Co-creating an online learning environment to support academic writing: Lessons learnt in an interdisciplinary setting
Sharma, Nirwan; Rees, Geraint; Butcher, Peter; Lew, Robert; Frankenberg-Garcia, Ana; Roberts, Jonathan C.

Published: 20/10/2019

Publisher's PDF, also known as Version of record

Citation:

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Co-creating an online learning environment to support academic writing: Lessons learnt in an interdisciplinary setting

N. Sharma* G. Rees† P. W. S. Butcher‡ R. Lew§
Bangor University University of Surrey Adam Mickiewicz University
A. Frankenberg-Garcia¶ J. C. Roberts‖ (Member, IEEE)
University of Surrey Bangor University

ABSTRACT

In this short paper, we discuss the user-centred design process in the development of an online learning environment for learners of English for Academic Purposes (EAP). The ColloCaid project is a research collaboration between researchers from Applied Linguistics and Lexicography, Human-computer Interaction and Visualisation to develop a learning tool which provides users of academic English language an online environment to provide real-time suggestions to improve the vocabulary and fluency of their texts. Although still being developed, our online environment has received great interest from a range of users interested in improving their academic writing. The collaboration has revealed design insights which may be of interest to the researchers interested in the development of interactive learning environments.

1 INTRODUCTION

To solve today’s challenges, researchers must work together across disciplines. By consolidating skills and knowledge, and collaborating together researchers can discover novel ideas. It is often harder to gain funding for research across disciplines because the agencies are focused around one discipline, publication can be challenging with journals finding it difficult to locate appropriately skilled reviewers, and with different working patterns, expectations and traditions between disciplines developing excellence in research can add further challenges [13]. For many years, academics, researchers and funding agencies have been discussing these issues, asking how to embrace and facilitate collaborative and interdisciplinary research. For instance, Rhoten and Parker [20] write about the risks and rewards of following an interdisciplinary approach, in 2015 Nature published a special issue on the need for interdisciplinary research, and how the world’s biggest problems can only be tackled with teams. While interdisciplinary work can be challenging at times, it is often rewarding for the researchers involved, indeed Ledford [16] writes that it is a necessity, writing “we have to bring people with different kinds of skills and expertise together, no one has everything that’s needed”.

In this short paper we present our experiences and lessons learnt when collaborating on ColloCaid at the intersection of visualisation and the digital humanities. This project has brought together linguists, lexicographers, Human Computer Interaction (HCI) researchers and visualisation experts, with an aim to develop a novel interactive learning environment utilising visualisation. HCI research is interdisciplinary in nature as it borrows language and methodology from other scientific disciplines thus providing a suitable setting to design and develop novel interactive technologies [17]. The project is funded by the UK Arts and Humanities Research Council (AHRC); in fact, it is to be commended that each of the UK’s research councils have an interdisciplinary approach, and that the AHRC specifically identifies modern language research as an area of strategic priority, especially encouraging interdisciplinary approaches (http://ahrc.ukri.org/innovation/).

After background and related work (Section 2), we present how we chose an Agile design methodology, and explain how the tool is being jointly designed, developed and evaluated (Section 3). We reflect on our choices, and work practices, and draw together final remarks and lessons learnt (Section 4).

2 BACKGROUND & RELATED WORK

While there are many digital dictionaries and grammar support programs, our focus on word collocations is novel. Words that combine with each other in a natural way, are said to be collocated. In fact, Krishnamurthy [14] defines word collocation as “lexical items occurring ... with a greater frequency than the law of averages would lead you to expect”. For instance, in visualisation authors would write barchart in preference to *barplot, and would write pie chart and not *pie plot [21, 22]. Collocations are particularly challenging for writers less familiar with the language in which they are writing or with the type of text they need to produce.

Collocations can be understood as co-occurrences of words, within a relatively short distance of each other in text, which are found more frequently than would be expected if word combination happened at random. Since the arrangement of words in language is non-random, collocation is a question of degree. For example, black coffee, a fairly conventional phrase, is a strong collocation, while the unconventional dark coffee is a considerably weaker one. Academic writers, particularly those new to the genre, frequently run the risk of breaking collocation conventions. The results range from the seemingly trivial, e.g. the use of more colloquial do research instead of the more formal option preferred in writing conduct research, to more serious errors e.g. *increase of pollution instead of increase in pollution. In academic contexts, such breaks with convention impede the effective communication of knowledge.

Writing is a cognitively demanding process. Interactive systems can be developed to aid user learning by providing suggestions during the writing task. Writers need to be able to communicate their ideas effectively [7] and select words that convey the right meaning [24]. There are many tools that can help an author, from electronic dictionaries, grammar and spelling checkers, and even tools that analyse and report on the readability of the texts. Most of these tools rely on underlying data analysis, particularly corpus linguistics. There is a wide range of (mostly) server-side systems for corpus compilation and analysis including AntConc [2], SketchEngine [12, 15], Wmatrix [19] and CQPweb [9]. However, while these tools are powerful, time and resources are needed to teach users how to use them [5]. Furthermore most of these tools create corpuses that are

* N. Sharma@bangor.ac.uk † G. Rees@amu.edu.pl ‡ P. W. S. Butcher@bangor.ac.uk
§ R. Lew@amu.edu.pl ¶ A. Frankenberg-garcia@surrey.ac.uk ‖ J. C. Roberts@bangor.ac.uk
separate to any editing and authoring that the user would perform. Subsequently, what is required is an integrated system, where users see the words they want to use in-situ with the texts that they are authoring, and be guided to best practices within the context of their writing [8].

In the case of ColloCaid, the language suggestions provided to writers are based on a database which is carefully curated by language researchers. It works by providing contextual suggestions based on what a user is currently writing in the text editor. Although similar information may be searched through online tools (such as dictionaries) users may not actively seek this information as they may not ever realise that they can improve their existing text. Moreover, users may not want to interrupt the ‘flow’ of their writing by opening another window to search for a language doubt [10]. Learning in context is thus helpful, as a user may get suggestions when they are actually performing the task of writing. Moreover, providing triggers to use these suggestions is also imperative, as users need to be informed that suggestions exist for certain keywords. The main requirement of the tool is therefore to provide suggestions which are triggered when a user input keywords defined in a carefully curated linguistic database. Using this commonly defined aim in an interdisciplinary setting [1] we developed an online text editor. In this paper we provide a brief introduction to the dataset, the design rationale and decisions made, the resulting interactive tool and how it supports the academic writing tasks.

3 THE INTERDISCIPLINARY SETTING: SYNTHESISING VIEW-POINTS.

For ColloCaid, we took the decision early in the implementation phase to follow an Agile development strategy [4]. This is, perhaps, one of the most fundamental decisions of the project. We took the decision because (1) we wanted to have an early version of the tool to test, (2) we needed to work together as a team, while (3) also allowing change to occur in such a way that we can innovate and develop new ideas and novel research solutions. We felt that this strategy would work because we already had a strong vision from the proposal document, which gave us the initial requirements and development goals. This plan gave us a clear starting point. We agree with Highsmith and Cockburn [11] who write “Working through producing a plan drives the team members to think through their project and its contingencies”. We knew that we would need to develop a text editor, that would provide language suggestions to learners of academic English, that we would focus on word collocations and integrate word visualisation in the editor in-situ. We knew that we needed to create a bespoke lexicographical database and a text-editor to allow users to write sentences and paragraphs.

But we still had many research questions, including: How do we combine the editor with the lexicographic database? How do we visualise collocations? How do we visualise the word suggestions in-situ? There are many possible words to suggest; how do we display these possibilities? etc. Furthermore, with this interdisciplinary project we needed to bring together many skills. Best practices in lexicography and writing research, crafted and accurate development of the editor database, good practices in human interaction for the text editor, and visualising the words to the users. Furthermore, with the Agile method, we needed to test the software on users, and gain feedback such to improve the initial beta versions. How many users? What questions to ask the users? How to organise the evaluation sessions? etc.

Putting an appropriate suitable team of researchers together, is known as a challenge and important stage for any multidisciplinary research team. As a team of researchers, while we had not worked together, part of the team had known each other through other researchers and prior research. We got together because of our motivation to research in digital humanities and integrate visualisation techniques. This was a fortunate situation and definitely helped to create an interdisciplinary team with a wide range of skills. Furthermore, another aspect of the team was that as academic researchers we were interested in dissemination of our research through publications. We had similar expectations. In academic research, it is not only the outcome of the project and the development of the tool, but the presentation of the work, and demonstration of results. We are not saying that we do not have different opinions or work-practices differences to overcome, however we have a buy-in to the project and shared overarching research goals. Certainly, there are clear, and at times challenging, differences in work-practices, especially over publication strategies. For instance, there are many conferences and workshops (lexicography, corpus linguistics and computer-assisted language learning) throughout the year for language and linguistics researchers, whereas for visualisation there are fewer, yet larger conference venues. Most visualisation conferences review fully written papers, whereas the language and linguistics conferences review and select presentations on abstracts, before the authors write the journal articles, as is common practice with many disciplines. Another challenge was appreciating the expertise of each discipline and getting familiar with work-practices. For example, for the Human Computer Interaction (HCI) and visualisation researchers it was indeed a challenge to understand the importance of a carefully expert curated data-set of collocations as opposed to using a computer compiled corpus of millions of words and extracting suggestions algorithmically.

Additionally, there were sometimes challenges due to the location of researchers as the team is located across three sites (Surrey, UK; Bangor, UK; Pozna, Poland). However, we have held many (and regular) video conference meetings, along with several face-to-face workshops, to complete the next working prototype. This has meant we can entrust different sites to complete parts of the work independently, and report to the other collaborators through the video conference calls, and come together to complete the next prototype. Figure 1 shows a schematic diagram of the main parts of the project. This division also helped us to separate the workload, and take ownership of different tasks, at a given time.

The corpora. In our project we harnesses corpora, large collections of machine readable text, containing professionally published academic writing to curate data for the tool under development. The starting point, in order to provide collocation suggestions to writers, involves developing a set of collocation nodes, or a base word, which triggers the tool when written by the user. When compiling our list of nodes we consulted widely recognised studies of academic lexis to ensure that the bases were maximally useful to academic writers [8]. In our data ‘bases’ combine with ‘collocates’ to form collocations. The strength of these collocations is indicated by their ‘association score’, calculated according to Logdice statistics. This score determines the order in which collocations are displayed to the user in the tool, permitting users to see the strongest associations first. ColloCaid bases pertain to three parts of speech (POS): nouns, verbs, and adjectives. The bases form the keys to the lexicographic database underlying the tool. The notion of grammatical ‘relation’ is also important one. It describes the way in which a collocate

![Diagram](image-url)

Figure 1: The main parts to the project, which have clear separation of goals and tasks.
Figure 2: A sample database extract for the keyword **approach**

Combinations of a base with a noun. For example, in practice, a writer might have the noun **approach** in mind and wonder “What does an **approach** do?”. To answer this question the writer effectively, almost several steps removed from this meta-language, accesses the collocates in the ‘subject of’ relation for **approach** and, perhaps, selects the collocate **emphasis** forming the collocation **approach+emphasis**. Similarly, a writer might wonder ‘Can I write a **do?** approach’? On this occasion the writer accesses the collocates in the ‘object of’ relation where **adopt + approach** and **use + approach** are revealed as good collocation options. A complicating factor is that bases, collocates, and association scores tell the user little about the arrangement, form of the words, or any intervening words contained the collocation. This is important since some collocations exhibit preferences in memory limitations for information processing (7±2 rule) it was agreed to use a mechanism similar to existing text editors (such as highlighting spelling mistakes), however the notifications may also be compatible across multiple devices and operating systems. An online editor would also be the most suitable platform to develop the prototype as the users need to download additional software. An online editor would be more traditional and familiar to users can insert into text by clicking on them. In the ColloCaid interface which is similar to text editors such as Microsoft Word, Google docs etc. We customised the interface by extending the features of TinyMCE (see Figure 3A) and creating a ColloCaid plugin to our website. With the editor the user can start typing relevant text directly into the editor or copy pasted formatted text from an existing document. The editor checks for collocation suggestions when the user presses spacebar, comma, backspace, return or tab keys on their keyboard while writing. The keywords, for which suggestions exist, are highlighted using a green dotted underline on their keyboard while writing. The keywords, for which suggestions exist, are highlighted using a green dotted underline on the interface (as shown by the word “concerns” in Figure 3A). The users can choose to keep writing the text by ignoring the suggestions or click on highlighted keywords to see language suggestions. When the user clicks on one of the highlighted suggestions, an interactive menu (with sub-menus items) display the suggestions to users which users can insert into text by clicking on them. In the ColloCaid interface in Figure 3A, the user has first clicked on the **approach** keyword which was highlighted in text bringing up a menu item with suggestions. A mouse-over event on the first menu item, i.e., **approach** offers, opens a sub-menu of options for the user in the example.

Text editor and visualisation. We identified an online text editor to be the most suitable platform to develop the prototype as the users can access it using their existing internet browsers thus eliminating the need to download additional software. An online editor would also be compatible across multiple devices and operating systems. We also identified that it would be useful to have the interface and features (formatting text, adding tables, inserting lists etc.) which closely match existing text editors in order to increase familiarity while providing users options to perform some basic functions during the writing process. In order to trigger suggestions for text it was agreed to use a mechanism similar to existing text editors (such as highlighting spelling mistakes), however the notifications may need to be less intrusive so that users may not perceive their existing text as mistakes which may need to be corrected using suggestions. To support in-situ text editing and user learning it was agreed that suggestions would be displayed as structured information in the form of interactive menu-items which when clicked would insert the suggestions to the text. The structure of the menus and submenus was identified from linguistic theory and praxis, hence providing a rational reason to assist user decision-making. Additional contextual information such as part-of-speech, syntactic relation etc., which users will need for decision-making may also need to be included in the menu and submenus. Considering the short-term memory limitations for information processing (7±2 rule) it was also agreed to limit the suggestions to a maximum of eight per menu to prevent overburdening the user [18].

Using these initial set of interface and information guidelines we prototyped the interface by developing a custom collocation suggestion plug-in for TinyMCE, an open source online rich text editor. TinyMCE was selected as it is widely used online with an interface which is similar to text editors such as Microsoft Word, Google docs etc. We customised the interface by extending the features of TinyMCE (see Figure 3A) and creating a ColloCaid plugin to our website. With the editor the user can start typing relevant text directly into the editor or copy pasted formatted text from an existing document. The editor checks for collocation suggestions when the user presses spacebar, comma, backspace, return or tab keys on their keyboard while writing. The keywords, for which suggestions exist, are highlighted using a green dotted underline on the interface (as shown by the word “concerns” in Figure 3A). The users can choose to keep writing the text by ignoring the suggestions or click on highlighted keywords to see language suggestions. When the user clicks on one of the highlighted suggestions, an interactive menu (with sub-menus items) display the suggestions to users which users can insert into text by clicking on them. In the ColloCaid interface in Figure 3A, the user has first clicked on the **approach** keyword which was highlighted in text bringing up a menu item with suggestions. A mouse-over event on the first menu item, i.e., **approach** offers, opens a sub-menu of options for the user in the example.

We use round brackets to include additional contextual information for the menu items where it is appropriate such as identifying the keyword as a noun, verb or adjective, highlighting different senses of a keyword etc. This information is useful as it may help the user to easily make relevant decisions on which suggestions may be appropriate for their text for a given context. A ‘More’ menu button is displayed for keywords which have more than 8 suggestions to prevent scrolling and overburdening the user (for example this is shown under **approach offers** menu-item in Figure 3A). Clicking on the ‘More’ button displays additional suggestions on the right in a side menu. For the examples, it was decided to highlight the collocate and base keywords so that the user can easily comprehend the usage of the suggestions in the examples and apply them to their text. For example in Figure 3B three examples under the **approach** involves menu items are shown where both **approach** and **involves** are highlighted using bold text in the examples using bold text.

4 Lessons Learnt

In this paper we have described our design and interdisciplinary development process for the ColloCaid project. We have described how our collaboration has led to the development of the underlying
We additionally use technology mediated collaborative tools (such as OneDrive, Basecamp and Overleaf) as we have found them extremely useful for supporting our research and sharing information. All these activities and working styles we believe have led to greater interaction and deliberation between researchers. Some of the issues such as different locations of working of the team we have tried to address by having more frequent meetings between postdoctoral researchers to address pressing issues and challenges or work together over days to finalise prototypes.

(2) Polymathy and the need for ongoing learning. Achieving creative polymathy-led research is difficult [23]. Development of a shared language and understanding can be argued as one of the outcomes of interdisciplinary research and to some extent, each of the researchers needs to learn about each others subject [1,6]. Not to be experts in their fields, but to first develop enough knowledge such to have empathy for the decisions of researchers in other disciplines. Second, to be able to give presentations about the project with clarity, and third to give enough knowledge such to develop novel insight. We suggest that this learning should be ongoing, and consistent throughout the project. For example, the HCI researchers suggested that the System Usability Scale [3] could be used to evaluate usability, this was new to some of the team. While methodologies such as think-aloud and screen recording were mutually known. Learning, in ColloCaid, started at the start of the project, where we prepared and gave introductory presentations of each discipline. Furthermore, the HCI and visualisation team attended a language/linguistics workshop, and held our own project meeting directly after this event. This collaboration helped to coalesce the team and discipline knowledge within the team. But learning and collaboration is ongoing.

(3) Shared outcomes. One of the shared outcomes for researchers is the dissemination of findings. Although this project is still work-in-progress we have achieved some preliminary publications from the research collaboration. We have agreed to collaborate during writing publications and all researchers review and edit the papers, even when the paper that is being prepared is to be sent to a single discipline research journal. This we think helps us develop a shared language of research for the project and help to triangulation across disciplines [17]. One of the best forms of collaboration has been co-authoring papers such as this one, where the writing process helps us critically reflect on how to communicate discipline specific knowledge to an interdisciplinary audience. For example, in the current paper the background information on collocations and curated data-set sections have been written by language researchers in a manner suitable for a wider audience who may be less familiar with these concepts. In terms of outcomes we have also applied knowledge acquired from other disciplines in a novel manner back into our respective domains. For example, we have started to apply methodologies from one domain to the other, such as applying the System Usability Scale [3] from the HCI domain in the linguistic domain, and language corpus analysis techniques to the visualisation domain, resulting in a publication on word and collocation analysis in multiple views [21]. For future publications we have also identified journals and conferences which are more interdisciplinary in nature in order to communicate our findings to a wider audience than our respective disciplines.

In conclusion, this interdisciplinary project we found that formulating a shared understanding, through common goals, in the beginning and maintaining it during the research process was useful for developing mutual trust and cooperation between the researchers. The need for ongoing learning, whether through co-authoring publications or co-creating an interactive system can help create a collaborative setting where interdisciplinary research can further develop. This process of collaboration helps in building trust leading to shared ownership of the outcomes, tools and a common language of research, possibly leading to a transition from interdisciplinary to transdisciplinary research.

ACKNOWLEDGMENTS

This work is funded by AHRC grant AH/P003508/1, collocaid.uk.
REFERENCES

