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Abstract:

This study focuses on  the strong interactions between the stability of 
different sediments and the biological and physical variables that 
influence the erodibility of the bed. Sampling at short-term temporal 
scales illustrated the persistence of the microphytobenthic (MPB) 
community even during periods of frequent, high physical disturbance. 
The role of MPB in biological stabilisation along a changing sedimentary 
habitat was also assessed . Key biological and physical properties, such 
as the MPB biomass, composition and extracellular polymeric 
substances, were used to predict sediment stability (erosion threshold) 
of muddy and sandy habitats within close proximity to one another over 
multiple days as well as within emersion periods. This allowed the effects 
of dewatering, MPB growth and productivity to be examined as well as 
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the resilience and recovery of the MPB community after physical 
disturbance from tidal currents and wave exposure. 
Canonical analysis of principal components (CAP) ordinations were used 
to illustrate the trends  observed in bio-physical properties between the 
sites, while marginal and sequential distance-based linear models 
(DistLM) were used to identify key properties influencing sediment 
erodibility. While grain size was important for site differences in the CAP 
analysis, it contributed less to the variability in sediment erodibility than 
other key biological parameters. Among the biological predictors, MPB 
diversity explained very little variation in marginal tests but was a 
significant predictor in sequential tests when MPB biomass was also 
considered with diversity and biomass key predictors of sediment 
stability, contributing 9% and 10% respectively to the final model across 
all sites.
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22 Abstract

23 This study focuses on the interactions between the stability of different sediments and the biological 

24 and physical variables that influence the erodibility of the bed. Sampling at short-term temporal scales 

25 illustrated the persistence of the microphytobenthic (MPB) community even during periods of frequent, 

26 high physical disturbance. The role of MPB in biological stabilisation of the sediment along a changing 

27 sedimentary habitat was also assessed. Key biological and physical properties, such as the MPB 

28 biomass, composition and extracellular polymeric substances (EPS), were used to predict the sediment 

29 stability (erosion threshold) of muddy and sandy habitats within close proximity to one another over 

30 multiple days, as well as within emersion periods. This allowed the effects of dewatering, MPB growth 

31 and productivity to be examined as well as the resilience and recovery of the MPB community after 

32 physical disturbance caused by tidal currents and waves. 

33 Canonical analysis of principal components (CAP) ordinations were used to visualise and assess the 

34 trends observed in bio-physical properties between the sites, and marginal and sequential distance-based 

35 linear models (DistLM) were used to identify the key properties influencing sediment erodibility. While 

36 the particle size of the bed was important for differences between sites in the CAP analysis, it 

37 contributed less to the variability in sediment erodibility than key biological parameters. Among the 

38 biological predictors, MPB diversity explained very little variation in marginal tests but was a 

39 significant predictor when MPB biomass was also considered in sequential tests. MPB diversity and 

40 biomass were both key predictors of sediment stability, contributing 9% and 10% respectively to the 

41 final model across all sites in comparison to 2% of the variance explained by sediment grain size.

42

43 Introduction

44 Variability in response to physical forcing is an inherent property of natural systems (Black et al., 2002) 

45 and represents a significant challenge for modelling and predicting the behaviour of natural sediment 

46 beds. It is also commonly suggested that an important source of this variability, biogenic stabilisation 

47 (Parsons et al., 2016; Tolhurst et al., 2009), is largely confined to fine cohesive sediments (mud flats) 

48 rather than more sandy substrata. However, this approach neglects the heterogeneous composition of 

49 natural beds that vary both spatially and temporally (Rainey et al., 2003; Chapman et al., 2010). 
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50 Understanding the biogenic processes that generate variation and heterogeneity in natural systems will 

51 support our ability to model system behaviour more accurately in the future.

52 Biological stabilisation of cohesive (muddy) sediment is often attributed to microbially-produced 

53 extracellular polymeric substances (EPS) that increase the cohesion between sediment particles, often 

54 forming biofilms (Hubas et al., 2018). The production of EPS is typically attributed to bacteria and 

55 microphytobenthos (MPB) (Chen et al., 2017; Lubarsky et al., 2010). While MPB are more abundant 

56 on cohesive sediments, recent studies show that microbially-produced EPS can also hinder bedform 

57 development and inhibit erosion in non-cohesive (sandy) (Chen et al., 2017; Malarkey et al., 2015) and 

58 mixed sediment beds (Parsons et al., 2016). The balance between physical disturbance (hydrodynamic 

59 stress) and bed erodibility is complex (Beninger et al., 2018). Regular physical forcing can restrict the 

60 accumulation of fine sediment and MPB on the bed (Mariotti and Fagherazzi, 2012) preventing the 

61 MPB standing stock from developing fully (Blanchard et al., 2001). However, once developed, after a 

62 period of calm conditions, increasing erosive stress may be resisted. The biomass and nature of the 

63 MPB community, epipelic (e.g. Paterson and Hagerthey, 2001) or epipsammic (e.g. Harper and Harper, 

64 1967; Hickman and Round, 2007), will contribute to the variability of the response to stress.  

65 If a system is largely abiotic then the introduction of biota can create greater heterogeneity or 

66 homogenise the system. For example, greater microphytobenthic diversity has been linked to higher 

67 grazer diversity (Balvanera et al., 2006) which through differences in bioturbation can increase habitat 

68 heterogeneity (Hale et al., 2015). Furthermore, patchy biofilm distribution and growth have been 

69 associated with positive bio-physical feedbacks as the system becomes inherently more patchy leading 

70 to spatial self-organisation and more fine sediment accretion and eventually influencing large 

71 geomorphological features (Weerman et al., 2010). However, the introduction of biota can also cause 

72 different sediments to become more similar to one another. For instance, the presence of large infauna 

73 can also ‘smooth out’ the effects of flow on sediment resuspension across different sediment types (Li 

74 et al., 2017). The former processes of increasing heterogeneity suggest that microbial growth and EPS 

75 accumulation can not only have a localized effect, but if growth becomes extensive, biostabilisation is 

76 capable of influencing ecosystem functionality at various spatial and temporal scales (Orvain et al., 

77 2012; Ubertini et al., 2015) and although variability may increase (Chapman et al., 2010) this can have 
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78 system-wide implications. Many studies have focussed on seasonal and inter-annual variability 

79 (Montani et al., 2003; Wal et al., 2010). However, the mechanisms that drive changes to the structure 

80 of the system (Van de Koppel et al., 2001) and resilience and recovery from disturbance can occur on 

81 relatively short spatial (Spilmont et al., 2011) and temporal scales (Orvain et al., 2012). Furthermore, 

82 the variability observed from small spatial scales over short timeframes in intertidal environments can 

83 be of the same order of magnitude as both seasonal and annual variability (Seuront and Leterme, 2006). 

84 The importance of considering temporal scales has been highlighted in previous soft sediment studies 

85 (Hewitt et al., 2006; Tolhurst et al., 2005a). However, short-term temporal dynamics that may influence 

86 EPS accumulation, biofilm development and biostabilisation have not been well characterised across 

87 different sediment types. The development of biofilms depends on the balance between growth and 

88 detachment, with hydrodynamic stress being a primary driver of benthic biofilm detachment (Telgmann 

89 et al., 2004). We therefore require further information on the interactions between biofilm properties, 

90 biostabilisation, hydrodynamic stress and subsequent resistance to erosion over multiple emersion 

91 periods and within different habitats. This information is essential to assess the role of biostabilisation, 

92 both from ecological and dynamic perspectives (de Brouwer et al., 2000; Mariotti and Fagherazzi, 2012; 

93 Underwood and Paterson, 2003). MPB influence on sediment stability and this key ecosystem function 

94 augments their important roles in: The transfer of energy to higher organisms (MacIntyre et al., 1996); 

95 the bentho-pelagic exchange of sediment (Chen et al., 2017); and nutrient cycling (McGlathery et al., 

96 2004). MPB importance in these ecosystems highlights the need to understand the dynamics governing 

97 their presence across different habitats. Frequent resuspension of MPB cells and related EPS may 

98 prevent the formation of substantial biofilms, and therefore limit their biostabilisation potential (Aspden 

99 et al., 2004), however, an “inoculum” often remains in place (Chen et al., 2017) leading to rapid re-

100 colonisation under suitable conditions.

101 We hypothesise that biofilm properties such as MPB biomass, colloidal carbohydrate concentrations 

102 and the MPB diversity will influence biostabilisation of various sediment types. Furthermore, we 

103 hypothesise that the biogenic influence will persist over various temporal scales (emersion on 

104 consecutive days), as the microphytobenthic community and biotic characteristics tolerate regular, high 

105 intensity tidal inundation. As laboratory experiments cannot generally capture the natural variability in 
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106 large, complex and dynamic marine systems (Tolhurst et al., 2009) we examined these short-term 

107 dynamics in closely associated muddy and sandy habitats in the Dee Estuary, England. This estuary is 

108 subject to strong current velocities and frequent wave action, resulting in turbid waters with a high 

109 suspended load (Amoudry et al., 2014), but has various sedimentary habitats in close proximity to one 

110 another, making it an excellent model system. Suspended sediment often affects water quality, which 

111 limits light availability for sediment dwelling photosynthetic organisms during tidal inundation (Pratt 

112 et al., 2014), and the physical disturbance from flow itself may prevent the accumulation of EPS and 

113 biofilm development on the bed (Blanchard et al., 1997; Ubertini et al., 2015). 

114

115 Methods

116 Study sites & sample collection – The Dee is a hypertidal estuary located on the border between England 

117 and Wales in the Eastern Irish Sea. The estuary is tidally-dominated with a mean spring tidal range of 

118 7–8 m (Moore et al., 2009). The geomorphology of the flats causes a tidal asymmetry that is flood 

119 dominated, resulting in significant accretion of fine sediments in the upper estuary (Halcrow, 2013). 

120 Three sites were selected between Hilbre Island and West Kirby (Fig 1), based on the geomorphology 

121 of the bed surface at the sampling time. The first site (sandy 1) was dominated by non-cohesive sediment 

122 (sand) with wave-influenced 2D current ripples. Site 2 (sandy 2) was similar but had active 2D and 3D 

123 ripples. The third site (muddy) was composed of muddy sand, with either a flat bed or relict current 

124 ripples (Lichtman et al., 2018). 

125 Surface sediment samples were collected at four time points during tidal exposure over three days at 

126 each site from 23rd – 31st May 2013 (sandy 1; 23rd - 25th, sandy 2; 26th, 28th - 29th and muddy; 28th - 29th 

127 and 31st May). A full description of the physical conditions during the campaign at the adjacent sites 

128 can be found in Lichtman et al., (2018) and the supplementary material. In brief, sampling dates at 

129 sandy 1 coincided with the tides transitioning from neaps into peak springs and there was also increased 

130 wave action due to high winds on 23rd-24th May. Despite the strong wave action at sandy 1, which 

131 caused the maximum wave-current bed shear stresses during wave cycles to be larger, the peak current 

132 bed shear stresses during inundation were greater at sandy 2 than sandy 1. Slightly weaker currents 

133 were observed at the muddy site one day 3, as the tides moved from peak springs toward neaps. 
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134 Nonetheless, comparable maximum depth-averaged flood/ebb currents were measured across all sites 

135 (0.4–0.7 m s‒1) and the maximum water depth at each site ranged between 2 and 3.3 m (Table S1). 

136 At each site, 20 surface sediment samples were collected each day (n = 5 × 4 time points). The first 

137 sampling occurred 30-60 min after sediment exposure each day with sampling repeated quarterly during 

138 low tide until 60 min before inundation. Samples were collected within 5 m of rigs deployed by NOC 

139 Liverpool (Lichtman et al., 2018) and University of Plymouth across an area of approx. 3 m2. Sediment 

140 cores (2 mm depth, surface area = 250 mm2) were frozen and stored in liquid nitrogen using the contact 

141 core method described in Ford and Honeywill (2002) and Brockmann et al. (2004). Cores were 

142 subsequently stored frozen (–80oC) in the dark until processed. To capture both epipelic and 

143 epipsammic microalgal cells, replicate surface scrapes (n = 5, 10×10×2 mm depth) were collected and 

144 stored in 2.5 % w/w glutaraldehyde/filtered seawater solution from time point 2 (T2) only. 

145 Sample processing – Water content (%) was calculated from wet and freeze-dried core weights before 

146 sediment organic matter (SOM, %) was determined by loss-on-ignition at 450oC for 4 h. Chlorophyll a 

147 pigments were extracted with 90% acetone following the trichromatic method of Jeffrey & Humphrey 

148 (1975). The colloidal and total carbohydrate fractions of the EPS were determined using the phenol-

149 sulfuric acid assay (DuBois et al., 1956) following Underwood and Paterson (2003). Due to differences 

150 in contents versus concentrations caused by the varied water content of sediment samples, both 

151 chlorophyll and carbohydrate measurements are expressed as concentrations per unit area (mg m‒2, 

152 Tolhurst et al., 2005b). The effective particle size distribution (PSD, Grabowski et al., 2012) was 

153 determined using a Malvern Mastersizer 2000 laser diffraction analyser (Malvern Instruments Ltd, 

154 2013) and summarised using GRADISTAT software (Blott and Pye, 2001) prior to statistical analysis 

155 with D50 and mud content (% <63µm) used for further analysis. The relative difference in erosion 

156 threshold required to suspend a user-defined erosion threshold of 0.01 kg m–3 was measured using the 

157 portable in situ Cohesive Strength Meter (CSM, Paterson, 1989; Tolhurst et al., 1999). In addition to 

158 the surface erosion threshold, the undrained shear strength was measured using a 33 mm Pilcon shear 

159 vane (5 cm depth). 

160 Microphytobenthic community composition – Microphytobenthic cells were extracted from sediment 

161 scrapes by adopting a modified isopycnic separation technique using silica sol Ludox TM-40®(Ribeiro 
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162 et al., 2013). Diatom identification, by means of light microscopy (Zeiss Universal light microscope,  

163 phase and a Ph3-NEOFLUAR oil immersion objective x100 coupled to a 1.0 and 2.0 optivar) followed 

164 Hendey (1964), Hartley et al. (1996) and Round et al. (1990). Cells were identified to species level 

165 where possible and grouped into three ecological guilds (Passy, 2007): (i) “motile” (fast moving and 

166 larger); (ii) “low profile” (short stature, prostrate, adnate erect and slow-moving species), and: (iii) 

167 “high profile” (tall stature, erect, filamentous branched or chain-forming and colonial centrics, largely 

168 non-motile or motile within tubes).

169 Low Temperature Scanning Electron Microscopy (LTSEM) – Fragments of contact core samples, frozen 

170 in liquid nitrogen (–196.8 oC, 1 atm), were mounted on mechanical stubs and examined using a JOEL 

171 35CF SEM fitted with a LTSEM (Oxford Instruments CT 1500B) following the procedure given in 

172 Paterson (1995).

173 Statistical analysis – Analyses were performed using “R” statistical software, version 3.1.1 (R 

174 Development Core Team, 2014) through the R studio graphical interface (v. 0.98.1083) and in 

175 PRIMER software (V.6, PRIMER-E, Ivybridge, UK). Differences in bio-physical variables were 

176 determined between sites, emersion times and days, after assumptions were tested (Pinheiro et al., 

177 2012; Zuur et al., 2007). Necessary transformations were applied to conform to assumptions for 

178 parametric statistical testing (ANOVA), where possible or non-parametric Kruskal Wallace (H) tests 

179 were employed. Corresponding post-hoc Tukey’s or Dunn-sidak tests were applied to detect 

180 differences between specific groups. The relationships between the different sediment properties and 

181 stability measurements were also assessed using Spearman rank correlations. No significant 

182 differences were observed across the different timepoints during emersion for stability or biochemical 

183 properties, therefore timepoints were pooled for each day resulting in 20 replicate samples from each 

184 day and site. Multivariate analysis of the data using canonical analysis of principal components (CAP) 

185 was employed on square-root transformed data to assess the response of multiple bio-physical 

186 variables across the sites using constrained ordination taking account of the correlation structure of 

187 data (Andersen and Willis, 2003).  

188 The MPB community composition between the sites and days was also examined using CAP, based 
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189 on Bray-Curtis dissimilarity matrices (Somerfield, 2008). Differences in species between sites and 

190 days were tested using permutational multivariate analysis of variance (PERMANOVA) in addition 

191 to exploring Shannon’s diversity index (H’) and Pielou’s evenness index (Magurran, 2004). 

192 To determine whether the variation in sediment erosion thresholds could be explained by differences 

193 in the measured bio-physical properties of the sediment across all sites, data was pooled and distance 

194 based linear models (DistLM) were employed (Anderson et al., 2008). Temporal factors (time since 

195 emersion and sampling day) were included as explanatory variables along with the various bio-

196 physical properties. Marginal and sequential tests were examined using Akaike’s information criterion 

197 (AICc) and a backwards elimination process to identify the best combination of predictors, that 

198 maximised the explained variation with the most parsimonious model (Clarke and Gorley, 2006).

199

200 Results

201 Sediment bed properties and stability – The percentage of mud (< 63µm) was significantly higher at 

202 the third site (Muddy site, Table 1; 27%, H(2) = 93.93, P < 0.001) compared to the sandy sites but there 

203 was no significant difference in mud content between the two sandy sites (0.8 & 1%). For the sandy 

204 sites, clean particles were visually observed with very little associated organic matter (Fig 2 A-B) and 

205 the grain size distributions were similar (Supp. Fig S1). In contrast, the muddy site exhibited more 

206 varied and organic-rich sediments (Fig 2 C-D), but total organic content was relatively low across all 

207 sites (< 2%) and no significant site differences were detected. The water content, colloidal carbohydrate 

208 and chlorophyll a concentrations were all significantly higher at the muddy site compared to both sandy 

209 sites (all P < 0.001, Table 1). Differences were between all three sites, with higher contents and 

210 concentrations at the muddy site, followed by sandy site 2 and then sandy site 1. The shear strength of 

211 the bed was also significantly different between sites, yet this was due to lower strength at sandy site 2, 

212 as strengths were similar between sandy site 1 and the muddy site (P > 0.05).

213 At sandy 1, both the colloidal carbohydrates (EPS) and erosion thresholds varied significantly over the 

214 sampling days (H(2) = 27.12, P < 0.001 and H(2) = 13.76, P < 0.001) but with opposing trends (Table 1). 

215 Colloidal carbohydrates were lowest on day two when the erosion threshold was highest, with a 

216 decrease in threshold coinciding with an increase in mud and organic content. Overall, the erosion 
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217 measurements at Sandy 1 correlated very poorly with all measured biological and physical variables, 

218 but there was a negative relationship between chlorophyll a concentration (MPB biomass) and the 

219 erosion threshold at this site over the sampling days. At the second site (sandy 2), the erosion threshold 

220 decreased over the sampling days to its lowest on day 3 (1.8 kPa). This was alongside significant 

221 reductions in colloidal carbohydrate concentrations from 320 ± 115 mg m‒2 (day 1) to 229 ± 54 mg m‒2 

222 (day 3, Figure 3; F2,59 = 6.57, P < 0.001). At the muddy site, the erosion threshold was at its highest on 

223 day one (14.5 kPa) and the lowest on day two (2.7 kPa) also coinciding with the lowest colloidal 

224 carbohydrate concentration (428 ± 110 mg m‒2, P < 0.001) and the strongest wave action (Lichtman et 

225 al., 2018). The D50 of the bed varied very little between days at sandy 1 (Table 1), although there was a 

226 small but statistically significant difference at sandy 2, D50 increasing from 202 ± 3 µm on day one to 

227 213 ± 10 µm on day three (H(2) = 25.88, P < 0.001).  No significant differences in D50 were detected at 

228 the sites during different emersion points measured (data not presented).

229 Microalgae community analysis – Significant spatial and temporal differences were detected in the 

230 microalgae community across sites, as well as differences between individual days within the sites, (P 

231 < 0.01). Diversity (H’ index) and evenness (Pielou’s index) were significantly different between sites 

232 (F2,24 = 4.91, P < 0.05) but differences were relatively small (H’ at sandy 1 = 3.14 , sandy 2 = 3.32 and 

233 muddy site = 3.62, and Pielou’s index sandy 1 = 0.92, sandy 2 = 0.87 compared to muddy site = 0.94). 

234 A few cosmopolitan species such as Nitzschia frustulum var. inconspicua were present in almost all 

235 samples, across all sites, with Achnanthes punctulata present in greater numbers at the sandy sites. 

236 There was a greater abundance of low-profile than motile species at the sandy sites and there were no 

237 high-profile species noted. Interestingly, the muddy site had a similar average abundance of low-profile 

238 epipelic species to that of the sandy sites, had fewer small epipsammic cells, but had greater numbers 

239 of motile and high-profile species that dominated this site. The high proportions of Navicula gregaria 

240 (4%), Amphora coffeaeformis var perpusilla (4%) and Pleurosigma aestuarii (4%) at the muddy site 

241 appeared to have the greatest effect on site differences in community composition (Figure 4), whereas 

242 other smaller species such as Opephora mutabilis (4%) and Cocconeis sp 1 (4%) were more abundant 

243 at the sandy sites. Diversity and evenness did not change over time at the sites, but the abundance and 

244 turnover of key species did vary. At sandy 2, a decline in Opephora mutabilis contributed 9.3% to the 
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245 overall dissimilarity (42%) between days while the decline in the large motile Navicula digitoradiata 

246 and Pleurosigma aestuarii (6% & 5%, respectively) were the greatest contributors to the overall 

247 dissimilarity (46%) between days at the muddy site. 

248 Bio-physical influences on erodibility - Inspection of the CAP plots (Figures 5 & 6) and the resulting 

249 trace statistic (P < 0.001) confirmed a strong overall difference between the sites based on bio-physical 

250 properties. The first axis of the plot (CAP1) was partitioned between several biological variables 

251 relatively evenly, including chlorophyll a, both carbohydrate fractions, the diversity and number of 

252 MPB species present, and water content. Together these variables and the D50 of the bed, which 

253 exhibited a strong anti-correlation to the biological properties, dominate this axis. On the second axis 

254 (CAP2) the D50 of the bed and the undrained shear strength were important factors. A clear spatial 

255 separation was observed from the superimposed scatter plot (Figure 5) as well as a temporal component 

256 based on draining throughout the emersion period. The close relationships between several variables in 

257 the CAP plots were in agreement with correlation analysis (Table 2). As there were no clear dominant 

258 biological or physical factors, the majority of properties within both axes were retained for further 

259 exploration. Water content was highly correlated to several variables (Table 2) and there were no 

260 significant effects of dewatering detected from within each tidal exposure period. Therefore water 

261 content was removed from further models. Various single and sequential predictor variables 

262 significantly explained the variation in the sediment erodibility across all sites in DistLM (Table 3). 

263 When properties were considered individually, both chlorophyll a and organic content significantly 

264 explained the greatest variation (at 9% and 8% respectively). While chlorophyll a exhibited a negative 

265 effect across all sites, this was primarily driven by the negative relationship at sandy 1, and although 

266 MPB diversity and abundance were not good single predictors, they were valuable in sequential tests 

267 after consideration of the MPB biomass estimates (chlorophyll a concentration). While the D50 was 

268 marginally insignificant in both marginal and sequential tests it was important to retain in the latter yet 

269 surprisingly the mud content of the sediment was not selected as a good predictor of erosion threshold 

270 across the sites. 

271
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272 Discussion

273 Our results illustrate that the MPB community maintain a key role in sediment dynamics, by surviving 

274 harsh environmental conditions, and quickly re-establishing biostabilisation. MPB continued to exert 

275 an influence on a key ecosystem function; sediment stability across different sediments. Mariotti and 

276 Fagherazzi (2012) proposed that, given equal intensities of disturbance, the biomass of a biofilm 

277 determines whether or not it will be eroded and our results support this. Importantly, our results suggest 

278 that this biostabilisation can exert influence on different sediment types. In energetic environments, the 

279 frequent turnover and reworking of the sediment may be expected to remove biofilms, hence these 

280 habitats are often depicted as abiotic (Figure 7). In very energetic systems, like our sandy site 1, the 

281 formation of a fluffy biofilm or layer of cells and EPS may not have create a stable matrix and therefore 

282 leads to a ‘low biostabilisation’ scenario. The lack of incorporation into the bed, explains the negative 

283 relationships between key biofilm properties and sediment erosion measurements observed and sandy 

284 site 1. However, as grain size was reduced and mud content increased, even slightly, this positively 

285 influenced sediment stability, promoting stronger relationships between the biochemical properties of 

286 the biofilm and sediment stability at sandy 2 and the muddy site. 

287 While frequent resuspension of MPB cells and related EPS may prevent the formation of substantial 

288 biofilms, and therefore limit their biostabilisation potential (Aspden et al., 2004), an inoculum often 

289 remains in place (Chen et al., 2019) and this can still exert biostabilising effects on the sediment as we 

290 have illustrated. This persistence of the biofilm and its stabilising properties means that a biofilm can 

291 develop rapidly, if conditions become favourable (see Figure 7; Chen et al., 2019). Previous studies of 

292 relationships between EPS carbohydrates and sediment stability have estimated that 2-3 days are 

293 required (Lundkvist et al., 2007). However, as we have illustrated in situ that growth does not begin 

294 anew at the start of each tidal cycle and biofilms present across different sediment habitats, although 

295 invisible, maintain their biostabilisation potential. The stabilising effects of MPB may therefore take 

296 less time to develop and become more significant in the natural environment (Chen et al., 2017). 

297 At the sandier sites, the fine sediment and organic matter, which was captured in the suspended sediment 

298 traps (data not presented) may have settled onto the sediment surface during slack water, but did not 

299 accumulate uniformly on the bed. At sandy 2, a fine organic coating was observed on larger sand grains 
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300 on ripple crests (Figure 2a) whereas grains from ripple troughs were almost free of OM (Figure 2b) 

301 suggesting that OM was being ‘caught’ from the suspended sediment in the flow. In contrast, the surface 

302 sediment at the muddy site was characterised by a much thicker blanket of fine cohesive particles, rich 

303 in organic matter and MPB cells, confirmed by LSTEM images (Figure 2 C-D) and biochemical 

304 analysis (Table 1). The presence of this organic-rich material can result in positive feedbacks to the 

305 system, whereby the adhesive organic EPS and MPB cells trap and bind more fine material, maintaining 

306 a muddy bed and reducing suspended sediment concentrations (SSC). This stabilising effect can often 

307 be limited to warmer seasons when MPB growth is higher (Borsje et al., 2008) and periods of lower 

308 physical disturbance (Widdows and Brinsley, 2002) in temperate regions, but appears to prevail under 

309 higher shear stress in this instance. An increase in the D50 of the bed and a decrease in the organic 

310 content at the muddy site, 28th – 31st was accompanied by a sharp decrease in bed stability (see table 1), 

311 suggesting the removal of organic material and resulting increase in particle size can destabilise these 

312 beds. Organic material creates cohesion between sediment particles, stabilising the sediment when it is 

313 bound to particles (Black et al., 2002; Manning et al., 2010; Zhang et al., 2018). However, MPB and 

314 OM transported to a particular area during the tide can also form a ‘fluff’ layer on the bed surface that 

315 is easily resuspended if it is not incorporated into a biofilm (Orvain et al., 2003). This is likely the case 

316 at sandy site 1 as high MPB biomass (chlorophyll a concentration) and EPS were observed on days 

317 when the erosion threshold was reduced. The cells and EPS detected in the sediment surface were 

318 therefore unlikely to have formed a protective film. Indeed, in sandy sediments (like sandy site 1), small 

319 diatoms tend to attach themselves to the grains and coat individual sand grains in EPS rather than 

320 forming a substantial biofilm per se. 

321 The different mechanisms by which MPB and EPS develop in dynamic sandy sites may explain the 

322 negative relationship between chlorophyll a and erosion threshold at sandy site 1. Substantially more 

323 EPS is produced and excreted by epipelic (motile) diatoms, like the taxa dominating the muddy site. 

324 While previously it has been thought that >50% of the MPB community must be epipelic species 

325 (Underwood et al., 1995; Underwood & Paterson, 2003), in the Dee Estuary it appears that the 

326 proportion may be much lower. These differences in the relationships often hinder attempts to 

327 generalise MPB biomass effects on erodibility, and lead to significant differences between studies. 
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328 Despite the importance of accurately forecasting erosion threshold parameters for sediment transport 

329 predictions (Sanford, 2008) the influence of biological cohesion across different habitats is rarely 

330 considered in these models (Le Hir et al., 2007). This is primarily due to the complexity of intertidal 

331 systems and differences in biological and physical processes across sediment gradients. There is likely 

332 a threshold of development under which very coarse sandy sites may not be positively influenced by 

333 MPB biostabilisation, or under extreme conditions like the significant wave action at sandy site 1 prior 

334 to sampling (Lichtman et al., 2018). Nonetheless, other sandy sites (such as our sandy site 2) can be 

335 positively influenced by biostabilisation (Larson et al., 2009). Cells and EPS that are not incorporated 

336 as a biofilm can be easily suspended and recorded as erosion by the CSM system and these results 

337 suggest that characterising the MPB community can help to explain these differences (Figure 7A). 

338 In this study, EPS (as colloidal carbohydrates) were positively related to sediment erosion thresholds, 

339 even at sandy site 2. At this site, the community was composed primarily of low profile pioneer species, 

340 and had a limited number of motile forms (discussed further in microalgal communities section). This 

341 relationship suggests that even when the EPS matrix does not form a substantial biofilm on the surface, 

342 it still offers some form of protection to the underlying sediment (Figure 7B). Laboratory (Malarkey et 

343 al., 2015; Parsons et al., 2016) and field investigations (Baas et al., 2019; Lichtman et al., 2018) have 

344 recently illustrated the influence of low EPS contents distributed deeper into the sediment bed. In these 

345 investigations microbially-produced EPS hampered sediment transport, bedform development, and 

346 bedform migration without the presence of a visible biofilm on the surface (see also Chen et al., 2017). 

347 These vectors of change are undoubtedly part of the short-term variation due to changes in the 

348 spring/neap cycle and daily weather fluctuations, but these changes can also be the first steps toward a 

349 transition towards an alternative state (Van de Koppel et al., 2001).

350

351 The microalgal communities

352 Over the relatively short sampling period described here, the microalgae community at the sandy sites 

353 appeared to remain in early successional stages, whereas the community at the muddy site had already 

354 developed into a more vertically-structured community composed of stalked, filamentous and motile 

355 microalgae (Winsborough and Golubic, 1987). The latter forms can withstand stronger flow velocities 
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356 and abrasion from moving sediments by migrating into the muddy sediment or creating filaments. 

357 However, adnate forms such as Achnanthidium are well equipped to resist flow (Passy, 2007). Certain 

358 diatom species are indicators of the flow regime, with particular species exhibiting preference for high 

359 flow such as Achnanthidium spp (Passy, 2007). While flow differences can result in different 

360 communities, the effects can also be dampened by differences in turbidity (Soininen, 2004). 

361 Nonetheless, information on community composition together with information on the bio-physical 

362 properties of the sediment can be useful for determining the differences in erosional resistance and 

363 potential biostabilisation across different habitats.  Our results indicate the number of species was 

364 altered over the days at the different sites and species composition changed over short temporal scales. 

365 However, in each site the different guilds (low profile, high profile, motile etc) remained dominant due 

366 to their adaptations to the flow environment. While MPB community succession can be revealed 

367 through the microscopic identification of cells, this is time-consuming and could be complimented by 

368 next generation sequencing of the prokaryote and eukaryote communities for longer-term studies (Hicks 

369 et al., 2018). This would provide a more comprehensive microbial community analysis in relation to 

370 biostabilisation (Paterson et al., 2018) as the diversity of prokaryotes has been linked to hydrodynamic 

371 regimes (Besemer et al., 2009). Such an approach would be incredibly useful for capturing the 

372 transformation of sites that are frequently disturbed and dynamic in nature, into more stable muddy 

373 habitats over longer timescales. MPB composition and structure can reflect differences in flow regimes 

374 (Krajenbrink et al., 2019) and as the community changes, primary productivity and the production of 

375 EPS exudates will vary, with knock on effects on various ecosystem structure and functions (Hope et 

376 al., 2019). As the hydrodynamic effects on MPB communities can modulate the effects of others 

377 stressors (Polst et al., 2018; Villeneuve et al., 2011) understanding the interaction between the 

378 community and hydrodynamics across different sediment habitats is essential. For instance, Achnanthes 

379 spp and Nitzschia inconspicua, were observed in all Dee Estuary sites. These cells are often one of the 

380 first species to inhabit recently disturbed sediment (Cardinale, 2011), and are cosmopolitan (Sabater, 

381 2000). They can grow prostrate to the surface or adnately (Berthon et al., 2011; Cardinale, 2011), which 

382 helps them withstand high flow velocities (Passy, 2007). We have however illustrated that these are not 

383 displaced by the development of the biofilm as they were still present in our muddier site. These could 
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384 be key species to examine for the effects of other stressors in these environments. These pioneers 

385 promote the rapid recolonization of the sediment bed after physical disturbance, instigating a biological 

386 succession, which promotes greater biodiversity and heterogeneity in the biofilm and among higher 

387 organisms (Balvanera et al., 2006). This can pave the way for a more heterogeneous community of 

388 microorganisms and a complex habitat that can increase biostabilisation (Paterson et al., 2018).  

389 The survival of algal cells during tidal inundation or their deposition from the water column establishes 

390 a potential for microbial growth and eventual biofilm formation if conditions allow (Figure 7B-C). This 

391 was evident from the differences between sites in the Dee Estuary. At sandy site 1, the MPB community 

392 was composed of pioneer species that turned over with the prevailing hydrodynamic conditions. At the 

393 opposite end of the spectrum, the MPB community at the muddy site was more stable and composed of 

394 larger epipelic species. However, at sandy site 2, the community was distinct and appeared to be 

395 intermediate between the two other sites. In these transitioning sites, the maximum variation in the 

396 sediment surface erosion is expected (Figure 7B) as the surface is patchy. As MPB communities develop 

397 and grow on the sediment surface, this drives the capture of more cohesive material and this positive 

398 feedback enhances the development of a more homogenous and stable surface dominated by biofilms 

399 (Figure 7C). 

400 Disturbance from tidal flow can exert the same effects as large bioturbating fauna oxygenating the 

401 sediment surface layers (Huettel et al., 2003; Precht and Huettel, 2003). These processes are important 

402 for soft sediment ecosystem functions such as sediment oxygenation, biogeochemical cycling and, 

403 depending on the organic enrichment of the sediment, degradation processes (Widdicombe and Austen, 

404 2001). The contribution of large infauna has recently be discussed elsewhere (Hillman et al., 2019) and 

405 are of course important to consider in many habitats. Low numbers of large fauna were observed at 

406 these sites, therefore we focussed on the physical processes and the interaction with microbial 

407 organisms that are known to stabilise and disturb the bed. The close spatial association of visibly 

408 different sedimentological properties suggests bio-physical factors may contribute to the variation over 

409 short distances despite the similarity of dynamic context. 

410 Understanding the bio-physical factors influencing sediment stability across different habitats allows 

411 us to begin to discern how and why mixed beds occur and the mechanisms by which they alternate 
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412 between muddy, mixed and sandy habitats. Muddy sites can capture fine sediment, due to the cohesive 

413 nature of fine particles, MPB and EPS in the surface layers (Table 1). This cohesiveness can prevent 

414 fine particles from winnowing during inundation and result in higher erosion thresholds. These bio-

415 physical properties can lead to the formation of a cohesive matrix that can effectively trap additional 

416 material from the water column and improve the clarity of the overlying water. Positive correlations 

417 between mud content, organic content, EPS carbohydrates, and MPB biomass/community indices were 

418 apparent at the muddy site (Figure 5) indicative of biofilm development where higher numbers of motile 

419 diatoms were present. It has previously been suggested that relatively high proportions of motile 

420 diatoms, and hence high EPS concentrations, are required to trap new deposits of sediment (Underwood, 

421 1997) and counteract the physical forces that resuspend sediment, and this can lead to positive 

422 feedbacks. Van de Koppel et al. (2001) highlighted these feedbacks, and proposed that ecosystem 

423 engineering (Jones et al., 1994), principally by MPB, can mediate changes in bed sedimentology.  

424 At the sandy habitats, the regular physical disturbance from waves and currents over the tidal cycle 

425 prevented the accumulation of larger MPB, which limits biofilm development (Blanchard et al., 2001). 

426 Over the course of this relatively high-resolution investigation, the D50 of the sandy site 1 increased 

427 despite the fine nature of the material frequently collected in suspension traps at the sites (data not 

428 presented). This was primarily due to the prevailing wind wave action at this site during this period 

429 (Lichtman et al., 2018; Table S1). Fine cohesive sediment has to be removed frequently in sandier 

430 habitats, through resuspension or winnowing to impede the development of biofilm growth but MPB 

431 are still present and still exert influence over the sediment dynamics. When conditions are altered this 

432 can allow the MPB to proliferate, significantly increasing the erosion threshold and instigating a 

433 transition to finer sediment. These differences in the erosive nature of the bed and the fate of settling 

434 material, is key to maintaining the differentiation between patches and increases overall habitat 

435 heterogeneity (Weerman et al., 2011) and functioning of soft sediment ecosystems (Thrush et al., 2008).

436 By investigating the short term, temporal dynamics influencing the MPB community, and the feedbacks 

437 between the biomass, community composition, exudates of MPB and biostabilisation potential we can 

438 begin to understand the conditions required to instigate the changes that lead to transitions and postulate 
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439 how the microbial organisms in these habitats can persist and continue to exert an influence on sediment 

440 stability.

441

442 Conclusion

443 The relative influence of MPB and EPS on sediment stability and transport remain poorly understood 

444 across different sediment habitats. The results of the study suggest various biological properties of the 

445 bed associated with the MPB significantly influence the short-term variability in the erodibility of 

446 different surface sediments. Importantly, we illustrate that while MPB diversity explained very little 

447 variation in marginal distance based linear tests, primary producer diversity was a significant predictor 

448 when MPB biomass was also considered in sequential tests. We emphasise the importance of 

449 considering the microbial diversity when assessing their influence on ecosystem functions such as 

450 sediment stability. Further evidence of biological cohesion across natural habitats of increasing 

451 complexity and at multiple spatial and temporal scales is required in order to understand the biological 

452 influence on sediment dynamics. Further data with natural gradients of sand and mud should be 

453 examined and the influence of larger benthic organisms included to document the influence of 

454 biological properties across different habitats, under differing physical conditions and with increasingly 

455 complex communities. This will facilitate the use of these variables in future sediment transport models. 

456
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Table 1: Temporal variation in the mean / median values of biological and physical measurements at the sandy site and muddy site for all days combined and 
then each individual day of sampling. Top number = mean / median value, bottom number = Standard deviation / interquartile range. 

Colloidal 
carb conc
(mg m‒2)

Chl a 
conc 

(mg m‒2)

Water 
content 

(%)

Organic
content 

(%)

D50 Bed
(µm)

Mud content 
Bed (%)

Sed. erosion 
threshold

(kPa)

Shear Strength  
(kPa)

Sandy site 1 159
± 87

13
± 3

18
± 1

1.5
± 1.1

223
± 6

0.8
± 1.8

12.1
(8.8 – 17.5)

14.5
(8.9 – 16.7)

23rd (D1) 235
± 41

16
± 2

18
± 1

0.8
± 0.3

222
± 5

0.0
± 0.0

11.0
(8.8 – 14.8)

15.0
(14.1 – 16.0)

24th (D2) 88
± 67

10
± 2

18
± 1

2.8
± 2.8

221
± 7

1.7
± 2.2

18.6
(13.2 – 25.2)

14.0
(12.0 – 15.5)

25th (D3) 147
± 74

13
± 2

18
± 1

0.8
± 0.2

225
± 3

1.3
± 1.9

11.0
(6.6 – 17.0)

14.5
(8.9 – 16.7)

Sandy site 2 269
± 88

26
± 4

19.9
± 0.9

0.8
± 0.2

204
 ± 9

1.0
± 2.0

4.4
(1.8 – 6.7)

6.8
(5.5 – 12.5)

26th (D1) 320
± 115

28
± 3

20.4
±  0.8

1.0
± 0.9

202
± 3

2.1
±  2.6

6.6
(2.2 – 14.8)

6.2
(6.0 – 7.0)

28th (D2) 255
± 59

23
± 4

20.1
± 1.2

0.7
± 0.2

197
± 4

0.0
± 0.0

4.9
(2.2 – 9.0)

6.5
(6.1 – 7.9)

29th (D3) 229
± 54

26
± 3

19.6
± 0.5

0.9
± 0.1

213
± 10

1.9
± 2.4

1.8
(1.8 – 1.8)

10.2
(7.1 – 11.4)

Muddy site 532
± 165

44
± 11

21.0
± 1.3

1.4
± 0.5

156
± 23

27.0
±  7.0

5.4
(3.3 – 11.5)

13.2
(9.0 – 18.0)

28th (D1) 609
± 186

44
± 14

21.6
± 1.2

1.5
± 0.4

140
± 19

30.8
± 5.0

14.5
(7.7 – 23.4)

14.0
(10.5 – 1.2)

29th (D2) 428
± 110

40
± 8

21.1
± 1.5

1.3
± 0.4

159
± 15

27.1
± 3.9

2.7
(1.8 – 5.0)

13.2
(11.1 – 14.9)

31st (D3) 557
± 141

47
± 9

21.0
± 1.3

1.6
± 0.6

169
± 24

22.8
±  8.2

5.5
(2.7 – 8.8)

13.0
(11.7 – 13.5)
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Table 2: Spearman rank correlation coefficients for all variables within and across sites. 1st number = sandy 1, 2nd = sandy 2, 3rd = muddy site, bottom number 
(bold) = all sites. Sig levels - ‘***’ = P < 0.001, ‘**’ = P < 0.01, ‘*’ = P < 0.05. - = no significant correlation detected. N = 60 per site.

Colloid 
carbs

(mg m‒2)

Chl a
(mg m‒2)

Water 
content

(%)

Organic 
content

(%)

D50
(µm)

Mud 
content 

(%)

Erosion
threshold

(kPa)

Undrained shear 
strength (kPa)

Colloid carbs
(mg m‒2) -

Chl a
(mg m‒2)

0.62***
0.64***
0.57***
0.83***

-

Water content
(%)

-
-
0.44***
0.52***

0.27*
0.33**
0.59***
0.62***

-

Organic content
(%)

-
-
0.34**
0.65***

-
-
0.40**
0.68***

-0.36**
-
0.43***
0.42***

-

D50
(µm)

-
-
-
‒0.70***

-
-
-
‒0.62***

-
-
‒0.26*
‒0.50***

-
0.39**
-
‒0.55***

-

Mud content
(%)

-
-
-
0.72***

-
-
-
0.69***

-
-
0.25*
0.47***

-
-
-
0.63***

0.42***
0.44***
‒0.94***
‒0.85***

-

Erosion threshold
(kPa)

-
0.35**
0.28*
0.35***

-0.43***
-
-
0.18*

-
-
-
0.20*

-
-0.31*
-
-

-
-
‒0.26*
‒0.29**

-
-
-
0.21*

-

Undrained shear 
strength
kPa)

-
-
-
0.65***

-
-
-
0.57***

-0.3*
-0.61***
-
0.20*

-
0.30*
-
0.68***

-
0.36**
-
-0.64***

-
-
-
0.72***

‒0.4**
-
-

-
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Table 3:  The % variation in the erosion threshold of the sediments across all sites, explained by 
various bio-physical properties. Both marginal (single predictor) and step-wise sequential results for 
DistLM are presented. Significance levels indicated as ‘***’ = P < 0.001, ‘**’ = P < 0.01, ‘*’ = P < 
0.05, ¥ = marginally insignificant P<0.10 and NS = not significant.

AICc Pseudo-F Expl. Variation 
(%)

Cumul. 
Expl. Variation 

(%)
Marginal tests

Chl a (mg m2) 17.32 9***
Shannon (H) index of 

MPB diversity
0.34 2***

MPB species abundance 0.77 4NS

Organic content (%) 14.81 8***

Colloidal carbs (mg m2) 3.25 2¥

D50 (µm) 3.58 2¥

Sequential tests

Chl a (mg m2) -13.63 17.32 9*** 9
Shannon (H) index of 

MPB diversity
-32.20 21.53 10*** 19

MPB species abundance -42.92 13.00 6*** 25

Organic content (%) -50.85 10.05 4** 29

Colloidal carbs (mg m2) -56.94 8.14 3** 32

D50 (µm) -58.19 3.32 2¥ 34
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Figure 1: The location of the sampling sites on the intertidal flats near West Kirby and Hilbre Island. Inset - 
Position of the Dee Estuary, near West Kirby Liverpool, England. 
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Figure 2: Low temperature scanning electron micrographs (LTSEM) of the intact sediment surface at A) 
Sandy site 2, crest of ripples B) Sandy site 2, troughs C) Muddy site, general surface and D) Muddy site, 
close-up image of organic material between sediment grains. Scale bars: 100µm for A-C and 10µm for D. 
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Figure 3: Biological and physical measurements from intertidal sediments of the Dee Estuary. A) Mean (± 
SE, n = 20) sediment erosion thresholds (kPa) for the three sites over 3 sampling days; Sandy site 1 on 

23rd, 24th, 25th May. Sandy site 2 on 26th, 28th, 29th May 2013. Muddy site on 28th, 29th, 31st May. B) 
Mean (± SE, n = 20) colloidal carbohydrate concentrations (mg m‒2), from the same sites and days. 
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Figure 4: Low-temperature scanning electron micrographs of diatoms harvested from the surface sediment 
of the Dee Estuary. Scale bars = 1µm/10µm where stated. A) Opephora mutabilis (Grunow), B) Epipsammic 

sp 1, C) epipsammic cell  embedded in a sediment particle in a matrix of EPS, D) Navicula gregaria 
(Donkin), E)  Planothidium haukiana (Grunow), F) Nitzschia sp 1, G) Amphora coffeaeformis var 

coffeaeformis (Agardh) Kützing, H) Pleurosigma aestuarii, (Brébisson ex Kützing) and several small 
epipsammic cells / sediment particles, I) Cocconeis peltoides (Hustedt), J) Amphora tenerrima (Aleem & 

Hustedt), K) Thalassionema spp (Grunow) L) Diploneis spp. 
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Figure 5: Canonical analysis of principal components (CAP) plot of euclidean distance similarities between 
samples. The correlation circle overlays measured variables that were influencing the similarity/dissimilatory 
between the samples.  All data was square root transformed and normalised prior to analysis.  n = 60. D50 
- D50 of the particle size distribution, top_vane – undrained shear strength, TP – time point since emersion, 
H’ - Shannon diversity index, OC - organic content of sediment (%),  MC – Mud content of sediment (%), 
C/carbs - colloidal carbohydrate concentrations, chl a - chlorophyll a concentrations, WC - water content 

(%). 
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Figure 6: Canonical analysis of principal components (CAP) plot of Bray Curtis similarities in the microalgae 
community composition of the sediment surface between the two sandy sites (S1 and S2) and the muddy 

(M) site over three days at the Dee estuary. 
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Supplementary figure S1: Grain size distributions for A) sandy site 1. B) Sandy site 2. C) 

Muddy site. Values are averaged across all days at each site. Note that the y-axis of the 

muddy site is on a different scale. 
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Table S1: Peak hydrodynamic values during the inundation at the three sites based on the measurements of Lichtman et al. (2018). The current 

and wave-current bed shear stresses are the mean and maximum during a wave cycle (the closer they are to one another the weaker the effect of 

the wave).

Date Site Water depth

(m)

Depth-averaged current

(m s‒1)

Significant wave 

height

(m)

Wave period

(s)

current bed shear stress

(Nm‒2)

Wave-current

bed shear stress

(Nm‒2)

23/05

24/05

25/05

26/05

28/05

29/05

31/05

S1

S1

S1

S2

S2, M

S2, M

M

2.23

2.59

2.88

3.09

3.34

3.01

2.08

0.49

0.63

0.56

0.65

0.71

0.62

0.46

0.38

0.48

0.11

0.27

0.28

0.18

0.14

7.8

7.9

8.3

4.8

6.1

6.4

4.6

0.41

0.62

0.51

0.72

0.84

0.65

0.38

1.09

1.38

0.59

0.79

0.93

0.73

0.39
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Figure 7. Conceptual diagram of microbially-induced variability in surface sediment erodibility. A) Non-
cohesive sediment lacking biogenic influence that in theory would show little variability in surface behaviour 

forms a predictable and homogenous habitat. B) Colonisation of the non-cohesive bed by microbial cells 
producing extracellular polymeric substances (EPS) and the initial growth of small microbial colonies creates 
heterogeneity in the localised surface response to shear stress. Increasing the local resistance to erosion in 

some patches. C) A fully colonised substratum where biofilm development has created a more uniform 
sediment surface, once again reduces the variability of the system but further increases the erosional 
resistance. Top left: Spatial variation in erosion resistance across the bed. Condition A = homogenous 

abiotic grains producing constant and predictable erosion thresholds. Condition B = A highly heterogeneous 
system with an erosion threshold influenced by the complexity of local conditions, and the patchy 

distribution of MPB and bacterial biofilms. Condition C = coherent biofilm increases sediment stability and 
reduces erodibility in a consistent manner across the bed. This creates a more homogenous response to 

erosional stress until bed failure. Erosive loss from areas of biofilm growth (C), can lead to the depositional 
gain of MPB at other sites (B). This may lead to the development of a substantial biofilm (C), or the 
subsequent resuspension of the MPB again. At more energetic sites (A), fine sediment and MPB are 

deposited during slack tide, but these are resuspended on the next tide, maintaining a relatively 
homogenous system where MPB may be present but there is no stabilising effect of the biofilm due to 

frequent resuspension. These states may alter as local conditions change including seasonal, light nutrient 
and temperature differences (which would stimulate the MPB and biofilm growth), and hydrodynamic 

conditions which increase erosional stress on the surface sediment. 
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