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A B S T R A C T

Tropical montane forests are important reservoirs of carbon and biodiversity and have a central role in the
hydrological cycle. They are, however, very fragmented and degraded, leaving isolated remnants across the
landscape. These montane forest remnants have considerable differences in forest structure, depending on
factors such as tree species composition and degree of forest degradation. Our objectives were (1) to analyse the
reliability of airborne laser scanning (ALS) in modelling forest structural heterogeneity, as described by the Gini
coefficient (GC) of tree size inequality; (2) to determine whether models are improved by including tree species-
sensitive spectral-temporal metrics from the Landsat time series (LTS); and (3) to evaluate differences between
three forest remnants and different forest types using the resulting maps of predicted GC. The study area was
situated in Taita Hills, Kenya, where indigenous montane forests have been partly replaced by single-species
plantations. The data included field measurements from 85 sample plots and two ALS data sets with different
pulse densities (9.6 and 3.1 pulses m−2). GC was modeled using beta regression. We found that GC was predicted
more accurately by the ALS data set with a higher point density (a cross-validated relative root mean squared
error (rRMSECV) 13.9%) compared to ALS data set with lower point density (rRMSECV 15.1%). Furthermore,
important synergies exist between ALS and LTS metrics. When combining ALS and LTS metrics, rRMSECV was
improved to 12.5% and 13.0%, respectively. Therefore, if the LTS metrics are included in models, ALS data with
lower pulse density are sufficient to yield similar accuracy to more expensive, higher pulse density data acquired
from the lower altitude. In Ngangao and Yale, forest canopy has multiple layers of variable tree sizes, whereas
elfin forests in Vuria are of more equal tree size, and the GC value ranges of the indigenous forests are 0.42–0.71,
0.20–0.74, and 0.17–0.76, respectively. The single-species plantations of cypress and pine showed lower values
of GC than indigenous forests located in the same remnants in Yale, whereas Eucalyptus plantations showed GC
values more similar to the indigenous forests. These results show the usefulness of GC maps for identifying and
separating forest types as well as for assessing their distinctive ecologies.

1. Introduction

The Eastern Arc Mountains (EAM) are a chain of crystalline
Precambrian basement mountains, stretching from southern Kenya to
eastern Tanzania (Burgess et al., 2007). The tropical montane forests in
the EAM are important reservoirs of carbon and biodiversity (Adhikari
et al., 2017; Burgess et al., 2007; Lovett and Wasser 1993). Further-
more, the montane forests capture moisture and store precipitation on
the hilltops, hence having a central role in the hydrological cycle
(Pellikka et al., 2009). However, montane forests of EAM, once dense

and continuous stands of indigenous forest, are now threatened and
fragmented due to land-use change and conversion to cropland and
agroforestry, which leaves a patchy landscape of forest remnants
(Pellikka et al., 2013). Depending on such factors as tree species com-
position and degree of forest degradation, the extant montane forest
remnants have considerable differences in forest structure with effects
on carbon stocks (Pellikka et al., 2018; Omoro et al., 2013), biodiversity
(Thijs et al., 2014), and forest function (Pfeifer et al., 2018).

Vertical structural heterogeneity describes the size variability of
plant assemblages directly competing for resources at a local scale, thus
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reflecting characteristics of the ecosystem’s complexity such as condi-
tions of competitive dominance of resource depletion or pre-emption in
a given ecosystem (Weiner, 1990), or habitat disturbance history
(Valbuena et al., 2016). The structural complexity of ecosystems pro-
vides habitat quality for fauna, affecting species diversity (Willson,
1974; Erdelen, 1984). Therefore, changes in morphological traits de-
scribing the vertical complexity of the plant ecosystem may be key to
determining a threat to the overall biodiversity (MacArthur and
MacArthur, 1961; Camargo and Kapos, 2009).

Airborne laser scanning (ALS; a.k.a. airborne LIDAR) provides a
method for high–resolution mapping of forest three-dimensional
structure via direct measurements of forest canopy height and canopy
cover and through predictive modeling of forest structural attributes.
When using ALS, some authors express proportions of leaf area density
(LAD) along vertical strata, e.g. overstorey versus understorey (Miura
and Jones, 2010; Lesak et al., 2011; Hill et al., 2014; Almeida et al.,
2019). Understorey density has been found to be valuable in de-
termining the dispersion of key animal species (Clawges et al., 2008;
Jung et al., 2012; Zellweger et al., 2017). Indicators to concisely sum-
marize plant height distributions are fundamentally based on either the
entropy (structural diversity) or the equitability (size variance) of the
plant size distribution (Valbuena et al., 2012).

Many studies have employed ALS derivations of McArthur and
McArthur’s (1961) foliage height diversity (FHD) as a morphological
trait describing the complexity of the plant community (Schneider
et al., 2017), showing its relationship to species distributions and bio-
diversity (Vierling et al., 2008; Bergen et al., 2009). On the other hand,
the most widespread alternatives to express size variance are the
standard deviation (McRoberts et al., 2008, Coops et al., 2016) and the
Gini coefficient (GC) (Valbuena et al., 2013b, 2017c; Dalponte et al.,
2018; Mononen et al., 2018; Zhang et al., 2019; Erfanifard et al., 2019)
of ALS heights. Descriptors of tree size variability are also good proxies
for biodiversity. Goetz et al. (2007), for instance, found that the total
species richness of the community was related to a ALS distribution
ratio. GC is calculated based on the basal area of the individual trees,
which represent the tree size inequality. Compared to other measures
that can be used to evaluate tree size variability, such as the standard
deviation, the GC brings the advantage of being independent from the
mean tree size, and being bounded by meaningful theoretical values
such as such GC=0 representing total equality and GC=1 maximum
inequality, or GC=0.5 representing maximum entropy (Valbuena
et al., 2012). GC has been used as a proxy to measure forest structural
diversity (Pach and Podlaski, 2015) and biodiversity (Nölte et al.,
2018). Many studies have examined modeling GC using ALS data for
assessing boreal forest structure (Goodwin et al., 2006; Valbuena et al.,
2014; Valbuena et al., 2016), but the method has not previously been
assessed in tropical montane forest landscapes.

Although ALS can provide highly accurate forest structure esti-
mates, it is possible that the addition of independent phenological data
that correlate with forest biophysical properties, e.g. multispectral data,
can further improve its ability to predict GC. Incorporating simulta-
neously acquired ALS and high–resolution multispectral imagery im-
proved species classification at tree level (Ørka et al., 2012). There has
been some research on synergistic use of ALS and high spatial resolu-
tion spectral metrics from aerial imagery to predict forest structural
attributes (e.g. forest canopy cover, canopy height, GC, and density)
(Ahmed et al., 2014, Hudak et al., 2002, Manzanera et al., 2016,
Valbuena et al., 2017b), but use is limited due to the costs involved in
collecting high-resolution data.

The open (free) data policy of the Landsat satellite mission has re-
volutionized the use of Landsat data (Zhu et al., 2019). Multispectral
Landsat time-series data have been applied successfully for mapping
tree height distributions in sub-Saharan Africa (Hansen et al., 2016) and
above-ground biomass in tropical forests (Phua et al., 2017). However,
the medium spatial resolution data, e.g. Landsat 8 OLI data, have not
been tested for modeling GC to date in the Afromontane forests.

Furthermore, there are no studies on combining ALS metrics and
spectral-temporal metrics from the Landsat time series (LTS) for GC
mapping.

In this study, our objective was to characterize the variation of
forest structure in three Afromontane forest remnants in the Taita Hills.
More specifically, we aimed (1) to analyse how well tree size inequality,
described by GC, can be modeled by two airborne laser scanning data
sets acquired from different altitudes using two different sensors; (2) to
determine whether models are improved by including tree species-
sensitive LTS; (3) to generate GC maps for the forest remnants and
evaluate differences between the three forest remnants and indigenous
and exotic plantation forests.

2. Material and methods

2.1. Study area

The Taita Hills montane forests in south-eastern Kenya are part of
the EAM. The semi-arid plains isolate Taita Hills from the other hills,
e.g. Pare and Usambara Mountains in Tanzania and Mount Kasigau
situated 50 km to the southeast of Taita Hills in Kenya. An average
elevation at the lower plains is 700m above sea level (a.s.l.) and at the
hills 1500m a.s.l., with the highest hilltop (Vuria) reaching 2208m
a.s.l. (Pellikka et al., 2018).

The landscape is fragmented due to the conversion of forested areas
to agricultural lands, while at the same time exotic plantations are es-
tablished on, for example, erosion-prone areas. The forest is currently
limited to small fragments of indigenous and plantation forests between
50 and 200 ha in size. The indigenous cloud forest fragments are re-
stricted to above 1400m altitude on the southeastern slopes and above
1700m on the northwestern slopes, in the areas receiving over 900mm
of precipitation annually (Pellikka et al., 2009). In our study, we fo-
cused on three forest remnants: Ngangao, Yale, and Vuria (Fig. 1), lo-
cated on the mountain ridges with steep slopes at an altitude range of
1700–1952m, 1750–2104m, and 1655–2208m, respectively (Fig. 2).

The study area has a bimodal rainfall annual regime, with long rains
from March to June and short rains between October and December.
Annual rainfall in Taita Hills is according to Erdogan et al. (2011) be-
tween 1100 and 1400mm, while in the lowlands it is between 400 and
600mm. The upper montane cloud forests, like Vuria, receive abundant
moisture from the low-lying clouds, fog, and moisture-laden southeast
trade winds originating from the Indian Ocean (Räsänen et al., 2018).
These forests are typically single-layered and covered by epiphytic
mosses and lichens. In contrast, the lower montane forests, like
Ngangao, are drier and taller with multi-layered tree canopy (Stam
et al., 2017). A large part of Yale mountain is barren rock, heathland, or
rocks covered by Acacia mearnsii (hereafter wattle tree), while the steep
slopes are covered by Eucalyptus spp. (hereafter eucalyptus) and Cu-
pressus lusitanica (hereafter cypress) (Pellikka et al., 2009). Each of the
three forest fragments consists of indigenous montane forest parts with
several planted exotic trees (Fig. 2).

In Taita Hills, the total forest cover remained virtually unchanged
between 1955 and 2004 (Pellikka et al., 2009). However, 50% of the
indigenous montane forest was cleared during that period due to cli-
matic and edaphic conditions favorable for agriculture, and because
new exotic plantation forests were established (Pellikka et al., 2009). In
1955–2004 for Ngangao and 1955–1994 for Yale, the change of non-
forested area to the indigenous forest was 12.0 ha and 11.1 ha, and to
exotic forest 81.5 ha and 94.2 ha, respectively (Pellikka et al., 2009).
The indigenous forests of Taita Hills are rich in species; for example, in
Ngangao 73 woody tree species were identified in the study plots by
Mbuthia (2003) and 52 tree species in the plots by Schäfer et al. (2016).
The most common indigenous tree species in the montane forests in-
clude Albizia gummifera, Macaranga capensis, and Maesa lanceolate. The
plantation forests established between the 1950s and 1970s include
stands of eucalyptus, cypress, and pine (Pinus caribea, Pinus elliottii, and
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Pinus patula), and between the 1970s and 1980s, Grevillea robusta
(hereafter grevillea) and Maesopsis eminii (Adhikari et al., 2017;
Pellikka et al., 2009). Exotic trees were planted for soil erosion pro-
tection and production of wood and building material (Pellikka et al.,
2009).

Other important canopy, subcanopy, and understorey tree species
are Craibia zimmermannii, Cola greenwayi, Newtonia buchananii,
Tabernaemontana stapfiana, Strombosia scheffleri, Syzygium scler-
ophyllum, Ochna holstii, and Macaranga conglomerate in the moist
montane forest (Ngangao) and Prunus africana and Philippia pallidiflora
in high altitude and upper montane forests (Yale and Vuria) (Aerts
et al., 2011). The high dissimilarity in woody plant communities may
be an effect of historical or recent isolation (Aerts et al., 2011), which
cannot be confirmed due to the absence of detailed historical forest
maps. Selective logging of the most valuable tree species, such as Ocotea
usambarensis, has taken place in forests, evidenced in Ngangao by, for
instance, hundreds of sawpits (Boström 2010), which have reduced the
multi-layer characteristics of the forests.

2.2. Field data

The field measurements from 85 circular 0.1 ha sample plots (radius
17.84m) collected between 2013 and 2015 were used for forest
structural diversity modeling (Fig. 1). This plot size secures a robust and
unbiased estimation of GC, as described in Adnan et al. (2017). The
sampling of forest plot was guided by canopy height model (CHM)
based on ALS data set (see Table 1 for more details) and visible to near-
infrared imaging spectroscopy data (AisaEAGLE) acquired in 2013
(Piiroinen et al., 2018). The number of plots in Ngangao, Yale, and
Vuria were 37, 27, and 21, respectively. Sample plot centers were po-
sitioned using Trimble GeoXH GNSS receiver, and the differential cor-
rection were made using a GNSS base station set up at the Taita Re-
search Station, Wundanyi. For all tree stems with a diameter (D) at

breast height (1.3m) > 10 cm, D was measured (Adhikari et al., 2017).
Most of the tree species were identified by a local para-taxonomist and a
field guide.

GC based on Lorenz curve quantifies tree size inequality among
trees within the forest (see also Valbuena et al., 2013a) and was used as
a forest structure indicator. Lorenz curves and GCs for each sample plot
were calculated based on basal areas (area occupied by a given D) of
individual trees (Valbuena et al., 2016). GC is calculated as the area
between the line of equality and Lorenz curve divided by the total area
below the line of equality. The GC ranges from 0 to 1, where 0 re-
presents perfect equality (all trees of equal size) and 1 represents per-
fect inequality (few trees have the largest share) (Nölte et al., 2018).
According to Valbuena et al. (2012), GC < 0.5, GC=0.5, and GC >
0.5 represent even-sized forest, irregular forest, and bimodal diameter
distributions, respectively.

2.3. Airborne laser scanning data

ALS data were collected using two sensors in three different years
(Table 1). ALS1 and ALS2 are different in flight altitude, pulse density,
and sensor. Both data sets were preprocessed and delivered as geor-
eferenced point clouds in the UTM/WGS84 coordinate system with el-
lipsoidal heights by the data vendors Topscan Gmbh and Ramani
Geosystems (Heiskanen et al., 2015). Returns were classified as ground
returns and used to produce a digital terrain model (DTM) with a 2m
cell grid using LAStools software (Isenburg, 2014). The ALS point cloud
elevations were normalized to heights from ground level using DTM
from the corresponding campaign. Noisy returns (e.g. high points) and
returns from electric lines were removed manually.

ALS returns corresponding to the field plots were extracted based on
plot center coordinates and fixed plot radii. ALS metrics for predictive
models of forest structure attributes were calculated for each field plot
using FUSION software (McGaughey, 2016). A 3-m height threshold

Fig. 1. Location of Taita Hills and the three forest remnants studied there (Ngangao, Yale, and Vuria) with a Sentinel-2A MSI satellite image from 8 October 2016.
The canopy height model (CHM) for the forests is shown in the inset maps.
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was used to separate understorey and ground returns from canopy re-
turns (Adhikari et al., 2017; Heiskanen et al., 2019). Canopy cover
metrics were calculated from all returns (single, first, last), while the
height metrics were calculated from the first and last returns (Appendix
Table A1) (Gorgens et al., 2017).

2.4. Landsat time series

Landsat 8 Operational Land Imager (OLI) (Landsat Collection 1
Level-2 surface reflectance) images between 14 April 2013 and 20 April
2015 (two complete years – 42 images in total) were downloaded from

the United States Geological Survey (USGS) Earth Explorer platform.
Spectral-temporal metrics were computed based on Landsat bands 2–7
[Blue (452–512 nm (nm)), Green (533–590 nm), Red (636–673 nm),
Near-infrared (NIR) (851–879 nm), Shortwave Infrared 1 (SWIR 1)
(1566–1651 nm), and Shortwave Infrared 2 (SWIR 2) (2107–2294 nm)]
and vegetation indices, including Normalized Difference Vegetation
Index (NDVI), Reduced Simple Ratio (RSR), and Tasseled Cap (TC)
(Brightness, Greenness and Wetness), using the statistical distribution
of annual band and vegetation index values (Adhikari et al., 2015,
2016; Heiskanen et al., 2019) (Appendix Table A1). The Japan Aero-
space Exploration Agency (JAXA) digital elevation model (DEM) was
used to carry out topographic normalization of Landsat images (JAXA,
2015). The LTS included several percentile values (10%, 25%, 50%,
75%, and 90%), trimmed means (10% and 25%), inter-percentile range
(10–90), and interquartile range (25–75) for all the bands and five
vegetation indices (Adhikari et al., 2016; Potapov et al., 2012). The
standard deviation of seasonal features was also calculated for 3×3
pixel windows centered at each plot. NDVI and RSR are robust against
topographic effects (Adhikari et al., 2016). Therefore, no topographic
normalization was performed for these indices.

2.5. Statistical modeling and predictor variable selection

Fig. 3 presents our workflow. Data management and statistical
analysis were done using software “R” (RCoreTeam, 2017) together

Fig. 2. (a) Western slopes of Ngangao forest on the left, the peak of Yale in the middle, and the highest mountain Vuria on the right within an agricultural landscape
mosaic of Taita Hills. (b) The three peaks of Vuria, representing mixed indigenous forest in the highest peak and eucalyptus forest on the right. (c) Stands of pine,
eucalyptus, cypress, and indigenous forests on the eastern slope of Yale. (d) Indigenous lower montane forest on the northern part of Ngangao in front, and pine and
cypress stands behind. (e) Degraded indigenous forest in the middle peak of Vuria (Photos: P. Pellikka).

Table 1
Characteristics of airborne laser scanner (ALS) data.

Parameter ALS1 ALS2

Date of acquisition 2013 2014 and 2015
Sensor Optech ALTM 3100 Leica ALS60
Mean flying height above ground (m) 760 1460
Pulse rate (kHz) 100 58
Scan rate (Hz) 36 66
Maximum scan angle (degrees) ± 16 ±16
Mean pulse density (pulses m−2) 9.6 3.1
Mean return density (returns m−2) 11.4 3.4
Maximum number of returns per pulse 4 4
Mean footprint diameter (cm) 23 32
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with the “betareg” package (Cribari-Neto and Zeileis, 2010) and “leaps”
package (Lumley, 2017). Beta regression was used for modeling GC
because it is a modeling alternative well suited for these types of re-
sponse variables ranging between 0 and 1 (Valbuena et al., 2013b).
Furthermore, beta regression allows regression in conditions when the
distributions in the response variables other than normal. A two-step
predictor variable selection strategy was used due to a large number of
predictor variables within each predictor group. Firstly, out of many
highly inter-correlated metrics (Spearman correlation coefficient>
0.9), the one that had higher correlation with the variable of interest
(here GC) was retained. Secondly, probable best predictors were iden-
tified using “regsubset” function in “leaps” package. Experiments on
different link functions indicated the best performance of “loglog” link
function and it was used in all the models (Cribari-Neto and Zeileis,
2010).

Predictive models were calculated using ALS1 metrics only (ALS1),
ALS2 metrics only (ALS2), LTS metrics only (LTS), both ALS1 and LTS
metrics combined (ALS1+LTS), and both ALS2 and LTS metrics
combined (ALS2+ LTS). The best model for each combination was
identified using the accuracy assessment detailed below.

2.6. Accuracy assessment

All of the GC models were assessed and compared by leave-one-out
cross-validation (CV). One field plot (i) was taken out each time to
eliminate the influence of that plot during model fitting, and the re-
maining field plots were used to predict a value of GC for that plot
(prei

CV ) using beta regression. Hereafter, the abbreviations/subscripts/
superscripts “CV” and “fit” represent measures calculated using CV and
non-cross-validated measures (i.e. from model fit residuals), respec-
tively. The model coefficients were averaged from all the iterations to
obtain the final model. preCV was compared against those measured in
the field (obs). The relative mean difference (rMDcv) (Eq. (1)) was used
to detect any under- or over-prediction. Prediction precision was eval-
uated using the cross-validated root mean square error (RMSECV) (Eq.
(2)) and relative RMSE (rRMSECV) (Eq. (3)). The degree of agreement
was evaluated using the coefficient of determination (R2) (Eqs. (4) and
(5)) (Valbuena et al., 2019). Furthermore, Piñeiro et al., (2008) hy-
pothesis tests were used to evaluate whether the observed and pre-
dicted values follow the 1:1 correspondence line, based on the null
hypothesis that the intercept ( ) and slope ( ) of the linear regression
between the observed and predicted values are H0: = 0 and H0: = 1

(Eq. (6)), respectively (Valbuena et al., 2017a). If the null hypothesis
for the slope is rejected, the predictions are not consistent with ob-
served values, while if the slope hypothesis is accepted and the null
hypothesis for the intercept is rejected, then the model is biased
(Piñeiro et al., 2008). If both (slope and intercept) null hypotheses are
rejected due to significant < 1, then we detect an averaging effect
caused by over-fitting (Valbuena et al., 2017a). Finally, to avoid the
degree of overfitting to the sample employed in the model fitting, the
sum of squares ratio (SSR) (Eq. (7)) was used to limit the models to
SSR≤1.1 (Valbuena et al., 2017a; Valbuena et al., 2017b). SSR is the
ratio between the square root of the residual sums of squares attained in
the cross-validation (SSCV) (Eq. (8)) and that using the whole data set
(SSfit) (Eq. (9)).
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2.7. Forest structure characterization and analysis

The boundaries of the three forest remnants and different forest
types within the forest remnants were mapped using a high-resolution
false-colour orthomosaic and CHM based on ALS1. The orthomosaic
was based on airborne hyperspectral data (visible to NIR bands,
400–1000 nm) acquired using AisaEAGLE sensor (Specim Ltd., Finland)
on 3–8 February 2013 (Piiroinen et al., 2018). AisaEAGLE is a pushb-
room scanner with an instantaneous field of view of 0.648 mrad and a
field of view of 36.04°. The sensor produced 129 bands with an output
pixel resolution of one meter. The bandwidth of each band varies be-
tween 4.5 and 5.0 nm (Piiroinen et al., 2018). Only three bands (Green
(571 nm), Red (693 nm), and NIR (811 nm)) were used for mapping
forest boundaries.

First, AisaEAGLE data were segmented based on the spectral in-
formation in ArcGIS 10.3 using Segment Mean Shift tool (ESRI, 2015).
Spectral data, tree height (CHM), and field information were then used
to identify forest boundaries and to clump the segments manually into
stands of the same forest type. Furthermore, orienteering maps of
Ngangao (scale 1:10 000) (Boström, 2010), a forest stand map of Vuria
(scale 1:10 000) (Boström, 2013), and field plots were used for ver-
ifying stand boundaries and dominant species. Each polygon was clas-
sified as one of the following types: indigenous, eucalyptus, cypress,
pine, bushland, woodland, and rock. For this study, only indigenous,
eucalyptus, cypress, and pine were used because these occurred in most
of the three forest remnants. Finally, we used the best models to predict
GC at 30m×30m grid size over Ngangao, Yale, and Vuria forests.

Based on the maps, we analyzed how GC varies between the moist

Fig. 3. Workflow employed and stratification of the resulting maps.
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montane and high altitude montane forests, and between indigenous
forests and exotic plantations. Wilcoxon signed-rank test (one sample),
Wilcoxon rank–sum tests (also known as Mann–Whitney U test), and
Kruskal-Wallis test were used to assess whether the median GC in each
forest type is above or below the 0.5 thresholds stated in Valbuena et al.
(2012), and whether the GC values were significantly different between
the forest types compared (R functions “wilcox.test” and “kruskal.test”).
The non-parametric tests were used since normality could not be as-
sumed for each forest. In the case of GC based on the maps, more de-
tailed analyses were done for the main exotic plantation species.

3. Results

3.1. Variation of Gini coefficient based on field data

The GC values calculated from the field plots clearly showed per-
stratum distributions other than normal (Fig. 4), and for this reason, we
hereby report their medians (henceforth denoted as GC) to describe
their location, and their interquartile ranges (IQR) as a descriptor for
their dispersion. GC < 0.5 represents even-sized forests, GC=0.5 re-
presents irregular forests, and GC > 0.5 represents bimodal diameter
distributions or negative exponential. Overall, tree size heterogeneity in
the study area was above the GC > 0.5 threshold in Ngangao (H0:
GC ≤0.5, H1:GC > 0.5, p < 0.001); however, we failed to prove that
for Yale (GC =0.51, IQR=0.14) or Vuria (GC =0.50, IQR=0.18)
when using field plot data only. When a plot had> 70% of its basal
area covered by the indigenous species, it was considered pure “in-
digenous”, whereas plots were classified as “exotic” when>70% were
exotic species (eucalyptus, cypress, and pine combined). The rest of the
plots were considered “mixed”. TheGC and IQR (in parentheses) for the
indigenous, exotic, and mixed plots were 0.58 (0.08), 0.46 (0.14), and
0.52 (0.03) in Ngangao, 0.56 (0.02), 0.44 (0.13), and 0.54 (0.11) in
Yale, and 0.54 (0.12), 0.43 (0.10), and 0.41 (0.17) in Vuria, respec-
tively.

Results derived from analysing the field data showed that in-
digenous forests have significantly higher GC than exotic stands (H0:
GC GCInd Exo , H1: >GC GCInd Exo , p= 0.009 for Ngangao, p= 0.002
for Yale, and p= 0.009 for Vuria) (Fig. 3). This indicates the presence
of bimodal diameter distributions in the indigenous forests (H0:
GCInd ≤0.5, H1: GCInd > 0.5, p < 0.001 for Ngangao, p= 0.033 for
Yale, and p=0.025 for Vuria), and exotic plantation forests show even-
sized distributions (H0: GCExo ≥0.5, H1: GCExo < 0.5, p=0.025 for
Yale, p= 0.057 for Vuria). However, using field plot data only we
failed to reject this null hypothesis for Ngangao (GC =0.46,
IQR=0.142).

Examples of the GC and ALS data are shown for one indigenous
forest plot and one exotic plantation forest plot in Fig. 5. The in-
digenous forest plot has a stratum of smaller trees in DBH range of
10–20 cm along with another stratum of large trees having DBH >
20 cm (Fig. 5a). In these plots, Lorenz curves are shown simultaneously

with the diameter distributions. Trees were ordered from the largest to
the smallest basal area (left to right, x-axis) and cumulative share of
basal area (top to bottom, y-axis) (Fig. 5a and b). In the case of Fig. 5a
showing the indigenous forest, its Lorenz curve illustrates that a smaller
quantity of big trees (~30%) have a higher proportion of the total basal
area (~76%), whilst a larger quantity of small trees (~70%) have a
lower proportion of the total basal area (~24%). On the other hand, the
plantation forest plot has a more equal DBH distribution with a single
vertical stratum since trees were planted at the same time (Fig. 5b).
Fig. 5c–f show the point clouds of ALS1 and ALS2 for the same plots.
Due to the lower point density in ALS2, the point clouds have fewer
echoes reaching the ground and less backscatter from the understorey
(Fig. 5d, f).

3.2. Modeling results

Table 2 summarizes the GC modeling results based on ALS metrics
only, LTS metrics only, and their combination. In total, 23 regression
models were obtained with the number of metrics ranging from one to
six depending on the sensor combination (see Appendix Table A2 for
selected variables and Table A3 for model parameters). Low values of
SSR (SSR < 1.1) indicate no over-fitting problems. For all models, the
null hypothesis was rejected (i.e. α≠0 and β≠1), and the p-values
were non-significant, which ensures 1:1 correspondence between the
observed and predicted values.

The rRMSECV for the best models fitted with ALS1 and ALS2 metrics
was 13.9% and 15.1%, respectively. The model using only LTS metrics
underperformed relative to those using ALS metrics. The coefficient of
determination was RCV

2 =0.28, and rRMSECV= 16.5% was the highest
uncertainty of all the alternatives tested (Table 2). The fusion of ALS
and LTS metrics improved the models in comparison with using either
of them alone. RCV

2 was 0.59 and 0.55 for the models combining LTS
with ALS1 and ALS2, respectively. The model combining ALS1 and LTS
had the lowest rRMSECV, 12.5%, and with ALS2 it was as low as 13.0%
(Table 2).

We observed differences according to the pulse density with regard
to the ALS metrics, which were selected as the best model predictors
(see details in Table A2 in the Appendix). In the case of ALS1, the
metrics representing canopy cover, the coefficient of variation of the
first returns, L-moment coefficient of variation, the 4th L-moment, and
the 5th height percentile of the first and last returns were frequently
selected in the models when ALS1 was used, either alone or in combi-
nation with LTS metrics. However, in the case of ALS2, in addition to
those selected in ALS1, additional ALS metrics included 3rd L-moments
kurtosis and L kurtosis height of the first returns, height kurtosis, and L-
moment coefficient of variation of the last returns, skewness, and 1th
and 99th height percentile for the first return.

The most frequently selected model predictors in case of LTS in-
cluded, for example, percentile values (10% and 90%), and inter-per-
centile and interquartile range (‘range10_90’, and ‘range25_75’) of the

Fig. 4. Distribution of Gini coefficient in each forest remnant and forest type based on the field plots: (a) Ngangao, (b) Yale, (c) Vuria, and (d) all plots pooled
together. Indigenous class includes plots dominated by the indigenous species, exotic class includes eucalyptus, cypress, and pine plantations, and mixed class
includes both indigenous and exotic species. The white dot represents the median, the thick black bar in the center represents the interquartile range, and the thin
black line represents the rest of the distribution (1.5× interquartile range). Horizontal line represents GC=0.5.
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vegetation indices (NDVI and RSR) and spectral bands (red, NIR, and
SWIR). In the case of ALS1+ LTS, high percentile values (90%) for NIR
and interquartile range of NDVI and RSR were frequently selected. In
the case of ALS2+ LTS, high percentile values (90%) for NIR and NDVI
and interquartile range and standard deviation of SWIR and red were
frequently selected. In the models combining ALS and LTS metrics, the

LTS metrics appeared in the models with more than four predictors.
Thus, LTS metrics have less predictive power for the GC, but once they
are incorporated with ALS, they explain additional variability. Fig. 6
compares the cross-validated GC predictions obtained when using me-
trics from the single sensor alone (ALS1, ALS2, LTS) and for the com-
bination of ALS and LTS, against those observed in the field plots. LTS

Fig. 5. Diameter at breast height (DBH) kernel density function and Gini coefficient for examples of (a) indigenous and (b) exotic plantation forest (cypress) plots.
The straight red line is the line of equality and the dotted line is the Lorenz curve. Minimum DBH was 10 cm. ALS point clouds for the same plots are shown below:
ALS1 for indigenous (c) and exotic plots (d), and ALS2 for indigenous (e) and exotic plots (f). N indicates number of trees in these plots.
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models tend to overestimate small values and underestimate large va-
lues (Fig. 6c).

3.3. Analysis of Gini coefficient maps

The best beta regression model (ALS1+ LTS) was applied to obtain
spatially continuous predictions of GC for Ngangao, Yale, and Vuria
(Fig. 7). The GC predictions revealed considerable differences among
the three forest remnants and between the different forest types. Forest
stands have even-sized, irregular, or bimodal diameter distribution of
tree sizes within each forest remnant (Fig. 7). The exotic plantation
forests of cypress and pine show low GC (typically < 0.5), meaning
stands of even height, while indigenous and eucalyptus stands show
high GC (typically > 0.5), meaning more uneven canopy. For example,
a pine stand in the middle of Yale shows uniform canopy in Fig. 2b and
a GC of less than 0.4 in Fig. 7, while the eucalyptus stands in Fig. 3b
shows uneven canopy and a GC of more than 0.6 in Fig. 7. The uneven
canopy structure of indigenous forests in Ngangao is shown in Fig. 2c,
while in Fig. 7 it is represented as GC between 0.5 and 0.8. In addition,

the uneven canopy structure of pine and cypress stands is seen, re-
presented as GC between 0.1 and 0.5 in Fig. 7.

The distribution of GC in the indigenous, eucalyptus, cypress, and
pine forests in each forest remnant is shown in Fig. 8. Yale showed
relatively high values of GC, indicating emergent trees and several
layers. On the other hand, the indigenous forest in Yale and Vuria
showed GC prediction even below 0.30, indicating either a seedling
stand or even-sized mature trees (Fig. 8b, c). Yale contained more eu-
calyptus forest than Ngangao or Vuria (Fig. 7). The eucalyptus forest
showed higher values of GC than the other plantation forests (Table
A4). This is seen in Fig. 2, in which the right hand top of (a) covered by
eucalyptus shows the most uneven canopy.

Overall, tree size heterogeneity in the study area was above the
GC > 0.5 threshold for Ngangao and Yale (H0: GC ≤0.5, H1:
GC > 0.5, p < 0.001 for both), while it was less than 0.5 for Vuria
(H0: GC ≥0.5, H1: GC < 0.5, p< 0.001). The structural diversity in
the indigenous and single-species plantation forest is diverse.
Indigenous forests have bimodal (H0: GC ≤0.5, H1: GC > 0.5,
p < 0.001 for Ngangao) or even-sized distribution (H0: GC ≥0.5, H1:

Table 2
Summary of the Gini coefficient modeling results based on different data sets and their combinations.

Data Number of predictors Prediction accuracy Prediction precision Agreement Obs.-Pre. 1:1 correspondence Overfitting

rMDCV RMSECV rRMSECV Rfit
2 RCV

2 alpha beta SSR

ALS1 4 0.01% 0.07 13.90% 0.55 0.49 0.03 NS 0.95 NS 1.07
ALS2 5 −0.02% 0.08 15.10% 0.48 0.40 0.05 NS 0.90 NS 1.08
LTS 6 −0.25% 0.09 16.50% 0.39 0.28 0.09 NS 0.84 NS 1.09
ALS1+ LTS 6 −0.14% 0.06 12.50% 0.66 0.59 0.03 NS 0.94 NS 1.10
ALS2+ LTS 6 0.06% 0.07 13.00% 0.62 0.55 0.03 NS 0.94 NS 1.09

rMDCV: relative mean difference (Eq. (1)), RMSECV: leave-one-out cross-validation root mean square error (Eq. (2)), rRMSECV: relative RMSECV (Eq. (3)), R2fit:
coefficient of determination (Eq. (4)), RCV

2 : leave-one-out cross-validation R2 (Eq. (5)), alpha and beta and their significance (Eq. (6)), SSR: sums of squares ratio (Eq.
(7)). The best models for each data set are shown here (rest in the Appendix Table A.2). See explanation of metrics in Appendix Table A.1 and estimates of the model
parameters in Appendix Table A.3. Levels of significance; ***< 0.001; **< 0.01; *< 0.05; ° < 0.1; NS Non-significant.

Fig. 6. Relationship between predicted (leave-one-out cross-validated) and observed Gini coefficient based on the best model using different metrics: (a) ALS1, (b)
ALS2, (c) LTS, (d) ALS1+ LTS, and (e) ALS2+ LTS.
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GC < 0.5, p < 0.001 for Vuria). However, even with the larger sample
size provided by the GC maps, we failed to reject the null hypothesis for
Yale (H0:GC ≥0.5, H1:GC < 0.5, p=0.114). The ranges of GC in the
indigenous and eucalyptus forests (0.17–0.76 and 0.18–0.72) in Vuria

were similar, representing higher structural diversity, however, their
GCs were different. Due to the lower montane nature of the indigenous
forest (Ind) in Ngangao, significantly higher GC was observed than in
the eucalyptus forest (Euc) (H0: GCInd ≤ GCEuc, H1: GCInd > GCEuc,

Fig. 7. Gini coefficient maps of (a) Ngangao, (b) Yale, and (c) Vuria. GC < 0.5, GC=0.5, and GC > 0.5 represent even-sized forests, irregular forests, and multi-
stratified forests, respectively. The map shows only the land cover types studied within the forest fragments.
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p < 0.001), whereas in Yale and Vuria indigenous forests had sig-
nificantly lower GC than the eucalyptus plantations (H0:
GCInd ≥ GCEuc, H1: GCInd < GCEuc, both p<0.001).

In Yale, eucalyptus forests had significantly higher GC than cypress
forests (Cyp), but not in Ngangao (H0: GC GCEuc Cyp, H1:

>GC GCEuc Cyp, p < 0.001 for Yale and p= 0.406 for Ngangao). A si-
milar result was obtained when comparing eucalyptus and pine (H0:
GC GCEuc Pine, H1: >GC GCEuc Pine, p < 0.001 for Yale, and p= 0.356
for Ngangao). A similar outcome was obtained when evaluating whe-
ther cypress forests had significantly higher GC than pine forests (H0:
GC GCCyp Pine , H1: >GC GCCyp Pine , p= 0.051 for Yale, and p= 0.332
for Ngangao). The indigenous and eucalyptus forests in Ngangao, Yale,
and Vuria were significantly different (H0: = =GC GC GCInd

Ngangao
Ind
Yale

Ind
Vuria

,
H1: GC GC GCInd

Ngangao
Ind
Yale

Ind
Vuria

and H0: = =GC GC GCEuc
Ngangao

Euc
Yale

Euc
Vuria

,
H1: GC GC GCEuc

Ngangao
Euc
Yale

Euc
Vuria

, for both p < 0.001). This is evident
since the indigenous forest is most intact in Ngangao, while in Vuria it is
severely degraded due to selective logging, grazing in the forest, and
planting of exotic trees within the indigenous stands.

4. Discussion

The results show that the GC of tree size heterogeneity can be
predicted with reasonable accuracy, using ALS data and beta regres-
sion, in tropical montane forests. The resulting maps can be used to
demonstrate the structural difference between forest remnants and
forest types better than using field plots alone since they provide an
idea of GC variation at the forest fragment level. The accuracy of the GC
estimates improved significantly when using a combination of airborne
LIDAR and satellite imagery (ALS+ LTS), compared with predicting GC
using either of these alone. Significant differences were found between
forest stands of indigenous and plantation species within and between
forest remnants, some of which could not be detected using the field
information, which demonstrates the practical advantages of employing
these data to study the ecology of the tree assemblages involved.

This was the first study carried out in the tropics showing how ALS
can provide reliable and accurate predictions of GC. The accuracy of GC
prediction depends on the pulse density (Adnan et al., 2017). ALS2
provided lower RCV

2 than ALS1, which can partially be explained by the
lower point density as a result of the higher platform height. Further-
more, the lower frequency of returns may lead to a lower frequency of
pulses detecting the understorey, underestimating the overall forest
structure heterogeneity (Goodwin et al., 2006; Valbuena et al., 2017c).
R2 for GC prediction based on ALS alone in Valbuena et al., (2017b) was
0.21, which is much less than 0.40 for ALS2 and 0.49 for ALS1 in this
study. The rRMSECV obtained using ALS1 and ALS2 only (13.9% and
15.1%, respectively) is comparable with the corresponding figures re-
ported in the recent studies by Valbuena et al. (2013a) (20.5%),

Valbuena et al. (2013b) (19.7%), Valbuena et al. (2014) (16.8% and
16.1%), and Valbuena et al. (2016) (20.2% and 18.8%). Our results are
similar to Goodwin et al. (2006), where higher platform altitudes un-
derestimated forest structural properties. The difference in ALS sensor
and platform height might have had an impact on the final model,
warranting additional investigations. Wall-to-wall prediction of GC at
grid sizes other than 30m could have provided different conclusions
but was consistent with 0.1 ha field plot size. Further research should,
however, implement this method in predicting tree size inequality in
other forest environments to test whether the ALS and Landsat com-
bination yields similar synergies for other forest structure attributes.

The metrics derived from Landsat imagery, the LTS, alone showed
little explanatory capacity for predicting forest heterogeneity. Valbuena
et al. (2017b) predicted GC using a multispectral sensor (MS) alone
with R2 of 0.06, which is lower than 0.30 in our case. LTS is limited to
spectral information from the top of the closed tree canopy and lacks
vertical structural information. However, LTS has the potential to
complement the information from the ALS in describing the structural
complexity of the forest. Incorporation of spectral-temporal information
from Landsat with ALS metrics improved prediction of tree size in-
equality. For example, with LTS metrics the inter-percentile range of
NDVI and interquartile range of RSR showed significant explanatory
potential for GC prediction. The key for these can be in the relationships
between these remote sensing metrics and the forest density (Adhikari
et al., 2016) since Adnan et al. (2017) showed that stand density is a
confounding factor in the relationships between ALS metrics and the GC
of tree size heterogeneity. This is possibly the reason why Manzanera
et al. (2016) detected good potential in NDVI metrics for predicting GC.
Our study is the first to exploit such potential with satellite imagery of
coarser resolution. Also, by including LTS metrics sensitive to tree
species with ALS2 metrics, GC prediction was improved relative to
prediction without LTS. This shows that even with lower investments
on ALS measurements and including LTS metrics, we can achieve
higherRCV

2 . Valbuena et al. (2017b) achieved RCV
2 of 0.45 when com-

bining metrics from ALS and MS (NDVI), which is lower than what we
achieved (0.59) by including inter-percentile range NDVI and inter-
quartile range RSR along with ALS metrics (Model 18 in Table A2).

Our results suggest that if heterogeneity of tree sizes must be de-
termined using ALS alone, a high point density is needed. In other cases,
low-density ALS data sets could be supported by satellite data providing
information about variation in forest density to obtain reliable results. If
LTS metrics are included along with ALS sensor metrics, an ALS cam-
paign with low point density may suffice to get higher RCV

2 and lower
rRMSECV. LTS data can thus compensate for lower point density.
Combining ALS1 with LTS reduced rRMSECV to 12.5%. Synergistic use
of ALS and LTS has been documented for mapping biomass (Phua et al.,
2017), canopy height (Hudak et al., 2002), and canopy cover (Ahmed
et al., 2014), but this is the first study to map forest structure

Fig. 8. Gini coefficient for indigenous and exotic plantation (eucalyptus, cypress, and pine) in the forest remnants in Taita Hills based on pixel values. The white dot
represents the median, the thick black bar in the center represents the interquartile range, and the thin black line represents the rest of the distribution
(1.5× interquartile range). Horizontal line represents GC=0.5.
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heterogeneity based on GC using ALS and LTS in the tropics.
ALS and LTS metrics-based wall-to-wall prediction of GC provides

an opportunity to visualize tree size inequality among different forest
types and stands. Based on a range of GC predication, different forest
stands within Ngangao, Yale, and Vuria have even-sized, irregular, and
bimodal diameter distributions for indigenous and exotic plantation
species. As a result, we were able to make comparisons and analyse the
ecology of the species in these forests that we would have been unable
to do from field information alone.

During 1955 and 2004, a total of 260 ha (50%) of indigenous tro-
pical forest were deforested and degraded by conversion into cropland
and bushland. In the same period, plantation and indigenous forest
were established on the barren lands, resulting in a balanced total forest
area (Pellikka et al., 2009). In 1955 indigenous forest developed in non-
forested areas, and some areas were covered by the fast growth of
succession species, e.g. Phoenix reclinata in abandoned open areas
(Pellikka et al., 2009). Furthermore, indigenous species, e.g. Ocotea
usambarensis and Podocarpus latifolius, were extracted from Ngangao for
timber in the past, leaving small diameter classes (Aerts et al., 2011).
For these reasons, the indigenous forest is a mixture of climax forest
(undisturbed) with bimodal diameter distribution and primary succes-
sions with even-sized diameter distributions.

Our results were similar to those obtained by Valbuena et al. (2016),
where old protected areas similar to the indigenous forest had the
highest GC values. Eucalyptus, cypress, and pine were planted between
the 1950 s and 1970 s in non-forested areas or degraded areas due to
deforestation. As now mature stands were planted, it is evident that
their canopy structure is of even height relative to indigenous forests,
whose structures were more governed by disturbance ecology
(Mbuthia, 2003). These are fast-growing species and can be an alter-
native to reforestation projects.

It is important to emphasize that many of these conclusions that we
were able to draw from the remote sensing prediction map of GC could
not be concluded using the field plot information alone. For example, at
the level of plot data, the indigenous forest has bimodal diameter dis-
tribution in all forest remnants. However, when using the remote sen-
sing prediction, we were able to prove that the indigenous forest in
Ngangao is bimodal and in Vuria even-sized. These led us to the in-
ference about their distinctive ecology and historical land use, details
that would not have come to light without the assistance of remote
sensing. Moreover, the exotic forest (eucalyptus) in Vuria has bimodal
diameter distribution at the remote sensing level, while at plot level the
exotic forest is even-sized. Furthermore, the forest of Yale has a bimodal
distribution, while Vuria is even-sized, which was not possible to sta-
tistically prove based on field plot information only due to a much
smaller sample size that can be employed from discrete plot samples.
We thus emphasize the potential of RS for increasing the statistical

power in pursuing ecological hypotheses and showing patterns on
landscape scales that cannot be detected otherwise.

5. Conclusion

We explored the reliability of predicting the GC of tree size het-
erogeneity in indigenous tropical montane forests and compared the
results with those obtained in plantations of eucalyptus, cypress, and
pine in the same area. For this purpose, we employed two ALS data sets
acquired from different altitudes using two different sensors, and also
explored the potential for improving the accuracy of the GC models by
incorporating a set of LTS predictors based on Landsat time series. The
results showed the inclusion of LTS spectral-temporal metrics sensitive
to tree species and forest density improved the modeling accuracy
significantly. The inclusion of NDVI inter-percentile range and RSR
interquartile range along with ALS metrics had the highest RCV

2 among
the models. Finally, we predicted maps of GC for the three forest
remnants using the best model and compared forest structural hetero-
geneity among and within the forest types. Results showed that these
maps can be employed to demonstrate ecological hypotheses that
would not be plausible using field data alone. Using these GC maps, we
observed a high degree of structural heterogeneity in these montane
forest remnants. Based on the ranges of GC values observed in these
maps, we were able to identify different areas within these forest
remnants having even-sized, irregular, and bimodal diameter distribu-
tions for indigenous and exotic species. For modeling GC, high point
density ALS is required if ALS metrics is used alone. Nonetheless, low
scanning densities may suffice when combining the ALS data with LTS
metrics. The method showed the potential to discriminate between
indigenous and plantation forests.
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Appendix

Modeling results

Table A.1 explains the predictor metrics used in modeling GC. Fig. A.1 shows RCV
2 for GC prediction using a different number of variables. The

highest RCV
2 obtained using six metrics together from ALS1 and LTS metrics was 0.59. Maximum predictors in ALS1 were four and in ALS2 five; the

RCV
2 for four metrics in ALS1 are still higher than five metrics in ALS2 (Fig. A.1, Table A.2). Table A.2 shows all of the models with different numbers

of metrics possible in each sensor combination or alone. The estimates of the model coefficients (beta distribution parameters, and ) are given in
Table A.3. In the final choice of models, we selected those with lower uncertainty while securing their significance (both in model fit – Table A.2 –
and observed versus predicted – Eq. (6)) and avoiding overfitting to the sample (SSR, Eq. (7)). To avoid overfitting of the models, models with SSR
greater than 1.1 were removed. Table A.4 presents the summary statistics of different forest pixels (indigenous, eucalyptus, cypress, and pine) in the
three forest remnants.
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Appendix: analysis of Gini coefficient maps

Table A.1
Summary of airborne laser scanning (ALS) metrics computed using Fusion (McGaughey 2016) and spectral-temporal metrics from the Landsat time series (LTS).

Data set Predictor Description

ALS1 H.p01, H.p05, H.p10, H.p20, H.p25, H.p30, H.p40, H.p50,
H.p60, H.p70, H.p75, H.p80, H.p90, H.p95, H.p99

1st, 5th, 10th … and 99th percentile of return height > 3m

H.L1, H.L2, H.L3, H.L4 L-moments 1–4 of return height > 3m
H.L.cv L-moments coefficient of variation of return height > 3m
H.L.skewness L-moments skewness of return height > 3m
H.L.kurtosis L-moments kurtosis of return height > 3m
H.max Maximum of return height > 3m
H.mean Mean of return height >3m
H.mode Mode of return height > 3m
H.cv Coefficient of variation of return height > 3m
H.v Variance of return height >3m
H.stdev Standard deviation of return height > 3m
H.skewness Skewness of return height > 3m
H.kurtosis Kurtosis of return height >3m
H.IQ 75th percentile minus 25th percentile for cell
CC.first First returns > 3m/Total first returns * 100
CC.all All returns > 3m/Total all returns * 100
CC.all.first All returns > 3m/Total first returns * 100
CC.first.mean First returns above mean/Total first returns * 100
CC.all.mean All returns above mean/Total all returns * 100
CC.all.mean.first All returns above mean/Total first returns * 100
CC.first.mode First returns above mode/Total first returns * 100
CC.all.mode All returns above mode/Total all returns * 100
CC.all.mode.first All returns above mode/Total first returns * 100

LTS2 B2…B7 (Blue, Green, Red, NIR, SWIR1, SWIR2) Reflectance in Landsat 8 OLI blue, green, red, near infrared and two shortwave infrared spectral bands
NDVI (NIR – Red)/(NIR+Red) (Rouse et al., 1973)
RSR (NIR/Red)× [(SWIR1_max− SWIR1)/(SWIR1_max− SWIR1_min)] (Brown et al., 2000)
B, G, W Tasseled cap brightness, greenness, and wetness (Crist 1985)

1 For ALS, all height metrics (start with ‘H’) were calculated separately using first and last pulse returns. All canopy cover metrics (start with “CC”) were calculated
using all (single, first and last) returns only.
2 For LTS different percentiles, trimmed mean and inter-percentile range were calculated. Prefix “B2_”, “B3_”, “B4_”, “B5_”, “B6_”, and ” B7_” represents Blue,

Green, Red, NIR, SWIR1, and SWIR2 reflectance bands in Landsat 8 OLI. Prefixes “NDVI_”, “RSR_”, “B_”, “G_”, and “W_” represent normalized difference vegetation
index (NDVI) (Rouse et al. 1973), reduced simple ratio (RSR) (Brown et al. 2000), and Tasseled cap brightness, greenness, and wetness (Crist 1985), respectively.

Fig. A.1. Cross-validated coefficient of determination (R2CV) for beta regression models with a range of metrics (maximum of six metrics).
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Table A.3
Estimates of model parameters (Table A.2). 0, 1, 2, 3, 4, 5, 6, and are model-specific coefficients for model numbers 1 to 23.

Model number Sensor data Estimates for parametersa

0 1 2 3 4 5 6

1 ALS1 −0.586** 0.012*** 31.17***
2 ALS1 −1.4841*** 0.0175*** 1.229*** 40.43***
3 ALS1 −1.6462*** 0.0178*** 1.4461*** 0.241* 42.61***
4 ALS1 −1.6345*** 0.0184*** 1.6689*** 0.0361*** −0.0456*** 52.99***
5 ALS2 −0.565** 0.008*** 31.35***
6 ALS2 −2.15*** 0.0234*** 1.3906*** 35.79***
7 ALS2 0.2272*** 1.3396*** 0.0489*** −0.0826*** 41.7***
8 ALS2 0.2261*** 0.3229° 1.5861*** 0.0515*** −0.0875*** 43.53***
9 ALS2 0.0597° 0.1453* 1.4601*** 0.0418*** 0.0078** −0.0813*** 45.96***
10 LTS −2.3327** 3.2663*** 27.97***
11 LTS −1.193*** 0.0004*** 1.7761*** 30.7***
12 LTS −2.1284** 2.9387** 0.0044*** −4.3161* 31.9***
13 LTS 0.3725*** −0.0056*** 0.0015*** −3.5277*** 0.1757*** 34.68***
14 LTS −0.0723° −0.0074*** 0.1442*** 0.0002** 0.0055*** −4.4606** 37.28***
15 LTS 1.3141*** −0.0053*** −0.0047* 0.0008* 0.1588*** 0.0042*** −5.6755** 38.94***
16 ALS1+ LTS −1.9671*** 0.0165*** 2.1529*** 0.0002*** 47.25***
17 ALS1+ LTS −2.0564*** 0.0175*** 1.6331*** 0.0361*** −0.0447*** 0.0002*** 62.53***
18 ALS1+LTS −1.7158*** 0.0153*** 2.3563*** 0.0404*** −0.0402*** −1.9315*** 0.1203*** 68.85***
19 ALS2+ LTS −1.2636*** 0.0083*** 0.0002*** 37.5***
20 ALS2+ LTS −2.6384*** 0.0221*** 2.4585*** 0.0002*** 42.2***
21 ALS2+ LTS −0.3636* 1.4187*** 0.0465*** −0.0808*** 0.0002*** 49.73***
22 ALS2+ LTS −2.1133*** 1.4924*** 0.0455*** −0.0818*** 2.5842*** 0.0033*** 56.73***
23 ALS2+LTS −2.6696*** 1.7608*** 0.0624*** −0.0705*** 1.7422** 2.6733*** 0.0073*** 62.26***

Levels of significance; ***< 0.001; **< 0.01; *< 0.05; °< 0.1; NS Non-significant. Independent metrics which correspond to each beta coefficient ( ) are detailed
in Table A.2

Table A.4
Summary statistics for the three forests and forest types based on the pixels in the maps. GC is mean, σ is standard deviation, and IQR is interquartile range of GC.

Land cover Ngangao Yale Vuria

GC range σ (GC) IQR median GC range σ (GC) IQR median GC range σ (GC) IQR median

Indigenous 0.57 0.42–0.71 0.05 0.06 0.57 0.49 0.20–0.74 0.10 0.14 0.49 0.46 0.17–0.76 0.11 0.14 0.47
Eucalyptus 0.47 0.27–0.62 0.09 0.12 0.49 0.54 0.32–0.74 0.08 0.11 0.54 0.51 0.18–0.72 0.12 0.18 0.54
Cypress 0.47 0.28–0.64 0.08 0.10 0.47 0.48 0.19–0.67 0.10 0.14 0.50
Pine 0.44 0.10–0.61 0.12 0.20 0.48 0.44 0.18–0.57 0.10 0.14 0.45
All 0.57 0.10–0.71 0.05 0.06 0.57 0.49 0.18–0.74 0.10 0.14 0.49 0.46 0.17–0.76 0.11 0.14 0.47
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