511 skin genes differentially expressed between infected and cleared salamanders at 21 °C and 17 °C respectively, of which 120 were shared between temperatures. We found MHC II receptor activity GO term enrichment only in genes with significantly higher expression in infected compared to cleared skin samples at 21 °C (Table 1). In contrast, several MHC I antigens were more highly expressed by cleared salamanders in either 17 °C or 21 °C (Figure 5), though none were found to show significant differences in both temperatures. Immune genes with higher expression only in cleared salamanders at 21 °C included lymphocyte markers and attractants (lymphotactin and CXCR3), cathepsins, and immunoglobulins (Supplementary File 2). At 17 °C, we also found immunoglobulins and cathepsins with higher expression in cleared salamanders, in addition to lysozyme G and chitinase (Supplementary File 2). Chemokine 19
(CCL19) was found to have higher expression in the skin of cleared salamanders at both 17 °C and 21 °C.

We found 519 and 580 spleen genes differentially expressed between infected and cleared salamanders at 21 °C and 17 °C respectively, of which 88 were shared between temperatures. The B cell marker CD72 and immunoglobulin light chains had significantly higher expression in cleared salamanders at both temperatures (Supplementary File 2). Similar to the skin, several MHC I antigens were more highly expressed by cleared salamanders in either 17 °C or 21 °C, though none were found to show significant differences in both temperatures. Temperature-specific increases in expression in cleared spleen samples also included CCR10, CD40L, and TBX21 at 21 °C (Supplementary File 2).

Discussion

In amphibians infected by *Batrachochytrium dendrobatidis*, host survival, infection prevalence, and infection intensity are often temperature- and/or seasonally-dependent (Kriger, Pereoglou & Hero, 2007, Longo, Burrowes, & Joglar, 2010, Savage, Sredl, & Zamudio, 2011), which we hypothesized is related to temperature-dependant transcriptional responses to the fungal pathogen. Here, we characterize the transcriptomic profiles of *P. cinereus*, demonstrating substantial differences in expression of several thousand genes in two infection-relevant tissues - the skin and spleen – between infected and non-infected salamanders. We find key gene functional groups, particularly those related to inflammation and adaptive immunity, to have a temperature-dependent response to infection that likely contribute to observed variation in survival.

In this study, to measure transcriptomic responses of salamanders carrying *Bd* (contrasted with unchallenged controls), salamanders were sampled at a late stage of infection once they showed...
clinical signs of chytridiomycosis. Our aim was to capture gene expression of infected individuals at a broadly comparable point in chytridiomycosis disease progression. The rate of Bd infection progression within species varies considerably (Carey et al. 2006), so this approach (sampling over a small range of days post-inoculation, Figure 1) maximises opportunity to achieve this aim. In addition, as infection loads were not ascertained until after the end of the experiment, salamanders cleared of infection (surviving and Bd-negative at 42 days) were sampled at a different time point to the “infected” group. Therefore, a degree of caution must be used when interpreting these contrasts. First, susceptible amphibians at late stages of infection appear to have ineffective constitutive and innate defenses, and a late-stage response characterized by immunopathology and Bd-induced suppression of lymphocyte responses (Grogan et al 2018a). Here, we discuss specifically all responses and do not attempt to disentangle differential expression due an active fight against the pathogen versus late stage immunopathology. Nonetheless, data on late stage responses are important to improve our understanding of the impact of chytridiomycosis under different thermal regimes. Second, although “cleared” salamanders were sampled at a different time to “infected” groups, by using a highly conservative subtractive expression approach (see Methods) we are able to show ongoing responses to infection (and importantly how this differs with temperature) and propose key pathways that may contribute to successful clearance of Bd. Our data provide new information towards understanding the commonly observed thermal and/or seasonal impact of disease outcome across amphibians. Future studies that characterise infection time-courses (specifically using earlier sampling points) under different temperature regimes will be an important complement to our study.

The core Bd-response genes of infected P. cinereus – genes with differential expression compared to non-infected animals at all temperatures – were enriched for the key functional classes metallopeptidase activity, inflammation, and cytokine production (Table 1). These immune
pathways have been consistently highlighted as responsive to Bd in frogs (Rosenblum, Poorten, Settles, & Murdoch, 2012, Ellison et al., 2014, Ellison et al., 2015) and suggests these are markers deeply conserved in Bd responses of amphibia. Yet, comparison of expression profiles of salamanders infected with either Bsal or Bd show substantial differences in immune activation (Farrer et al., 2017). Bsal elicits no substantial immune response in salamanders (Farrer et al., 2017), indicating the transcriptional responses observed here and in previous anuran studies are not necessarily shared across all chytrid infections.

We show that Bd influences the expression of genes involved in skin integrity and spleen lymphocyte production in salamanders. Disruption of skin integrity and spleen lymphocyte suppression are considered key factors in the pathogenicity of Bd and have been demonstrated in a number of susceptible anuran species (Voyles et al., 2009, Fites et al., 2013, Ellison et al., 2014, Ellison et al., 2015, Grogan et al., 2018). Conversely, more effective responses to Bd include generally lower levels of gene dysregulation, robust early innate and adaptive immune responses (Grogan et al., 2018a), and increased skin structural protein and splenic lymphocyte production during infection (Ellison et al., 2015). We found that skin genes in infected individuals sharing decreased expression at all temperatures were rich in functions related to collagen and keratin production (Table 1, Supplementary File 3). Moreover, we found a skin gene module – negatively correlated with Bd load – to be associated with skin development and structure indicating that as infection load increases skin integrity decreases (Table 2). This module was also positively correlated with days post-inoculation (DPI), suggesting individuals surviving longer (even if eventually succumbing) had higher expression of skin integrity genes. In addition, comparison of salamanders that cleared infection to those that succumbed, indicated higher expression levels of keratins and collagens in the cleared groups (Supplementary File 2) suggesting maintenance of skin integrity may be crucial to intraspecific differences in survival in
salamanders. We found evidence for *Bd*-induced immunosuppression; spleen genes associated with Th₁ responses and B cell signalling were lower in infected salamanders at all temperatures (Table 1). We also found five of the splenic gene modules (negatively correlated with *Bd* load) enriched for various lymphocyte development, activation, and signalling functions (Table 2). These modules also were positively associated with DPI; individuals surviving longer had higher expression. Taken together, these results indicate that the immunosuppressive ability of *Bd* is widespread throughout its host species range and effective induction of skin repair and lymphocyte responses may be key resistance mechanisms.

The temperature dependence of chytridiomycosis within the thermal range of *Bd*, leads to the hypothesis that the effect of temperature on amphibian host immune responses influences disease outcome. In the skin, we found key components of anti-fungal activity to be differentially expressed with temperature, including chitinases (greater upregulation at high temperature), lysozymes and anti-microbial peptides (greater upregulation at low temperatures, Figure 3). Spleen expression profiles of *Bd*-infected *Xenopus tropicalis* indicate that temperature-dependant induction of innate immunity – particularly anti-microbial peptides and inflammatory responses – but not adaptive immune responses, are responsible for greater host survival at warmer temperatures (Ribas et al., 2009). Similarly, salamander interleukin expression increases with temperature in the spleen (Figure 4). In contrast, we observe greater expression changes in these cytokines at the lower temperatures in the skin (Figure 3), the primary site of infection. This is potentially in response to shifts of pathogen life history traits with temperature (Muletz-Wolz et al., 2019).

Shifts in immune expression from adaptive to innate pathways is observed in wild ectothermic vertebrates in winter (Brown et al., 2016). Here we find, in response to *Bd* infection, generally increased activation of innate immune pathways (e.g. increased anti-fungal, anti-microbial, and
interleukin expression) in the skin with cooler temperatures, and yet significantly higher expression of adaptive immune genes at 17 °C and 21 °C (Figure 3). Genes involved in MHC-mediated antigen processing and presentation, including MHC I antigens and MHCII-related heat-shock proteins and proteasome subunits, show the most pronounced response to temperature, with increase in expression as temperature increases. Although these findings are from individuals succumbing to infection, these results still suggest a greater ability to activate adaptive immune responses to *Bd* at higher temperatures, where more salamanders survived infection. In contrast, there appears to be a greater reliance on innate and inflammatory pathways when temperatures are cooler, where the greatest number of mortalities were observed. We now have evidence for the importance of the major histocompatibility complex (MHC) genotypes in amphibian-chytrid resistance (Savage & Zamudio, 2011, Bataille et al., 2015, Savage & Zamudio, 2016, Kosch et al., 2018). However, our results indicate that environmental temperature and MHC genotypes must be considered together to fully explain population differences in *Bd* susceptibility. Temperature-dependence of MHC activity is likely key to observed patterns of seasonal trends in chytridiomycosis prevalence and intensity (Kriger & Hero, 2007, Longo et al., 2010, Savage et al., 2011, Grogan et al., 2016).

At the two highest experimental temperatures (17 °C and 21 °C) more *Bd*-challenged salamanders cleared infection (Muletz-Wolz et al., 2019). As survivors of infection had broadly similar transcriptomic profiles to unchallenged individuals at time of sampling (Figure 2), to assess specifically the ongoing expression responses of *Bd*-surviving salamanders we excluded any genes differentially expressed between control and infected groups (i.e. those that have returned to a normal/healthy state). This approach detected key differences in their gene expression compared to salamanders that succumbed to the infection challenge. We found higher levels of immunoglobulin markers in cleared salamanders compared to infected samples. The animals
used in this study were sampled from a wild population in an area known to harbour *Bd* (Muletz et al., 2014). The increased antibody expression found here in survivors of infection may indicate their prior exposure to *Bd*, which could prime antibody production responses and provide greater protection under our experimental challenge to a novel strain. However, as the infection history of the studied salamanders could not be determined (all salamanders were *Bd*-negative at the start of the study), further controlled comparisons of *Bd*-naïve and *Bd*-exposed individuals are required to support this hypothesis.

Interestingly, in both skin and spleen samples we found higher expression of MHC I antigens in individuals that had survived infection (Figure 5). Previous amphibian MHC-*Bd* studies have been primarily focussed on MHC class II genotype-survival associations (Savage & Zamudio, 2011, Bataille et al., 2015, Savage & Zamudio, 2016). Though more recently, specific MHC I alleles have been linked with increased *Bd* susceptibility (Kosch et al., 2018). Both classes of MHC genes have been found upregulated in the skin during late-stage infections in frogs (Rosenblum et al., 2012, Ellison et al., 2014, Grogan et al., 2018b). We propose that MHC pathways expression is temperature dependant, with upregulation at warmer temperatures, but also high levels of late-stage MHC I expression are likely important for resolution of *Bd* infection. This class of immune genes clearly requires further scrutiny with respect to chytridiomycosis, particularly studies considering both MHC genotypes and their expression levels across thermal gradients simultaneously.

The host range of *Bd* is extraordinarily diverse; capable of infecting hundreds of amphibian species including frogs, salamanders, and caecilians worldwide (Scheele et al., 2019). We present the transcriptomic responses of the salamander *P. cinereus* to *Bd* challenge, across the natural thermal range of both host and fungus. We also show that, in this host species, temperature-dependant susceptibility is apparently underpinned by differences in activation of innate and
adaptive immune pathway gene expression. As the evidence of temperature and seasonal effects on *Bd* prevalence and infection intensity in amphibian communities continues to grow (Lenker, Savage, Becker, Rodriguez, & Zamudio, 2014, Blooi et al., 2015, Sapsford, Alford, & Schwarzkopf, 2018), it is essential that the underlying mechanisms for the observed trends are uncovered. Our study suggests that gene expression responses to *Bd* are thermally-dependant and may be a key component in seasonality of chytridiomycosis. Intriguingly, our data indicate that adaptive immunity, particularly MHC-related pathways, are thermally sensitive. Given the recent findings for the importance of MHC genotypes in survival against *Bd* (Savage & Zamudio, 2011, Bataille et al., 2015, Savage & Zamudio, 2016, Kosch et al., 2018), it would be valuable to follow this up with an expanded population MHC genotyping and expression study of *P. cinereus*. Furthermore, in the face of climate change, and as concerns for the spread of the newly discovered chytrid *Bsal* increase (Stegen et al., 2017), comparison of salamander functional genomic responses to both chytrid pathogens incorporating thermal variation, will be vital to understand how these emergent pathogens may continue to effect amphibian communities globally in the future.

Acknowledgments

This study was supported by grants from the National Science Foundation (DEB-0815315 and DEB-1120249). Additional funding for the project was provided by National Park Service George M. Wright Climate Change Fellowship and an Environmental Protection Agency STAR Fellowship (no. F13B20412) awarded to C.M.W. We thank Miranda Gray for assistance with sequencing library preparations. We thank Jeremy Jacobs, Sam Barnett, Lindsay Powell, Grace DiRenzo, Luke Brown and Anna Savage for field assistance. We thank Chelsea Maguire and Lane Jackson for assistance with animal husbandry and sampling during the experiment. Red-backed salamander collections were carried out under DNR Permit No. 55850 and all animal experimentation was covered by University of Maryland IACUC #R-14-04.
The authors declare no conflicts of interest.

Author Contributions

All authors designed the study. KRL, CMW and KRZ obtained funding for study. CMW performed animal experiments. ARE carried out molecular work. ARE and CMW analysed the data. All authors contributed to writing and editing of manuscript.

Data Availability

All raw sequence data are available at NCBI Short Read Archive (SRA) under accession PRJNA559247 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA559247). All other data are available in supplemental materials.

References

Figure 1. Individual infection trajectories of Bd-exposed Plethodon cinereus at 21 °C (a, b), 17 °C (c, d), and 13 °C (e). Green circles indicate day of tissue sampling for “infected” group succumbing to infection (left column) and “cleared” group surviving infection (right column). At day 11, individuals at 13 °C had significantly higher Bd loads. All Bd-exposed individuals that survived infection to the end of the experiment at day 42 were negative for Bd.
Figure 2. Principal component analysis of FPKM (Fragments Per Kilobase of transcript per Million mapped reads) normalized gene expression profiles of skin (left), and spleen (right) of *Bd*-infected (red), *Bd*-cleared (blue), and uninfected (black) *Plethodon cinereus* at 13 °C (squares), 17 °C (triangles), and 21 °C (circles). 95% confidence ellipses of infection status.
Figure 3. Heatmap of skin differentially expressed contigs (adjusted P < 0.05) related to immune responses against *Bd*, comparing infected to control (uninfected) individuals at each temperature.
Figure 4. Temperature dependent responses of SP12 spleen module (“cAMP binding”) hub genes. A) Heatmap showing *Bd*-infected salamander expression relative to 17 °C. Symbols indicate significance of differential expression tests. B) Network connection overview. Nodes are labeled with official gene symbols when available. Edge line width represents connection strength (weight); thicker lines denote stronger connections. Node size is proportional to number of connections.
Figure 5. MHC I antigen contigs A) TR769668|c9_g1, B) TR534169|c0_g4, C) TR281472|c2_g2, and D) TR769668|c8_g1, found to be differentially expressed in the skin by temperature and infection status. Expression levels represented as Fragments Per Kilobase of transcript per Million mapped reads (FPKM). Asterisks indicate significance levels after FDR p-value correction.
<table>
<thead>
<tr>
<th>Comparison</th>
<th>T°</th>
<th>Direction</th>
<th>No. of terms</th>
<th>Top biological process</th>
<th>Top molecular function</th>
<th>Infection-related terms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I All</td>
<td>All</td>
<td>Up</td>
<td>722</td>
<td>response to stimulus</td>
<td>metalloendopeptidase</td>
<td>response to bacterium, INFG production, IL2 production, cytokine production, inflammatory response, TNF production, neutrophil migration, lysozyme activity, T cell activation, detection of fungus, macrophage activation</td>
</tr>
<tr>
<td>U v I All</td>
<td>All</td>
<td>Down</td>
<td>58</td>
<td>intermediate filament</td>
<td>structural molecule</td>
<td>skin development, keratinization</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>organization</td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>U v I H & M</td>
<td>Up</td>
<td></td>
<td>145</td>
<td>protein catabolic</td>
<td>threonine-type peptidase</td>
<td>antigen processing and presentation via MHC I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>process</td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td>U v I H & M</td>
<td>Down</td>
<td></td>
<td>106</td>
<td>collagen fibril</td>
<td>extracellular matrix</td>
<td>collagen biosynthetic process, skin morphogenesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>organization</td>
<td>structural constituent</td>
<td></td>
</tr>
<tr>
<td>U v I M & L</td>
<td>Up</td>
<td></td>
<td>84</td>
<td>response to external</td>
<td>GTP binding</td>
<td>response to INF-γ, B cell apoptotic process, innate immune response, mast cell proliferation, reg. of TLR4 pathway, reg. of inflammatory response, monocyte chemotaxis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stimulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I H & L</td>
<td>Up</td>
<td></td>
<td>15</td>
<td>digestion</td>
<td>serine hydrolase</td>
<td>serine-type peptidase activity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>H</td>
<td>Up</td>
<td>4</td>
<td>endopeptidase inhibitor activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>M</td>
<td>Up</td>
<td>79</td>
<td>glycosphingolipid metabolic process binding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>M</td>
<td>Down</td>
<td>48</td>
<td>digestion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C v I</td>
<td>H</td>
<td>Up</td>
<td>181</td>
<td>muscle contraction motor activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C v I</td>
<td>M</td>
<td>Up</td>
<td>24</td>
<td>skeletal muscle thin filament assembly myosin binding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v C</td>
<td>H</td>
<td>Up</td>
<td>37</td>
<td>sulfate transmembrane transport transmembrane transporter activity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v C</td>
<td>M</td>
<td>Down</td>
<td>327</td>
<td>actin-myosin filament sliding cytoskeletal protein binding</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spleen

<table>
<thead>
<tr>
<th></th>
<th>Change</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U v I</td>
<td>All</td>
<td>Up</td>
<td>513</td>
<td>response to stimulus metalloendopeptidase activity</td>
</tr>
</tbody>
</table>

- negative regulation of activation-induced cell death of T cells
- MHC class II receptor activity, keratinization,
- secondary active sulfate transport activity
- defense response to bacterium, leukocyte migration, IL2 production,
- acute inflammatory response, regulation of macrophage derived foam cell differentiation, IL1 receptor activity
<table>
<thead>
<tr>
<th>U v I</th>
<th>H</th>
<th>M</th>
<th>L</th>
<th>Up/Down</th>
<th>Gene/Process</th>
<th>Activity</th>
<th>Molecular Function</th>
<th>Biological Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>U v I</td>
<td>All</td>
<td>Down</td>
<td>94</td>
<td>immune response-activating signal transduction</td>
<td>activation of immune response, cytokine secretion, toll-like receptor signaling pathway, inflammatory response, B cell receptor signaling pathway, T-helper 1 type immune response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>H & M</td>
<td>Up</td>
<td>17</td>
<td>retinoid metabolic process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>H & L</td>
<td>Up</td>
<td>67</td>
<td>digestion</td>
<td>regulation of I-kappaB kinase/NF-kappaB signaling, negative regulation of interleukin-8 biosynthetic process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>M & L</td>
<td>Up</td>
<td>65</td>
<td>regulation of multicellular organismal process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>M & L</td>
<td>Down</td>
<td>57</td>
<td>MyD88-dependent toll-like receptor signaling pathway</td>
<td>negative regulation of lymphocyte differentiation, innate immune response-activating signal transduction, negative regulation of T cell differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>H</td>
<td>Up</td>
<td>30</td>
<td>chitin catabolic process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>H</td>
<td>Down</td>
<td>23</td>
<td>ethanol catabolic process</td>
<td>alpha-beta T cell activation, interleukin-4 production, NK T cell differentiation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>M</td>
<td>Up</td>
<td>cell differentiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>L</td>
<td>Up</td>
<td>88</td>
<td>single-organism process</td>
<td>T cell homeostasis, negative regulation of activation-induced cell death of T cells, T cell apoptotic process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v I</td>
<td>L</td>
<td>Down</td>
<td>19</td>
<td>tetrapyrrole biosynthetic process oxygen transporter activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C v I</td>
<td>H</td>
<td>Up</td>
<td>12</td>
<td>histidine catabolic process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C v I</td>
<td>M</td>
<td>Up</td>
<td>9</td>
<td>single-organism cellular process</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v C</td>
<td>H</td>
<td>Up</td>
<td>8</td>
<td>pyruvate biosynthetic process GTP binding</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U v C</td>
<td>H</td>
<td>Down</td>
<td>54</td>
<td>oxygen transport oxygen transporter activity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

780

781
Table 2. Gene ontology (GO) term enrichment of gene co-expression modules defined by WGCNA.

<table>
<thead>
<tr>
<th>Module</th>
<th>N genes</th>
<th>Temperature R</th>
<th>Temperature P value</th>
<th>Infection load R</th>
<th>Infection load P value</th>
<th>Days P.I. R</th>
<th>Days P.I. P value</th>
<th>Top molecular function GO</th>
<th>Top biological process GO</th>
<th>Infection-related GOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td></td>
</tr>
<tr>
<td>SK1</td>
<td>512</td>
<td>-0.36</td>
<td>4.45E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chromatin binding</td>
<td>DNA metabolic process</td>
<td></td>
</tr>
<tr>
<td>SK2</td>
<td>475</td>
<td>+0.36</td>
<td>4.55E-02</td>
<td>+0.41</td>
<td>2.08E-02</td>
<td></td>
<td></td>
<td>RNA binding</td>
<td>Cell cycle</td>
<td></td>
</tr>
<tr>
<td>SK3</td>
<td>399</td>
<td>+0.81</td>
<td>2.48E-08</td>
<td>-0.41</td>
<td>2.37E-02</td>
<td>+0.45</td>
<td>1.21E-02</td>
<td>Serine-type endopeptidase activity</td>
<td>Translation</td>
<td></td>
</tr>
<tr>
<td>SK4</td>
<td>2113</td>
<td>-0.51</td>
<td>3.05E-03</td>
<td>+0.45</td>
<td>1.06E-02</td>
<td></td>
<td></td>
<td>Heme binding</td>
<td>Single organism process</td>
<td></td>
</tr>
<tr>
<td>SK5</td>
<td>622</td>
<td>-0.43</td>
<td>1.64E-02</td>
<td>+0.39</td>
<td>3.18E-02</td>
<td></td>
<td></td>
<td>Serine-type endopeptidase activity</td>
<td>Cell wall macromolecule catabolic process</td>
<td></td>
</tr>
<tr>
<td>SK6</td>
<td>702</td>
<td>-0.79</td>
<td>1.58E-07</td>
<td>+0.71</td>
<td>6.21E-06</td>
<td></td>
<td></td>
<td>Extracellular matrix structural constituent</td>
<td>Extracellular matrix organization</td>
<td></td>
</tr>
<tr>
<td>SK7</td>
<td>297</td>
<td>-0.60</td>
<td>3.88E-04</td>
<td>+0.57</td>
<td>9.14E-04</td>
<td></td>
<td></td>
<td>Structural constituent of ribosome</td>
<td>Ribonucleoprotein complex biogenesis</td>
<td></td>
</tr>
<tr>
<td>SK8</td>
<td>2069</td>
<td>-0.52</td>
<td>2.51E-03</td>
<td>+0.40</td>
<td>2.62E-02</td>
<td></td>
<td></td>
<td>NAD+ ADP-ribosyltransferase activity</td>
<td>Immune system process</td>
<td></td>
</tr>
<tr>
<td>SK9</td>
<td>759</td>
<td>-0.52</td>
<td>3.00E-03</td>
<td>+0.47</td>
<td>7.20E-03</td>
<td></td>
<td></td>
<td>Embryonic hemopoiesis</td>
<td>Regulation of transcription, DNA templated</td>
<td></td>
</tr>
<tr>
<td>SK10</td>
<td>7061</td>
<td>-0.94</td>
<td>1.27E-14</td>
<td>+0.87</td>
<td>2.12E-10</td>
<td></td>
<td></td>
<td>Metal ion binding</td>
<td>DNA integration</td>
<td></td>
</tr>
<tr>
<td>SK11</td>
<td>891</td>
<td>-0.49</td>
<td>4.73E-03</td>
<td>+0.45</td>
<td>1.13E-02</td>
<td></td>
<td></td>
<td>Nucleic acid binding</td>
<td>Nucleic acid metabolic process</td>
<td></td>
</tr>
<tr>
<td>SK12</td>
<td>1405</td>
<td>-0.89</td>
<td>2.32E-11</td>
<td>+0.81</td>
<td>3.69E-08</td>
<td></td>
<td></td>
<td>Nucleic acid binding</td>
<td>Nucleic acid binding</td>
<td></td>
</tr>
<tr>
<td>SK13</td>
<td>724</td>
<td>-0.55</td>
<td>1.45E-03</td>
<td>+0.51</td>
<td>3.24E-03</td>
<td></td>
<td></td>
<td>Nucleic acid binding</td>
<td>Nucleic acid binding</td>
<td></td>
</tr>
<tr>
<td>SK14</td>
<td>791</td>
<td>-0.77</td>
<td>5.03E-07</td>
<td>+0.51</td>
<td>3.74E-03</td>
<td></td>
<td></td>
<td>Nucleic acid binding</td>
<td>Nucleic acid binding</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK15</td>
<td>1280</td>
<td>+0.75</td>
<td>1.20E-06</td>
<td>-0.61</td>
<td>3.07E-04</td>
<td>Threonine-type peptidase activity</td>
<td>Protein catabolic process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK16</td>
<td>2857</td>
<td>+0.75</td>
<td>1.45E-06</td>
<td>-0.79</td>
<td>1.01E-07</td>
<td>2-methylcitrate dehydrase activity</td>
<td>Response to stimulus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK17</td>
<td>655</td>
<td>+0.65</td>
<td>8.22E-05</td>
<td>-0.71</td>
<td>7.78E-06</td>
<td>GTP binding</td>
<td>Immune response</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK18</td>
<td>714</td>
<td>+0.80</td>
<td>4.80E-08</td>
<td>-0.52</td>
<td>2.86E-03</td>
<td>Lipoprotein particle receptor activity</td>
<td>Lipid biosynthetic process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK19</td>
<td>352</td>
<td>+0.40</td>
<td>2.72E-02</td>
<td>-0.37</td>
<td>4.03E-02</td>
<td>Unfolded protein binding</td>
<td>Protein refolding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK20</td>
<td>1844</td>
<td>+0.72</td>
<td>4.43E-06</td>
<td>-0.59</td>
<td>4.22E-04</td>
<td>Protein binding</td>
<td>Cellular protein modification process</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK21</td>
<td>206</td>
<td>+0.40</td>
<td>2.62E-02</td>
<td>-0.58</td>
<td>6.70E-04</td>
<td>RNA binding</td>
<td>Ribonucleoprotein complex biogenesis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SK22</td>
<td>1110</td>
<td>+0.66</td>
<td>4.51E-05</td>
<td>-0.58</td>
<td>6.70E-04</td>
<td>Cytoskeletal protein binding</td>
<td>Muscle contraction</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spleen

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SP1</td>
<td>261</td>
<td>-0.34</td>
<td>5.40E-02</td>
<td></td>
<td></td>
<td>Hydrolase activity</td>
</tr>
<tr>
<td>SP2</td>
<td>379</td>
<td>-0.58</td>
<td>5.40E-04</td>
<td>+0.55</td>
<td>1.04E-03</td>
<td>ATP binding</td>
</tr>
<tr>
<td>SP3</td>
<td>153</td>
<td>-0.55</td>
<td>9.95E-04</td>
<td>+0.44</td>
<td>1.24E-02</td>
<td>Oxidoreductase activity</td>
</tr>
<tr>
<td>SP4</td>
<td>655</td>
<td>-0.56</td>
<td>9.46E-04</td>
<td>+0.46</td>
<td>7.59E-03</td>
<td>GTP binding</td>
</tr>
<tr>
<td>SP5</td>
<td>607</td>
<td>-0.57</td>
<td>5.97E-04</td>
<td>+0.48</td>
<td>5.09E-03</td>
<td>GTP binding</td>
</tr>
<tr>
<td>SP6</td>
<td>1356</td>
<td>-0.80</td>
<td>5.33E-08</td>
<td>+0.71</td>
<td>4.45E-06</td>
<td>Protein kinase C activity</td>
</tr>
</tbody>
</table>

SP1

- Hydrolase activity
 - Porphyrin-containing compound metabolic process

SP2

- ATP binding
 - Cell cycle

SP3

- Oxidoreductase activity
 - 1,2-dichloroethane metabolic process

SP4

- GTP binding
 - Antigen processing and presentation

SP5

- GTP binding
 - Response to virus

SP6

- Protein kinase C activity
 - Regulation of cellular process

Spleen continues...
<table>
<thead>
<tr>
<th>SP</th>
<th>Gene ID</th>
<th>Fold Change</th>
<th>p-value</th>
<th>Protein Function</th>
<th>Gene Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP7</td>
<td>205</td>
<td>-0.74</td>
<td>1.64E-06+0.63</td>
<td>Protein-arginine demaination activity</td>
<td>Protein citrullination</td>
</tr>
<tr>
<td>SP8</td>
<td>5898</td>
<td>-0.56</td>
<td>9.03E-04+0.54</td>
<td>Endonuclease activity</td>
<td>DNA metabolic process</td>
</tr>
<tr>
<td>SP9</td>
<td>185</td>
<td>-0.35</td>
<td>4.78E-02+0.40</td>
<td>Scavenger receptor activity</td>
<td>RNA phosphodiester hydrolysis</td>
</tr>
<tr>
<td>SP10</td>
<td>341</td>
<td>-0.41</td>
<td>2.08E-02+0.38</td>
<td>Nucleic acid binding</td>
<td>Positive regulation of execution phase apoptosis</td>
</tr>
<tr>
<td>SP11</td>
<td>2758</td>
<td>+0.37</td>
<td>3.74E-02+0.80</td>
<td>Nucleic acid binding</td>
<td>RNA metabolic process</td>
</tr>
<tr>
<td>SP12</td>
<td>2012</td>
<td>-0.39</td>
<td>2.62E-02+0.69</td>
<td>cAMP binding</td>
<td>Single organism cellular process</td>
</tr>
<tr>
<td>SP13</td>
<td>3112</td>
<td>+0.79</td>
<td>6.30E-08-0.78</td>
<td>Substrate-specific transporter activity</td>
<td>Localization</td>
</tr>
<tr>
<td>SP14</td>
<td>1449</td>
<td>+0.57</td>
<td>6.98E-04-0.42</td>
<td>Calcium ion binding</td>
<td>Single multicellular organism process</td>
</tr>
<tr>
<td>SP15</td>
<td>986</td>
<td>+0.60</td>
<td>2.47E-04-0.61</td>
<td>RNA binding</td>
<td>RNA processing</td>
</tr>
<tr>
<td>SP16</td>
<td>328</td>
<td>+0.35</td>
<td>4.74E-02-0.35</td>
<td>NAD(P)H oxidase activity</td>
<td>Thyroid hormone generation</td>
</tr>
<tr>
<td>SP17</td>
<td>499</td>
<td>+0.54</td>
<td>1.30E-03-0.60</td>
<td>MHC II receptor activity</td>
<td>Intermediate filament organization</td>
</tr>
</tbody>
</table>

783

784