SUPPORTING INFORMATION

Synthesis of Zephycandidine A from Haemanthamine

Patrick J. Murphy* and Jamie Tibble-Howlings, Radoslaw M. Kowalczyk, Kevin Stevens

General experimental procedures

Column chromatography was carried out on silica gel ($60 \AA$, 40-63 $\mu \mathrm{m}$) and TLCs were conducted on pre-coated Kieselgel 60 F254 (Art. 5554; Merck) with the eluent specified in each case. All non-aqueous reactions were conducted in oven-dried apparatus under a static atmosphere of argon. Chemical shifts are reported in δ values relative to residual chloroform ($7.26 / 77.16 \mathrm{ppm}$) and methanol ($3.31 / 49.0 \mathrm{ppm}$) as internal standards. Proton and carbon NMR spectra were performed in the solvent stated on a Bruker 400 spectrometer unless indicated otherwise. High resolution NMR spectra for synthetic $\mathbf{1}$ were recorded on Bruker Avance III 700 MHz spectrometer operating at the Larmor frequency of 700.19 MHz for protons, 176.09 MHz for carbons and equipped with the four channel cryoprobe. The sample was prepared by adding 0.6 mL of $\mathrm{CD}_{3} \mathrm{OD}$ to 3.01 mg of zephycandine $\mathbf{1}$ power. The sample solution was transferred to a standard 5 mm NMR tube where the undissolved sample precipitated at the bottom. The tube was loaded to NMR magnet $(16.44 \mathrm{~T})$ and the constant temperature of 297 K was kept through all experiments. The standard 1D proton $\left({ }^{1} \mathrm{H}\right)$ and carbon $\left({ }^{13} \mathrm{C}\right)$ spectra were recorded with the spectral resolution of $0.038 \mathrm{~Hz}(0.00005 \mathrm{ppm})$ and $0.243 \mathrm{~Hz}(0.0014 \mathrm{ppm})$ and referenced to residue solvent signals at 3.31 ppm and 49.0 ppm , respectively. The 2D experiments: COSY, NOESY, HSQC and HMBC were also recorded using standard Bruker pulse sequences. Noticeably, to record full undistorted carbon spectra long relaxation delay (RD) of 10 s was required to avoid saturation of tertiary carbons even at 60° tip angle. Infrared samples were obtained as thin films or solutions using sodium chloride plates on a Bruker Tensor 37 FT-IR. MS were determined on a Q Exactive Plus (Thermo Scientific) instrument run with positive electrospray ionization (ESI). Melting points were determined on a Stuart SMP10 apparatus and are uncorrected.

Trispheridine 2. Typical procedure (Table 1, Entry 8): Haemanthamine $3^{(i)}(0.50 \mathrm{~g}, 1.66 \mathrm{mmol})$ was sealed in a Carius tube and heated at 190 $195^{\circ} \mathrm{C}$ for 24 h . Sequential trituration with acetone, ethyl acetate and chloroform followed by evaporation of the triturates gave the crude product. Purification by column chromatography (80% diethyl ether in hexane) gave $2(74 \mathrm{mg}, 0.33 \mathrm{mmol}$) as a white solid in 20% yield (99% based on recovered 3). Further elution (10% methanol in chloroform) gave $\mathbf{3}(394 \mathrm{mg}, 1.31 \mathrm{mmol}, 79 \%$ recovery).

Typical procedure with Zn Dust (Table 1, entry 1): Haemanthamine $\mathbf{3}$ ($5.00 \mathrm{~g}, 16.6 \mathrm{mmol}$) was dissolved in methanol (50 ml) and added to finely ground commercial zinc powder ($9.00 \mathrm{~g}, 598 \mathrm{mmol}$) and the mixture evaporated to dryness under vacuum. This mixture was heated at $190-195^{\circ} \mathrm{C}$ for 24 h . Work up as above gave $2(370 \mathrm{mg}, 1.66 \mathrm{mmol})$ as a white solid in 10% yield (24% based on recovered $\mathbf{3}$). Further elution (10% methanol in chloroform) gave $\mathbf{3}(3.10 \mathrm{~g}, 10.6 \mathrm{mmol}, 62 \%$ recovery $)$.

Typical procedure in decalin (Table 1, Entry 13): Haemanthamine $\mathbf{3}$ ($2.00 \mathrm{~g}, 6.64 \mathrm{mmol}$) was added to cis/trans decalin (2 ml), sealed in a Carius tube and the mixture heated at $190-195{ }^{\circ} \mathrm{C}$ for 24 h . Work up as above gave $2(191 \mathrm{mg}, 0.857 \mathrm{mmol}$) as a white solid in 13% yield (39% based on recovered 3). Further elution (10% methanol in chloroform) gave $\mathbf{3}(668 \mathrm{mg}, 2.22 \mathrm{mmol}, 33 \%$ recovery). Data for $\mathbf{2}$ was in agreement with the literature. Rf $0.24\left(40 \%\right.$ EtOAc in PE); Mp $142-145^{\circ} \mathrm{C}$ (lit. ${ }^{5 \mathrm{e}} 142.5-144^{\circ} \mathrm{C}$); $\delta \mathrm{H} 9.08(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.36(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7.9 \mathrm{~Hz}, \mathrm{CH}), 8.14(1 \mathrm{H}$, br d, J $8.1 \mathrm{~Hz}, \mathrm{CH}), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.68(1 \mathrm{H}, \mathrm{ddd}, J 1.2,7.0,8.1 \mathrm{~Hz}, \mathrm{CH}), 7.62(1 \mathrm{H}, \mathrm{ddd}, J 1.2,7.0,7.9 \mathrm{~Hz}, \mathrm{CH}), 7.32(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.16\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$; סc $151.9,151.6,148.3,144.3,130.4,130.2,128.1,126.8,124.4,123.2,122.1,105.6,102.0,100.1 ; \boldsymbol{v}_{\text {max }} ; 3031,2960,1620,1581,1528,1497$, 1486, 1462, 1394, 1382, 1293, 1254, 1227, 1198, 1111, 1094, 1034, 971, 938, 882, 847, 828, 785, 753, 718, 706, 673, 612, 544, 473, 432; HRMS(ES) found 224.0707, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$requires 224.0706.

5-(2-bromoethyl)-[1,3]dioxolo[4,5-j]phenanthridin-5-ium 4. Trispheridine $\mathbf{2}$ ($1.00 \mathrm{~g}, 4.48 \mathrm{mmol}$) was suspended in freshly distilled 1,2 dibromoethane (30 mL) and heated at $70-80^{\circ} \mathrm{C}$ for 72 hrs . After cooling the precipitate formed was removed by filtration and washed with $1,2-$ dibromoethane (5 ml) and ethyl acetate ($2 \times 5 \mathrm{~mL}$). After drying under vacuum we obtained the salt $\mathbf{4}(1.56 \mathrm{~g})$ as an off white solid which was contaminated with $\mathbf{2} . \mathrm{HBr}$ (ca 20\%). This mixture was used in the next reaction without further purification. An analytical sample was obtained by washing a small sample (ca 20 mg) in a pipette filter sequentially with small portions ($5 \times 0.6 \mathrm{ml}$) of $\mathrm{CD}_{3} \mathrm{OD}$ to remove $\mathbf{2} . \mathrm{HBr}$. The $4^{\text {th }}$ and $5^{\text {th }}$ washings contained 4 (ca. 95% pure). Mp $263-266^{\circ} \mathrm{C}$ (dec.); $\delta_{\mathrm{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 9.79(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 8.99(1 \mathrm{H}, \mathrm{dd}, J 1.4,8.3 \mathrm{~Hz}, \mathrm{CH}), 8.48(1 \mathrm{H}, \mathrm{s}, \mathrm{CH})$ 8.47 (1 H , br d, $J 9.2 \mathrm{~Hz}, \mathrm{CH}$), $8.11(1 \mathrm{H}, \mathrm{ddd}, J 1.4,7.2,8.5 \mathrm{~Hz}, \mathrm{CH}), 8.04(1 \mathrm{H}, \mathrm{ddd}, J 1.0,7.2,8.3 \mathrm{~Hz}, \mathrm{CH}), 7.83(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 6.45\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$, 5.46 ($2 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}$), 4.15 ($2 \mathrm{H}, \mathrm{t}, J 6.0 \mathrm{~Hz}, \mathrm{CH}_{2}$); $\delta \mathrm{c}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 159.6,154.8,153.0,152.5,137.6,133.3,132.3,131.1,127.3,126.5,122.0$, $119.8,108.5,106.0,102.3,59.2,30.0 ; \boldsymbol{v}_{\text {max }} ; 3476,3401,3071,3021,2944,2879,1653,1612,1565,1538,1503,1475,1427,1408,1392,1353$, $1329,1284,1257,1211,1180,1154,1131,1114,1036,1020,977,943,922,892,880,859,794,780,764,729,679,610,593,559,546,503,467$, 454, 430; HRMS(ES) found 330.0124, $\mathrm{C}_{16} \mathrm{H}_{14}{ }^{79} \mathrm{BrNO}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$requires 330.0124 , found $332.0103, \mathrm{C}_{16} \mathrm{H}_{14}{ }^{81} \mathrm{BrNO}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$requires 330.0104.

Zephycandidine A 1. Crude $\mathbf{4}(0.50 \mathrm{~g}, 1.05 \mathrm{mmol})$ was added to stirred liquid ammonia (ca 100 ml$)$ at $-70^{\circ} \mathrm{C}$ and after removal of the cooling bath, the reaction mixture was warmed to $-33^{\circ} \mathrm{C}$. The reaction was kept at this temperature for 1 h then cooled $\left(-78^{\circ} \mathrm{C}\right)$ before adding $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($603 \mathrm{mg} ; 5.69 \mathrm{mmol}$) and finely powdered $\mathrm{MnO}_{2}(1.22 \mathrm{~g} ; 14 \mathrm{mmol})$. After stirring for 1 h , the cooling bath was removed to allow the ammonia to evaporate overnight. The residue was dried under vacuum for 10 minutes to remove any remaining ammonia, and then toluene (50 ml) was added. The reaction mixture was refluxed for 3 h , cooled and filtered with the solid inorganic residue being washed with acetone ($3 \times 10 \mathrm{ml}$). Concentration of the filtrates followed by column chromatography ($30-50 \% \mathrm{EtOAc}$ in PE) gave $\mathbf{1}(0.15 \mathrm{~g}, 54 \%$) as an off white solid. Recovered trispheridine $2(0.07 \mathrm{~g})$ was also obtained. Rf $0.29\left(50 \% \mathrm{EtOAc}\right.$ in PE); Mp $242-245{ }^{\circ} \mathrm{C}(\mathrm{dec}.) ; \boldsymbol{\delta H}_{\mathbf{H}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 8.39(1 \mathrm{H}, \mathrm{dd}, J 1.2,8.1 \mathrm{~Hz}, \mathrm{CH}), 8.28(1 \mathrm{H}, \mathrm{d}, J$ $1.5 \mathrm{~Hz}, \mathrm{CH}), 8.09(1 \mathrm{H}, \mathrm{dd}, J 1.2,8.2 \mathrm{~Hz}, \mathrm{CH}), 7.90(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.81(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.64(1 \mathrm{H}, \mathrm{ddd}, J 1.2,7.2,8.2 \mathrm{~Hz}, \mathrm{CH}), 7.53(1 \mathrm{H}, \mathrm{ddd}, J 1.2$, $7.2,8.1 \mathrm{~Hz}, \mathrm{CH}), 7.50(1 \mathrm{H}, \mathrm{d}, J 1.5 \mathrm{~Hz}, \mathrm{CH}), 6.15\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \boldsymbol{\delta c}_{\mathrm{c}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 151.4,150.5,143.6,132.1,131.2,129.6,126.6,125.23,125.21,122.9$, $119.5,117.3,113.7,102.9,103.5,102.8$; $\delta \mathrm{H}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 10: 1\right) 8.14(1 \mathrm{H}, \mathrm{dd}, J 0.8,8.2 \mathrm{~Hz}, \mathrm{CH}), 7.89(1 \mathrm{H}, \mathrm{s}, \mathrm{CH}), 7.88(1 \mathrm{H}, \mathrm{d}, J 1.4 \mathrm{~Hz}, \mathrm{CH})$, 7.77 ($1 \mathrm{H}, \mathrm{dd}, J 0.8,8.2 \mathrm{~Hz}, \mathrm{CH}$), 7.62 ($1 \mathrm{H}, \mathrm{s}, \mathrm{CH}$), 7.51 (1 H , ddd, $J 1.2,7.2,8.2 \mathrm{~Hz}, \mathrm{CH}$), 7.48 ($1 \mathrm{H}, \mathrm{d}, J 1.4 \mathrm{~Hz}, \mathrm{CH}$), 7.42 (1 H , ddd, $J 1.2,7.2$, $8.2 \mathrm{~Hz}, \mathrm{CH}), 6.08\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right) ; \delta \mathrm{c}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 10: 1\right) 149.6,148.9,142.5,130.9,130.9,128.1,125.2,123.9,123.5,121.7,119.0,115.9,111.7$, $102.8,101.9,101.4$; $\boldsymbol{v}_{\text {max }} 3117,3090,2917,2851,1618,1536,1403,1390,1313,1260,1206,1174,1144,1122,1034,945,929,905,848,827$, 768, 736, 692, 681, 620, 584, 472, 444, 423; $\lambda_{\max }(\mathrm{MeOH}, \log \varepsilon) 202$ (4.62), 228 (4.63), 256 (4.86), 263 (4.89), 296 (4.37) nm; HRMS(ES) found 263.0818, $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\left[\mathrm{M}+\mathrm{H}^{+}\right]\right)$requires 263.0815 .
(i) Supplied by BioExtractions (Wales) Ltd., Unit 30, Tafarnaubach Industrial Estate, Tafarnaubach, Tredegar, Blaenau Gwent NP22 3AA, UK.

Trispheridine $2\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ NMR, COSY (insert))

Trispheridine $2\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$ NMR)

5-(2-bromoethyl)-[1,3]dioxolo[4,5-j]phenanthridin-5-ium $4\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}{ }^{13} \mathrm{C}\right.$ NMR, HSQC (inserts))

Zephycandidine A $1\left(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ NMR) and expansion of $6.0-8.5 \mathrm{ppm}$ (insert)

Zephycandidine A $1\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ NMR, expansion of $6.0-8.5 \mathrm{ppm}$ and COSY spectrum)

Zephycandidine A $1\left(\mathrm{CD}_{3} \mathrm{OD}, 700 \mathrm{MHz},{ }^{13} \mathrm{C}\right.$ NMR, HSQC (insert))

Zephycandidine A 1. (CD3OD, $700 \mathrm{MHz}, \mathrm{HMBC})$

The elucidation of the couplings from the $\mathbf{H}-1$ proton resonance (A) from the fit of five Lorenzian components (B).

Correlation spectrum showing coupling between $\mathbf{H - 1 / H - 1 0}$ and $\mathbf{H - 1 0 / H - 7}$

The elucidation of the couplings from the $\mathbf{H - 1 0}$ proton resonance.

The elucidation of the couplings from the H-7 proton resonance.

Residual dipolar coupling observed in 1.

(A) The dipolar coupling splitting of the 6.15 ppm resonance is clearly visible in 700 MHz spectrum (red) but is not present in 500 MHz spectrum (blue). Data were recorded in CD3OD solution.

(B) The resonance at 6.15 ppm (700 MHz spectrometer) recorded at 297 K (Blue line) and 277 K (red line).

(C) The TMS reference resonance for the spectra in (B).

Zephycandidine A 1 ($\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 10: 1,400 \mathrm{MHz}$, COSY (insert))

Zephycandidine A $1\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 10: 1,400 \mathrm{MHz},{ }^{1} \mathrm{H}\right.$ NMR, expansion of 6.0-8.5 ppm)

Zephycandidine A 1 ($\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD} 10: 1,400 \mathrm{MHz}, \mathrm{HSQC}$ (insert))

Data comparison with literature ${ }^{1}$

Proton and carbon spectra

Reported data

	H	C	H	$\Delta \mathrm{H}$	C	$\Delta \mathrm{C}$
1	8.47 (dd, 8.2, 1.2)	125.4	8.39 (dd, 8.2, 1.2, 0.6, 0.6)	-0.08	125.2	-0.2
2	7.58 (ddd, 8.2, 7.4, 1.0)	126.9	7.53 (ddd, 8.1, 7.2, 1.2)	-0.05	126.6	-0.3
3	7.67 (ddd, 8.4, 7.4, 1.2)	129.8	7.64 (ddd, 8.2, 7.2, 1.2)	-0.03	129.6	-0.2
4	8.14 (dd, 8.4, 1.0)	117.5	8.09 (dd, 8.2, 1.2, 0.6)	-0.05	117.2	-0.2
4a		132.3			132.1	-0.2
6		143.8			143.6	-0.2
6a		119.8			119.5	-0.3
7	7.88 (s)	103.2	7.81 (d, 0.6)	-0.07	102.9	-0.3
8		150.7			150.5	-0.2
9		151.6			152.4	-0.2
10	7.99 (s)	103.1	7.90 (dd, 0.6, 0.6)	-0.09	102.8	-0.3
10a		125.5			126.2	-0.3
10b		123.1			122.9	-0.2
11	7.52 (d, 1.4)	113.8	$8.28(\mathrm{~d}, 1.5)^{\text {i }}$	-0.04	113.7	-0.1
12	8.32 (d, 1.4)	131.5	$7.50(\mathrm{~d}, 1.5)^{\mathrm{i}}$	-0.02	131.2	-0.3
CH_{2}	6.16 (s)	103.7	6.15 (d, 0.5 Hz)	-0.01	103.5	-0.2

i. Mis-assigned in original paper. ${ }^{1}$

1) Zhan, G.; Qu, X.; Liu, J.; Tong, Q.; Zhou, L.; Sun, B; Yao, G.; Sci Rep. 2016; 6: 33990, doi: 10.1038/srep33990
