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ABSTRACT 

Sediment gravity flows possess a wide range of rheological behaviors and past work has 

shown how transformations between flow types generate spatiotemporal changes in the 

resultant sedimentary successions. Herein, the geometrical characteristics of a single climbing 

ripple are used to demonstrate how such flows can transform from a turbulent to a quasi-

laminar plug flow, with the transitional clay flow sequence being manifested by abnormally 

large heterolithic sand–clay current ripples with small backflow ripples, and then abundant 

clay deposition associated with smaller ripples. Analysis of ripple size, angle of climb, grain size, 

internal erosional surfaces and soft-sediment deformation suggest that transformation in the 

rheological character of the sediment gravity flow was rapid, occurring over a period of tens of 

minutes, and thus probably over a spatial scale of hundreds of meters to several kilometers. The 

present study indicates how the character of flow transformation can be elucidated from the 

details of a small-scale sedimentary structure. 

 

INTRODUCTION 

Sediment gravity flows (SGFs) in oceans and lakes are a vital component of the global sediment 

cycle (Hessler and Fildani, 2019), and are equally important for the transport of organic carbon, 

nutrients and pollutants (e.g., plastics; Kane et al., 2020), pose a hazard to infrastructure (Clare et al., 

2019), and their deposits may store hydrocarbons (Talling, 2014). The research and socio-economic 

relevance of SGFs is widely appreciated, but studying SGFs is challenging because of their unsteady 
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and non-uniform behavior. This is exacerbated by the fact that most SGFs carry clay particles that 

aggregate to form floccules and gels, and thus enhance or suppress the shear-generated turbulence that 

helps drive these flows and shape their deposits (Baas et al., 2009; Baker et al., 2017). Detailed 

studies of SGF deposits have shown that these complex kinematics are expressed in the ability of 

SGFs to transform between turbulent, transitional and laminar behavior (Haughton et al., 2009), on 

which the concentration of suspended clay has a key influence (Baas et al., 2011). As clay 

concentration increases, these flow types comprise: (a) turbulence-enhanced transitional flow (TETF), 

in which turbulence is enhanced relative to clay-free turbulent flow; (b) lower transitional plug flow 

(LTPF), in which near-bed enhanced turbulence exists below a moving plug with suppressed 

turbulence; (c) upper transitional plug flow (UTPF), which has a thickened plug flow zone above a 

thinned, near-bed, zone of attenuated turbulence; and (d) quasi-laminar plug flow (QLPF), in which 

the plug extends down to the bed and turbulence is weak to absent (Baas et al., 2009). The 

characteristic bedforms formed by transitional flow are large ripples in TETF and LTPF and low-

amplitude bed-waves in UTPF and QLPF (Baas et al., 2016). Large ripples have greater heights and 

wavelengths than ripples formed in clearwater, and low-amplitude bed waves are significantly longer 

and flatter than ripples generated in turbulent flows (Baker and Baas, 2020). Herein, we provide 

evidence for progressive SGF transformation preserved in a single climbing ripple, which stores a 

continuous record of bed aggradation and bedform migration. Since climbing ripples can form 

rapidly, especially at steep angles of climb associated with rapid aggradation rates (Allen, 1963), our 

analysis implies that flow transformation can occur in several tens of minutes. This timescale may be 

typical of transforming SGFs in confined basins (e.g., Fonnesu et al., 2015), but it is considerably 

shorter than for SGFs transforming in unconfined basins, which are usually 10s to 100s of km long 

and last for several hours to days or even weeks (Azpiroz-Zabala et al., 2017). 

 

MATERIAL AND METHODS 

We investigated a climbing-ripple set in a polished slab from the Seathwaite Fell Sandstone 

Formation (Ordovician, Elterwater Quarry, UK, 54.435N, 3.046W). This set forms a representative 

part of a climbing ripple co-set with similar sedimentological properties (Fig. 1A; Supplementary 

Material; Fig. S1), formed by deposition from a volcaniclastic mixed sand–clay gravity flow in a 

caldera lake (Branney and Kokelaar, 1994). The Seathwaite Fell Sandstone Formation contains 

various other types of primary current lamination, and soft-sediment deformation structures, denoting 

high sediment accumulation rates and seismic instability (Barnes et al., 2006).  

The climbing-ripple set was divided into three sectors, based on textural properties, and 21 ripple 

positions were defined in these sectors by tracing ripple outlines (Fig. 1B). These positions were then 

used to determine the evolution of ripple height (Fig. 1C; the vertical distance between ripple trough 
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and crest), and, where possible, ripple wavelength (the horizontal distance between adjacent ripple 

troughs). Ripple brinkpoints were traced to determine changes in angle of climb, and the size of sand 

grains was measured using a Dino-Lite digital microscope. Ripple types were then interpreted, based 

on ripple size and their turbulent, transitional and laminar flow signatures (Baas et al., 2009, 2011, 

2016). Finally, qualitative evidence for rapid bed aggradation was combined with quantitative 

analysis using several methods (Fig. 1D) that have been proposed previously (Supplementary 

Material; Ashley et al., 1982; Baas, 1993, 2004; Baas et al., 2000, 2009; Jobe et al., 2012) to 

determine bed aggradation rates (Supplementary Material) and estimate the duration of deposition of 

the climbing-ripple set. 

 

THE CLIMBING-RIPPLE SET EXPLAINED KINEMATICALLY 

Description: In Sector 1 (yellow lines, Fig. 1B), the ripple is sandy and climbs over a vertical 

distance of 15.6 mm at a mean angle of 19.7. Sector 2 is 27.7 mm thick, with a mean angle of climb 

of 18.4 (orange lines, Fig. 1B), and possesses distinct foreset laminae of alternating sand and clay. 

The mean sand size in Sectors 1 and 2 is 0.124 mm. Sector 3 (red lines, Fig. 1B) is clay-rich with 

occasional thin, discontinuous, silty laminae; the ripple climbs over a vertical distance of 21.6 mm at a 

mean angle of 44.2. The ripple height in Sector 1 increases from 8.5 to 12.9 mm (Figs. 1C and 2), 

and keeps growing in Sector 2, until it reaches a maximum height of 21.7 mm at the transition to 

Sector 3 (Figs 1C and 2). In Sector 3, ripple height and wavelength decrease from 21.7 to 18.4 mm 

(Figs 1C and 2) and from 174 to 183 mm (Fig. 1B), respectively. 

Interpretation: The final ripple height of 12.9 mm in Sector 1 is less than 14.9 mm, the height at 

which equilibrium ripples form in 0.124 mm sand under clearwater flow (Baas, 1993; Fig. 2). It is 

therefore inferred that this ripple did not reach equilibrium and evolved between non-equilibrium 

heights of 8.5 and 12.9 mm. The sandy nature of Sector 1 suggests that any suspended clay present 

did not affect the flow kinematics or become incorporated into the bed. Hence, this ripple formed in a 

‘classic’ fully turbulent flow (Baas et al., 2011; Fig. 3B). The ripple grew in height throughout Sector 

2 (Figs. 2 and 3C), with the final height of 21.7 mm matching the so-called ‘large ripples’ generated 

in the laboratory (Baas et al., 2016) and described in outcrop (Baker and Baas, 2020; Fig. 2). Large 

ripples form in TETF and LTPF (Baas et al., 2011; Fig. 3C), in which enhanced turbulence in ripple 

troughs (Baas and Best, 2008) helps to increase ripple size. This turbulence enhancement requires a 

local increase in suspended clay concentration, possibly combined with flow deceleration (Figs 3C 

and S2). Further support for TETF and LTPF comes from: (a) alternating sandy and clayey laminae in 

Sector 2, which mimics large ripples in the laboratory (Baas et al., 2011, 2016); (b) small backflow 

ripples near the base of the ripple foreset (Fig. S3), pointing to strong vorticity and upstream flow 

velocities in the ripple trough (Baas et al., 2011); and (c) a finer-grained core (sensu Baker and Baas, 
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2020), especially in the top half of Sector 2 (Fig. 1A), across which the sandy part of the ripple 

migrated, signifying concurrent bedload transport of sand and fallout from suspension of clay. The 

ripple in Sector 3 has a smaller height than in Sector 2 (Fig. 2), interpreted as the product of a further 

increase in local suspended clay concentration combined with flow deceleration in an UTPF or QLPF 

(Supplementary Material) that caused the ripple height to decrease (Fig. 3D). This is supported by the 

high clay content in Sector 3, denoting significant fallout from suspension, and the fact that Baker and 

Baas (2020) have shown that such flows form low-amplitude bed-waves, the height of which is much 

smaller (mostly below 10 mm) and the wavelength of which is larger (200-800 mm) than for ripples 

in turbulent and turbulence-enhanced flows. However, the bedform in Sector 3 did not reach these 

heights and wavelengths (Fig. 2), probably because ripple development was temporarily constrained 

and the high suspended clay concentration hindered evolution from large ripples to low-amplitude 

bed-waves. These bedforms can therefore be classified as relict large ripples. 

The ripple studied herein climbed at high mean angles of 18.4 to 44.2, suggesting that the 

vertical aggradation rate became larger relative to the migration rate (Supplementary Material). 

Various quantitative methods (Fig. 1D; see Supplementary Material for details) show that a period of 

the order of tens of minutes, with extremes in the Sectors 1 to 3 of 1.2-38.8 minutes, 5.9-125 minutes, 

and 8.2-69 minutes, respectively, was sufficient to deposit the climbing-ripple set. Such rapid 

development is also supported by qualitative data (Fig. 1A): (a) Strong erosion (>10 mm deep, Figs 

1A and 3A) and soft-sediment deformation of clay-rich sediment at the base of the climbing-ripple co-

set indicate that the initial flow conditions were strong enough to deform and erode cohesive clay. The 

occasional presence of mud clasts confirms that the substrate was firm. (b) Flow in the ripple trough 

was fast enough to scour into the stoss side of the downstream ripple in Sectors 1 and 2 (Fig. 1A). (c) 

soft-sediment deformation in Sector 3 (Fig. 1A) may indicate water-rich sediment linked to rapid 

deposition (Barnes et al., 2006). This deformation was synsedimentary because local deformation is 

healed by younger laminae. 

 

FLOW TRANSFORMATION IN CLIMBING RIPPLES: IMPLICATIONS 

The present study reveals that climbing ripples can preserve continuous records of transformation 

from turbulent via transitional to laminar flow in a waning, mixed sand–clay, gravity current (Fig. 3), 

and it confirms that kinematic process models for ripples in sand do not apply to ripples in mixed 

sand–clay (Baas et al., 2016; Baker and Baas, 2020). This is not unique to the Seathwaite Fell 

Sandstone Formation. Climbing-ripple co-sets with an upward increase in angle of climb, and 

wavelength, are one of three climbing ripple patterns in the classification of Allen (1973), and have 

been linked to ‘collapsing flows’ in SGFs (Jobe et al., 2012), implying that suspension fallout rates 

increased during deposition relative to bedload transport rate. However, this does not explain the 
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simultaneous increase in ripple wavelength. We infer that the steep angle of climb near the top of co-

sets is caused not only by a strong increase in suspension fallout rate (e.g., Sorby, 1908; Allen, 1963; 

Hunter, 1977) and a decrease in ripple migration rate at decreased flow velocity (cf., Jopling and 

Walker, 1968), but also by a slowing of ripple migration through turbulence attenuation induced by 

cohesive clay (Baas et al., 2011). The mud-rich, longer-wavelength bedforms similar to those in 

Sector 3, found at the top of these sequences (Walker, 1963; Jopling and Walker, 1968; Bhattacherjee, 

1970) also reflect flow transformation. For example, Bhattacherjee (1970) described muddy bedforms 

in the Cloridorme Formation (Québec, Canada), 13.6 mm high and 353 mm long, which match the 

size of low-amplitude bed-waves (Baas et al., 2016; Baker and Baas, 2020; Fig. 2). Bhattacherjee 

(1970) also described ripples with a similar wavelength but a larger height (27 mm; his figure 8) in 

clay-rich sandstones below climbing low-amplitude bed-waves, thus resembling large ripples (Baas et 

al., 2016; Baker and Baas, 2020; cf., Stanley, 1974; Fig. 2). This change from large ripples to low-

amplitude bed-waves matches the climbing-ripple co-set studied herein, except that the bedforms in 

the Cloridorme Formation were able to fully complete this change. 

It thus appears that the climbing ripples described herein are a common sedimentary structure. 

They resemble the Type-3 climbing ripple co-sets of Walker (1963; his table II), almost exclusively 

found in turbidites. Therefore, in addition to providing evidence for flow transformation, the mixed 

sand–clay climbing ripple co-sets described herein may also be a strong indicator for waning gravity 

flows in deep-marine or lacustrine depositional environments. In most scenarios, waning mixed sand–

clay gravity flows must pass through flow types in which turbulence is first enhanced and then 

attenuated (Fig. S1), and thus large ripples and low-amplitude bed-waves can be expected to be 

common bedform types in mixed sand–clay climbing ripple co-sets. Together with sandy ripples, 

these bedforms provide a novel tool to reconstruct temporal changes in SGF kinematics.  

The present analysis illustrates that rates of flow transformation in SGFs, and thus rates at which 

cohesivity may develop, can be as rapid as several tens of minutes. In the example described herein, 

this duration converts into flow lengths of hundreds of meters to several kilometers for flow velocities 

at which current ripples are stable. These temporal and spatial scales correspond to those inferred 

from the deposits of SGFs that comprise a hybrid between turbulent and laminar behavior in confined 

basins (e.g., Fonnesu et al., 2015). However, these scales are at least an order of magnitude shorter 

than for unconfined basins, which usually contain rapid flows that are 10s to 100s of km long (e.g., 

Haughton et al., 2009; Talling, 2013; Talling et al., 2013) and may last for several hours to days or 

even weeks (Azpiroz-Zabala et al., 2017). The present analysis shows that once such flows start to 

decelerate, transformation can occur rapidly, and that SGF deposits can leave evidence of this flow 

transformation at a scale of 10s of mm that can be recognized in cores and small outcrops.  
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CONCLUSIONS 

The rate of flow transformation within a SGF is revealed by analysis of bedform size, grain size 

and the microstructure of cross-stratification within a single climbing ripple set. The present study 

demonstrates that an initially turbulent flow that is aggradational and generates climbing ripples, 

begins to develop large ripples in TETF or LTPF, as the flow decelerates. These large ripples are 

generated by increased turbulence in the ripple trough that causes additional scour that may also form 

small backflow ripples. These large ripples are also characterized by heterolithic deposition on the 

ripple leeside, as fallout from suspension becomes more dominant than sand and silt avalanching 

down the leeside slope. Further flow deceleration, and increases in clay concentration, cause more 

rapid aggradation, and higher angles of climb, of the clay-rich current ripple, which also becomes 

smaller due to the dampening of turbulence in UTPF or QLPF. Further analysis reveals that such flow 

transformation, from turbulent to quasi-laminar plug flow, was rapid and occurred over a period of 

tens of minutes, suggesting that the spatial distance over which such transformation took place was 

hundreds of meters to several kilometers. Quantification of the microstructure of such climbing ripple 

sequences may hold untapped potential for reconstructing the temporal fluid dynamics of clay-laden 

SGFs in many sedimentary environments. 
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FIGURE CAPTIONS 

Figure 1. (A) Climbing-ripple co-set in Seathwaite Fell Sandstone Formation, UK. Inset shows 

location of (B). Flow direction is towards right. (B) High-contrast image of the climbing-ripple set, 

highlighting 21 ripple outlines in Sectors 1 (yellow), 2 (orange), and 3 (red). Blue dashed line traces 

the ripple brinkpoints. Inset shows location of Fig. S3. TF = turbulent flow; TETF = turbulence-

enhanced transitional plug flow; LTPF/UTPF = lower/upper transitional plug flow; QLPF = quasi-

laminar plug flow. (C) Horizontal position of the ripple brinkpoint vs ripple height and angle of climb 

for the three sectors. Numbers refer to ripple outlines in (B). (D) Estimated durations of deposition of 

Sectors 1 (yellow), 2 (orange), and 3 (red), using the methods described in the Supplementary 

Material. Note that the range for bed sediment flux & ripple height in Sector 2 may be overestimated 

(see Supplementary Material). 

Figure 2. Compilation of wavelengths and heights for sandy ripples, large ripples and low-amplitude 

bed-waves. Black box: predicted size range of non-equilibrium and equilibrium ripples in 0.124 mm 

sand (Baas, 1993). Yellow dots: sandy ripples for a range of grain sizes. Note that all large ripples and 

low-amplitude bed-waves are outside the size range of ripples in 0.124 mm sand. 

Figure 3. Schematic model for the formation of the climbing-ripple set. (A) Erosion by turbulent flow 

front. (B) Sandy ripples formed by turbulent body of flow. (C) Mixed sand–clay large ripples formed 

by turbulence-enhanced flow. (D) Clay-rich ripples formed by turbulence-attenuated flow. (E) 

Schematic temporal changes in flow velocity, near-bed clay concentration and turbulence, sand and 

clay aggradation rate, and angle of climb. See Fig. 1 for explanation of flow types.  
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