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Abstract 

 

Water companies consume up to 8% of global energy demand, at billions of dollars’ cost. 

Benchmarking of performance between utilities can facilitate improvements in efficiency; 

however, inconsistencies in benchmarking practices may obscure pathways to improvement. 

The aspiration was to conduct an unbiased efficiency comparison within a sample of 17 water 

only companies and water and sewerage companies in England and Wales, accounting for 

exogenous factors, whilst evaluating the accuracy of common proxies. Proxies were tested, 

and bias-corrected energy and economic efficiency scores with explanatory factors were 

analysed using a double-bootstrap data envelopment method. Bias correction altered the 

rankings of two companies for energy efficiency only. Results imply that on average, 

companies could reduce energy inputs by 91.7%, and economic inputs by 92.3%, which was 

symptomatic of the companies specialising in drinking water supply considerably out-

performing combined water and sewerage companies. As exogenous influences were likely 

to be a factor in the disparity between the companies, five indicators were evaluated. The 

results varied but of note were average pumping head height, which displayed a significant 

negative effect for energy efficiency, and proportion of water passing through the largest four 

treatment works, that exhibited a significant negative effect on economic efficiency. Within 

proxy performance, population served for drinking water was an adequate replacement for 

volume of water produced, with results matching the core variable apart from two companies 

changing rank in the economic analysis. Conversely, length of water mains performed poorly 

mailto:N.Walker@bangor.ac.uk


when replacing capital expenditure, implying companies were on average 12.6% more 

efficient, resulting in ten companies changing their rank and causing explanatory variables to 

contradict direction of influence and significance. The findings contribute new insights for 

benchmarking, including how different types of water companies perform under bias-

correcting methods, the degree to which factors affect efficiency and how appropriate some 

proxies are.  

Key words: Performance Evaluation; Water Companies; Data Envelopment Analysis; Double-

Bootstrap; Proxies; Explanatory Factors  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The water industry is a significant user of energy resources; with water companies spending 

billions of dollars per annum to ensure a high standard of cleanliness, whilst also protecting 

the environment through treatment of wastewater (Sedlak, 2014). Significant energy and 

economic costs are incurred by pumping, mixing and purification for contaminants such as 

heavy metals and inorganic salts (Yang et al., 2019). Other resources consumed for the 

treatment of water include a variety of chemicals including algicides, chlorine, sodium 

hydroxide, and aluminium sulphate for a plethora of applications such as reducing algal 

blooms, disinfection, balancing pH, and coagulation-flocculation (Saleh, 2017). Moreover, 

contamination of drinking water sources with nutrients, in particular phosphorous and nitrogen, 

combined with regulatory requirements around acceptable concentrations is leading to 

increasing energy and economic costs for treatment. Biological nutrient removal and chemical 

precipitation are typically used to remove these elements, however, alternative lower-cost and 

effective methods are being investigated (Kuriqi, 2014; Saleh and Gupta, 2016; Li et al., 2019). 

The US Environmental Protection Agency (EPA, 2018) reported that for many municipal 

governments, drinking water and wastewater plants are often their largest energy consumers, 

typically accounting for 30-40% of municipality energy consumption. The EPA estimated that 

2% of total energy use within the US is actually a result of drinking and wastewater systems. 

The US is not a particular area of high consumption either; 3% of all UK energy use is 

expended on drinking and wastewater systems (Fletcher, 2018). In fact, it is likely that these 

countries have low energy consumption from their water utilities relative to the rest of the world 

(Olsson, 2015). The United Nations stated that approximately 8% of global primary energy 

supply is used to deliver and treat water (UN Water, 2014; UNESCO, 2014). As well as the 

economic cost associated with such energy demand, it is responsible for considerable 

emissions of greenhouse gases (GHG), with the US and UK emitting 40 and 5 million tonnes 

CO2 per year through the water sector, respectively (McNabola et al., 2014; EPA, 2018). The 



imperative to reduce energy consumption and GHG emissions is a major driver for water 

companies to increase their efficiency (DEFRA, 2016).  

Increasing energy efficiency would benefit companies’ bottom line (profitability) and the 

climate, and enable a more reliable service, assuming that saved resources would at least 

partially be spent elsewhere such as on replacing leaky pipes or upgrading water treatment 

facilities. Benchmarking is viewed as a key mechanism to achieve improvements in efficiency 

by analysing performance, comparing results and identifying areas for improvement, and 

ultimately facilitating sharing of best practice (Alegre et al., 2017). One of the most common 

methods in academic literature utilised to benchmark is production frontier analysis (Berg, 

2013). A frontier can be computed with parametric methods like stochastic frontier analysis or 

non-parametric methods such as data envelopment analysis (DEA). DEA has three essential 

components that make it advantageous when evaluating water utilities. Firstly, the approach 

enables integration of numerous inputs and outputs for each company, providing a multi-

criteria analysis. Secondly, weightings assigned to aggregate inputs and outputs are produced 

endogenously. Thirdly, DEA does not need a priori inferences regarding the functional 

exchange between the inputs and outputs (Cooper et al., 2011).  

To decipher variables that influence efficiency in water utilities, there are four key 

methodologies available for use in the second stage of analysis using DEA (Molinos-Senante 

and Guzmán, 2018). One method is to group the decision-making units (DMUs), which are 

water utility companies in this research, according to the explanatory variables and apply non-

parametric statistical tests to verify if there are differences in the distribution of efficiency 

scores among groups of DMUs (Molinos-Senante et al., 2014). This can be undertaken via 

several hypothesis tests such as analysis of variance, Kolmogorov-Smirnov distribution test 

or the Mann-Whitney test. This method however, does not allow isolation of the influence of 

the explanatory variables on the efficiency scores and therefore means causality cannot be 

determined (Molinos-Senante et al., 2018). Secondly, a common approach is to conduct a 

regression analysis of the efficiency scores from the first stage results against the explanatory 



variables being investigated, the typical approach being the use of a Tobit regression analysis 

(Guerrini et al., 2013; Guerrini et al., 2015). However, conventional inference methods used 

in the second stage of the DEA method are based on efficiency values that are serially 

correlated; therefore, any inferences based on them may not be reliable (Daraio and Simar, 

2007). The process is regarded to have shortcomings, with Simar and Wilson (2007) and 

Bǎdin et al., (2014) proving that if the variables used in the original efficiency model are 

regressed against explanatory factors, then the second-stage estimates are inconsistent and 

biased. Due to these biases, the third main second-stage method ‘order-m’ was developed by 

Cazals et al., (2002). Order-m is a partial frontier method that uses just a portion of the sample 

to determine the efficiency scores, and enables the inclusion of evaluating exogenous 

variables (Carvalho and Marques, 2011). The limitation to this method is in its uniqueness, by 

only taking a fraction of the original sample, it has issues around sample size requirements 

and the representativeness of the reduced ‘m’ sample from the original sample, which may 

greatly affect the efficiency scores (Da Cruz and Marques, 2014). The fourth method is a 

double-bootstrap procedure from Simar and Wilson (2007) that allows statistical inferences 

and hypothesis testing in DEA models, therefore facilitating the assessment of potential 

influencer variables on efficiency, whilst further contributing bias-correcting of the efficiency 

results generated from the original DEA computation (Yang and Zhang, 2018). This fourth 

second-stage approach is utilised in this research to overcome the limitations of the other 

methods outlined above, whilst delivering reliable results for benchmarking water companies 

and evaluating the factors that may influence their efficiency. 

When conducting performance analysis, variable choices are vital for fair and validated results. 

However, the first choice variables are not always available, and in international benchmarking 

studies, issues around valuation and exchange rates need to be negated; therefore, proxies 

are often used to represent the first choice variables (de Witte and Marques, 2010). Though 

proxies can offer a useful alternative path to conducting benchmarking, it is not known how 

accurate some of them are in replacing the first-choice variables. This study therefore 

assesses the accuracy of two common proxies: population served for the service under review 



(Molinos-Senante et al., 2015; Molinos-Senante and Farías, 2018), which in this instance is 

drinking water, and water mains pipe network length (de Witte and Marques, 2010; Mbuvi et 

al., 2012; Ananda, 2014). These proxies replace the first choice variables volume of water 

produced and capital expenditure, respectively.  

Like many countries, England and Wales are serviced by a mixture of water only companies 

(WoCs) and water and sewage companies (WaSCs), which often prove difficult to analyse 

collectively due to their differing operations, although attempts have been made (Molinos-

Senante et al., 2015). An effective assessment of these companies together could enhance 

opportunities for sharing of best practices across a more diverse sample, leading to more 

improvements in economic and energy efficiency. This paper therefore uses a sample of 

WoCs and WaSCs, but only focusses on the water production side of the companies. 

This study had three objectives. Firstly, to evaluate the naïve and bias-corrected energy and 

economic efficiency scores of all water utilities in England and Wales. Secondly, to appraise 

the role of an array of explanatory variables on the efficiency scores. Lastly, to assess the 

extent to which proxies may influence efficiency rankings and their influencing variables. 

These objectives collectively contribute valuable insights for academia and the water industry 

by attempting to fill gaps in the literature. Bias-corrected efficiency evaluation has not 

previously been undertaken across WaSCs and WoCs, and could offer unique insight into how 

WaSCs and WoCs compare in terms of efficiency. Furthermore, research of rare explanatory 

factors influencing energy and economic efficiency may contribute new knowledge to existing 

theories on how specific factors affect efficiency. Finally, the analysis of how proxy variables 

can influence efficiency and explanatory factor results could provide a new evidence base on 

the reliability of alternative metrics to analyse efficiency.  

 

2. Methodology 

To estimate the energy and economic efficiencies of WaSCs and WoCs in England and Wales, 

in addition to the elements influencing their efficiencies, the DEA double-bootstrap method 

incorporating a truncated regression was employed. The process allowed bias-corrected 



efficiencies to be ascertained and enabled evaluation of the indicators that affect these 

efficiencies. Broader benefits of the approach have been outlined in the previous section.  

 

2.1. Original DEA model  

DEA was initially created by Farrell (1957), then subsequently advanced by Charnes et al. 

(1978). It is a non-parametric procedure that applies linear programming to construct an 

efficient production frontier. The frontier establishes the comparative efficiency of the sample 

of units, by comparing their input and output relationships, relative to others in the sample 

(Charnes et al. 1978). Technical efficiency for the DMUs is then ascertained by appraising 

their distances from the frontier.  

The DEA model can be input or output-orientated. Water utilities lack dominant control of their 

fundamental service output, that being volume of water delivered in this study. However, they 

do have more control over inputs; accordingly, this paper applied an input-orientated design. 

The variation of the DEA model used here was established on varying returns to scale, 

allowing for scale effects. This assumption was considered credible as the sample of water 

utilities vary in size and are therefore prone to producing different levels of outputs with similar 

levels of inputs. This judgement is supported by the majority of literature utilising similar 

methods within the water sector (Peda et al., 2013; See, 2015).  

Given 𝑗 = 1, 2…, 𝑁 units, each applying a vector of M inputs 𝑥j = (𝑥1𝑗, 𝑥2𝑗, …, 𝑥𝑀𝑗) to generate 

a vector of S outputs 𝑦𝑗 = (𝑦1𝑗, 𝑦2𝑗, …, 𝑦𝑆𝑗), the input-orientated DEA model is expressed as:  

𝑀𝑖𝑛 𝜃𝑗 

𝑠.𝑡. 

∑𝑗=1  
𝑁  λj 𝑥ij ≤ θ𝑥𝑖0    1 ≤ 𝑖 ≤ M 

∑𝑗=1  
𝑁  λ𝑗 𝑦𝑟𝑗 ≥ 𝑦𝑟0                           1 ≤ 𝑟 ≤ S      (1) 

λ𝑗 ≥ 0    1 ≤ 𝑗 ≤ 𝑁 

 



𝜃𝑗 is a scalar, which indicates the efficiency of the evaluated unit via the given value, which is 

deemed efficient when 𝜃𝑗 = 1 and inefficient when 𝜃𝑗 > 1. M is the quantity of inputs, S is the 

quantity of outputs generated, N is the quantity of water companies analysed and λ𝑗 is a 

collection of intensity variables that represent the weighting of each unit 𝑗 within the 

composition of the frontier.  

2.2. Double-bootstrap DEA method 

The issue that arises with some second-stage DEA methods (discussed further in the 

Introduction) such as Tobit regression is that they can be inaccurate due to the nature of the 

standard DEA model. Since the efficiency scores are serially correlated when calculating this 

model, the efficiency estimates can be biased, and any inferences made about explanatory 

factors can be incorrect (Hoff, 2007; Simar and Wilson, 2007).  

To calculate efficiency utilising DEA, but removing errors and potential biases, whilst enabling 

an analysis of the effect of explanatory factors, Simar and Wilson (2007) developed a double-

bootstrap methodology. The model functions by simulating the distribution of the sample by 

mimicking the data-generation process (Chernick and LaBudde, 2011); the research in this 

paper generated 2,000 bootstrap samples. The efficiency results then are re-calculated using 

the new generated data, the divergence between the original values and the more robust 

values from the double-bootstrap approach reveals the extent of bias that could have distorted 

the results when using other methods. The full computational operation is defined beneath: 

1. Estimate the DEA input-efficiency scores 𝜃𝑗 for all water utilities in the sample using 

equation 1.  

2. Perform a truncated maximum likelihood estimation to regress 𝜃 against a group of 

explanatory variables 𝑧𝑗, 𝜃𝑗 = 𝑧𝑗β + 𝜀𝑗, and produce an estimate 𝛽̂ of the coefficient 

vector 𝛽 and estimate 𝜎𝜀̂ of 𝜎𝜀, the standard deviation of the residual errors 𝜀𝑗.  

3. For each utility 𝑗 (𝑗 = 1, …, 𝑁) repeat the succeeding steps (3.1-3.4) B1 times to acquire 

a set of B1 bootstrap estimates ( 𝜃𝑗𝑏 )̂ for b = 1, …, B1.    

3.1. Generate the residual error 𝜀𝑗 from the normal distribution 𝑁 (0, σε
2̂). 



3.2. Compute 𝜃𝑗
∗ = 𝑧𝑗𝛽̂ + 𝜀𝑗.  

3.3. Generate a pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) where 𝑥𝑗
∗ = 𝑥𝑗 and 𝑦𝑗

∗ = 𝑦𝑗( 
θ𝑗

θ𝑗
∗).  

3.4. Using the pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) and equation one, estimate pseudo efficiency 

estimates 𝜃𝑗
∗̂.  

4. Compute the bias-corrected estimator 𝜃𝑗̂ for each unit 𝑗 (𝑗 = 1, … , 𝑁) using the 

bootstrap estimator or the bias 𝑏𝑗̂ where 𝜃𝑗̂ = 𝜃𝑗 − 𝑏𝑗̂ and 𝑏𝑗̂ = (
1

𝐵1
  ∑ 𝜃𝑗𝑏

∗̂𝐵1
𝑏=1 ) - 𝜃𝑗. 

5. Use the truncated maximum likelihood estimation to regress 𝜃𝑗̂ on the explanatory 

variables 𝑧𝑗 and provide an estimate 𝛽∗̂ for 𝛽 and an estimate 𝜎 ∗̂ for 𝜎𝜀.  

6. Repeat the succeeding three steps (6.1-6.3) 𝐵2 times to obtain a set of 𝐵2 pairs of 

bootstrap estimates (𝛽𝑗
∗∗̂ ),  (σ𝑗

∗∗̂) for 𝑏 = 1, … , 𝐵2. 

6.1. Generate the residual error 𝜀𝑗 from the normal distribution 𝑁 (0,  σ∗2̂) 

6.2. Calculate 𝜃𝑗
∗∗̂ = 𝑧𝑗𝛽∗̂ + 𝜀𝑗.  

6.3. Use truncated maximum likelihood estimation to regress 𝜃𝑗
∗∗̂ on the explanatory 

variables 𝑧𝑗 and provide as estimate 𝛽∗∗̂
 for 𝛽 and an estimate σ∗∗̂ for σε. 

7. Construct the estimated (1 − 𝛼)%  confidence interval of the 𝑛-th element, 𝛽𝑛 of the 

vector 𝛽, that is [𝐿𝑜𝑤𝑒𝑟𝑎𝑛, 𝑈𝑝𝑝𝑒𝑟𝑎𝑛] = [𝛽𝑛
∗̂ + 𝑎𝑎̂ , 𝛽𝑛

∗̂ −  𝑏𝑎̂] with  

𝑃𝑟𝑜𝑏 (−𝑏𝑎̂ ≤ 𝛽𝑛
∗∗̂ − 𝛽𝑛

∗̂ ≤ 𝑎𝑎̂)  ≈ 1 − 𝑎 

The model was solved using ‘R’, a statistical computing software with the package ‘rDEA’ 

created by Simm and Besstremyannaya (2016). 

 

2.3. Data description 

The same sample of companies was used for both the energy and economic analyses, 

comprising a mix of ten WaSCs and seven WoCs from England and Wales. All data was for 

the year 2017-18 and was acquired through the ‘PR19’ data tables that must be submitted 

alongside business reports to the regional regulator, OFWAT (2020). Despite being secondary 



data, the quality was deemed sufficient due to the audits and controls implemented by the 

individual companies along with OFWAT. Thus, it is assumed that key data needed to run the 

model has been validated. The source files separated water production and wastewater 

operations, therefore enabling a fair comparison of just the water production side of all 

companies, whereas evaluation of the data via less granular sources may have led to errors. 

The resolution of the data is based on an entire year of operation, unless stated otherwise due 

to model requirements or the nature of specific indicators.   

When utilising DEA, the sample size is required to satisfy a minimum size threshold in order 

to bypass relative efficiency discrimination problems. As the size of the sample was small in 

this study, ‘Cooper’s rule’ was used in an attempt to avoid discrimination problems. ‘Cooper’s 

rule’ specifies the quantity of units must be ≥ max{𝑚 𝑥 𝑠; 3(𝑚 + 𝑠)} where 𝑚 represents inputs 

and 𝑠 represents outputs (Cooper et al., 2007). The energy model used one input and one 

output, whilst the economic model used two inputs and one output; therefore, the minimum 

threshold was met. Moreover, a bootstrap approach within the DEA framework enables 

rigorous efficiency results despite a limited sample size (Molinos-Senante et al., 2018). 

Nonetheless, it should be noted that the constrained sample size could exaggerate results at 

either end of the efficiency spectrum. If the sample was large enough to enable more variables 

within one model, instead of requiring two separate models, results could differ. However, this 

limitation is difficult to overcome, given the limited number of water utilities in the UK.    

The array of variables is critical for a DEA model to generate credible outcomes (Zhu, 2014). 

The energy model consisted of the sole input of energy consumed, which was the total amount 

of energy consumed in the year by water supply operations measured in kWh. The economic 

model encompassed operational expenditure (OPEX) and capital expenditure (CAPEX) as 

inputs; both models had volume of water produced as the only output. These variables were 

chosen because they represent the essential resources required for a water utility to function 

and the core operations and services that they provide. Furthermore, the indicators are 

concurrent with the literature (Peda et al., 2013; Mardani et al., 2017; Molinos-Senante and 



Farías, 2018). Although the variables cover the essential activities of water companies, it 

should be noted that the approach is not as holistic as alternative methods of performance 

evaluation such as life cycle analysis or emergy accounting (Arden et al., 2019), which would 

cover many different aspects of the water supply process in a narrower scope. OPEX and 

CAPEX data contained spending on third party services, and included wholesale and retail 

aspects of the companies. Using CAPEX over a single year has the potential misrepresent 

usual spending, therefore projected year-on-year capital expenditure change over the next 

four years was averaged for all companies, displaying an anticipated -5.43% average change. 

This was deemed an acceptable level of variation to validate the use of CAPEX over the 

2017/18 year. Furthermore, CAPEX was used assuming that the utilities contribute enough 

capital to renew and maintain the distribution network long-term. As many studies have used 

proxies to replace key inputs and outputs, this paper reviewed how accurate the use of two 

common proxies are. The proxies were population served for drinking water and length of 

water mains, which replaced the output volume of drinking water produced and the input of 

CAPEX, respectively.  

An elemental contributor of resource use for water companies is the quality of water they 

supply (Plappally and Lienhard, 2012). Utilities within efficiency analyses should not be 

penalised for contributing superior quality outputs than others; accordingly, this paper follows 

Saal et al., (2007) and Walker et al., (2019), and modifies the output variable that is used for 

both the energy and economic assessments according to water quality. The volume of water 

produced was amended by the quality of that water (𝑦1) as reported by the companies to the 

regulators Environment Agency and OFWAT. The indicator for water quality was reported as 

a percentage, with 100% expressing that all obligations are met; this was then converted to 

decimals and employed as a multiplier for the original output variable:  

𝑦1 = 𝑊𝑃 × 𝐷𝑊𝑄         (2) 



The volume of water produced is represented by 𝑊𝑃 and 𝐷𝑊𝑄 is drinking water quality. The 

resulting figure once adjusted then constituted the single output for the energy and economic 

DEA analyses. 

In order to deduce reasons for the efficiency results and performances of companies, five 

explanatory variables were chosen for evaluation. The variables were leakage; consumption 

per capita; number of abstraction sources; average pumping head height (across raw water 

abstraction, treatment and transport); and proportion of water passing through treatment 

plants sizes 5-8, which are the largest treatment plants (total scale is measured from 1-8, 

OFWAT, 2019). These variables were chosen because they are deemed to affect efficiency, 

and in some cases, have not been studied before – e.g. proportion of water passing through 

the largest treatment plants and average pumping head height. Treatment plants are viewed 

to operate at economies of scale (Molinos-Senante and Sala-Garrido, 2017) but testing the 

limits to this within the context of other variables has seldom been done. Pumping head height 

is interesting to investigate, as a larger head would naturally cost more money to operate 

(Berg, 2013), however, the significance on cost and energy relative to the efficiency of a 

company is unknown. All the variables used in this research including inputs, outputs, proxies, 

explanatory variables and quality variables are summarised in Table 1.  

Table 1. Summary of the 2017/18 data used in the DEA analyses displayed to three significant figures where 

possible. Data from the PR19 company reports available via OFWAT (2020).  

 

  Average SD Minimum Maximum 

Inputs Energy (kWh) 212,705.897 151,759.268 24,084.370 558,178.165 

 Operational expenditure (million£) 210.757 172.782 21.543 638.661 

 Capital expenditure (million£) 147.634 127.331 7.628 511.67 

Output Volume of water produced (Ml/day) 725.838 568.741 51.80 2,168.81 

Proxies Length of water mains (km) 12,015.72 13,710.524 2,627 46,540 

 Population with water service  3,460,133 2,714,840 218,918 10,012,827 
Explanatory 
variables Leakage (Ml/day) 189.565 179.335 14.27 694.65 

 Consumption per capita (l/h/day) 143.499 8.137 128.9 158.8 

 Number of abstraction sources 102.294 67 9 235 

 

Proportion of water passing through 
treatment works sizes 5-8 (%) 74.071 18.138 31.58 97.50 

 Average pumping head height (m.hd) 34.272 8.279 17.315 46.26 
Quality 
variable Water quality compliance (%) 99.96 <0.001 99.93 99.98 



3. Results and Discussion 

3.1. Energy efficiency results  

The results from the input-orientated distance function utilised in this study means scores of 1 

are the most efficient, and those companies are operating at the frontier. Conversely, the more 

scores increase above 1, the further those companies are away from the frontier and thus the 

less efficient they are. The standard DEA model (equation 1) results represented as ‘non-bias 

corrected scores’ in Figure 1 estimated three of the 17 companies to be operating at the 

efficiency frontier with estimates of 1. The implication of this is that those companies cannot 

reduce their energy consumption any further, whilst also maintaining their drinking water 

delivery levels. The mean efficiency of the whole sample was 8.258 with a standard deviation 

of 6.462. Efficiency scores are based on all other aspects being equal, which is where 

exploring exogenous variables becomes important. A comprehensive display of the precise 

efficiency estimates, the rankings, and the confidence intervals for all the following sections 

are available in section one of Supplementary Information. 

  

Figure 1. Rankings established from the original DEA model and bias-corrected DEA results produced with 2000 
bootstrap iterations for the energy performance across 17 water companies in England and Wales. WoCs are 
featured as triangles and WaSCs are displayed as circles. 

 

Utilising the double-bootstrap method estimates that the whole sample was less efficient than 

the standard DEA model indicated (Fig. 1), which is an expected occurrence with this method. 
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The average bias taken out of the sample with the double-bootstrap method was -3.746, with 

a minimum value of -0.286 and maximum value of -12.8. Interestingly, although the bias taken 

out of the sample was large, it only changed the rank of two companies, swapping ranks 13 

and 14 around. This result is rare and contrasts with other research (e.g., Ananda, 2014; 

Gómez et al., 2017; Molinos-Senante et al., 2018; Molinos-Senante and Sala-Garrido, 2019; 

Walker et al., 2019) where their biases resulted in many rank changes. An explanation for this 

result could be that the sample is not large and does not lend itself to many rank changes 

naturally. Perhaps more importantly, the fact that there were broad efficiency distances 

between many companies within the sample meant that even large biases taken out did not 

affect ranking.  

Since bootstrapping generates data from the original sample, there are slight variances in the 

estimates that are generated; therefore, three repeat tests were conducted to ensure that any 

variances were not large enough to make the study invalid and the following sections will 

comment on the variance of the results. Three repeats was chosen as this was enough to 

provide validity to results and could capture any significant variances. For energy bias-

corrected results, the average difference in the results was 0.56%, with a range of -1.11%-

1.56%. The bias-corrected efficiency scores had a mean average of 12.005, with a standard 

deviation of 9.996. This implies that the average water company in England and Wales could 

decrease inputs by 91.7% and maintain the same output standards of water delivery, if they 

were to perform at the same level as the best performers. The non-bias corrected scores 

indicated an average potential theoretical reduction of 87.8% (1-1/8.26), marginally lower in 

contrast to the bias-corrected average. The large average potential reduction is symptomatic 

of having a large spread in efficiency estimates using the DEA method, where some 

companies were perceived to be significantly less efficient than others, highlighted by the 

range of the sample being 1.286-35.568. 

 



The reason for the large range of efficiency estimates appears to have been due to the sample 

including WaSCs and WoCs. Figure 2 shows that the top five performing companies are WoCs 

and only three WaSCs are amongst the WoCs altogether. Within the top ten performers, the 

efficiency estimates are relatively close (1.286-9.202) compared to the following seven 

companies (13.465-35.568), showing that there are clear efficiency disparities between 

companies that only deliver drinking water compared to the companies that deliver water and 

treat wastewater. This was a surprising result, since the study only focussed on the drinking 

water aspects of the businesses. One explanation could be that some companies are hindered 

by exogenous variables. A further potential explanation is that the WoCs only have the drinking 

water elements to focus on and thus have optimised their operations in this field, whereas the 

WaSCs also have the wastewater treatment components to provide, therefore optimisations 

such as replacement of inefficient pumps or leakage reduction measures are not prioritised. A 

further explanation could be that for WaSCs, there was inadequate separation of water 

treatment and water supply data. Following the results, further checks were conducted to 

ensure information was extracted correctly from the data sources; however, the sources could 

have incorrect data separation.   

When conducting the energy efficiency analysis, population served for water consumption 

showed to be an appropriate proxy for volume of water produced. Figure 2 shows that the 

ranks of all the companies remained the same when the proxy was in use. The only impact 

the proxy variable had on energy efficiency analysis of the companies was that 14 of them 

displayed a reduction in their efficiency score, exhibiting an average of 0.172 reduction, 

equivalent to 1.01% compared to the results from the original variable of volume of water 

produced.  



 
Figure 2. The bias-corrected (2000 bootstrap iterations) energy efficiency scores and ranking with the primary set 
of variables, and a volume of water produced proxy (population served for drinking water). WoCs are featured as 
triangles and WaSCs are displayed as circles.
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3.2. Role of explanatory factors on energy efficiency 

An essential element of the double-bootstrap approach is the ability to appraise explanatory 

factors that may affect efficiency by employing a bootstrap truncated regression model. The 

explanatory factors analysed in this research were leakage, per capita consumption, number 

of sources, proportion of water through size 5-8 water treatment plants and average pumping 

head height; their influence on efficiency is presented in Table 2. A negative impact on 

efficiency is recognised if the bias-corrected coefficient value is positive and vice versa, and 

an asterisk is marked next to the coefficients to highlight significance to the 5% level. The 

variance average in the repeat tests for the bias-corrected coefficients was 1.03%, with a 

range of -2.03%-1.91%.  

Table 2. Results of bootstrap truncated regression (bias-corrected) with 2000 iterations for energy efficiency 
assessment using the first choice variables and volume of water produced proxy: population served for water 
production.  

 
Primary energy set Energy WP replaced 

Explanatory factor Coefficient Low High Coefficient Low High 

Leakage (Ml/day) 0.045* 0.031 0.059 0.046* 0.032 0.060 

Number of sources 0.053* 0.008 0.097 0.053* 0.011 0.097 

Average pumping head height 
(m.hd) 

0.423* 0.136 0.736 0.426* 0.136 0.729 

Proportion of water through size 
5-8 treatment plants (%) 

0.142 -0.033 0.323 0.140 -0.029 0.318 

Per capita consumption (l/h/d) -0.134 -0.391 0.116 -0.144 -0.410 0.111 

Note: *Statistically significant at the 5% level.  

 

Leakage had a significant negative effect on energy efficiency, as to be expected since the 

more water that is lost, the more water needs abstracting, treating and delivering, which all 

require energy. Energy efficiency studies on water utilities that evaluate explanatory factors 

are rare. Walker et al., (2019) evaluated the environmental efficiency of water utilities in terms 

of carbon intensity, and found no significant link with leakage, although they did incorporate 

embodied carbon as well as operational carbon over just a one-year period, therefore one 

single significant capital project may have skewed the data depending on method of 

amortisation.   



The variable consumption per capita had a positive relationship with energy efficiency to a 

non-significant extent. Although greater consumption overall would increase energy 

consumption due the requirements to pump and treat a larger volume, there are links to 

economies of customer density too, which can distort results (Byrnes et al., 2010). When 

a pipe network is established, the volume of water actually flowing through it has nominal 

energy consumption and economic costs. In this instance, the insignificant relationship means 

inferences on reasoning are just speculative.  

Results in Table 2 indicate that, as the number of sources increases, energy efficiency 

reduces. Although diversifying abstraction sources can be a positive attribute for companies 

to make their supply more resilient, it appears as though this is at the expense of a significantly 

increased energy consumption owing to more pumping being required through a larger 

network of piping. For benchmarking and regulation, this is a relationship to be aware of; 

however, water managers do not have much control over this factor, which is often determined 

by the magnitude of locally available supplies; therefore, any penalties on companies 

performing poorly on this metric need to carefully consider this context.  

The proportion of water passing through the largest four sizes of treatment works was 

surprisingly associated with inefficiency, albeit insignificantly. The anticipated result was that 

economies of scale at the treatment level (Molinos-Senante and Sala-Garrido, 2017) would 

mean the more water being treated at larger treatment works, the more efficient energy use 

would be. An explanation of this could be that any economies of scale that are experienced 

are offset by the increase in the distribution of water to centralised treatment plants as Kim 

and Clark (1988) found, along with the increased leakages that occur over larger pipe network 

(<0.001 p-value using Pearson’s r for relationship between leakage rates and network length 

found). Furthermore, scale economies are seen to be lost in treatment plants once they attain 

a certain size (Hernández-Chover et al., 2018), therefore this would weaken any relationship 

in the data.  

https://www.sciencedirect.com/topics/social-sciences/hydraulic-equipment


Average pumping head height showed a significant influence on energy inefficiency, meaning 

as the pumping head increases, so efficiency declines. This was anticipated, as pumping is a 

major consumer of energy for water utilities and the head is a pivotal facet of this consumption 

(Filion et al., 2004; Díaz et al., 2011). Water practitioners have no influence over pumping 

heads once infrastructure is in place, but this result does display how important it is for 

engineers and designers to minimise the head height when developing any part of the network 

to ensure long-term energy sustainability. 

The population supplied with water also served as a useful proxy for the volume of drinking 

water produced in terms of evaluating the explanatory factors. The right half of Table 2 shows 

that the direction of the efficiency effect remained the same, as did the variables that showed 

significance. 

3.3. Economic efficiency results  

The non-bias corrected scores for economic efficiency results (Fig. 3) indicated that three of 

the 17 utilities are on the efficiency frontier, with a score of 1. The mean efficiency of these 

non-bias corrected estimates across the 17 companies was 9.321 with a standard deviation 

of 8.294, suggesting that an average UK water company can reduce their OPEX and CAPEX 

inputs by 89% and still produce their water production output to the same level.  



 

Figure 3. Rankings established from the original DEA model and bias-corrected DEA estimates produced with 
2000 bootstrap iterations for the economic performance of 17 England and Wales water companies. WoCs are 
featured as triangles and WaSCs are displayed as circles. 

 

The bias taken out of the economic results ranged from -0.286 to -12.821, and averaged at -

3.618. Despite the considerable bias taken out of the sample, it did not affect the rankings of 

the companies. This result contradicts other research (Ananda, 2014; See, 2015; Gómez et 

al., 2017; Molinos-Senante and Sala-Garrido, 2019) where their biases altered the rankings 

of most of the sample. A potential justification for this is similar to that in the energy results in 

that the sizable efficiency spans between utilities proceeded to absorb biases taken off 

efficiency scores.  

The bias-corrected efficiency results had a mean average of 12.94, with a standard deviation 

of 11.773. The variance in the three repeat tests was averaged at 0.78% with a range of -

1.47%-2.01%. The average corrected efficiency scores indicated that an average water utility 

could scale down their collective OPEX and CAPEX by 92.3%, whilst producing the same 

amount of drinking water. This is particularly large compared to the Walker et al. (2019) study 

on UK and Irish water and sewerage utilities, where they calculated that the average utility 

could decrease their economic inputs by 19.4%. A possible reason for this was alluded to in 

Section 3.1, that having such a large theoretical drop in inputs is likely a result of the very 

considerable range in efficiency scores (1.286-42.467) brought about seemingly by the 
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mixture of WaSC and WoCs in the sample. Figure 3 shows that all WoCs were ranked higher 

than the WaSC for economic efficiency, despite the data encompassing just the water 

production side of operations for all companies. An explanation explained earlier in Section 

3.1 is that WaSCs may find it more difficult to disseminate and effectively utilise resources due 

to the extra operational strain of wastewater treatment compared to WoCs. Moreover, an array 

of exogenous can influence the efficiency results and cause the disparity between companies 

(main exogenous factor evaluation in Sections 3.2 and 3.4). For example, a justification 

appears to be linked to size; the bias-corrected coefficients were naively tested for correlation 

using Pearson’s r against population with water service as an indicator to represent the size 

of the water utilities, and a positive correlation with a p-value value of <0.001 was found. This 

suggests that the larger companies are, the less efficient they are at producing water at lower 

costs. Since generally WoCs are smaller than WaSCs, with seven of the smallest eleven 

companies in this sample being WoCs (see Supplementary Information, Section 2 for 

breakdown), it appears size could at least partially explain the reason behind WoCs 

outperforming WaSCs. It is not clear why size has this correlation; population density was also 

correlated against coefficient values to test a reason behind the size result and this showed to 

have no impact (p-value of 0.153). It is possible that larger-scale operations are harder to 

manage efficiently, with the larger network, more abstraction and more sources of abstraction 

making companies more inefficient. The disparity of efficiency between WaSCs and WoCs is 

an area where future research could investigate; perhaps analysing factors such as 

precipitation, types of abstraction sources, topography and governance structures.    

The proxies analysed for the economic analysis were km of water mains replacing CAPEX 

and population served for drinking water, which replaced volume of water produced. The latter 

appeared to be a satisfactory proxy, with only two companies (this ranks 11 and 12) 

exchanging places (Figure 4). If the sample were larger and closer in terms of efficiency range, 

then perhaps there would have been more ranking changes. The CAPEX proxy resulted in 

ten companies changing their rank compared to the original primary set of indicators, with 11 



ranks moved (Figure 5). A further effect of the CAPEX proxy was the increased efficiency of 

the sample, implying companies were on average 12.63% more efficient. Some companies 

exhibited particularly large increases in efficiency, for example, ranks 16 and 17 went from 

31.222 and 42.467 to 24.661 and 17.059 respectively. As more than half of the sample 

changed rank and some utilities experiencing such large changes, using the length of mains 

network does not appear be an apt proxy for CAPEX.  

  

Figure 4. The double-bootstrap (2000 iterations) bias-corrected economic efficiency results with the primary set of 
economic variables, and a volume of water produced proxy (population served for drinking water). WoCs are 

featured as triangles and WaSCs are displayed as circles.  
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Figure 5. The double-bootstrap (2000 iterations) bias-corrected economic efficiency results with the primary set of 

economic variables, and a capital expenditure (CAPEX) proxy (kilometres of water mains network). WoCs are 
featured as triangles and WaSCs are displayed as circles.   

 

3.4. Role of explanatory factors on economic efficiency 

 

The explanatory factors analysed in the economic assessment matched those analysed for 

energy efficiency; leakage, per capita consumption, number of sources, proportion of water 

through size 5-8 water treatment plants and average pumping head height. As mentioned in 

Section 3.2, the bias-corrected coefficients for the explanatory variables (Table 3) are 

regarded to adversely affect efficiency when their figures are of a positive value and positively 

influence efficiency if their figures are negative. The average variance in the three repeat tests 

was 1.08% (range of -2.47%-0.79%).  
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Table 3. Results of bootstrap truncated regression (bias-corrected) with 2000 iterations for economic efficiency 
analysis using the first choice variables, volume of water produced proxy: population served for water production, 
and CAPEX proxy: kilometres of water mains network.  

 
Primary economic set Economic CAPEX replaced Economic WP replaced 

Explanatory factor Coefficient Low High Coefficient Low High Coefficient Low High 

Leakage (Ml/day) 0.054* 0.041 0.067 0.016 -0.003 0.036 0.046* 0.037 0.056 

Number of sources 0.053* 0.017 0.093 0.079* 0.025 0.140 0.041* 0.013 0.072 

Proportion of water 
through size 5-8 
treatment plants (%) 

0.158* 0.005 0.325 0.238* 0.016 0.532 0.125* 0.010 0.251 

Average pumping 
head height (m.hd) 

0.205 -0.058 0.470 -0.013 -0.396 0.396 0.177 -0.023 0.389 

Per capita 
consumption (l/h/d) 

-0.121 -0.343 0.103 -0.358* -0.763 -0.001 -0.076 -0.249 0.095 

Note: *Statistically significant at the 5% level.  

The variable leakage mirrored the energy analysis and had a significant negative influence on 

economic efficiency. This result is concurrent with the majority of similar studies (Berg, 2013; 

See, 2015); however, this is not always the case. Some research shows the negative affect 

on efficiency to a non-significant extent (Marques et al., 2014). Moreover, there are articles 

that demonstrate the opposite relationship, with leakage appearing to cause efficiency (de 

Witte and Marques, 2010; Ananda, 2014) albeit, to a non-significant degree. The leakage 

result in our research is a particularly interesting result for the UK since water companies 

operate under the ‘sustainable economic level of leakage’, where they are required by the 

regulator OFWAT (2019) to fix leaks, as long as the cost of doing so is less than the cost of 

not fixing the leak. The suggestion is therefore that leakage is less likely to be at such a rate 

that it significantly negatively affects economic efficiency however, due to other factors 

obscuring the time when replacement of pipes should occur, this may not be the case.  

Consumption per capita displayed a positive relationship to a non-significant level, therefore 

also matching the energy explanatory factor results. As examined in Section 3.2, the 

contradiction in the expected result is likely to be from the links to economies of customer 

density that can relieve increased consumption per capita from having such a strong influence 

(Byrnes et al., 2010; Carvalho et al., 2012). The volume customers consume is not directly 

controllable by water managers, however, there have been awareness campaigns and water 

efficiency information and technology available to customers from companies to reduce user 



consumption that have had some affect. Manouseli et al., (2019) evaluated the effectiveness 

of the water efficiency initiatives rolled out by water companies in England, and found that 

households that participated in the programme reduced their consumption by approximately 

15%. Perversely, water conservation is bad for companies in terms of short-term profits, 

although it does provide benefits to wider society. The companies will however benefit in 

longer-term sustainability as water is expected to become scarcer in the UK due to climate 

change (Arnell and Delaney, 2006; Wade et al., 2013) and reduced consumption can reduce 

the frequency for requiring new infrastructure.   

The number of abstraction sources was significantly associated with negative economic 

efficiency, again following the energy results. This was anticipated, as more materials are 

required such as pumps, piping and associated infrastructure to utilise more sources, thus 

increasing costs. This result shows that when increasing resilience of the water supply by 

increasing the number of sources, there is a trade-off, where efficiency lowers. Many 

companies may not have a choice of how many abstraction sources they utilise, furthermore 

the perfect balance of resilience and efficiency a company’s number of sources is not yet 

known. Therefore, as noted in Section 3.2, any regulators conducting fines or punishments on 

companies for poor efficiency should consider such results.  

The most unexpected result for variables that influence economic efficiency was the proportion 

of water treated by size 5-8 (the largest) treatment plants. Table 3 indicates a significant 

negative influence on economic efficiency, deviating from the energy explanatory factor 

analysis. The economies of scale present at larger treatment plants was expected to result in 

a positive relationship with efficiency. Reasons for this are similar to those outlined for the role 

this variable had in energy efficiency (Section 3.2); greater pumping, maintenance and 

leakage costs from extended pipe networks and loss of scale economies at particular sizes 

(Hernández-Chover et al., 2018), despite treatment plants being positively associated to 

economies of scale (Molinos-Senante and Sala-Garrido, 2017). For companies to take 

advantage of economies of scale in treatment plants to improve their economic and energy 



efficiency then, there is a need for better understanding of the multiple factors influencing 

efficiency across different sizes of plant, considering associated consequences for distribution 

effects.  

The pumping head average was regarded to have a non-significant negative effect on 

economic efficiency, diverging from the energy results, which showed the same effect on 

efficiency, but with significance. Despite the higher energy demands that larger pumping 

heads create, the non-significant result indicates that energy costs are not the dominant factor 

in economic efficiency, which is supported by power (including climate change levy and carbon 

reduction commitments) representing an average of 10.8% of total OPEX for this sample.  

Table 3 presents how the simple proxy of population supplied with water adequately replaced 

the volume of water produced, since the significance and direction of influence of explanatory 

factors on efficiency were the same. The satisfactory performance of the volume of drinking 

water proxy was expected to an extent, since the water produced is for the proxy of population 

served for drinking water. The proxy would theoretically match the original variable perfectly 

were it not for erroneous factors such as leakage and per capita consumption, which for this 

sample ranged from 15.8%-32% and 129-159 (l/h/d), respectively, which appeared to be not 

enough to skew the appropriateness of the proxy. The CAPEX proxy of water mains network 

length however, was less successful. It only directly matched two of the variables: number of 

sources and proportion of water through size 5-8 water treatment plants, for both direction of 

influence and significance. The proxy did match the direction of influence of the true CAPEX 

variable for leakage and per capita consumption however, significance of relationship was 

lost. Finally, for average pumping head height, the proxy misinterpreted the direction of 

efficiency affect, the result suggesting that larger pumping heads actually resulted in higher 

economic efficiencies.   

4. Conclusions 

The goals of this research were to implement a double-bootstrap DEA method to compare 

unbiased energy and economic efficiency between a mixture of water only companies and 



water and sewerage companies, to evaluate the effect of explanatory factors, and to analyse 

the accuracy of two common proxies. Results support four main conclusions. Firstly, that the 

average company could decrease their energy inputs by 91.7% and their economic inputs by 

92.3%, if they were to perform at the efficiency frontier (in the absence of significant 

exogenous influences). Thus, we establish that there is substantial scope to improve energy 

and economic efficiency for water utilities in England and Wales, if the practices of best 

performers were widely adopted. There was a large variance in the potential reductions of 

inputs, which appeared to reflect the second main conclusion – that WoCs generally 

performed much more efficiently than WaSCs. All seven WoCs outperformed WaSCs in the 

economic analysis they were amongst the top nine performers in the energy analysis. 

Improper separation and reporting of operational data from companies into their reports may 

have been a reason for this, however exogenous factors likely played the major role. Size 

appeared to be a key determinant, displaying a positive relationship with efficiency and p-

value of <0.001 when correlated with efficiency scores, but further research is recommended 

to investigate the complex influence of size. Thirdly, the paper determined factors that 

influence efficiency. Of the potential explanatory variables analysed, leakage and number of 

abstraction sources were concurrent in their negative effect and significance across both the 

energy and economic assessments. Average pumping head height displayed a significant 

negative affect for energy, whereas the variable proportion of water passing through the 

largest four treatment works was deemed to have a significant negative effect on economic 

efficiency. These exogenous factors therefore need to be corrected for in future benchmarking 

activities and have the potential to inform water companies about factors to prioritise in order 

to improve efficiency. The final conclusion was that the proxy population served for drinking 

water can adequately replace the volume of water produced as an input variable in efficiency 

benchmarking when leakage and per capita consumption are fairly uniform across the sample, 

since companies stayed at the same rank and explanatory factors displayed the same 

significance. Conversely, length of water mains performed poorly when replacing CAPEX as 

an economic input, implying companies were on average 12.6% more efficient, resulting in 10 



companies changing their rank compared to the original variable and causing some 

explanatory variables to differ in direction of influence and significance. Further research is 

recommended on the energy and economic efficiency of WoCs and WaSCs, considering a 

wide range of exogenous variables and careful selection of (proxy) indicators. 
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