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Blue carbon gains from glacial retreat along Antarctic fjords: what should we 

expect? 

D.K.A. Barnes1, C.J. Sands1, A. Cook2, F. Howard1, A. Roman Gonzalez3, C. Muñoz–Ramirez4, K. Retallick5, J. 

Scourse3, K Van Landeghem5 and N. Zwerschke1

Abstract Rising atmospheric CO2 is intensifying climate change but it is also driving global and particularly 

polar greening. However, most blue carbon sinks (that held by marine organisms) are shrinking, which is 

important as these are hotspots of genuine carbon sequestration.  Polar blue carbon increases with losses 

of marine ice over high latitude continental shelf areas.  Marine ice (sea ice, ice shelf and glacier retreat) 

losses generate a valuable negative feedback on climate change.  Blue carbon change with sea ice and ice 

shelf losses has been estimated, but not how blue carbon responds to glacier retreat along fjords.  We 

derive a testable estimate of glacier retreat driven blue carbon gains by investigating three fjords in the 

West Antarctic Peninsula (WAP). We started by multiplying ~40 year-mean glacier retreat rates by the 

number of retreating WAP fjords and their time of exposure.  We multiplied this area by regional 

zoobenthic carbon means from existing datasets to  suggest that WAP fjords generate 3130 tonnes of new 

zoobenthic carbon per year (t zC yr–1) and sequester >780 t zC yr-1. We tested this by capture and analysis 

of 204 high resolution seabed images along emerging WAP fjords.  Biota within these images were 

identified to density per 13 functional groups.  Mean stored carbon per individual was assigned from 

literature values to give a stored zoobenthic Carbon per area, which was multiplied up by area of fjord 

exposed over time, which increased the estimate to 4536 t zC yr-1.  The purpose of the current study was A
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to establish a testable estimate of blue carbon change caused by glacier retreat along Antarctic fjords and 

thus to establish its relative importance compared to polar and other carbon sinks.  

1. INTRODUCTION

Declarations of ‘climate emergency’ and more urgent aim at developing carbon neutral economies has 

drastically increased interest in carbon capture, storage and sequestration.  Saban, Chapman, & Taylor 

(2018) have shown that global greening, and thus potential carbon capture, has increased with rising 

atmospheric CO2 levels but what of storage and sequestration?  Blue carbon (held within marine 

organisms) is prolific in capture and efficient in sequestration rate to the extent that Duarte, Middelburg 

& Caraco, (2005) estimate blue carbon to be responsible for 50% of all oceanic carbon burial. Typical blue 

carbon habitats, such as mangrove swamps, seagrass beds and salt marshes are declining across global 

habitats, for example the IUCN estimates ~7% per year for seagrasses (see 

https://www.iucn.org/content/seagrass-habitat-declining-globally ), making them essentially positive 

feedbacks on climate change.  Very little is known about blue carbon in the polar regions where 

mangroves, salt marshes and seagrasses are absent.  Fjords with marine terminating glaciers can be highly 

productive (e.g. in the Arctic, Meire et al, 2017) and accumulate considerable fjord floor carbon (e.g. in 

the Antarctic, Grange & Smith, 2013).  It is becoming clearer that climate–mediated losses of marine ice 

over high latitude continental shelf areas is a rare, valuable negative feedback on climate change, albeit 

globally small in magnitude (Barnes, 2017; Barnes, Fleming, Sands, Quartino & Deregibus, 2018). As many 

glaciers are retreating from Antarctica’s fjords, the newly emerging seabed create a brand new habitat for 

primary and secondary production and this acts to counter the present effects of climate change.  Blue 

carbon (produced by marine biological activity) standing stock and production are high in shallower water 

but require the sediments, usually associated with low energy habitats, for burial and ultimate 

sequestration.

Antarctica is the only continent with no existing open–water, nearshore low energy environments.  The 

West–Antarctic Peninsula (WAP) coast, however, has many ice–filled small fjords, which are progressively 

opening up due to glacier retreat.  They are probably playing an important and increasing role in carbon 

sequestration which is little evaluated.  There are ~240 glaciers along the WAP of which nearly 90% (=216) 

are now retreating, and their retreat rates are increasing (Cook et al., 2016). Given the importance of 

natural carbon sinks which involve genuine sequestration and the rarity of negative feedbacks it would 

appear crucial to evaluate an emerging one in Antarctica’s opening fjords (Grange & Smith, 2013). Is lack 

of quantification of fjords’ role as an increasing capacity for carbon sink important as a source of 

uncertainty for climate models? Marine ice losses comprise multiple sources; sea ice (such as fast ice), ice A
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shelves and glaciers.  For seasonal sea ice losses and ice shelf disintegration, the quantification of blue 

(marine biological) carbon has been attempted (Barnes, 2017; Barnes, Fleming, Sands, Quartino & 

Deregibus, 2018) and is ongoing with the Changing Arctic Ocean Seafloor project throughout the Barents 

Sea. For glacial retreat, a third source of marine ice loss, the calculations for carbon sink capacity are 

problematic, as previous work has estimated average retreat rates rather than areas of glacier lost 

(=habitat gained) (Cook et al., 2016).  Here we erect a testable estimate of WAP fjordic blue carbon gains 

by calculating areas of glacier lost and fitting existing regional blue carbon data to it.  The regional blue 

carbon data we used to do this was zoobenthic seabed carbon from the geographically closest analogous 

environments; fjords with retreating at South Georgia (in Barnes, 2017).  

2. METHODS; HOW TO ESTIMATE EMERGING FJORDIC BLUE CARBON? 

The work presented here attempted to derive a testable estimate for seabed biological carbon gains as a 

result of recent rapid glacier retreat along selected WAP fjords (see map in Figure S1). Firstly we 

calculated the area of fjord emergence (=glacier loss) from literature data (Cook et al., 2016; 

georeferenced shape files in ArcGIS) of glacier fronts for three study fjords (Figure 1).  The study fjords 

were Marian Cove (King George Island), Börgen Bay (Anvers Island) and Sheldon Cove (Adelaide Island). 

These have retreated 1.71, 7.8 and 7.8 km2 from 1978/79-2019, and as such are representative of WAP 

glaciers (Cook et al., 2016). Mean annual glacier area loss rates for Marian Cove, Börgen Bay and Sheldon 

Cove since 1978/79 were 0.042, 0.191 and 0.191 km2 per year.  We then mapped the seabed of each fjord 

using multibeam swath (using Kongsberg EM122) and collected images of the seabed at multiple 

distances (sites on Figure 1 and S2).  We multiplied recently emerged area by blue carbon literature data 

per unit area for each of the three fjords to generate estimated X tonnes carbon km2 yr–1.  New areas of 

fjord are recorded as starting to emerge in 1950–70 (Cook et al., 2016), but change has been non–linear 

and varies between fjords (glacier front by year is shown in Fig. 1A–C).  The literature data we used were 

Inner fjord environments at South Georgia, which typically generate 0.4 (muds), 3.7 (moraines) and 17.4 

(shallows and walls) tonnes immobilized carbon, per km2, per year (Barnes, 2017). This assumes that 

newly emerging fjords along the WAP would have similar blue carbon content to retreating glaciers 

around South Georgia, but there is currently little literature on succession in benthic carbon standing 

stock with glacier retreat time.  Assessment of megafaunal along two WAP fjords (Grange & Smith, 2013; 

Sahade et al., 2015) suggests intra-region variance may be as considerable as between regions, at least 

with respect to composition of biota. The mean carbon value that we derived across our three study areas 

was then multiplied by the number of retreating fjords along the WAP (216 – see Cook et al 2016).A
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We tested this initial estimate by capturing and analysing 204 high–resolution seabed images (each 405.7 

x 340.6 mm, 12 MB, 5 MegaPixel) along study fjords from research cruise JR17001 (2017).  Images were 

analysed for the density of each of thirteen functional groups of benthos (as per Barnes 2017). The 

thirteen function groups were defined as follows:  suspension feeder pioneers (A), climax suspension 

feeders (B), sedentary suspension feeders (C), mobile suspension feeders (D), deposit feeding crawlers (E), 

deposit feeding vermiform (F), deposit feeding, shelled burrowers (G), calcareous grazers (H), 

scavenger/predator, sessile soft bodied (J), scavenger/predator, sessile calcareous (K), 

scavenger/predator, mobile soft bodied (L), scavenger/predator, mobile calcareous (M), 

scavenger/predator, arthropod (N), and flexible strategy (P).  We fitted the resulting density of functional 

group data to the following model;

The model used to give carbon in g per m2 (=tonnes per km2) was, per SUCS image 

=((0.06*A)+(0.11*B)+(0.39*C)+(0.18*D)+(0.13*E)+(0.15*F)+(0.5*G)+(0.17*H)+(0.11*J)+(0.12*K)+(0.25*L)+

(0.45*M)+(0.13*N)+(0.16*P))

This model showed a good fit to exisiting zoobenthic blue carbon data (Barnes 2017) at South Georgia and 

South Orkney (r2=64%, F=682, p<0.001).

Glaciers contain approximately 0.02–0.04 mg carbon L–1 (Legrand et al 2013), which we converted to 

18.3–36.7 t km3. This is exported from fjords with ice calving and the fate of this carbon is uncertain, so 

we have conservatively assumed this as recycled with zero sequestration.  Thus to estimate carbon losses 

per fjord we multiplied approximate volume of ice lost from ~1980–2017 by carbon content of ice per 

fjord.  The mean value of this was scaled up by the number of retreating fjords (216), which in turn was 

multiplied by 10 to give value per decade.  Finally we subtracted the maximum carbon within glacier ice 

loss from minimum estimated blue carbon gains and minimum carbon within glacier ice loss from 

maximum estimated blue carbon gains to derive estimated net carbon change along WAP fjords. 

3. RESULTS; HOW MUCH NEW SEABED CARBON IN EMERGING ANTARCTIC FJORDS 

Areas of glacial retreat and seabed exposure are shown for three study fjords in Table 1 (and Fig. 1).  

Table 1.  New habitat exposed from glacier retreat along three Antarctic fjords.  Data sources are; glacier 

retreat positions with time (shown in Fig 1, from Cook et al (2016), seabed topography from multibeam 

data (see Figure S2, data available from UK Polar Data Centre).   A
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Fjord Glacier retreat area 

1978/9-2019 /km2

Fjord floor 

mud exposed

Fjord floor 

moraine exposed

Fjord sides 

exposed

Marian Cove 1.71 1.65 0.08 0.4

Borgen Bay 7.81 7.5 0.4 1.0

Sheldon Cove 7.82 7.9 0 0.6

Table 2.  Blue carbon in habitat exposed from glacier retreat along three Antarctic fjords.  Literature blue 

carbon per habitat are from Barnes (2017), and areas are from Table 1.   

Fjord Fjord floor 

mud carbon 

Fjord floor 

moraine carbon

Fjord sides 

carbon

Fjord floor 

carbon totals

Literature blue 

carbon data

0.4 t km2 yr–1 3.7 t km2 yr–1 17.4 t km2 yr–1

Marian cove 1.71 x 0.4 0.1 x 3.7  0.4 x 17.4 =   8.0 t yr–1

Borgen Bay 7.5 x 0.4 0.4 x 3.7 1 x 17.4 = 21.9 t yr–1

Sheldon Cove 7.9 x 0.4 0 x 3.7 0.6 x 17.4 = 13.6 t yr–1

Mean for 3 

study fjords

= 14.5 t yr–1

Total for 216 

fjords

= 3130 t yr–1

We estimated 8–22 t zC yr–1 has been generated at the three study fjords (mean per fjord (14.5 t zC yr–1 

Table 2).  Multiplied up by all WAP fjords (216), this totalled 3130 t zC yr–1.  This ~3000 t zC yr–1 thus scales 

to ~31300 tonnes of zoobenthic carbon per decade (t zC decade–1).  

Analysis of the high–resolution seabed images showed that close to the glacier terminus (exposed over 

the last decade) the epibiota seen on images were typically high sedimentation tolerant pioneers, such as 

Cnemidocarpa verrucosa (Figure 1D). Older, outer sediment basins (exposed for a few decades) had a 

denser more varied fauna (Figure 1F). Exposed hard substrata, such as glacial moraines were richer, with 

higher biomass, and likely to sequester this due to nearby surrounding sediment basins (Figure 1E). 

Offshore WAP shelf (G) where there are occasional ice rafted dropstones (H) are shown for context. We 

multiplied the mean density of each functional group of zoobenthos to mean carbon per group using a A
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model derived from regionally ground truthed data (Barnes, 2017).  We found that newly emerged study–

fjord seabeds may gain about 12–31 t zC yr–1.  Multiplying fjord mean image derived values to total WAP 

glacier numbers generated an estimate of WAP fjordic zoobenthic carbon storage at 4536 t zC yr–1 (Table 

3).  Per decade this would approximate to 45,360 t zC.  About a quarter of this would be expected to be 

sequestered, which would be 7,375 and 11,627 tonnes (for the theoretical (Table 2) and seabed image–

based (Table 3) estimates respectively).

Table 3.  Blue carbon in habitat exposed from glacier retreat along three Antarctic fjords from functional 

group densities per seabed image.  *No SUCS images were captured in Sheldon Cove. Data were 

generated by multiply up original estimate by average increase (x 1.46) as other two fjords. 

Fjord Fjord floor 

mud carbon 

Fjord floor 

moraine carbon

Fjord sides 

carbon

Fjord floor 

carbon totals

Marian cove 1.71 x 2.7 0.1 x 4.5  0.4 x 17.4 = 12.03 t yr–1

Borgen Bay 7.5 x 1.7 0.4 x 2.3 1 x 17.4 = 31.07 t yr–1

Sheldon Cove* 13.6 x 1.46 = 19.9 t yr–1

Mean for 3 

study fjords

= 21.0 t yr–1

Total for 216 

fjords

= 4536 t yr–1

The ice volume calved and thus carbon potentially exported, from carbon held within glaciers are shown 

in table 4.  Per decade this would be 1476–2938 t zC, which is about 0.3–1% of the theoretical and imaged 

based carbon estimates of blue carbon gains from glacier retreat.  Subtracting such losses from estimated 

gains (Tables 2 & 3) gave net balances of 28,362–43,844 t zC gain decade–1. 

Table 4.  Carbon encased in glacier ice, exported from glacier retreat along three Antarctic fjords from 

literature data.  Mean glacier thickness value (0.25 km) was taken from Paul (2017).   

Fjord Glacier volume 

(area x thickness)

Ice vol calved x carbon 

content / no. years

Min 

carbon 

mass 

lost yr–1

Max 

carbon 

mass lost 

yr–1

Marian cove 1.71 x 0.25 = 0.38 (0.43 x 18.33 to 36.67) /38 0.21 t 0.41 tA
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Borgen Bay 7.5 x 0.25 = 2.39 (1.88 x 18.33 to 36.67)/38 0.9 t 1.8 t

Sheldon cove 7.8 x 0.25 = 1.8 (1.95 x 18.33 to 36.67)/38 0.94 t 1.88 t

Mean for 3 

study fjords

0.68 t 1.36 t

Total for 216 

fjords

147.6 t 293.8 t

Figure 1. Glacier retreat lines and examples of blue carbon in seabed assemblages along the West 

Antarctic Peninsula.  Position of SUCS sampling stations, glacier retreat positions and seabed biota of 

three fjords along the West Antarctic Peninsula.  The fjords are Marian Cove (A), Börgen Bay (B) and 

Sheldon Cove (C).  Seabed biota from vertical camera images at 68–127 m depth at inner fjord (D), 

moraine (E) outer fjord (F) as well as typical shelf (non fjord, G) and rich drop stone habitats (H).

 

4. DISCUSSION; ANTARCTIC FJORD CARBON IMPORTANCE, ERROR LEVELS AND FUTURE TESTS  

The high energy coastline around Antarctica is very different from elsewhere in the world, it is much less 

studied and has none of the most efficient blue carbon habitats of mangroves, saltmarshes and sea grass 

meadows. Amongst the most productive of these, mangrove swamps, are thought to be responsible for 

10% of global carbon burial (174 g zC m−2 yr−1), despite only occupying 138,000 km2, just 0.027% of Earth’s 

surface (see Duarte et al 2005).  Our estimates of Antarctic fjord blue carbon efficiency are two orders of 

magnitude lower than reported for mangroves (mean 13.7–19.5 t zC per 6 km2 = 2.3–3.3 g zC m−2 yr−1).  

This is even less than the average of ~5 g zC m−2 yr−1 for shallow Antarctic shelves (Arntz, Gallardo & Brey 

1994) but such habitats are young, still being colonized and stressed by sedimentation (Sahade et al., 

2015).  We scaled up our 3 study glaciers to the 216 retreating in the WAP region (Cook et al., 2016), but 

there are 14,725 marine glaciers in the wider southern polar region (Paul, 2017).  Thus a considerably 

higher scaling factor (up to 68x) is likely to become appropriate to understanding potential blue carbon 

change with glacier retreat.  In total the global area occupied by southern polar marine glaciers is 137,866 

km2, a very similar proportion of Earth’s surface to that occupied by mangroves.  However calculations of 

carbon change with ice losses need to factor in release of ice–bound carbon.      

Ice holds small quantities of ice–bound carbon, but because ice cap volume is so considerable 

these add up to Pg of carbon in global ice.  Thus rapid recent glacier retreat has driven concern about 

potentially carbon ‘losses’ from ice–bound carbon released into the ocean carbon cycle on glacier retreat A
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(Legrand et al 2013).  However we calculate that for marine glaciers such ice–bound carbon losses (Table 

4) are very small (<1%) compared to blue carbon gains (Table 2 & 3).  Estimated net carbon for WAP 

glacier retreat generated a modest 2836–4384 t carbon gain yr–1 equivalent to net production by ~140 ha 

of tropical forest. Sequestration potential of the blue carbon present is high in Antarctic fjords (Grange & 

Smith, 2013), compared with open shelf and especially non–aquatic environments (Barnes, Fleming, 

Sands, Quartino & Deregibus, 2018). Thus, unlike forests, up to a quarter of zoobenthic blue carbon 

generated at deep continental shelf depths can be genuinely sequestered (see Barnes et al., 2019).  This 

would mean >1000 t zC yr–1 just in WAP fjords.  Estimated  gains of blue carbon by WAP glacier retreat 

(<5x103t yr–1) are small compared with estimates of blue carbon gains from ice shelf losses through 

opening up of productive new habitat and leaving nutrient–fertilized wakes of enhanced productivity 

(Duprat, Bigg & Wilton, 2016). Giant icebergs (e.g. A68 recently calved from Larsen C) formed by shelf 

disintegration may generate 106 t blue carbon yr–1 (Barnes, Fleming, Sands, Quartino & Deregibus, 2018).  

Even if multiplied up for all southern polar glaciers (3x105t carbon yr–1), glacier retreat would be at least 

an order of magnitude smaller than seasonal sea ice reductions 6x107 t carbon yr–1and ice shelf losses 

2x107 t carbon yr–1 (Barnes, Fleming, Sands, Quartino & Deregibus, 2018).

To consider or compare only habitat and blue carbon sink source sizes may be missing the importance of 

polar continental shelves.  Compared with lower latitude sinks, glacier retreat and even sea ice and ice 

shelf losses are clearly small In carbon store and efficiency, but unlike elsewhere polar blue carbon is 

increasing with climate change, and the productivity within emerging fjords is likely to further increase 

with age, seasonal sea ice loss (Barnes 2017) and limited sea temperature increases (Ashton et al 2017).  

Thus sea ice, ice shelf and glacier loss are, crucially, all negative feedbacks on (mitigate) climate change.       

Error and meaningfulness of blue carbon sink comparisons

The error involved in our estimates is likely to be considerable for multiple reasons; 1) glacier retreat rates 

and areas differ considerably between fjords (Cook et al 2016) making scaling difficult.  2) We only 

investigated three fjords, less than 2% of retreating even within the WAP.  3) Our estimates suggested 

blue carbon performance could differ by more than a factor of 3 across fjords. 4) Our image based 

estimate (Table 3) was nearly double our theoretical estimate (Table 2).  5) Our blue model was based on 

data from South Georgia and South Orkney Islands (Barnes 2017) rather than from the WAP region.  

Similar WAP environments can be more productive (Grange & Smith, 2013; Sahade et al., 2015) by a 

factor of ~1.44 (Barnes, 2017).  There are many assumptions implicit in our calculations, such as using 

mean glacier thickness (from Paul 2017), but measurements of all such factors have to be realistic for a 

remote, difficult and expensive to access region.  A
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5. CONCLUSIONS

Fitting existing regional blue carbon data to averaged fjord seabed area emergence rates from glacier 

retreat suggests WAP fjords may generate >3000 t zC yr–1.  Our initial test of this theoretical estimate 

using seabed images from study fjords suggests zoobenthic carbon is at a comparable, but slightly higher 

value of 4536 t zC yr–1. Our imagery showed most seabed biota were young pioneers so we expect the 

seabed carbon in these young fjords to considerably increase with fjord age as ecological succession leads 

to biological complexity.  New fjord work elsewhere along retreat paths (e.g. at Fjord Eco (Grange & 

Smith, 2013) and Potter Cove (Sahade et al., 2015) should provide context of how representative our 

study fjords are.   If correct our estimated values are small in comparison with other Antarctic blue carbon 

gains from other marine ice loss and globally very small.  However they are likely to significantly increase 

and have high conversion to genuine sequestration levels.  Antarctic fjords emergence should increase 

until WAP glaciers retreat past grounding lines, but their value as carbon sinks could rise long after this 

until development of mature, climax benthic communities.  The value of our estimates would make fjords 

the smallest component of marine ice loss–related carbon sinks by an order of magnitude (compared with 

seasonal sea ice and ice shelves).  However, the nature of fjords (steep productive sides and muddy sea 

floors) means their sequestration potential is likely to be high compared to the more extensive, typical 

continental shelf areas (Barnes, 2017). As the least known, but increasing part of one of our planet’s most 

significant negative feedbacks on (mitigating) climate change, we argue the potential of these carbon 

sinks are most important to fully quantify. Testing the magnitude of polar fjordic role in carbon storage 

and sequestration will aid understanding of carbon sink balances and climate change–feedback variability 

and could reduce uncertainty in model projections.       
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