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 1 

Abstract  2 

 3 

There is growing interest in harnessing renewable energy resources in Latin America. 4 

Converting the energy of the tides into electricity has the distinct advantage of being 5 

predictable, yet the tidal range resource of Latin America is largely unquantified. The northern 6 

part of the Gulf of California (GC) in Mexico has a relatively large mean tidal range (4m to 7 

5m), and so could be a potential site for tidal range energy exploitation. A detailed 8 

quantification of the theoretical tidal range energy resource was performed using tidal level 9 

predictions from a depth-averaged barotropic hydrodynamic model. In addition, a 0-D 10 

operation modelling approach was applied to determine the power that can be technically 11 

extracted at four key sites. The results show that the annual energy yield ranges from 20 to 50 12 

kWh/m2, while the maximum values are between 45 and 50 kWh/m2 in the vicinity of the Gulf 13 

of Santa Clara. Within the region, the Gulf of Santa Clara is one of the most promising, 14 

delivering a technical annual energy output of 125 GWh (ebb-only generation), 159 GWh (two-15 

way) and 174 GWh (two-way with pumping) within an impoundment area of 10 km2. This 16 

equates to 50%, 40% and 33% of the absolute value power relative to a much-studied reference 17 

site (Swansea Bay, UK) that has been under consideration as the world’s first tidal lagoon 18 

power plant. This study provides the basis for more detailed analysis of the GC to guide 19 

selection of suitable sites for tidal range energy exploitation in the region. 20 

 21 

Key words: Tidal range energy; resource assessment, annual energy yield, technical power; 22 

Gulf of California; Mexico. 23 

 24 

Highlights 25 

• Gulf of California (GC, Mexico) theoretical and technical tidal range energy 26 

assessment. 27 

• Peak tidal range between 5 and 8 m at sites in the Gulf of California. 28 

• Theoretical annual energy yield estimates in the northern region were ~ 40 to 50 29 

kWh/m2. 30 

• Gulf of Santa Clara is the prime candidate site for extractable tidal power output in the 31 

GC. 32 



 

 3 

1. Introduction 1 

 2 

Over the last two decades there has been increased interest in tidal energy exploitation [1]. 3 

Tidal energy offers many benefits compared to other sources of renewable energy, particularly 4 

because of the regular and predictable nature of ocean tides [2]. There are two forms of tidal 5 

energy. Firstly, tidal-stream energy exploits the kinetic energy of tidal currents through the 6 

deployment of devices that are able to convert the stream wise velocity of the currents into a 7 

rotational torque [2]. Secondly, tidal range energy exploits the potential energy from the water-8 

level differences between two bodies of water, over the rise and fall of the tide, through the use 9 

of an impounded area (lagoon or barrage; see [3] and [4]) to create a large water-level 10 

difference (between the sea and the impoundment) – to thus direct flow through turbines. The 11 

tidal-stream resource of the Gulf of California has been previously quantified [5], but very little 12 

is known about the tidal range resource in this near-resonant system. 13 

In this paper we focus on tidal range energy, which has a long history. Tide mills have utilised 14 

tidal energy to operate for at least the last 800 to 900 years [6]. However, the first large-scale 15 

commercial tidal range energy project was the 240 MW La Rance Tidal barrage in France, 16 

commissioned in 1967. Subsequent schemes in operation include Kislaya, Gubska in Russia 17 

[7], Lake Sihwa in South Korea [7-9], Jiangxia in China [10] and Nova Scotia in Canada [7]. 18 

These schemes involved the construction of large barrages along tidal inlets or bays [11]. There 19 

is a host of additional areas that have been identified as appropriate for tidal range energy 20 

extraction, and these are summarised in Neill et al. [12]. The bulk of the global tidal range 21 

energy resource is distributed among Canada (23%), Australia (30%), UK (13%), France 22 

(13%), US (11%), Brazil (5%), South Korea (2%), Argentina (1%), Russia (<1%), India (<1%) 23 

and China (<1%) [12]. Overall, it has been estimated that the global annual theoretical potential 24 

tidal range energy resource is ~25,880 TWh [12]. There is also increasing scope in utilising 25 

small bays and lagoons for tidal energy conversion, such as the proposal for a Swansea Bay 26 

tidal lagoon project in the UK [7]. These schemes aim to balance electricity production and the 27 

potential hydro-environmental implications of larger tidal barrage schemes that have been 28 

considered to-date.  29 

The demand for electricity in Latin America has increased considerably in recent decades due 30 

to substantial economic development and population growth [13]. This paper focuses on 31 

Mexico, the second largest country in Latin America (after Brazil). Mexico’s crude oil reserves 32 

ranks within the top 10 in the world [13], and its electric power consumption per capita is 33 

https://en.wikipedia.org/wiki/Rance_Tidal_Power_Station
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approximately 2,090 kWh, while in comparison in the USA and the UK the electricity power 1 

consumption per capita is 12,984 kWh and 5,129 kWh respectively [14]. In 2014, the mean 2 

electricity power consumption per capita in the world was reported as 3,128 kWh [14]. In 2012 3 

and 2013, Mexico consumed approximately 260 TWh and 220 TWh of electricity, respectively. 4 

80% of the electricity produced in Mexico is sourced from thermal power plants and, as a result, 5 

the country is highly dependent on the combustion of fossil fuels [15]. In 2013, total carbon 6 

dioxide (CO2) emissions from electricity production in Mexico were approximately 133 7 

million metric tons [16]. However, Mexico has set an ambitious goal of generating 35% of its 8 

total electricity from renewable sources by 2027, thus reducing its carbon emission footprint 9 

[16]. Accordingly, the Mexican government is keen to exploit sustainable energy resources and 10 

carry out detailed studies to more accurately identify suitable and viable sites [16]. To date, 11 

19% of Mexico’s electricity is generated by renewable energy resources such as solar, wind 12 

turbines, biomass, geothermal and hydropower energy [13]. Currently, no electricity is 13 

generated in Mexico with either tidal stream or tidal range energy conversion. 14 

In a companion study by Mejia-Olivares et al. [5], a detailed tidal-stream energy resource 15 

assessment was conducted for the Gulf of California (hereafter GC) in Mexico (Fig. 1a). Here, 16 

we focus on assessing the theoretical and technical tidal range energy resource in the northern 17 

part of GC which has a relatively large spring tidal range (7-8m). To-date, two reports [17,18] 18 

have identified sites in the GC with significant potential for tidal range energy conversion.  19 

 20 

Fig. 1: Location of the study area with bathymetry for the: (a) Gulf of California, with the 21 

locations of the tide gauge sites; and (b) the Northern Gulf of California. 22 
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Hiriart-Le Bert and Silva-Casarin [17] assessed the potential tidal range energy resource and 1 

the feasibility for a tidal barrage situated at San Felipe port in the northern-most reaches of the 2 

GC. Using the predictions from a numerical hydrodynamic model (not described in the report 3 

cited), they extracted predicted water level time series at San Felipe port, estimating a 4 

theoretical annual electricity production of 17,325 GWh, suggesting a basin area of 2,590 km2. 5 

Thus, basin area would have to be impounded by constructing a barrage of more than 72 km in 6 

length from San Felipe port at the Baja California Peninsula to Puerto Peñasco (Fig. 1b). 7 

Tapia-Olivas et al. [18] undertook a study identifying several potential sites suitable for tidal 8 

range energy extraction, including in the bays of: (i) Santa Maria near San Felipe port, (ii) San 9 

Luis Gonzaga southern San Felipe port, (iii) Los Angeles bay, (iv) El Pescador southern Los 10 

Angeles Bay, (v) El Soldado at the Bay of las animas, and (vi) San Rafael opposite San Lorenzo 11 

Island. Sites (i) and (ii) are situated in the northern reaches of the GC, and (iii) to (vi) are in the 12 

Midriff area. In the study by Tapia-Olivas et al. [18] the theoretical tidal range energy resource 13 

was estimated using predictions from a three-dimensional numerical model of the GC, 14 

configured using the Hamburg Shelf Ocean model (HAMSOM) developed by Backhaus [19] 15 

[20] and adapted by [21, 22]. In calculating the resource, they used a theoretical approach and 16 

assumed empirical losses due to turbine efficiency. Their results suggested that a 6.87 km2 17 

impoundment in the Bay of Santa Maria could generate 2.56 MW of power with a total energy 18 

extraction of 9.48 GWh/year.  19 

Results from these regional studies indicate that the northern part of the GC has sites with 20 

potential for tidal range energy extraction. However, considering the differences in estimated 21 

power energy between studies, the need for renewable energy power stations in the region, and 22 

recent developments in tidal range power modelling (e.g. [23, 24]), the tidal range resource of 23 

the region ought to be more rigorously revisited to understand the potential contribution tidal 24 

energy could make to Mexico’s renewable energy targets. 25 

The overall aim of this paper is to undertake a detailed quantification of the tidal range energy 26 

resource in the northern reaches of the GC. To address this aim there are three objectives, as 27 

follows: 28 

1. To map the tidal range distribution in the northern part of the GC; 29 

2. To estimate the theoretical annual potential energy density in this region, and how this 30 

resource varies subject to different bathymetry datasets while accounting for multiple tidal 31 

constituents; and 32 
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3. To determine the available energy that can be technically extracted whilst considering 1 

different operational strategies and certain tidal power plant technical specifications. This 2 

is accomplished using state-of-the-art operational models that reflect the operation of recent 3 

tidal power plant proposals internationally.   4 

The structure of this paper is as follows. After introducing the study region (Section 2), Section 5 

3 provides a brief overview of the model configuration and validation. Section 3 also outlines 6 

the methodology used to assess the available power density and theoretical annual energy yield 7 

in the northern GC. The results for each of the three objectives are summarized in Section 4. 8 

Key findings are discussed in Section 5 and conclusions provided in Section 6. 9 

 10 

2. Gulf of California Model Configuration and Validation 11 

This section provides a brief background to the study site, the GC. A general overview of the 12 

site is given (Section 2.1) and then the tidal conditions are described (Section 2.2).  13 

 14 

2.1 General characteristics 15 

The Gulf of California (GC), a semi-enclosed water basin located to the northwest of Mexico 16 

City, is approximately 1100 km long and approximately 45 to 240 km wide and encompasses 17 

more than 800 islands. The GC is divided into three parts, Southern (entrance of the Gulf), 18 

Central (normally known as Midriff area or Archipelago) and the northern Gulf. The average 19 

depth varies from around 200 m in the upper Gulf, to 3,600 m at its connection with the Pacific 20 

Ocean (Fig. 1a). It also contains several deep basins, such as Tiburon, Delfin and Wagner which 21 

are on average approximately 400, 800 and 200 m deep, respectively (Fig.1b) The Midriff 22 

region contains some important Islands, such as Smith, Salsipuedes, San Lorenzo, and San 23 

Esteban Islands.  The biggest of the Gulf islands are Angel de la Guarda and Tiburon. These 24 

Islands form channels, such as Ballenas channel, which is located between the Baja California 25 

peninsula and Angel de la Garda Island. The channel is around 14 km and is surrounded by 26 

deep water (~800 m).  Furthermore, there is a channel between the San Lorenzo and San 27 

Esteban Islands (San Lorenzo passage). The northern GC has relatively shallow waters depths 28 

ranging from 20 to 200 m depth within Wagner basin (Fig. 1b). The region of most interest to 29 

this study is the northern Gulf of California as this is the area with, presumably, the most 30 

potential for tidal-range energy exploitation due to its higher tidal range [21]. 31 



 

 7 

2.2 Tidal conditions 1 

Understanding and mapping of tides in the GC is fundamental in this study. The Pacific Ocean 2 

plays an important role in the generation of tides in the GC which are mainly generated by co-3 

oscillation with low frequencies of tides [25, 26]. The dominant tidal constituents in the GC 4 

are the M2, S2, K1 and O1 constituents [21, 27, 28]. Fig. 2 shows the 3 main semidiurnal and 5 

diurnal tidal constituents. The M2 constituent has an amplitude of around 0.5 m at the entrance 6 

of the GC and amplifies to 2.3 m in the northern regions (Fig. 2a), while the S2 amplitude 7 

increases from south to north from 0.2 m to 0.8 m (Fig. 2). The diurnal tidal constituents have 8 

lower amplitudes (Fig. 2 d, e and f) and range from 0.05 m to 0.6 m.  The amplification of the 9 

semidiurnal components occurs because the GC is in near resonance within the principal 10 

semidiurnal component, similar to the Bristol Channel in the UK [29-33].  The tides in the GC 11 

are mixed; mainly semidiurnal in the southern and northern GC and are mixed mainly diurnal 12 

in the Central GC (Figure 2b). 13 

 14 

  15 



 

 8 

 

Fig. 2 Amplitude of the main semidiurnal and diurnal tidal constituents: (a) M2, (b) S2, (c) N2, (d) K1, (e) O1 and (f) Q1. Source TELEMAC model 

described in Section 3. 
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3. Gulf of California Model Configuration and Validation 1 

We applied a depth-averaged barotropic model for the GC, configured by Mejia-Olivares et al. 2 

[5]. Here, we briefly describe the model setup (Section 3.1) and comparisons of model output 3 

with measured water level data (Section 3.2); but also direct the reader to the more detailed 4 

description of the model configuration and validation provided in [5]. 5 

 6 

3.1 Model configuration  7 

The model was configured using the TELEMAC modelling suite [34]. TELEMAC is a popular 8 

model choice for tidal energy resource assessment characterization, mainly, due to the variable 9 

mesh resolution (e.g., [35], [36] and [37]). The generated model mesh has a resolution of 0.507 10 

(~60 km) along the open boundary in the Pacific (Fig. 3a) and increases to 1/120 (~1 km) 11 

along the coastline in the northern reaches of the GC (Fig. 3b). The bathymetry data 12 

interpolated onto the mesh was downloaded from the General Bathymetry Chart of the Oceans 13 

(GEBCO) [38] at a 30 arc-second resolution (~900 m). Higher resolution (~450 m) bathymetry 14 

data in the northern GC (obtained from the Centre for Scientific Research and Higher 15 

Education at Ensenada; CICESE; (http://www.cicese.edu.mx)), was merged within the 16 

GEBCO gridded data (both relative to mean sea level). As a sensitivity test we ran simulations 17 

with the bathymetry defined just using GEBCO and then another using ETOPO bathymetry 18 

data [39], and this is discussed later in the paper. The open ocean boundary was driven with 19 

tidal levels derived from the Oregon State University Tidal Inversion Software (OTIS) TPXO 20 

7.2 database [40] [41] using eight principal (M2, S2, N2, K2, K1, O1, P1, Q1), three non-linear 21 

(M4, MS4, MN4) and two long period (Mf, Mm) tidal constituents. A constant spatial uniform 22 

Manning’s friction number of 0.030 s/m1/3 was used.  23 

http://www.cicese.edu.mx/
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 1 

Fig. 3: (a) Domain area model of the Gulf of California (b) Northern GC 2 

3.2 Model Validation  3 

The model has been extensively validated against tide gauge and ADCP measurements to 4 

ensure hydrodynamic conditions are accurately reproduced in the GC (see reference [5] for 5 

detailed description). Predicted tidal levels were compared against measured water levels at 11 6 

tide gauge sites in the region, the locations of which are shown on Fig. 1a. The tide gauge 7 

datasets were obtained from CICESE. We undertook a harmonic analysis of the tide gauge 8 

records using T_TIDE [42] to extract the astronomical tidal component. Time-series 9 

comparison of the measured and predicted tidal levels are shown in Fig. 4 for December 2015, 10 

revealing good agreement at all sites. The largest differences are at La Paz (site 6 in Fig. 1a) 11 

which is located in an enclosed bay with a complex bathymetry that is not accurately 12 

represented at our present model resolution (3 km in this region).  13 

We calculated the differences between the amplitude and phases of the main tidal constituents 14 

and used three error metrics to statistically assess model performance (Table 1) (again see 15 

reference [5] for further details). In summary, mean amplitude differences across the 11 16 

validation sites were less than 7 cm for the main constituents, with the exception of K1 which 17 

had an average difference of 20 cm. The mean phase differences were 10 or less for M2 and 18 

O1, and were below 21 difference for the remaining constituents. For each of the time-series 19 

(shown in Fig. 4), the absolute difference between each hourly measured and predicted value 20 

was computed. The mean root mean square error (RMSE) and standard deviation of the 21 

absolute differences were calculated and correlation coefficients between the measured and 22 
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predicted time-series were also derived. The largest RMSE was predicted at Guerrero Negro 1 

(0.25 m), while the smallest were at Ensenada (0.03 m), Cabo san Lucas (0.06 m) and Loreto 2 

and Manzanillo (0.07 m) (Table 1). The mean standard deviation across the validation sites 3 

was 0.078 m, and the mean correlation coefficient was 0.94. In general, this comparison 4 

demonstrates that the model performs well in reproducing tidal levels in the GC.  5 

 6 

Fig. 4: Comparison of the measured (blue) and predicted (red) tidal time-series at: (1) 7 

Ensenada; (2) San Quintin); (3) Isla Cedros; (4) Guerrero Negro; (5) Cabo San Lucas (6) La 8 

Paz; (7) Loreto; (8) Bahia de los Angeles; (9) San Felipe; (10) Manzanillo; (11) Acapulco. 9 

Reference numbers based on Fig. 1 sites list. 10 

 11 
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Table 1: Statistical validation error measures for the 11 tide gauge stations including all model 13 

tidal constituents of the simulation. See [5] for the time period used for the validation. 14 

Site 

number 
Site Name 

RMSE (m) 

 

% 

Error 

STD (m) 

 

Correlation 

Coefficient 

1 Ensenada 0.03 1.2 0.02 0.99 

2 San Quintin 0.11 4.5 0.07 0.97 

3 Isla Cedros 0.10 4.4 0.09 0.96 

4 
Guerrero 

Negro 
0.26 9.6 0.15 0.84 

5 
Cabo San 

Lucas 
0.06 3.0 0.04 0.99 

6 La Paz 0.19 10.9 0.12 0.75 

7 Loreto 0.08 5.9 0.05 0.95 
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8 
Bahia de los 

Angeles 
0.09 3.0 0.07 0.98 

9 San Felipe 0.25 3.8 0.17 0.99 

10 Manzanillo 0.07 6.1 0.05 0.94 

11 Acapulco 0.07 7.7 0.05 0.91 

All Mean 0.11 5.0 0.07 0.86 

 1 

We assessed the sensitivity of the model predictions to bathymetry. To do this, the model was 2 

run for three scenarios over a 30-day period in December 2015, using bathymetry data from 3 

two sources: (1) GEBCO_2014 [38]; and (2) ETOPO [39], which are available at resolutions 4 

of ~900 m and ~775 m, respectively. A third run used GEBCO data merged with higher 5 

resolution data from CICESE.  Percentage errors between predicted and measured tidal levels 6 

were calculated, for each of the three different bathymetries, at each of the 11 tide gauge 7 

stations and listed in Table 2.  8 

Table 2. Statistical percentage errors measure of tidal level constituents for the 11 tide gauges 9 

stations using different bathymetry datasets considering all the tidal constituents mentioned in 10 

section 3. 11 

Site 

number 
Site Name 

Error (%) 

GEBCO ETOPO 
GEBCO merged 

with CICESE 

1 Ensenada 1.16 1.2 1.2 

2 San Quintin 4.4 4.8 4.5 

3 Isla Cedros 4.3 4.5 4.4 

4 Guerrero Negro 9.4 8.9 9.6 

5 Cabo San Lucas 2.10 2.7 3.0 

6 La Paz 11.2 11.5 10.9 

7 Loreto 6.3 4.5 5.9 

8 
Bahia de los 

Angeles 
7 6.8 3.0 

9 San Felipe 5.1 3.3 3.8 
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10 Manzanillo 6 6 6.1 

11 Acapulco 7.4 7.4 7.7 

All Mean 5.4 5.6 5.0 

 1 

 2 

4. Methodology for resource characterisation  3 

In this section, we describe how we used the validated model to assess tidal levels and estimate 4 

the energy resources of the region, including undertaking sensitivity tests using different 5 

bathymetry sources in the model and varying numbers of tidal constituents to assess 6 

sensitivities on the analysis results.  7 

 8 

4.1 Tidal level analysis 9 

Tidal levels across the GC were assessed, with a focus on the northern region, to determine the 10 

location of the highest tidal range and how it varies over time. The model was run from 27/11/ 11 

2015 to 31/12/2015 to coincide with time period when observations and results were recorded 12 

at every grid point every 10 minutes. The first three days were considered as the warm up 13 

period and were discarded from the analysis. At each node, harmonic analysis was conducted 14 

on the monthly predicted tidal level time-series using T_TIDE [42]. We then used the tidal 15 

harmonics to predict tidal levels for a full year, which reduced the computational expense in 16 

running the relatively high-resolution model for a year. In turn, the annual maximum and mean 17 

tidal range from the annual time-series at the element nodes were calculated. We compared this 18 

to the maximum and mean tidal range, computed using the combined M2 and S2 tidal 19 

constituents alone.  20 

 21 

 22 

 23 

4.2 Methodology to assess theoretical energy density and annual energy yield 24 

Sequentially, we quantified the theoretical energy density (per m2) in the GC. The energy was 25 

estimated following the approach of [3] in which the theoretical potential energy is given by: 26 
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𝐸 =
1

2
  𝜌𝑔𝐴 𝐻2  (units in J )                                 (EQ1) 1 

where A is the area of the impounded basin, 𝜌 is the density of sea water (1025 kg/m3), g is the 2 

acceleration due to gravity (9.81 m/s2), and h (in m) is the head, normally defined as the water 3 

level differences between HW (high water) and LW (low water) peaks of a tidal elevation time 4 

series. The annual energy yield resource per m2 (Eannual) was then calculated as follows: 5 

𝐸𝑎𝑛𝑛𝑢𝑎𝑙 = ∑  (
1

2
𝜌𝑔𝐴𝐻𝑖

2) 𝑛
𝑖=1   (units J )                      (EQ2) 6 

where n is the accumulated water transitions from HW to LW, or LW to HW. The potential 7 

energy estimated by Eq. (1) was divided by the impounded area to produce a metric that 8 

represents the spatially varying potential energy (i.e., the energy density, as 𝐸 = 1
2⁄ 𝜌𝑔ℎ2 in 9 

J/m2). 10 

In order to calculate the annual energy yield (per m2) using Eq. (2), the head H was first 11 

extracted from each transition from high to low water and vice versa, from the elevation-time-12 

series. In turn it was used to calculate the energy density for each consecutive flood and ebb 13 

phase of the tidal cycle, and then accumulated for 1,411 cycles that occur in a year.  14 

Finally, we undertook a series of sensitivity tests in which we estimated and compared the 15 

theoretical energy density for time-series derived using all available tidal constituents 16 

(analysing monthly tidal predictions with T_TIDE gave 29 tidal constituents) and then just for 17 

the main semi-diurnal constituents, M2 and S2. We also compared energy estimates from model 18 

runs that used: (1) just the GEBCO bathymetry; (2) just the ETOPO bathymetry; and (3) the 19 

GEBCO data merged with the higher resolution data from CICESE in the northern part of the 20 

GC.  21 

 22 

4.3 Methodology to assess the technically extractable energy 23 

The performance of a tidal-range power plant is related to the operational strategy and the 24 

design components [12]. Here we aim to provide a first-order estimation of the technical tidal 25 

range resource that can be extracted using a 0D modelling approach [3]. This 0-D modelling 26 

approach has been applied on several occasions to assess the performance of tidal-range 27 

schemes [43], [44], [45], and  is based on the principles of continuity as implemented in [46], 28 

building on earlier operational modelling studies from [47] and [48]. Operation sequence 29 

algorithms dictate the flow through hydraulic structures and by extension (in the case of 30 
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turbines) the power produced or consumed (while pumping). There are multiple ways of 1 

operating a tidal power plant, as summarised in the schematics of Fig. 5 which were produced 2 

using the model parameters summarised in Table 3. For a more detailed description of the ebb-3 

generation and two-way generation, the interested reader is directed towards Angeloudis and 4 

Falconer [49] and for two-way generation with pumping see Yates et al. [44].  5 



 

 16 

 1 

Fig. 5: Typical operation strategies for a tidal range power plant as simulated by the 0-D model: 2 

(a) one-way ebb generation, (b) two-way generation and (c) two-way generation with pumping 3 

as in [50]. ηo  is the outer water elevation in the seaward side of the hydraulic structures  while 4 

ηi  is the inner water elevation within the tidal power plant. 5 

 6 
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Table 3: Operational parameters used for the 0-D operational model for typical operational 1 

strategies employed in tidal range power plants. EBB = One-way ebb generation, TW = Two-2 

way generation, TWP = Two-way generation with pumping. 3 

 4 

Operation 

specifications 
Notation EBB TW TWP 

Holding duration 

(ebb/flood) 

(hours) 

th,e  / th,f 3.50 / 0.00 3.00 / 3.00 2.00 / 2.00 

Pumping duration 

(ebb/flood) 

(hours) 

tp,e / tp,f 0.00 / 0.00 0.00 / 0.00 0.50 /0.50 

Max Generation w/o 

sluicing (ebb/flood) 

(hours) 

tg,e / tg,f 6.00 / 0.00  3.00 / 3.00 3.00 / 3.00 

 5 

Our approach hypothesises the deployment of a tidal lagoon plant at four sites of interest, as 6 

follows: Marker A, San Felipe; Marker B, Puerto Peñasco; Marker C, Playa Encanto and 7 

Marker D, Gulf of Santa Clara), the locations of which are indicated in Fig. 1b. We selected 8 

these four locations as the mean tidal range here exceeded 4 m and the water depths were below 9 

20 m which renders them suitable for the construction of a lagoon while being located close to 10 

national electricity grid points, as discussed later in Section 6. A constant upstream surface area 11 

of 10 km2 is assumed as in [48]. This entails a scenario that would be expected for offshore 12 

tidal lagoon schemes that would not be influenced by intertidal area (e.g. [51]). As a result, the 13 

water volume impounded is assumed to linearly vary with the water depth h. The impounded 14 

area A = 10 km2 corresponds to a modest size tidal range scheme. For example, the 320 MW 15 

Swansea Bay tidal lagoon project within the Bristol Channel, UK, perceived as a pilot-scale 16 

project, has a maximum surface area of 11.6 km2 [7].    17 

The formulations employed for the flow through hydraulic structures at every time step are 18 

outlined in [46] involving the orifice equation for sluice gates using a discharge coefficient of 19 

CD = 1.0  (consistent with the sensitivity study of [52]) and a sluice gate cross-sectional area of 20 

As = 100 m2. For the turbine parametrisation, representative hill charts are required to 21 

incorporate the performance of low-head bulb turbine designs; this technology is typically 22 

installed for power generation from tidal range structure proposals. The calculation process 23 



 

 18 

followed for the hill chart has been described by [53]. In particular, we assume that generation 1 

will be facilitated by turbines with a capacity of 20 MW, a diameter D = 7.35 m in accordance 2 

with recent UK tidal range energy studies [24], [54], [7]. In Fig. 6 the calculated 20 MW turbine 3 

hill chart is plotted together with an idealized representation from first principles. The idealized 4 

representation omits efficiency factors acknowledged by the hill chart and demonstrates how 5 

lower flows are predicted to generate an equivalent amount of power depending on the head 6 

difference H subjected to the turbine. A comparison between the two curves also suggests 7 

significant efficiency losses when generating at relatively low head differences; further 8 

compromising the generation during neap tides when H would be relatively lower. Moreover, 9 

the algorithms account for a minimum head difference that will be required to generate any 10 

electricity, where in this case we assume that hmin = 1 m. 11 

 12 

Fig. 6: Idealized and calculated hill chart based on [46]. The hill chart Power (Pchart) and 13 

Discharge (Qchart) refers to a 20 MW 7.35 m diameter turbine as per the implementation of  14 

[46]. For the idealized hill chart, Cd is the discharge coefficient (=1.0), Pmax = is the turbine 15 

capacity (=20 MW) and AT the cross-sectional area of the turbine (assumed to be =  π 7.352 /4 16 

m2 ) and H the head difference. 17 

 18 

In the absence of detailed information about specific schemes at the potential sites in Fig. 1b, 19 

certain assumptions must be included in relation to the tidal power plant configuration. Namely, 20 

the optimum number of turbines and sluice gates will vary for schemes at different locations 21 

according to the available potential energy, amongst additional constraints of a 22 
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geomorphological, environmental and electrical nature. For our preliminary assessment we 1 

formulate the following expression to estimate the capacity C (in W): 2 

𝐶 = 𝜂
𝜌𝑔𝐴�̅�2

𝑇 𝐶𝐹
             (EQ3) 3 

Where η is the overall generation efficiency, T = 44712 s (12.42 h) is the tidal period, CF is 4 

the capacity factor and �̅� is the mean annual tidal range. It is generally acknowledged that 5 

approximately 27 – 55 % of the available energy resource can be harnessed [43], [46]. We thus 6 

assume that the maximum potential energy that can be harnessed is subject to an efficiency of 7 

η = 0.55. The capacity factor of conventional single-basin tidal range structures can accordingly 8 

vary between 0.15 – 0.25 depending on the operation performance. We assume that any 9 

proposed scheme in the GC will aim for a value of CF = 0.15.  In turn, the number of turbines 10 

Nt will be = C/Pmax and assume for the sluice gate number Ns = Nt /2. These parametric 11 

relationships have been applied here on an empirical basis, and site-specific optimisation will 12 

be essential for more comprehensive practical studies that also acknowledge the site 13 

bathymetry, marine spatial planning, economic and environmental constraints. 14 

 15 

5. Results 16 

The results of this paper are presented in three parts, each addressing one of the three study 17 

objectives (see Section 1).  18 

 19 

5.1 Spatial variation in tidal range 20 

The first objective was to map the spatial distribution in tidal range in the northern part of the 21 

GC. The annual maximum and annual mean tidal range is shown in Fig. 7a and b, respectively. 22 

In the vicinity of the Midriff Islands, the maximum tidal range is in the order of 2 m. The tidal 23 

range increases towards the north due to effects of tidal resonance that amplify the tidal wave 24 

as it propagates towards the northern coast, facilitating a maximum during spring tides of 25 

approximately 8 m in the northern most part of the Gulf (Fig. 7a). The mean tidal range is 26 

between 4 to 5 m in the northern most part of the Gulf (Fig. 7b and Table 4 and 5). The annual 27 

maximum and annual mean tidal range, calculated using the M2 and S2 tidal constituents, are 28 

shown in Fig. 7c and d. If we consider the M2 and S2 tidal constituents alone, the annual 29 



 

 20 

maximum tidal range reduces significantly from 8 to 5 m in the northern part of the Gulf (Gulf 1 

of Santa Clara region), while the annual mean tidal range reduces from 5 to 4 m. 2 

 3 

 4 

Fig. 7: (a) Maximum tidal range and (b) mean tidal range based on all model constituents, (c) 5 

Maximum tidal range and (d) mean tidal range using predicted tide with M2 plus S2 tidal 6 

constituents. All plots use the GEBCO data merged with the higher resolution data from 7 

CICESE, for the northern Gulf of California, with the bathymetry contours overlaid as white 8 

lines. 9 

 10 

Table 4: Summary of sites considered for operational models in the Gulf of California, and a 11 

reference site based on the UK where tidal range projects have been considered. The table 12 

summarises, the mean tidal range, the annual energy per unit area, and the installed capacity 13 

calculated based on Eq3. 14 

# 

Site 

 Name 

Latitude 

(o) 

Longitude 

(o) 

𝑯 ̅̅ ̅ 

(m) 

Eyr/A 

(kWh/m2) 

C/A 

(MW/km2) 

A San Felipe 31.088 

 

-114.740 4.37 45.2 15.8 

B 

Puerto 

Peñasco 31.287 -113.675 4.05 38.6 13.5 

C 

Playa 

Encanto 31.264 -113.812 4.08 39.2 13.7 



 

 21 

D 

Gulf of 

Santa 

Clara 31.489 -114.477 4.59 49.8 17.4 

Reference 

Swansea 

Bay 51.58 -3.90 6.61 94.7 36 

 1 

5.2 Energy density and annual theoretical resource 2 

The second objective was to estimate the theoretical potential energy density as well as the 3 

theoretical annual energy yield of the region, and how this resource varies subject to different 4 

bathymetry datasets while accounting for multiple tidal constituents. The annual maximum and 5 

annual mean energy density for an individual transition from High water to Low water in the 6 

region is shown in Figs. 8a and b, respectively. Energy density varies spatially and reflects, as 7 

expected, the spatial distribution of tidal range, shown in Figs. 8a and b. The maximum values 8 

are located at the upper Gulf (opposite the Gulf of Santa Clara) where water depths are less 9 

than 30 m and energy density values are around 0.1 kWh/m2. Moreover, power density is much 10 

lower around the Midriff region, ranging from 0.03 to 0.04 kWh/m2 where water depths vary 11 

between 40 and 180 m... Moreover, power density is much lower around the Midriff region, 12 

ranging from 0.03 and 0.04 kWh/m2 where water depths vary between 40 to 180 m. The annual 13 

mean energy density for each elevation transition in the upper Gulf is between 0.035 and 0.040 14 

kW/m2 while in the middle and lower northern GC it is smaller, between 0.025 and 0.018 15 

kW/m2, respectively as tidal resonance effects are no longer prevalent.  16 

We also estimate the annual maximum and mean power density using predicted tidal level 17 

time-series considering just the M2 plus S2 tidal constituents and results are shown in Figs. 8c 18 

and d. Comparing Fig. 8a with Fig. 8c, the maximum energy density is almost halved when 19 

only using considering the M2 and S2 tidal constituents, with an indicative reduction from 0.09 20 

to 0.05 kWh/m2 at the maximum values. Accordingly, the mean energy density reduces from 21 

0.035 to 0.030 kWh/m2 (Fig. 8b and d).  22 

 23 

  24 

 25 

 26 
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 1 

 2 

Fig. 8: Maximum energy density based on (a) all model constituents, (c) only M2 plus S2 tidal 3 

constituents. Mean energy density (b) all model constituents (d) only M2 plus S2 tidal 4 

constituents. All plots use the GEBCO data merged with the higher resolution data from 5 

CICESE, for the northern Gulf of California, with the bathymetry contours overlaid as white 6 

lines. 7 

 8 

Time series of tidal levels and potential energy density (calculated as instantaneous 9 

contributions from each transition from HW to LW and vice versa) are shown in Fig. 9a to 9d 10 

for four sites in the GC (the locations of which are shown in Fig. 1b). We consider that these 11 

areas have potential for constructing a tidal range power plant, as the mean tidal range exceeds 12 

5 m and the topography and water depth are suitable for the construction of a lagoon. The mean 13 

annual power density in those locations is in the range of 0.015 to 0.038 kW/m2.  14 
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 1 

Fig. 9: Monthly energy density and tidal levels at (a) San Felipe, (b) Puerto Peñasco, (c) Playa 2 

Encanto, (d) Gulf of Santa Clara and (e) Swansea Bay, UK. The latter is used as a reference 3 

for a tidal energy project that has been considered in the Bristol Channel. 4 

 5 

We also estimated the theoretical annual energy yield (Fig. 10a). The potential annual energy 6 

yield ranges from 20 - 50 kWh/m2. The maximum values are in the northern region of the GC 7 

and are around 45 - 50 kWh/m2 in the vicinity of the Gulf of Santa Clara. At Puerto Peñasco, 8 

San Felipe and Playa Encanto the annual yield energy is lower, ranging from 30 and 35 9 

kWh/m2. In the southern reaches of the northern GC the annual yield energy is lower, between 10 

20 to 25 kWh/m2. In a similar way, we compared the annual yield energy based on annual tidal 11 
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predictions estimated using only the M2 and S2 tidal constituents (Fig. 10b). On average, the 1 

resource is 10 to 13 kWh/m2 higher when considering all 13 tidal constituents analysed, 2 

compared to simulations based on M2 and S2 alone. 3 

 4 

Fig. 10: Annual energy yield (a) all model constituents (b) M2 plus S2. All plots use the GEBCO 5 

data merged with the higher resolution data from CICESE, for the northern Gulf of California, 6 

with bathymetry contours overlaid as white lines. 7 

 8 

Three different bathymetry products were used to estimate the theoretical annual energy yield 9 

and the contrasting results are shown in Fig. 11. It is clear the resource estimates are 10 

underestimated when the GEBCO or ETOPO are used individually. The ETOPO bathymetry 11 

gives a maximum resource of 28 kWh/m2 (Fig. 11b) in the northern region, while the GEBCO 12 

bathymetry gives a maximum resource of 20 kWh/m2 in this area (Fig. 11c). These are around 13 

50% of that estimated when we combine the higher resolution CICESE bathymetry data with 14 

GEBCO (Fig.10a).  15 

 16 

 17 

 18 

 19 
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 1 

Fig. 11: Annual energy yield using different bathymetry products: (a) GEBCO merged with 2 

CICESE (b) ETOPO and (c) only GEBCO with the bathymetry contours overlaid as white 3 

lines. 4 

 5 

5.3 Technical tidal power output 6 

The third objective was to determine the energy that can be technically exploited whilst 7 

considering different operational strategies and certain tidal range power plant technical 8 

specifications. In Fig. 9a to 9d we consider the tidal signal and the theoretical energy 9 

accumulated in each cycle in sites of interest in the GC. Fig. 9e appends results to be used as a 10 

reference based on the theoretical energy from a site where a tidal lagoon proposal has been 11 

extensively studied, the Swansea Bay area in the Bristol Channel (UK) [54][55][50]. By 12 

observation, the GC is far less energetic in all four locations and this can also be appreciated 13 

in Table 5. The tidal range is 30-38% less than for the reference site in the UK. However, this 14 

difference corresponds to a 47-59% reduction in the theoretical energy, attributed to the non-15 

linear relationship between tidal range and the available theoretical energy (see Eq. 1). 16 

 17 

 18 

 19 

 20 



 

 27 

 1 

Table 5: Technical annual energy output and operational efficiency for tidal range energy 2 

schemes at selected sites along the coast of the Gulf of California. The table includes results 3 

from a reference site in the UK that has been identified as feasible for the deployment of the 4 

technology.  In all cases the impounded area is = 10 km2. 5 

 6 

Operational modelling provides further insights into how tidal power plants would perform in 7 

the GC. The power output from each of the three strategies is summarised in Fig. 12, where the 8 

intervals for power generation can be calculated more accurately. As with every tidal energy 9 

technology, considerably less energy is available during neap tidal conditions, with shorter 10 

intervals of power generation. One-way operation generates electricity only on the incoming 11 

(flood) or outgoing flow (ebb) tide, while two-way operation generates electricity during both 12 

periods (ebb and flood) [3]. Two-way generation delivers four pulses of electricity over 24h, 13 

which helps distribute the tidal power contributions. Two-way generation with pumping 14 

corresponds to improved performance, but this comes with the requirement that energy is 15 

invested to pump water and increase the head difference that turbines will then generate [7] 16 

from as illustrated in Fig. 12.  17 

 18 

# Site Name 

Ebb-only (EBB) Two-way (TW) 

Two-way with 

pumping 

(TWP) 

Eyr 

(Gwh) 

η 

(%) 

Eyr 

(GWh) 

η 

(%) 

Eyr 

(GWh) 

η 

(%) 

A San Felipe 112 24.8 133 29.7 144 31.9 

B Puerto Peñasco 93 24.1 100 25.9 104 27.1 

C Playa Encanto 94 24.1 103 26.3 108 27.5 

D Gulf of Santa Clara 125 25.1 159 32 174 35 

Reference Swansea Bay 250 26.4 393 41.1 520 55 
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 1 

Fig. 12: Water elevations and power produced for the three operational strategies for point D 2 

in Fig. 1b (Gulf of Santa Clara). EBB= Ebb-only generation, TW= Two-way generation, TWP 3 

= Two-way generation with pumping. ηι  = inner water elevations, ηo = outer water elevations. 4 

Negative values of power relate to pumping. 5 

 6 

Even though it can be observed that energy can indeed be harnessed from the tides in the Gulf 7 

of California, there are significant efficiency losses as summarised in Table 5. The power plants 8 

consistently perform worse based on the maximum available head at any given site (in this 9 

work, the GC in Mexico site relative to the reference one in Swansea Bay). The performance 10 

aspect is associated with the head differences between the turbine deployment and the head 11 

available at the site. By examining the hill chart in Fig. 6, the efficiency of practical turbine 12 

designs increases with an ascending head difference. The lower efficiency can be observed by 13 

the significantly greater discharge of Qchart relative to Qideal., where in the latter hydraulic and 14 

other losses are not taken into account. More details on the bulb turbine performance efficiency 15 

for tidal range structures can be found in Aggidis and Feather [53]. The best performing site in 16 

the GC is the Gulf of Santa Clara (Point D in Fig. 9d & 12) which delivers 50%, 40% and 33% 17 

of the energy relative to the reference site for ebb-only, two-way and two-way with pumping 18 

strategies respectively.  19 
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 1 

6. Discussion 2 

In this paper, we have undertaken a detailed quantification of the theoretical and technical tidal 3 

range energy resource available in the northern part of the GC. Even though a number of 4 

parameters are significant in tidal range energy resource assessments, the most important is 5 

clearly tidal range. In this study, we mapped tidal range throughout the GC using results from 6 

a validated hydrodynamic numerical model. The annual maximum and mean tidal range is 7 

around 8 m and 5 m respectively in the northern most part of the GC, in the vicinity of the Gulf 8 

of Santa Clara and San Felipe Bay.  9 

The annual energy density ranges from 20 to 50 kWh/m2 in the northern part of the GC. The 10 

maximum values are between 45 and 50 kWh/m2 in the vicinity of the Gulf of Santa Clara, 11 

where the tidal range peaks. For comparison, the annual energy yield estimated for areas with 12 

the world’s largest tidal ranges by [12] (e.g. Hudson Bay, Canada; Bristol Channel, UK; 13 

Patagonian Shelf; North-western Australian Shelf) is of order 100 kWh/m2 or more. Also in 14 

the study conducted by Neill et al. [12], a minimum acceptable annual yield of 50 kWh/m2 is 15 

suggested, with a maximum water depth of 30 m (based on construction costs of the 16 

embankment being prohibitive in deeper waters). In the vicinity of the Gulf of Santa Clara and 17 

San Felipe Bay these criteria are just met.  18 

We determined the energy that can be technically converted at four sites at the Upper Gulf of 19 

California showed by Marker A, San Felipe; Marker B, Puerto Peñasco; Marker C, Playa 20 

Encanto and Marker D, Gulf of Santa Clara, in Fig. 1b. We considered different operational 21 

strategies (e.g. flood versus ebb generation) and certain tidal range power plant technical 22 

specifications. We contrasted these sites with the proposed tidal lagoon in Swansea Bay in the 23 

Bristol Channel of the UK, which has been extensively studied (e.g. [54] [55]). The best 24 

performing of the four selected sites in the GC is Gulf of Santa Clara (Point D in Fig. 9d & 12). 25 

This site has a technical annual energy output of 125 GWh (ebb-only), 159 GWh (two-way) 26 

and 174 GWh (two-way with pumping operational scheme), which corresponds to 50%, 40% 27 

and 33% respectively of the absolute power relative to a much studied reference site (Swansea 28 

Bay in the UK) utilizing a similar impounded area. In this study we have, for an early-stage 29 

assessment, used a 0-D modelling approach. This methodology omits the influence of the 30 

structure on the localised hydrodynamics, and assumes a constant impounded surface area with 31 

negligible water elevation variations in its interior [3]. The operational algorithms employed in 32 
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0-D (Fig. 5) have previously been linked with 2-D hydrodynamic models to quantify 1 

hydrodynamic implications associated with the construction of tidal range structures [55], [24] 2 

and [56]. Comparisons between the two approaches (0-D and 2-D) suggest that similar findings 3 

can be obtained when assessing small-scale projects under certain conditions, and are 4 

characterised by a degree of uncertainty due to storm surges [57]. Nevertheless, a positive 5 

agreement has been observed for schemes that do not feature extensive intertidal regions 6 

upstream [12]. In contrast, caution has been advised for larger schemes such as the Severn 7 

Barrage proposal in the UK (impounding approximately 573 km2, [57]), or for multiple 8 

medium-sized schemes operating concurrently. Discrepancies have been reported in the case 9 

of designs that occupy significant proportions of estuarine regions that are tidally affected and 10 

with a substantial proportion of the impounded area comprising shallow water regions 11 

susceptible to extended periods of exposure. Larger impoundments are expected to correspond 12 

to a noticeable impact on the estuarine tidal resonance by compromising the established 13 

evolution and reflection of the tidal waves, thus markedly altering the downstream tidal 14 

conditions that drive the operation and dictate the extractable energy resource. In contrast, 15 

schemes that comprise extensive shallow water regions might experience non-linear and rapid 16 

surface area changes that would simply not be captured through a 0-D modelling approach. 17 

With regards to the bathymetry data, the results indicate that the percentage error are overall 18 

lower for the third run, where GEBCO and CICESE bathymetric datasets are merged. 19 

Therefore, including higher resolution bathymetry data places tidal-energy resource of the Gulf 20 

of California higher than initial estimates, compared to publicly available/ coarse data products, 21 

which has interesting implications for assessments focusing on the potential global resource 22 

and tidal energy industry size (e.g. [59]). Also, it is important to mention that the best validation 23 

was obtained utilising GEBCO merged with CICESE data sets, consequently we decided to 24 

not run a new simulation utilising bathymetry data between ETOPO merged with the 25 

bathymetry from CICESE.  26 

As we previously highlighted in relation to tidal-stream energy within the GC study conducted 27 

by [5], grid connectivity in the region presents an additional challenge. The nearest electricity 28 

connection point to the Mexican national network is located in Sonora County, which is ~450 29 

km from Playa Encanto. North of the GC there are two electricity connection points on the 30 

Mexican/US border, but these are not connected to the national Mexican network. These points 31 

are located ~200 and ~370 km to San Felipe Bay. Access to this region, due to its topography, 32 

lack of fresh water and dry weather make this area unattractive for urban development. 33 
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Furthermore, all four selected sites would be closely in phase with one another (Fig. 9a-d). 1 

Therefore, the tidal-range energy that could be could be converted into electricity from the GC 2 

might be more suitable for off-grid applications (e.g. [60]).  3 

 4 

6. Conclusions 5 

The aim of this paper was to undertake a detailed quantification of the tidal range energy 6 

resource in the northern reaches of the GC. This study used tidal level predictions from a 7 

TELEMAC depth-averaged barotropic hydrodynamic model. The model was validated against 8 

tide gauge records, demonstrating a high level of accuracy.  9 

The simulations showed that the maximum tidal range exceeds 8 m in the northern most part 10 

of the GC, in the vicinity of the Gulf of Santa Clara and San Felipe Bay. However, the mean 11 

tidal range is closer to 5 m in this area. In the northern part of the GC the annual energy density 12 

yield ranges from 20 to 50 kWh/m2. The maximum values are between 45 and 50 kWh/m2 in 13 

the vicinity of the Gulf of Santa Clara, where the tidal range is highest. 14 

We adopted a 0-D modelling approach to estimate the energy that can be technically converted 15 

at four sites in the northern GC, considering typical operational strategies and actual tidal range 16 

power plant technical specifications. Results showed that the site with the highest energy 17 

potential is in the Gulf of Santa Clara which hosts the highest mean tidal range in the GC (4.59 18 

m, approx. 2 m less than the average of Swansea Bay, UK). This site would generate a 19 

theoretical annual yield of 49.8 kWh/m2. Assuming an impounded area of 10 km2, the annual 20 

technical yield of a tidal range power plant becomes 112 GWh (for an ebb flow scheme), to 21 

133 GWh (for a two-way ebb and flood flow scheme), to 144 GWh (for a two-way operational 22 

scheme with pumping) indicating capacity factor of 24.8%, 29.7% and 31.9% respectively.  23 

The northern Baja California region presents important challenges to distribute electricity 24 

locally as well as exporting electricity throughout the northwest border. Furthermore, in 2015 25 

electricity production figures indicated that the Baja California North has a limited electricity 26 

production with only 5% of the national electricity demand (13,122 GWh) [58]. In this region, 27 

the best performing sites are in the Gulf of Santa Clara. Here, utilizing two-way generation 28 

with pumping could yield 174 GWh/year for a 10 km2 scheme. Therefore, further studies are 29 

recommended for tidal-range energy generation in the Gulf of Santa Clara. 30 
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This research has two novel elements. First, it is the most comprehensive assessment of tidal-1 

range energy resource to date for the GC. Two assessments have been conducted prior to this 2 

study (e.g., Hiriart-Le Bert et al., 2009; Tapia et al., 2013), but these were very limited in scope. 3 

We undertook a more detailed approach, and calculated the theoretical and technical tidal-range 4 

energy resource in the upper Gulf, whilst considering different operational strategies and tidal 5 

power plant technical specifications. As discussed in the introduction, the Mexico Government 6 

has set an ambitious target of generating 35 % of its total energy from renewable sources by 7 

2027 [16]. Presently, 19 % of Mexico’s electricity is produced through renewable sources. 8 

Tidal energy extraction in the GC would provide a potential source of renewable energy to 9 

contribute to this target. Secondly, results from this work can provide a basis for the Mexican 10 

Government and policy makers to guide selection of suitable sites for tidal-range energy 11 

extraction in the region, and provides a foundation for more detailed assessment.  12 
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