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Abstract 12 

Although the food service sector is a major user of water, the potential for heat recovery from 13 

commercial kitchens’ drain water remains largely unexplored. For the first time, we compare 14 

the life cycle environmental burdens of producing and installing a heat recovery system with 15 

the environmental credits arising from energy savings for a restaurant case study, and for the 16 

entire UK food service sector. Life Cycle Assessment was applied to determine the impacts of 17 

heat recovery systems made from different materials and comprising a heat exchanger in the 18 

shape of a concentric double-walled pipe, pipework and fittings. The design option with the 19 

smallest environmental footprint combined a heat exchanger made out of polypropylene-20 

graphite (PP-GR) with polyethylene pipework, exhibiting 80-99% less environmental impact 21 

compared with components made out of (35% recycled) copper. Contrasting the 22 

environmental impacts of two heat recovery set-ups with energy savings shows that a PP-GR 23 

based system pays back all seven assessed environmental impacts within two years, while 24 

payback times for the copper-based system vary depending on the replaced energy source, 25 

and can exceed the 10 year operational lifetime of the system. When looking at typical flow-26 

rates in UK food outlets, net environmental savings can be realised across all analysed impact 27 

categories above a threshold water consumption of 555 L/day, using current technology. 28 

Extrapolation to the UK food service sector indicates annual greenhouse gas emission 29 

mitigation potential of about 500 Gg CO2 equivalent. 30 

 31 
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 35 

1 Introduction 36 

In the UK, nearly half of the water consumption of the wider food and drink sector occurs in 37 

the hospitality and food service sub-sector, with an estimated 143 million m3 water used in 38 

2010 for the preparation of meals in commercial and similarly used kitchens (Bromley-39 

Challenor et al., 2013). Spriet and McNabola (2019a) determined a total wastewater heat 40 
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recovery potential for the UK food service sector of 1.4 TWh/year, and a financially viable 41 

potential of 1.24 TWh/year. The recovered heat is available for direct reuse for pre-heating the 42 

cold water supply and can hence directly contribute to the decarbonisation of hot water use. 43 

Heating water accounts for a considerable amount of energy consumption across industrial 44 

and non-industrial sectors. It is estimated that up to about 90% of the energy requirements 45 

and related greenhouse gas (GHG) emissions from the domestic water cycle in industrialised 46 

countries derive from heating water (Arpke and Hutzler, 2008; DEFRA, 2008; Fagan et al., 47 

2010; Gerbens-Leenes, 2016; Nair et al., 2014; Siddiqi and Fletcher, 2015). Sanders and 48 

Webber (2012) looked into the energy consumption for water use of all sectors in the US, and 49 

found that heating for hot water and steam generation dominated water-related energy 50 

consumption not only in the residential, but also the commercial and industrial sector. 51 

Altogether, 47% of the US primary energy consumption in 2010 was due to water and steam 52 

applications (Sanders and Webber, 2012). 53 

While heat recovery from wastewater has been intensively studied and applied in the 54 

residential sector, this is not the case for the food service sector, although the same appliances 55 

can be used. The necessary equipment for heat recovery from drain water on a small-scale 56 

includes market-ready low-tech options such as in-line, pipe shaped heat exchangers (Ip et 57 

al., 2018; McNabola and Shields, 2013; Schuitema et al., 2005; van der Hoek, 2011). They 58 

have been predominantly studied and installed for use in households or similar domestic 59 

settings for shower or mixed drain water (Ip et al., 2018; McNabola and Shields, 2013; 60 

Schuitema et al., 2005; Słyś and Kordana, 2014; Wong et al., 2010). However, they could also 61 

be potentially used with other wastewater types. 62 

A bonus of heat recovery from commercial kitchens’ drain water is a higher daily water use 63 

compared to an average household, which for the UK lies in the range of 360 to 12,500 L/day 64 

(Spriet and McNabola, 2019a), versus to 349 L/day in homes (EST, 2013). The heat recovery 65 

figures by Spriet and McNabola (2019a) equate to an average yearly saving of about 66 

5400 kWh per food outlet. Installation of comparable heat recovery systems with showers 67 

have been reported to save 127-1880 kWh/year per six showers in a sports facility (Ip et al., 68 

2018), and 130-508 kWh/year per one shower in a residential building (Wong et al., 2010). 69 

The amount of heat energy recovered during the lifetime of the heat recovery system plays an 70 

important role not only for financial payback, but also environmental payback for the 71 

installation. 72 

As with all manufactured products, heat recovery devices carry environmental burdens 73 

through their manufacture, installation works, operation and disposal. Significant burdens from 74 

manufacture are especially associated with metals such as copper, which is frequently used 75 

for plumbing equipment and a preferred material for heat exchangers because of excellent 76 

heat conducting properties. It is known that production of copper components generates larger 77 

environmental burdens compared to steel (Prek, 2004) or plastic (Asadi et al., 2016; Franklin 78 

Associates, 2011), with regard to GHG emissions (Franklin Associates, 2011), human health 79 

and eutrophication impacts (Asadi et al., 2016). Hence, to justify the application of heat 80 

recovery devices on resource efficiency and wider environmental grounds, the impacts 81 

generated during their life cycle have to be considered. However, there is a lack of studies 82 

evaluating in-line heat recovery devices for small-scale applications, and providing the 83 

complete picture of environmental impacts through full Life Cycle Assessment (LCA). The 84 

most comprehensive related study was published by Ip et al. (2018), who conducted an 85 

environmental and economic assessment of an in-line heat exchanger from copper recovering 86 

heat from shower drains in a university sports facility. Whilst their LCA study comprised all 87 

steps, from cradle to grave (manufacture, use and end-of-life) of the heat exchanger, it only 88 

considered the Global Warming Potential (GWP) burden; i.e. GHG emissions. Other impact 89 
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categories such as resource depletion with material component manufacture were not 90 

included. The study also did not consider the need for additional pipework or fittings that can 91 

be necessary to connect the heat recovery device to a boiler, especially when retrofitting an 92 

existing plumbing system. 93 

Here, we apply LCA methodology to determine for the first time the environmental burdens 94 

across seven impact categories arising from the manufacture and retrofit installation of a full 95 

drain water heat recovery system suitable for use with kitchen drain water. Besides the 96 

essential heat exchanger, the system consists of the pipework required for connecting the 97 

heat exchanger to a boiler and cold water supply, of insulation and fittings. Due to important 98 

potential environmental trade-offs associated with copper highlighted in aforementioned 99 

studies, we explore the use of recycled copper and of a polymer based material as alternative, 100 

namely polypropylene-graphite (PP-GR). For pipework, different materials (copper, steel, 101 

polyethylene) and different lengths are considered, in order to represent different site-102 

dependent conditions.  103 

As the amount of recoverable heat and the benefits derived from avoided water heating 104 

significantly influence the environmental sustainability of heat recovery systems, LCA results 105 

are compared to energy savings from different sizes of kitchens used for different purposes: 106 

the comparison includes savings from a case study restaurant and from commercial kitchens 107 

across the UK food service sector. Eventually, extrapolation of the findings to the UK food 108 

service sector determines the potential savings on a national level. 109 

2 Materials and methods 110 

2.1 Goal and Scope 111 

The objective of this study is to provide a comprehensive picture of the environmental burdens 112 

of a heat recovery system retrofitted to a commercial kitchen, to identify the steps in the life 113 

cycle contributing most to these environmental burdens and to explore the role for alternative 114 

materials to mitigate “hotspots” of environmental impacts, and inform eco-design. The LCA 115 

approach has been chosen for this purpose, following the guidelines of ISO 14040 (ISO, 116 

2006). An LCA accounts for resource use and emissions arising during the life of a product or 117 

service, starting with resource extraction and mining, and ending with its disposal or alternative 118 

end-of-life (EoL) management. In the case of the copper pipe, it includes for instance the 119 

mining of the copper ore, through processing of the copper such as melting and extrusion, to 120 

recycling into new copper products.  121 

Environmental impacts are classified into different impact categories, with Global Warming 122 

Potential (GWP) caused by GHG emissions being the most prominent one. We furthermore 123 

chose the following environmental impact categories from the set of categories and 124 

characterisation methods recommended at midpoint level by the International Reference Life 125 

Cycle Data System (ILCD) (EC JRC 2011): Human Toxicity Potential (HTP) and Freshwater 126 

Ecotoxicity Potential (FEToxP), as these impacts are associated to mining activities such as 127 

copper mining; Mineral, fossil & renewable Resource Depletion Potential (RDP), as nearly all 128 

parts of the heat recovery systems assessed are made from finite materials and changes are 129 

expected with different recycled material input rates; Freshwater Eutrophication Potential 130 

(FEP), Acidification Potential (AP), and Photochemical Ozone Formation Potential (POFP), as 131 

they are connected to a variety of industrial processes such as mining, fossil fuel combustion 132 

in heat and electricity generation as well as transport. Eutrophication is furthermore associated 133 

with energy generation from biomass. HTP is presented as sum of both the cancer and non-134 
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cancer toxicity potential. Normalised scores have been obtained in SimaPro, with 135 

normalisation factors based on Benini et al. (2014).  136 

The life cycles of the heat recovery systems are modelled with the software SimaPro (release 137 

9.0) (PRé Sustainability, 2018) and using the Ecoinvent (2018) version 3.5 database for the 138 

life cycle inventory for the majority of processes (see Supplementary Material S1 for additional 139 

databases used). 140 

2.2 System boundaries 141 

The LCAs include all stages from cradle-to-grave, i.e. from the extraction of the raw materials 142 

incorporated in the processes chosen from the database until the end of life of the products 143 

(Figure 1). No environmental burdens are considered to arise during the use phase, as the 144 

device itself is passive and not expected to create any emissions. Maintenance (i.e. cleaning) 145 

intervals are unknown, and cleaning burdens are estimated to be minor compared to overall 146 

lifecycle burdens. Packaging and transport are included. Transport is part of both the 147 

foreground system and the background system through choice of appropriate processes from 148 

the databases (Supplementary Material S1).  149 

 150 

Figure 1: System boundaries of the LCAs on the heat recovery system (left, shown for the copper system) and 151 
extended boundaries for evaluating the savings potential through the replacement of heat energy sources. 152 

2.3 Description of the system and inventory 153 

2.3.1 Overview 154 

The core part of the heat recovery system is the heat exchanger designed as a concentric 155 

double-walled pipe which replaces a part of the wastewater pipe. The warm wastewater flows 156 

through the inner pipe, while the cold incoming water flows in the opposite direction through 157 

the outer pipe (counter flow principle, Supplementary Material S2). For a fully functional heat 158 

exchanger and maximum heat recovery, the warm drain water has to form a falling film along 159 

the wall of the inner pipe (Manouchehri et al., 2015). This is enabled through a vertical 160 

installation (Manouchehri et al., 2015). The heat exchanger is connected to the existing 161 

pipework via plastic fittings (bottom and top connectors) with joint rings, one fitting each end 162 
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of the pipe (BPD ltd., 2019a). Screws and brackets made from steel and rubber fix the heat 163 

exchanger at the wall (BPD ltd., 2019a). 164 

The pre-heated incoming water is led from the heat exchanger to the conventional heating 165 

system, usually a boiler, for further heating. Depending on the layout of the existing plumbing 166 

in a building, the heat exchanger cannot be placed in close vicinity to the boiler or the incoming 167 

cold water pipe and additional pipework can be required to cross the distance. To minimise 168 

heat loss, the pipework is considered to be insulated with a layer of synthetic rubber. 169 

An overview of the inventory is provided in the Supplementary Material S1. 170 

2.3.2 Manufacture of the copper heat exchanger 171 

Description: The heat exchanger considered refers to a model which is 1.68 m long, has an 172 

inner diameter of 48 mm and weighs 6.1 kg (Q-Blue b.v., 2018). The capacity for the drain 173 

water flow is 50 L/min, and the maximum clean water flow is 12 L/min. The clean water void 174 

between the inner and outer cylinder has a volume of 0.39 L. 175 

Modelling: Starting with primary or recycled copper, the production of a semi-finished copper 176 

tube continues with the following steps: melting, casting, extrusion, drawing and finishing steps 177 

from the raw pipe to the final heat exchanger (Tikana et al., 2005).As the processes of melting 178 

and casting are already included in an Ecoinvent database process for primary copper 179 

production, they are only modelled separately for the recycled copper. For melting the 180 

secondary copper, we assume the electricity input for an induction furnace, which is the type 181 

of furnace predominantly used in the copper industry (CDA Inc., 2019). The energy 182 

requirement for melting of copper in an induction furnace is calculated according to basic 183 

physical principles and a plant efficiency of 70% (Dötsch, 2017) (Supplementary Material S3). 184 

As primary copper production is a resource- and energy-intensive process, responsible for 185 

considerable emissions during mining, ore refining and further processing (Althaus and 186 

Classen, 2005; Castro Molinare, 2014), adequate assumptions for the share of recycled 187 

copper in the heat exchanger are necessary for a realistic picture of its environmental impacts. 188 

Two types of recycled or secondary copper can be distinguished: recycled scrap, which 189 

originates from low grade copper scrap and which has to be refined electrolytically before 190 

reuse; and clean scrap, which can be directly re-melted. 191 

Studies from Ciacci et al (2017) and Glöser et al (2013) estimated an average 35% recycling 192 

input rate for all types of copper products in Europe and globally, of which 63% is clean scrap. 193 

Another study, commissioned by the copper industry and claiming to rely on primary industry 194 

data, assumes a share of around 70% of recycled copper as input for the production of 195 

European copper pipes, of which about 90% comes from clean scrap (Tikana et al., 2005).  196 

2.3.3 Manufacture of the PP-GR heat exchanger 197 

PP-GR has been chosen in this study as a potential substitute for copper in a wastewater heat 198 

exchanger for several reasons. It exhibits a greater fouling and corrosion resistance compared 199 

to metals, which is important when conveying media heavily loaded with organic material, such 200 

as kitchen wastewater (Chen et al., 2016; Hussain et al., 2017, Glade et al., 2018). As PP-GR 201 

has been tested and designed for use in highly corrosive environments such as desalination 202 

plants and with higher temperatures than those of kitchen wastewater, we expect the material 203 

to be appropriate to handle wastewater (Glade et al., 2018; Technoform, 2014). From an 204 

environmental perspective, a great advantage is the smaller amount of energy required for 205 

forming polymers, compared with metals. 206 
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Description: There is no commercially available heat exchanger made from PP-GR to date 207 

that is equivalent to the copper model evaluated here. Material requirements are therefore 208 

calculated for a hypothetical heat exchanger with the same length and volume for the water 209 

leading parts in order to compare the amount of recovered heat. As PP-GR has a considerably 210 

lower density than copper, at 1.56 g/cm3, only 1.02 kg material is required. The PP-GR 211 

composite is made of polypropylene as a matrix with graphite as filler, imparting a thermal 212 

conductivity comparable to that of stainless steel (Glade et al., 2018). PP-GR contains 72 wt% 213 

graphite, equalling 50 vol% (Glade et al., 2018).  214 

Modelling: Information on the material composition and properties were attained from a 215 

manufacturer (Technoform, 2014) as well as from a study on its mechanical, chemical and 216 

thermal properties (Glade et al., 2018). Virgin polypropylene and battery grade graphite are 217 

considered as the inputs for the PP-GR pipe. Battery grade graphite production requires 218 

energy intensive steps, comes with a higher environmental burden than that for graphical 219 

paper and is therefore selected as a conservative proxy, so as not to underestimate 220 

environmental burden (Olson et al., 2016). The tube is produced through an extrusion process. 221 

In contrast to the copper device, no field data are available for the heat recovery potential of 222 

the PP-GR heat exchanger in the discussed application. But given a heat transfer coefficient 223 

of the PP-GR tube of 2523 W/(m2*K) (Technoform, 2014), we can determine an effectiveness 224 

of 60.5%, close to that of the copper heat exchanger of 58% on average, according to the 225 

manufacturer (Q-Blue b.v. 2018, Spriet and McNabola, 2019a) (Supplementary Material S4). 226 

Heat recovery potential by the PP-GR device is therefore conservatively assumed to be equal 227 

to that for copper. 228 

2.3.4 Pipework, insulation, fittings and packaging 229 

Pipework required to retrofit the heat exchanger within the existing plumbing network is also 230 

accounted for. The outer diameter of this pipework is 28 mm (DN25), and we consider three 231 

lengths to represent different retrofit situations: 1 m, 10 m (the length required in the case 232 

study), and 30 m. Copper, steel and polyethylene are compared as pipe materials. Information 233 

to model the pipework was retrieved from pipe manufacturers for copper (German Pipe, 2019), 234 

polyethylene (Pipelife UK, 2019) and stainless steel (Geberit Sales Ltd, 2019). The insulation 235 

is modelled using a pipe insulation module from Ecoinvent, which refers to insulation made 236 

from the synthetic rubber ethylene propylene diene methylene (EPDM). Information on the 237 

quantities and types of material of the fittings were derived from a manufacturer and a supplier 238 

(BPD ltd., 2019b; Q-Blue b.v., 2018). The weights of the parts and packaging were determined 239 

directly by the authors. 240 

2.3.5 Transport 241 

The city of Birmingham has been chosen as a representative, central location within the UK 242 

for installation of the heat recovery system. The copper heat exchanger and the fittings are 243 

considered to be shipped from the Netherlands to the UK by lorry, unless more specific 244 

information has been provided by a supplier for particular fittings (Livingston, 2018). Two parts 245 

of the top connector are produced in Poland, and the third part is made in the UK along with 246 

the entire bottom connector. The PP-GR heat exchanger in contrast is shipped from the 247 

production site in Kassel, Germany. The pipework and insulation is assumed to originate from 248 

Germany. The transport from the site of use to a recycling facility or landfill site is considered 249 

using a generic distance of 100 km. 250 
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2.3.6 End-of-Life 251 

The LCAs regard recycling for parts where a recycling infrastructure exists in the UK, and 252 

landfill where recycling is unlikely. Different methodologies exist to allocate burdens for 253 

recyclable materials in LCA (Ekvall and Tillman, 1997; Johnson et al., 2013). Here, we opt for 254 

the cut-off or recycled content approach (Johnson et al., 2013) and hence do not account for 255 

emissions and benefits from recycling in the EoL stage, as the recycling benefits and burdens 256 

in the manufacturing stage are already taken into account, where applicable. For copper, we 257 

assume recycling of 80%, which is the EoL processing rate for European plumbing equipment 258 

as determined by Ruhrberg et al. (2006). The remaining copper is considered to go to landfill. 259 

Bottom and top connectors are recycled completely, as their size allows for municipal waste 260 

management for hard plastics. Brackets and screws are assumed to go to landfill, as it is 261 

unlikely that the user will deconstruct and separate these small components to allow for 262 

recycling. For insulation, material is considered to be sent to a landfill for disposal (BIF REP, 263 

2013). Pipework: Copper pipework follows the same EoL route as the heat exchanger from 264 

copper. Steel is recycled at a rate of 70% (Davis et al., 2006) and polyethylene EoL is split 265 

into recycling (16%), incineration (35%) and landfill (49%) (Mudgal et al., 2011) (see 266 

Supplementary Material S1 for details). 267 

As the PP-GR composite is a relatively new material on the market, we conservatively assume 268 

landfill as the most likely fate, accounting for both polypropylene and the inert graphite. 269 

2.4 Scenarios and functional unit 270 

A range of scenarios has been adopted for the setup of the heat recovery system in order to 271 

represent various installation settings and compare different design options. The five 272 

scenarios are listed in Table 1. They all include the functional unit of a heat recovery system 273 

with one in-line heat exchanger, pipework of 10 m length and fittings. Separate from these 274 

scenarios, we assess the design options for the pipework, comparing copper, steel and 275 

polyethylene pipework and lengths of 1, 10 and 30 m. 276 

Table 1: Overview of assumptions for scenarios of the LCAs. 277 

Scenario Name 
Number of heat 

exchangers 
Material heat exchanger Material pipework Length pipework 

1 Copper (0%) 1 
Copper (0% recycled 

content) 
Copper (0% recycled 

content) 
10 m 

2 Copper (35%) 1 
Copper (35% recycled 

content) 
Copper (35% recycled 

content) 
10 m 

3 Copper (70%) 1 
Copper (70% recycled 

content) 
Copper (70% recycled 

content) 
10 m 

4 Copper (35%) + PE 1 
Copper (35% recycled 

content) 
Polyethylene 10 m 

5 PP-GR + PE 1 
Polypropylene-graphite (PP-

GR) 
Polyethylene 10 m 

 278 

For the operational lifetime, we assume a conservative duration of 10 years. Other studies 279 

considered a 50-year lifetime for a copper heat exchanger or copper pipework (Asadi et al., 280 

2016; Ip et al., 2018), but damage through corrosion is likely to occur earlier with kitchen 281 

wastewater as it carries a greater load of organic pollutants than shower drain or clean water. 282 

The functional unit for the case of an average UK kitchen is 1 kWh of water heating delivered 283 

through heat recovery. 284 

2.5 Savings potential 285 

In order to determine the potential environmental savings associated with use of the heat 286 

recovery system, data on recovered heat are required. We look at two different cases: 287 
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Case study: Firstly, LCA results are set into context with data on heat recovery from a case 288 

study on the restaurant kitchen of Penrhyn Castle in Bangor, North Wales, UK, which is open 289 

to visitors as a tourist attraction. Spriet and McNabola (2019b) predicted the amount of 290 

recovered heat during an 8-month monitoring study to be 8.45 kWh per day, taking into 291 

account the following: a copper heat exchanger as described above, a measured average 292 

daily water consumption of 652.5 L, a 90% return rate of the consumed water into the drain, a 293 

retention time of water through kitchen appliances of no longer than 1 hour and measured 294 

average drain water temperatures of 25 to 35 °C (Supplementary Material S4). As the 295 

pipework is insulated and as time between heat recovery and consumption of the pre-heated 296 

water is very short, heat losses in the pipe are considered negligible. We consider the 297 

restaurant to be open 310 days a year. The environmental impacts realised through heat 298 

recovery are compared to the avoided impacts when replacing different conventional and 299 

renewable energy sources for water heating: natural gas, UK grid electricity, woodchips, geo 300 

and solar thermal energy, and the energy mix for water heating in the UK service sector (BEIS, 301 

2018) (Table 2; Supplementary Material S5 for environmental burdens from the energy mix). 302 

Results are presented as payback times for heat recovery when it replaces the mentioned 303 

energy sources. 304 

Life cycle burdens of the heat recovery systems as in scenario 2 and 5 are considered. 305 

Scenario 2 represents the actual installations carried out at the case study site where only 306 

copper equipment was used. Scenario 5 has been selected to show potential savings with 307 

polymer-based materials. 308 

Table 2: Types of energy and respective database modules used for determination of environmental savings 309 
through heat recovery 310 

Energy type Database module Database 

Share in UK 
water 
heating mix 
[%]* 

Natural gas Heat, central or small-scale, natural gas {Europe without Switzerland}| market for Ecoinvent 66 

Grid electricity Electricity, low voltage {GB}| market for Ecoinvent 14 

Oil 
Heat, central or small-scale, other than natural gas {Europe without Switzerland}| heat 
production, light fuel oil, at boiler 10 kW condensing, non-modulating 

Ecoinvent 12 

Softwood 
chips 

Heat, central or small-scale, other than natural gas {CH}| heat production, softwood chips 
from forest, at furnace 50 kW, state-of-the-art 2014 

Ecoinvent 4 

Hardwood 
chips 

Heat, central or small-scale, other than natural gas {CH}| heat production, hardwood chips 
from forest, at furnace 50 kW, state-of-the-art 2014 

Ecoinvent 1 

Straw 
Heat, district or industrial, other than natural gas {GLO}| heat production, straw, at furnace 
300 kW 

Ecoinvent 3 

Geothermal 
Heat, borehole heat pump {Europe without Switzerland}| heat production, borehole heat 
exchanger, brine-water heat pump 10 kW 

Ecoinvent n.a. 

Solar thermal 
Heat, central or small-scale, other than natural gas {CH}| operation, solar collector system, 
evacuated tube collector, one-family house 

Ecoinvent n.a. 

*current UK energy mix for heating water in the service sector (BEIS, 2018). The category “biomass” was split into softwood chips, hardwood 
chips and straw in order to best reflect the current use of biomass heat sources (BEIS 2018b, Forest Research 2018, DEFRA 2017). 
Neglected: bioenergy from (unless included in grid electricity): landfill gas, sewage gas, waste wood, animal biomass, anaerobic digestion and 
biodegradable energy from waste. 
 

 311 

UK commercial food outlets: Secondly, we determine the environmental sustainability of a 312 

heat recovery system when used with typical water consumption rates prevalent in UK 313 

commercial food outlets. The water consumption rates refer to the average rates of different 314 

food outlet categories (Spriet and McNabola, 2019a), ranging from 360 to 12,500 L/day. Heat 315 

recovery data were determined as in Spriet and McNabola (2019a), (Supplementary Material 316 

S4), taking into account the number of heat exchangers optimised for maximum financial 317 

payback with 310 open days a year over a 10 year lifetime i.e. for greater flow-rates, the 318 



9 
 

installation of several heat exchangers in parallel is considered (Supplementary Material S6). 319 

The life cycle burdens taken into account for the heat recovery system refer to scenario 4. 320 

Finally, data on the number of served meals, water consumption and the number of outlets in 321 

the hospitality and food service sector serve to extrapolate the environmental savings to a UK 322 

level (Backman, 2018; Bromley-Challenor et al., 2013; Spriet and McNabola, 2019a). 323 

3 Results and Discussion 324 

3.1 Life Cycle Assessment results 325 

Figure 2 shows the characterised LCA results of all scenarios for the drain water heat recovery 326 

system. The different materials used for the scenarios lead to large differences between their 327 

footprints. There are clear benefits from increasing the share of recycled copper or fully 328 

replacing copper with polymer materials. Production, use and end-of-life of the copper systems 329 

emit 87, 81 and 71 kg of CO2 equivalent, respectively, depending on the recycled material 330 

input. These numbers coincide with the findings of Giurco and Petrie (2007) who found an 331 

increase in recycling rates besides demand reduction the only strategy to meet GHG reduction 332 

targets for copper production as ever lower ore grades constrain the potential to decarbonise 333 

copper ore processing. 334 

A combination of a copper heat exchanger with polyethylene pipework has a GWP of 39 kg 335 

CO2 equivalent. Reductions in burdens of around 45-50% can be achieved for HTP, FEP, 336 

FEtoxP and RDP, when switching from a heat exchanger and pipework of zero percent 337 

recycled copper to one of 70% recycled copper. Replacement of the 35%-copper pipework 338 

through PE can lower the impacts of the whole system by 50-60% considering the heat 339 

exchanger is still made from 35%-copper. Scenario 4 therefore represents the most 340 

environmentally friendly material combination currently available on the market for this set-up.  341 

Figure 2: Environmental burdens arising from the life cycle of drain water heat recovery systems consisting of in-342 
line heat exchanger, 10 m pipework, fittings and insulations. Percentage in brackets stands for the share of 343 
recycled copper. PE: polyethylene, PP-GR: Polypropylene-Graphite. GWP: Global Warming Potential; HTP: 344 
Human Toxicity Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification Potential; FEP: 345 
Freshwater Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable 346 
Resource Depletion Potential. All scenarios as described in Table 1. 347 

Still though, a purely polymer based system with PP-GR performs considerably better with a 348 

GWP of only 16 kg CO2 equivalent. Depending on the category, it exhibits only 1-20% of the 349 

impacts of the 35%-copper scenario. Supplementary Material S7 shows the scenarios in a 350 
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relative comparison to each other. The normalised results allow for inter-category comparison 351 

and show that the most relevant contributions are those to HTP and FEToxP for both systems 352 

(Supplementary Material S8). 353 

Ip et al. (2018) determined a GWP of 56 kg CO2 equivalent for their copper heat exchanger, 354 

which would compare to 26, 29 or 32 kg CO2 equivalent for the life cycle of our copper heat 355 

exchanger alone with 70, 35 or 0 % recycled content, respectively (excluding pipework). Their 356 

study does not state the recycled copper input, making direct comparison difficult. Even so, 357 

one reason for the different results is certainly the different material requirement for the heat 358 

exchanger, with about 25 kg copper in Ip’s study and about 6 kg in this study. 359 

Figure 3 shows the relative contribution of the life cycle stages to the environmental burdens 360 

of heat recovery systems under scenario 2 and 5. The majority of burdens of the copper 361 

system across all categories originate from manufacture of copper parts (heat exchanger and 362 

pipework), ranging from 87% of GWP burdens to 99% of HTP, FEP and FEtoxP burdens. This 363 

underlines the pollution associated with the extraction and manufacture of copper products 364 

discussed earlier in the introduction (Althaus and Classen, 2005; Castro Molinare, 2014). 365 

Indeed, the main burdens from the manufacture of heat exchanger and pipes derive from the 366 

generation of primary copper (Ecoinvent, 2018): HTP causing emissions arise mainly during 367 

the treatment of sulfidic tailings from primary copper production and comprise groundwater 368 

polluting zinc and arsenic (HTP non-cancer), and chromium VI (HTP cancer), amongst others. 369 

Similarly, FEToxP is mainly caused by zinc and copper emissions from tailing treatment and 370 

FEP predominantly through phosphate released into groundwater during the same process 371 

(Ecoinvent, 2018). The main substances responsible for POFP are nitrogen oxides emitted 372 

into the air during blasting, which also releases sulphur dioxide, the major cause for AP. 373 

Resource depletion is caused especially by use of the sulfidic copper ore and molybdenum 374 

during primary copper generation. Other resources contribute less than 1% to the RDP, hence 375 

RDP is almost exclusively due to the consumption of abiotic materials. Only for GWP, the 376 

finishing process of the heat exchanger and pipes has a greater influence than primary copper 377 

production driven by heat and electricity consumption. The impact from the pipework is greater 378 

than that from the heat exchanger, which is due to greater material use for the 10 m pipework 379 

(11 kg vs. 6 kg copper).  380 

In the PP-GR system, the manufacture of the heat exchanger and pipework plays a 381 

comparatively smaller role. Apart from transport, all components make significant 382 

contributions to the lower overall impacts, depending on the category. Manufacture of the 383 

insulation from EPDM rubber accounts for 14-90% of burdens, with the greatest contribution 384 

going to RDP. The main resource depleted is indium during the operation of the zinc mine, 385 

zinc being an ingredient for the production of EPDM (Ecoinvent, 2018). EoL stage is mainly 386 

responsible for impacts in FEToxP (64%), HTP (29%) and GWP (16%). FEToxP causing 387 

emissions in the EoL stage are arising from incineration and landfilling of the pipe material PE, 388 

both processes releasing vanadium into groundwater (Ecoinvent, 2018). The contribution of 389 

the predominantly cardboard packaging ranges from 4% (RDP) to 22% (FEP) across 390 

categories. 391 
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  392 

Figure 3: LCA of heat recovery systems (scenarios 2 and 5): Relative contribution of the life cycle stages to the 393 
environmental impacts of the two heat recovery systems including 10 m pipework. Left: scenario 2: copper 394 
system with 35% recycled copper input. Right: scenario 5: PP-GR composite system with PP-GR heat exchanger 395 
and pipework from PE. GWP: Global Warming Potential; HTP: Human Toxicity Potential; POFP: Photochemical 396 
Ozone Formation Potential; AP: Acidification Potential; FEP: Freshwater Eutrophication Potential; FEToxP: 397 
Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable Resource Depletion Potential; Hex: Heat 398 
exchanger; EoL: End of Life. 399 

The length of the pipework greatly influences the overall LCA results. Figure 4 shows the 400 

burdens from heat exchanger and pipework separately. Burdens for long and metal based 401 

(steel or copper) pipework can be greater than those from the heat exchanger. Steel pipe 402 

burdens are considerably lower than copper pipe burdens, ranging from 89% (FEtoxP) to 15% 403 

(GWP) of those from copper (see Supplementary Material S9 for more impact categories). 404 

These results underline the importance of considering the full equipment necessary for retrofit, 405 

and also how on-site conditions influence the environmental sustainability of a retrofit 406 

measure. As far as we are aware, this is the first LCA study of a heat recovery system to 407 

consider all associated retrofit pipework. 408 
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 409 

Figure 4: Comparison of LCA results for the heat exchanger and pipework for (clockwise from top left): global 410 
warming potential (GWP), resource depletion potential (RDP), freshwater ecotoxicity potential (FEtoxP) and 411 
human toxicity potential (HTP). Left two bars: complete life cycle of a heat exchanger system without pipework. 412 
Right three bars: life cycle of pipework from polyethylene (PE), steel and copper (35% recycled content). 413 

3.2 Environmental savings through heat recovery 414 

3.2.1 Environmental savings in the case study 415 

In the Penrhyn Castle case study, all environmental burdens from the heat recovery system 416 

(scenario 2) will be paid back within 10 years when electricity, geo or solar thermal energy or 417 

the energy mix for water heating is replaced (Table 3). If the recovered heat replaces natural 418 

gas, the impacts of HTP, FEP, FEtoxP and RDP from production, installation and EoL of the 419 

heat exchanger and pipework will not be fully paid back in the conservative 10-year lifetime 420 

considered in this study. The low FEToxP and RDP of wood heating also prevent payback in 421 

the FEtoxP and RDP categories through heat recovery if wood is used for water heating. For 422 

GWP, relatively short payback times of under 1.6 years compared with all energy alternatives 423 

can be achieved. The payback time for GWP compared to natural gas, the most common 424 
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water heating source, is only 0.12 years. This is shorter than the 0.55-1.33 year GWP payback 425 

previously calculated for shower heat recovery (Ip et al., 2018). It underpins the suitability of 426 

kitchens for drain water heat recovery due to typically higher wastewater flow-rates than in 427 

showers. 428 

As the burdens of the PP-GR heat recovery system are substantially lower, they are paid back 429 

during shorter periods of operation, within 2 years for all impact categories (Table 3). 430 

Table 3: Environmental payback times in years for the heat recovery system of the Penrhyn Castle case study. 431 
Comparison of the copper (35% recycled content) and the PP-GR systems including 10 m of pipework with 432 
different energy sources for water heating. Bold and italic: Impacts are not paid back within a 10-year lifetime. NG 433 
= natural gas. Mix: Current UK Energy mix for heating water in the service sector (BEIS, 2018). GWP: Global 434 
Warming Potential; HTP: Human Toxicity Potential; POFP: Photochemical Ozone Formation Potential; AP: 435 
Acidification Potential; FEP: Freshwater Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; 436 
RDP: Mineral, fossil & renewable Resource Depletion Potential. Energy sources as in Table 2. 437 

Impact category 
NG Electricity Wood Geo Solar Mix 

Copper (35%) [years] 

GWP 0.12 0.06 0.29 0.23 1.58 0.11 

HTP 18.87 1.22 2.13 3.76 3.20 5.04 

POFP 0.72 0.13 0.27 0.61 2.05 0.40 

AP 1.82 0.16 1.19 0.60 1.90 0.68 

FEP 12.20 0.59 8.79 1.10 3.31 3.19 

FEtoxP 14.16 0.52 11.78 1.72 3.51 3.02 

RDP 14.32 2.94 33.49 8.41 3.63 9.23 

PP-GR + PE [years] 

GWP 0.02 0.01 0.05 0.04 0.27 0.02 

HTP 0.16 0.01 0.02 0.03 0.03 0.04 

POFP 0.08 0.01 0.03 0.07 0.23 0.04 

AP 0.10 0.01 0.07 0.03 0.11 0.04 

FEP 0.19 0.01 0.13 0.02 0.05 0.05 

FEtoxP 0.25 0.01 0.21 0.03 0.06 0.05 

RDP 0.73 0.15 1.71 0.43 0.19 0.47 

 438 
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3.2.2 Environmental savings in UK commercial food outlets 439 

Two different flow-rates, representing the bottom and top end of the flow-rate spectrum in 440 

typical UK food outlets, are taken to show a worst- and best-case scenario for environmental 441 

impacts from heat recovery. The best case refers to kitchens with the highest water flow-rate 442 

typically found in UK food outlets (12,500 L/day), highest heat recovery potential and therefore 443 

the lowest impacts per kWh (“H recov. Low”). The opposite applies to the worst-case scenario 444 

with a flow-rate of 360 L/day (“H recov. High”). The environmental burdens for the heat 445 

recovery system are based on scenario 4 (Table 1), including one heat exchanger for the low-446 

flow option and four heat exchangers in parallel for the high-flow option.  447 

Figure 5: Environmental impacts per kWh for water heating. Comparison of heat recovery from drain water with 448 
other renewable and non-renewable heat sources, including the current UK energy mix for water heating (“mix”). 449 
Burdens of the heat recovery system as in scenario 4 with two different water flow-rates found in UK commercial 450 
food outlets. H recov. Low: low impact case due to higher flow-rate of 12,500 L/day. H recov. High: high impact 451 
case due to lower flowrate of 360 L/day. NG: natural gas, electricity: UK grid mix, wood: wood biomass 452 
combustion, geo: geothermal, solar: solar thermal. GWP: Global Warming Potential; HTP: Human Toxicity 453 
Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification Potential; FEP: Freshwater 454 
Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable Resource 455 
Depletion Potential. 456 

Figure 5 displays the environmental impacts for providing 1 kWh for water heating through 457 

heat recovery versus other energy sources. Considering global warming, heating water 458 

through the use of recovered heat exhibits the lowest emissions with about 0.4 to 459 

4 g CO2 equivalent/kWh for the low and high impact scenario, respectively. This compares to 460 
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emissions of 20 to 550 g CO2 equivalent/kWh for solar thermal and electric water heating – 461 

i.e. even when currently available heat recovery technology replaces renewable energy 462 

sources, GWP can be reduced. Also for ozone formation and acidification, heat recovery at 463 

both flow-rates leads to impact savings compared to all other heat sources. In the other 464 

categories, environmental sustainability of heat recovery depends on the flow-rate or the 465 

heating source replaced. For HTP and FEP, natural gas water heating can have lower 466 

environmental impacts compared to heat recovery at low flow-rates. Here, emission savings 467 

through heat recovery are only achieved from a flow-rate of about 750 L/day onwards (HTP) 468 

and 555 L/day (FEP) (values not shown in graph). Similarly, FEtox and RDP can be reduced 469 

through heat recovery at higher flow-rates only, when replacing natural gas or wood biomass. 470 

With these results a recommendation for drain water heat recovery can be given from a daily 471 

flow-rate of 750 L when natural gas is replaced, the most common source for water heating in 472 

the UK. 473 

Figure 6 shows the environmental savings that can be achieved during 10 years of heat 474 

recovery depending on the flow-rate and replacing the water heating energy mix. Values are 475 

shown as normalised scores. The net environmental savings increase with water 476 

consumption, although the number of heat exchangers and with them the environmental 477 

footprint of the installations augments, too. Apart from RDP, environmental payback is reached 478 

within 10 years for all impact categories starting from the lowest average daily water 479 

consumption considered (360 L/day) (Spriet and McNabola, 2019a). For RDP, environmental 480 

payback within 10 years is only achieved at water consumption rates above approximately 481 

555 L/day or 300 m3/year. The greatest normalised savings are achieved in HTP and FEtoxP, 482 

followed by GWP, AP, RDP, POFP and FEP in descending order. 483 

  484 

Figure 6: Normalised net environmental savings (positive values) through heat recovery from a commercial 485 
kitchen after 10 years depending on the yearly water consumption. GWP: Global Warming Potential; HTP: 486 
Human Toxicity Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification Potential; FEP: 487 
Freshwater Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable 488 
Resource Depletion Potential. 489 

Extrapolation of the savings using average daily water consumption rates for the circa 258,000 490 

food outlets in the UK (Backman, 2018; Bromley-Challenor et al., 2013; Spriet and McNabola, 491 

2019a) gives the potential annual environmental savings for the UK (Table 4). Annual GHG 492 

emission mitigation of 490 Gg (kilo-tonnes) CO2 equivalent could be avoided if heat from 493 
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wastewater was recovered across all UK commercial food outlets. These environmental 494 

savings equate to 30% of thermal energy needed for water heating in the hospitality and food 495 

service sector, based on the share of hot water consumed in the Penrhyn Castle restaurant 496 

case study. 497 

The results show that even with the currently available copper heat exchanger and especially 498 

at high water consumption rates, there is strong evidence for environmental savings. It can 499 

therefore be recommended as a viable measure to de-carbonise water heating in commercial 500 

kitchens. 501 

Table 4: Yearly net environmental savings potential for the UK through heat recovery from wastewater in all 502 
commercial food outlets. eq = equivalent 503 

Impact category GWP HTP POFP AP FEP FEtoxP RDP 

Unit [kt CO2 eq] [CTUh] [t NMVOC eq] 
[1000 molc H+ 

eq] 
[t P eq] [10^6 CTUe] [kg Sb eq] 

All outlets 490 78 772 1390 70 2979 3370 

 504 

Although an economic evaluation of the heat recovery system is out of scope of this study, it 505 

is worth mentioning that heat recovery is not only beneficial from an environmental point of 506 

view, but also pays back financially from water consumption rates of 960 L/day (Spriet and 507 

McNabola, 2019a). 508 

A study by McNabola and Shields (2013) estimated the heat recovery potential from shower 509 

drain water in Ireland to be 808 GWh per year, averaging 577 kWh per year for a 3-person 510 

household. Taking into account the population of the UK of 66M (ONS, 2019) and the UK 511 

domestic energy mix for water heating (BEIS, 2018), this would translate to yearly savings of 512 

13 TWh or 3600 Gg CO2 equivalent. Based on the heat recovery system evaluated in this 513 

study, the aforementioned annual heat recovery at a household scale would not be financially 514 

viable, nor environmentally responsible from a resource depletion perspective. 515 

3.3 Outlook 516 

3.3.1 Expected changes with a changing energy mix 517 

With a change in the future energy mix towards more renewable sources, the benefit of saving 518 

energy through heat recovery is likely to shift from avoiding GHG emissions, to avoiding the 519 

depletion of metal and mineral resources. GHG emission savings through heat recovery will 520 

be lower as water heating from renewable energy sources emits less GHGs, for both direct 521 

electric water heating and thermal water heating with solar collectors or air and ground-source 522 

heat pumps (Clarke et al., 2008). Although of course, the GHG emissions of producing the 523 

heat recovery system and pipework are also expected to decrease owing to decarbonisation 524 

of energy supplies.  525 

Resource depletion burdens are higher for renewable electricity generation (namely wind, 526 

solar and hydro power) compared to energy supply from fossil resources owing to large 527 

quantities of abiotic resources, especially metals (e.g. manganese, copper, iron, nickel, 528 

chrome) required in renewable energy infrastructure (Berrill et al., 2016; Gallagher et al., 529 

2019). The trade-offs between resource depletion and GHG emission savings which currently 530 

exist for heat recovery at low flow-rates are therefore likely to disappear. 531 

Another important indirect and long-term benefit of heat recovery lies in increasing the 532 

efficiency in which energy is used and thus supporting a transformation to a sustainable 533 

energy economy through reducing energy demand – a strategy that has been adopted as part 534 
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of European and UK policies for future low-carbon energy supply (Clarke et al., 2008; da Graça 535 

Carvalho, 2012; Ekins and Lees, 2008; Rosenow, 2012). 536 

3.3.2 Recommendation for further research 537 

As neither the copper nor the PP-GR heat exchanger have been in use with kitchen drain 538 

water for significant periods of time, there is room for further research and need for empirical 539 

data on real performance. In addition to environmental savings during manufacture, PP-GR 540 

and similar composites can offer other potential advantages such as the reduction of scaling 541 

in the pipe and thus reduced build-up of an insulating layer inhibiting heat transfer. The 542 

behaviour of new materials for this application, but also the behaviour of the conventional 543 

copper heat exchanger when used with heavily polluted wastewater such as that from 544 

kitchens, requires long-term experimental studies. This will provide more reliable data on heat 545 

transfer performance and on required maintenance interventions such as cleaning to remove 546 

scaling or fouling. It will also allow more accurate determination of the useful lifetime of the 547 

heat exchangers, which will be important for both economic and environmental performance. 548 

The lack of accurate data sets and reliance on manufacturer data for modelling the PP-GR 549 

material are aspects which should improve with increasing use of such materials. 550 

4 Conclusions 551 

The presented LCA study is the first to evaluate the environmental sustainability of a heat 552 

recovery system for harvesting the heat of commercial kitchens’ drain water, based on case 553 

study data. Different sets of materials are studied for the system, comparing components from 554 

conventional copper with alternatives from polypropylene and graphite, as well as 555 

polyethylene. The results support the following conclusions: 556 

• The environmental impacts from the copper system, predominantly arising from the 557 

production of primary copper, can be reduced substantially through increasing the 558 

share of recycled copper as input material. 559 

• A critical factor influencing the material requirement and environmental footprint of any 560 

retrofitted (or new) heat recovery system is the length of pipework necessary for 561 

connecting the heat exchanger with boiler and cold water supply. We therefore 562 

recommend to design the system as compact as possible. 563 

• It is strongly encouraged to consider material choice during the design phase of such 564 

installations, including the use of recycled material or new functional materials, such 565 

as the polypropylene-graphite composite. 566 

• Heat recovery shows environmental trade-offs with other water heating sources only 567 

for flowrates at the lower end of the spectrum of typical water consumption rates in UK 568 

food outlets, mainly for resource depletion. 569 

• The amount of recovered heat and with it the environmental savings increase with the 570 

water consumption rate, even when environmental capital costs are increased through 571 

the installation of several heat exchangers in parallel. Environmental savings across 572 

all seven impact categories analysed is achieved for water consumption above 573 

555 L/day when replacing the heating energy mix.  574 

• Heat recovery from wastewater from food outlets offer a potential solution for saving 575 

energy and emissions across the food service sector. When applied across all UK food 576 

outlets, GHG emission savings can amount 490 Gg CO2 equivalent per year. 577 

 578 

 579 
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Figure and Table Captions: 755 

Figure 1: System boundaries of the LCAs on the heat recovery system (left, shown for the copper system) and 756 
extended boundaries for evaluating the savings potential through the replacement of heat energy sources. 757 

Figure 2: Environmental burdens arising from the life cycle of drain water heat recovery systems consisting of in-758 
line heat exchanger, 10 m pipework, fittings and insulations. Percentage in brackets stands for the share of 759 
recycled copper. PE: polyethylene, PP-GR: Polypropylene-Graphite. GWP: Global Warming Potential; HTP: 760 
Human Toxicity Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification Potential; FEP: 761 
Freshwater Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable 762 
Resource Depletion Potential. All scenarios as described in Table 1. 763 

Figure 3: LCA of heat recovery systems (scenarios 2 and 5): Relative contribution of the life cycle stages to the 764 
environmental impacts of the two heat recovery systems including 10 m pipework. Left: scenario 2: copper system 765 
with 35% recycled copper input. Right: scenario 5: PP-GR composite system with PP-GR heat exchanger and 766 
pipework from PE. GWP: Global Warming Potential; HTP: Human Toxicity Potential; POFP: Photochemical Ozone 767 
Formation Potential; AP: Acidification Potential; FEP: Freshwater Eutrophication Potential; FEToxP: Freshwater 768 
Ecotoxicity Potential; RDP: Mineral, fossil & renewable Resource Depletion Potential; Hex: Heat exchanger; EoL: 769 
End of Life. 770 

Figure 4: Comparison of LCA results for the heat exchanger and pipework for (clockwise from top left): global 771 
warming potential (GWP), resource depletion potential (RDP), freshwater ecotoxicity potential (FEtoxP) and 772 
human toxicity potential (HTP). Left two bars: complete life cycle of a heat exchanger system without pipework. 773 
Right three bars: life cycle of pipework from polyethylene (PE), steel and copper (35% recycled content). 774 

Figure 5: Environmental impacts per kWh for water heating. Comparison of heat recovery from drain water with 775 
other renewable and non-renewable heat sources, including the current UK energy mix for water heating (“mix”). 776 
Burdens of the heat recovery system as in scenario 4 with two different water flow-rates found in UK commercial 777 
food outlets. H recov. Low: low impact case due to higher flow-rate of 12,500 L/day. H recov. High: high impact 778 
case due to lower flowrate of 360 L/day. NG: natural gas, electricity: UK grid mix, wood: wood biomass 779 
combustion, geo: geothermal, solar: solar thermal. GWP: Global Warming Potential; HTP: Human Toxicity 780 
Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification Potential; FEP: Freshwater 781 
Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable Resource 782 
Depletion Potential 783 

Figure 6: Normalised net environmental savings (positive values) through heat recovery from a commercial kitchen 784 
after 10 years depending on the yearly water consumption. GWP: Global Warming Potential; HTP: Human Toxicity 785 
Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification Potential; FEP: Freshwater 786 
Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, fossil & renewable Resource 787 
Depletion Potential. 788 

Table 1: Overview of assumptions for scenarios of the LCAs. 789 

Table 2: Types of energy and respective database modules used for determination of environmental savings 790 
through heat recovery 791 

Table 3: Environmental payback times in years for the heat recovery system of the Penrhyn Castle case study. 792 
Comparison of the copper (35% recycled content) and the PP-GR systems including 10 m of pipework with different 793 
energy sources for water heating. Bold and italic: Impacts are not paid back within a 10-year lifetime. NG = natural 794 
gas. Mix: Current UK Energy mix for heating water in the service sector (BEIS, 2018). GWP: Global Warming 795 
Potential; HTP: Human Toxicity Potential; POFP: Photochemical Ozone Formation Potential; AP: Acidification 796 
Potential; FEP: Freshwater Eutrophication Potential; FEToxP: Freshwater Ecotoxicity Potential; RDP: Mineral, 797 
fossil & renewable Resource Depletion Potential. Energy sources as in Table 2. 798 

Table 4: Yearly net environmental savings potential for the UK through heat recovery from wastewater in all 799 
commercial food outlets. eq = equivalent 800 


