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18
19 Arctic marine ecosystems are undergoing rapid correction in response to multiple expressions of climate 

20 change, but the consequences of altered biodiversity for the sequestration, transformation and storage of 

21 nutrients are poorly constrained. Here, we determine the bioturbation activity of sediment-dwelling 

22 invertebrate communities over two consecutive summers that contrasted in sea-ice extent along a transect 

23 intersecting the polar front. We find a clear separation in community composition at the polar front that marks 

24 a transition in the type and amount of bioturbation activity, and associated nutrient concentrations, sufficient 

25 to distinguish a southern high from a northern low. Whilst patterns in community structure reflect proximity to 

26 arctic versus boreal conditions, our observations strongly suggest that faunal activity is moderated by 

27 seasonal variations in sea ice extent that influence food supply to the benthos. Our observations help 

28 visualize how a climate-driven reorganization of the Barents Sea benthic ecosystem may be expressed, and 

29 emphasize the rapidity with which an entire region could experience a functional transformation. As strong 

30 benthic-pelagic coupling is typical across most parts of the Arctic shelf, the response of these ecosystems to 

31 a changing climate will have important ramifications for ecosystem functioning and the trophic structure of 

32 the entire food web.

33 This article is part of the theme issue ‘The Changing Arctic Ocean: consequences for 
34 biological communities, biogeochemical processes and ecosystems’.
35
36
37 1. Introduction
38 The Arctic Ocean seafloor hosts a diverse and productive benthic ecosystem that forms an important 

39 component of an intimately coupled benthic-pelagic system [1], but the structure and functioning of this 

40 compartment is rapidly and disproportionately being modified by climate change [2-5]. Multiple, 

41 simultaneously occurring, system responses to climatic forcing challenge species physiologically, leading to 

42 alterations in the diversity, composition [6,7] and trophic structure of assemblages [8], as well as feedbacks 
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43 that moderate associated ecosystem process rates [9,10]. In the high Arctic, deterioration in the extent and 

44 thickness of sea ice results in a series of cascading changes (light, temperature, nutrients, sea-ice edge 

45 mixing, season extension) that influence surface primary productivity [11], the supply of organic matter to the 

46 sea floor [12,13], and the structure of recipient microbial [14] and invertebrate [15-17] communities that 

47 regulate carbon and nutrient cycles [18,19]. At the same time, physical changes are causing a weakening of 

48 water column stratification such that the Arctic ocean is becoming a more Atlantic influenced system [20,21], 

49 with repercussions for the entire marine food web [22-24]. Whilst the retraction of ice northwards results in a 

50 well-known poleward shift in species distribution [25-27], and much is known about the functional role of 

51 boreal and arctic benthic fauna [28-30], uncertainties remain about how concurrent adjustments in 

52 biodiversity and food supply affect benthic biogeochemical responses. One source of ambiguity is that 

53 changes in sea ice extent, and all of its correlates, exhibit considerable inter-annual variability [31-32] that 

54 can appear to manifest as alternative ecosystem responses [33], making it difficult to distinguish natural 

55 variability within a period of gradual change from the onset of an abrupt regime shift [34]. Further, the 

56 transition or borealisation of arctic fauna [35] can positively affect local levels of biodiversity [36,37] and/or 

57 provide a functional buffer by maintaining ecological processes [38], depending on local context [39,40] and 

58 how post-borealisation species interactions and compensatory responses are realized [41,42].

59
60 The net effect that faunal responses to a changing Arctic will have on biogeochemical cycles are difficult to 

61 anticipate [43], but it is clear that climate driven variation in the functional attributes of sediment communities 

62 will have a significant role in incorporating recently deposited and readily degradable organic matter into the 

63 sediment profile [13, 44, 45]. Indeed, the particle reworking and ventilatory behaviour (= bioturbation) of 

64 invertebrates can fundamentally change sediment biogeochemistry [46,47], including organic matter 

65 mineralization, oxygen, nutrient, and sulfur cycling as well as mineralization processes, such as shell 

66 dissolution or iron and manganese reduction. Consequently, the extent of faunal reworking influences 

67 whether organic material is preserved through burial [48] or recycled via various pathways of mineralization 

68 [49] which, in turn, replenish bottom waters [50,51]. With movement of the Polar Front and marginal ice 

69 further north, the supply of labile material to the sediment surface is likely to increase and move polewards 

70 under an open ocean (in contrast to other polar regions, where organic matter builds up at the seafloor due 

71 to low seafloor temperatures, e.g. western Antarctic Peninsula [52]), but the macromolecular composition of 

72 surface sediments will be distinguishable [53]. Nevertheless, and despite cold temperatures, faunal utilization 

73 and incorporation of organic matter into the sediment profile appears to be rapid, albeit species specific [13], 

74 and active deep mixing tends to be more important than sedimentation in capturing the organic matter 

75 resource [54]. These coupled biological and biogeochemical processes are crucial for benthic-pelagic 

76 coupling and ecosystem productivity, as well as the long-term removal of carbon from the ocean-atmosphere 

77 system [55]. However, most studies of Arctic benthic biodiversity have been restricted to the classification of 

78 assemblage structure and do not include biogeochemical flux analyses [56-58], whilst attempts to explain 

79 variation in benthic biogeochemistry have not explicitly considered bioturbation as a causative factor [59]. 

80 Moreover, although the distribution of functionally important species traits has received some attention [29, 

81 30], there are few direct measurements of faunal activity [54, 60-65] and no regional‐scale assessments of 

82 the faunal mediation of biogeochemistry. Hence, the objective of this study was to quantify the effect of 

83 changing sea ice cover on benthic invertebrate biodiversity and explore how changes in environmental 

84 setting and assemblage composition may affect sediment mixing and associated levels of nutrient 
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85 concentration across a sea ice transect that intersects both the oceanographic [66] and benthic [56] polar 

86 front. We anticipated that differences in faunal composition between northern (Arctic) and southern (Atlantic) 

87 assemblages would lead to contrasts in bioturbation and nutrient concentrations [47], and hypothesized that 

88 maximal faunal activity would coincide with the approximate position of the polar front due to the stimulatory 

89 effects of turbulent mixing and nutrient advection [67]. We expected that this spatial division would reflect a 

90 contrast in the source, quantity and/or reactivity of sediment organic matter, but further hypothesized that 
91 inter-annual variation in conditions along the sea ice gradient would modify the community response. 

92 Returning these outcomes will emphasize the importance of timing and context in moderating how benthic 

93 environments respond to external forcing, and highlight the need to incorporate such complexities into 

94 current thinking [43, 55] and expectation [68].

95
96
97 2. Material and methods
98 (a) Study location
99 To quantify the effect of changing sea ice cover on benthic invertebrate biodiversity and faunal mediation of 

100 nutrient concentrations (ecosystem functioning, defined here as the nutrient pool resulting from the 

101 interactions between a biotic assemblage and its abiotic environment), we investigate the marginal areas of 

102 the Eurasian Arctic Ocean southeast to northeast of Svalbard. Within this area, the Barents Sea is 

103 experiencing an acceleration in warming and weakening of water column stratification that effects the annual 

104 extent of sea ice (see electronic supplementary material, figure S1) and position of the polar front [69]. Data 

105 were collected during two consecutive summer cruises (RRS James Clark Ross: JR16006, 30th June to 8th 

106 August, 2017; JR17007: 10th July to 5th August, 2018) following a transect along the 30ºE meridian 

107 (Stations B13-B17 and Xs; see electronic supplementary material, table S1) that intersects both the 

108 oceanographic [66] and benthic [56] polar front (see electronic supplementary material, figure S2). To 

109 minimize the effect of non-climatic drivers of change, stations were selected with comparable water depths 

110 (200-400m), sediment type, and bottom fishing activity [70,71]. Bottom fishing activity was minimized by 

111 selecting locations that showed low levels of activity (based on VMS tracking data, visualized at: 

112 https://kart.barentswatch.no/) and we verified that there was no recent activity at the point of station 

113 occupancy using sediment surface imagery [72] and geochemical profiles [73, 74].

114
115 (b) Experimental set-up and design

116 At each station four replicate intact sediment cores (LWH: 20 × 20 × 12 cm) were obtained from replicate 

117 0.1m2 USNL (Unites States Naval Laboratory) box cores using a core extruder (see electronic 

118 supplementary material, figure S3), transferred to transparent acrylic aquaria (internal dimensions, LWH: 20 

119 × 20 × 34 cm) and overlain with ~8 L (20cm depth) surface seawater (salinity, ~34). Aquaria (2017, n = 20; 

120 2018, n = 24) were randomly transferred to one of two insulated fibreglass seawater baths (LWH: 1.2 × 1.2 × 

121 0.8m, Tanks Direct, UK; see electronic supplementary material, figure S4) and maintained at a 

122 representative ambient bottom temperature (see electronic supplementary material, table S2, 1.5 ± 0.5ºC; 

123 Titan 1500 chiller unit, AquaMedic) in the dark. Each aquarium was continually aerated by bubbling through 

124 a glass pipette and supplied ~0.03g of flaked fish food aquarium-1 (Aquarian Tropical Flake) on alternate 

125 days. To avoid excessive accumulation of nutrients and metabolites associated with the assembly process, a 
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126 partial (80%) seawater change on each aquarium was performed after 24h. Aquaria were incubated for 12 

127 days.

128
129 Sediment particle size frequency distributions from the USNL box cores were determined optically using a 

130 Malvern Mastersizer 2000 He-Ne LASER diffraction sizer at the Department of Geography, University of 

131 Cambridge following standard protocols (available at:  

132 http://www.geog.cam.ac.uk/facilities/laboratories/techniques/) and were used to resolve mean particle size, 

133 sorting, skewness and kurtosis [75] using GRADISTAT [76]. Loss on ignition was used to determine 

134 sediment organic material content (%). Further characterization of sediment organic matter processing and 

135 total organic carbon were beyond the scope of this contribution, but are provided by Freitas et al. [73] and 

136 Stevenson et al. [74].

137
138 (c) Measurements of faunal activity
139 Faunal mediated sediment particle reworking was estimated by establishing the redistribution of optically 

140 distinct particulate tracers (luminophores: 215g aquaria-1, fluorescent green, <200µm silica sand, density 

141 2.35 kg dm-3; Glass Pebbles Ltd., UK). Luminophores were evenly distributed across the sediment surface 

142 (see electronic supplementary material, figure S3) immediately after the partial seawater change. After 12 

143 days, the redistribution of luminophores was quantified from stitched composite images (RGB colour, JPEG 

144 compression; see electronic supplementary material, figures S5 –S10) of all four sides of each aquarium 

145 taken using a digital SLR camera (Canon 400D: 2017, 10 s exposure, f5.6 aperture, ISO 400, 83 µm pixel-1; 

146 2018, 10 s exposure, f5.6 aperture, ISO 800, 74 µm pixel-1) housed within a UV illuminated imaging box (f-

147 SPI, [77,78]). The mean (f-SPILmean, time dependent indication of short term faunal mixing) and maximum (f-

148 SPILmax, maximum vertical extent of faunal mixing) mixed depth of particle distribution were calculated from 

149 extracted profile data (see electronic supplementary material, figures S11-S12) using a custom-made semi-

150 automated macro that runs in ImageJ (version 1.47s, released 3rd June, 2013), a java-based public domain 

151 program developed at the US National Institutes of Health (http://rsb.info.nih.gov/ij/index.html). For 

152 comparative purposes [79], we also estimate the biodiffusion coefficient (Db, cm2 year-1; [80]) that describes 

153 the rate at which the variance of the location of a particle tracer (i.e. the spread) changes over time within the 

154 sediment profile, providing a descriptor of bioturbation intensity. Surface reworking activity was estimated by 

155 calculating the maximum vertical deviation of the sediment-water interface (upper – lower limit = surface 

156 boundary roughness, SBR).

157
158 The ventilatory behavior of the infauna (hereafter, bioirrigation) was estimated from absolute changes in the 

159 concentration (10mM, 8.231g NaBr dissolved in seawater aquarium-1) of the inert tracer sodium bromide (∆ 

160 [Br-], mg L-1; negative values indicate increased infaunal ventilatory activity, [81]) over an 8 h period on day 

161 12, determined using a Tecator flow injection auto-analyser (FIA Star 5010 series).

162
163 (d) Measurements of ecosystem function
164 Accumulated water column concentrations (µmol L-1) of NH4-N, NOx-N (i.e. NO3-N + NO2-N) and PO4-P were 

165 determined after 12 days incubation from standardized samples (taken from the centre of each aquarium at 

166 ~5cm depth, 0.45 µm NALGENE filtered) following standard protocols using a Lachat Quikchem 8500 flow-

167 injection auto-analyser.
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168
169 (e) Identification of fauna
170 The macrofauna retained (500 µm sieved) from each aquarium were fixed in 10% phosphate buffered 

171 formalin (4% formaldehyde) and stored in sealed plastic buckets for a minimum of three months [82]. Prior to 

172 identification samples were rinsed and preserved in 70% industrial methylated spirit (IMS). All individuals 

173 were identified to the lowest possible taxon with abundance and biomass per taxon noted. Biomass was 

174 obtained using blotted wet weight (± 0.0001g). All molluscs were weighed inclusive of shells, tube dwelling 

175 polychaetes were weighed without tubes, and sediment was removed from the body cavity of specimens of 

176 Ctenodiscus crispatus prior to weighing.

177
178 (f) Statistical analyses
179 Analysis of variance (ANOVA) models were developed to investigate the effects of station location (5 levels: 

180 B13-B17) and year (2 levels: 2017, 2018), and their interaction, on infaunal sediment particle reworking 

181 (SBR, f-SPILmed, f-SPILmean, f-SPILmax,), burrow ventilation (∆[Br-]) and nutrient concentration ([NH4-N], [NOx-N], 

182 [PO4-P]). Data from station Xs is presented for comparative purposes, but was not included in any statistical 

183 analysis as data was not available for both years. Model assumptions (homogeneity of variance, normality, 

184 presence of influential outliers) were assessed using plots of residuals versus fitted values, QQ plots and 

185 Cooks distance [83]. Where data exploration identified a violation of homogeneity of variance, data were 

186 analysed using a varIdent variance-covariate structure and generalized least-squares (GLS) estimation 

187 [84,85] to allow the residual spread to vary with individual explanatory variables. The optimal variance–

188 covariate structure was determined using restricted maximum-likelihood (REML) estimation by comparing 

189 the initial ANOVA model without variance structure to the equivalent GLS model incorporating specific 

190 variance structures using AIC and visualization of model residuals. The optimal fixed structure was 

191 determined by applying backward selection using the likelihood ratio test with maximum-likelihood (ML) 

192 estimation [83,85,86].

193
194 The single and interactive effects of station and year on macrofaunal community composition were visualized 

195 using non-metric multi-dimensional scaling (nMDS) based, first, on the abundance (square root 

196 transformed), and, second, on the biomass of taxa, to identify any transition in faunal assemblage structure 

197 across the polar front. Community differences associated with station (B13-B17) and/or year (2017, 2018) 

198 were determined using a permutational multivariate analysis of variance (PERMANOVA, [87]) with 999 

199 iterations. The relative contribution of individual taxa to the dissimilarity between samples was identified 

200 using similarity percentages (SIMPER, [88]) based on square root transformed abundance or biomass. As 

201 joint species absences provide important discriminatory information for treatment effects, data were zero 

202 adjusted by adding a dummy variable (abundance, 1; biomass, 0.0001; [89]).

203
204 All analyses were performed in R [90] using the nlme (ANOVA and GLS analyses; [91]) and vegan (nMDS, 

205 PERMANOVA and SIMPER analyses; [92]) packages.

206
207
208 3. Results
209 (a) Sediment and faunal composition
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210 Sediment particle size distributions (see electronic supplementary material, figures S13-S14) showed no 

211 notable patterns between stations and/or across years, and largely consisted of poorly sorted symmetrical 

212 mesokurtic fine to medium silts (~90% <63 µm) with an organic material content of ~6-8% (see electronic 

213 supplementary material, table S3). 

214
215 A total of 2550 faunal individuals representing 153 taxa were recovered from stations B13-B17, with 1353 

216 individuals (22.8602 g biomass) representing 123 taxa in 2017 and 1197 individuals (15.8390g biomass) 

217 representing 113 taxa in 2018. An additional 403 individuals (4.3943g biomass), representing 45 taxa, were 

218 recovered from station Xs in 2018. A total of 157 unique taxa (63% identified to species level, 92% to genus 

219 level; 2953 individuals, 43.0935g biomass), were recovered across all stations and both years. Species 

220 richness (number of species), evenness, total abundance, and total biomass for all stations and years are 

221 presented in electronic supplementary material (table S4). We observed a distinct separation in macrofaunal 

222 community structure based on both abundance (PERMANOVA: station, F = 5.526, d.f. = 5, p < 0.001; year, 

223 F = 2.046, d.f. = 1, p < 0.001; figure 1a and electronic supplementary material, figure S15a,c,e) and biomass 

224 (PERMANOVA: station × year, F = 1.427, d.f. = 4, p = 0.032; figure 1b and electronic supplementary 

225 material, figure S15b,d,f). SIMPER analysis indicated that approximately half of the dissimilarity in 

226 assemblage composition between years was associated with 16 taxa when based on abundance (∑Si = 

227 50.94%, Spiochaetopterus typicus, Maldane sarsi, Yoldiidae, Nephasoma procera, Spiophanes kroyeri, 

228 Adontorhina juv., Lumbrineris mixochaeta, Nematoda, Leitoscoloplos mammosus, Chaetozone setosa, 

229 Mediomastus fragilis, Haploops tubicola, Chirimia biceps, Ophelina abranchiata, Levinsenia gracillis, 

230 Nemertea) and 5 species when based on biomass (∑Si = 52.99%, Ctenodiscus crispatus, Spiochaetopterus 

231 typicus, Astarte crenata agg., Maldane sarsi, Chirimia biceps). Approximately half of overall dissimilarity (∑Si 

232 ~50%) between stations was typically associated with 11 - 17 taxa when based on abundance and 3 - 7 taxa 

233 when based on biomass (see electronic supplementary material, table S5). In general, taxa such as 

234 Spiochaetopterus typicus, Spiophanes kroyeri, Maldane sarsi and the Yoldiidae were important numerically, 

235 whilst taxa such as Spiochaetopterus typicus, Ctenodiscus crispatus, Aglaophamus malmgreni and Astarte 

236 sulcata were important in terms of biomass. However, the identity and rank importance of taxa contributing 

237 most to overall community similarity/dissimilarity was not uniformly expressed, and contrasted between the 

238 southern and northern stations.

239
240 (b) Effects on faunal activity
241 Surface boundary roughness differed between years (L-ratio = 3.769, d.f. = 1, p<0.0001), but not between 

242 stations (L-ratio = 6.106, d.f. 4, p = 0.1914), and was not dependent on their interaction (station × year: L-

243 ratio = 3.008, d.f. = 4, p = 0.5564). Overall, there was evidence of a decreasing SBR with increasing latitude 

244 and lower mean SBR (± SD, n = 20) in 2017 (1.050 ± 0.366 cm) relative to 2018 (1.831 ± 0.713 cm) (figure 

245 2a). The mean mixed depth of particle redistribution (f-SPILmean) differed between years (L-ratio = 8.201, d.f. = 

246 1, p<0.01) and across stations (L-ratio = 25.337, d.f. = 4, p<0.0001), but there was no interaction between 

247 station and year (station × year: L-ratio = 4.057, d.f. = 4, p = 0.3984). Overall, mean f-SPILmean (± SD, n = 20) 

248 was shallower in 2017 (0.6371 ± 0.2016 cm) relative to 2018 (0.7817 ± 0.3160 cm) and, although 

249 insignificant, showed evidence of shallowing with increasing latitude (from 0.8568 ± 0.4271 cm at B13 to 

250 0.6082 ± 0.156 cm at B17, n = 8; figure 2b). The maximum mixed depth of particle redistribution (f-SPILmax) 

251 differed between years (F1,30 = 41.0906, p<0.0001) but not with station (F4,30 = 1.0784, p = 0.3846) or their 
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252 interaction (station × year: F4,30 = 1.5187, p = 0.2218). Mean f-SPILmax (± SD, n = 20) was shallower in 2017 

253 (2.9407 ± 1.2900 cm) relative to 2018 (5.8874 ± 1.6816 cm), and ranged from 1.9751 ± 0.2347 cm at B13 to 

254 4.1672 ± 1.0326 cm at B14 in 2017, exhibiting a step change of ~1.57cm between the southern (B13 and 

255 B14, n = 8, 4.8734 ± 1.3973 cm) and northern (Xs, B15-B17, n = 12, 6.4403 ± 1.6234 cm) stations (figure 

256 2c). Bioirrigation behavior was independent of year and/or station (intercept only model), but absolute values 

257 indicated higher activity at stations furthest away from the polar front and in 2018 (figure 2d).

258
259 The redistribution of luminophores approximated a biodiffusive profile, with mean (± SD, n = 4) station Db 

260 values ranging from 1.922 ± 0.208 – 6.089 ± 2.324 cm2 year-1 in 2017 and from 2.550 ± 0.573 – 16.700 ± 

261 15.497 cm2 year-1 in 2018 (see electronic supplementary material, table S6). Comparison of Db values 

262 across our transect showed a trend of declining bioturbation activity with latitude, consistent with previous 

263 findings [79] for Db and L in the Barents Sea region (figure 3). A single individual of Quasimelita 

264 quadrispinosa (Station Xs, replicate 1, see electronic supplementary material, figure S16) formed extensive 

265 galleries and mounding, and made disproportionate contributions to community bioturbation (as seen across 

266 all bioturbation metrics for this station, figure 2).

267
268 The amount of sediment organic material was dependent on the interactive effects of station and year 

269 (station × year: F = 1.52, d.f. = 4, p = 0.451), and indicated that, with the exception of station B13, organic 

270 material was higher in 2017 relative to what it was in 2018 (see electronic supplementary material, table S3 

271 and figure S17). Mean (± SD, n = 4). Organic material values were higher in the southern most station (B13: 

272 2017, 6.74 ± 0.40 %; 2018, 6.76 ± 0.15%) and peaked at station B14 (2017, 8.078 ± 0.30 %; 2018, 7.47 ± 

273 0.26%), but declined to the north (~ 6-7%). Station Xs in 2018 showed much lower mean organic material 

274 (4.58 ± 0.38%) values relative to the other stations. With the exception of f-SPILmax across all stations in 2017 

275 (Spearman correlation: ρ = 0.621, d.f. = 20, p < 0.01), none of our bioturbation metrics were associated with 

276 sediment organic material.

277
278 (c) Effects on ecosystem functioning

279 [NH4-N] depended on the interaction between station and year (station × year: L-ratio = 10.943, d.f. = 4, p < 

280 0.05). With the exception of station B13, [NH4-N] was lower at each station in 2017 in comparison to 2018. 

281 Irrespective of year, mean (± SD, n = 8) [NH4-N] was highest at stations B14 (7.508 ± 2.459 µmol L-1) and Xs 

282 (7.965 ± 2.698 µmol L-1), and lowest at station B15 (2.034 ± 0.881 µmol L-1) (figure 4a). [NOx-N] differed 

283 between stations (L-ratio = 30.568, d.f. = 8, p < 0.0001), but not between years (L-ratio = 5.050, d.f. = 5, p = 

284 0.4098) or their interaction (station × year: L-ratio = 5.049, d.f. = 4, p = 0.2823), and increased in 

285 concentration with latitude from < 2 µmol L-1 south of the polar front to 4.968 µmol L-1 at station B17 (figure 

286 4b). [PO4-P] was dependent on the interactive effects of station and year (station × year: L-ratio = 13.436, 

287 d.f. = 4, p < 0.01), and indicated that, with the exception of station B13, [PO4-P] was much lower in 2017 

288 relative to what it was in 2018 (figure 4c).

289
290 4. Discussion
291 Changes in the structure and composition of the Arctic biome under rapid climate warming continue to be 

292 observed [38, 56], most prominently expressed as range shifts toward higher latitudes [25-27, 34] and 

293 compositional change in favour of species adapted to higher temperatures (e.g. Atlantification of the high 
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294 Arctic) [20,21,35]. Given the causal link between biodiversity and many ecosystem properties [93], concern 

295 is mounting that concomitant changes in ecosystem functioning are taking place that, in the longer term, 

296 could be sufficient to force a regime shift and/or cause an abrupt change in functioning [34, 94]. Difficulties 

297 are emerging with this narrative, however, because multiple interacting factors modify biodiversity-function 

298 relations [95] and community responses [41], and local variations in how drivers of change are expressed 

299 and are received (including lags) can override trends associated with macro-climatic forcing [39, 96]. In 

300 addition, evidence is emerging that long-term resilience depends on the nature of covariation between 

301 multiple components of stability [97], which are seldom incorporated in empirical investigations. The role of 

302 water mass inertia in buffering the extent and rate of benthic faunal change following sea ice reduction, for 

303 example, is unknown. Here, we find strong evidence that changes in environmental setting related to inter-

304 annual variations in sea ice alter the benthic community response from seasonal or latitudinal expectation; 

305 that is, the expression of climate forcing at the benthos (here, ~300m water depth) is not temporally or 

306 spatially homogeneous [98,99] and leads to context-specific changes in species behaviour and related levels 

307 of ecosystem functioning [40, 100]. At the same time, our analysis confirms the presence of distinct basal 

308 infaunal communities and a faunal separation between northern (Arctic) and southern (Atlantic) assemblages 

309 at a latitude that corresponds with the operational oceanographic [66] and benthic [56] polar front. By 

310 extension, when taken together, our findings give credence to the view that Arctic dwelling benthic 

311 assemblages are more robust than physiological assessments may indicate [101], and it is tempting to 

312 speculate that a proportion of the community are adapted to maximise seasonal shifts in, for example, 

313 resource availability [102]. However, as has been highlighted before [28], detection of the influence of 

314 environmental conditions on the structure and function of benthic communities requires an overview of how 

315 functionally relevant infaunal traits covary with changing abiotic and biotic circumstance [103], and how 

316 species interactions and ecological roles vary with context [104]. 

317
318 Although the position of the polar front [105,106] and the conditions that influence it [20] are still poorly 

319 defined, there is evidence that warming is leading to changes in its intensity [20, 107]. Atlantic surface waters 

320 are heating up at ~0.4˚C decade-1, and Arctic waters at ~0.6 ˚C decade-1 [22], weakening the temperature 

321 differential between the opposing water masses and allowing a north-eastward intrusion of Atlantic waters 

322 into the Barents Sea [108]. The fact that changes in species activity and behaviour that affect important 

323 aspects of the ecosystem (nutrient concentrations) are maximized at the frontal edge, and that this boundary 

324 represents a distinction (high south – low north) in faunal mediation capacity, highlights the significance of 

325 this boundary for defining functional precincts and ecological boundaries [30]. Changes in species and 

326 functional groups between seasons, attributed to the presence of more labile organic matter reaching the 

327 seafloor in summer, provide anecdotal support for this assertion [64]. Indeed, recent work has shown that 

328 such spatial-temporal changes are linked to the functional traits of organisms because environmental context  

329 - in particular sea ice and bottom water temperature [35] - influences the trait expression of individuals which, 

330 in turn, dictate net community-level behaviour and ecosystem functioning [100,109]. Comparison of our north 

331 and south faunal clusters provide some insight as to what may lie in store (elevated bioturbation and 

332 nutrients) as organisms adapted to seasonally ice-covered Arctic shelf habitats are replaced (local extinction) 

333 by southern Atlantic species, but it would be naïve to assume that this transition in faunal composition will 

334 define ecosystem functioning. As evidenced here, a change or rearrangement in the absolute contributions 

335 that species make to ecosystem process and function can be influential [110], even when a single species 
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336 (here, the amphipod Quasimelita quadrispinosa) with poor numeric or biomass representation dominates the 

337 functional return [111,112]. Such instances may arise from resource, competitive or predation release, and 

338 may be localized and short-lived in duration, but may act to prevent functional homogenization across the 

339 region [113]. Information on the role of individual species, species-environment interactions and interspecies 

340 relations in modifying ecosystem processes and functioning is woefully inadequate for the Arctic benthos 

341 [79], often inferred or generalized [29], and lacks empirical support.

342
343 Whether climate driven changes in the functional architecture of communities lead to the decline, 

344 maintenance or enhancement of ecosystem functioning will not only depend on the level of functional 

345 redundancy across multiple supporting processes [114,115], but also on the environmental circumstances 

346 under which faunal reorganization take place. As there is a strong coupling between export flux, including 

347 episodic events of sinking ice algae aggregates [116], community structure [117] and benthic carbon cycling 

348 [118], it follows that complex dependencies between trait composition and the timing and quality of organic 

349 matter are likely. A significant feature of our study was the dramatic contrast in ice cover between years, 

350 which we assume will have changed the timing of the primary production regime and the way in which 

351 energy and nutrients transit through the food web [11, 31]. In 2018, the reduction in sea ice extent prompted 

352 an earlier phytoplankton bloom relative to the previous year, such that organic matter reaching the seafloor 

353 will have been degraded through grazing in 2018 and comprised fresh material in 2017 [53, 119]. 

354 Comparison of the consecutive summers in our study suggests that there is greater reworking of the 

355 sediment-water interface and deeper mixing of the sediment profile under conditions of advanced ice retreat, 

356 as well as a more pronounced contrast in activity between southern and northern communities, although we 

357 do recognize that spatial and temporal variability may override this signal under certain circumstances [40, 

358 73]. Hence, our findings indicate that bioturbation activity is dependent on the interactive effects of season 

359 and sea ice condition which, in turn, are influenced by latitudinal position and local adjustments to 

360 circumstance. Further, since the inventory of sediment organic material indicates more efficient carbon 

361 processing (lower organic material values) during extended sea ice conditions [74], the increased reworking 

362 activities of infauna during these periods may offer a mechanistic explanation for likely/potential greater 

363 carbon burial rates, at least at the most northerly stations in the transect [53]. If true, interspecific differences 

364 in community bioturbation should lead to variations in the vertical distribution of sediment organic matter, a 

365 conclusion that does appear to be consistent with observations of organic material profiles [73] and other 

366 sediment processes (Fe/Mn reduction, [120]). Direct links between aerobic processes, reactive organic 

367 carbon and highest abundances of bacteria and archaea have recently been shown for the uppermost 

368 sediment layers, and organic matter reactivity changes most dramatically at, and directly below, the 

369 sediment-water interface alongside sedimentology and biological activity [74]. However, invertebrate 

370 utilization of carbon can occur at the biochemical level [121] and/or depend on species-specific differences in 

371 adsorption efficiency and feeding behaviour [122], suggesting that multiple traits that each interact with 

372 climatic forcing will be important for resource exploitation and ecosystem functioning.

373
374 5. Conclusion
375 We have demonstrated the importance of seasonal timing (here, the onset of summer) and context in 

376 moderating how benthic communities respond to external forcing that might help explain any departure from 

377 expectations based on latitudinal position in relation to macroclimatic drivers of change. It is clear that 
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378 species alter their activity and/or functional role under different environmental conditions and that complex 

379 dependencies are likely to occur between community composition and the timing and quality of organic 

380 matter which, in turn, would govern the faunal mediation of ecosystem functioning. We anticipate, however, 

381 that spatial and temporal variability in environmental setting will be important in explaining biodiversity-

382 functioning relations at larger scales [40], and may be more important that localized changes in sea ice [73] 

383 and its correlates. Our study also highlights the paucity of available information within this region on how 

384 species (or communities) moderate important ecosystem functions in relation to a changing climate, biotic re-

385 organisation, and their interactions with one another [71]. Furthermore, biogeochemical pathways and 

386 processes are poorly understood, and little is known about the relative importance of different components of 

387 organic material at an ecosystem level [74,123]. In order to establish generality and generate projections of 

388 the threats and opportunities of future change on biological and biogeochemical processes, process and 

389 experimental studies focused on developing mechanistic understanding of the interactive effects of different 

390 components of change (and any of their correlates) on organism-sediment relations are urgently needed and 

391 must be prioritized.
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751 Figure legends
752
753 Figure 1. Classification of the faunal assemblages in the Barents Sea reveal a clear separation between 

754 northern and southern stations. Non-metric two-dimensional (nMDS) representations of Bray-Curtis similarity 

755 matrices are presented based on (a) square root transformed abundance and (b) untransformed biomass for 

756 stations B13-B17 and Xs (indicated by color) in 2017 (circles) and stations B13-B17 in 2018 (triangles). 

757 Ordination diagnostics are presented in electronic supplementary material, figure S15. Dimensionality 

758 representation stress values (k = 3) are (a) 0.163 and (b) 0.143.

759
760 Figure 2. The effects of station and year on mean (± s.e., n = 4) bioturbation activity as indicated by (a) 

761 surface boundary roughness, (b) mean mixed depth, f-SPILmean, (c) maximum mixed depth, f-SPILmax, and (d) 

762 ventilatory behaviour, ∆ [Br-] for stations B13-B17 in 2017 (black) and stations B13-B17 and Xs in 2018 

763 (grey). For ∆ [Br-], negative values indicate increased bioirrigation. Sediment profile images and associated 

764 luminophore distribution profiles are presented in electronic supplementary material, figures S5-S12. 

765
766 Figure 3. The relationship between (a) the bioturbation coefficient, Db, and (b) the mixed depth, L, and 

767 latitude for the Barents Sea shelf region. Data are presented from both present (2017, black closed circles; 

768 2018, black closed triangles) and previous studies (grey, source indicated by open circle [60], triangle [61], 

769 square [62], or diamond [64]). Dashed lines represent linear regression of the pooled data: (a) slope = -

770 0.942, intercept at 71.5˚N = 9.346, F = 16.26, p<0.001, and (b) slope = -1.265, intercept at 71.5˚N = 13.749, 

771 F = 9.169, p < 0.01.

772
773 Figure 4. The effects of station and year on mean (± s.e., n = 4) nutrient concentrations as indicated by (a) 

774 [NH4-N], (b) [NOx-N] and (c) [PO4-P] for stations B13-B17 in 2017 (black) and stations B13-B17 and Xs in 

775 2018 (grey).
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Classification of the faunal assemblages in the Barents Sea reveal a clear separation between northern and 
southern stations. Non-metric two-dimensional (nMDS) representations of Bray-Curtis similarity matrices are 

presented based on (a) square root transformed abundance and (b) untransformed biomass for stations B13-B17 
and Xs (indicated by color) in 2017 (circles) and stations B13-B17 in 2018 (triangles). Ordination diagnostics 

are presented in electronic supplementary material, figure S15. Dimensionality representation stress values (k = 
3) are (a) 0.163 and (b) 0.143. 
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The effects of station and year on mean (± s.e., n = 4) bioturbation activity as indicated by (a) surface 
boundary roughness, (b) mean mixed depth, f-SPILmean, (c) maximum mixed depth, f-SPILmax, and (d) 

ventilatory behaviour, ∆ [Br-] for stations B13-B17 in 2017 (black) and stations B13-B17 and Xs in 2018 
(grey). For ∆ [Br-], negative values indicate increased bioirrigation. Sediment profile images and associated 

luminophore distribution profiles are presented in electronic supplementary material, figures S5-S12. 
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The relationship between (a) the bioturbation coefficient, Db, and (b) the mixed depth, L, and latitude for 
the Barents Sea shelf region. Data are presented from both present (2017, black closed circles; 2018, black 
closed triangles) and previous studies (grey, source indicated by open circle [56], triangle [57], square [58], 
or diamond [60]). Dashed lines represent linear regression of the pooled data: (a) slope = -0.942, intercept 
at 71.5˚N = 9.346, F = 16.26, p<0.001, and (b) slope = -1.265, intercept at 71.5˚N = 13.749, F = 9.169, 

p < 0.01. 
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The effects of station and year on mean (± s.e., n = 4) nutrient concentrations as indicated by (a) [NH4-N], 
(b) [NOx-N] and (c) [PO4-P] for stations B13-B17 in 2017 (black) and stations B13-B17 and Xs in 2018 

(grey). 
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