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Abstract 6 

In this study we assess the potential for farmland hedgerows to provide climate mitigation 7 

via carbon (C) storage, using soil carbon dioxide (CO2) efflux to improve upscaling validity. 8 

Two contrasting sites, freely-draining (FD) versus seasonally-wet (SW), situated in mixed-9 

livestock farms (Conwy, Wales, UK), were selected. We measured soil CO2 efflux associated 10 

with three field boundaries: hedgerow on SW soil; hedgerow on FD soil; stone wall (abiotic 11 

control) on FD soil, quantifying the influence of distance from field boundary and grazing 12 

occurrence (grazed pasture versus un-grazed zone adjacent to hedgerows) on annual C 13 

budgets based on soil CO2 flux and net primary productivity. For the FD site, the annual C 14 

budget showed that pasture was a net source of C emissions (11 ± 1.5 t CO2 ha-1 yr-1) and the 15 

un-grazed zone adjacent to the hedgerow a net sink (-0.9 ± 2.2 t CO2 ha-1 yr-1). For the SW 16 

site, pasture acted as a small net sink of C (-0.1 ± 1.3 t CO2 ha-1 yr-1) and the hedgerow zone a 17 

net source (5.8 ± 0.8 t CO2 ha-1 yr-1), due entirely to a spike in soil CO2 efflux associated with 18 

a relatively unusual summer drought. To investigate the effect of this observed summer 19 

drought on more typical (for the UK maritime climate) annual C source-sink dynamics, we 20 

modelled soil CO2 efflux for a summer-drought-excluded year for both FD and SW soils. With 21 

greater hedgerow cover (modelled prediction compared with a baseline of no hedgerows), 22 
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annual CO2 flux became more negative (greater net sink) in fields on FD soil (by 1 t CO2 ha-1 23 

yr-1 at 8% hedgerow cover), with drought limiting the effect size. In SW soils, greater 24 

hedgerow cover also led to a more negative annual CO2 flux (by 0.4 t CO2 ha-1 yr-1 at 8% 25 

hedgerow cover) when drought was excluded, but a more positive flux (net C source) with 26 

drought included (by 0.5 t CO2 ha-1 yr-1 at 8% hedgerow cover). This study illustrates the 27 

importance of the interaction between soil type and seasonal events such as drought on the 28 

ability of hedgerows to act as a net C sink. 29 

Keywords: Agriculture; Agroforestry; Carbon budget; Carbon dioxide; Grassland; Landscape. 30 

1. Introduction 31 

Agricultural activities account for ~15% of the total global greenhouse gas (GHG) emissions 32 

that contribute to climate change (IPCC, 2014). Currently, agriculture is responsible for ~50 33 

Mt carbon dioxide (CO2) equivalent or 10% of total UK emissions (Defra, 2017), predominantly 34 

attributed to the livestock sector. Land management strategies that increase climate change 35 

regulation are therefore of major interest to policy makers (Thiel et al., 2015). One such 36 

strategy is agroforestry, defined as the practice of growing trees together with livestock 37 

and/or crops for a variety of benefits, including silvopasture, riparian planting, shelterbelts 38 

and hedgerows (Kim et al., 2016). The potential of existing and new farmland hedgerows, 39 

defined as lines of trees and shrubs typically managed by regular cutting (Baudry et al., 2000), 40 

to provide climate change mitigation via carbon (C) storage has been increasingly recognised 41 

over the past decade (Wolton et al., 2014; Scholefield et al., 2016). Despite this, accurate 42 

estimates of hedgerow C storage in temperate agroecosystems are rare, with both above- 43 

and below-ground biomass (Thiel et al., 2015; Axe et al., 2017), soil CO2 efflux (Thiel et al., 44 

2017) and soil organic carbon (SOC) storage (Amadi et al., 2016; Ford et al., 2019) largely 45 
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unknown, or assessed in combination with other agroforestry systems (Ma et al., 2020). 46 

Assessment of hedgerow C budgets at the landscape scale are infrequent and either rely on 47 

modelled data (Falloon et al., 2004), focus solely on soil organic carbon (SOC) stock (Walter 48 

et al., 2003), or have limited scope for extrapolation to a European setting (Smuckler et al., 49 

2010). 50 

In agroforestry systems, soil CO2 efflux was consistently found to be greater under or adjacent 51 

to trees, hedgerows or shelterbelts than within arable cropped or pasture fields further away 52 

from the woody plants (Peichl et al., 2006; Amadi et al., 2016; Amadi et al., 2017; Baah-53 

Acheamfour et al., 2016; Baah-Achemfour et al., 2017; Thiel et al., 2017), with relatively few 54 

studies showing the opposite trend (Franzleubbers et al., 2017). Greater soil CO2 efflux 55 

adjacent to trees was attributed to: i) enhanced fine root turnover and rhizodeposition 56 

increasing availability of C-rich root exudates for the microbial community (Stevenson et al., 57 

2004; Peichl et al., 2006; Maier et al., 2011), with soil CO2 efflux positively associated with 58 

total SOC and particulate organic matter (Bailey et al., 2009); or ii) a modification in the soil 59 

physical structure [i.e. a reduction in soil bulk density (Amadi et al., 2016), and decrease in 60 

soil moisture content that combine to create aerobic conditions that promote decomposition 61 

processes (Amadi et al., 2017)]. In contrast, the soil CO2 efflux in broadleaved or coniferous 62 

forests was reduced by up to 20%, compared with neighbouring grassland or pasture (Raich 63 

and Tufekcioglu, 2000; Smith and Johnson, 2004; Kellman et al., 2007; Hiltbrunner et al., 64 

2013), attributed largely to a vegetation-mediated reduction in soil temperature (Smith et al., 65 

2003).  66 

In addition to the location of trees in the agricultural environment, silvopastoral carbon 67 

storage and soil CO2 efflux are influenced by several factors including soil type, livestock-68 
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grazing intensity and climatic conditions. SOC is positively associated with soil clay content 69 

(Jobbagy and Jackson, 2000), as mineral-associated soil organic matter (SOM) is physically 70 

protected from microbial decomposition by adsorption onto silt and clay minerals within the 71 

soil (Lavallee et al., 2019). Livestock grazing, particularly in temperate dry-cool climates 72 

(aerobic soil), is often associated with increased allocation of plant resources below-ground, 73 

with enhanced below-ground biomass and root turnover (Kemp and Michalk, 2007), coupled 74 

with ‘hotspots’ of CO2 emissions from livestock dung (Lin et al., 2009), leading to greater soil 75 

CO2 efflux from intensively-grazed than extensively- or un-grazed grasslands (Abdalla et al., 76 

2018). In contrast, livestock-grazing in temperate moist-cool climates, where seasonally 77 

water-logged soils (prone to compaction via livestock trampling) are common, promotes 78 

anaerobic soil conditions with suppressed CO2 efflux and enhanced SOC storage (Wiesmeier 79 

et al., 2013; Abdalla et al., 2018). 80 

In this study we assess the contribution of hedgerows to annual C budgets of livestock-grazed 81 

pasture land (in the UK maritime climate) on two contrasting soil types, with a particular focus 82 

on soil CO2 efflux. We hypothesise that soil CO2 efflux is: i) closely associated with soil 83 

temperature, soil moisture (aerobic versus anaerobic conditions) and distance from 84 

hedgerow, which is linked to grazing occurrence; ii) influenced more by the presence of a 85 

biotic than an abiotic field boundary (via a decrease in soil temperature and moisture close 86 

to the hedgerow relative to more distant pasture). In addition, we aim to combine data on 87 

soil CO2 efflux with proxies for above- and below-ground net primary productivity to quantify 88 

the contribution of hedgerows to annual C budgets, for a range of hedgerow land cover 89 

scenarios (1-8% cover). 90 

  91 
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2. Material and methods 92 

2.1 Study area and sampling design 93 

The study area consisted of two sites, located on two tenanted mixed livestock farms 94 

(primarily Welsh mountain sheep, with some beef cattle) within the county of Conwy, in 95 

Wales, UK, both within the River Conwy catchment. These two sites were chosen to represent 96 

two contrasting soil drainage types present within the study catchment (Fig. S1): i) seasonally-97 

wet soil (SW) with impeded drainage (53.033457°, -3.747871°); and ii) free-draining soil (FD) 98 

(53.037096°, -3.712010°), with soils of intermediate drainage excluded. Soils were classified 99 

for each site using a combination of the UK Soilscapes soil map, World reference base for 100 

soils, and previous field measurements (Table 1): i) SW site – slowly permeable silty-clay 101 

stagnosol; and ii) FD site – silty-clay loam cambisol. The two sites were characterised by semi-102 

improved pasture fields with a mixture of productive grass species (e.g. Lolium perenne), in 103 

most cases mixed with clover (Trifolium spp., which is N-fixing), forbs and mosses, bordered 104 

by either hedgerows or stone walls as typical field boundaries (Fig. S1). Both sites were 105 

categorised as poor (low fertility grade 4 or 5) agricultural land (Agricultural Land 106 

Classification of England and Wales, 2018). The maritime climate of Conwy (north-west 107 

Wales) is characterised by greater rainfall than most UK regions, with mean annual 108 

precipitation close to 2,500 mm (https://www.metoffice.gov.uk/research/climate/maps-and-109 

data/uk-actual-and-anomaly-maps). Conwy air temperatures are generally mid-range for the 110 

UK, with mean monthly maximum and minimum temperatures of 12 and 6 °C respectively. 111 

Three study field boundaries were selected across the two sites (Fig. S1): i) hedgerow on SW 112 

soil, ii) hedgerow on FD soil, iii) stone wall (as an abiotic control) on FD soil. Only field 113 

boundaries running perpendicular to a slope of consistent gradient (5 to 10°) were considered 114 

https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps
https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-actual-and-anomaly-maps
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for selection, with boundaries adjacent to fields with known field drains excluded. Field 115 

boundaries were also excluded if there was evidence of bare earth or soil poaching adjacent 116 

to the boundary (≤3 m perpendicular to the boundary) indicating congregation of livestock 117 

(associated with enhanced nutrient inputs and localised compaction). Study plots were 118 

located ≥ 5 m away from gateways or gaps in the boundary through which livestock and 119 

vehicles could travel (which are associated with high levels of localised soil compaction). 120 

Characteristics of each boundary are summarised in Table 1. For each boundary, one 30 x 20 121 

m study plot was selected, incorporating an area 10 m upslope and 10 m downslope of the 122 

study boundary (Fig. 1). Three transect lines (10 m apart) were set up within each study plot, 123 

running perpendicular to the boundary, with each sampling point referenced relative to the 124 

centre of the hedgerow or the edge of the stone wall. At six sampling points along each 125 

transect line (three upslope and three downslope, see Fig. 1), cylindrical collars (100 mm 126 

diameter, 100 mm length) for measurement of soil respiration were inserted into the soil to 127 

a depth of 50 mm, one month prior to the start of the study. The study design was structured, 128 

comparative observational, not experimental or manipulative.  129 

2.2 Monthly measurements 130 

Daytime soil CO2 efflux was recorded once per month for one year, from July 2017 to June 131 

2018. Soil respiration from all three boundaries was recorded within 48 hours during similar 132 

weather conditions. Soil CO2 efflux was measured at each collar sampling point, after above-133 

ground biomass was clipped to ground level, by a portable CO2 gas analyser, either a LI-COR 134 

survey system [via a 10 cm survey chamber (8100-102, LI-COR) attached to the analyser 135 

control unit (LI-8100A, LI-COR)] or an EGM-5 [(PP SYSTEMS) attached to a 10 cm soil 136 

respiration chamber (SRC-2, PP SYSTEMS)]. For each month’s measurements only one type of 137 
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gas analyser was used for all soil CO2 efflux measurements. These two portable CO2 gas 138 

analyser systems were compared under field conditions in agricultural grasslands in the River 139 

Conwy catchment equivalent to the present study and found to produce extremely similar 140 

results with no significant difference (p = 0.98) by Mills et al. (2011). Linear fluxes were 141 

calculated using SoilFluxPro (v4.0.1, LI-COR Biosciences). The accuracy of CO2 (ppm) detection 142 

in both LI-COR and EGM-5 gas analysers was measured using British Oxygen Company (BOC, 143 

UK) standard gases (250, 500, 1250 and 2500 CO2 ppm). To bring fluxes from each gas analyser 144 

in line with the standard gases the following conversions were used for the LI-COR [field 145 

measured soil CO2 efflux rate (μmol CO2 m-2 s-1) x 1.04 = corrected soil CO2 efflux rate (μmol 146 

CO2 m-2 s-1)] and EGM-5 [field measured soil CO2 efflux rate (g CO2 m-2 h-1) x 1.02 = corrected 147 

soil CO2 efflux rate (g CO2 m-2 h-1)]. The EGM-5 corrected soil CO2 efflux rate was converted 148 

from g CO2 m-2 h-1 to μmol CO2 m-2 s-1 by multiplying the soil CO2 efflux rate (g CO2 m-2 h-1) by 149 

6.312.  150 

Adjacent to each sampling point, soil temperature (10 cm depth, Checktemp thermometer) 151 

and soil moisture content (0-8 cm depth, Theta Probe ML2x and Moisture Meter HH2, Delta-152 

T Devices Ltd) were recorded once during each monthly gas-flux sampling occasion. 153 

2.3 Estimation of C availability 154 

Soil cores (0.15 m deep, 0.05 m diameter) for the measurement of SOC stock were sampled 155 

once (during autumn) alongside each un-grazed sampling points for both the SW (n = 3) and 156 

the FD (n = 3) hedgerows. Soil cores were also collected in the grazed pasture at 1.2 m from 157 

the boundary fence of the SW and FD hedgerows as part of measurements published in Ford 158 

et al. (2019). SOC concentration (g kg−1 of dry soil mass) was calculated using the conversion 159 

factor of 0.55 of SOM mass, with SOC stock (kg C m−2) of the 0–0.15 m depth re-calculated on 160 
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an equivalent soil mass (ESM) basis, a layer of 1,000 t ha−1 as in Lee et al. (2009); for a full 161 

description of the methods see Ford et al. (2019). Here, SOC stock is expressed on an ESM 162 

basis in kg C m-2 to allow SOC stock to be compared uncoupled from the influence of soil 163 

compaction. 164 

2.4 Data analysis 165 

Linear mixed-effects models were used to determine associations between: i) soil CO2 efflux 166 

rate and six potential explanatory variables [soil temperature, soil moisture, month, slope 167 

position (upslope versus downslope), distance (perpendicular distance from boundary at 0.7 168 

m, 2 m and 10 m, see Fig. 1) and grazing occurrence (two-level categorical variable 169 

incorporating proximity to hedgerow: close-to-hedgerow un-grazed zone at 0.7 m from the 170 

hedgerow from which livestock were excluded by the fence versus further-from-hedgerow 171 

grazed pasture at 2 m or 10 m from the hedgerow, see Fig. 1)]; ii) soil temperature and four 172 

explanatory variables (distance, grazing occurrence, month and slope position); and iii) soil 173 

moisture and four explanatory variables (distance, grazing occurrence, month, slope 174 

position). These analyses were carried out for soil adjacent to the following three field 175 

boundaries: i) SW hedgerow; ii) FD hedgerow; iii) FD stone wall and iv) data from all three 176 

field boundaries combined. For all sets of linear mixed-effects models, normal distribution of 177 

modelled variables was assessed visually using quantile-quantile plots with variables log 178 

transformed to improve fit where necessary. Best model fit was selected on the basis of 179 

lowest Akaike Information Criteria (AIC) value. Likelihood-ratio-based pseudo-R-squared 180 

values were also calculated for each model, using R package ‘MuMIn’ (Bartoń, 2018). Results 181 

were presented using the ANOVA output of the mixed effects models for ease of 182 

interpretation. All statistical analysis was carried out in R (R Core Team, 2018). 183 
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Further analysis was carried out for the growing season of May-September (October-April 184 

data excluded), when hedgerows were in full leaf, using a step-wise regression approach. 185 

Step-wise regressions ‘forwards and backwards’ were carried out in the ‘MASS’ package 186 

(Venables and Ripley, 2002) using linear models of i) soil CO2 efflux rate (response variable) 187 

and five potential explanatory variables (soil temperature, soil moisture, slope position, 188 

distance and grazing occurrence); ii) soil temperature (response variable) and three 189 

explanatory variables (slope position, distance and grazing occurrence); iii) soil moisture 190 

(response variable) and three explanatory variables (slope position, distance and grazing 191 

occurrence). As month influences both soil temperature and moisture it was excluded as an 192 

explanatory variable due to potentially confounding effects. This analysis was carried out 193 

(using May to September data only) for: i) the SW hedgerow; ii) the FD hedgerow; iii) the FD 194 

stone wall; iv) data from all three field boundaries combined. Explanatory variables were only 195 

entered into the step-wise regression if hierarchical partitioning (http://cran.r-196 

project.org/package=hier.part) analysis assessed them to have ≥ 5% independent effects. 197 

Results of the stepwise regression displayed a ‘final model’ selected by lowest AIC, usually 198 

with fewer variables than the ‘initial model’. From this model the individual contribution of 199 

each remaining environmental variable to the overall variation explained was calculated using 200 

the ‘lmg’ function of the ‘relaimpo’ package (Grömping, 2006) using simple unweighted 201 

averages as recommended. 202 

The apparent temperature sensitivity of soil respiration, assumed here to be equivalent to 203 

soil CO2 efflux (as in Domínguez et al., 2017), was assessed for: i) SW pasture (further-from-204 

hedgerow, grazed); ii) SW close-to-hedgerow (un-grazed); iii) FD pasture (further-from-205 

hedgerow, grazed); iv) FD close-to-hedgerow (un-grazed); v) data from both hedgerows (i-iv) 206 

and stone walls combined, for two scenarios: drought period-included (12 month dataset) 207 

http://cran.r-project.org/package=hier.part
http://cran.r-project.org/package=hier.part


10 
 

and drought period-excluded (11 month dataset). Soil respiration (soil CO2 efflux) data were 208 

fitted against soil temperature (at 10 cm depth) using an exponential function: SR = aebT, 209 

where SR is soil respiration, T is soil temperature, and a and b are fitted constants. Q10 values 210 

(increase in soil respiration per 10 °C increase in temperature) were calculated as Q10 = e10b 211 

(Suseela et al., 2012). 212 

2.5 Annual carbon budgets 213 

An annual C budget was calculated for two land cover types: i) un-grazed zone close to 214 

hedgerows; and ii) livestock-grazed pasture further from hedgerows, on two contrasting soil 215 

types, FD (brown earth) and SW (stagnogley). Annual soil CO2 efflux rates were calculated 216 

from monthly means (12 months inclusive) for the grazed pasture [10 m sampling point (mean 217 

value of upslope and downslope) perpendicular to field boundary] and the un-grazed zone 218 

adjacent to the hedgerow [0.7 m sampling point (mean value of upslope and downslope) 219 

perpendicular to field boundary and protected by the livestock-exclusion fences] for both FD 220 

and SW sites and converted into t CO2 ha-1 yr-1. As CO2 efflux was not recorded in December 221 

for the SW site, modelled values (using the drought-included Q10 relationship, Table 3) were 222 

used to provide realistic data for this site-month combination. Results were expressed as 223 

drought period-included (12 month dataset, detailed above) and drought period-excluded 224 

[calculated as above but with field-measured soil CO2 efflux rates for the drought period of 225 

May and June removed and replaced with modelled values (using the drought-excluded Q10 226 

relationship, Table 3) to give a 12-month dataset] scenarios, to illustrate the potential impact 227 

of seasonal drought. The two month period May-June 2018 was defined as a drought period 228 

in the River Conwy catchment, with a mean Standardized Precipitation Index (SPI) of -1 229 

(Centre for Ecology and Hydrology UK Drought Tool https://eip.ceh.ac.uk/apps/droughts/, 230 

https://eip.ceh.ac.uk/apps/droughts/


11 
 

baseline comparison data 1961-2010), and mean precipitation rate of < 1.5 mm day-1 (based 231 

on in-situ weather stations). Over the 20-year 2000-2020 period a May-June drought of similar 232 

magnitude was relatively unusual (15%). In contrast, July-August 2017 was not considered a 233 

drought period (as the River Conwy catchment had a mean SPI of 1) despite relatively low soil 234 

moisture being recorded on the measurement days for July and August in SW soil in the 235 

present study. 236 

Above-ground net primary productivity (ANPP) values for the livestock-grazed pasture and 237 

the un-grazed hedgerow zone were taken from the measurements made in semi-improved 238 

pasture and broadleaved woodland respectively at other sites in the Conwy River catchment 239 

by Smart et al. (2016). Values for fine-root biomass to 15 cm depth were taken from the 240 

measurements made in semi-improved pasture and broadleaved woodland in the Conwy 241 

River catchment by Smart et al. (2017) with this depth assumed to account for 100% of grass 242 

and 70% of hedgerow woody plant fine-root biomass (broadleaved woodland data; Macinnis-243 

Ng et al., 2010) respectively, with fine-root hedgerow woody plant biomass adjusted 244 

accordingly (total root biomass = root biomass 0-15 cm depth x 1.3). Below-ground net 245 

primary productivity (BNPP) was calculated from the adjusted fine-root biomass, using a root 246 

turnover rate of 0.5 yr-1 suitable for both grassland and woodland habitats (Gill and Jackson, 247 

2000), and converted to t CO2 ha-1 yr-1. Soil CO2 efflux rates (C source), and ANPP and BNPP 248 

(C sinks) were combined to give a comparative flux estimate (either net C source or sink with 249 

a value in t CO2 ha-1 yr-1) for each combination of soil type (SW / FD), cover type (pasture / 250 

hedgerow) and drought condition (included / excluded).  251 

2.6 Scaling up 252 
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To predict the estimated effect of enhanced hedgerow cover on annual C budgets at a 253 

landscape scale, changes in the CO2 flux estimate under a range of greater hedgerow cover 254 

scenarios (based on a model 1-ha field) compared with a baseline of 100% pasture (0% 255 

hedgerow cover) were calculated. Values for seasonally-wet (SW) versus free-draining (FD) 256 

soils under two drought scenarios (included versus excluded, for full description see section 257 

2.5) for either pasture or hedgerow features were extrapolated from net C source / sink value 258 

calculations (as in section 2.5) and adjusted according to the relative percentage of pasture 259 

and hedgerow cover. For example, a hedgerow density of 50 m ha-1 with 2 m width is 260 

equivalent to 1% hedgerow cover (99% pasture cover), reflecting current UK hedgerow 261 

density. Hedgerow densities of 200 m ha-1 (4% cover) and 400 m ha-1 (8% cover) were 262 

presented as two possible options on the projected hedgerow cover continuum. For this 263 

scaling-up exercise all hedgerows were assumed to be double-fenced to exclude livestock. 264 

3. Results 265 

3.1 Monthly measurements 266 

Soil CO2 efflux rate was significantly associated with four variables: i) grazing occurrence 267 

(positive, P < 0.001); ii) soil temperature (positive, P < 0.05); iii) soil moisture (negative, P < 268 

0.05); iv) month (P < 0.001), with two significant interaction terms [month x soil temperature 269 

(P < 0.001) and month x soil moisture (P < 0.001)], for the year-long dataset for soil adjacent 270 

to all three contrasting field boundaries combined (SW hedgerow, FD hedgerow and FD stone 271 

wall). This model explained close to three quarters of the variation in soil CO2 efflux rate (r2 = 272 

0.74). When the three field boundaries were considered separately, soil CO2 efflux was 273 

significantly associated with soil temperature, moisture and month for soil adjacent to both 274 

the SW and FD hedgerows (Figs. 2a, 3a), with grazing occurrence an additional explanatory 275 
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factor for the FD hedgerow. These combined models explained over 80% of the variation in 276 

soil CO2 efflux (r2 = 0.82-0.88). For soil adjacent to the stone wall (FD), 74% of the variation in 277 

soil CO2 efflux was explained by soil temperature and moisture. Apparent temperature 278 

sensitivity of soil respiration (soil CO2 efflux) was greater in the livestock-grazed pasture than 279 

in the un-grazed zone associated with the hedgerow for both SW and FD sites (Table 2). 280 

Soil temperature was significantly related to both perpendicular distance from boundary and 281 

month, for each of the three field boundaries (Figs. 2b, 3b, 4b), with temperature consistently 282 

greatest further away from the boundary edge. In addition, for each hedgerow category (SW 283 

and FD) soil temperature was positively associated with grazing occurrence. Soil moisture was 284 

significantly positively associated with grazing occurrence and with month for each (SW and 285 

FD) hedgerow category with 80 and 87% of variation in soil moisture explained respectively 286 

(Figs. 2c, 3c). The main difference was apparent between the un-grazed soil close to the 287 

hedgerow inside the boundary fence, which exhibited significantly lower soil moisture 288 

content than soil either 2 m or 10 m from the hedgerow, in the livestock-grazed part of the 289 

field (outside the boundary fence). There was no significant association between soil moisture 290 

and distance from boundary for the stone wall control site, which had no fencing (Fig. 4c). 291 

Slope position (upslope versus downslope) from the boundary was not significantly associated 292 

with soil CO2 efflux rate, soil temperature or soil moisture for either the three field boundary 293 

types combined or for each separately. 294 

3.2 Estimate of SOC stock 295 

For the FD site SOC stock was very similar between the grazed pasture (6.0 ± 0.2 kg C m-2) and 296 

the un-grazed zone adjacent to the hedgerow (6.2 ± 0.1 kg C m-2). For the SW site SOC stock 297 
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was greater adjacent to the hedgerow (un-grazed) than in the grazed pasture (21 ± 2 and 10 298 

± 0.3 kg C m-2 respectively). 299 

3.3 Growing season only 300 

For the growing season (May-September), results were largely in line with those for the 301 

annual datasets (section 3.1), with distance from hedgerow/grazing occurrence (grazed 302 

versus un-grazed) a significant independent (as assessed by hierarchical partitioning) 303 

explanatory variable of soil CO2 efflux, soil temperature and soil moisture for both SW and FD 304 

hedgerows (Table 3); all increased with distance/grazing (Figs 2 and 3). 305 

3.4 Annual carbon budgets 306 

For the FD (brown earth) soil site, the annual C budget (based on soil CO2 efflux and net 307 

primary productivity) showed a marked difference between livestock-grazed pasture and the 308 

un-grazed zone adjacent to the hedgerow (Fig. 5), with the pasture acting as a net source of 309 

C (10.8 ± 1.5 t CO2 ha-1 yr-1) and the hedgerow zone as a net sink (-0.9 ± 2.2 t CO2 ha-1 yr-1). 310 

This result is entirely due to the large reduction in annual soil CO2 efflux rate adjacent to the 311 

hedgerow compared with the grazed pasture (of 20.5 and 33.9 t CO2 ha-1 yr-1 respectively). 312 

For the drought period-excluded scenario the pasture remained a net source of C of 313 

comparative magnitude but the strength of the C sink in the soil adjacent to the hedgerow 314 

was increased six-fold to -6.5 ± 0.7 t CO2 ha-1 yr-1. For the SW (stagnogley) site, the annual C 315 

budget also showed a marked difference between livestock-grazed pasture and the un-grazed 316 

zone adjacent to the hedgerow (Fig. 5), but in the opposite direction to the FD site, with the 317 

pasture acting as a small net sink of C (-0.12 ± 1.3 t CO2 ha-1 yr-1) and the hedgerow as a net 318 

source (5.8 ± 0.8  t CO2 ha-1 yr-1). For the drought period-excluded scenario the pasture 319 
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remained a small net C sink, with the hedgerow zone reverting from a net source to a large 320 

net C sink (-9.9 ± 0.3 t CO2 ha-1 yr-1). 321 

3.5 Scaling up 322 

With greater hedgerow land-cover, in fields on FD soil the estimated annual CO2 flux became 323 

more negative (greater net sink), based on modelled prediction compared with a baseline of 324 

no hedgerows, with drought reducing the size of this effect (Fig. 6). In fields on SW soils, 325 

greater hedgerow cover also caused a more negative annual CO2 flux estimate under the 326 

‘drought-excluded’ scenario (by ~0.4 t CO2 ha-1 yr-1 at 8% hedgerow cover), but caused a more 327 

positive flux (net C source) under the summer ‘drought period-included’ scenario (by ~0.5 t 328 

CO2 ha-1 yr-1 at 8% hedgerow cover).  329 

4. Discussion 330 

4.1 Soil CO2 efflux: Temperature, moisture and grazing occurrence 331 

In this study, soil CO2 efflux was closely associated with soil temperature and soil moisture, 332 

but affected more by grazing occurrence (close-to-hedgerow un-grazed zone versus further-333 

from-hedgerow grazed pasture), than distance from hedgerows per se, leading to a partial 334 

acceptance of our first hypothesis. Seasonal soil temperature was one of the key abiotic 335 

factors regulating soil CO2 efflux in this study, with an increase in soil temperature associated 336 

with greater soil CO2 efflux, as expected in temperate ecosystems (Smith et al., 2003). 337 

Daytime soil temperatures during the May to September growing season were reduced by 3–338 

5 °C within the un-grazed zone adjacent to both study hedgerows (Figs. 2, 3), relative to the 339 

short-sward pasture, which is likely to be due to the combined sheltering effect of the 340 

hedgerow itself and the understorey plant layer. This vegetation-mediated buffering of 341 
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extreme temperatures is well recognised (Stevenson et al., 2004) and largely explains the 342 

lower soil CO2 efflux associated with hedgerows for the majority of the year. Annual apparent 343 

temperature sensitivity of soil respiration (soil CO2 efflux) was high (Q10 values of 5-10) in 344 

comparison with the global biome mean of 1.43-2.03 (Zhou et al., 2009), but indicative of 345 

ecosystems where seasonality is marked (Domínguez et al., 2017) and Q10 values are 346 

regulated by vegetation activity (Wang et al., 2010). Here, apparent Q10 values were greater 347 

in livestock-grazed pasture than in the un-grazed zone adjacent to hedgerows in both 348 

contrasting soil types (Table 3) indicating that other variables (e.g. soil moisture) may partially 349 

regulate the temperature dependency of soil CO2 efflux adjacent to un-grazed hedgerows.  350 

Soil CO2 efflux was negatively associated with soil moisture content, as is usual in agricultural 351 

grasslands (Abdalla et al., 2018), with soil CO2 efflux far greater in FD than SW pasture. 352 

Constantly aerobic FD pasture is often associated with greater resource allocation below 353 

ground and enhanced fine root turnover, leading to greater soil CO2 efflux than for SW soils 354 

that are periodically anaerobic, where below-ground allocation and turnover are minimised 355 

and soil organic C storage is enhanced (Jobbagy and Jackson, 2000; Wiesmeier et al., 2013; 356 

Abdalla et al., 2018). Soil moisture was reduced by the presence of hedgerows, with effects 357 

most marked within the 2-m un-grazed zone associated with the hedgerow itself, due to a 358 

probable combination of woody plant roots extracting soil moisture from the soil (Kowalchuk 359 

and de Jong, 1995) and an enhanced water infiltration rate due to the absence of grazing 360 

compaction (Marshall et al., 2009). Recent evidence shows that soil moisture levels moderate 361 

the temperature dependency of soil CO2 efflux (Lellei-Kovacs et al., 2016), particularly at soil 362 

temperatures > 10° C, common during spring and summer in UK uplands. During the initial 363 

summer drought-period, the CO2 efflux of SW soils was much greater in the recently dry un-364 

grazed hedgerow zone than in the relatively wetter pasture, despite a soil temperature 365 
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differential of < 2° C. This mirrors results from UK shrubland (Lellei-Kovacs et al., 2016) and 366 

illustrates the importance of incorporating soil moisture into predictive models of soil CO2 367 

efflux.  368 

Soil CO2 efflux was positively correlated with the occurrence of livestock grazing in this study, 369 

with effects particularly noticeable for the growing season. This grazing effect can be 370 

explained partly by the influence of livestock on soil temperature-moisture dynamics (as 371 

detailed above), but the independent grazing effects identified (Table 4) may be due to 372 

preferential allocation of plant resources below-ground (Kemp and Michalk, 2007) and/or CO2 373 

emissions from livestock dung (Lin et al., 2009). In addition, grazing occurrence was a stronger 374 

indicator of soil CO2 efflux than distance from hedgerow, indicating a swift transition between 375 

the un-grazed zone associated with the study hedgerows and grazed pasture at the hedgerow 376 

livestock-exclusion fence, particularly in FD soil (Fig. 3). It is possible that soil CO2 efflux was 377 

also influenced by broad differences in root exudate C sources available to the soil microbial 378 

community (Stevenson et al., 2004) based on the proximity of sample points to woody or 379 

pasture plants, but this was not measured directly. 380 

4.2 Biotic versus abiotic field boundaries 381 

Soil CO2 efflux was influenced more by the presence of a biotic than an abiotic field boundary, 382 

with the un-grazed zone associated with the hedgerow characterised by lower soil 383 

temperature and soil moisture relative to more distant pasture, supporting our third 384 

hypothesis. Summer soil temperature was reduced, but only by ≤ 1 °C, in the immediate 385 

vicinity of the stone wall (Fig. 4), illustrating the difference between biotic and abiotic field 386 

boundaries in their buffering of soil temperature and thus regulation of soil CO2 efflux. 387 

Despite limited evidence of stone walls reducing run off and enhancing water infiltration rates 388 
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(Kovář et al., 2011; Rodrigo-Comino et al., 2019) this type of abiotic field boundary did not 389 

influence soil moisture dynamics in the present study. 390 

4.3 Carbon budgets 391 

Annual C budgets of hedgerows and livestock-grazed pasture, on two contrasting soil types 392 

typical of UK uplands, were calculated by combining data on soil CO2 efflux with proxies for 393 

above- and below-ground net primary productivity. In this study, livestock-grazed pastures 394 

acted as a small net C sink in SW soil and a net source in FD soil, in line with the results of 395 

Abdalla et al. (2018), with the drought period having only a minimal effect on carbon sink-396 

source dynamics. Hedgerows, including the soil of their adjacent un-grazed zones, were net C 397 

sinks under the drought period-excluded scenario, storing 6-10 t CO2 ha-1 yr-1 (Fig. 5), which 398 

is substantially lower than the 15-40 t CO2 ha-1 yr-1 stored in agroforestry systems according 399 

to a review of C budgets (Kim et al., 2016), although this review included a broad range of 400 

agroforestry types and did not include hedgerows specifically. Under the drought period-401 

included scenario, hedgerows remained a net, though smaller in magnitude, C sink in FD soil 402 

(of ~1 t CO2 ha-1 yr-1) but became a net C source in SW soil (~6 t CO2 ha-1 yr-1) due to a doubling 403 

of CO2 efflux (relative to the drought-excluded scenario). This huge spike in soil CO2 efflux in 404 

SW soil occurred entirely within the first month of the drought period and coincided with a 405 

sudden switch from moist-cool to dry-warm soil conditions. This mirrors the transition from 406 

flooded to non-flooded conditions in forested wetland and seasonally flooded forests (Miao 407 

et al., 2013; Barbosa et al., 2017), where newly aerobic soil stimulates root growth and 408 

decomposition of SOM (including necromass accumulated via root death during anaerobic 409 

period), enhancing autotrophic/microbial respiration and subsequent CO2 efflux (Peichl et al., 410 

2006; Amadi et al., 2017).  411 
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4.4 Scaling up 412 

Here, we assessed the potential for farmland hedgerows to provide climate change mitigation 413 

via carbon storage, attempted previously by Falloon et al. (2004), using measured soil CO2 414 

efflux to improve the validity of upscaling. At present total UK hedgerow land cover is 415 

~400,000 km (Elliot et al., 2014; Scholefield et al., 2016), equivalent to 50 m ha-1 across the 416 

whole agricultural land area. At this level (1% land cover) the impact of hedgerows on the C 417 

budget at a landscape scale was minimal for both FD and SW soils. However, the capacity of 418 

the farmland landscape to act as a C sink was enhanced by increased hedgerow cover (in 419 

scenarios up to 8% cover). This effect is in accord with previous studies of pastures in Europe 420 

and USA, where a positive contribution of hedgerows to SOC storage was reported (Walter et 421 

al., 2003; Smuckler et al., 2010; Lacoste et al., 2015). Although this pattern holds for both soil 422 

types under the drought period-excluded scenario, the capacity for hedgerows to contribute 423 

to a net C sink at the landscape scale was reversed in SW soil during periods of drought (Fig. 424 

6); in these conditions increased hedgerow cover resulted in greater C emissions. Although 425 

informative, with potentially important implications for C storage capacity, data for the early-426 

summer drought scenario are from only 2 months duration, associated with a relatively 427 

unusual climatic event for the UK maritime conditions, and should therefore be extrapolated 428 

with caution. Relative abundance of soil types is also relevant to this upscaling exercise. If we 429 

exclude peat soils [where neither livestock-grazing or tree-planting is advised (Ostle et al., 430 

2009)], FD and SW (including impeded drainage) soil types each equate to approximately one 431 

half of Welsh upland land-cover respectively (Hallett et al., 2017). However, as this approach 432 

amalgamates related soils into two broad categories on the basis of drainage, future work 433 

could take a more nuanced approach by studying pasture-hedgerow dynamics across a wider 434 

range of UK or upland soil types. 435 
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4.5 Implications for policy makers 436 

Carbon budgets were modelled for a range of hedgerow land cover scenarios (1-8%), either 437 

including or excluding the effect of a naturally-occurring early-summer drought period. Under 438 

the drought-excluded scenario, the un-grazed zone adjacent to hedgerows acted as a net C 439 

sink in both the contrasting soil types, allowing an increase in C stored with greater hedgerow 440 

cover. Taken in isolation this result could be used as evidence to promote hedgerow planting 441 

on agricultural land, regardless of soil type, in an attempt to meet climate change mitigation 442 

targets via C storage. However, during drought conditions, hedgerow-associated soil CO2 443 

efflux increased markedly, effectively ‘pausing’ the effect of hedgerow cover as a C storage 444 

mechanism. Moreover, on the SW soils characteristic of some upland farms in the UK (Hallett 445 

et al., 2017), the sudden change in soil temperature and moisture dynamics associated with 446 

a drought period triggered a spike in CO2 efflux that turned hedgerows into a net annual C 447 

source. As a result, greater hedgerow cover (up to 8%) could potentially increase net C 448 

emissions, although our evidence base for this conclusion is limited. Our study illustrates the 449 

importance of considering the impact of soil type and seasonal extreme events such as 450 

drought on the capacity of hedgerows to act as a net C sink, with clear implications for policy 451 

makers and land managers tasked with meeting the objective of minimising the net CO2 452 

emissions from farmland. 453 
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Tables 635 

Table 1. Characteristics of the two contrasting soil types in this study. 636 

Soil type1 Seasonally-wet (SW) Free-draining (FD) 

Soil classification (UK)2 Stagnogley Brown earth 
Soil classification (Worldwide)3 Stagnosol Cambisol 
Soil texture4 Silty-clay Silty-clay loam 
Sand / silt / clay (%)3 0-20 / 40-60 / 40-60 0-20 / 40-73 / 27-40 
pH4 5.7 ± 0.1 5.5 ± 0.1 
Bulk density (g cm-3)4 0.64 ± 0.04 0.89 ± 0.04 

1As referred to in this paper 637 
2UK Soilscapes soil map (http://www.landis.org.uk/soilscapes/) 638 
3World reference base for soils (WRB; http://www.fao.org/soils-portal/soil-survey/soil-classification/world-639 
reference-base/en/; http://www.fao.org/3/i3794en/I3794en.pdf)  640 
4Field measurements <10 m from study sites (Ford et al., 2019) 641 

 642 

 643 

  644 
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Table 2. Characteristics of the three field boundary categories used in this study, for exact 645 

location see Fig. S1.  646 

Boundary SW Hedgerow FD Hedgerow FD Stone wall 

Site characteristics    
Location SW site FD site FD site 
Soil type Stagnogley Brown earth Brown earth 
Drainage Seasonally-wet, impeded Free-draining Free-draining 
Slope Shallow (~5°) Steep (~10°) Steep (~10°) 
Grazing Sheep all year, cattle 

(May-June) 
Sheep all year, cattle 
(March-November) 

Sheep all year, cattle 
(March-November) 

Pasture Semi-improved grass with 
patches of Juncus spp.  

Semi-improved  Semi-improved  

Silage cut1 Yes (but not during study 
period due to drought) 

No No 

Boundary characteristics    
Hedgerow composition Prunus spinosa (60%), 

Corylus avellana (40%) 
Crataegus monogyna 
(70%), P. spinosa (15%) 
C. avellana (15%) 

na 

Hedgerow understory Urtica dioica, Galium 
aparine  

U. dioica, Cirsium 
vulgare, Ranunculus 
repens  

na 

Management Biennially cut, H ~2 m Biennially cut, H ~2 m na 
Age 40 years 10 years In situ ~100 years 
Size W = 2 m, H = 2 m W = 1 m, H = 2 m W = 0.6 m, H = 1.2 m 
Fence Double2, 2 m wide Double2, 2m wide na 

SW = seasonally-wet soil, FD = free-draining soil 647 
W = width, H = height, na = non-applicable 648 
1Silage cut refers to annual management where semi-improved pasture is routinely cut and removed for use as 649 
silage (winter animal feed). 650 
2Double fenced at 2 m wide refers to the total width of the livestock exclusion zone across both sides of the 651 
hedgerow (see Fig. 1).  652 
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Table 3. Apparent temperature sensitivity of soil respiration (soil CO2 efflux) expressed as Q10 653 

values for both grazed (G) pasture and the un-grazed (U) zone adjacent to the hedgerow on 654 

both seasonally-wet (SW, stagnogley) and free-draining (FD, brown earth) soils. Two 655 

scenarios, drought period-included (12-month dataset) and drought period-excluded (10 656 

months with May and June removed) are presented. 657 

 658 

 Drought included Drought excluded 
 Q10 R2 Q10 R2 

SW pasture (G) 10.3 0.58 8.4 0.58 
SW hedgerow (U) 7.4 0.42 5.7 0.58 
FD pasture (G) 7.2 0.83 6.4 0.81 
FD hedgerow (U) 5.3 0.51 5.0 0.65 

 659 

  660 
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Table 4. Best fit models of soil CO2 efflux, temperature and moisture for soils adjacent to three 661 

contrasting field boundary categories, two fenced hedgerows (inside fence, un-grazed at 0.7 662 

m from hedgerow; outside fence, livestock-grazed pasture at 2 m and 10 m) on seasonally-663 

wet and free-draining soil respectively and one stone wall (livestock-grazed pasture at 0.7 m, 664 

2 m and 10 m), using data from May to September when hedgerows are in full leaf. ANOVA 665 

outputs of step-wise regression models are presented with explanatory variable information. 666 

Models for the stone wall with soil temperature or soil moisture as response variables are not 667 

shown as grazing did not vary and there was no significant association with distance from 668 

boundary.  669 

Boundary type Response  Explanatory v1 Explanatory v2 Explanatory v3 F Sig R2 

All (n = 265) SR SM (30%) G/U (40%) ST (30%) 25.7 *** 0.23 
SW Hedgerow  SR SM (64%) G/U (36%) - 9.72 *** 0.18 
FD Hedgerow  SR SM (8%) G/U (92%) - 41.5 *** 0.49 
FD Stone wall  SR ST (100%) - - 7.73 ** 0.08 
All (n = 265) ST G/U (100%) - n/a 59.8 *** 0.18 
SW Hedgerow  ST D (100%) - n/a 14.73 *** 0.15 
FD Hedgerow  ST G/U (100%) - n/a 20.7 *** 0.19 
All (n = 265) SM G/U (69%) D (31%) n/a 14.57 *** 0.10 
SW Hedgerow  SM G/U (100%) - n/a 88.6 *** 0.50 
FD Hedgerow  SM G/U (100%) - n/a 14.0 *** 0.14 

v = variable, F = F statistic, Sig = significance (**P < 0.01, ***P < 0.001), SW = seasonally-wet soil, FD = free-670 
draining soil, SR = soil CO2 efflux, ST = soil temperature, SM = soil moisture, G/U = grazed/un-grazed categorical 671 
variable, D = distance from boundary (0.7 m, 2 m or 10 m). (%) associated with v1, v2 and v3 values refers to % 672 
of model R2 explained by each variable. 673 

  674 
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Figure legends 675 

Fig. 1. Sampling schematic for biotic (hedgerow) and abiotic (stone wall) boundaries. SW = 676 

seasonally-wet soil, FD = free-draining soil. The upslope and downslope parts of each transect 677 

start from the centre of the hedgerow or directly adjacent to the edge of the stone wall. The 678 

area adjacent to hedgerows within the livestock-exclusion boundary fence is un-grazed. 679 

Fig. 2. Monthly measurements of soil adjacent to a hedgerow on seasonally-wet soil for a) soil 680 

CO2 efflux, b) soil temperature and c) soil moisture at three perpendicular distances from the 681 

hedgerow [0.7 m (un-grazed); 2 m (grazed); 10 m (grazed)]. The r2 value of the proportion of 682 

variation explained is given for the best-fit mixed effects model, with explanatory variable(s) 683 

and interaction terms listed underneath. For panel b, letters (x, y, z) adjacent to lines denote 684 

significant differences between the three distance categories included in the legend (there 685 

were no significant differences with distance for panels a and c). *** = P < 0.001, Temperature 686 

= soil temperature, Moisture = soil moisture, Grazing = grazing occurrence (yes/no), Distance 687 

= perpendicular distance from hedgerow, M = month, x = interaction between variables. 688 

Monthly means for each distance are presented with error bars showing the standard error 689 

of the mean (n = 3). The grey shaded box indicates period of drought.  690 

Fig. 3. Monthly measurements of soil adjacent to a hedgerow on free-draining soil for a) soil 691 

CO2 efflux, b) soil temperature and c) soil moisture at three perpendicular distances from the 692 

hedgerow [0.7 m (un-grazed); 2 m (grazed); 10 m (grazed)]. The r2 value of the proportion of 693 

variation explained is given for the best-fit mixed effects model, with explanatory variable(s) 694 

listed underneath. For panel b, letters (x, y, z) adjacent to lines denote significant differences 695 

between the three distance categories included in the legend (there were no significant 696 

differences with distance for panels a and c). *** = P < 0.001, Grazing = grazing occurrence 697 
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(yes/no), Distance = perpendicular distance from hedgerow, M = month. Monthly means for 698 

each distance are presented with error bars showing the standard error of the mean (n = 3). 699 

The grey shaded box indicates period of drought.  700 

Fig. 4. Monthly measurements of soil adjacent to a stone wall on free-draining soil for a) soil 701 

CO2 efflux, b) soil temperature and c) soil moisture at three perpendicular distances from the 702 

wall [0.7 m (grazed); 2 m (grazed); 10 m (grazed)]. The r2 value of the proportion of variation 703 

explained is given for the best-fit mixed effects model, with explanatory variable(s) listed 704 

underneath. For panel b, letters (x, y, z) adjacent to lines denote significant differences 705 

between the three distance categories included in the legend (there were no significant 706 

differences with distance for panels a and c). ** = P < 0.01, *** = P < 0.001, Distance = 707 

perpendicular distance from wall. Grazing is not included as an explanatory variable as all 708 

distances are grazed. Monthly means for each distance are presented with error bars showing 709 

the standard error of the mean (n = 3). The grey shaded box indicates period of drought.  710 

Fig. 5. Annual carbon (C) budget schematic illustrating the estimated effect of hedgerows and 711 

livestock-grazed pasture on the C balance of both seasonally-wet (stagnogley) and free-712 

draining (brown earth) soils. Annual soil CO2 efflux (SR) rates were calculated from monthly 713 

means (12 months inclusive) for the grazed (G) pasture and the un-grazed (U) zone adjacent 714 

to the hedgerow (protected by the livestock-exclusion fences) and shown in the drought 715 

period-included (✓) sections of the schematic. Soil CO2 efflux for the drought period-excluded 716 

scenario () was calculated from monthly means (July-April) but with field-measured soil CO2 717 

efflux rates for the May-June drought period removed and replaced with modelled values 718 

(using the drought-excluded Q10 relationship) to give a 12-month dataset. Proxies for above- 719 

and below-ground net primary productivity (ANPP & BNPP) were calculated from published 720 
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data from the Conwy catchment. All figures are expressed in t CO2 ha-1 yr-1, with ± standard 721 

error of the mean (n = 3) in parentheses. The symbols + and - denote a source of CO2 to the 722 

atmosphere and a sink (storage) of CO2 in plant biomass or soil respectively, with the values 723 

and arrows in black boxes indicative of net (plant + soil) ecosystem exchange. Methane and 724 

nitrous oxide fluxes are not included in these values. 725 

Fig. 6. Change in CO2 flux estimate under projected increased hedgerow cover scenarios 726 

(based on a model 1-ha field) compared with a baseline of 100% pasture (0% hedgerow 727 

cover). Values for seasonally-wet (SW) versus free-draining (FD) soils under two drought 728 

period scenarios (included versus excluded) were extrapolated from a C balance calculated 729 

from published above- and below-ground net primary productivity (ANPP & BNPP) for the 730 

Conwy catchment and measured annual soil CO2 efflux rates to determine net C source / sink 731 

values (see Fig. 5). Hedgerow cover of 1% is equivalent to 50 m ha-1 (double-fenced to exclude 732 

livestock) at 2 m width, reflecting typical current UK hedgerow density. Hedgerow cover of 733 

4% = 200 m ha-1 (at 2 m width), 8% = 400 m ha-1 (at 2 m width). Means for each hedgerow 734 

cover scenario are presented with error bars showing the standard error of the mean. 735 
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Appendix. 751 

Supplementary appendix for ‘Hedgerow effects on CO2 emissions are regulated by soil type 752 

and season: implications for carbon flux dynamics in livestock-grazed pasture’. 753 

 754 

 755 

Fig. S1. Location of the two study sites and three field boundary categories used in this 756 

comparative observational study. FD site = site characterised by free-draining soil (brown 757 

earth), SW site = site characterised by seasonally-wet soil with impeded drainage 758 

(stagnogleys). Hedgerow boundaries (lines of trees) can be identified fairly easily from aerial 759 

images with stone wall and fence boundaries more difficult to distinguish. 760 

Google Earth Pro V 7.3.2. (20th June 2018). Ysbyty Ifan, UK. 50.026679°, -3.743259, Eye alt 4.11 km. 761 
DigitalGlobe 2018. http://www.earth.google.com [18th December 2018]. 762 
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