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The transverse phase space of a beam in an accelerator can be characterized using well-established
methods based on observation of changes in the beam profile between screens at different locations along
the beamline, or on observation of changes on a single screen for different strengths of upstream
quadrupoles. Studies on CLARA FE (the Compact Linear Accelerator for Research and Applications Front
End, at Daresbury Laboratory, UK) show that where the beam has a complicated (nonelliptical) distribution
in transverse phase space, conventional analysis techniques aimed at characterizing the beam in terms of the
emittances and Courant–Snyder parameters fail to provide a good description of the beam behavior. Phase
space tomography, however, allows the construction of a detailed representation of the phase space
distribution that provides a better model for the beam. We compare the results from three measurement and
analysis techniques applied on CLARA FE: emittance and optics measurements from observations on three
screens; emittance and optics measurements from quadrupole scans on a single screen; and phase space
tomography. The results show the advantages of phase space tomography in providing a detailed model of
the beam distribution in phase space. We present the first experimental results from four-dimensional phase
space tomography, which gives an insight into beam properties (such as the transverse coupling) that are of
importance for optimizing machine performance.

DOI: 10.1103/PhysRevAccelBeams.23.032804

I. INTRODUCTION

Knowledge of transverse beam emittance and optical
properties are essential for the commissioning and perfor-
mance optimization of many accelerator facilities. There
are well-established techniques for emittance and optics
measurements, often based on observation of changes in
beam size in response to changes in strength of focusing
(quadrupole) magnets, or observation of the beam size at
different locations along a beam line [1,2]. Beam phase
space tomography is also an established method for
providing detailed information about the phase space
distribution [3–10]. In this paper, we report the results
of studies on CLARA FE (Compact Linear Accelerator for
Research and Applications, Front End) at Daresbury
Laboratory [11,12], aimed at characterizing the transverse
phase space of the electron beam. The results of three
different measurement techniques are compared, namely:

beam-size measurements at three different locations along
the beamline (“three-screen analysis”); measurement in the
change of the beam size in response to the change in
quadrupole strengths (“quadrupole scan”); and beam phase
space tomography. At the time that the studies were carried
out, the beam in CLARA FE had significant detailed
structure in the phase space distribution (i.e., the beam
could not be described by a simple elliptical phase space
distribution). We find that in these circumstances, phase
space tomography provides important insights into the
transverse beam properties that cannot be obtained from the
other techniques. Quadrupole scans can provide some
useful information, but the results from three-screen analy-
sis can vary widely, depending on the precise measurement
conditions. Our studies of phase space tomography include
the first experimental demonstration of beam tomography
in four-dimensional phase space [13,14]. We find that
this technique can provide information on coupling in
the beam, which can be of value for optimizing machine
performance [15].
This paper is organized as follows. In Sec. II we briefly

review the definitions that we use for the emittances
and optics functions in coupled beams, and the methods
that we use for calculating these quantities. In Sec. III
we describe the measurement procedures in CLARA FE.
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The three-screen analysis method is discussed in Sec. III A,
where experimental and simulation results are presented.
The results show some limitations of the technique, and we
discuss in particular why it does not produce reliable results
when the beam has a complicated structure in phase space
(i.e., the beam cannot be described by a simple elliptical
distribution). In Sec. III B we describe the quadrupole scan
analysis method, including application to measurement of
the full covariance matrix in two (transverse) degrees of
freedom. The quadrupole scan technique has some advan-
tages over the three-screen analysis, but neither method can
determine the detailed structure of the beam distribution in
phase space. Such information can be provided by the final
analysis technique, phase space tomography, which is
considered in Sec. III C. We describe the implementation
of phase space tomography on CLARA FE, including the
use of normalized phase space [16], and show how
tomography can be applied to determine the beam distri-
bution in four-dimensional phase space [14]. Simulations
are used to validate the technique, and experimental results
are again presented. In Sec. IV we show the application of
phase space tomography to provide a detailed characteri-
zation of the beam in CLARA FE under a range of machine
conditions, looking at the dependence of the phase space
distribution (including the coupling characteristics) on
parameters of the electron source, including the strengths
of the focusing solenoid and bucking coil, and the bunch
charge. Given the complicated structure generally present
in the phase space distribution of the beam in CLARA FE,
phase space tomography provides important insights into
the beam properties and behavior that would not be
obtained from the three-screen or quadrupole scan analysis
techniques. Tomography in four-dimensional phase space
provides, in particular, information on transverse coupling
that is of value for optimizing machine performance.
Finally, in Sec. V, we summarize the key results, discuss
the main conclusions, and consider appropriate directions
for further work.

II. NORMAL MODE EMITTANCES AND
OPTICAL FUNCTIONS

Since various definitions of beam emittance are used in
different contexts, we briefly review the definition we use
for the studies presented here, considering in particular the
case where there is coupling in the beam. For clarity,
however, we begin with the case of a single degree of
freedom. Considering, for example, the transverse hori-
zontal direction, the covariance matrix at a specified point
in a beamline can be written:

Σ ¼
� hx2i hxpxi
hxpxi hp2

xi

�
; ð1Þ

where x represents the transverse horizontal coordinate of a
single particle at the specified location, px is the horizontal

momentum Px (at the same location) divided by a chosen
reference momentum P0, and the brackets hi indicate an
average over all particles in the beam. Note that we assume
there is no dispersion in the beamline, so that the trajectory
of the beam (nominally passing through the center of each
quadrupole) is independent of its energy: for the present
studies in CLARA FE, since the layout from the electron
source to the end of the section where the emittance
measurements are performed is a straight line, this will
be a good approximation.
The horizontal (geometric) emittance ϵx and optical

functions (Courant–Snyder parameters βx and αx and γx)
can be calculated from:

ϵx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
q

; ð2Þ

βx ¼
hx2i
ϵx

; ð3Þ

αx ¼ −
hxpxi
ϵx

; ð4Þ

γx ¼
hp2

xi
ϵx

: ð5Þ

These relations imply that:

γxhx2i þ 2αxhxpxi þ βxhp2
xi ¼ 2ϵx; ð6Þ

and:

βxγx − α2x ¼ 1: ð7Þ

Equation (6) defines an “emittance ellipse” in phase space.
It is straightforward to extend these results to the vertical
direction, to find the vertical emittance and Courant–
Snyder parameters. If the beam distribution in phase space
has elliptical symmetry, then the Courant–Snyder param-
eters and emittance are sufficient to describe the overall size
and shape of the distribution. In general, by an “elliptical”
distributionwe refer to one forwhich the phase space density
ρ is a function only of the betatron action, defined (in one
degree of freedom, e.g., the transverse horizontal) by:

2Jx ¼ γxx2 þ 2αxxpx þ βxp2
x: ð8Þ

For example, a Gaussian elliptical distribution can be
described by:

ρðJxÞ ¼
N0

ϵx
e−

Jx
ϵx ; ð9Þ

whereN0 is the total number of particles in the beam and, in
this case, using Eqs. (6) and (8), the emittance ϵx is equal to
the mean action, i.e., ϵx ¼ hJxi.
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Note that even for nonelliptical distributions, Eqs. (2)–
(5) can be used to calculate values for the emittance and
Courant–Snyder parameters. However, whether these val-
ues are meaningful or useful depends on the extent to which
the phase space distribution can be characterized purely in
terms of its second-order moments: the emittance and
Courant–Snyder parameters are essentially a convenient
way to parametrize the covariance matrix.
In principle, for an elliptical phase space distribution in

one degree of freedom, the Courant–Snyder parameters and
emittance at a particular location can be determined from
just three appropriate measurements of the beam properties,
for example, the rms beam size at three different locations
along the beamline (corresponding to three different
phase angles). This is the principle behind the three-screen
measurement technique, discussed in Sec. III A. However,
if the beam distribution in phase space has a more
complicated structure, then the distribution cannot be
described by just three parameters, and a larger number
of measurements will be needed to determine the distri-
bution. The results presented in Sec. III show that this is the
case in CLARA FE. In such situations, a technique such as
phase space tomography, discussed in Sec. III C, is needed
to provide a good understanding of the beam properties and
behavior.
In considering only a single degree of freedom, we

assume that there is no transverse coupling in the beam
or in the beamline, so that the transverse horizontal
and vertical motions may be treated independently. The
4 × 4 covariance matrix for the transverse motion in this
case takes block-diagonal form:

Σ ¼

0
BBBBB@

hx2i hxpxi 0 0

hxpxi hp2
xi 0 0

0 0 hy2i hypyi
0 0 hypyi hp2

yi

1
CCCCCA: ð10Þ

As a beam passes along a beamline, coupling in the beam
can be introduced and modified by skew components in the
quadrupoles (for example, from some alignment error in the
form of a tilt of the magnet around the beam axis) or from a
solenoid field either at the particle source or further down
the beamline. Then, the general covariance matrix for the
transverse phase space distribution takes the form:

Σ ¼

0
BBBBB@

hx2i hxpxi hxyi hxpyi
hxpxi hp2

xi hpxyi hpxpyi
hxyi hpxyi hy2i hypyi
hxpyi hpxpyi hypyi hp2

yi

1
CCCCCA: ð11Þ

The coupling can be characterized by the values of the
cross-plane elements (hxyi, hxpyi, hpxyi, and hpxpyi) in

the 4 × 4 covariance matrix, or by a generalization of the
Courant–Snyder parameters (for example, using the meth-
ods in [17–19]). In the absence of coupling, the elements of
the covariance matrix (10) can be determined from six
measurements, such as the horizontal and vertical beam
sizes at three different locations along the beamline.
However, when coupling is present, the covariance matrix
(11) has ten independent, nonzero elements, and ten
measurements are therefore needed to determine all the
elements. Screens at three different locations would provide
just nine measurements (the beam sizes hx2i, hy2i and tilt
hxyi at each screen); measurement of the full 4 × 4
covariance matrix can be accomplished using screens at
additional locations (for example, [10,20]). Alternatively,
the beam sizes and tilt on a single screen can be measured
for a number of different strengths of the upstream quadru-
poles (see, for example, [21,22]). This is the technique used
in quadrupole scan and tomography measurements, dis-
cussed in Secs. III B and III C.
With coupling present, the emittance calculated using

Eq. (2) will not be the most useful quantity, since it will not
be constant as the beam travels along the beamline. The
conserved quantities where coupling is present are the
normal mode emittances (or eigenemittances) ϵI and ϵII,
where �iϵI;II are the eigenvalues of ΣS, with Σ the 4 × 4

covariance matrix (11), and S the antisymmetric matrix:

S ¼

0
BBB@

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

1
CCCA: ð12Þ

As already mentioned, various formalisms have been
developed for generalizing the emittance and Courant–
Snyder parameters from one to two (or more) coupled
degrees of freedom. Here, we use the method presented in
[19], in which the ði; jÞ element of a covariance matrix Σ is
related to the normal mode emittances ϵI, ϵII and corre-
sponding optical functions βIij, β

II
ij by:

Σij ¼
X
k¼I;II

ϵkβ
k
ij: ð13Þ

The optical functions can be obtained from the eigenvectors
of ΣS. If U is a matrix constructed from the eigenvectors
(arranged in columns) of ΣS, then:

ΣS ¼ UΛU−1; ð14Þ

where Λ is a diagonal matrix with diagonal elements
corresponding to the eigenvalues of ΣS. If the eigenvectors
and eigenvalues are arranged so that, in two degrees of
freedom:
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Λ ¼

0
BBB@

−iϵI 0 0 0

0 iϵI 0 0

0 0 −iϵII 0

0 0 0 iϵII

1
CCCA; ð15Þ

then the optical functions are given by:

βk ¼ UEkU−1S; ð16Þ

where k ¼ I; II, and:

EI ¼

0
BBB@

i 0 0 0

0 −i 0 0

0 0 0 0

0 0 0 0

1
CCCA; EII ¼

0
BBB@

0 0 0 0

0 0 0 0

0 0 i 0

0 0 0 −i

1
CCCA: ð17Þ

The covariancematrixΣ can then be expressed in terms of the
normal mode emittances and optical functions using (13).
When there is no coupling, the normal mode emittances

and optical functions correspond to the usual quantities
defined for independent degrees of freedom. For example,
where the transverse horizontal motion is independent of
the vertical and longitudinal motion, then:

ϵI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ihp2

xi − hxpxi2
q

¼ ϵx; ð18Þ

and:

βI11 ¼ βx; βI12 ¼ −αx: ð19Þ

Since the normal mode emittances and optical functions
depend on the eigenvalues and eigenvectors of ΣS, whereas
the “uncoupled” emittances and Courant–Snyder parame-
ters are calculated from the 2 × 2 submatrices along the
diagonal of the covariance matrix Σ, there is no simple
relationship between the coupled and uncoupled quantities
in the general case.
Finally, we note that if the optical functions βkij at a given

point s1 in a beamline are known, the optical functions at
any other point s2 are readily computed using:

βkijðs2Þ ¼ M21β
k
ijðs1ÞMT

21; ð20Þ

where M21 is the transfer matrix from s1 to s2 (calculated,
for example, from a computational model of the beamline).
The normal mode emittances and optical functions defined
as described here, therefore provide convenient quantities
for describing the variation of the beam sizes hx2i, hy2i (and
other elements of the covariance matrix) along a given
beamline. However, as discussed earlier in this section,
the elements of the covariance matrix only provide a useful
description of the phase space distribution in simple
cases (e.g., for elliptical distributions). For complicated

distributions with significant structure, alternative ways of
describing the distribution may be needed.

III. MEASUREMENTS IN CLARA FE

Ultimately, CLARA is planned as a facility that will
provide a high-quality electron beam with energy up to
250 MeV for scientific and medical research, and for the
development of new accelerator technologies including
(with the addition of an undulator section) the testing of
advanced techniques and novel modes of FEL operation.
So far, only the front end (CLARA FE) has been con-
structed: this consists of a low-emittance rf photocathode
electron source and a linac reaching 35.5 MeV=c beam
momentum. The layout of CLARA FE is shown in Fig. 1.
The electron source [23] consists of a 2.5 cell S-band rf
cavity with copper photocathode, and can deliver short (of
order a few ps) bunches at 10 Hz repetition rate with charge
in excess of 250 pC and with beam momentum up to
5.0 MeV=c. The source is driven with the third harmonic
of a short (2 ps full-width at half maximum) pulsed Ti:
Sapphire laser with a pulse energy of up to 100 μJ. The
typical size of the laser spot on the photocathode is of order
600 μm. The source is immersed in the field of a solenoid
magnet which provides emittance compensation and focus-
ing of the beam in the initial section of the beamline.
A bucking coil located beside the source cancels the field
from the solenoid on the photocathode in the region of the
laser spot.
The studies reported in this paper are based on mea-

surements made in the section of CLARA FE following
the linac, at a nominal beam momentum of 30 MeV=c.
Measurements were made under a range of conditions
including various bunch charges, and different strengths of
the solenoid and bucking coil at the electron source. Three
techniques were used, to allow a comparison of the results
and evaluation of the benefits and limitations of the
different methods. The first technique, the three-screen
measurement and analysis method (described in more detail
in Sec. III A, below), is based on observations of the
transverse beam profile at three scintillating (YAG) screens,
shown as SCR-01, SCR-02 and SCR-03 in Fig. 1. The
quadrupole scan (Sec. III B) and tomography (Sec. III C)
methods use only observations of the beam on SCR-03,
though observations on SCR-02 were also made, in order to
validate the results. For each of the three methods, two
quadrupoles (QUAD-01 and QUAD-02) between the end
of the linac and SCR-01 were used for setting the optical
functions of the beam on SCR-01, and were kept at fixed
strengths during data collection. As discussed later in this
section, the strengths of these quadrupoles were chosen to
produce a beam waist at SCR-02, based on a model using
the design parameters for the upstream components
(including the electron source and linac). A collimator is
located between SCR-01 and SCR-02, but this was not
used during the measurements. For all three measurement
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techniques, the strengths of three quadrupoles (QUAD-03,
QUAD-04, and QUAD-05 in Fig. 1) located between SCR-
02 and SCR-03 were varied. For the three-screen analysis,
only the beam sizes for one set of magnet strengths are
strictly needed to calculate the emittances and optical
functions; however, as described in Sec. III A, measure-
ments with different sets of quadrupole strengths can be
used to validate the results by showing the consistency of
emittance and optics values obtained for different strengths.
In the case of the quadrupole scan and tomography

methods, SCR-03 provides the necessary data, and is
referred to as the “observation point.” For ease of compari-
son, for all three techniques we construct the covariance
matrix at SCR-02, which is referred to as the “reconstruction
point.” Initial values for the quadrupole strengths to be used
during a scan were chosen to provide a wide coverage (from
0 to 2π) of the horizontal and vertical phase advances from
SCR-02 to SCR-03: in principle, this provides good con-
ditions for reconstruction of the phase space using the
quadrupole scan and tomography analysis techniques, since
the projection of the phase space onto the coordinate axes is
then observed over a wide range of phase space rotation
angles. The phase advances are calculated for given quadru-
pole strengths using the nominal Courant–Snyder functions
at SCR-02, based on the design parameters of the machine.
Simulations were then performed to optimize the number of
quadrupole strengths used in a scan, and the quadrupole
strengths themselves, to allow accurate reconstruction of the
phase space using theminimum number of different settings
for the quadrupoles. Reducing the number of points in a scan
reduces the time needed to collect data, but has an adverse
impact on the accuracy of phase space measurements.

For the experiments reported here, each quadrupole scan
consisted of 38 sets of quadrupole strengths. The quadrupole
strengths and corresponding phase advances (from SCR-02
to SCR-03) are shown in Fig. 2.

FIG. 1. Layout of CLARA FE (not to scale), showing the electron source, magnetic elements, linac, and diagnostics. For the emittance
measurements, quadrupoles QUAD-01 and QUAD-02 were used to set the required optics at screen SCR-01. For each measurement,
beam images on SCR-03 (the observation point) were recorded for different strengths of quadupoles QUAD-03, QUAD-04 and QUAD-
05. The optical functions and phase space distribution were computed at SCR-02 (the reconstruction point). Screens SCR-01, SCR-02
and SCR-03 are 0.61 m, 1.53 m and 3.20 m from the entrance of QUAD-01, respectively.
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FIG. 2. Strengths of quadrupoles QUAD-03, QUAD-04 and
QUAD-05 used during quadrupole scans. The quadrupole
strengths are chosen to provide a wide range of phase advances
from SCR-02 (the reconstruction point) to SCR-03 (the obser-
vation point): the horizontal and vertical phase advances are
shown on the plot as solid and broken lines (respectively).
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At each point in a quadrupole scan on CLARA FE, ten
screen images were recorded on successive machine pulses
(at a rate of 10 Hz, with a single bunch per pulse): this
allows an estimate to be made of random errors arising
from pulse-to-pulse variations in beam properties. A back-
ground image was recorded without beam (i.e., with the
photocathode laser blocked), so that any constant artefacts
in the beam images, for example from dark current, could
be subtracted. The rms beam sizes were calculated by
projecting the image onto either the x or y axis, with
coordinates measured with respect to a centroid such that:

hxi ¼ hyi ¼ 0: ð21Þ
Average quantities are calculated from a beam image by
integration of the image intensity with an appropriate
weighting, for example:

hxi ¼
RR

xIðx; yÞdxdyRR
Iðx; yÞdxdy ; ð22Þ

where Iðx; yÞ is the image intensity at a given point on the
screen. The screens and cameras are specified to provide
images with a linear relation between beam intensity and
image intensity (i.e., without saturation of the images) up to
bunch charges of 250 pC, with beam sizes in the range
achievable on CLARA FE. For the measurements reported
here, where bunch charges of up to 50 pC were used (with
most measurements at 10 pC) the beam intensity was
significantly below the point at which saturation occurs.
Between each quadrupole scan, the quadrupole magnets

were cycled over a set range of strengths to minimize
systematic errors from hysteresis. Remaining sources of
systematic errors include calibration factors for the magnets
(when converting from coil currents to field gradients),
magnet fringe fields, calibration factors for the screens, and
accelerating gradient in the linac. It was found that better
agreement between the analysis results and direct obser-
vations (used to validate the results) could be obtained if the
beam momentum in the model used in the analysis was
reduced slightly from the nominal 30 MeV=c. In the results
presented here, a momentum of 29.5 MeV=c is used. It
should also be noted that some variation in machine
parameters (including rf phase and amplitude in the
electron source and the linac) is likely to have occurred
during data collection, and because of the time required to
re-tune the machine it was not always possible to confirm
all the parameter values between quadrupole scans.
In principle, for each of the three measurement and

analysis methods, the strengths of the quadrupoles between
SCR-02 and SCR-03 can be chosen randomly. However, if
the profile of the beam on any of the screens becomes too
large, too small, or very asymmetric (with large aspect
ratio) then there can be a large error in the calculation of the
rms beam size. Before collecting data, therefore, simula-
tions were performed to find sets of magnet strengths, with

fixed QUAD-01 and QUAD-02 and variable QUAD-03,
QUAD-04 and QUAD-05, for which the transverse beam
profiles on each of the three screens would remain
approximately circular, and with a convenient size. It is
also worth noting that, from (2), a large value of αx at a
given location can indicate a large value for hxpxi at that
location: calculation of the emittance then involves taking
the difference between quantities that may be of similar
magnitude, leading to a large uncertainty in the result.
A further constraint, therefore, was to find strengths for
QUAD-01 and QUAD-02 that would provide a beam waist
in x and y (i.e., with αx and αy close to zero) at SCR-02 (the
Reconstruction Point). Finally, quadrupole strengths were
chosen to provide a wide range of horizontal and vertical
phase advances from SCR-02 to SCR-03: this is a con-
sideration for the tomographic analysis, and is discussed
further in Sec. III C. Simulations to find sets of suitable
strengths for all five quadrupoles were carried out in
GPT [24], tracking particles from the photocathode (with
nominal laser spot size and pulse length) to SCR-03,
using machine conditions matching those planned for the
experiments.
Space charge effects were included in the tracking

simulations in GPT [25,26], though these effects are only
really significant at low momentum, upstream of the linac.
Space charge was not included in the analysis (using any of
the three methods discussed in this section). To justify the
assumption that space charge can be neglected in the
analysis, we can compare the perveance with the beam
emittance. In the case of a beam with an elliptical
distribution in phase space, the evolution of the rms beam
size σx with distance s along a beamline is described by the
envelope equation:

d2σx
ds2

þ k1σx −
ϵ2x
σ3x

−
K

2ðσx þ σyÞ
¼ 0; ð23Þ

where k1 is the local quadrupole focusing, and the
perveance K is:

K ¼ I
β30γ

3
0IA

: ð24Þ

Here, β0 is the particle velocity (scaled by the speed of
light), γ0 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β20

p
is the relativistic gamma factor, and

IA ≈ 17.045 kA is the Alfvèn current. For CLARA FE, we
assume representative values of 30 MeV for the beam
energy, 2 A peak current (corresponding, for example, to
10 pC bunch charge in a Gaussian longitudinal distribution
with standard deviation 2 ps), beam sizes σx≈σy≈0.3mm,
and normalized emittance 1 μm. With these values we find
K ≈ 1.2 × 10−9, and 4ϵ2x=σ2x ≈ 1.2 × 10−8. We therefore
expect to see space charge effects become significant only
at bunch charges larger by some factor above the nominal
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10 pC at which most of the measurements reported here
were made.
Additional nonlinear and intensity-dependent effects

may come from wakefields. Although wakefields in the
linac may be significant, in the section of CLARA FE used
for the phase space measurements, the vacuum chamber is
essentially smooth and wakefields are small. With the
bunch charges used in the experiments reported here (up to
50 pC) wakefield effects in the beamline following the linac
are not expected to have any observable impact on the
beam.

A. Three-screen method

The three-screen analysis method is based on the
principle that, given the rms beam size (in either the
transverse horizontal or vertical direction) at three separate
locations, and knowing the transfer matrices between those
locations, it is possible to calculate the covariance matrix
characterizing the phase space beam distribution. As
discussed in Sec. II above, this technique is appropriate
when the beam has an elliptical distribution (or a distri-
bution that is close to elliptical) in phase space, and there is
no coupling. In such cases, the 2 × 2 covariance matrices
of the second-order moments of the beam distribution in the
transverse horizontal and vertical phase spaces can be
treated independently, and provide a good representation of
the beam properties.
The three-screen measurement and analysis technique

has the advantage over other methods (such as tomography,
discussed in Sec. III C) that data collection and analysis can
be performed rapidly. CLARA FE includes a number of
screens in appropriate locations following the linac,
allowing this technique to be readily applied. In principle,
the beam in CLARA FE should have a simple (close to
elliptical) distribution in transverse phase space, with little
or no coupling. The distribution should be well charac-
terized by the 2 × 2 transverse horizontal and vertical
covariance matrices, and the three-screen analysis tech-
nique was therefore used during machine commissioning.
However, it was found that the results did not provide a
good description of the beam behavior, and that values
found for the emittances and optical functions could vary
significantly, depending on the strengths of the quadrupoles
between the screens. Results from phase space tomography
show that at the time the measurements were made, the
beam distribution had a complicated structure in phase
space. This is also evident from the images observed
on SCR-02, which consistently show a lack of elliptical
symmetry in the coordinate space projection at this screen
for any of the machine configurations that we studied
(some examples are given, and compared with predictions
from the tomography analysis to be described later, in
Fig. 9). Here, we report the results of the three-screen
measurements mainly to illustrate the limits of the tech-
nique in this case.

Let us consider just the transverse horizontal motion: the
application to the vertical motion is straightforward. If
the transfer matrix from one location in the beamline s1 to
another location s2 is M21 (with transpose MT

21), then:

Σ2 ¼ M21Σ1MT
21; ð25Þ

where Σ1 is the covariance matrix at s1 and Σ2 is the
covariance matrix at s2. For the present case where we
consider motion in just one degree of freedom, the
covariance matrices and transfer matrices are all 2 × 2
matrices. At a third location s3:

Σ3 ¼ M32Σ2MT
32; ð26Þ

where Σ3 is the covariance matrix at s3, and M32 is the
transfer matrix from s2 to s3. The elements of the transfer
matrices can be calculated using a linear model of the
beamline, with known quadrupole strengths.
Given measured values of hx21i, hx22i and hx23i (from

observation of the beam images on the three screens), using
(25) and (26) we can find hx2px2i and hp2

x2i from:

hx2px2i ¼ −
b232hx21i þ CþC−hx22i − b221hx23i

2C−b21b32
; ð27Þ

hp2
x2i ¼

a32b32hx21i þ C−a21a32hx22i − a21b21hx23i
C−b21b32

; ð28Þ

where a21 and b21 are (respectively) the (1, 1) and (1, 2)
elements of M−1

21 , a32 and b32 are (respectively) the (1, 1)
and (1, 2) elements of M32, and:

C� ¼ a32b21 � a21b32: ð29Þ

The same formulas can be applied to calculate the elements
of the covariance matrix for the vertical motion, and (as
discussed in Sec. II) the technique can be extended using
additional screens or by changing the strengths of selected
quadrupoles, to find the elements of the 4 × 4 covariance
matrix for motion in two degrees of freedom.
In applying the formulas (25)–(28) to CLARA FE, s1, s2,

and s3 correspond to the locations of screens SCR-01,
SCR-02, and SCR-03, respectively (see Fig. 1). If there is
no coupling in the beam, and if the distribution in phase
space has elliptical symmetry, then the results may be
validated by repeating the measurements for different
strengths of the three quadrupoles between screens SCR-
02 and SCR-03: since the magnets upstream of SCR-02
remain at constant strength, measurements made with
different strengths of downstream magnets should all yield
the same values for the emittances and Courant–Snyder
parameters at this screen.
Figure 3 shows a typical set of results from the three-

screen analysis applied to CLARA FE, for the transverse
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horizontal and vertical directions, respectively. Elements of
the covariance matrix [each scaled by an appropriate
Courant–Snyder parameter, calculated from the covariance
matrix elements using (3)–(5)] are plotted as functions of
the phase advance from SCR-02 to SCR-03 in the respec-
tive plane (corresponding to different strengths of the
quadrupoles QUAD-03, QUAD-04, and QUAD-05). In
the case of a simple elliptical distribution with no coupling,
from Eqs. (3)–(5) we see that scaling the covariance matrix
elements by the Courant–Snyder parameters should give
values that are independent of the phase advance, and equal
to the geometric emittance. However, the results in Fig. 3
show significant variation in each of the scaled elements of

the covariance matrix over the range of the quadrupole
scan: this is particularly evident in the horizontal direction,
and is reflected in the values calculated for the emittance
and optics functions. In both the horizontal and the vertical
planes, a number of points in the quadrupole scan lead to
imaginary values for the emittance (the covariance matrix
has negative determinant), or nonphysical negative values
for the covariance matrix element hp2

xi. These points (21
points in the horizontal plane, and 7 in the vertical plane)
are omitted from the plots in Fig. 3 and from the calculation
of mean values of emittances and optics functions. The
omitted points all have phase advance greater than 1.4 rad
in the respective plane.
As discussed in Sec. II, if the beam has a complicated

structure in phase space, then its properties and behavior
cannot be well characterized in terms of just the elements of
the 2 × 2 (transverse horizontal and vertical) covariance
matrices. To support the argument that the failure to obtain
consistent results using the three-screen analysis technique
in CLARA FE was due to the structure of the beam
distribution in phase space, we performed tracking simu-
lations using an initial distribution based on that obtained
from a tomography analysis (presented in Sec. III C). In the
simulations, particles were tracked in a computer model of
the beamline from SCR-02 (the reconstruction point)
backward to SCR-01, and forward to SCR-03. At each
screen, the horizontal and vertical rms beam sizes are
calculated, and the same procedure that was applied to the
experimental data was used to calculate the covariance
matrix at SCR-02. The elements of the covariance matrix
were then used to calculate the emittance and optical
parameters at this point. The tracking and optical calcu-
lations were repeated for different strengths of the quadru-
poles, corresponding to those used in the experiment.
Results for the transverse vertical plane are shown in
Fig. 4. For a Gaussian elliptical distribution in phase space,
there are only very small variations in the calculated
covariance matrix at SCR-02 and in the optical functions,
for different quadrupole strengths (the small variations arise
from statistical variation in the distribution, resulting from
tracking a finite number of particles). The simulation can be
repeated, but using a phase space distribution without
elliptical symmetry, instead of a Gaussian elliptical dis-
tribution. Since an appropriate distribution is provided by
the tomography analysis that we present later, in Sec. III C,
we use this distribution (illustrated in Fig. 7) in the
simulation for the nonelliptical case. However, we empha-
size that the purpose at this point is only to illustrate the
impact of the lack of elliptical symmetry on the three-
screen analysis, rather than to demonstrate any specific
aspects of the tomography analysis. Using the nonelliptical
distribution in the simulations, we see much larger varia-
tions in the covariance matrix at SCR-02 and in the
emittance and optical functions at this point, depending
on the strengths of the quadrupoles between SCR-02 and
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FIG. 3. Emittance and optical functions measured using the
three-screen analysis technique for (left) horizontal and (right)
vertical planes. The horizontal axis on each plot shows the phase
advance between SCR-02 and SCR-03; each point represents the
results for a single set of quadrupole strengths between these two
screens. The plots show (from top to bottom): the mean-square
beam size observed at SCR-03 scaled by the beta function; the
normalized emittance; the Courant–Snyder beta function at
SCR-02; the Courant–Snyder alpha function at SCR-02. The
emittance, beta function, and alpha function are calculated from
the covariance matrix at SCR-02 using (27) and (28). The beta
function at SCR-03 (used for scaling the beam size) is calculated
by propagating the Courant–Snyder functions from SCR-02
using the appropriate transfer matrix. Points leading to imaginary
values for the emittance are omitted. Error ranges show the
standard deviation across the measurements, omitting points with
large deviation from the mean.
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SCR-03. For some quadrupole strengths, the calculated
covariance matrix is unphysical, and it is not possible to
find real values for the emittance or optical functions. The
overall behavior is qualitatively similar in some respects
with that seen in the experiment, Fig. 3(b). Results of
simulations for the horizontal plane show the same behav-
ior as the vertical plane, with almost no variation in the
emittance or optical functions as a function of quadrupole
strength for a Gaussian elliptical phase space distribution,
but large variations in the case of a more realistic phase
space distribution based on the results of the tomography
analysis.

B. Quadrupole scan method

One of the limitations of the three-screen analysis
method described in Sec. III A is the inability to provide
information on beam coupling. This can be overcome,

however, by combining observations of the transverse
beam size at different screens for various strengths of
the quadrupoles between the screens. If a sufficient number
of quadrupole strengths are used, then beam size measure-
ments at a single screen provide sufficient data to calculate
the 4 × 4 transverse beam covariance matrix at a point
upstream of the quadrupoles. The 4 × 4 covariance matrix
has ten independent elements: in principle, just four sets of
quadrupole strengths provide twelve beam size measure-
ments (values for hx2i, hy2i and hxyi for each set of
quadrupole strengths), and are more than sufficient to
determine the covariance matrix. In practice, it is desirable
to use a greater number of quadrupole strength settings, to
overconstrain the covariance matrix. Although it is again
assumed (implicitly) that the beam can be described by a
simple elliptical phase space distribution, the quadrupole
scan technique differs from the three-screen measurement
technique in using larger number of measurements, which
allows account to be taken of coupling. Also, depending on
the details of the beam distribution in phase space, by
overconstraining the covariance matrix, it may be possible
to construct a phase space ellipse that better represents the
beam behavior.
The quadrupole scan technique that we use is similar to

that presented by Prat and Aiba [22]. The theory can be
developed as follows. The covariance matrix Σ3 at a
location s3 in the beamline (SCR-03 in the case of
CLARA FE) is related to the covariance matrix Σ2 at a
location s2 (SCR-02 in CLARA FE) through Eq. (26),
where all matrices are now 4 × 4. The relationship between
the observable quantities at s3 (assuming a YAG screen at
that location) and the independent elements of Σ2 can be
written: 0

BBBBBBBBBBBBBBBBBBBBBBBB@

hx23ið1Þ
hx3y3ið1Þ
hy23ið1Þ
hx23ið2Þ
hx3y3ið2Þ
hy23ið2Þ
hx23ið3Þ
hx3y3ið3Þ
hy23ið3Þ

..

.

1
CCCCCCCCCCCCCCCCCCCCCCCCA

¼ D

0
BBBBBBBBBBBBBBBBBBBBB@

hx22i
hx2px2i
hx2y2i
hx2py2i
hp2

x2i
hpx2y2i
hpx2py2i
hy22i

hy2py2i
hp2

y2i

1
CCCCCCCCCCCCCCCCCCCCCA

; ð30Þ

where hx23iðnÞ represents the mean square horizontal trans-
verse beam size measured at s3 for a particular set of
quadrupole strengths, and similarly for hy23iðnÞ and
hx3y3iðnÞ. With measurements of the beam distribution in
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FIG. 4. Simulation of three-screen analysis technique for
measurement of vertical emittance and optical functions, using
(left) a Gaussian elliptical phase space distribution, and (right) a
realistic phase space distribution constructed from the results of
the tomography analysis presented in Sec. III C. The plots show
the same quantities as the corresponding plots in Fig. 3. Note that
for the Gaussian elliptical distribution, there is only a very small
variation in each quantity with change in the quadrupole
strengths, but the realistic phase space distribution shows a
similar variation as the experimental case (Fig. 3). The Gaussian
elliptical distribution was constructed with nominal parameter
values γϵy ¼ 4.85 μm, βy ¼ 1.25 m and αy ¼ −1.54 at SCR-02.
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coordinate space at s3 for N different sets of quadrupole
strengths,D is a 3N × 10matrix. The elements ofD can be
expressed, using Eq. (26), in terms of elements of the
transfer matrices M23 from s2 to s3 (with each set of three
rows in D corresponding to a single set of quadrupole
strengths). Explicit expressions for the elements of D (for a
given transfer matrix) are as follows:

DT ¼

0
BBBBBBBBBBBBBBBBBBB@

m2
11 m11m31 m2

31

2m11m12 m12m31 þm11m32 2m31m32

2m11m13 m13m31 þm11m33 2m31m33

2m11m14 m14m31 þm11m34 2m31m34

m2
12 m12m32 m2

32

2m12m13 m13m32 þm12m33 2m32m33

2m12m14 m14m32 þm12m34 2m32m34

m2
13 m13m33 m2

33

2m13m14 m14m33 þm13m34 2m33m34

m2
14 m14m34 m2

34

1
CCCCCCCCCCCCCCCCCCCA

; ð31Þ

where mij is the ði; jÞ element of the transfer matrix M23

(for a given set of quadrupole strengths). Given observa-
tions of the beam profile at s3 for a number of different sets
of quadrupole strengths, and the corresponding values for
the elements of D, the elements of the covariance matrix at
s2 may be found by inverting Eq. (30). Since D is not a
square matrix, the pseudoinverse of D (found, for example,
using singular value decomposition) must be used instead
of the strict inverse.
It is worth noting that whereas in one degree of freedom

it is possible to obtain the elements of the covariance matrix
at the reconstruction point by varying the strength of a
single quadrupole between the Reconstruction Point and
the observation point, this is not the case in two degrees of
freedom. To understand the reason for this, consider the
case of a single thin quadrupole with the reconstruction
point s2 at the upstream (entrance) face of the quadrupole,
and the observation point s3 some distance downstream
from the quadrupole. The elements of the covariance matrix
hx23i, hx3y3i, and hy23i each have a quadratic dependence on
the quadrupole strength, with coefficients determined by
the elements of the covariance matrix at the reconstruction
point. By fitting the quadratic curves obtained from a
quadrupole scan we therefore obtain nine constraints (three
for each of the observed elements of the covariance matrix
at s2); however, the covariance matrix at s2 has ten
independent elements (in two degrees of freedom). The
problem is therefore underconstrained: in the context of
Eq. (30) this is manifest as the matrix D having fewer
nonzero singular values than are required to determine
uniquely the elements of the covariance matrix at the
observation point. Although it is always possible to “invert”
D using singular value decomposition, the procedure in this

case would yield a solution for the covariance matrix that
minimizes the sum of the squares of the matrix elements:
there is no reason to suppose that this least-squares matrix
is near the correct solution. To address this problem,
however, it is only necessary to collect data from a scan
of two quadrupoles at different locations between the
observation point and the reconstruction point. This breaks
the degeneracy in the system, and (if the system is properly
designed) more than ten singular values of D will be
nonzero: in other words, the system becomes overcon-
strained, rather than underconstrained.
The same data collected for the three-screen method can

be used in the analysis using the quadrupole scan method,
and the same practical considerations (concerning, for
example, the desirability of a beam waist at the recon-
struction point, and maintaining an approximately round
beam at the observation point) apply. However, it should be
noted that for the three-screen method, the observed beam
sizes at all three screens are used to reconstruct the covariance
matrix: an independent reconstruction is obtained for each
point in the quadrupole scan. For the quadrupole scan
analysis method, on the other hand, we use only the observed
beam size at a single screen (SCR-03 in this case) and
combine all the measurements for different quadrupole
strengths to calculate the elements of the covariance matrix.
In effect, we calculate the size and shape of the distribution in
phase space based on the widths of projections at many
different phase angles: this leads to amore reliable result than
is obtained using the three-screen analysismethod, for which
only three different phase angles are used. Nevertheless,
even for a large number of phase angles, the quadrupole
scan method does not provide the same detailed information
on the phase space distribution that is provided by the
tomography method (discussed in Sec. III C). Rather, it
attempts to fit a phase space distribution that may have
significant detailed structurewith a simpleGaussian elliptical
distribution.
Figure 5 shows the residuals from a fit based on data

from a quadrupole scan in CLARA FE made with nominal
machine settings. Each point indicates the observed and
fitted beam size (hx2i, hy2i or hxyi) at the observation point
for a different set of strengths of the quadrupoles between
SCR-02 (the reconstruction point) and SCR-03 (the obser-
vation point). The results may also be validated by
comparing the beam size predicted at the reconstruction
point with the actual beam size observed at this point. For
the case shown, the agreement is within about 15%.
To estimate the uncertainty in the elements of the

reconstructed covariance matrix, we use the residuals
between beam sizes observed on SCR-03 (for a given
set of quadrupole strengths) and the beam sizes predicted
from the model, using the reconstructed phase space
distribution at SCR-02: we treat the residuals as an error
on the measured beam sizes. We then construct an
ensemble consisting of sets of beam sizes at SCR-03
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produced by simulating the quadrupole scan procedure.
Within each set, the beam size for given quadrupole
strengths has a value chosen randomly from a normal
distribution with mean equal to the actual measured beam
size for those quadrupole strengths, and standard deviation

equal to the corresponding residual. From each simulated
quadrupole scan (i.e., for each member of the ensemble) we
find the corresponding emittance and optics functions.
Finally, we assume that the uncertainty on these values
can be found from the standard deviation of the values
across the ensemble. The uncertainties found in this way
are shown as the range of variation in the results from the
quadrupole scans (in one and two degrees of freedom) for
the emittances and optics functions in Table I.

C. Phase space tomography

Finally, it is possible to use phase space tomography to
construct a more detailed representation of the beam
properties than is provided by just the emittance and optical
functions. In principle, the tomography method is similar to
the quadrupole scan, in that by observing the beam image
on a screen for different strengths of a set of upstream
quadrupoles, it is possible to reconstruct the phase space
distribution at a point upstream of the quadrupoles. The
difference is that for the quadrupole scan, only the rms
beam sizes are used in the analysis: tomography uses all the
information from the (observed) beam distribution to
produce a more detailed reconstruction of the phase space
distribution of the beam. When tomography is carried out
in coordinate space, two-dimensional images (projections)
on a screen for different orientations of an object are used
to reconstruct a three-dimensional representation of the
object. In phase space tomography, different “orientations”
correspond to rotations in phase space, which are achieved
by changing the horizontal or vertical phase advances
between the reconstruction point and the observation
point. Mathematically, the analysis is essentially the
same as in coordinate space, and standard algorithms deve-
loped for tomography in coordinate space (such as filtered
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FIG. 5. Beam size at SCR-03 reconstructed by quadrupole scan
analysis compared with the beam size observed directly on the
screen. Each point corresponds to a different set of quadrupole
strengths. Circles indicate the horizontal beam size hx2i; boxes
indicate the vertical beam size hy2i; crosses indicate the hori-
zontal-vertical correlation hxyi. The distances of the points from
the dashed line (which passes through the origin with unit
gradient) indicates the residuals to the fit, which are dominated
by systematic errors. The observed images are highly reproduc-
ible over a number of successive machine pulses, and the random
variation in the measured beam sizes is correspondingly very
small on the scale of the plot.

TABLE I. Comparison of values for normalized emittances and Courant–Snyder parameters determined from different analysis
techniques. The results from analysis in four-dimensional phase space are for the normal mode emittances and coupled optical functions
(see Sec. II). The values for the three-screen analysis technique show the mean and standard deviation of the results of the analysis over
the range of points in the quadrupole scan, omitting points that do not return a real value for the emittance. The three-screen analysis
method neglects any detailed structure in the beam distribution in phase space, and in this case leads to unreliable results. As explained in
Sec. III B, the results from the quadrupole scan analysis show the mean and standard deviation of emittance and optics values obtained
from an ensemble of simulated measurements based on the actual measured beam sizes at SCR-03, and the residuals between the
predicted beam sizes (from the reconstructed phase space) and the actual observed beam sizes. The uncertainties in the tomography
results are based on the standard errors on the parameters of a four-dimensional Gaussian fitted to the reconstructed phase space.

Two-dimensional phase space Four-dimensional phase space

Three-screen Quad scan Tomography Quad scan
Tomography
measurement

Tomography
simulation

ϵN;x (μm) 41.4� 2.4 10.6� 1.9 2.34� 0.07 ϵN;I (μm) 12.3� 2.4 8.83� 0.03 8.26� 0.03
βx (m) 1.73� 0.15 6.65� 3.44 32.9� 0.8 βI11 (m) 5.49� 2.57 10.24� 0.03 9.46� 0.05
αx −0.246� 0.021 −1.36� 0.62 −2.30� 0.06 −βI12 −1.04� 0.43 −1.05� 0.01 −0.950� 0.006
ϵN;y (μm) 4.85� 0.10 6.37� 2.30 4.14� 0.08 ϵN;II (μm) 4.55� 1.94 3.93� 0.01 3.85� 0.01
βy (m) 1.25� 0.03 1.19� 1.77 1.94� 0.03 βII33 (m) 1.04� 1.69 5.89� 0.03 7.30� 0.03
αy −1.54� 0.21 −1.40� 3.06 −2.27� 0.04 −βII34 −1.26� 2.65 −0.692� 0.003 −0.797� 0.003
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back-projection, or maximum entropy [27–29]) can be
applied to phase space tomography.
For analysis of data from CLARA FE, we have used a

form of algebraic reconstruction. The procedure may be
outlined as follows. For simplicity we consider just a single
degree of freedom: the generalization to two (or more)
degrees of freedom is straightforward. Let ψ be a vector in
which each element ψ j represents the beam density
at a particular point ðxj; pxjÞ in phase space at the
reconstruction point. Assuming that the points are evenly
distributed on a grid in phase space, then the projected

beam density at the observation point, ρð1Þi at a point x ¼ xi
in coordinate space, can be written as a matrix multipli-
cation:

ρð1Þi ¼
X
j

Pð1Þ
ij ψ j; ð32Þ

where the matrix Pð1Þ has elements:

Pð1Þ
ij ¼

�
1 if xi ¼ mð1Þ

11 xj þmð1Þ
12 pxj;

0 otherwise:
ð33Þ

mð1Þ
11 and mð1Þ

12 are elements of the transfer matrix from the
reconstruction point to the observation point, for a given set
of quadrupole strengths. If the vector ρ has N elements ρi,
and there are N 2 points ðxj; pxjÞ in phase space, then Pð1Þ

is an N ×N 2 matrix. If the transfer matrix from the
reconstruction point to the observation point is changed
(e.g., by changing the strengths of the quadrupoles between
the two points), then we construct a new vector ρð2Þ
from the new image at the observation point, corresponding
to the new transfer matrix. In general, for the nth transfer
matrix, we have:

ρðnÞi ¼
X
j

PðnÞ
ij ψ j: ð34Þ

Note that the phase space density ψ is constant, because ψ
refers to a point upstream of any quadrupoles whose
strength is changed during the measurements. We can
combine the observations simply by stacking the vectors
ρðnÞ and the matrices PðnÞ:

ρ ¼

0
BBBBB@

ρð1Þ

ρð2Þ

..

.

ρðnÞ

1
CCCCCA; and Pij ¼

0
BBBBB@

Pð1Þ

Pð2Þ

..

.

PðnÞ

1
CCCCCA: ð35Þ

ρ is a vector with nN elements, and P is an nN ×N 2

matrix. In terms of the pseudoinverse P† of P, we have the
following formula for the phase space density at the
reconstruction point:

ψ j ¼
X
i

P†
jiρi: ð36Þ

We perform the analysis in normalized phase space [16],
in which the phase space variables ðxN; pxNÞ are defined by:

�
xN
pxN

�
¼

0
B@

1ffiffiffiffi
βx

p 0

αxffiffiffiffi
βx

p ffiffiffiffiffi
βx

p

1
CA
 

x

px

!
; ð37Þ

where αx and βx are the Courant–Snyder functions at the
given point in the beam line. The transfer matrix in
normalized phase space between any two points in the
beam line is represented by a pure rotation matrix, with
rotation angle given by the phase advance. This simplifies
the implementation of the algebraic tomography method
described above. A further advantage of working in nor-
malized phase space is that if the Courant–Snyder functions
at the reconstruction point are chosen to match the beam
distribution, then the beam distribution in phase space at
this point will be perfectly circular: this improves the
accuracy with which parameters such as the emittance may
be calculated. Note that, since we do not know in advance
the actual Courant–Snyder parameters describing the beam
distribution at the reconstruction point, we need to make
some estimate based on (for example) simulations or a
quadrupole scan analysis. In practice, it is not essential for
the estimated parameters to match exactly the actual beam
parameters: any discrepancy will simply lead to an elliptical
distortion of the beam distribution in normalized phase
space. To transform experimental observations into nor-
malized co-ordinates is straightforward: all that is necessary
is to scale the coordinate axis for the observed beam
projection by a factor 1=

ffiffiffiffiffiffiffi
βOPx

p
, where βOPx is the Courant–

Snyder beta function at the observation point calculated
from the estimated (fixed) Courant–Snyder functions at the
reconstruction point and the transfer matrix from the
reconstruction point to the observation point.
Rather than compute the pseudoinverse of P, we solve

Eq. (34) iteratively, using a least-squares method. For the
computation of the phase space in a single degree of
freedom, we apply a constraint that the particle density
must be positive at all points in phase space. However,
applying this constraint carries a large computational
overhead, and for computation of the phase space in two
degrees of freedom, which has considerably greater com-
putational cost than the case of a single degree of freedom,
we do not constrain the least-squares solver in this way.
This can result in negative (unphysical) values for the
particle density at some points in phase space; however,
when a good fit is achieved, the negative values make a
relatively small contribution to the overall phase space
distribution.
Although there is no need for the phase advances

between the reconstruction point and observation point
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to be evenly distributed over the set of observations for
different quadrupole strengths, it generally improves the
accuracy of the tomography analysis to use as wide a range
of phase advances as possible, with roughly uniform
spacing: this maximizes the overall constraints on the
phase space distribution for a given number of observa-
tions. The sets of quadrupole strengths identified in the
preparatory simulations (described above) were specifically
chosen to provide a wide range of phase advances. The
same data (screen images at the observation point, for a
range of different quadrupole strengths) can be used for the
three-screen analysis (described in Sec. III A), the quadru-
pole scan analysis (described in Sec. III B) and the
tomography analysis described here. Figure 6 shows a
set of results from tomography analysis for the nominal
machine settings, and in which the horizontal and vertical
phase spaces are treated independently. As was the case for
the quadrupole scan method, the results may be validated
by comparing the predicted beam size at the reconstruction
point with the beam observed directly at this point (SCR-
02): the results of the comparison are shown in the lower
plots in Fig. 6. There is good agreement, and it can be
clearly seen that the tomography analysis reveals some

features of the charge distribution in phase space that are
not obtained from the quadrupole scan analysis. For
example, in the horizontal phase space, we see three
distinct “peaks” in the charge density, which are associated
with peaks in the variation of the intensity observed on
SCR-02, projected onto the horizontal axis. The quadrupole
scan analysis provides only the parameters of a Gaussian
elliptical distribution in phase space, which would lead to a
simple Gaussian variation in the intensity projected onto the
horizontal axis.
Although the phase space distributions are not perfectly

elliptical, we can obtain indicative values for the emittances
and Courant–Snyder parameters using a number of differ-
ent methods. For example, given a phase space distribution,
it is possible to calculate the second-order moments, and
then to find the emittance and Courant–Snyder parameters
using (in one degree of freedom) Eqs. (2)–(5). However,
this approach may not give useful results (in terms of
predicting beam behavior) if the density does not fall to
zero rapidly with distance from the center of the beam.
Although this may be addressed by imposing a “cutoff”,
where the density beyond some amplitude is set to zero, it is
not always clear where such a cutoff should be imposed.
Also, it is not clear how to estimate uncertainties (or errors)
on the values obtained.
An alternative approach is to fit an elliptical distribution

function to the phase space density. For example, an
elliptical Gaussian of the form (9) could be used. Using
a standard algorithm, such as nonlinear least-squares
regression, it is then also possible to estimate the uncer-
tainty on values obtained for the emittance and Courant–
Snyder parameters. This is the approach used to obtain
the values presented in Sec. IVA (Table I). A Gaussian
elliptical distribution in horizontal phase space can be
written:

ρðx⃗Þ ¼ ρ0 exp

�
−
1

2
x⃗TΣ−1x⃗

�
; ð38Þ

where ρ0 is the peak density, x⃗T ¼ ðx; pxÞ is a phase-space
vector, and the 2 × 2 symmetric matrix Σ−1 is the inverse of
the covariance matrix. The peak density ρ0 and the three
independent components of Σ−1 are used as variables in
fitting the Gaussian elliptical function to the phase space
distribution. We use the FITNLM function in MATLAB [30],
which performs nonlinear least squares regression using the
Levenberg–Marquardt algorithm [31]. This provides values
for the variables in the fit that give the best match (in terms
of minimizing the squares of the residuals) to the given
data, and the standard error on each variable. The fitting
procedure also provides an indication of the quality of the
fit in terms of the coefficient of determination, or r2 value
(in the range 0 to 1, with a value of 1 indicating a perfect
match of the model to the data). Values for the emittance
and optics functions can be obtained from the elements of
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FIG. 6. Results from phase space tomography in CLARA FE,
treating horizontal and vertical phase spaces separately. The top
plots show the charge density in the beam at SCR-02 in the
horizontal (left) and vertical (right) phase spaces, in normalized
variables (co-ordinates scaled by the square root of the beta
function). The black ellipses show the emittance ellipses obtained
by fitting a two-dimensional Gaussian to each phase space
distribution. The bottom plots show the density projected onto
the horizontal (left) or vertical (right) axes: black lines are from
the tomographic reconstruction, red lines are from direct obser-
vation of the beam image on SCR-02.
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the covariance matrix Σ describing the fitted Gaussian. In
practice, we perform the fit in normalized phase space, and
apply the appropriate transformation to find the covariance
matrix for the Gaussian elliptical distribution that matches
the given distribution in ordinary (not normalized) phase
space.
To estimate the uncertainty in the values obtained for the

emittances and optics functions, we construct an ensemble
of matrices fΣ−1

n g, where, for each member Σ−1
n of the

ensemble, the value of each element is chosen randomly
from a normal distribution with mean equal to the corre-
sponding fitted value of Σ−1, and standard deviation equal

to the corresponding standard error. From the ensemble
fΣ−1

n g we construct ensembles of values for the emittances
and optics functions: in Table I, the values obtained using
the tomography techniques are the mean of each ensemble,
with uncertainty given by the standard deviation across the
ensemble.
Treating the horizontal and vertical phase spaces sepa-

rately in the analysis means that no information is provided
on coupling in the beam, which may arise (for example)
from incorrect setting of the bucking coil at the electron
source. It is possible to extend the tomography analysis
from a single degree of freedom, to treating two degrees of
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FIG. 7. Projections of beam density in normalized phase space, found from phase space tomography in two degrees of freedom in
CLARA FE. Each plot shows a different projection of the charge density from four-dimensional phase space, using normalized phase
space variables. The black ellipses show projections of the four-dimensional emittance ellipse obtained from a Gaussian fitted to the
four-dimensional (normalized) phase space distribution. Coupling in the beam is evident in the tilt of the charge distribution in the cases
that the axes refer to different degrees of freedom. The left-hand set of plots (a) shows the phase space distribution reconstructed from
experimental data; the right-hand set of plots (b) shows the results of the tomography analysis applied to simulated data based on the
measured phase space distribution, to validate the technique. Although there are some differences between the analysis results from the
experimental data and the results from the simulated data, there is overall very good agreement in the phase space distribution found in
each case, and in the emittances and optical functions corresponding to fitted emittance ellipses (see Table I).
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freedom simultaneously [14]. Applying this technique to
the case considered here, the resulting four-dimensional
phase space reconstruction includes information about the
betatron coupling in the beam. Some results from exper-
imental data (screen images) are shown in Fig. 7(a).
Generally, the fit using Eq. (36) of the phase space beam
density to the observed images is very good: the residuals
from a typical example are shown in Fig. 8.
The beam emittances and optics functions in two degrees

of freedom can be found from the reconstructed phase
space using a generalization of the method described above
for a single degree of freedom, based on fitting a Gaussian
to the reconstructed phase space distribution. In two
degrees of freedom, the Gaussian function is still given
by Eq. (38), but the phase space vector is now
x⃗T ¼ ðx; px; y; pyÞ, and the matrix Σ−1 is now a 4 × 4

symmetric matrix with ten independent elements that are
used as variables in the fit. Values for the normal mode
emittances and optics parameters can be found from the
eigenvalues and eigenvectors (respectively) of the covari-
ance matrix Σ, as described in [19]. Uncertainties in these
values can again be obtained from an ensemble of matrices
fΣ−1g, constructed using the standard errors on the
variables used in the fit.
One drawback of applying phase space tomography in

two degrees of freedom is that the matrix P in Eq. (32)
becomes very large: in one degree of freedom, to recon-
struct the phase space distribution with resolution N in
each dimension using n observations, P will be an nN ×
N 2 matrix. In two degrees of freedom (four-dimensional
phase space), P will be an nN 2 ×N 4 matrix: even for a
relatively coarse reconstruction, with N of order 50,
computing P and applying its inverse can require significant
computational resources. The situation is eased somewhat

by the fact that in practice, P is a sparse matrix, and this
allows a significant reduction in the computer memory that
would otherwise be required; nevertheless, the required
computational resources can be a limit on the resolution
withwhich the phase space in two degrees of freedommaybe
reconstructed. The results shownhere use a four-dimensional
phase space resolution N ¼ 69.
Projections from the four-dimensional phase space

density found from experimental data in CLARA FE are
shown in Fig. 7(a). To validate the technique, we take the
four-dimensional phase space distribution, and use it in
a simulation to construct a set of images on SCR-03 cor-
responding to different quadrupole strengths. We then take
the simulated images, and again apply the tomography
analysis: the results are shown in Fig. 7(b). Although there
are some differences between the original and recon-
structed distributions they are sufficiently close to indicate
that the technique potentially has good accuracy. We also
find that there is good agreement between the emittances
and optics functions obtained by fitting ellipses to the
projections of the phase space into the horizontal and
vertical planes (see Table I).
We can further validate the results by reconstructing the

two-dimensional distribution in coordinate space at the
reconstruction point (by projecting the four-dimensional
phase space distribution onto the coordinate axes), and
comparing this with the image that is observed directly.
Some examples for such comparisons are shown in Fig. 9.
In general, we find that the images reconstructed from
phase space tomography reproduce reasonably well the
general shape and some of the more detailed features of the
images that are observed directly. However, the tomogra-
phy does not reveal the same level of detail as can be seen in
the observed image. This may be due in part to the limited
resolution of the tomography analysis: as already men-
tioned, for the analysis presented here, we used a phase
space resolution of 69 points on each of the four axes
(which was at the upper limit set by the available computer
memory). However, it is also likely that measurement errors
also play a role. We note that the residuals of the fits to the
images at the observation point are typically very small (so
that there is no discernible difference between the directly
observed images at this point and the images reconstructed
from phase space tomography: see the example in Fig. 8).
However, there are systematic differences between the
reconstructed images at SCR-02 (the reconstruction point),
and the images observed directly on that screen. In
particular, the vertical size of the reconstructed beam
(projecting the phase space distribution onto the vertical
axis) is generally of order 10% larger than the vertical size
of the image observed directly. Work is in progress to
understand and correct the systematic errors: possible
sources include calibration errors in the quadrupoles and
in the diagnostics used for collecting beam images. It is
important to have accurate values for the quadrupole
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FIG. 8. Left: typical beam image at SCR-03 (the observation
point) for one point in a quadrupole scan. The image recon-
structed from the four-dimensional phase space density found
using Eq. (36) extended to two degrees of freedom (projecting the
phase space density ψ into co-ordinate space) is visually indis-
tinguishable from the observed image. Right: residuals of the fit,
representing the difference between the intensity of each pixel in
the observed image, and the intensity of the corresponding pixel
in the image reconstructed from the four-dimensional phase space
density. The beam image (left) is scaled so that the intensity varies
between 0 (dark blue) and 1 (yellow); on this scale, the largest
residuals (right) are of order 10−7.
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FIG. 9. Comparison between beam images observed directly at SCR-02 and the reconstruction of the images from phase space
tomography in two degrees of freedom for a range of solenoid and bucking coil currents in the electron source and different bunch
charges in CLARA FE. Within each subfigure, the plot at the top right shows the beam image observed directly on SCR-02; the plot at
bottom left shows the charge distribution in coordinate space reconstructed from phase space tomography (a projection of the four-
dimensional phase space onto the coordinate plane) at the same location. The plots at top left and bottom right in each subfigure show the
charge density projected onto the horizontal and vertical axes, respectively: black lines are from the tomography analysis and red lines
are from the directly observed image. (a) Main solenoid −125 A, bucking coil −2.2 A, bunch charge 10 pC. (b) Main solenoid −125 A,
bucking coil −2.2 A, bunch charge 20 pC. (c) Main solenoid −150 A, bucking coil −1.0 A, bunch charge 10 pC bunch charge 10 pC.
(d) Main solenoid −150 A, bucking coil −5.0 A, bunch charge 10 pC.
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strengths, since the tomographic analysis depends on
knowing the betatron phase advance between the
reconstruction point and the observation point, as well
as the optical functions at the observation point for given
values of these functions at the reconstruction point.
Similarly, the analysis depends on accurate knowledge
of the calibration factors of the diagnostic screens.
Hysteresis in the quadrupole magnets used to change the
optics between the reconstruction point and the observation
point may also lead to errors in the analysis: to try to
minimize hysteresis effects, the quadrupoles were routinely
degaussed (cycled) between scans, but the time taken for
this procedure made it impractical to degauss the quadru-
poles at each point in a single scan.

IV. EMITTANCE AND OPTICS MEASUREMENTS
UNDER VARIOUS MACHINE CONDITIONS

A. Nominal machine settings

Table I shows the emittance and optics parameters
obtained under nominal machine settings using the three
different techniques discussed in the previous sections:
three-screen measurements, quadrupole scans, and phase
space tomography. For the quadrupole scan and tomogra-
phy analysis in four-dimensional phase space, the emit-
tance and optics values in the table are those for the normal
mode quantities as described in Sec. II. With the nominal
machine settings, the electron source and linac operate with
the beam on-crest of the rf (i.e., to give maximum beam
acceleration for a given rf amplitude), with amplitudes
producing beam momentum 5 MeV=c and 30 MeV=c
respectively. The current in the bucking coil is set to
cancel the solenoid field on the photocathode, and the laser
intensity is set to give a bunch charge of 10 pC. The results
in Table I are based on the same data set (i.e., the same set
of beam images) in each case; the only difference between
the different methods is in the way that the data are
analysed. In principle, therefore, for a beam with elliptical
symmetry in the phase space distribution, we would expect
to see close agreement between the values obtained using
different techniques. However, while there is reasonable
agreement in some of the cases for the data from CLARA
FE, there is also wide variation in the values for some
parameters (e.g., the horizontal normalized emittance in
two-dimensional phase space). As discussed in Sec. III A,
this is likely the result of the complicated structure of the
beam distribution in phase space.
For the three-screen and quadrupole scan techniques, the

uncertainties in the values shown in Table I provide an
indication of the extent to which the given values describe
the beam behavior: in effect, the uncertainties in these cases
indicate the quality of a fit of a phase space distribution
with elliptical symmetry to the actual phase space distri-
bution. For the tomography technique, however, the
uncertainties are based on the standard error on the

parameters describing a Gaussian fitted to the reconstructed
distribution. The error on the parameters may be small,
even if the quality of the fit is poor. A better indication of
the quality of the fit in this case is given by the coefficient
of determination, or r2. For the tomography analysis in one
degree of freedom, we find for the case shown in Table I
that r2 ¼ 0.60 for the horizontal phase space, and r2 ¼
0.80 for the vertical phase spaces. In two degrees of
freedom, we find r2 ¼ 0.10. This shows a poor fit to a
Gaussian elliptical distribution in the four-dimensional
phase space, but rather better fits to the distributions
projected onto the horizontal and vertical (two-dimen-
sional) phase spaces.

B. Effect of varying bucking coil strength

The electron source in CLARA FE is constructed so that
the field from the solenoid can be cancelled at the cathode
by the field from a bucking coil. If the current in the
bucking coil is changed from the value needed to achieve
cancellation, electrons are emitted from the surface of the
cathode in a nonzero solenoid field: the effect is to
introduce some coupling into the beam (as a result of
noncompensated azimuthal momentum), which can appear
as changes in the beam emittances. In particular, the
individual normal mode emittances will vary, though their
product should remain constant as a function of the
solenoid field strength on the cathode [32,33]. The differ-
ence between the normal mode emittances is expected to be
minimized when there is zero solenoid field on the cathode:
with increasing field strength (parallel to the longitudinal
axis, in either direction) one emittance will increase while
the other will decrease. Tuning the machine for optimum
performance generally involves minimizing the coupling,
to achieve the smallest possible emittance ratio [15], and
characterizing and understanding the coupling as a function
of the strength of the bucking coil is thus an important step
in machine commissioning. Four-dimensional phase space
tomography offers a powerful tool for providing insight
into coupling in the machine, and was used to study the
dependence of the phase space distribution on the current in
the bucking coil.
The normal mode emittances as a function of current in

the bucking coil, found from four-dimensional phase space
tomography (as described in Sec. III B) are shown in
Fig. 10. Although there is some variation in the product
of the emittances with changes in the current in the bucking
coil, over a wide range the variation is small. There is also
some indication of the expected behavior of the individual
emittances. The difference between the emittances is
minimized for a bucking coil current of approximately
−3.5 A: this is different from the nominal value of −2.2 A
for cancelling the field on the cathode. The reason for the
discrepancy is being investigated. Note that before collect-
ing data over the range of bucking coil currents, the
bucking coil was degaussed with the intention of improving

TRANSVERSE PHASE SPACE CHARACTERIZATION … PHYS. REV. ACCEL. BEAMS 23, 032804 (2020)

032804-17



the agreement between the cathode field calculated from a
computer model of the electron source and the field that
was actually produced for a given current. It is also worth
noting that the time taken for data collection over the full
range of bucking coil currents took several hours, and it is
likely that some variation in machine parameters (such as rf
phase and amplitude in the electron source and linac)
occurred over this time.
Also shown in Fig. 10 are results from a GPT simulation

and from a simple theoretical model: these are included in
the figure to illustrate the expected behavior of the normal
mode emittances as a function of the solenoid field on the
cathode, and are not intended to show results from an
accurate machine model (although we see that they match
the results from the GPT simulations very well). For the
simulations, we use parameters for the electron source
corresponding to those in CLARA FE, but with the field
from the bucking coil scaled to cancel the solenoid field on
the cathode for a current of−3.5 A in the bucking coil (rather
than the nominal −2.2 A). Also, the initial distribution
of particles in phase space is chosen to give emittances
(with zero solenoid field on the cathode) corresponding to
the experimental measurements. This requires the beam

divergence at the cathode to be scaled to exceed significantly
the values believed to be appropriate for CLARA FE;
however, it should be remembered that in the simulation,
the emittances are calculated immediately after the electron
source, whereas the measurements are made in a section of
beamline downstream of the linac and numerous other
components. Effects (that are not yet well characterized)
between the electron source and themeasurement section are
likely to lead to some increase in emittance. The GPT and
theoretical results are therefore included in Fig. 10 purely to
illustrate the expected behavior of the emittances as functions
of the strengthof the solenoid field on the cathode, rather than
as a direct comparison of an accurate computational model
with the experimental results.
Also shown in Fig. 10 are results from a simplified

theoretical (analytical) model. This is based on an assumed
beam phase space distribution at the cathode, i.e., immedi-
ately after photoemission. If there is no magnetic field on
the cathode, then the covariance matrix is characterized by
an emittance and beta function in each transverse direction:

Σ ¼

0
BBBBB@

βxϵx 0 0 0

0 ϵx
βx

0 0

0 0 βyϵy 0

0 0 0
ϵy
βy

1
CCCCCA: ð39Þ

A solenoid field of strength B0 on the cathode can be
represented by a vector potential:

A ¼
�
−
1

2
B0y;

1

2
B0x; 0

�
; ð40Þ

so that the canonical conjugate momenta px and py

become:

px ¼
γmvx þ 1

2
eB0y

P0

; ð41Þ

py ¼
γmvy − 1

2
eB0x

P0

; ð42Þ

wherem and e are the mass and magnitude of the charge of
the electron, vx and vy are the transverse horizontal and
vertical components of the velocity, and P0 ¼ β0γ0mc is
the reference momentum (which can be chosen arbitrarily).
The covariance matrix then becomes:

Σ¼

0
BBBBB@

βxϵx 0 0 ηβxϵx

0 ϵx
βx
þ η2βyϵy −ηβyϵy 0

0 −ηβyϵy βyϵy 0

ηβxϵx 0 0
ϵy
βy
þ η2βxϵx

1
CCCCCA; ð43Þ
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FIG. 10. Normalized normal mode emittances as a function of
current in the bucking coil at the electron source, with fixed
bunch charge and main solenoid current. The markers on solid
lines show experimental (measured) values determined from
four-dimensional phase space tomography (as described in
Sec. III C), the dashed lines show values from GPT simulations,
and the dotted lines show values from a simple theoretical model.
The upper and lower sets of lines (blue and red, respectively)
show the normalized normal mode emittances; the middle set of
lines (black) show the geometric mean of the emittances.
Parameters in the simulations and theoretical model are chosen
to fit the experimental results.
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where:

η ¼ eB0

2P0

: ð44Þ

Finally, from the covariance matrix (43), we find (using
the methods described in Sec. II) that the normal mode
emittances are given by:

ϵI;II ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − ϵ2xϵ

2
y

qr
; ð45Þ

where:

χ ¼ ϵ2x þ ϵ2y
2

þ 2η2βxϵxβyϵy: ð46Þ

The normalized emittances (ϵN;I ¼ β0γ0ϵI, and similarly for
ϵN;II) remain constant during acceleration of particles in the
rf field of the electron source (and in the linac). To apply
this model to CLARA FE, giving the results shown in
Fig. 10, the initial beam size and divergence are chosen to
fit the emittances at their closest approach: the values used
are close to those used in the GPT simulation. We also
assume that η ¼ 0 for a bucking coil current of −3.5 A, and
scale the dependence of η on the field in the bucking coil so
as to match the experimental curves. However, we again
emphasize that the results from the theoretical model and

the GPT simulation are included only to give an illustration
of the expected behavior, and are not directly comparable
with the experimental results.
Direct inspection of the phase space distribution pro-

vides a further indication of how the coupling changes with
the current in the bucking coil. For example, Fig. 11 shows
the projection onto the x–py plane of the four-dimensional
phase space (reconstructed from the tomography measure-
ments) for different values of the current in the bucking
coil. The “tilt” on the distribution corresponds to a cor-
relation between the horizontal coordinate and vertical
momentum, and indicates the coupling: we see that this
changes sign as the bucking coil current is varied from
−5 A to −1.5 A. The tilt (and hence the coupling) vanishes
for a current of approximately −3.5 A, which is consistent
with the current required to minimize the difference
between the normal mode emittances.
A more complete characterization of the coupling is

given in Fig. 12, which shows the elements of the
covariance matrix at SCR-02 (the reconstruction point)
as functions of current in the bucking coil. Coupling
between motion in the horizontal and vertical directions
is indicated by nonzero values of the elements in the 2 × 2
top-right block diagonal. All these elements vanish for
bucking coil currents close to −3.5 A. We do not expect
this to correspond exactly to the bucking coil current that
minimizes the separation between the normal mode
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FIG. 11. Projection of the beam distribution in normalized phase space onto the xN–pyN plane, reconstructed from four-dimensional
phase space tomography, showing variation of coupling with bucking coil current (given above each figure). The correlation (tilt)
between horizontal coordinate xN and the vertical momentum pyN indicates the strength of the coupling.
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emittances, since after leaving the cathode (in zero longi-
tudinal magnetic field) the particles then pass through a
section of main solenoid field, not cancelled by the bucking
coil. The main solenoid field introduces some coupling in
the beam, characterized by nonzero elements off the 2 × 2

block diagonals in the covariance matrix. However,
tracking simulations in GPT suggest that in the case of
CLARA FE, the coupling in the covariance matrix intro-
duced by the part of the main solenoid not cancelled by the
bucking coil is small: the coupling in the covariance matrix
is minimized at a current within about 0.1 A of the current
that gives the closest approach of the normal mode
emittances (see Fig. 10).

C. Effects of varying main solenoid
strength and bunch charge

Although space-charge effects in CLARA FE are neg-
ligible in the section of beamline where the emittance and
optics measurements are made (with beam momentum
around 30 MeV=c), space-charge forces can play a sig-
nificant role in the electron source, depending on the bunch
length and the total bunch charge. In the studies reported
here, the photocathode laser was operated with pulse length

of 2 ps: as discussed in Sec. III (where we considered the
beam perveance) space-charge effects are expected to be
weak up to bunch charges of around 50 pC. However,
screen images suggested some significant variation in beam
parameters even at lower bunch charges. It is planned in the
future to use phase space tomography for rigorous studies
of the impact of bunch charge (and other parameters) on
beam properties; but so far, the limited time available for
collecting quadrupole scan data, together with some vari-
ability in the machine conditions, has made it impractical to
make detailed, systematic measurements. Nevertheless, to
provide some information on beam behavior, quadrupole
scans were performed for bunch charges of 10 pC, 20 pC,
and 50 pC, and for a reduced main solenoid current of
125 A, as well as the nominal 150 A. Some of the results
from analysis of these quadrupole scans using phase space
tomography in two degrees of freedom are shown in Fig. 9,
which compares the reconstructed beam image at SCR-02
with the image observed directly on this screen.
The images in Fig. 9 indicate significant detailed

structure in the beam distribution, depending on main
solenoid current, bucking coil current, and bunch charge.
This is apparent both from the image observed directly
at the reconstruction point, and from the phase space
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FIG. 12. Elements of the covariance matrix at SCR-02 (the reconstruction point) as functions of current in the bucking coil. Blue solid
lines show the values determined from four-dimensional phase space tomography; red dashed lines show the values calculated from the
directly observed image of the beam on SCR-02. Note that in the case of the tomography analysis, the elements describing coupling
between the transverse degrees of freedom (shown in the top right 2 × 2 block diagonal) vanish for a bucking coil current of
approximately −3.5 A: this is consistent with the current at which the difference between the normal mode emittances is minimized (as
shown in Fig. 10).
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distribution constructed from four-dimensional tomogra-
phy. In such cases, the phase space cannot accurately be
characterized simply by the emittances and optical func-
tions that describe the covariance matrix. Nevertheless, to
allow some comparison, we calculate the normal mode
emittances and optical functions, using the method
described in Sec. II: the values of the normal mode
emittances and selected optical functions are shown in
Table II. Although there are indications of some patterns
(for example, an increase in emittance with bunch charge)
no firm conclusions can be drawn because machine
conditions between different quadrupole scans were not
accurately reproducible. Nevertheless, the measurements
that have been made demonstrate the potential value of
four-dimensional phase space tomography for developing
an understanding of the beam physics in a machine such as
CLARA FE, and for tuning the machine for optimum
performance.

V. SUMMARY AND CONCLUSIONS

We have presented the first experimental results from
four-dimensional phase space tomography in an acceler-
ator. The beam emittance and optical properties obtained
from phase space tomography have been compared with
results obtained using more commonly employed tech-
niques, such as three-screen analysis and quadrupole scans.
We considered the suitability of each method for situations
where the beam contains detailed structures in phase space
and cannot be described by a simple elliptical distribution.
In this case, the three-screen method can give inconsistent
and often unphysical results. By contrast, the quadrupole
scan method provided approximate values for the emittan-
ces which appear broadly to agree with those obtained
using tomography (see Table I). However, a proper
description of a nonelliptical phase space distribution
cannot be given just in terms of a small number of
parameters (emittance and Courant-Snyder parameters).
Phase space tomography overcomes this limitation by
providing the beam density at a number of points in phase
space.

Our results for the phase space tomography analysis and
the comparisons with other methods are supported by
simulation studies. The results of the tomography analysis
have been validated by comparing (for example) the beam
image at the entrance of the measurement section of the
beamline (the reconstruction point) obtained from a pro-
jection of the measured four-dimensional phase space, with
the beam image observed directly on a screen at this point.
In general, the agreement suggests that four-dimensional
phase space tomography is providing a useful representation
of the beam properties, though the image reconstructed from
tomography lacks the same resolution as the image observed
directly. There is also evidence for systematic errors in the
measurement that need to be properly understood.
A benefit of four-dimensional phase space tomography

(compared to tomography in two-dimensional phase space)
is that the technique provides detailed information on
coupling in the beam. This can be important for tuning a
machine such as CLARA FE, for example, where solenoids
are used to provide focusing for thebeam, but it is desirable to
minimize the coupling that can be introduced by those
solenoids. Information on coupling can be obtained by
applying the quadrupole scan method in two (transverse)
degrees of freedom; but information obtained in this way
may not be accurate or reliable if there is detailed structure in
the beam distribution.
The main drawback of the tomography analysis is that

collection of the data may be a time-consuming procedure.
In cases where the beam distribution in phase space is
smooth and without significant detailed structure (so that it
can be well characterized by the emittance and optical
functions) then the three-screen or quadrupole scan tech-
niques, using a limited set of observations, may provide
sufficient information for machine tuning and optimization
relatively quickly. Phase space tomography generally
requires data from a larger number of observations, but
depending on the level of detail or accuracy required, it
may be possible to minimize the number of points in the
quadrupole scan used to provide the data: the limits of the
technique have still to be rigorously explored, and will
likely depend on the specific machine to which it is applied.

TABLE II. Beam emittances and optics parameters with different bunch charges and main solenoid strengths, with
bucking coil current at the nominal −2.2 A. Note that measurements for some settings of the bunch charge and main
solenoid strength were repeated (in particular: 10 pC bunch charge and −125 A main solenoid current; and 50 pC
bunch charge and −150 A main solenoid current), to indicate the reproducibility of the tomography analysis for
given machine settings.

Bunch charge (pC) Main solenoid current (A) ϵN;I (μm) ϵN;II (μm) βI11 (m) βII33 (m) βI33 (m) βII11 (m)

10 −125 6.02 3.09 12.5 1.92 0.394 2.20
10 −125 10.2 6.33 11.8 1.45 0.368 3.39
10 −150 3.75 1.37 8.92 0.417 0.157 8.37
20 −125 13.7 5.93 15.8 3.52 0.287 3.97
20 −150 8.88 3.33 14.3 1.10 0.065 1.50
50 −150 8.98 4.47 18.8 0.981 0.121 3.28
50 −150 9.25 4.59 18.8 1.00 0.114 2.88
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Regarding practical application of phase space tomog-
raphy, it is worth mentioning that the requirements in terms
of beamline design and diagnostics capability are not
demanding. In CLARA FE, the diagnostics section consists
of a short (1.661 m) section of beamline between two
transverse beam profile monitors, and containing three
(adjustable strength) quadrupoles. The design of this
section was developed before detailed plans were prepared
for phase space tomography studies, and there is limited
flexibility in optimizing the phase advances and optical
functions over the length of the diagnostics section.
Nevertheless, it was possible to identify sets of quadrupole
strengths to provide the observations necessary for the
analysis and results presented here.
So far, we have used an algebraic reconstruction tech-

nique for the phase space tomography. This technique has
the advantage (compared to other tomography algorithms)
of ease of implementation and flexibility in terms of the
input data. However, it is possible that different algorithms
may provide better (more accurate, or more detailed)
results, and we hope to explore the possible benefits and
limitations of alternative tomography methods. A particular
issue with tomography in four-dimensional phase space is
the demand on computer memory for processing the data
and storing the results, especially at high resolution in
phase space. However, because of the nature of the
problem, the memory requirements will almost inevitably
scale with the fourth power of the phase space resolution,
and it seems unlikely that other tomography methods
would provide significant benefit in this respect. It is
possible that more sophisticated computational techniques
may allow some reduction in the memory requirements for
a given resolution, e.g., [34].
While improvements and refinements in the technique

are planned, the results so far show that four-dimensional
phase space tomography is a useful technique for detailed
beam characterization and for machine tuning and opti-
mization. It is hoped that further studies will include
investigation of space-charge effects in the electron source
and beam dynamics effects (such as wake fields) in the
linac.
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