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Abstract 13 

Due to the high diversity of enteric viruses in the environment, there is an increasing need for 14 

methods enabling the multiple detection of different pathogens. Quantitative, emerging digital PCR 15 

and isothermal amplification approaches are capable of the quantification of multiple targets, and 16 

hence are suitable for long-term monitoring and source tracking of enteric viruses in the aquatic 17 

environment. The combination of culturing with PCR-based detection enables rapid viral risk 18 

assessment, especially with host tissues capable of the propagation of several viral strains. Viability 19 

assays may provide a better understanding on viral survival than PCR-based approaches alone, 20 

however, the usefulness of these assays in wastewater and environmental water samples should be 21 

further investigated. Undoubtedly, emerging sequencing-based technologies provide invaluable data 22 

on the ecology and diversity of viruses, and, along with rapid on-site technologies, e.g. biosensors, 23 

may be implemented in viral risk assessment in the aquatic environment in the near future. 24 

 25 

Keywords: viromics; dPCR; LAMP; viability assay; ICC-qPCR; aptasensors  26 
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1. Introduction 27 

Enteric viruses are the major cause of gastroenteritis globally. They enter the aquatic environment 28 

via wastewater discharge, agricultural activities and landfill run-off polluting surface water, 29 

groundwater and sediment. Due to their extreme persistency, they contaminate recreational waters, 30 

drinking water sources, irrigation water and they are accumulated by shellfish. Hence, they are often 31 

responsible for water- and foodborne illnesses [1]. There are over 150 pathogenic viruses that may 32 

be found in water environments, including noroviruses, sapoviruses, hepatitis A/E viruses, 33 

rotaviruses, enteroviruses, Aichi viruses, astroviruses, adenoviruses and polyomaviruses [1]. Hence, 34 

there is a need for the simultaneous detection of multiple strains or species to better understand 35 

viral risks. The quantification process of viruses involves the concentration of environmental samples 36 

prior to detection, which results in a difficult matrix that hinders accurate detection [2]. This review 37 

focuses on recent method developments (Table 1) for the accurate detection of multiple viral targets 38 

which have been used, or may be used, for enteric viral monitoring in the aquatic environment.  39 

2. Detection and quantification of viral nucleic acids 40 

2.1 q(RT-)PCR and d(RT-)PCR 41 

Polymerase chain reaction (PCR) methods targeting genes of pathogens have been widely used in 42 

environmental health research. The most common method in monitoring viruses is the real-time or 43 

quantitative PCR (qPCR) often combined with a reverse transcription step (RT-qPCR) to quantify RNA 44 

targets. The PCR reaction can be performed on a microfluidic platform, reducing the time and costs 45 

of the assay. Microfluidic qPCR have been used for the detection of multiple viral targets in water 46 

samples [3]. However, as small volumes of amplification reaction mixes and samples are used, the 47 

limit of detection can be high (e.g. 150 copies/µl) [3], which is not ideal for most environmental 48 

samples.  49 
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 The emerging technology for viral quantification is the digital (RT-)PCR (d(RT-)PCR), where the PCR 50 

mix is dispersed in thousands to millions of individual wells on a chip or water-oil droplets and the 51 

target sequence quantities are calculated based on +/- signals. Quantitative/dPCR approaches are 52 

rapid and highly sensitive, enabling the strain-level detection of 1-10 genome copies (gc) within 1-4 53 

hours. The major advantage of dPCR over qPCR is that it performs absolute quantification and hence 54 

no standards are required. Comparative studies showed that dPCR is more sensitive and less 55 

affected by inhibitors than qPCR-based approaches [4,5]. However, d(RT-)PCR has a narrower range 56 

of quantification than qPCR [5], and hence samples with high viral concentrations (e.g. wastewater 57 

samples) should be diluted prior to d(RT-)PCR for quantification. 58 

TaqMan (probe-based) qPCR assays can be multiplexed enabling the parallel detection of 2-4 targets 59 

within one qPCR reaction well [6–8]. This can be useful for the simultaneous quantification of human 60 

and animal viruses for source tracking [9]. Multiplex qPCR assays are also available commercially and 61 

have been used to identify viral pathogens in stool samples [10]. Digital PCR assays can also be 62 

multiplexed, and a duplex assay has been used for viral detection in clinical setting [11]. The main 63 

disadvantage of the d(RT-)PCR is the high costs (either equipment – droplet dPCR or consumables – 64 

chip-based dPCR), which obstruct the wide use of the equipment in environmental research and 65 

routine monitoring.  66 

2.3 Isothermal amplification 67 

Isothermal amplification methods, such as nucleic acid sequence-based amplification (NASBA), 68 

recombinase polymerase amplification (RPA), helicase dependent amplification, and loop-mediated 69 

isothermal amplification (LAMP), have the potential to detect low concentration of target DNA or 70 

RNA sequences within 15-60 minutes at 37-65°C. These techniques have been used for pathogen 71 

detection in environmental samples [12], with RPA, LAMP and NASBA have been used for viral 72 

targets [13–15].  73 
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LAMP uses three primer sets which enables the creation of loop sequences and increases the 74 

number of primer binding sites with each amplification. Therefore, LAMP is highly specific and 75 

produces considerably more amplicons than PCR within a short period of time without using a 76 

thermal cycler. An RT step can easily be implemented for the detection of RNA target  and it can also 77 

be multiplexed [16]. LAMP is less sensitive to inhibitors compared to PCR [13]. Due to its simplicity, 78 

specificity and reliability, LAMP could be implemented in viral water quality assessment. A 79 

microfluidic approach has also been used on water samples to detect multiple cellular pathogen 80 

targets [17], but not for viruses. 81 

NASBA and RPA uses a combination of enzymes to rapidly amplify multiple target nucleic acid 82 

sequences. Unlike other nucleic acid amplification methods, NASBA can directly amplify from an RNA 83 

target, removing the need for an RT step. However, due to the complexity of the RPA and NASBA 84 

reactions, they may be more prone to inhibition than other techniques and can generate unreliable 85 

results [14,15,18]. More research is needed to assess the usefulness of RPA in environmental virus 86 

monitoring. A recent review suggested that NASBA has potential for further application for 87 

environmental analysis [19]. However, the difficulties in generating reliable, quantitative results and 88 

the current cost of NASBA relative to PCR and LAMP limit its adoption as a common tool for analysis 89 

of viruses in the environment [18]. 90 

2.4 High-throughput sequencing 91 

High-throughput sequencing (HTS) can be used to survey the DNA and/or RNA of viral communities 92 

in aquatic systems without the bias of pre-selecting which viruses to detect. In this way, HTS of 93 

environmental water samples can be used to identify emergent viruses as well as known pathogens 94 

[20]. The recovery of whole genomes of uncultured viruses from metagenomics data can yield 95 

genotype-level identification and aid the design of qPCR assays for finer scale surveying [21,22]. HTS 96 

can also inform targeted amplicon sequencing studies that examine specific viral groups and yield 97 

finer resolution of their geographic distribution [23] and diversity [24]. 98 
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Nonetheless, qPCR and HTS can sometimes produce conflicting evidence on the presence of specific 99 

viruses [25] and data-processing can introduce artefacts and chimeric sequences [26]. Long-read 100 

sequencing (PacBio, Oxford Nanopore) can overcome some of these limitations but it produces high 101 

error rates of up to 15% [27,28]. The major disadvantages of HTS are the costs of sequencing and the 102 

time required for bioinformatics analysis, which prohibits the use of these advanced technologies for 103 

routine monitoring.  104 

3. Assessment of viral infectivity 105 

The main disadvantage of all nucleic acid detection systems is the lack of information on infectivity. 106 

The culturing of human viruses requires specific equipment (e.g. CO2 incubator, inverted 107 

microscope) and well-maintained cell lines, and is therefore rarely used in routine viral monitoring. 108 

Furthermore, in vitro culturing assays are not available for many human viruses and the existing 109 

methods based on the observation of cell lysis due to viral infection (i.e. cytopathic effect; CPE) may 110 

take weeks. Nonetheless, those methods have the capability to assess viral infectivity and that is 111 

crucial to understand the removal of viruses during wastewater treatment and the decay of viruses 112 

in the environment. Therefore, attempts have been made to simplify and accelerate viral culturing 113 

techniques. 114 

Integrated cell culture (ICC) (RT-)qPCR have been used to reduce the time of culturing necessary for 115 

infectious virus detection to 1-4 days, as the increase in viral DNA/RNA levels due to viral 116 

propagation can be accurately detected by (RT-)qPCR several days before CPE is visible. Recently, 117 

these techniques have been used for the detection of enteric viruses in surface water [29,30]. The 118 

assay can be further shortened to a few hours by detecting viruses at the early stage of cell 119 

attachment [31]. The advantage of ICC-(RT-)qPCR is that one cell line can be used for the 120 

propagation of several different viral strains enabling the assessment of different targets in water 121 

samples [29,32].  122 
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The focus of research on viral culturing has been the propagation of human noroviruses. Since 2016, 123 

three methods have been developed using human B cells [33], human stem cell-derived enteroids 124 

[34] and intestinal epithelial cells [35] and zebrafish embryos [36] as hosts. All methods have been 125 

shown to result in norovirus gc increase within 2-4 days. However, these methods have rarely been 126 

used to investigate norovirus infectivity in environmental samples and their usefulness to propagate 127 

different viruses needs to be investigated.  128 

4. Assessment of viral integrity 129 

Due to the disadvantages of RNA/DNA and culturing-based viral detection systems, inexpensive and 130 

simple assays evaluating the integrity of the viral particles have been developed, based on the 131 

assumption that an intact virus particle is infectious.  132 

5.1 Elimination of free viral nucleic acids 133 

Free nucleic acids can be eliminated by enzymatic (RNase or DNase) treatment, during which the 134 

non-encapsidated viral nucleic acids are degraded, prior to PCR-based quantification. Enzymatic 135 

treatments have been shown to eliminate free nucleic acids to some extent [37]. The treatment is 136 

often coupled with proteinase K treatment, which degrades the damaged capsid proteins, enabling 137 

the nucleases to reach nucleic acids from non-infectious viral particles. However, proteinase K 138 

treatment has been shown to damage infectious viral particles as well, hence it should be used with 139 

caution [38]. 140 

Another approach for the elimination of free nucleic acids is viability treatment using intercalating 141 

dyes. These substances are able to penetrate compromised viral capsids and, when the sample is 142 

exposed to light, it covalently binds to nucleic acids preventing PCR amplification. The most 143 

frequently used dyes in environmental studies are propidium monoazide (PMA) and ethidium 144 

monoazide (EMA). Other viability treatments use substances that bind to nucleic acids without light 145 

exposure, such as platinum chloride (PtCl4) and cis-dichlorodiammineplatinum (CDDP), which have 146 
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also been tested on heat/UV inactivated or chlorinated viral samples. The results suggest that these 147 

treatments eliminate the majority of free nucleic acids, however, their performance shows 148 

variations amongst different sample types and viral species [39–42]. PMA treatment can also been 149 

enhanced by the addition of surfactants [39,41,43,44] or by combination with EMA [45]. The major 150 

advantage of these assays is that they are not strain specific and hence, multiple targets can be 151 

analysed in one sample.  152 

5.2 Capsid integrity assay 153 

Capsid integrity assays are based on affinity binding between a protein and the viral capsid. As the 154 

capsid proteins show great variations, one assay is only suitable for a few strains or species 155 

belonging to the same family. Most research has been focusing on the capsid integrity of 156 

noroviruses, mainly genotype II, assessed using histo-blood group antigens (HBGA), including porcine 157 

gastric mucin (PGM). These proteins can be immobilised to plate wells or magnetic beads [46]. When 158 

the sample is added, viral particles bind to the proteins and the subsequent washing steps can 159 

eliminate free viral nucleic acids and inhibitors, which would affect PCR-based detection. This 160 

approach is very easy and rapid and can be applied in any laboratories, however, it may not 161 

eliminate all damaged, and hence non-infectious viruses after heat-inactivation and UV treatment 162 

[47] and seems to be less effective on norovirus genogroup I viruses than on genogroup II [48].  163 

5. Biosensors  164 

Biosensors transduce biological responses to measurable signals upon interaction with their target 165 

[49]. Aptamer-based biosensors (aptasensors) hold single-stranded DNA or RNA oligonucleotides 166 

(i.e. aptamers), which have the ability to bind to target DNA or proteins with high specificity and 167 

affinity, and produce a measurable signal upon binding. Aptasensors developed for norovirus 168 

detection based on electrochemical, fluorescence, colorimetric and surface plasmon resonance 169 

detection platforms [50–52] may be the most promising biosensor for viral detection in aquatic 170 

samples. Aptasensors are generally resistant to environmental inhibitors, enabling high recoveries 171 
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and low detection limits within minutes [53]. Some aptamers have the potential for the multiple 172 

detection of different norovirus strains [54]. Broadly reactive aptamers combined with biosensor 173 

technologies could provide a valuable asset for the simultaneous detection of enteric viruses in the 174 

aquatic environment.  175 

6. Conclusion 176 

Various methods are available for the detection of viral pathogens in the environment, however, all 177 

of them have their limitations. For rapid assessment and source tracking, PCR and isothermal 178 

amplification approaches should be used. To estimate viral persistence, culturing-based methods 179 

and virus particle integrity assays can be used, however, more comparative studies (integrity vs. 180 

infectivity) are needed for the validation of these approaches in environmental risk assessment. 181 

Amplicon and full genome sequencing, however expensive and time consuming, can detect novel 182 

and emerging viral species and strains and hence is helpful in initial risk assessment and to 183 

understand the local and global distribution of viruses for epidemiological investigations. Lab-on-184 

chip LAMP assays and biosensors, have the capacity to detect and quantify target viruses on site 185 

within an hour. With further development, these assays could be used for environmental monitoring 186 

of common enteric virus strains, providing an invaluable tool for authorities and other stakeholders 187 

for the rapid initial water/food quality assessment and mitigation.  188 
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Table 1. Summary of the commonly used and emerging methods for viral detection in environmental 196 

studies. q(RT-)PCR: quantitative (reverse transcription) PCR; d(RT-)PCR: digital(reverse transcription) 197 

PCR; LAMP: loop-mediated isothermal amplification; RPA: recombinase polymerase amplification; 198 

HTS: high-throughput sequencing; ICC: integrated cell culture; gc: genome copies; TCID50: Median 199 

Tissue Culture Infectious Dose (100-1000 gc equivalent [28]). 200 

 201 

Method Target Quantification Sensitivity Time to 

complete 

q(RT-)PCR Up to 4 viral strains/species Relative 
quantification 

1-10 gc/reaction 
[5,7] 

1-4 hours 

d(RT-)PCR Up to 2 viral strains/species Absolute 
quantification 

1-10 gc/reaction 
[5] 

1-3 hours 

LAMP Up to 2 viral strains/species Absolute 
quantification 

2 PFU/ml [12] 15-60 min 

RPA Up to 4 viral strains/species Non-quantitative 50 gc/reaction 
[15] 

20 min 

HTS Non-targeted detection of 
any RNA or DNA viruses 

Semi-quantitative* N/A 1 week 

Culturing Non-targeted detection of 
viruses can be cultured in 
the host cell 

Absolute 
quantification 

1 TCID50/ml 
[31] 

1-2 weeks 

ICC-q(RT-)PCR As q(RT-)PCR As q(RT-)PCR 0.02-0.2 
TCID50/ml [31] 

 1-4 days 

Viability assay Eliminates all free nucleic 
acids  

Depends on 
detection method 

Depends on 
detection 
method 

1 hour + 
detection 

Capsid 
integrity assay 

Accumulates closely related 
viral strains 

Depends on 
detection method 

Depends on 
detection 
method 

1 hour + 
detection 

Aptasensors Accumulates closely related 
viral strains 

Relative 
quantification 

200 virus/ml 
[51] 
 

10 min 

*HTS may enable relative abundance quantification based on the relative proportion of contigs, however, its 202 
performance is highly dependent on sample preparation and bioinformatics analysis [26]. 203 

  204 
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Highlights 

• Multiplex q/dPCR are adequate tools for long-term monitoring  

• ICC-qPCR and attachment-based detection enable the rapid assessment of viral infectivity 

• PMA/EMA/PtCl4/CDPP may be used for the detection of potentially infectious viruses 

• High throughput sequencing is an excellent tool for investigating emerging viruses 

• Biosensors may be used for rapid on-site assessment and monitoring 
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