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Abstract 11 

Soil microbial community is essential for maintaining and improving ecosystem functioning in 12 

ecological re-storation practice and is intimately linked with the plant community. However, little is 13 

known on how soil microbial communities respond to the functional characteristics of plant 14 

communities. Here we investigated the changes in plant community functional attributes, soil 15 

properties, and soil microbial community characteristics of four land restoration (vegetation) types 16 

in a subtropical plateau region. The relative contributions of soil abiotic properties and plant 17 

community functional attributes to variation in microbial community composition and function were 18 

then assessed. We found that plant community attributes, soil properties, and the soil mi-crobial 19 

communities differed significantly among land restoration types, and the plant functional traits of 20 

dominant species and soil properties jointly determined soil microbial community structure and 21 

functions. Specifically, soil microbial community structure was significantly linked to the community-22 

weighted mean (CWM) of plant functional traits, soil water content, and soil organic carbon. Soil 23 



microbial carbon-metabolic functions were tightly correlated with the CWM of leaf dry matter 24 

content, specific leaf area, and specific root length. Variance partitioning also revealed that the 25 

CWM of plant functional traits and soil variables co-operatively explained 67% and 64% variation in 26 

soil microbial community structure and carbon-metabolic functions. Meanwhile, significant 27 

correlations were found between variation in microbial community compo-sition and carbon-28 

metabolic functions. In conclusion, our observations demonstrate that soil microbial com-munity 29 

characteristics were governed by dominant species in plant communities across land restoration 30 

types, mainly due to differences in plant functional traits and soil resource driven by plant traits. 31 

 32 

1. Introduction 33 

Biodiversity has been considered the key determinant of changes in ecosystem processes and 34 

functions (Hooper et al., 2005). Some studies have reported that the species diversity of an 35 

aboveground community may affect the soil functions via changes in soil biological and physi-36 

cochemical properties (Landesman et al., 2014; Lladó et al., 2018). However, an increasing focus of 37 

research is devoted to the functional characteristics of organisms, exploring how changes in 38 

functional di-versity influence soil functions and their response to environmental change (Bardgett, 39 

2017; Faucon et al., 2017; Grigulis et al., 2013; Lavorel et al., 2013). Further, trait-based approaches 40 

are being used to predict how changes in vegetation composition influence soil properties and 41 

processes (Bardgett, 2017; De Deyn et al., 2008; Grigulis et al., 2013). Soil microbial community, as a 42 

major driver of soil biogeo-chemical cycles, soil formation, and ecosystem resilience to the external 43 

environment, is important to soil properties and processes (Khlifa et al., 2017; Wardle et al., 2004). 44 

However, the effects of functional plant traits and their diversity on soil microbial communities are 45 

far from being fully understood. 46 

 47 



Changes in soil microbial community composition are not only in-fluenced by soil physicochemical 48 

factors such as pH, soil organic carbon (SOC), and nutrient availability (Landesman et al., 2014; Lladó 49 

et al., 2018) but also by plant properties such as plant community type, plant- microbial interactions, 50 

and plant functional traits (Bauhus and Paré, 1998; de Vries et al., 2012; Pei et al., 2016). Scheibe et 51 

al. (2015) de-monstrated that tree species identity and site conditions were more important factors 52 

in determining the soil microbial community struc-ture than tree species diversity. It has been 53 

proposed that plant leaf economics spectrum could provide a framework for understanding how 54 

vegetation composition influences variation in soil microbial commu-nities (Wardle et al., 2004). The 55 

general idea is that plant species with a higher specific leaf area (SLA) and a lower leaf dry matter 56 

content (LDMC) can shape the bacteria-dominated soil microbial communities. In contrast, plant 57 

species with low SLA promote the growth of fungi relative to bacteria (Orwin et al., 2010; Wardle et 58 

al., 2004). However, these studies measured only plant attributes on the species scale and did not 59 

consider functional characteristics on the community scale. Therefore, we do not understand how 60 

soil microbial communities re-sponse to changes in the functional diversity of the plant community. 61 

 62 

Functional diversity of plant community describes the distribution of species in functional trait space 63 

and is hypothesized as being bene-ficial for ecosystem processes and functions (Mason et al., 2005). 64 

At the community scale, the community-weighted means (CWM) of some functional traits (e.g., SLA, 65 

LDMC, or plant height), which describes the dominant functional trait value of a community and is 66 

closely related to the mass ratio hypothesis, can respond to environmental change and affect soil 67 

biological processes and nutrient cycling (Garnier et al., 2004). The mass ratio hypothesis proposes 68 

that ecosystem functioning is primarily determined by the functional traits of the dominant species 69 

and is frequently used to quantify the functional characteristics of plant communities (Lavorel et al., 70 

2008). Simultaneously, soil microbial community may be modified by soil physicochemical properties 71 

that are induced by changes in community functional attributes (De Deyn et al., 2008; Orwin et al., 72 



2010). Some studies of plant-soil interactions have confirmed that soil properties (e.g., pH, soil 73 

moisture, soil organic carbon) play an important role in the interactions between plant species and 74 

soil microbial communities (De Deyn et al., 2009; Harrison and Bardgett, 2010). Therefore, it is 75 

plausible that plant community func-tional attributes and their effect on soil properties (such as soil 76 

texture and nutrient resources) cooperatively shape the structure and functions of soil microbial 77 

communities. 78 

 79 

Concerns over the continuing loss of biodiversity and the associated decline of ecosystem functions 80 

have triggered numerous studies aiming at developing more sustainable ecological protection and 81 

restoration practices (Faucon et al., 2017). Many studies suggest that, compared with plant species 82 

richness, plant functional traits and functional di-versity metrics can be used to evaluate functional 83 

responses to re-storation projects (D'Astous et al., 2013; Laughlin, 2014; Zirbel et al., 2017). In the 84 

subtropical plateau region of southwest China, different land restoration types including naturally 85 

recover and establishing plantations have been widely adopted for maintaining soil fertility and 86 

controlling soil and water loss. For example, plantation forest with Eucalyptus or Pinus species is 87 

considered as one of the main forms of land restoration due to their attributes of fast growth and 88 

industrial production of wood, oil, and fuel. At the same time, natural regenera-tion has also proved 89 

to be another effective approach to land restoration in this area (Fu et al., 2018). Although previous 90 

studies have shown that different vegetation restoration methods influence plant community 91 

composition, soil nutrients, and ecosystem functions (e.g. water and soil conservation) (Fu et al., 92 

2009, 2018; Hou et al., 2010), little is known on how soil microbial communities respond to the 93 

functional char-acteristics of plant communities in this region. 94 

 95 

 96 



In this study we investigated changes of soil microbial community composition and carbon-97 

metabolic function in different land restoration types using phospholipid fatty acid analysis (PLFA) 98 

and community-level physiological profiles (CLPP), respectively, and then evaluated the relative 99 

effects of plant community attributes and soil physicochemical properties on soil microbial 100 

communities. We hypothesized that (1) soil microbial community composition and carbon-metabolic 101 

functions differ between the different land restoration types; (2) soil microbial communities are 102 

significantly driven mainly by changes in the plant community-weighted means of functional traits 103 

the functional traits and soil physicochemical properties. 104 

2. Material and methods 105 

2.1. Study area 106 

The study area is located at Jiulongdian catchment (257.6 km2) in Mouding County (25°24′09˝ N, 107 

101°28′18˝ E), mid-Yunnan, SW China. The average annual rainfall in the area, which lies in the 108 

subtropical monsoon climate zone, is 846 mm, and the rainy season lasts from May to October each 109 

year. The average annual temperature is 16 °C. The soil of the area is Cambisols (according to 110 

FAO/UNESCO classifications). The original vegetation in this region was a subtropical evergreen 111 

broad-leaved forest, most of which was utilized as coppices for fuel-wood or pastures. Since the 112 

1980s, some of these have been planted by fast-growing Pinus yunnanensis after deforestation. 113 

Other remnant cop-pices and pastures were abandoned and formed different secondary stands after 114 

natural regeneration. 115 

Currently, this area represents sections of different vegetation in-cluding secondary shrubland (SL), 116 

coniferous forest (CF), semi-natural forest (SNF), and natural secondary forest (NSF) (Tang et al., 117 

2010). These four land restoration types are described as follows: (1) SL, the land has been closed for 118 

at least 15 years since the last domestic live-stock grazing and repeated cutting; (2) CF, the man-119 

made plantation is dominated by the coniferous species P. yunnanensis with a history of aerial 120 



planting on abandoned lands followed by the closing of the land for reforestation; (3) SNF, mixed 121 

needle-broad leaved forest dominated by P. yunnanensis and Keteleerla evekyniana with a history of 122 

clear-cut-ting followed by a period of approximately 45 years of forest reserva-tion; and (4) NSF, 123 

dominated by Cyclobalanopsis glaucoldes and K. eve-kyniana and reserved without any interruption 124 

for a period of approximately 55 years. 125 

2.2. Investigation and sampling procedures 126 

In July and August 2018, we selected three representative sites with four vegetation restoration 127 

types in this catchment. The sites are located at Samachang (25°14′35˝ N, 101°27′12˝ E, app. 2050 128 

m.a.s.l.), Huafoshan (25°18′48˝ N, 101°25′12˝ E, app. 2340 m.a.s.l.), and Ximiji (25°15′23˝ N, 129 

101°25′23˝ E, app. 2010 m.a.s.l.). The distance between the sites is greater than 2.5 km to reduce 130 

the effects of spatial auto-correlation. In each site, we established a representative 10 × 10 m plot 131 

for each vegetation restoration type. The plot of one vegetation type is more than 200 m apart from 132 

another vegetation type on the same site. All 12 plots belonged to the same climatic and soil zones 133 

and have a similar slope direction (20–25° west of north) and gradient (15–17°). Plant species 134 

diversity and community functional characteristics in each plot were firstly calculated based on the 135 

investigation of plant community structure and estimation of plant functional traits for each species. 136 

Second, ten soil cores from 0 to 10 cm were taken at random locations in each plot. These cores 137 

were pooled and sieved (2 mm mesh) to eliminate rocks and stones. Each mixed sample was divided 138 

into two subsamples: one was used to analyze basic soil physicochemical prop-erties; the other was 139 

freeze-dried to analyze the soil microbial com-munity composition and functions. Additionally, 140 

another three un-disturbed soil samples were collected by metal cylinders to measure soil water 141 

content (SWC). 142 

2.3. Plant community properties 143 



For each plot, the abundance of a given species was determined based on the basal area or the 144 

estimation of percent cover for plants < 1.5 cm DBH (details in Fu et al., 2018). In the analyses, a 145 

total of 27 species were recorded and used to quantify species diversity (H, Shannon index; R, 146 

richness; and E, evenness) and plant community functional attributes. Five important plant 147 

functional traits: leaf dry matter content (LDMC), specific leaf area (SLA), leaf nitrogen con-148 

centration (LNC), leaf phosphorus concentration (LPC), and specific root length (SRL) were selected 149 

because these traits are closely corre-lated with plant potential relative growth rate, nutrient 150 

quality, nu-trient acquisition strategy, and productivity (Cornelissen et al., 2003; Vile et al., 2006). 151 

These traits were measured based on at least 5 in-dividuals of each species following standardized 152 

protocols (Cornelissen et al., 2003), and the mean of each trait for each species was calculated and 153 

then used to calculate the community functional attributes. The CWMs were used as the index of 154 

functional diversity of plant commu-nity, which calculated for each trait and for every plot using the 155 

mean species trait values and the species relative abundance (Garnier et al., 2004). The species 156 

diversity and all the indices of community functional attributes were calculated using the FDiversity 157 

software package (Casanoves et al., 2011). 158 

 159 

 160 

2.4. Soil physicochemical properties 161 

Soil physicochemical properties including pH, soil water content (SWC), soil organic carbon (SOC), 162 

total nitrogen (TN), and total phos-phorus (TP) were determined. Soil pH was measured in a 1:2.5 163 

(soil to water ratio) mixture using a glass electrode. The SWC, SOC, TN, and TP were measured using 164 

the drying method, the potassium dichromate sulfuric acid oxidation, the semi-micro Kjeldahl, and 165 

the phosphomo-lybdate blue methods, respectively. All procedures for the determina-tion of soil 166 

physicochemical indices were based on the methods de-scribed in Gregorich and Carter (2007). 167 



2.5. Soil microbial community analysis 168 

The soil microbial community structure and carbon metabolic functions were characterized using 169 

PLFAs and CLPPs. The PLFAs were extracted from 4 g of soil with a chloroform: methanol: phosphate 170 

buffer mixture (1:2:0.8, v/v/v) following the procedure of Frostegård et al. (Frostegård et al., 1993). 171 

The extracted lipids were eluted with chloroform, acetone, and methanol on solid-phase extraction 172 

columns to obtain the phospholipids. The phospholipids were then subjected to mild alkaline 173 

methanolysis, and the extractions were redissolved in hexane with an internal standard of 19:0. 174 

Finally, the samples were analyzed using gas chromatography/mass spectrometry with the fol-175 

lowing parameters: capillary column (HP-5), He as a carrier gas at a flow rate of 0.8 mL min−1, and 176 

an injection volume of 1 μL. The abundance of individual PLFAs was expressed as nanomoles of 177 

PLFAs per gram dry soil (nmol/g), and the total PLFAs was calculated as the sum of all PLFAs and 178 

used a measure of microbial biomass. The dif-ferent PLFAs were considered to represent different 179 

taxonomic groups: Gram-negative (G-) bacteria were represented by cy17:0, 16:1ω7, 18:1ω7 and 180 

cy19:0 (Zogg et al., 1997); Gram-positive bacteria (G+) were represented by i15:0, a15:0, i16:0, i17:0 181 

and a17:0 (Moore-Kucera and Dick, 2008); fungal biomass was represented by 18:2ω6,9 and 18:1ω9 182 

(Bååth and Anderson, 2003); actinomycete biomass was re-presented by 10Me16:0, 10Me17:0 and 183 

10Me18:0 (Moore-Kucera and Dick, 2008); arbuscular mycorrhizal fungi (AMF) were represented by 184 

16:1ω5c (Frostegård and Bååth, 1996); and 20:3ω6 and 20:4ω6 were assumed to represent 185 

protozoans (Ringelberg et al., 1997). The struc-ture of the soil microbial community was also 186 

characterized using the fungi:bacteria ratio (F:B) and the G+:G- ratio. 187 

The capacity of soil microbial communities to utilize carbon sources was assessed with CLPPs using 188 

Biolog EcoPlates (Biolog, Inc., USA). Each EcoPlate contained 31 different carbon sources, which 189 

were di-vided into six groups: carboxylic acids, polymers, carbohydrates, phe-nolic acids, amino 190 

acids, and amines. Soil suspensions were obtained according to the method described by Wu et al. 191 

(2013) and were then inoculated into each well. The plates were incubated at 25 °C for 10 days, and 192 



the color development in each well was recorded as the optical density at 590 nm with an 193 

automated plate reader at regular 24 h intervals. Finally, the soil microbial activity in each 194 

microplate was assessed as the average well color development (AWCD) as follows: AWCD = 195 

∑ODi/31, where ODi is the optical density value in each well. 196 

2.6. Statistical analysis 197 

Plant community characteristics (species diversity and CWM for each trait), soil physicochemical 198 

properties, soil microbial community composition and carbon-metabolic functions (PLFAs and CLPPs, 199 

re-spectively) under different land restoration types were compared using a one-way ANOVA and an 200 

LSD test. We further used non-metric mul-tidimensional scaling (NMDs) based on the Bray-Curtis 201 

index to vi-sualize the dissimilarity in soil microbial composition across plots. NMDs is an effective 202 

method in community analysis because it does not assume linear distribution of the data (Pei et al., 203 

2016). The significance of the variations in the composition of soil microbial community was tested 204 

by PERMANOVA with Bray-Curtis dissimilarities and 999 per-mutations. We did not include the 205 

spatial location of the plots in data analyses because spatial autocorrelation is not significant using 206 

Mantel test. 207 

To quantify the relative importance of soil properties and plant community attributes for the soil 208 

microbial community composition and carbon-metabolic functions. Variance partitioning analysis 209 

was applied for all the plots based on redundancy analysis (RDA) to illus-trate the explanatory power 210 

of three matrices including soil physico-chemical properties, plant species diversity, and plant 211 

functional di-versity (anova.cca function in package vegan). The significance of each explanatory 212 

factor was assessed using a permutation test. We further analyzed the correlations between biplot 213 

scores from RDA and en-vironmental factors using the functional envfit. In addition, we analyzed the 214 

correlations among soil microbial community characteristics, plant community attributes, and soil 215 

properties with Spearman correlation. Prior to the above analyses, when the raw data did not meet 216 

the nor-mality assumptions, they were log- or sqrt-transformed. The above statistical analyses were 217 



performed in R version 3.4.0 (R Core Team, 2017) using the package vegan (Jari et al., 2013) and 218 

SPSS (version 19.0; SPSS Inc., Chicago, IL, USA). 219 

3. Results 220 

3.1. Plant community attributes and soil physicochemical properties 221 

The ANOVA showed that all indices of plant community attributes except species richness were 222 

significantly changed under different land restoration types. Shannon index and evenness were 223 

significantly lower in CF than in the other three land restoration types (Table 1). For the CWMs, the 224 

different traits displayed trait-specific responses to land restoration types. SL and CF had a higher 225 

CWM for SLA, LNC, LPC, and SRL. SNF and NSF had a higher CWM for LDMC. 226 

Land restoration types had significant effects on soil physicochem-ical properties, except pH (Table 227 

1). Specifically, SWC and SOC were higher in NSF and SNF than in SL and CF. In addition, the soils in 228 

the NSF had a significantly higher TN and TP than the other plant com-munities. The correlation 229 

analysis revealed that there are strong re-lationships among SWC and SOC (P < .01). In addition, the 230 

CWM of SRL was strongly linked to all soil properties except soil pH. Besides of SRL, variation in the 231 

CWM for LDMC and LPC were significantly asso-ciated with SWC, whereas CWM for LDMC and SLA 232 

was tightly corre-lated with SOC (Table 2). 233 

3.2. Soil microbial community structure and function 234 

Individual PLFA indicator  lipids differed in their response to different land restoration types (Table 235 

3). The NMDs analysis of the PLFAs revealed that land restoration type had a significant effect on 236 

microbial community structure (Fig. 1A, P < .001). The relative abundances of all the microbial 237 

groups except actinomycetes and pro-tozoa were significantly higher in NSF and SNF than in SL and 238 

CF (Table 3). 239 

 240 



The ANOVA showed that the carbon-utilization intensity of all compounds except amines 241 

significantly differed across land restoration types (Table 3). The NMDs analysis of the CLPPs 242 

revealed that land restoration type had a significant effect on microbial community carbon-243 

metabolic functions (Fig. 1B, P < .003). Similarly to PLFA, total metabolic activity (indicated by AWCD) 244 

and the utilization intensity of the carbon sources except amines were significantly higher in NSF and 245 

SNF than in SL and CF (Table 3). 246 

3.3. Factors determining soil microbial community characteristics 247 

The correlation analysis results showed that all the RDA axes of the microbial PLFAs were 248 

significantly linked to the CWM of every trait and the soil properties (SWC and SOC) (Table 4). In 249 

addition, the RDA axes of the microbial CLPPs was tightly correlated with species richness and can 250 

also be explained by the CWM for LDMC, SLA, and SRL (Table 4). Moreover, we also found a 251 

significant correlation between soil micro-bial community composition and carbon-metabolic 252 

functions by the permutation test (P < .05, results not shown). 253 

Results of variation partitioning showed that plant functional di-versity and soil physicochemical 254 

properties cooperatively explained most variation in the soil microbial community composition and 255 

func-tion across land restoration types (Fig. 2). The joint explanations by the two factors were 0.67 256 

and 0.64, respectively. Other factors did not significantly explain the variations in soil microbial 257 

community struc-ture and function. 258 

Overall, shifts in the soil microbial community composition across land restoration types occurred in 259 

parallel with changes in the CWM of traits and soil variables. Changes in soil microbial metabolic 260 

functions were primarily associated with the CWMs and soil microbial community structure. 261 

4. Discussion 262 

4.1. Soil microbial community characteristics among land restoration types 263 



Soil microbial community composition significantly differed among the four land restoration types 264 

(Fig. 1A, Table 3). The total biomass of the soil microbial community was twice as high for SNF and 265 

NSF than for SL and CF (Table 3). Some studies have confirmed that this phe-nomenon may be 266 

attributed to aboveground productivity and litter input because SOC promotes the growth of soil 267 

microbes (Gunina et al., 2017; Zhao et al., 2017). In addition, a significant difference for PLFAs was 268 

found among land restoration types. With regard to bacterial bio-mass, the greatest abundance of 269 

G+ and G- bacteria were found in SNF and NSF, which is consistent with the results of Gunina et al. 270 

(2017), who found that there is a greater abundance of G+ and G- bacteria in forest soils than in 271 

agricultural soils. The greater abundance of G+ and G- bacteria in NSF and SNF may be linked to the 272 

more diverse litter carbon from heterogeneous plant litter inputs (Fierer et al., 2003) and the 273 

volume of the rhizosphere due to the increase in plant density (Thoms and Gleixner, 2013), 274 

respectively. 275 

The reasons for the greater abundance in fungal PLFAs in SNF and NSF can be attributed to both the 276 

replacement of species and changes in the microenvironment. The replacement of species with 277 

readily de-composable litter by those with more recalcitrant leaf litter can sti-mulate the growth of 278 

the fungal biomass (Yannikos et al., 2014). Si-multaneously, most species in SNF and NSF are strongly 279 

ectomycorrhizal or arbuscular-mycorrhizal such as plants of the genera Cyclobalanopsis, Quercus, 280 

Pinus, and Keteleerla in the study area (Tedersoo and Brundrett, 2017). Moreover, the reduced 281 

environmental disturbance in SNF and NSF may also enhance the growth of fungi (Strickland and 282 

Rousk, 2010). The increase in actinomycete PLFA content could also be linked to the more 283 

recalcitrant leaf litter in SNF and NSF, because actinomycetes may produce enzymes targeting 284 

complex and recalcitrant biopolymers (Zhao et al., 2019). 285 

The Biolog EcoPlate data identified potential carbon utilization activities for the soil microbial 286 

community and can be used to assess soil microbial metabolic functions (Liu et al., 2010; Zak et al., 287 

1994; Zhao et al., 2019). In our research, the CLPP analyses revealed differences among different 288 



land restoration types and showed that the microbial communities in SNF and NSF have a greater 289 

potential for utilization of diverse carbon sources compared with SL and CF (Table 3, Fig. 1B). This 290 

phenomenon may indicate that there is higher microbial biomass and diversity in SNF and NSF, and 291 

furthermore, a greater proportion of the microbial community may be able to utilize diverse carbon 292 

com-pounds (Liu et al., 2010; Zhao et al., 2019), which also confirmed by the significant correlation 293 

between PLFAs and CLPPs. 294 

4.2. Explanatory factors for soil microbial community among land restoration types 295 

We found that the CWMs for plant functional traits are the most important drivers of soil microbial 296 

community structure and function (Table 4). The LDMC, as the functional trait for the ratio of 297 

structural compounds to the assimilatory issue, represents leaf and litter structural compounds and 298 

quality (Cornelissen et al., 2003). The significant po-sitive correlation between the CWM for LDMC 299 

and soil microbial community structure and carbon-metabolic functions suggests that an additional 300 

carbon source (e.g., cellulose or insoluble sugars) in the litter with higher LDMC improves microbial 301 

growth, although some chemi-cally resistant components may decrease the rate of litter decomposi-302 

tion (Pei et al., 2016). This explanation is supported by the clear re-lationship between CWM-LDMC 303 

and SOC. The SLA, LNC, and LPC are the proxies for litter quality and decomposition rate. Higher 304 

values of these functional traits represent higher leaf quality and a more rapid litter decomposition 305 

rate, which may lead to a decrease in SOC and soil microbial community composition. 306 

Besides aboveground leaf traits, we also found that the CWM for SRL was not only significantly 307 

related to all the soil properties but also to soil microbial community composition and function 308 

(Tables 2, 4), which suggests that underground SRL plays a critical role in below-ground ecosystem 309 

properties and functions, including the soil microbial community. Recent studies have confirmed 310 

that the CWM for root traits explains the variation in microbial parameters related to N cycling 311 

better than shoot traits (Legay et al., 2014). Root traits are generally regarded as an indicator of 312 

plant resource uptake strategies, soil nu-trient cycling, and root exudate quantity and quality 313 



(Bardgett et al., 2014; Cornelissen et al., 2003; Vile et al., 2006). Root litter and root exudates are the 314 

key sources of soil nutrients and energy for microbes. However, we found a negative relationship 315 

between the CWM for SRL and soil microbial community, which suggests that root density or root 316 

biomass could play a more important role due to their effects on the quantity of root litter inputs 317 

and rhizodeposition (Orwin et al., 2010). Therefore, in future research, more root traits should be 318 

examined to explore how roots traits influence the soil microbial community and its impacts on soil 319 

ecosystem processes and functions (Bardgett et al., 2014). 320 

 321 

Many studies have confirmed that soil characteristics, for example, soil pH, SWC, and soil nutrients, 322 

play a significant role in shaping the composition of soil microbial communities (Bååth and Anderson, 323 

2003; Fierer et al., 2009; Lladó et al., 2018; Stark and Firestone, 1995). In the present study, we only 324 

found that SWC and SOC are the key factors, probably due to their influence on soil microbial 325 

activities and the fluxes of soil nutrients (Brockett et al., 2012; Stark and Firestone, 1995; Zhao et al., 326 

2017). Although some studies have reported soil pH as one of the drivers for soil microbial 327 

community composition, we did not find a significant correlation between pH and soil microbial 328 

community composition. This may be due to the narrow acidic pH range (4.08–4.26). It is widely 329 

recognized that soil nutrients can support and shape the growth and composition of microbial 330 

communities (Fierer et al., 2009). It was surprising that soil TN and TP did not play a key role in 331 

influencing the soil microbial community in our study. However, we detected significant positive 332 

correlations between SOC and the soil microbial community structure. This is consistent with 333 

previous studies, which showed that changes in SOC induced by aboveground litter input and 334 

productivity could shape soil microbial communities by supplying different quality resources for 335 

microbial growth (Lladó et al., 2018; Tian et al., 2013; Zhao et al., 2017). 336 

Interestedly, we found that plant functional traits and soil variables cooperatively explained much 337 

more variation in the soil microbial community than plant functional traits or soil properties alone 338 



(Fig. 2). Together with the significant linkage between CWMs and soil proper-ties, this result 339 

indicates that changes in soil microbial community composition and function can be both the direct 340 

effects of the CWM and the indirect effects due to changes in soil properties. Of the direct ef-fects, 341 

the input and accumulation of diverse litter from plants with different functional attributes supply 342 

complex carbon sources to soil microbes (Liu et al., 2010; Zak et al., 1994). Of the indirect effects, 343 

changes in soil properties (especially SWC and SOC) induced by CWMs simultaneously play a crucial 344 

role in the shaping of soil microbial community. 345 

4.3. Relationships between soil properties and community-weighted mean traits 346 

In our study, we found that the CWMs were strongly associated with soil physicochemical properties 347 

(Table 2). These results support the mass ratio hypothesis and suggest that soil properties are 348 

primarily determined by the functional traits of dominant species. Consistent with our results, many 349 

studies have reported that dominant plant traits ex-plain the changes in soil ecosystem functions. 350 

For example, Garnier et al. (2004) proposed that functional markers such as SLA, LDMC, and LNC can 351 

be used to assess the impacts of community changes on aboveground net primary productivity, litter 352 

decomposition, and SOC. In our study, the fast-growth plant species that produce a high quality litter 353 

with higher SLA, LNC, LPC, and lower LDMC in SL and CF are typically replaced by slow-growth 354 

species producing litter with the opposite characteristics in NSF and SNF (Orwin et al., 2010). 355 

Therefore, the higher SOC in NSF and SNF is probably due to two reasons: i) an increase in the rate of 356 

litter input and community standing biomass, and ii) a decrease in the rate of litter decomposition. 357 

The accumulation of SOC subsequently induced changes in soil TN and TP. We therefore conclude 358 

that changes in soil properties across land restoration types primarily contribute to the 359 

enhancement of plant productivity and litter biomass due to changes in plant community structure 360 

and the re-placement by dominant plant species with different functional traits. 361 

5. Conclusions 362 



 363 

Our results suggest that soil microbial community structure and carbon-metabolic functions 364 

significantly differed among land restora-tion types. The significant relationships among the soil 365 

microbial community, CWMs, and some soil properties suggest that soil microbial community 366 

structure and carbon-metabolic functions could be shaped by the functional traits of different 367 

dominant plant species and soil properties caused by CWMs. Meanwhile, variance partitioning 368 

revealed that plant functional traits and soil variables cooperatively explained 67% and 64% 369 

variation in soil microbial community structure and carbon-metabolic functions. Meanwhile, our 370 

results imply that natural recovery of forests (NSF and SNF) were better than man-made planta-tion 371 

and secondary shrubland in determining soil microbial commu-nities and further developing soil 372 

quality. 373 
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Table 1 Plant community attributes and soil physicochemical properties in four land restoration types. 

 
 
 SL   CF   SNF   NSF   F value 
              

Species diversity indices             
10.11 Shannon index 1.85 ± 0.05 a 1.13 ± 0.12 c 1.75 ± 0.11 ab 1.57 ± 0.17 b 

Richness 11.40 ± 0.56 a 10.20 ± 1.32 a 10.80 ± 1.11 a 10.60 ± 1.03 a 0.78 

Evenness 0.77 ± 0.02 a 0.49 ± 0.05 c 0.75 ± 0.04 ab 0.65 ± 0.06 b 9.34 

Functional diversity indices             
53.67 CWM-LDMC 285.7 ± 3.7 c 322.4 ± 7.3 b 395.8 ± 13.6 a 406.8 ± 11.9 a 

CWM-SLA 13.25 ± 0.24 b 17.47 ± 0.58 a 11.32 ± 0.61 c 9.71 ± 0.06 d 61.66 

CWM-LNC 14.02 ± 0.18 a 8.90 ± 0.17 b 8.74 ± 0.14 b 9.22 ± 0.10 b 254.62 

CWM-LPC 0.47 ± 0.01 a 0.30 ± 0.01 b 0.28 ± 0.01 b 0.27 ± 0.01 b 122.20 

CWM-SRL 38.90 ± 0.69 b 44.02 ± 1.12 a 29.26 ± 1.35 c 18.91 ± 0.72 d 122.15 

Soil physicochemical properties              
pH 4.15 ± 0.14 a 4.08 ± 0.04 a 4.26 ± 0.01 a 4.19 ± 0.11 a 0.70 

SWC (%) 26.34 ± 0.48 b 29.07 ± 1.59 b 31.98 ± 2.37 ab 37.11 ± 2.60 a 5.61 

SOC (mg/g) 28.42 ± 1.41 b 26.02 ± 1.78 b 38.62 ± 3.38 ab 45.11 ± 7.70 a 4.19 

TN (mg/g) 0.48 ± 0.05 b 0.44 ± 0.05 b 0.47 ± 0.05 b 0.69 ± 0.06 a 6.51 

TP (mg/g) 0.25 ± 0.00 b 0.23 ± 0.01 b 0.22 ± 0.02 b 0.34 ± 0.05 a 4.33   
Values are mean ± standard error. Different letters indicate significant differences among land restoration types based on the LSD test (P < .05). *Significant difference between plant communities based on a one-way ANOVA (*P < .05 and **P < 

.01). SL, shrubland; CF, coniferous forest; SNF, semi-natural forest; NSF, natural secondary forest. CWM, community-weighted mean; LDMC, leaf dry matter content; SLA, specific leaf area; LNC, leaf nitrogen concentration; LPC, leaf phosphorus 

concentration; SRL, specific root length; SWC, soil water content; SOC, soil organic carbon; TN, soil total nitrogen; TP, soil total phosphorus. 

 

 



Table 2. Correlations between plant community attributes and soil physicochemical properties. 

 

 
 pH SWC SOC TN TP 
      

CWM-LDMC 0.24 0.76 0.65 0.19 0.24 

CWM-SLA −0.35 −0.57 −0.65 −0.50 −0.45 

CWM-LNC −0.10 −0.53 −0.32 −0.01 −0.01 

CWM-LPC −0.08 −0.69 −0.44 −0.18 −0.15 

CWM-SRL −0.34 −0.73 −0.74 −0.63 −0.58   
Asterisks indicate the significance of correlation ( P < .05 and P < .01). CWM, community-weighted mean; LDMC, leaf dry matter content; SLA, specific leaf area; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; SRL, 

specific root length; SWC, soil water content; SOC, soil organic carbon; TN, soil total nitrogen; TP, soil total phosphorus. 

 

 



Table 3. Soil microbial community composition and community-level physiological profiles in four land restoration types. 

 

 SL  CF  SNF  NSF  F values 

          

Soil microbial community composition         

32.58 Total Biomass (nmol/g) 11.94 ± 0.06 b 14.08 ± 0.08 b 21.09 ± 1.55 a 23.90 ± 1.24 a 

Bacteria (nmol/g) 6.33 ± 0.10 b 7.92 ± 0.06 b 12.04 ± 0.95 a 13.68 ± 0.70 a 33.83 

Fungi (nmol/g) 1.89 ± 0.06 b 2.03 ± 0.06 b 3.10 ± 0.16 a 3.30 ± 0.29 a 17.56 

Actinomycetes (nmol/g) 1.00 ± 0.02 c 1.33 ± 0.04 bc 1.63 ± 0.18 ab 1.93 ± 0.11 a 13.68 

AMF (nmol/g) 0.26 ± 0.00 c 0.31 ± 0.01 c 0.47 ± 0.04 b 0.56 ± 0.02 a 43.73 

Protozoa (nmol/g) 0.04 ± 0.00 b 0.03 ± 0.00 b 0.08 ± 0.01 ab 0.13 ± 0.04 a 5.39 

G+ (nmol/g) 2.30 ± 0.05 b 2.73 ± 0.05 b 3.72 ± 0.32 a 4.27 ± 0.25 a 19.03 

G- (nmol/g) 3.21 ± 0.12 c 4.34 ± 0.01 b 7.18 ± 0.55 a 8.27 ± 0.39 a 47.16 

Fungi/Bacteria 0.30 ± 0.01 b 0.26 ± 0.01 ab 0.26 ± 0.01 ab 0.24 ± 0.02 a 3.11 

G+/G- 0.72 ± 0.04 a 0.63 ± 0.01 b 0.52 ± 0.00 c 0.52 ± 0.02 c 22.03 

Community-level physiological profiles         

5.89 AWCD 0.37 ± 0.13 bc 0.22 ± 0.03 c 0.67 ± 0.07 a 0.60 ± 0.08 ab 

Carboxylic acids 0.50 ± 0.04 b 0.28 ± 0.04 c 0.81 ± 0.09 a 0.52 ± 0.06 b 13.01 

Polymers 0.49 ± 0.12 b 0.61 ± 0.07 b 0.73 ± 0.06 ab 0.90 ± 0.04 a 4.97 

Carbohydrates 0.42 ± 0.10 bc 0.21 ± 0.03 c 0.64 ± 0.07 ab 0.72 ± 0.10 a 8.90 

Phenolic acids 0.18 ± 0.09 b 0.14 ± 0.09 b 0.46 ± 0.16 a 0.65 ± 0.03 a 5.71 

Amino acids 0.22 ± 0.06 b 0.20 ± 0.04 b 0.58 ± 0.06 a 0.73 ± 0.16 a 8.43 

Amines 0.20 ± 0.10 a 0.15 ± 0.04 a 0.20 ± 0.07 a 0.37 ± 0.15 a 0.99 

 

Values are mean ± standard error. Different letters indicate significant differences among land restoration types based on the LSD test (P < .05). Significant difference between plant communities based on a one-way ANOVA ( P < .05 and P < .01). 

SL, shrubland; CF, coniferous forest; SNF, semi 

 



Table 4. Significance analysis of correlation between the redundancy analysis (RDA) axes of microbial community properties (PLFA and CLPP) and indices of species diversity, functional traits, and soil properties. 

 

Variables PLFA     CLPP     

           

 
RDA1 RDA2 r

2 
P  RDA1 RDA2 r

2 
P 

 

           

Species diversity indices           

Shannon index 0.054 −0.999 0.362 0.136  −0.467 0.884 0.397 0.100  

Richness 0.824 −0.567 0.438 0.077  −0.841 0.541 0.554 0.026  

Evenness −0.299 −0.954 0.282 0.213  −0.200 0.980 0.211 0.351  

Functional diversity indices    

0.002 

    

0.034 

 

CWM-LDMC 0.998 0.015 0.758  −0.996 0.089 0.544  

CWM-SLA −0.764 0.645 0.833 0.001 0.992 −0.126 0.677 0.006  

CWM-LNC −0.737 −0.676 0.731 0.002 0.797 0.604 0.223 0.300  

CWM-LPC −0.854 −0.520 0.763 0.002 0.859 0.511 0.336 0.178  

CWM-SRL −0.908 0.419 0.899 0.001 0.983 0.183 0.809 0.001  

Soil physicochemical properties          

pH 0.950 −0.313 0.129 0.519  −0.987 0.161 0.216 0.330  

SWC 0.986 0.168 0.742 0.006  −0.884 −0.467 0.297 0.223  

SOC 0.999 0.044 0.715 0.005  −0.946 −0.323 0.271 0.264  

TN 0.736 −0.677 0.422 0.096  −0.726 −0.688 0.419 0.091  

TP 0.994 −0.105 0.299 0.216  −0.425 −0.905 0.324 0.172  

 

r
2
 represents the proportion of variance explained. Asterisks indicate the significance of correlation based on Monte Carlo permutation test (n = 999). P < .05, P < .01, P < .001. CWM, community-weighted mean; LDMC, leaf dry matter content; 

SLA, specific leaf area; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; SRL, specific root length; SWC, soil water content; SOC, soil organic carbon; TN, soil total nitrogen; TP, soil total phosphorus. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Non-metric multidimensional scaling (NMDs) analysis of (A) soil mi-crobial community 

composition and (B) soil microbial carbon-metabolic functions within soils across land restoration 

types (the distance metric was the Bray-Curtis metric). The same shapes represent three replicates 

of the twelve plots of this study. The significance test was based on a PERMANOVA. 

 


