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Details of Time Series Analysis 

Variables measured repeatedly on successive occasions generate data that are called time 

series. In general, such data are not stochastically independent, have correlated residuals or error 

terms, and are characterized by variance that does not remain constant over the time series. For 

these reasons, time series cannot be analyzed with conventional statistical procedures that 

assume independent and identically distributed data sets. The appropriate analytical techniques 

are provided by time series analysis (Bisgaard & Kulahci, 2011; Chatfield, 2003; Shumway & 

Stoffer, 2006; Yaffee & McGee, 2000; Yanovitzky & VanLear, 2008).  

The SPSS Expert Modeler (Norušis, 2005, 2011) automatically identifies and estimates 

parameters for the best-fitting ARIMA (autoregressive integrated moving average) or 

exponential smoothing model—whichever provides the better fit—for any time series. It also 

provides suitable measures of fit, thus eliminating the need to identify appropriate models 

through trial and error, and it also generates results of appropriate significance tests. ARIMA (p, 

d, q) models incorporate three parameters. The parameter p specifies the number of orders of 

autoregression in the model, indicating which previous values from the time series determine 

current values—for example, an autoregression of order of 2 specifies that the value of two 
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previous values determine the current value. The parameter d specifies the order of differencing 

applied to the series before estimating models, differencing being necessary when trends are 

present, because ARIMA modeling assumes stationarity, and differencing detrends nonstationary 

time series. Thus first-order differencing with d = 1 accounts for linear trends, second-order 

differencing with d = 2 accounts for quadratic trends, and so on. The final parameter q specifies 

the number of moving average orders in the model, showing the extent to which deviations of 

previous values from the series mean (random shocks) determine current values. For example, q 

= 2 specifies that deviations from the mean over each of the last two values determine current 

values of the series. 

Exponential smoothing models are used to fit time series in which current values are 

determined by past values, not necessarily weighted equally, but assigned exponentially 

decreasing weights according to their distance from the current value. The key smoothing 

parameter α ranges from 0, when all previous values are equally weighted in determining the 

current value, to 1 when the current value is determined solely by the immediately preceding 

value. A simple exponential smoothing model fits time series without trend or seasonality; it is 

roughly equivalent to an ARIMA (0, 1, 1) model with one order of differencing and one order of 

moving average. When there is systematic trend in the data, a simple model will not provide an 

adequate fit, and double or multiple exponential smoothing is required. A Holt linear trend model 

is a model with two smoothing parameters, μ (level or intercept) and β (trend), and a Brown 

linear trend model is a simpler, one-parameter special case of a Holt model, when the parameters 

are equal. 

These techniques work best with longer time series than those generated in our 

experiment, but our relatively short time series, though inadequate for precise estimation of 
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parameter values and forecasting, are tolerable for identification of basic models and rough-and-

ready assessments of model fit (Bence, 1995; Cooper & Madden, 2010; Wang, Wu, Li, & Chan, 

2008). 

Experiment 1 

Figure 6 (reproduced below) shows the sequence plots of mean exit nodes over the 20 

rounds of Experiment 1, under fixed pairing and random pairing, in each of the four 

experimental games. It is obvious by inspection of Figure 6 that there was more cooperation 

under fixed than random pairing across almost all 20 rounds in all games except the decreasing 

payoff-difference game. We performed time series analysis by fitting either an exponential 

smoothing model or an autoregressive integrated moving average (ARIMA) model, depending 

on which of the two provided the better statistical fit, to the mean exit nodes, recorded for each 

round, in each of our treatment conditions—four distinct games crossed with fixed or random 

pairing. Exponential smoothing models generally include a parameter indicating the influence on 

scores of the sequence of preceding scores in the series (unequally weighted) and a second 

parameter indicating the degree of linear or nonlinear trend in the data. When an exponential 

smoothing model provided the best fit, we estimated the value of the model fit statistic stationary 

R2, the preferred estimate of the proportion of the total variance in the time series explained by 

the model, and the Ljung-Box statistic Q with its associated p value, an indication of confidence 

that the model is correctly specified. For the Ljung-Box Q statistic, a p value of less than .05 

suggests the presence of significant structure in the time series not explained by the model. When 

an ARIMA model provided the best fit, we recoded only the number and type of parameters used 

to identify the model and did not attempt to estimate the parameters. In an ARIMA(p, d, q) 

model, the value of p represents the number of autoregression parameters, indicative of the 
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dependence of scores on preceding scores; d the degree of differencing, indicative of linear or 

nonlinear trend; and q the number of moving average parameters, indicative of the dependence 

of scores on preceding random shocks. We relied on the SPSS Expert Modeler to select the best-

fitting models to the time series.  

In the constant payoff-difference game under fixed pairing, the best-fitting model is an 

ARIMA(0, 0, 0) model, indicating a lack of temporal structure in the data; but under random 

pairing the best fit is provided by a Holt model, an exponential smoothing model that fits time 

series with autocorrelation and linear trend. For the Holt model, stationary R2 = .68 and 

Ljung-Box Q = 17.45, p = .36, indicating a reasonably good model fit and confidence that the 

model is correctly specified. This confirms that the decline in cooperation over rounds under 

fixed pairing that is apparent in the sequence plot (Figure 6) is essentially linear and statistically 

significant. 

In the constant-sum game, once again, the best-fitting model under fixed pairing is an 

ARIMA(0, 0, 0) model, indicating a lack of temporal structure in the data, and under random 

pairing the best fit is a Holt model, with stationary R2 = .80 and Ljung-Box Q = 13.21, p = .66. 

We can be confident that the decline in cooperation over rounds under random pairing is linear 

and statistically significant. 

In the increasing payoff-difference game under fixed pairing, a Holt model provides the 

best fit, with stationary R2 = .77 and Ljung-Box Q = 23.76, p = .09, indicating a significant linear 

decline in cooperation over rounds, although with p so close to .05, we can have only a barely 

significant degree of confidence that the model is correctly specified. Under random pairing, a 

Holt model is once again the best fit, this time with stationary R2 = .78 and Ljung-Box Q = 
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23.12, p = .11, allowing the same conclusion as for the fixed pairing condition that the decline in 

cooperation is probably significant and linear. 

In the decreasing payoff-difference game, under fixed pairing, a Holt model provides the 

best fit, with stationary R2 = .81 and Ljung-Box Q = 12.17, p = .73. Under random pairing, the 

best fit is a Brown model—a simple one-parameter version of the Holt model, also indicative of 

linear trend—with stationary R2 = .78 and Ljung-Box Q = 18.60, p = .35. These results suggest 

that, under both fixed and random pairing, cooperation declined significantly and linearly over 

rounds in the decreasing payoff-difference game. 

Experiment 2 

We performed time series analysis once again on the mean exit nodes per round. 

Sequence plots of mean exit nodes in the normal-form and extensive-form treatment conditions 

are shown in Figure 8, from which it is immediately obvious that cooperation was similar in both 

conditions on almost every round of the game, from the first to the last. In the extensive form 

treatment condition, a Holt model also provides the best fit, with stationary R2 = .81 and 

Ljung-Box Q = 12.17, p = .73. In the normal form, a Holt model once again provides the best fit, 

with stationary R2 = .76 and Ljung-Box Q = 15.33, p = .50. We can infer with confidence that a 

linear decline in cooperation over rounds occurred in both the extensive and normal forms of this 

game. 
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Figure 6. Experiment 1: Sequence plots of mean exit nodes under fixed pairing and random pairing in the four linear Centipede 

games: constant payoff-difference, constant-sum, increasing payoff-difference, and decreasing payoff-difference. 
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Figure 8. Experiment 2: Sequence plots of mean exit nodes for a constant payoff-difference game played in normal form and 

extensive form.  


