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Acute oak decline (AOD) is a syndrome affecting mature oak trees and is characterized by 

stem bleeds from vertical fissures on trunks, and inner bark necrosis caused by a 

polybacterial consortium, in which Gibbsiella quercinecans and Brenneria goodwinii, and to 
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a lesser extent Rahnella victoriana and Lonsdalea britannica, play key roles. Here we report 

a novel multiplex real-time PCR assay that enables simultaneous and rapid detection and 

quantification of these four bacterial species from stem bleed swabs. Experiments with axenic 

cultures were performed to determine specificity and sensitivity of the multiplex quantitative 

PCR (qPCR). Whilst the primer/probe set for B. goodwinii was species-specific, primer/probe 

sets for the other three species were able to identify other members of their respective genera. 

There was no cross detection of genera within the multiplex qPCR, and non-target bacteria 

were not detected. The multiplex AOD assay had differential sensitivity for each bacterial 

species. The assay was evaluated on swab samples collected from stem bleeds of declining 

oak trees at a site in south-east England and was able to detect all four bacterial species. 

Absolute quantification of the bacteria from swab samples was possible through the inclusion 

of a standard curve prepared from dilutions of gene copy standards. This diagnostic tool will 

facilitate rapid detection of AOD-associated bacteria from samples that can easily be taken by 

non-specialists without specific training, and will also find application in other experimental 

work such as pathogenicity and control trials.

Key words

acute oak decline, Brenneria, Gibbsiella, Lonsdalea, multiplex real-time PCR, Rahnella

1. Introduction

Acute oak decline (AOD) is a recently described syndrome affecting mature oak trees in 

England (Denman and Webber, 2009). Quercus robur (pedunculate oak) and Q. petraea 

(sessile oak) are particularly susceptible to AOD, which is characterized by typical symptoms 
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of stem bleeds from vertical fissures on oak trunks, irregular lesions in the inner bark beneath 

the bleed area, and presence of larval galleries of the buprestid Agrilus biguttatus close to the 

lesions (Denman et al., 2014; Brady et al., 2017; Brown et al., 2017). Oak trees are thought 

to be predisposed to AOD attacks through local biotic and environmental factors (Brown et 

al., 2016, 2018) and often die within four to five years following the onset of symptom 

development.

Marker gene amplicon sequencing, metagenomics, and isolation of bacteria from stem 

bleeds and necrotic inner bark lesions identified two key, consistently occurring, bacteria 

species, Gibbsiella quercinecans and Brenneria goodwinii (Denman et al., 2012, 2018; Sapp 

et al., 2016), which were shown to cause lesions in subsequent oak log inoculation trials 

(Denman et al., 2018). Causation by bacteria was further confirmed through multi-omic 

analysis of microbiota associated with AOD (Broberg et al., 2018). In addition, isolation and 

log inoculation studies implicated a secondary role for Rahnella spp. and Lonsdalea 

britannica (Brady et al., 2014b; Li et al., 2017) in AOD development (Denman et al., 2018; 

C. Brady, University of the West of England, UK, personal communication). Recent genome 

comparisons of AOD bacteria with other phytopathogens suggest that B. goodwinii and L. 

britannica are primary pathogens containing suites of pathogenicity and virulence genes 

encoding T3SS, harpins, and effectors, and that G. quercinecans and Rahnella sp. contribute 

to tissue necrosis through the release of plant cell wall-degrading enzymes (PCWDEs) 

(Doonan et al., 2019). Furthermore, a recent population study of B. goodwinii isolates from 

oak in the UK demonstrated that the population of this bacterium in the UK appears to be 

primarily clonal and may have an endemic form with high levels of recombinant evolution 

taking place (Kaczmarek et al., 2017), which is typical to native bacterial pathogens (Smith et 

al., 2000; Vinatzer et al., 2014).
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Real-time PCR applications have enabled plant pathologists to develop assays for 

rapid detection of pathogens without the need for their isolation from diseased plant material 

(Schaad and Frederick, 2002). This rapid detection enables early, swift management through 

containment, control, and/or eradication of pathogens before they spread. Two real-time PCR 

methods can be effectively applied to detect multiple plant pathogens in a sample, namely 

high-resolution melt (HRM) and TaqMan assays. Although HRM analysis based on the 

amplification product of the atpD gene has been developed for detection of G. quercinecans 

and B. goodwinii (Brady et al., 2016), this method currently requires the additional step of 

isolation of pure cultures of bacteria from diseased material on which the HRM is run, 

thereby adding further time and expense to the process. Furthermore, HRM is not able to 

quantify the number of individual bacterial species in a sample that are associated with AOD.

TaqMan assays offer the advantage of improved specificity over other real-time PCR 

assays through the hybridization of a species-specific probe designed to the amplification 

template (Schaad and Frederick, 2002). The assay exploits the 5′ nuclease activity of Taq 

DNA polymerase together with the inclusion of template-specific fluorescent DNA probes. 

Amplification of the PCR product is thus directly related to the measured fluorescence 

(Weller et al., 2000). Detection of multiple pathogens within a sample is possible through the 

addition of different fluorescent dye molecules on the species-specific hybridization probes in 

a multiplex TaqMan assay. Whilst multiplex quantitative PCR (qPCR) applications are 

common in the detection of health and food related pathogens (Ibekwe et al., 2002; Liu et al., 

2013), very few examples exist for the simultaneous detection of multiple plant pathogens. In 

2000, Weller et al. (2000) applied a fluorogenic TaqMan PCR assay to detect Ralstonia 

solanacearum strains that infect potato. More recently, Enora et al. (2019) developed a 

tetraplex qPCR assay for simultaneous detection of Xylella fastidiosa subspecies in plant 

tissues. Probes for detection of the various X. fastidiosa subspecies were labelled with 
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different fluorogenic dye and quencher molecules allowing simultaneous detection within a 

sample in a single PCR. Additionally, a multiplex TaqMan assay was developed by Fonseca 

et al. (2019) to detect three different species of Xanthomonas sp. causing necrosis and 

bacterial spot in Citrus cultures.

In order to better understand the origin and spread of bacterial species associated with 

AOD, there is a need for a reliable and rapid molecular diagnostic assay, which will enable 

the detection and quantification of multiple species. The apparent emerging nature of this 

disease (Moradi‐Amirabad et al., 2019; González and Ciordia, 2020) necessitates urgent 

provision of a diagnostic tool. Therefore, the aim of this study was to develop a sensitive 

multiplex TaqMan PCR assay that is capable of simultaneous detection and quantification of 

four bacterial species involved in AOD syndrome in the UK, B. goodwinii, G. quercinecans, 

R. victoriana, and L. britannica. An important additional requirement and aim was to develop 

a diagnostic protocol that was nondestructive, due to the intrinsic value of mature and veteran 

oak trees that are affected by AOD.

2. Materials and methods

2.1 Bacterial strains and growth

All bacteria used to validate the detection assay are shown in Table 1 and Table S1. Bacteria 

were cultured on nutrient agar (NA; Oxoid) at 22 °C in the dark for 5 days. For real-time 

PCR assays, one colony of bacteria was resuspended in 100 µl phosphate-buffered saline pH 

7.4 (PBS), vortexed and heated at 95 °C for 10 min. Bacterial extracts were frozen at −20 °C 

until use.

2.2 Primer and probe design
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DNA sequences of the gyrase B (gyrB) gene from various Brenneria sp., Lonsdalea sp., and 

Rahnella sp. were downloaded from GenBank (Table S2) and sequences belonging to each 

genus were aligned with Geneious v. 9.0.2 (Biomatters Ltd) to identify single nucleotide 

polymorphisms (SNPs) between species. Primer 3 (www.Primer3.com) was applied to design 

primers and probes to gene regions spanning SNPs between species. A primer set and a probe 

were designed to a DNA-directed RNA polymerase gene (rpo) from G. quercinecans strain 

FRB97. This gene is directly upstream of the rpoB gene used in barcoding studies (Brady et 

al., 2017). Primer and probe dimer formation was assessed in Primer 3 (Koressaar and 

Remm, 2007; Untergasser et al., 2012) to ensure there was no interaction between any of the 

oligonucleotides in the multiplex PCR mix. Prior to ordering the primers and probes, the 

reaction was tested in silico with the Multiple Primer Analyzer 

(www.thermofisher.com/uk/en/home/brands/thermo-scientific/molecular-biology/molecular-

biology-learning-center/molecular-biology-resource-library/thermo-scientific-web-

tools/multiple-primer-analyzer.html).

Primers and probes binding to rpo from G. quercinecans and the gyrB gene from B. 

goodwinii, L. britannica, and R. victoriana are indicated in Table 2. All primers and probes 

were synthesized by Integrated DNA Technologies.

2.3 Real-time PCR detection of AOD-associated bacteria

Real-time PCR reactions were set up in 96-well plates, and each 10 µl reaction contained 1 × 

LightCycler 480 Probes Master Mix (Roche), 0.1 µM Gq284F and Gq418R primers, 0.25 µM 

each of Bg99F, Bg179R, Rv15F, Rv134R, Lb503F, Lb634R primers, 0.1 µM of each probe, 

and 2 µl bacterial sample. Each reaction was made up to 10 µl with sterile distilled water. 

PCRs and fluorescence detections were performed on a LightCycler480 II instrument 

(Roche). Thermal cycling conditions included an initial denaturation step at 95 °C for 10 min; 
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followed by 40 cycles of denaturation at 95 °C for 10 s, annealing at 65 °C for 30 s, and 

elongation at 72 °C for 10 s. Fluorescence at emission wavelengths of 510 nm (FAM), 580 

nm (JOE), 610 nm (ROX), and 660 nm (Cy5) was measured once per cycle at the end of the 

65 °C segment. The Crossing point (Cp) values (the PCR cycle number at which the 

fluorescence generated through TaqMan probe cleavage exceeded the threshold; Chandelier 

et al., 2019) were determined by applying an absolute quantification/fit points method (Pfaffl, 

2004), with the inclusion of colour compensation to account for overlap in emission spectra 

between fluorescent dyes.

2.4 Preparation of DNA standards

DNA standards for B. goodwinii (FRB171), L. britannica (FRB18), and R. victoriana (141a) 

gyrB and G. quercinecans (FRB97) rpo were prepared by generating amplification products 

with respective forward and reverse primers. Products were purified with a DNA Clean and 

Concentrator Kit (Zymo Research) and concentration of the purified products was measured 

on a Qubit 2.0 fluorimeter (Invitrogen) using a Qubit dsDNA HS Assay Kit (Invitrogen). As 

both the gyrB and rpo genes occur as single copies in bacteria, dilutions of the standards were 

made to represent 10–1011 gene copies. These copy number standards were used to quantify 

bacterial numbers in environmental samples with one gene copy representing one bacterium 

in a sample.

2.5 Determining sensitivity of detection of TaqMan real-time PCR assays

Single colonies of B. goodwinii (FRB171), L. britannica (FRB18), R. victoriana (141a), and 

G. quercinecans (FRB97T) were inoculated separately into 10 ml Luria broth and grown for 

approximately 20 hr (mid log phase) at 25 C with shaking on an orbital shaker (SciQuip) at 

150 rpm. Optical densities (OD595 nm; LAXCO Spectrophotometer) were adjusted to 0.6, and 

serial dilutions of the cultures were made (10−1 to 10−6). Each dilution was plated (2 µl in 98 
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µl PBS) onto NA in triplicate and left to grow for 4 days at 22 °C. An equivalent volume (2 

µl) of each dilution was subjected to the TaqMan multiplex PCR assay for AOD-associated 

bacteria to determine the minimum number of detectable bacteria.

2.6 Field sample analysis

Sterile swabs (Sterilin) were used to collect exudate from stem bleeds of four Quercus robur 

trees (two swabs per tree) displaying decline symptoms at a field site in south-east England in 

the UK (51°40′37″N, 00°16′49″W). The sterile cotton tip of the swab was either dipped 

directly into the fluid seeping from the tree, or placed in a bark crack so that the cotton tip 

made contact with the decaying tissue. The swab was then placed back in the tube and taken 

back to the laboratory where it was stored at 4 °C until processing. Swabs were thoroughly 

rinsed in 1 ml sterile PBS to remove bacteria, after which the PBS containing bacteria cells 

was then taken up into a 1 ml syringe and filtered with constant pressure through a 5 µm pore 

hydrophilic filter (Sartorius) into a clean 1.5 ml microfuge tube. Filtered bacterial 

suspensions were centrifuged (Eppendorf 5804R) at 9,000 × g for 4 min, and subsequently 

the supernatant was discarded without dislodging the bacterial pellet. Bacterial pellets were 

resuspended and washed with 1 ml PBS, briefly vortexed, then centrifuged at 9,000 × g for 4 

min and the supernatant pipetted off. The process was repeated three times before finally 

adding 50 µl PBS to yield bacterial cell suspensions that were then stored at −20 °C until use.

In addition, bark panels were collected from two bleed areas of Q. robur Tree 2 at the 

field site. Bark samples were surface sterilized for 1 min in 70% ethanol, 1 min in 0.5% 

sodium hypochlorite (Sigma), and thoroughly rinsed in sterile distilled water. Phloem tissue 

that spanned the healthy/lesion interface was plated onto PYGA bacterial culture medium 

(Denman et al., 2016). Emergent bacteria were streaked onto NA plates to obtain single 

colonies. These were resuspended in 100 µl PBS and subjected to PCR amplification of the 
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gyrB fragment (Brady et al., 2008). BlastN analysis (Altschul et al., 1990) was applied to 

query sequences against GenBank to identify bacterial species.

3. Results

3.1 TaqMan primer and probe design and specificity of the assay

Multiple sequence alignments of gyrB sequences from Brenneria sp., Lonsdalea sp., and 

Rahnella sp. (Figure 1) indicated polymorphisms between closely related species in the gene 

regions to which probes and primers were designed (Figure 1). However, primers and probes 

had identical sequences to the species from which they were designed. Multiple sequence 

alignment of the gyrB gene sequences from B. goodwinii were compared with closely related 

B. roseae subsp. americana and B. roseae subsp. roseae indicating that there is a single 

polymorphism between the gyrB sequence from B. roseae subsp. americana and the forward 

primer, while there are two mismatches between both B. roseae subspecies and the reverse 

primer. Similarly, the two B. roseae subspecies exhibit two base mismatches with the gyrB 

gene probe designed to B. goodwinii. These differences were enough for the multiplex assay 

to identify B. goodwinii at an early Cp in the qPCR, whilst related Brenneria sp. only 

amplified at Cps of greater than 35 cycles. We therefore only positively identified B. 

goodwinii if Cp values of less than 35 were obtained.

Primers and probes designed to G. quercinecans rpo were able to amplify and detect 

closely related Gibbsiella species: G. acetica, G. dentisursi, and G. greigii. Similarly, the 

qPCR TaqMan assay for R. victoriana was able to detect R. variigena (Table 1). No cross 

reaction between B. goodwinii, L. britannica, R. victoriana, and G. quercinecans was 

observed. Amplification was not observed in closely related species or non-target species 
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isolated from plant lesions and cankers including Erwinia billingae, Klebsiella 

michiganensis, Lelliottia sp. nov., Ochrobactum sp., Panotea rodasii, Raoultella spp., and 

various Serratia species (Table S1).

3.2 Sensitivity of multiplex TaqMan PCR

Purified gyrB amplicons from B. goodwinii, L. britannica and R victoriana and the rpoI 

amplicon from G. quercinecans were quantified, and serial dilutions were made for each of 

the products ranging from 1011 copies to 102 copies. Plots of Cp versus log10 gene copy 

number indicated that reaction efficiencies of amplicons from all four bacteria were above 

80% and R2 > .99 (Figure 2). The sensitivity of the multiplex TaqMan assay was determined 

using serial dilutions of AOD bacteria and the minimum number of bacterial cells detected 

were 14 for G. quercinecans, 76 for B. goodwinii, 75 for L. britannica, and 25 for R. 

victoriana (Table 3).

3.3 Multiplex PCR amplification from swab samples

Bacterial suspensions obtained from processed swabs from Q. robur trees collected at a field 

site in south-east England (Figure 3) were assessed with the multiplex TaqMan assay for 

AOD-associated bacteria, and gene copy standards were included on the reaction plate in 

order to quantify the numbers of bacteria isolated from each swab sample. B. goodwinii and 

Gibbsiella sp. were detected in three of the four trees. B. goodwinii was present at higher 

levels in the exudates than Gibbsiella sp., and Tree 4 had the highest numbers of B. goodwinii 

(2.7 × 107) and Gibbsiella sp. (2.36 × 103) cells. Rahnella sp. was only present in Tree 2 

(Figure 4). Although Tree 1 had a single dry stem bleed, no AOD bacteria were detected and 

the cause of the bleed was probably due to a wound and not further diagnosed.
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In order to validate the results obtained with the AOD multiplex TaqMan assay, two 

bark panels were taken from Tree 2. A total of 29 bark pieces were extracted from two bark 

panels from Tree 2 and were plated onto PYGA from which bacteria were isolated from 19 

bark pieces. BlastN analysis of the sequenced gyrB (Table 4) indicated that B. goodwinii (one 

isolate), G. quercinecans (seven isolates), and R. variigena (five isolates) were all present in 

necrotic tissue, confirming real-time PCR results from swab samples.

4. Discussion

Diagnosis of AOD in oak trees is based on the presence of A. biguttatus larval galleries in the 

inner bark, and often the presence of exit holes, stem bleeds, and occurrence of AOD-

associated bacteria in the necrotic tissue beneath the bleeds. Until recently, identification of 

AOD bacteria has relied heavily on destructive sampling of the inner bark tissue, bacterial 

isolation, strain purification, DNA extraction, PCR, sequencing, and BLAST identification. 

Here we present a multiplex TaqMan method for the rapid and simultaneous detection of four 

bacteria present in stem bleeds associated with AOD that can be applied to raw samples 

eliminating a culturing step, saving time and labour costs. The method can distinguish B. 

goodwinii from other Brenneria sp., and can detect Gibbsiella sp., Lonsdalea sp., and 

Rahnella sp. to genus level. Importantly, there was no cross detection of AOD bacterial 

species in the assay. Inclusion of gene copy number standards for each of the genes amplified 

from the four species enabled quantification of bacteria from the stem swab bleed sample. 

The multiplex TaqMan assay was effectively applied to identify and quantify bacteria in stem 

bleeds from oak trees showing decline symptoms in south-east England.

The multiplex TaqMan assay for AOD bacteria was effectively able to discriminate B. 

goodwinii from other Brenneria sp. at Cp values lower than 35. This distinction is important 
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as occasionally B. roseae subsp. roseae is also found in necrotic tissue associated with 

bleeding tree cankers. However, it is possible that this subspecies has a virulence gene 

repertoire similar to that of B. goodwinii and can perform the same necrotic function as B. 

goodwinii in bleeding stem cankers. This hypothesis is currently being tested through genome 

comparison studies to examine the virulence gene complement in both species (author’s 

unpublished data). Gibbsiella spp. could only be detected to the genus level, but G. greigii 

has so far only been isolated from California black oak in the USA (Brady et al., 2014a), and 

G. dentisursi was isolated from the oral cavity of a bear in Japan and the intestine of a 

butterfly in Korea (Brady et al., 2015). Although Geider and co-workers unified all known 

Gibbsiella species in G. acetica (Geider et al., 2015), ongoing research in our laboratories 

indicates that this grouping is incorrect, and isolate BKI used in this study belongs to G. 

quercinecans (C. Brady, University of the West of England, UK, personal communication). 

Thus, as shown here, application of the TaqMan assay should only detect G. quercinecans on 

European oak trees. The assay could detect both R. variigena and R. victoriana in oak stem 

bleeds; both bacteria have previously been isolated from necrotic lesions on oak trees 

(Doonan et al., 2019).

The multiplex TaqMan protocol was applied to rapidly identify AOD-associated 

bacteria present on swab samples collected from oak stem bleeds at a field site in south-east 

England. Trees with prolific stem bleeds all contained both B. goodwinii and G. 

quercinecans. This was expected as B. goodwinii was highly abundant and dominated the 

AOD lesion microbiome in previous studies; G. quercinecans was consistently present in the 

AOD lesion microbiome (Broberg et al., 2018; Denman et al., 2018). Although the assay 

indicated that B. goodwinii was the most abundant bacteria in stem bleeds, only one isolate of 

this bacteria was obtained from bark isolations. B. goodwinii is facultatively anaerobic 

(Denman et al., 2012) and is outcompeted by other bacteria under aerobic growth conditions, 

Page 12 of 31

plantpath@bspp.org.uk

Plant Pathology



For Peer Review

thus yielding low numbers of isolates. Only bleeds from Tree 2 harboured Rahnella sp., but 

this genus is more ubiquitous than G. quercinecans, and has been shown to be associated 

with oak trees both with and without symptoms (Broberg et al., 2018).

Acute oak decline symptoms can develop rapidly, resulting in high levels of tree 

mortality (Denman et al., 2010). It is therefore necessary to implement management 

strategies to help curb the spread of the disease. Such strategies include surveying woodlands 

for AOD symptoms on Quercus sp., identification of disease-causing agents including AOD-

associated bacteria and A. biguttatus, and if necessary, felling diseased oaks and appropriate 

disposal of diseased tissue (Denman et al., 2010; Brown et al., 2016). As other pathogens 

such as Phytophthora sp. can cause stem bleeds on oak (Denman et al., 2019), it is necessary 

to ensure that bleeds are indeed associated with AOD bacteria. The multiplex real-time PCR 

assay described in this paper provides a rapid diagnostic tool to identify bacteria, which can 

be applied to monitoring programmes to minimize the spread of the disease to other trees.

In 2019 alone, Forest Research processed 208 swab samples from oak trees sent in by 

the public and scientists both in the UK and in Europe. Presence of AOD bacteria in 

combination with photographic evidence of tree decline, bark cracking and, if present, A. 

biguttatus exit holes are used to diagnose AOD. If photographic evidence strongly suggests 

that an oak tree has AOD, but swab samples are negative for presence of associated bacteria, 

we recommend that a further swab is taken when the bleed is more active (e.g., spring or 

early summer) or in some cases we apply a selective enrichment culturing procedure using 

eosin methylene-blue (EMB) culture media (Moradi‐Amirabad et al., 2019). An important 

application of the rapid diagnostic assay would be to detect seasonal changes in AOD 

bacterial dynamics as well as differences in AOD bacterial composition in lesions as they 

progress.
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Future research will focus on improving the specificity of the multiplex TaqMan 

assay for specific detection of G. quercinecans. This could be achieved by designing primers 

and a fluorescent probe to a different gene which is conserved between G. quercinecans 

isolates but differs between Gibbsiella species. Ongoing sequencing projects to compare 

different Gibbsiella sp. genomes (author’s unpublished data) will greatly assist in the 

selection of such a gene region. An alternative approach in the short term could be to include 

locked nucleic acids (LNA) bases at nucleotide positions that distinguish G. quercinecans 

from other Gibbsiella species. LNA bases are modified RNA analogues in which an 

oxymethylene bridge locks the ribose ring in the ideal conformation for specific binding to 

the complementary base. This increases hybridization stability and ensures differentiation 

between closely related sequences down to as little as one nucleotide difference (Kauppinen 

et al., 2005; Lumia et al., 2018). Furthermore, probes could be designed to include a minor 

groove binder (MGB) at their 3′ end. This would increase the probe-target duplex stability 

and enable the use of shorter target specific probes (Roussel et al., 2005). Roussel and co-

workers (2005) designed probes with MGBs to detect fruit tree viruses that have high genome 

variability and it was thus necessary to target a small number of conserved nucleotides shared 

among different isolates.

In conclusion, we have presented a rapid TaqMan PCR method to simultaneously 

detect bacteria associated with tree stem bleeds. Moreover, the protocol presented here is 

nondestructive and allows for detection of bacteria directly from stem bleeds without the 

need for removal of inner bark panels from high commodity trees. This will greatly assist 

diagnostics and management of AOD in woodland areas.
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Table S1  Non-target bacteria tested for nonspecific detection with acute oak decline-

associated bacteria primers and probes.

Table S2  GenBank accession numbers of sequences used to design primers and probes for 

Brenneria goodwinii, Gibbsiella quercinecans, Lonsdalea britannica, and Rahnella 

victoriana.

Figure legends

Figure 1  Multiple alignments of gyraseB (gyrB) gene fragments for detection of (a) 

Brenneria goodwinii, (b) Lonsdalea britannica, and (c) Rahnella victoriana and the rpo 

fragment for detection of (d) Gibbsiella quercinecans. The binding sites of respective primers 

and probes are indicated on the alignments. Genes for bacteria associated with acute oak 

decline were set as the reference and were aligned to homologs of closely related species 

within a genus to detect polymorphisms between species and determine optimal primer/probe 

positions. Bg, Brenneria goodwinii; Brr, Brenneria roseae subsp. roseae; Bra, Brenneria 

roseae subsp. americana; Bn, Brenneria nigrifluens; Brub, Brenneria rubrifaciens; Bs, 

Brenneria salicis; Ba, Brenneria alni; Lb, Lonsdalea britannica; Lq, Lonsdalea quercina; Li, 

Lonsdalea iberica; Rvic, Rahnella victoriana; Raq, Rahnella aquatilis; Rvar, Rahnella 

variigena; Rinus, Rahnella inusitata; Rb, Rahnella bruchi; Rwool, Rahnella 

woolbedingensis; Gq, Gibbsiella quercinecans. Isolate numbers are indicated in brackets 

after species abbreviations.
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Figure 2  Linear relationship between crossing point (Cp) and gene copy number (log 

transformed) for Brenneria goodwinii (•), Gibbsiella quercinecans (△), Rahnella victoriana 

(+), and Lonsdalea britannica (×). Linear regression curves were calculated for each species 

and reaction efficiencies for each bacterial species was determined from the slope of the 

regression curve. Regression curves were as follows: B. goodwinii, y = −3.8037x + 43.087; 

G. quercinecans, y = −3.5354x + 44.567; R. victoriana, y = −3.6141x + 44.42; and L. 

britannica, y = −3.6268x + 46.745.

Figure 3  Decline symptoms on Quercus robur trees in a site in south-east England. (a) Tree 

1 displaying dieback of upper branches. (b) Tree 2 and (c) Tree 3 with numerous bleeds along 

the length of the stem. (d) Tree 4 with a bleed at the base of the stem.

Figure 4  Detection and quantification of acute oak decline-associated bacteria on oak trees 

at a field site in south-east England. Tree 1 had a dry stem bleed and no acute oak decline-

associated bacteria were detected.
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Table 1  Bacterial reference strains used in this study and their associated real-time PCR 

detection result

PCR detectiona

Bacterial species

Isolate 

number Host association Bg Lb Rvic Gq

Brenneria alni NCPPB934 Alnus sp. − − − −

FRB171 Quercus robur + − − −

FRB141T Q. robur + − − −

Brenneria goodwinii

FRB186 Q. robur + − − −

FRB222T Q. robur − − − −

BH1/40b Q. robur − − − −

BH1/43c Q. robur − − − −

BH1/43d Q. robur − − − −

BH1/58 Q. robur − − − −

Brenneria roseae ssp. 

roseae

BH1/82b Q. robur − − − −

FRB223T Quercus kelloggi − − − −

USA32 Q. kelloggi − − − −

B. roseae ssp. americana

USA52b Q. kelloggi − − − −

Brenneria rubrifaciens NCPPB2020 Jugulans regia − − − −

Brenneria salicis NCPPB447T Salix sp. − − − −

Gibbsiella acetica BK1 Necrotic apple 

wood

− − − +

DSM23818T Oral cavity of a 

bear

− − − +Gibbsiella dentisursi

LEN33 Butterfly intestine − − − +

Gibbsiella greigii FRB224T Q. kelloggi − − − +

FRB97T Q. robur − − − +

FRB24 Q. robur − − − +

Gibbsiella quercinecans

BH1/19 Q. robur − − − +

FRB18 Q. robur − + − −Lonsdalea britannica

DUD5 Q. robur − + − −

Rahnella bruchi FRB226T Agrilus biguttatus − − − −

Rahnella inusitata B1 Unknown − − − −

Rahnella variiega CIP105588T Human burn − − + −
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Rahnella victoriana FRB141a Q. robur − − + −

Rahnella woolbedingensis FRB227T Alnus glutinosa − − − −

Note.  +, positive detection; −, negative detection.
aProbe for: Bg, Brenneria goodwinii; Lb, Lonsdalea britannica; Rvic, Rahnella victoriana; 

Gq, Gibbsiella quercinecans.
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Table 2   Primer and TaqMan probe sequences for multiplex quantitative PCR detection of 

acute oak decline-associated bacteria

Species Gene Primera Sequence (5′–3′)

Product 

size (bp)

Bg99F CTGGCCGAGCCTGGAAAC

Bg179R AGTTCAGGAAGGAGAGTTCGC

Brenneria 

goodwinii

gyrB

Bg124P FAM-

CCAGAATCTCATATTCGAACTCCACCA

TGTT-BHQ1

88

Gq284F GGCTTTGATAGTGGTGGCC

Gq418R CGTTCCGTTATCACCGTGG

Gibbsiella 

quercinecan

s

rpo

Gq342P Cy5-

AACAGTTCCAGCGCCATTTTCTTCG-

BHQ3

134

Lq503F GCAAGAAAGCCAAAATCAGC

Lq634R TCTTCACTTCGGACGACACC

Lonsdalea 

britannica

gyrB

Lq555P JOE-

TGCTGTGGTATCGGTGAAAGTGCCC-

BHQ1

131

Rv15F CACCCAGACTTACGTGCAT

Rv134R TCAGTGTGATTGGTGAAGGT

Rahnella 

victoriana

gyrB

Rv57P ROX-

AGTGATTGGCGATACTGACGTGACC-

BHQ2

119

aF, forward; R, reverse; P, probe.
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Table 3  Assessment of the sensitivity of the acute oak decline (AOD) TaqMan assay to 

detect bacterial species

AOD-associated 

bacterial species

Dilution 

factor

Colony 

counta

Equivalent 

cfu/ml

TaqMan Cq 

valuea

10−1 TNTC — 16.07 ± 0.57

10−2 TNTC — 23.97 ± 1.82

10−3 2203 ± 48 1.1 × 106 26.65 ± 1.02

10−4 417 ± 72 2.1 × 105 28.70 ± 1.87

Brenneria goodwinii

10−5 76 ± 2 3.8 × 104 34.13 ± 0.84

10−1 TNTC — 18.93 ± 0.14

10−2 TNTC — 24.49 ± 0.08

10−3 1647 ± 97 8.2 × 105 27.67 ± 0.03

10−4 263 ± 34 1.3 × 105 31.36 ± 0.10

Gibbsiella quercinecans

10−5 14 ± 4 7.0 × 103 35.72 ± 0.28

10−1 TNTC — 21.47 ± 0.48

10−2 TNTC — 25.48 ± 0.18

10−3 2107 ± 257 1.0 × 106 28.83 ± 0.18

10−4 557 ± 66 2.8 × 105 31.93 ± 0.01

Lonsdalea britannica

10−5 75 ± 11 3.8 × 104 35.68 ± 0.02

10−1 TNTC — 25.47 ± 1.00

10−2 TNTC — 28.84 ± 0.03

10−3 948 ± 128 4.7 × 105 31.51 ± 0.15

10−4 80 ± 14 4.0 × 104 35.13 ± 0.83

Rahnella victoriana

10−5 25 ± 2 1.2 × 103 36.85 ± 1.29

Note. AOD-associated bacteria were grown, diluted, and plated at a volume equivalent to the 

volume added to the TaqMan assay. Colony count is the number of bacteria added to TaqMan 

assay. Counts were performed and compared with Cq values obtained in TaqMan PCRs for 

each of the bacterial species. TNTC, too numerous to count.
aEach sample consisted of three replicates. Reported values represent the average of the three 

replicates.
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Table 4  Bacteria isolated from lesions beneath stem bleeds of Quercus robur Tree 2 at a site 

in south-east England

Top BlastN hit No. of isolates Accession no.

Brenneria goodwinii FR141 1 CP014137.1

Gibbsiella quercinecans FRB97 7 CP014136.1

Rahnella variigena 5 FJ268864.1

Note. Bacteria were identified by sequencing the gyrase B gene and subsequent BlastN 

analysis (>99% query coverage; >98% maximum identity).
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