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Word Count: 6564 38 

Abstract: 39 

Early acclimatization to high-altitude is characterized by various respiratory, hematological, and 40 

cardiovascular adaptations that serve to restore oxygen delivery to tissue. However, less is 41 

understood about renal function and the role of renal oxygen delivery (RDO2) during high-42 

altitude acclimatization. We hypothesized that: 1) RDO2 would be reduced after 12-hours of 43 

high-altitude exposure (high-altitude day1) but restored to sea-level values after one-week (high-44 

altitude day7); and 2) RDO2 would be associated with renal reactivity (RR), an index of acid-45 

base compensation at high-altitude. Twenty-four healthy lowlander participants were tested at 46 

sea-level (344m; Kelowna, Canada), on day1 and day7 at high-altitude (4330m; Cerro de Pasco, 47 

Peru). Cardiac output, renal blood flow, arterial and venous blood sampling for renin-48 

angiotensin-aldosterone-system hormones and NT pro-B type natriuretic peptides were collected 49 

at each time point. RR was calculated as: (Δ arterial bicarbonate)/(Δ partial pressure of arterial 50 

carbon dioxide) between sea-level and high-altitude day1, and sea-level and high-altitude day7. 51 

The main findings were: 1) RDO2 was initially decreased at high-altitude compared to sea-level 52 

(ΔRDO2: -22±17%, P<0.001), but was restored to sea-level values on high-altitude day7 53 

(ΔRDO2: -6±14%, P=0.36). The observed improvements in RDO2 resulted from both changes in 54 

renal blood flow (Δ from high-altitude day1: +12±11%; P=0.008), and arterial oxygen content (Δ 55 

from high-altitude day1 +44.8±17.7%; P=0.006); and 2) RR was positively correlated with 56 

RDO2 on high-altitude day7 (r=0.70; P<0.001), but not high-altitude day1 (r=0.26; P=0.29). 57 

These findings characterize the temporal responses of renal function during early high-altitude 58 

acclimatization, and the influence of RDO2 in the regulation of acid-base.   59 
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Introduction:  60 

High-altitude acclimatization is characterized by varying elevations in ventilation, 61 

hemoglobin concentration, heart rate, and redistribution of blood flow, which serves to restore 62 

arterial oxygen content (CaO2) and preserve oxygen delivery to vital organs (10, 13, 44, 53, 56). 63 

Alterations in renal function are also critical during high-altitude acclimatization; however, there 64 

are few studies exploring renal acclimatization in comparison to ventilatory and hematological 65 

factors (4, 10, 22, 43). This is noteworthy since there are unique characteristics of renal 66 

oxygenation that renders the kidney susceptible to hypoxia. For example, the partial pressure of 67 

oxygen (PO2) in renal tissue is typically tightly controlled through a coupling between renal 68 

blood flow (i.e. oxygen delivery) and sodium reabsorption load (i.e. oxygen utilization) (31). 69 

Hence, unlike other tissues, greater renal blood flow does not necessarily influence renal 70 

oxygenation since renal oxygen consumption (i.e. metabolic rate) can rapidly adapt to maintain 71 

constant oxygen delivery (31). Furthermore, portions of the medulla have a tissue PO2 of ~10-15 72 

mmHg, which is near the “critical PO2”, which the enzyme mitochondrial cytochrome oxidase 73 

becomes reduced, in turn limiting adenosine triphosphate production (25, 30). This, coupled with 74 

the fact that 95-99% of renal energy is via oxidative phosphorylation (30), highlights the 75 

importance of controlled renal oxygen delivery (RDO2) for normal kidney function (7). Despite 76 

the kidney’s precise maintenance of RDO2 in normoxia, RDO2 has not been quantified during 77 

early acclimatization to severe hypoxia (e.g. >4000 m).  78 

While data sets are limited, renal blood flow (as indexed via the effective renal plasma 79 

flow) appears to decrease following acute (48-hours) exposure to 4350 m (37) and following a 80 

60 day stay at 3500 m (43). Only two studies to our knowledge (37, 38) have investigated the 81 

mechanism(s) regulating renal blood flow at high-altitude. Olsen and colleagues (37) reported a 82 

Downloaded from journals.physiology.org/journal/ajprenal by Jonathan Moore (082.132.236.136) on September 30, 2020.



reduction in effective renal blood flow indicating a pre-existing increase in renal vascular tone. 83 

The authors from this study speculated that elevated catecholamines (e.g. noradrenaline), were 84 

responsible for the observed renal vasoconstriction and consequential reduction in renal blood 85 

flow. However, systemic hypoxia stimulates numerous factors that independently influence renal 86 

blood flow control such as natriuretic peptides (5) and RAAS hormones (6, 13). Specifically, the 87 

influence of renin during hypoxia has been unclear: some studies have reported that renin is 88 

elevated (12, 35, 40) while others have documented no change (3, 45) and others still have 89 

reported a decrease (6, 37). To our knowledge, no study has investigated the integrative 90 

mechanisms controlling renal blood flow at high-altitude following 12-hours and a week of 91 

acclimatization.  92 

Under normal oxygen conditions (e.g. sea-level), arterial oxygen content (CaO2) is 93 

relatively stable and RDO2 is directly related to renal blood flow (31). However, since early 94 

exposure to high-altitude decreases both renal blood flow (37), and CaO2 (43), this may hence 95 

effectively decrease RDO2. Yet, RDO2 may return to sea-level values as CaO2 becomes restored 96 

with acclimatization (19, 43), which may offset the high-altitude related reductions in renal 97 

blood flow, and mediates the reduction in RDO2 as demonstrated in animal studies (48). To our 98 

knowledge no study has characterized RDO2 during acclimatization to high-altitude in humans.  99 

The contributions of renal blood flow and CaO2 on RDO2 has yet to be characterized at high-100 

altitude, and may have functional consequences on acid-base acclimatization (18, 49). 101 

The tight regulation of blood pH is critical for homeostasis and regular cellular function. 102 

High-altitude driven hyperventilation decreases the partial pressure of arterial carbon dioxide 103 

(PaCO2), resulting in respiratory alkalosis (10, 47). Renal acid (H+) retention and bicarbonate 104 

(HCO3)
- excretion aims to normalize arterial pH towards standard sea-level values (pH ~ 7.4) (9, 105 
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13, 28, 43, 45). A recent study by Zouboules and colleagues (58) proposed a novel renal 106 

reactivity index (Δ[HCO3
−]/Δ [PaCO2]), to quantify the relationship between HCO3

- and PaCO2 107 

at high-altitude (58). While bicarbonate excretion occurs to normalize pH as a function of 108 

PaCO2, this response might be linked to RDO2, since bicarbonate reabsorption is dependent on 109 

renal cortex tissue PO2 in hypoxic animals (49).  110 

The purpose of the current investigation was to assess the mechanism(s) that govern renal 111 

oxygen delivery during early high-altitude acclimatization. We hypothesized the following: 1) 112 

after rapid ascent from sea-level to high-altitude (4330 m), RDO2 would decrease 12-hours after 113 

arrival, but thereafter following a week of acclimatization, RDO2 would increase through an 114 

increase in arterial oxygen delivery rather than renal blood flow; and 2) an association between 115 

RDO2 and renal reactivity would be present after 12-hours and one week of high-altitude 116 

acclimatization.   117 
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Methods: 118 

Ethical Approval 119 

This a priori study was conducted as part of the Global Research Expedition on Altitude-120 

Related Chronic Health (REACH) expedition to Instituto de Investigacions de Altura at Cerro de 121 

Pasco, Peru (4330 m). Participants were researchers involved in the expedition and as such were 122 

in numerous studies; however, care was taken to ensure adequate washout between studies to 123 

avoid cross-over or contamination between investigations. An overview of our research team’s 124 

expedition has been previously published (50).  125 

This study abided by the Canadian Government Tri-council Policy on Research Ethics 126 

Policy Statement (TCPS2) and the Declaration of Helsinki, apart from registration in a publicly 127 

accessible database. Ethical approval was obtained in advanced through the Clinical Research 128 

Ethics Board of the University of British Columbia (H17-02687 and H18-01404), the University 129 

of Alberta Biomedical Ethics 100 Board (Pro00077330) and the Universidad Peruana Cayetano 130 

Heredia Comité de Ética (no. 101686). Participants were given in-depth study information and 131 

provided written consent.  132 

 133 

Participants  134 

Participants (20 males, 4 females) were recruited from the research expedition team and 135 

had no history of pre-existing neurological, cardiovascular or renal dysfunction prior to testing. 136 

Participants were born and lived at or near sea-level and had not traveled to high-altitude within 137 

6 months prior to experimentation (50). 138 
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 139 

Experimental overview 140 

  Sea-level testing occurred at the University of British Columbia – Okanagan Campus, BC 141 

(altitude = ~344 m) ~three months prior to departure to high-altitude. The research team travelled 142 

to Lima, Peru (altitude = ~150m) in June 2018, spent three days in Lima before the expedition 143 

preparing to depart and then traveled via automobile directly to Cerro de Pasco, Peru (4330 m) 144 

over 6-8 hours. Participants were tested the morning immediately following ascent having spent 145 

~12-hours at high-altitude (high-altitude day1), and again following seven days of 146 

acclimatization (high-altitude day7).  147 

At both sea-level and high-altitude participants arrived at the laboratory between 0600 148 

and 1030 following a 12-hour fast and having avoided caffeine, alcohol and exercise. 149 

Throughout the week of acclimatization, participants were asked to avoid exercise to not 150 

contaminate results.  Participants were asked to complete a nine-hour urinary collection from the 151 

previous night, which was used to calculate glomerular filtration rate. Participants were asked to 152 

complete an acute mountain sickness questionnaire at high-altitude prior to testing on both high-153 

altitude day1 and high-altitude day7 (i.e. Lake Louise Questionnaire) (41). Experimentation 154 

commenced with participants laying supine and resting quietly for ~ten-minutes prior to 155 

collecting measurements of renal blood flow via duplex ultrasound, venous blood samples, 156 

echocardiography, and radial artery blood samples were taken. These methodologies are 157 

discussed in further detail below.  158 

 159 

Lake Louise acute mountain sickness scores 160 
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Acute mountain sickness was identified using the standard 2018 Lake Louis acute mountain 161 

sickness scoring system. As per the recommendations, the scoring system was not used until at 162 

least six hours prior of ascent. Acute mountain sickness is identified via four categories: 163 

headache, gastrointestinal symptoms, fatigue and/or weakness and dizziness/light-headedness 164 

with each category with a score between 0-3. Acute mountain sickness is diagnosed as a score of 165 

three with an associated headache. As per the guidelines, participants with mild symptoms of 166 

acute mountain sickness had scores between 3-5; moderate between 6-9 and severe 10-12 points 167 

[refer to (41) for more details]. 168 

 169 

Heart rate and blood pressure  170 

Continuous heart rate (electrocardiogram Lead II) was recorded and integrated with a 171 

data acquisition system (Powerlab 16/30; ADInstruments, Australia) and stored for subsequent 172 

analysis using associated software (Labchart 8.0 Pro; ADInstruments, Australia). Systolic and 173 

diastolic blood pressures were measured using an automated cuff (Omron M2 Classic; Japan). 174 

Mean arterial pressure was subsequently calculated as: (1/3 x systolic blood pressure) + (2/3 x 175 

diastolic blood pressure). Arterial oxygen saturation was estimated by pulse oximetry (N‐595; 176 

Nellcor Oximax, Boulder, USA) using an index finger sensor.  177 

 178 

Blood measures 179 

Venous blood samples were taken from the antecubital vein immediately centrifuged, 180 

aliquoted and frozen until analysis in Edmonton, Alberta, Canada. Frozen samples were 181 

transported by a commercial company (Marken, New York, USA). Plasma aldosterone 182 
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concentration (LDN REF: MS E-5200) and active renin (LDN REF: MS E-5300) were measured 183 

using a solid phase enzyme-linked immunosorbent assay (ELISA), based on the principle of 184 

competitive binding. N-terminal pro-B-type natriuretic peptide (NT pro-BNP) (R&D systems 185 

REF: DY3604-05) was quantified using a sandwich solid phase ELISA.  186 

Radial artery blood samples were collected using a lithium heparin-coated auto fill 187 

syringe and analyzed using point-of-care device i-STAT (Abbott Laboratories, Chicago, USA) 188 

for blood gases using the CG4+ (lactate, pH, PaCO2, arterial partial pressure of oxygen (PaO2), 189 

HCO3
-and oxygen saturation (SaO2)), and CHEM8+ (glucose, urea nitrogen, creatinine, sodium, 190 

potassium, chloride, ionized calcium, TCO2, anion gap, hematocrit and hemoglobin) test 191 

cartridges. The point of care device, i-STAT, has been validated on altitude up to 5043 meters 192 

(32). 193 

CaO2 was calculated with measures of oxygen saturation (SaO2), [Hb] and arterial partial 194 

pressure of oxygen (mmHg) using the following formula: 195 

Equation 1: 196 

CaO2 (ml dl-1) = Hb ×1.36× 
SaO

2

100
+ 0.003×PaO

2  

where [Hb] is the concentration of hemoglobin (g dL-1), 1.36 is the affinity of oxygen to 197 

hemoglobin, SaO2, is the percentage of hemoglobin saturated with oxygen, 0.003 is the fraction 198 

of free oxygen dissolved in the blood.  199 

 Renal reactivity on high-altitude day1 and high-altitude day7 was calculated using 200 

relative changes with respect to sea-level values as previously described (58). 201 

Equation 2: 202 
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Renal Reactivity 
∆HCO3

-

∆PaCO2

 
HCO3

-
altitude- HCO3

-
sea-level

PaCO2 altitude - PaCO2 sea-level

 

Where HCO3
- is arterial bicarbonate (mmol L-1) and PaCO2 (mmHg) is partial pressure of arterial 203 

carbon dioxide  204 

 205 

Transthoracic echocardiography 206 

Echocardiography was performed using an ultrasound system (as above) and a phased-207 

array transducer (1.5 – 3.6 MHz M4S-RS, GE Healthcare, Piscataway, NJ, USA) by the same 208 

sonographer (V.L.M.). A three-lead electrocardiograph was attached to the participant and 209 

connected to the ultrasound system to allow cardiac cycle gating. Images were acquired at end 210 

expiration over five cardiac cycles and data was stored for later offline analysis (EchoPAC, GE 211 

Medical, Horton, Norway). Measurements were made in triplicate from different cardiac cycles 212 

and averaged for use in statistical analyses. With the participant lying supine, subcostal images 213 

were acquired for assessment of inferior vena cava diameter. With the participant in the left 214 

lateral decubitus position, images were acquired for assessment of cardiac function according to 215 

current guidelines (29). Left ventricular stroke volume using end-diastolic and end-systolic 216 

volume that, were derived using the Simpson’s biplane method from apical 4- and 2-chamber 217 

views. Cardiac output was calculated as stroke volume x heart rate. Total peripheral resistance 218 

was calculated as: mean arterial pressure (mmHg) / mean cardiac output (ml/min). 219 

 220 

Renal function 221 

Duplex ultrasound 222 
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Renal artery diameter and blood flow were measured with a convex-array transducer (2.0 223 

– 5.5 MHz 4C-RS Probe, GE Healthcare, Piscataway, NJ, USA) on a commercially available 224 

ultrasound system (Vivid Q, GE Healthcare, Piscataway, NJ, USA) by a single trained 225 

sonographer (V.L.M). The probe was placed at the midpoint between the xiphoid process and the 226 

umbilicus where the aorta was identified in a transverse section and the origin of the renal 227 

arteries was obtained using B-mode. Images were collected for measurement of renal artery 228 

diameter and allowing subsequent calculation of cross-sectional area. Renal artery blood flow 229 

was calculated as the product of the cross-sectional area and the velocity-time integral (pulse-230 

wave Doppler). Absolute renal blood flow and normalized renal blood flow ([renal blood flow / 231 

cardiac output] *100) are reported. Renal vascular resistance was calculated as: mean arterial 232 

pressure (mmHg) / mean renal blood flow (ml/min). All measurements were made in triplicate 233 

from different cardiac cycles and averaged for use in statistical analyses.  234 

The product of renal blood flow (ml min-1) and CaO2 (ml dl-1) was used to calculate 235 

convective RDO2: 236 

Equation 3: 237 

 RDO2 (ml O2 min-1)=
mean renal blood flow ×CaO2

100
   238 

 239 

Urine collection and analysis 240 

Participants were asked to complete a 9-hour urinary collection to calculate glomerular 241 

filtration rate. Due to limitations associated with conducting field research, were unable to 242 

control for salt and fluid intake. Participants were asked to maintain normal drinking habitats 243 
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throughout the week of high-altitude and we specifically requested participants to drink a 244 

standardized 200 mL of water forty-five minutes before testing. Urine was refrigerated until 245 

analysis (4 °C). Urine pots were shaken vigorously before analysis to ensure a homogenous 246 

mixture. Volumes were measured using graduated cylinders. Urine analysis was performed using 247 

a DCA Vantage Analyzer (Siemens Healthineers Global; Germany) for creatinine and 248 

microalbumin. Creatinine clearance was used to calculate glomerular filtration rate using the 249 

standard formula: 250 

Equation 4:  251 

Glomerular filtration rate (ml/min/1.73m2)=
(Ux)×(V)

(Px)
  

Where Ux is urine creatinine concentration (mol L-1), V is urine production rate (ml min-1) and 252 

Px is serum creatinine concentration (mol L-1). Glomerular filtration rate was then scaled to body 253 

surface area as determined through the Dubois and Dubois formula (8).  254 

 255 

Filtration fraction was calculated using the following: 256 

Equation 5: 257 

Filtraction Fraction (%)=
(glomerular filtration rate)

(1-hematocrit)  (mean renal blood flow)
 

Where the ratio between glomerular filtration (ml/min/1.73m2  and renal plasma blood flow 258 

(renal blood flow [ml min-1]  1- hematocrit [%]) is expressed as a percent.  259 

 260 

Downloaded from journals.physiology.org/journal/ajprenal by Jonathan Moore (082.132.236.136) on September 30, 2020.



Muscle sympathetic nerve activity 261 

Muscle sympathetic nerve activity was measured in subset of individuals who 262 

participated in an associated study on high-altitude day7. As such basal muscle sympathetic 263 

nerve activity data and characteristics have been previously reported in nine participants (n=9; 7 264 

males; age 25 ± 3 years and BMI 23 ± 2) (42); however, these data are presented in the current 265 

manuscript to provide novel insight related to sympathetic-mediated mechanisms governing 266 

renal blood flow at high-altitude. Muscle sympathetic nerve activity was recorded from the 267 

peroneal nerve using microneurography as previously described (42). The raw sympathetic 268 

signal was amplified (preamplifier 1000× and variable-gain, isolated amplifier (10000×), band-269 

pass filtered (700–2000 Hz), rectified and integrated (Bio amp 16/30; ADInstruments, Australia). 270 

A suitable signal was confirmed by the presence of pulse-synchronous bursts of activity that 271 

increased in response to apnea, but not loud noise. Muscle sympathetic nerve activity raw and 272 

integrated signals were analysed using semi-automated peak detection algorithms (Labchart 8.0 273 

Pro; ADInstruments, Australia) and bursts were confirmed by a trained observer (L.L.S. and 274 

C.D.S.) based on physiological principles. To account for differences in microelectrode position, 275 

burst amplitude data were normalized by assigning a value of 100 to the largest burst observed. 276 

Mean muscle sympathetic nerve activity was expressed as integrated burst frequency (burst min-
277 

1), incidence (burst 100 cardiac cycles-1) and total activity [mean burst amplitude × burst 278 

frequency (a.u.ꞏmin-1)]. 279 

 280 

Data and statistical analyses 281 
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Data was assessed for normality and variance using the Sharpiro-Wilk and the Bron-282 

Forsythe test. A linear mixed-effect model analysis was performed to test for significance 283 

between sea-level vs. high-altitude day1 vs. high-altitude day7. Tukey post-hoc analyses were 284 

used if main effects existed. Acute mountain sickness scores were assessed using paired 285 

nonparametric tests (Wilcoxon signed-rank test). Pearson product moment correlations were 286 

used to assess associations between: Δ RDO2 and glomerular filtration rate / renal reactivity; and 287 

renal blood flow and muscle sympathetic nerve activity. Statistical analyses were performed 288 

using Graph Pad, Prism 8.3.0. All reported data is presented as the mean ± SD with statistical 289 

significance set at p < 0.05  290 
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Results:   291 

Participants 292 

Participant demographics are presented in table 1. Twenty-four participants were 293 

recruited but only twenty-two full data sets across all three assessments were obtained because 294 

two participants (both male) did not complete measurements on high-altitude day7 due to 295 

unexpected departure back to Lima, Peru. The values for these two participants at sea-level and 296 

high-altitude day1 are included in the group analysis. Thirteen of the twenty-four participants 297 

had mild acute mountain sickness (Lake Louise scores between 3-5) (41) on high-altitude day1. 298 

All participants refrained from taking acetazolamide (i.e. diamox), and other medications for 299 

altitude (e.g. dexamethasone) or travel-related illness (anti-biotics).  No participants experienced 300 

acute mountain sickness on high-altitude day7. 301 

 302 

Blood gas changes with high-altitude 303 

High-altitude caused an initial decrease in both PaO2 and SaO2 that improved on high-304 

altitude day7 (table 2). PaCO2 decreased longitudinally with high-altitude, while HCO3
- was 305 

progressively decreased (table 2). Respiratory alkalosis developed on high-altitude day1 306 

(P<0.001); there was partial correction to pH via renal compensation on high-altitude day7 (table 307 

2). CaO2 decreased initially with high-altitude (P<0.001) but improved to pre-altitude values on 308 

high-altitude day7 (P=0.31) through increases in PaO2, SaO2 and hemoglobin concentration 309 

(figure 1B).  310 

 311 
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Cardiovascular, sympathetic and renal responses to high-altitude  312 

Diastolic pressure was elevated at high-altitude compared to sea-level (P=0.0092 table 3), 313 

but systolic and mean arterial pressure remained unchanged (P=0.30 P=0.098, respectfully table 314 

3) Cardiac output increased on high-altitude day1 compared to sea-level (P<0.001), but fell to 315 

sea-level values on high-altitude day7 (P=0.67; table 3). Total peripheral resistance decreased on 316 

high-altitude day1 (P=0.018), but not high-altitude day7 (P=0.62; table 3).  317 

Renal blood flow was decreased at high-altitude on high-altitude day1 by 17±15% but 318 

returned to sea-level values on high-altitude day7 (P=0.54; figure 1A). Accordingly, renal 319 

vascular resistance was increased on high-altitude day1 (P=0.016), but not high-altitude day7 320 

(P=0.76; table 4). RDO2 was decreased by -22±17% on high-altitude day1 (P<0.001), due to a 321 

simultaneous reduction in both renal blood flow and CaO2 but was normalized back to sea-level 322 

values on high-altitude day7 (-6±14%) (P=0.36; figure 1C). Total normalized sympathetic nerve 323 

activity was calculated in a subset of participants on high-altitude day7 and was negatively 324 

correlated with renal blood flow normalized to cardiac output (r=-0.69; P=0.039; See figure 325 

supplemental 1) (https://doi.org/10.6084/m9.figshare.12860744.v1). RAAS hormones: active 326 

renin, and plasma aldosterone concentration, both decreased at high-altitude (P=0.025 and 327 

P=0.018, respectively), while NT pro-BNP did not change (P=0.15; table 4).  328 

 329 

Association between renal oxygen delivery and renal reactivity 330 

Renal reactivity was increased between high-altitude day1 and high-altitude day7 331 

(P=0.0016). A positive correlation was found between Δ RDO2 and renal reactivity between sea-332 

level and high-altitude day7 (r=0.70; P<0.001; figure 2B) and between high-altitude day1 and 333 
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high-altitude day7 (r=0.49; P=0.022; figure 2C), but not between sea-level and high-altitude 334 

day1 (r=0.26; P=0.29 figure 2A). No relationships were found between Δ renal blood flow 335 

(r=0.10; P=0.67), Δ CaO2 (r=0.25; P=0.23), or Δ glomerular filtration rate (r=0.15; P=0.63), and 336 

renal reactivity on high-altitude day7.   337 
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Discussion: 338 

To our knowledge, this study is the first to assess RDO2 after rapid ascent to high-altitude 339 

in a large cohort of lowlander participants whom have refrained from taking high-altitude 340 

medications (e.g. acetazolamide). The main findings were: 1) there was a reduction in RDO2 on 341 

high-altitude day1; however, RDO2 was restored to sea-level values on high-altitude day7 342 

through an increase in both CaO2 and renal blood flow; and 2) the relative change in RDO2 at 343 

high-altitude compared to sea-level was associated with renal reactivity on high-altitude day7, 344 

indicating that acid-base regulation is linked to renal oxygenation after exposure to severe 345 

hypobaric hypoxia. Together, these data demonstrate that RDO2 is normalized after a week of 346 

high-altitude acclimatization and provides novel insight on the critical role of renal adaptation 347 

and acid-base balance under hypoxic conditions.  348 

 349 

Renal blood flow control at high-altitude 350 

Compared to ventilatory and hematological acclimatization responses (10, 13, 43, 55, 351 

57), less is known on the impact of renal blood flow on high-altitude acclimatization. While 352 

short exposure to hypoxia (e.g. 20 minutes) augments renal blood flow (5, 51), this is not 353 

apparent during chronic hypoxia (1, 37, 38, 43). Renal blood flow has been reported as 354 

unchanged (38), and decreased (37), after 48-hours at 4350 m, but longer duration studies 355 

(weeks) have shown a decrease in renal blood flow (1, 43). Together, these findings indicate that 356 

the renal blood flow response to hypoxia is highly dependent on exposure time. We saw an early 357 

high-altitude renal vasoconstriction with a decreased renal blood flow, which normalized to sea-358 

level values following a week of acclimatization. Numerous factors can influence renal blood 359 
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flow such as reactive oxygen species, RAAS, phosphodiesterase type 5 upregulation, renal 360 

sympathetic nerve activity, circulating catecholamines, natriuretic peptides and ET during 361 

hypoxia  (11, 16, 34, 36, 43, 52). In this investigation, NT pro-BNP was unchanged during 362 

acclimatization. However, analyzed venous blood samples for RAAS hormones both renin 363 

activity and plasma aldosterone concentrations were decreased occurring on high-altitude day7, 364 

but not high-altitude day1. Prolonged hypoxia may depress RAAS to increase excretory function. 365 

This depression would counter the effects of increased renal vascular resistance and may explain 366 

the observed +12% increase in renal blood flow seen between high-altitude day1 and high-367 

altitude day7 (37). The renal system may decrease renin secretion to preserve excretory function 368 

via decreased renal vascular resistance following a week of acclimatization (6, 38). 369 

Sympathetic nerve activity may also influence renal blood flow at high-altitude (10, 37, 370 

42). A previous study demonstrated that renal vascular vasodilation to dopamine at high-altitude 371 

(~48 hours at 4350 m) was attenuated, and plasma circulating norepinephrine concentrations 372 

were increased, indicating greater renal arteriole vasoconstriction potentially through increased 373 

adrenergic activity (37). Furthermore, a study conducted in dogs demonstrated an augmented 374 

renal blood flow response to hypoxia after kidney denervation (27), while another study 375 

conducted in conscious rabbits subjected to 0.14 and 0.10 fraction inspired oxygen content, had a 376 

14% and 38% increase in renal sympathetic nerve activity, respectively, and congruent decreases 377 

in renal blood flow that were abolished following renal denervation (34). In the current study, we 378 

observed a significant negative relationship between total normalized muscle sympathetic nerve 379 

activity and normalized renal blood flow on high-altitude day7 (See figure supplemental 1) 380 

(https://doi.org/10.6084/m9.figshare.12860744.v1). In other words, participants with greater total 381 

normalized muscle sympathetic nerve activity had lower normalized renal blood flows. 382 

Downloaded from journals.physiology.org/journal/ajprenal by Jonathan Moore (082.132.236.136) on September 30, 2020.



Collectively, this latter observation and previous findings (34, 37) would suggest the level of 383 

sympathetic nerve activity is an important determinant of renal blood flow during hypoxia. We 384 

acknowledge the requirement of sea-level and high-altitude day1 muscle sympathetic nerve 385 

activity data, as well as acute manipulation of sympathetic nerve activity, to draw further 386 

conclusions. 387 

 388 

RDO2 at high-altitude 389 

To date, no previous studies have calculated RDO2 at high-altitude in humans (48). The 390 

data from the current investigation demonstrated that only 12 hours of high-altitude exposure 391 

resulted in a concomitant decrease in renal blood flow and CaO2, resulting in a reduction in 392 

RDO2 by 22%. The acute reduction in RDO2 was offset by elevated CaO2 and renal blood flow 393 

after 7 days of high-altitude acclimatization (see figure 1). We report similar findings as a 394 

previous animal study (48). Since sodium tubular load accounts for 99.5% of renal metabolic 395 

activity (14, 25, 31), renal blood flow may decrease in order to limit renal oxygen consumption, 396 

effectively preserving oxygen for other organs (20, 33). This is supported by reciprocal changes 397 

in cardiac output and renal blood flow observed where renal blood flow decreased was by 17%, 398 

while cardiac output was augmented by 20%. The limited oxygen supply is being directed away 399 

from the metabolic demanding kidneys conserving systemic oxygen (20, 33). 400 

 401 

RDO2 and acid-base acclimatization 402 

There have been several previous studies that have characterized renal acid-base acclimatization 403 

at high-altitude. Renal alterations are initiated within two hours after the onset of hypocapnia, 404 
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and current data indicates incomplete pH compensation is present (metabolic alkalosis) at 405 

altitudes above 2800 m (17, 20, 28, 58). Renal reactivity, an index of acid-base compensation 406 

between HCO3
- and PaCO2 (Δ[HCO3

−]/Δ [PaCO2]), (58), has been shown to increase at altitudes 407 

up to 3800 m, and then decreases with further increases in altitude (58). In the current study, 408 

renal reactivity was greater on high-altitude day7 compared to high-altitude day1, indicating 409 

renal reactivity has a temporal component that is influenced by early acclimatization. Compared 410 

to Zouboules and colleagues (58) expedition, which was conducted at 4240 m after incremental 411 

ascent over seven days, we observed similar renal reactivity response to high-altitude. It is 412 

important to note, however, that the ascent profile used in this current study and Zouboules and 413 

colleagues (58) expedition were very different. For example, Zouboules and colleagues (58) 414 

trekked most days towards Everest basecamp where acclimatization was obviously influenced by 415 

the daily changes in altitude. In our study, we ascended via automobile to 4330 m where we 416 

resided for the duration of the study. Hence, the current study enabled the question of 417 

acclimatization to be addressed over time at the same altitude. Therefore, to address the question 418 

and to extend the data presented by Zouboules and colleagues (58), we assessed both renal 419 

reactivity and RDO2 at high-altitude, and found an association between these two physiological 420 

parameters on high-altitude day7 (see figure 2B and 2C). Interestingly, a relationship was not 421 

observed between renal reactivity and renal blood flow, CaO2 or glomerular filtration rate. One 422 

interpretation of these findings is that the reduction in renal blood flow or glomerular filtration 423 

rate seen at high-altitude (37, 39, 43) does not influence the kidneys capacity to filtrate and 424 

excrete HCO3
- in the urine as previously hypothesized (39, 58). Conversely, this may imply 425 

RDO2 influences the tubular handling of HCO3
−and H+ (18, 49). RDO2 at high-altitude may 426 

impact the activity of intracellular carbonic anhydrase (23), proton secretion via the Na+-H+ 427 

Downloaded from journals.physiology.org/journal/ajprenal by Jonathan Moore (082.132.236.136) on September 30, 2020.



exchanger (NHE3) (2) and/or activity of intercalated cells on the collecting ducts (15). However, 428 

considering the known linkage between sodium and HCO3
- reabsorption in the proximal tubule 429 

(18, 54), we must acknowledge that the independent influence of sodium on acid-base regulation. 430 

That is, renal reactivity and arterial HCO3
- may actually correlate with sodium excretion rather 431 

than changes in RDO2. We recommend that these findings be interpreted cautiously. Future 432 

endeavours should determine the influence of sodium (and other electrolyte) excretion on acid-433 

base regulation during acclimatization. 434 

 435 

Experimental limitations and considerations 436 

The current investigation was the first to assess RDO2 at high-altitude; however, there are 437 

some experimental considerations that warrant discussion. First, para-aminohippurate would 438 

provide a more specific measure of renal perfusion. However, renal ultrasound is strongly 439 

correlated to effective renal blood flow when flows are above 280 ml min-1 as seen this study 440 

(46). Second, muscle sympathetic nerve activity was recorded in a subset of individuals and used 441 

as a surrogate for renal sympathetic nerve activity. We acknowledge that sympathetic vasomotor 442 

outflow to skeletal muscle vasculature may not reflect renal sympathetic nerve activity and may 443 

exhibit differential reflex responses (42). While renal sympathetic nerve activity and muscle 444 

sympathetic nerve activity are strongly correlated in animals (26), these findings should be 445 

interpreted cautiously and used to inform future research. Third, salt and fluid intake was not 446 

controlled for during testing. We acknowledge that changes in fluid and salt may have 447 

contributed to the change in renal function and renal oxygen delivery (21). However, we feel this 448 

has limited influence on our findings. Previous findings have demonstrated that high-altitude 449 

changes renal blood flow and Sprague-Dawley rats during hypobaric hypoxia have a temporal 450 
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RDO2 response to our findings (48). Future endeavours should investigate this physiological 451 

phenomenon while controlling salt and fluid intake. Fourth, we did not calculate metabolic 452 

efficacy of sodium reabsorption across the proximal tubule or renal oxygen consumption. High-453 

altitude may change both of these to maintain normoxic filtration (48). However, this should be 454 

addressed in future studies specifically looking at renal metabolic function during hypobaric 455 

hypoxia. Lastly, no comparisons were made between sexes despite knowing there is a difference 456 

in renal blood flow and RAAS regulation between men and women (24). However, since this 457 

was a repeated measures assessment comparing within individuals and females were only a small 458 

subset this should not greatly impact our findings. Future endeavours should examine the impact 459 

of sex on RDO2 at high-altitude.  460 

 461 

Significance and perspective 462 

Our data characterizes renal acclimatization following 12-hours and one-week exposure 463 

to 4300 m. Renal oxygen delivery fell immediately with initial high-altitude exposure but was 464 

restored on high-altitude day7 by increases in both CaO2 and renal blood flow. In addition, 465 

relative changes to RDO2 from sea-level were positively correlated with renal reactivity on high-466 

altitude day7, indicating a potential link between RDO2 and acid-base compensation during high-467 

altitude acclimatization. Together, these data demonstrate that RDO2 is normalized following a 468 

week of acclimatization and may contribute to pH normalization.   469 
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Figure 1: RDO2 and determinants. RDO2 is acutely decreased during initial exposure to high-633 

altitude (4330 m), however increases to sea-level thereafter at high-altitude day7 from restored 634 

renal blood flow and CaO2. Participants were tested at sea-level (Kelowna, BC 344 m), the 635 

morning immediately following ascent having spent ~12-hours at high-altitude (high-altitude 636 

day1) (Cerro de Pasco, Peru 4330m) and again following seven days of acclimatization (high-637 

altitude day7) (Cerro de Pasco, Peru 4330m). 638 

 639 

 640 

Figure 2: Renal reactivity and Δ RDO2 at high-altitude day1, high-altitude day7 and 641 

between high-altitude day1 and high-altitude day7. While the change in renal reactivity 642 

between sea-level and high-altitude day1 was not associated with the concurrent change Δ RDO2 643 

(A), there was a strong correlation between the changes in renal reactivity and RDO2 when 644 

considering the differences between sea-level and high-altitude day7 (B).  There was also a 645 

correlation between changes renal reactivity and RDO2 during acclimatization (between high-646 

altitude days 1 and 7) (C). Renal reactivity is higher in participants with greater RDO2 647 

suggesting acid-base compensation is dictated by RDO2 at high-altitude. Participants were tested 648 

at sea-level (Kelowna, BC 344 m), the morning immediately following ascent having spent ~12-649 

hours at high-altitude (high-altitude day1) (Cerro de Pasco, Peru 4330m) and again following 650 

seven days of acclimatization (high-altitude day7) (Cerro de Pasco, Peru 4330m). 651 
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Table 1: Participant demographics and acute mountain sickness scores. 

 Low altitude High-altitude  

 Sea-level 

(n=24) 

High-altitude 
day1 

(n=24) 

High-altitude 
day7 

(n=22) 

P-Value 

 

Age 28 ± 6.4 - - - 

Weight (kg) 74 ± 8 73 ± 10 72 ± 10 0.57 

Height (cm) 176 ± 10 - - - 

BMI (kg m-1) 24.3 ± 2.4 23.6 ± 9.6 22.8 ± 3.5 0.19 

AMS scores - 3.0 ± 1.9 0.4 ± 0.9 # 0.046 

List of Abbreviations: BMI, body mass index; and AMS; acute mountain sickness. 

Participants were tested at sea-level (Kelowna, BC 344 m), the morning immediately following 
ascent having spent ~12-hours at high-altitude (high-altitude day1) (Cerro de Pasco, Peru 4330m) 
and again following seven days of acclimatization (high-altitude day7) (Cerro de Pasco, Peru 
4330m). 

P-value for a linear mixed-effect model analysis (effect of time) indicated for each variable. 
Symbols indicate significant post-hoc comparisons,  

# Represents a significant difference between Sea-level vs High-altitude day7 (p<0.05),  
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Table 2: Arterial blood data 

 Low altitude High-altitude  

 Sea-level 

(n=24) 

High-altitude 
day1 

(n=24) 

High-altitude 
day7 

(n=22) 

P-Value 

 

pH 7.43 ± 0.033 7.48 ± 0.034 * 7.45 ± 0.031 # <0.001 

Bicarbonate (mmol L-1) 25.8 ± 1.7 24.6 ± 1.9 19.9 ± 2.0 #† <0.001 

PaCO2 (mmHg) 38.4 ± 3.2 33.1 ± 3.3 * 28.2 ± 2.6 #† <0.001 

Renal reactivity (Δ[HCO3
−]/Δ 

[PaCO2]) 
- 0.098±0.75 0.54±0.14† 0.0016 

PaO2 (mmHg) 100.6 ± 18.4 41.5 ± 7.3 * 50.7 ± 3.9 #† <0.001 

SaO2 (%) 97.6 ± 1.2 78.9 ± 8.4 * 87.6 ± 2.1 <0.001 

Hemoglobin (g dl-1) 14.2 ± 1.3 15.2 ± 1.1 15.6 ± 1.2 # <0.001 

Hematocrit (%) 42.3 ± 4.4 44.3 ± 2.7 46.5 ± 2.4 # <0.001 

CaO2 (ml dl-1) 15.2 ± 1.8 12.8 ± 1.7* 18.1 ± 1.4 † <0.001 

List of Abbreviations: PaO2, arterial partial pressure of oxygen and PaCO2, arterial partial pressure of 
carbon 

Participants were tested at sea-level (Kelowna, BC 344 m), the morning immediately following ascent 
having spent ~12-hours at high-altitude (high-altitude day1) (Cerro de Pasco, Peru 4330m) and again 
following seven days of acclimatization (high-altitude day7) (Cerro de Pasco, Peru 4330m). 

P-value for a linear mixed-effect model analysis indicated for each variable. Symbols indicate significant 
post-hoc comparisons,  

* Represents a significant difference between Sea-level vs High-altitude day1 (p<0.05), 

# Represents a significant difference between Sea-level vs High-altitude day7 (p<0.05),  

† Represents a significant difference between High-altitude day1 vs High-altitude day7 (p<0.05). 
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Table 3: Cardiovascular hemodynamics and muscle sympathetic nerve activity 

 Low altitude High-altitude  

 Sea-level 

(n=24) 

High-altitude 
day1 

(n=24) 

High-altitude 
day7 

(n=22) 

P-Value 

 

Cardiovascular hemodynamics 

Heart rate (beats min-1) 56 ± 12 77 ± 13 * 66 ± 13 <0.001 

Cardiac output (L min-1) 4.0 ± 0.8 5.0 ± 1.1 * 4.1 ± 0.9 † <0.001 

Mean arterial pressure 
(mmHg) 

88 ± 6 89 ± 7 90 ± 8 0.098 

Systolic pressure (mmHg) 117 ± 9 118 ± 8 119 ± 10 0.30 

Diastolic pressure (mmHg) 70 ± 7 78 ± 7 * 76.± 7 0.001 

Total peripheral resistance 
(mmHg L-1 min-1) 

21.9 ± 3.9 18.9 ± 4.1 * 22.7 ± 4.6 † 0.001 

Muscle sympathetic nerve activity (n = 9) 

Burst frequency (bursts min-

1) 
- - 32 ± 15 - 

Burst incidence (bursts 
100HB-1) 

- - 42 ± 15 - 

Mean burst amplitude (a.u.) - - 39 ± 9 - 

Total activity (a.u. min-1)  - - 1284 ± 411 - 

List of Abbreviations: HB, heartbeat and a.u, arbitrary units 

Participants were tested at sea-level (Kelowna, BC 344 m), the morning immediately following 
ascent having spent ~12-hours at high-altitude (high-altitude day1) (Cerro de Pasco, Peru 4330m) 
and again following seven days of acclimatization (high-altitude day7) (Cerro de Pasco, Peru 
4330m). 

P-value for a linear mixed-effect model analysis indicated for each variable. Symbols indicate 
significant post-hoc comparisons,  

* Represents a significant difference between Sea-level vs High-altitude day1 (p<0.05), 

# Represents a significant difference between Sea-level vs High-altitude day7 (p<0.05),  

† Represents a significant difference between High-altitude day1 vs High-altitude day7 (p<0.05).
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Table 4: Renal function and volume regulatory hormones 

 Low altitude High-altitude  

 Sea-level 

(n=24) 

High-altitude 
day1 

(n=24) 

High-altitude 
day7 

(n=22) 

P-Value 

 

Renal function 

RDO2 (ml O2 min-1) 174.8 ± 71.7 137.9 ± 59.2* 164.9 ± 61.9† <0.001 

Renal blood flow (ml min-1) 924 ± 366 795 ± 351* 907 ± 312 0.019 

Normalized renal blood flow 
(%)  

23 ± 3 16 ± 3* 22 ± 4† <0.001 

Renal vascular resistance 
(mmHg ml-1 min-1) 

110 ± 50 129 ± 64 * 116 ± 47 0.046 

Glomerular filtration rate 
(ml/min/1.732) 

102 ± 20 91 ± 31 * 86 ± 17 # 0.005 

Filtration fraction (%) 21 ± 10  28 ± 9 * 24 ± 9 0.005 

Volume regulatory hormones 

Active renin (pg ml-1) 59.2 ± 23.1 49.4 ± 38.9 37.2 ± 24.1  0.025 

Plasma aldosterone 
concentration (pg ml-1) 

212.7 ± 104.9 175.1 ± 162.4 111.7 ± 92.5 # 0.018 

NT-pro-BNP (pg ml-1) 1753.1 ± 600.2 1909 ± 970.6 1460 ± 764.6 0.15 

Urinary volume (ml) (9 
hours) 

510 ± 198.5 680.1 ± 405.8 754.6 ± 255.8 # 0.022 

Urinary microalbumin (mg L-

1) 
5.9 ± 1.5 10.2 ± 3.5* 6.4 ± 2.0 0.012 

List of Abbreviations: NT pro-BNP, N-terminal pro-B-type natriuretic peptide and pg, picogram 

Participants were tested at sea-level (Kelowna, BC 344 m), the morning immediately following 
ascent having spent ~12-hours at high-altitude (high-altitude day1) (Cerro de Pasco, Peru 4330m) 
and again following seven days of acclimatization (high-altitude day7) (Cerro de Pasco, Peru 
4330m). 

P-value for a linear mixed-effect model analysis indicated for each variable. Symbols indicate 
significant post-hoc comparisons,  
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* Represents a significant difference between Sea-level vs High-altitude day1 (p<0.05), 

# Represents a significant difference between Sea-level vs High-altitude day7 (p<0.05),  

† Represents a significant difference between High-altitude day1 vs High-altitude day7 (p<0.05).
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