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Abstract

Sequential use of alternative treatments for chronic conditions represents a complex intervention pathway; previous treatment
and patient characteristics a ect both the choice and e ectiveness of subsequent treatments. This paper critically explores the
methods for quantitative evidence synthesis of the e ectiveness of sequential treatment options within a health technology
assessment (HTA) or similar process. It covers methods for developing summary estimates of clinical e ectiveness or the
clinical inputs for the cost-e ectiveness assessment and can encompass any disease condition. A comprehensive review of
current approaches is presented, which considers meta-analytic methods for assessing the clinical e ectiveness of treatment
sequences and decision-analytic modelling approaches used to evaluate the e ectiveness of treatment sequences. Estimating
the e ectiveness of a sequence of treatments is not straightforward or trivial and is severely hampered by the limitations of
the evidence base. Randomised controlled trials (RCTs) of sequences were often absent or very limited. In the absence of
su cient RCTs of whole sequences, there is no single best way to evaluate treatment sequences; however, some approaches
could be re-used or adapted, sharing ideas across di erent disease conditions. Each has advantages and disadvantages, and
isin uenced by the evidence available, extent of treatment sequences (number of treatment lines or permutations), and com-
plexity of the decision problem. Due to the scarcity of data, modelling studies applied simplifying assumptions to data on
discrete treatments. A taxonomy for all possible assumptions was developed, providing a unique resource to aid the critique
of existing decision-analytic models.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s40273-020-00980-w) contains
supplementary material, which is available to authorized users.

1 Introduction
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tion or indication is increasingly common [1]. To optimise
treatment outcomes and value for money, a sequence of treat-
ments is likely to be used in such contexts. Policy and clini-
cal decisions based on the optimum sequence rather than
the e ectiveness or cost-e ectiveness of discrete treatments
are becoming increasingly important [2 5]. This is espe-
cially true for chronic diseases, such as depression, diabetes,
and cancer [5 7], and some infectious diseases where treat-
ment resistance can limite ectiveness, for example human
immunode ciency virus (HIV) [8]. However, synthesising
and interpreting the evidence base to inform such decisions
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Key Points for Decision Makers

Treatment sequences, where previous treatment and
patient characteristics can a ect both the choice and

e ectiveness of subsequent treatments, are increasingly
common in chronic conditions and represent complex
treatment pathways. Methods for evidence synthesis that
produce the least biased estimates of treatment sequenc-
ing e ects are required to inform reliable clinical and
policy decision making.

Randomised controlled trials (RCTs) of treatment
sequences are limited; the use of RCTs of discrete
treatments may not provide good evidence on treatment
sequencing e ects, and observational studies are suscep-
tible to confounding and bias.

The inclusion of discrete treatments used at di erent
points in the treatment pathway may bias a network
meta-analysis. Meta-regression needs to account for both
previous treatment and duration of disease.

Modelling studies of treatment sequences often apply
simplifying assumptions due to the absence of sequenc-
ing trials. This can lead to misrepresentation of the true
level of uncertainty, potential bias in estimating the

e ectiveness and cost-e ectiveness of treatments, and
the wrong decision.

is not straightforward. Treatment sequencing represents a
complex intervention pathway where treatment history and
patient characteristics may in uence both the choice and
the e ectiveness of subsequent treatments. Treatment his-
tory represents multiple factors, including, number and type
of previous treatments [9, 10], carry-over e ects of prior
treatments [11 13], type, level and duration of response to
previous treatment [14 16], time on treatment [17], intoler-
ance or toxicity [16, 18], development of disease resistance
[19, 20], and burden of preceding treatments that can impact
subsequent adherence [7, 21]. Time and disease trajectory
are also important factors that can in uence the e ective-
ness of subsequent treatment, the impact of which can be
both dependent on and independent of previous treatments
[9, 10, 22, 23]. Subsequent treatment choices include dose
escalation, add-on therapy, a completely new treatment, or
re-use of a previously e ective treatment. In some instances,
for example relapsing-remitting multiple sclerosis, previous
treatments can restrict the choice of allowable follow-on
drugs [24].

Randomised controlled trials (RCTs) provide the most
robust estimates of treatment e ects to inform policy and
clinical decision making. However, RCTs of treatment
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sequences are few in numbers and do not cover the breadth
of decision making needed. As the number of available
treatments increases, the number of unique sequences will
increase geometrically [4, 25], making it impractical and
prohibitively costly to evaluate all conceivable sequences
in RCTs. The time-varying adaptive nature of many
sequences also means that innovative and novel approaches,
such as sequential multiple assignment randomised trials
(SMARTS), are required for developing the dynamic treat-
ment regimens [26 28]. RCTs of discrete treatments, used
at single points in the treatment pathway, provide robust
estimates of e ectiveness for their speci ¢ context, but may
not provide representative estimates for these treatments
when used in di erent contexts, such as the later stages of
sequences. Participants who enrol into clinical trials and
are adherent to discrete treatments may also be quite dif-
ferent from subjects in trials of treatment sequences where
alternative, subsequent treatment options are available [7,
29 31]. In sequential treatment studies, participants deci-
sion to end rst-line treatment may be in uenced by the
knowledge there is a second-line treatment readily available
[21]. Alternative data sources, which can potentially provide
context-speci ¢ estimates of treatment e ects in di erent
sequences, are longitudinal observational studies, but these
are subject to selection bias and confounding.

Evidence synthesis methods that produce the least biased
estimates of treatment-sequencing e ects are required to
inform reliable clinical and policy decision making. Due
to the limitations of primary data sources outlined above,
this is likely to require advanced meta-analytic techniques
[32 36] or mathematical modelling [37]. There is no cur-
rent guidance for best practice in this context. The Decision
Support Unit (DSU), which is commissioned by the National
Institute for Health and Care Excellence (NICE) to provide
a research resource to support the institute s Technology
Appraisal Programme has developed a brie ng document
on reviewing sequential treatments and downstream costs
[38]. This was part of a series of brie ng papers and reports
developed to inform the 2013 update of the NICE meth-
ods guide. The updated methods guide highlighted the fact
that some technology appraisals may need to consider the
comparison of treatment sequences. However, neither the
updated methods guide nor the DSU s brie ng document
provided guidance on evaluating the clinical e ectiveness
or modelling treatment sequences. We did not nd any other
health technology assessment (HTA) guidance that provided
information on evaluating treatment sequences. Our paper
provides a rst step in addressing this limitation.

As a step towards informing best practice, a compre-
hensive review of reported quantitative evidence synthesis
methods was conducted to establish what existing methods
are available and outline the assumptions they make and
any shortcomings. It is also hoped that this review will draw
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attention to this increasingly important area and encourage
future methods development.

The review of methods was conducted with the aim of
providing guidance for undertaking HTA or similar pro-
cesses, including comparative e ectiveness research and
evidence-based guideline development. We did not aim to
assess the e ectiveness or cost-e ectiveness of treatment
sequences here, rather the methods used to develop summary
treatment e ect estimates of whole sequences or discrete
treatments conditional on their positioning in the treatment
pathway. The review considered methods applied within
both clinical and economic evaluation; however, our focus
is on the estimation of clinical e ectiveness and does not
consider the impact of treatment sequencing on the estima-
tion of costs or utility values.

2 Methods
2.1 Literature Search

The intention was to identify the breadth of methods devel-
oped for evaluating treatment sequences and not to identify
every study that used each method.

The breadth of our review, the recognised challenges of
identifying and selecting methodological research using
reference databases [39 41], and the fact that the major-
ity of relevant literature would likely be studies reporting
applicable methods or methodological developments as part
of a wider applied study, rather than being primarily meth-
odological studies [41], meant that a conventional systematic
search of reference databases was considered insu cient for
the current review. A number of approaches and sources
were therefore used to identify relevant methodological stud-
ies. The following bibliographic databases were searched
from inception to August 2013: MEDLINE, Embase, and the
Cochrane Library. The search strategy is provided in Online
Resource 1 (see the electronic supplementary material).
This was supplemented by hand-searching the following:
internet search engines; the websites of speci ¢ organisa-
tions, including NICE; electronic journals; the agendas of
online conference proceedings; the references of existing
reviews (listed in Online Resource 1) and relevant papers;
known author searches; and forward citation tracking. The
reference database searches were not updated, but itera-
tive and purposeful hand searches, including the PubMed
related citations function, were continued throughout the
review process. An in-depth review was conducted of rel-
evant studies identi ed during the initial searches. Potential
new studies then were then cross-referenced with a list of
included studies and recorded methods. More recent stud-
ies were only included if they contributed to new methods
or knowledge. The searches were deemed to be complete

when further e orts to identify information did not add to
the analysis [42] (with the most recent study published in
2016). This is analogous to reaching the point of saturation
in qualitative research [42, 43]. The searches have since been
supplemented by a recent purposeful and targeted search,
which incorporated scanning studies included in a recent
systematic review of economic evaluations in rheumatoid
arthritis by Ghabri et al. [44].

2.2 Assessing Study Relevance

The review included any disease condition and sequence of
any type of treatment. It did not consider decision problems
relating to prevention, screening/prognostic, diagnostics,
or treatment monitoring. It focused on treatment switching
based on a clinical assessment. Studies evaluating the e ec-
tiveness of planned sequential administration of combined
therapy were excluded, as this represented a di erent type
of decision framework.

The review included studies that applied or developed
quantitative evidence synthesis methodology as part of sec-
ondary research. Studies that used qualitative or narrative
evidence synthesis and primary research evaluating treat-
ment sequences were excluded. Any type of meta-analytic
technique was considered, incorporating, but not limited
to, pairwise meta-analysis, meta-regression, network meta-
analysis (NMA), and any meta-analysis based on individual
patient data (IPD). Decision-analytic modelling techniques
developed to evaluate treatment sequencing, whether con-
ducted as part of an economic evaluation or not, were
included. Modelling studies that aimed to evaluate the e ec-
tiveness of discrete treatments and incorporated the impact
of downstream treatments were only included if they spe-
ci cally modelled sequencing e ects. Studies published in
abstract form were excluded, as were economic evaluations
based on a single RCT.

3 Results
3.1 Overview of Included Studies

Database searches, after de-duplication, identi ed 752 refer-
ences, of which 94 were deemed potentially relevant after
screening titles and abstracts. Twenty-six of these could not
be further assessed as they were unavailable (n = 2), could
not be translated (n = 2), or were only published as confer-
ence abstracts (n = 22). A further 28 of those retrieved in
full were excluded as they were not relevant (Fig. 1). After
collating studies published in more than one publication,
the remaining 40 references yielded 36 studies of interest.
These were included in the review, along with a further 53
studies identi ed via internet and hand searches. Recent
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supplementary targeted searches identi ed two studies [45,
46] that contributed a new modelling technique. There were
91 studies in all.

Forty-nine (54%) studies investigated the use of disease-
modifying antirheumatic drugs (DMARDS), including bio-
logical agents (or biologics), for the treatment of in am-
matory arthritis, including rheumatoid arthritis, psoriatic
arthritis, and ankylosing spondylitis. Fourteen (15%) related
to oncology. The remainder assessed treatments for epilepsy
(n = 4; 5%), psoriasis (n = 4), depression (n = 3; 3%), glau-
coma (n = 2; 2%), schizophrenia (n = 2), type 2 diabetes
mellitus (n = 2), HIV (n = 2), neuropathic pain (n = 1), pos-
therpetic neuralgia (n = 1), sciatica (n = 1), bromyalgia (n
= 1), chronic hepatitis B infection (n = 1), Crohn s disease
(n = 1), onychomycosis (n = 1), and spasticity (n = 1). The
majority involved sequences of drug treatments, but some
also considered other interventions, for example, surgery
for sciatica. Only two studies were primarily methodologi-
cal [14, 47].

Meta-analysis and decision-analytic modelling were
reviewed as two distinct categories of quantitative evidence
synthesis methods.

3.2 Meta-Analytic Methods

Twenty-three studies were included in the evaluation of
meta-analytic approaches [9 11, 16, 23, 47 64]. However,
some of these studies were considered relevant in fairly
broad terms, such as providing examples of how the lim-
ited evidence base precluded the evaluation of treatment
sequencing, or representing the use of strati ed analysis by
line of therapy, which could potentially provide a building
block for future methods development. These approaches
were initially not considered pertinent to the review but
because of the dearth of relevant methods identified, a
post hoc decision was made to include them as examples
of simplifying methods. This provided a more comprehen-
sive list of the approaches pragmatically used for evaluat-
ing treatment sequencing in general, rather than limited to
novel methods for developing sequence-speci ¢ summary
e ect estimates. An overview of the studies, including their
aims, approaches used, and the data sources, is presented
in Table 1.

The evidence to inform treatment sequencing was broadly
considered in two ways: a one-step-at-a-time evaluation
based on a series of discrete treatments and a comparison of
whole sequences. No novel meta-analytic methods (beyond
the use of conventional pairwise meta-analysis [32]) were
identi ed for evaluating treatment sequences, and none
directly aimed at developing a summary estimate of e ect
conditional on positioning in the sequence. Most approaches
were developed for addressing excessive heterogeneity or
speci ¢ gaps in the RCT evidence when evaluating discrete
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treatments at single points in the pathway. For example,
in rheumatoid arthritis, RCTs of initial biological therapy
investigated the use of these drugs in both early disease,
where patients have not previously received any DMARD
therapy, and as add-on therapy for established disease in
patients with an inadequate response to previous conven-
tional DMARDs, representing a heterogeneous patient popu-
lation. The rst-generation biologics include tumour necro-
sis factor- (TNF) inhibitors. Most RCTs of second-line
biologics investigated other types of biologics in participants
with an inadequate response to previous TNF inhibitors; few
RCTs evaluated the sequential use of rst-generation TNF
inhibitors, whist registry data show that these are often used
in practice as second- or subsequent-line therapy [47]. The
current meta-analytic approaches, which can potentially be
used in a clinical evaluation of a health technology, are sum-
marised below.

3.2.1 Meta-Analysis of Studies Evaluating Whole
Sequences

This approach is hampered by the limited number of avail-
able RCTs of treatment sequences, which also makes it dif-

cult to establish a closed network for implementing NMA
[56]. Observational studies can be used as alternative data
sources, but are subject to confounding and bias. The type
of observational studies used included the comparison of
participants who had received a prede ned sequence of two
drugs [11], the evaluation of second-line treatment where
generic rst-line treatment is used [52], and the comparison
of the outcomes of rst- and second-line treatments [9, 47].
The comparison of treatments used during an earlier ver-
sus a later part of the treatment pathway ignores the likely
effect of disease trajectory, issues relating to treatment
choice, changes in pathophysiology with time, and other
confounding factors. The types of bias and limitations of
non-randomised studies that are speci c to the evaluation
treatment sequences, and identi ed as part of the review,
are listed in Box 1.

3.2.2 Subgroup Analyses to Explore the Impact
of Treatment History when Evaluating Treatment
Sequences in a Piecemeal Fashion

The subgroups can be de ned in two ways: by splitting all
studies into two or more groups, also referred to as strati ed
analysis (e.g. early- vs late-stage disease, or failed previous
TNF inhibitor yes vs no) [63, 64], or by taking partial
data from included studies (e.g. participants switching to
a second TNF inhibitor due to intolerance, lack of e cacy,
or loss of e cacy) [58]. A summary of the methods used is
provided in Online Resource 2 (see the electronic supple-
mentary material). Strati ed analysis is also applied when
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REFERENCES identified by bibliographic database
searches REFERENCES identified by bibliographic database
n=1105 > searches after de-duplication
(Embase 693, Medline 342, n=752
The Cochrane Library 70) l

PUBLICATIONS retrieved for detailed evaluation
and assessment for inclusion
n=94

Publications that could not be assessed for
inclusion because:
Unable to translate

Publications EXCLUDED as they were not
deemed to be relevant

< n=28
n=2 Reasons included:
Unavailable from interlibrary loans narrative review, treatment switching not due
n=2 to clinical assessment, discussion piece or
editorial, sequential treatment RCT or
» sequential multiple assighment randomised
trial (SMART), cohort study, treatment
algorithm/guidelines developed using expert
consensus, clinical guidelines with no
Conference ABSTRACTS < evidence synthesis of treatment sequences,
n=23 survey of clinicians, not evaluating treatment

sequences/sequencing effects, review of
reviews/economic evaluations.

\ 4

INCLUDED studies identified via
reference database searches
n= 36 studies (39 publications):
2 meta-analytic studies only
33 modelling studies only

1 both*
‘HAND’ searches
Studies identified via the Internet,
author searches, reference lists of
reviews etc.) .
_ >
n=53 Studies identified via a targeted update
17 meta-analytic studies only search
33 modelling studies only n=2
3 both*
A4
TOTAL n=89
‘Electronic’ searches n=36 (40%)
‘Hand’ searches n=53
Targeted update search n=2
Meta-analytic studies Modelling studies

n=23* n=72%

Fig. 1 Flow diagram showing the number of references identi ed, publications retrieved, and studies included in the methodology review
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conducting separate meta-analysis for each line of therapy
(e.g. rst- or second-line biologics) [62, 64] or for di erent
patient populations (e.g. participants with no previous his-
tory of biologic therapy or participants with an inadequate
response to previous TNF inhibitors) [10, 60]. The main
limitation of using subgroup analyses is that it only allows
for the comparison of two subgroups at a time, with or with-
out one covariate. All other covariates are pooled, and each
analysis is confounded by other variables [65].

3.2.3 Meta-Regression to Adjust for the Previous Treatment

This approach was not generally used for the sole purpose of
evaluating treatment sequences, but was used to account for
the heterogeneity within the meta-analysis or NMA. A sum-
mary of the methods used is provided in Online Resource
2. The covariate representing previous treatment was often
dropped from the nal analysis due to non-signi cant nd-
ings [54, 61], possibly due to lack of power, as previous
treatment was generally poorly reported in primary studies
[10, 54]. However, lack of variability between studies can
also contribute to non-signi cant ndings, especially when
the meta-analysis is used to compare treatments applied at a
single point in the pathway, or where the ordering of treat-
ments is much the same in a given disease. To avoid prob-
lems with insu cient power, a limited number of covari-
ates are incorporated in the meta-regression. This frequently
included disease duration. For example, a study, which com-
bined the use of NMA and meta-regression to account for
the signi cant heterogeneity between studies of biologics for
rheumatoid arthritis, included only two study-level covari-
ates in the meta-regression, disease duration and a measure
of baseline disability [57]. The analysis included RCTs of
participants who were DMARD naive and RCTs of partici-
pants with an inadequate response to these drugs lumped
together. Disease duration could potentially be considered as
a proxy for previous treatment use, as the likelihood of fail-
ing prior treatments will increase with increasing duration.
However, there is also justi cation for including treatment
history as a covariate, especially when pooling (lumping
together) studies across di erent treatment lines [10, 23].
The inclusion of both covariates could help to disentangle
whether long standing disease per se is associated with a
poor response to treatment, or whether failure on previous
treatments predicts response to subsequent treatment [22].
The use of IPD is likely to enhance the application of this
approach [10], but studies that used such data were still ham-
pered by the poor reporting of previous treatment [23].

A further limitation of conducting an NMA of all discrete
treatments irrespective of where they are used in the path-
way is that previous treatment(s) can both have an impact
on treatment e ect, actingasane ect modi er, resulting in
heterogeneity, and be associated with the type of treatment
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comparison, acting as a confounding factor and lead to
inconsistency in the network. For example, in an NMA of
sciatica treatments, non-invasive treatments were more likely
to be used as initial treatments and invasive treatments were
used after the failure of other treatments in patients with a
more long-standing and less responsive condition [66].

3.2.4 Network Meta-Analysis Incorporating Multiple
Treatment Lines, for Example, First- and Second-Line
Treatments, as Separate Treatment Nodes

This approach was not developed for evaluating treatment
sequences as such, but rather to evaluate methods for incor-
porating real-world data in evidence synthesis of second-line
treatment. In particular, the approach sought to optimise an
evidence base using rst-line evidence to inform second-line
e ectiveness estimates. The methods were applied as part
of the GetReal project case study of biologics in rheuma-
toid arthritis [47]. The authors had access to IPD from two
national registries and ve RCTSs (two investigated second-
line treatment). A series of Bayesian univariate and bivariate
NMA was conducted that incorporated both treatment lines.
The data from RCTs provided separate networks of evidence
for rst- and second-line biologics. No RCT reported on
both treatment lines; thus the exchangeability assumption
was needed to connect the two networks by assuming all
treatment e ects have a common distribution. The univari-
ate analysis utilised the registry data as data, whereas the
bivariate analyses used the registry data to inform the prior
distribution for the correlation parameter between rst- and
second-line treatments. In the univariate analysis, relative
e ect estimates for rst- versus second-line treatment were
obtained from the registry, allowing the two networks to
be connected and for treatment comparisons (e.g. drug A
in rst line vs drug A in second line) to be obtained. The
use of multivariate analysis allows separate outcomes to be
modelled simultaneously, using the correlation to borrow
information across multiple outcomes or time points. Here,
the treatment e ect for rst-line treatment was modelled as
outcome 1 and second-line treatment as outcome 2, and the
correlation was that of between treatment lines. The initial
bivariate NMA was conducted using RCTs of rst- and sec-
ond-line treatments. The correlation estimate was obtained
by conducting standard pairwise meta-analysis, based on
registry data split into rst- and second-line response, and
monitoring the correlation. In a second bivariate analysis,
the registry data were used as part of the NMA by being split
into multiple pairwise studies. This allowed for modelling
between-study correlation between the lines of therapy. A
third analysis used data from the registries, reporting treat-
ment e ect estimates on both lines, which allowed for relax-
ing the exchangeability assumption on the average level.
The biggest challenge here was developing an estimate of
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correlation between rst- and second-line treatments to con-
duct the analysis. The assumptions of consistency and simi-
larity, across the pairwise contrasts, within the NMA may
also be di cult to justify, as discussed above in the NMA
of sciatica treatments example. The limitations of relying
on observational studies comparing rst- and second-line
treatment are discussed in Sect. 3.2.1 and Box 1.

3.2.5 Developing a Speci ¢ Multiplication Factor that Can
be Applied to the Summary E ect of a Treatment
Used as First Line in Order to Represent Its Use
at a Later Point in the Pathway

This approach is not a meta-analytic method as such, but
was used to adapt the ndings of meta-analysis of discrete
(' rst-line) treatments to represent sequencing e ects. The
optimal approach for developing a multiplication factor
is yet to be established. Current methods incorporate two
approaches [16, 48]. One study, investigating TNF inhibi-
tors for psoriatic arthritis, obtained modifying factors from
an observational study comparing the class of drugs used as

rst-line and subsequent treatment for rheumatoid arthritis.
A di erent multiplication factor was developed, depending
on whether the initial TNF inhibitor was discontinued due
to ine cacy or adverse e ects [16]. A second study devel-
oped a reduction factor based on the data available for one
antiepileptic drug for which there was an RCT of its use at
two di erent time points, rst-line monotherapy and later as
an add-on therapy [48]. Modi cation factors were primar-
ily used by modelling studies, with most not reporting the
methods used for developing them [18, 67 72]. Most used
estimates based on available evidence, mainly an observa-
tional or previous modelling study, the choice of which was
frequently not justi ed. The reduction factor used in the
most recent (2020) economic evaluation [45] was obtained
from a pragmatic RCT of non-TNF-targeted biologic ver-
sus a second TNF inhibitor to treat rheumatoid arthritis in
patients with insu cient response to their rst anti-TNF-
inhibitor (Gottenberg et al. [73]).

3.3 Decision-Analytic Modelling
3.3.1 Decision Modelling Methods

Seventy-two modelling studies were reviewed and  fty-two
distinct models identi ed [14 18, 45, 46, 48, 53, 56, 67 72,
74,74 101, 101 127]. An overview of the included model-
ling studies is provided in Online Resource 3 (see the elec-
tronic supplementary material). Most modelling studies were
conducted as part of an economic evaluation. A wide range
of modelling techniques were used to address a broad spec-
trum of treatment-sequencing decision problems (Box 2),
which included identifying the optimum sequence; adding a

new drug to an established sequence; comparing step-up or

step-down treatment approaches; comparing di erent treat-
ments used at the same point within a sequence; evaluating
a drug used at di erent points within a sequence; and com-
paring prede ned sequences. The sequence of treatments
being modelled ranged from a xed sequence of a limited
number of treatment lines to variable treatment algorithms
where patient history and characteristics dictate the choice
of subsequent treatments.

Two published taxonomies developed for categorising dif-
ferent modelling techniques according to their key features
[128, 129], along with other guides and algorithms that have
been developed to aid the selection of an appropriate mod-
elling technique (or structures) for economic evaluation in
general [97, 128 140], were used to categorise the included
studies and inform the data extraction. The advantages and
disadvantages of each modelling approach were assessed as
part of the review. The choice of an appropriate modelling
approach depends on the complexity of the underlying deci-
sion problem, the extent of the treatment sequences being
investigated, and the disease condition. Table 2 provides an
abbreviated summary of the overall ndings of the review
of modelling studies, including how treatment sequences
were conceptualised within di erent modelling approaches
(column 2); and the type of the additional attributes in the
decision problem (beyond the sequencing of individual
treatments) and disease condition that were captured by the
included models (column 3). A more detailed summary of
the methods and ndings of the review of modelling studies
is provided in Online Resource 4 (see the electronic supple-
mentary material). The modelling techniques used included
deterministic decision tree, stochastic decision tree, Markov
cohort model, partitioned survival cohort model, semi-
Markov cohort model, individual-patient simulation state
transition models, discrete event simulation, discretely inte-
grated condition event (DICE) simulation, non-terminating
population-based simulation, terminating population-based
simulation, and dynamic Markov cohort model. No study
compared any of these alternative approaches for evaluating
treatment sequences to assess, for example, how sensitive
results were to the type of model used. A number of stud-
ies did report choosing a discrete event simulation over a
state transition model due to the improved computational
e ciency [48, 68, 104, 122]. The level of complexity in
the decision problem accounted for in the models varied
quite considerably, even when evaluating similar treatment
sequences within the same disease condition. The decision
problem was also simpli ed by modelling a limited num-
ber of treatment lines, streamlining the disease process, and
using a short time horizon. For example, some studies used a
2 5 year time frame, rather than a lifetime horizon, for mod-
elling treatment sequences for rheumatoid arthritis, because
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a longer time horizon implied too many assumptions [71, 78,
79, 84,112,113, 124].

3.3.2 Simplifying Assumptions Regarding Sequences
of Treatment

Treatment sequences were often modelled as a series of
discrete treatments, each requiring a summary e ect esti-
mate conditional on positioning in the treatment pathway.
The scarcity of data to inform such estimates meant that
simplifying assumptions were often applied to the avail-
able data on discrete treatments used at a single point in the
pathway. A range of simplifying assumptions used to rep-
resent treatment-sequencing e ect estimates was identi ed,
which were used to develop a novel taxonomy of all possible
assumptions (Table 3). The most common assumptions were
that treatment e ect is independent of positioning in the
sequence, or that treatment e ect is dependent on the num-
ber of previous treatments (treatment line), but independent
of the type of treatments used (Table 4). These assumptions
were frequently not validated; nor was their impact on the
overall results assessed. Forty-nine studies (72%) assumed
that the e ect of either all or some of the treatments used
after the rst treatment modelled (or decision point) were
independent of treatment sequence. Only six studies (9%)
evaluated the impact of applying this assumption in sensitiv-
ity analyses, by reducing the e ect of treatments used later
in the sequence using a factor based on evidence [67, 69],
an arbitrary amount [15, 93, 110], or expert consensus [14].
The assumption that treatment e ect is dependent on line of
therapy was often used in conjunction with the assumption
of treatment independence, applied to treatments adopted
later in the sequence.

The available evidence to inform treatment-sequenc-
ing e ects impacts the type of assumptions required. The
review focused on modelling studies that evaluated treat-
ment sequences, but economic evaluations often focus on the
comparison of discrete treatments and model downstream
costs of subsequent treatments. The ndings demonstrated
that priority was often given to matching the evidence for
the decision point, for example, comparing rst-line biolog-
ics, rather than considering treatment sequences as a whole.
Economic evaluations undertaken by, or on behalf of, manu-
facturers of health technology tended to focus on a speci ¢
decision point re ecting treatments used in pivotal RCTs
matching the licence indication, for example, comparing a
TNF inhibitor to a conventional DMARD [74, 80, 101], or
a non-TNF-inhibitor biologic to a TNF inhibitor [101]. The
data sources used alongside the simplifying assumptions
for treatments used beyond the decision point varied, even
when considering the same decision problem and address-
ing the same evidence gap. For example, data sources used
to inform sequential TNF inhibitors included the following:
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RCTs of TNF inhibitors used as rst-line biologics [45, 67,
72, 83, 87, 89, 92, 96, 101, 109], a national patient regis-
try [81, 101, 104, 115, 122], a large, uncontrolled, open-
label study of a speci ¢ TNF inhibitor in patients who had
previously discontinued TNF inhibitors [78, 79, 84, 107,
112, 113], and an RCT of a non-TNF-inhibitor biologic in
participants with an inadequate response to TNF inhibitors.
The e ects of treatments administered later in the treatment
pathway were also handled in di erent ways. For example,
in a technology appraisal of TNF inhibitors for rheumatoid
arthritis [83], the initial treatment response for each sub-
sequent conventional DMARD was explicitly modelled,
whilst in another technology appraisal of TNF inhibitors
for psoriatic arthritis [16], the economic model assumed
that patients experienced a steady long-term deterioration
after the failure of the TNF inhibitor. Therefore, uctuations
caused by response to subsequent conventional DMARDs,
which were considered to be administered as part of pallia-
tive care, were ignored. The uncertainty in the quality of the
alternative evidence to inform sequencing e ects was not
investigated in depth.

Decision models that start at the point of diagnoses are
more likely to re ect the complete sequence of treatments
used in chronic conditions, for example, some studies of
biologics in rheumatoid arthritis developed the decision
population within the actual model, with patients entering
the model being newly diagnosed with early disease [67,
75, 83, 85, 99, 122]. However, the likelihood that there is
no matching evidence is increased, and more assumptions
are required. Another approach is to model the initial treat-
ment used prior to the decision point (e.g. when comparing
second-line biologics), and apply the assumption that the
entire patient population on entering the model have an inad-
equate response to the rst modelled treatment (e.g. rst-line
biologic). This approach was used in the Advanced Simu-
lation Model, to allow the initial treatments to be costed
appropriately, re ecting treatment sequences used in practice
[71, 78, 79, 84, 112, 113]. However, the evidence used to
inform the treatment e ects of the second TNF inhibitor
did not match the prior TNF inhibitor failed (' rst treatment
modelled). The third and most common approach was to
include a patient population entering the model that re ected
the decision problem in terms of the number of previous
treatments used, for example, patients receiving their rst
biologic therapy. Modelling studies that only consider the
impact of subsequent treatments when, for example, com-
paring rst-line biologics [71, 72, 74, 75, 83, 89, 101, 120,
123, 127] are generally based on the assumption that the
sequences being compared are starting from a level playing

eld. The potential impact of this is not generally considered
within the sensitivity analysis, as it is not part of the cost-
e ectiveness estimates.



Quantitative Evidence Synthesis Methods for Assessing the E ectiveness of Treatment Sequences

A frequent problem when evaluating the introduction of a
new treatment to an established sequence is the lack of data
to inform the displaced e ect. For example, when adding
a new drug (e.g. non-TNF-biologic agent) to an established
sequence (e.g. starting with a TNF inhibitor), the existing
drug is displaced lower down the sequence (Box 2), and is
generally modelled as both the comparator (e.g. rst-line)
treatment in the baseline sequence and the subsequent (sec-
ond-line) treatment, after the new drug, in the intervention
sequence. The same treatment e ect is generally applied to
the existing drug, irrespective of whether it is used early or
later in the sequence (and disease trajectory), with no RCT
data available on its e ect in patients with an inadequate
response to the new drug.

4 Discussion
4.1 Summary of the Findings

The review identi ed a range of quantitative evidence syn-
thesis methods used for evaluating the e ectiveness of alter-
native treatment sequences. The ndings demonstrated the
following:

i Reviewing the evidence on treatment sequencing is nei-
ther trivial nor straightforward.

i In most cases, treatment sequences represent complex,
multifaceted, dynamic intervention pathways, which
will require advanced methods of quantitative evidence
synthesis, especially if evaluated using a one-step-at-
a-time approach.

iii Prospective sequencing trials are few in numbers and
do not cover the breadth of decision making needed.
The evidence synthesis would likely need to consider
the inclusion of diverse study designs, including non-
randomised studies.

iv. The problem has largely not been addressed using evi-
dence synthesis methodology for clinical e ectiveness,
but is usually dealt with at the decision modelling stage.

v. There is no single best way to evaluate treatment
sequences; rather there is a range of approaches and, as
yet, no generalised methodology that encompasses the
di erent assumptions used.

vi Each approach has advantages and disadvantages and is

in uenced by the evidence available and decision prob-

lem.

When using a one-step-at-a-time approach, previous

treatment is an important e ect modi er, and subsequent

treatments can confound long-term outcomes, such as
survival.

viii The reason for discontinuing treatment (lack of e ect,
loss of e ect, or intolerance) has a di erential e ecton

Vi

the e ectiveness (and choice) of subsequent treatment,
and is poorly reported in primary studies.

iX The extent and type of sequences being evaluated tended
to re ect the available research evidence, rather than
clinical practice.

4.2 Comparison with Existing Reviews

We identi ed three existing reviews of methods for evalu-
ating treatment sequences. This included two systematic
reviews of economic evaluations [4, 141] and one review of
published UK NICE technology appraisals [3]. Mauskopf
et al. analysed treatment-sequencing assumptions after
failure of the rst biologic in cost-e ectiveness models of
psoriasis, and compared the modelled sequences with the
most recent treatment guidelines [141]. They concluded
that models of rst-line biologics either do not include
subsequent treatments or include only some of the regimes
recommended in current guidelines, and that cost-e ec-
tiveness results may be sensitive to the assumptions about
treatment sequencing, and choice and e cacy of subse-
guent treatment sequencing regimens. Tosh et al. assessed
and critiqued how sequential DMARDs for rheumatoid
arthritis have been modelled in economic evaluations [4].
They found that reporting of the methods and evidence used
to assess the e ect of downstream treatments was gener-
ally poor; when lifelong models and treatment sequences
were considered, evidence gaps were identi ed. They con-
cluded that methods were not applied consistently, leading
to varied estimates of cost-e ectiveness, and that treatment
sequences were not fully considered and modelled, poten-
tially resulting in inaccurate estimates of cost-e ectiveness.
Zheng et al. investigated approaches used to model treatment
sequences in NICE appraisals to provide practical guidance
on conceptualising whether and how to model sequences in
health economic models [3]. They concluded that the big-
gest challenge is the scarcity of clinical data that capture
the long-term impacts of sequences on e cacy and safety.
Three commonly used assumptions to bridge the evidence
gap were identi ed, but each had its own limitations. These
included the assumption that the e cacy of a treatment
stayed unchanged regardless of line of therapy, the use of
data from trials in di erent lines of therapy to directly model
a treatment sequence, and the use of retrospective studies of
clinical registries or databases. The ndings of these reviews
were consistent with ours, though their scope was more lim-
ited in that they focused on either a single condition or UK
NICE appraisals.

4.3 Strengths and Limitations of the Review

This is the rst review of methods to investigate the evalu-
ation of treatment sequencing across all clinical scenarios,

A\ Adis
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Box 1 Potential bias or limitation in non-randomised, real-world observational studies that are speci ¢ to the evaluation of treatment
sequences

i. Selection (allocation) bias results in systematic di erences in prognostic factors between individuals in treatment and control groups,
e.g. a cohort of patients receiving their rst tumour necrosis factor (TNF)-inhibitor compared with a cohort receiving a second or
subsequent TNF-inhibitor. Patients in the second group are likely to have worse prognoses and show limited responses to all treatments
[9, 175]. Adjustment for both baseline and post-baseline prognostic factors is necessary, to ensure the comparability of treatment groups
[166].

ii. Channelling bias favours patients with more severe disease. New treatments create expectations of improved e ectiveness and tolerabil-
ity; early, post-marketing users are likely to be those who experienced little or no bene t from existing drugs and may therefore respond
to the new drug in a way that is not representative of the eventual user population [176].

iii. Regression to the mean occurs because patients tend to be treated with a second or subsequent treatment at the height of their disease
activity, where there is a greater than 50 50 likelihood that the condition will start improving after the intervention purely by chance [22].

iv. Confounding by disease duration occurs in conditions such as sciatica and rheumatoid arthritis, where the longer the disease duration,
the less likely that patients will respond to any treatment [14]. Treatment history can be both correlated with disease duration [10] and act
as independent e ect modi er [10].

v.Enrichment of successive treatment use with refractory patients A small proportion of patients have refractory disease that will
not respond to any treatment [14]. Populations receiving second-line or subsequent treatments are more likely to be enriched with such
patients. This is related to class e ect bias (vii). Patients who fail initial treatment due to a tolerability or safety issues are likely to have
the same problem with any alternative drug from the same class, increasing the risk for developing an adverse event in patients who
switched due to an adverse event [16].

vi. Immortal time bias occurs in studies that limit inclusion to patients who are receiving a speci c line of treatment (e,g, third-line
chemotherapy) [52] or have completed a prede ned sequence, and overlook patients who are continuing the initial treatment, or lost to
follow-up after rst-line treatment due to lack of e  cacy, clinical deterioration, death or drug acceptability issues [52]. It is particularly
relevant for treatments of advanced cancer where a large proportion of patients may not complete the sequence, or receive multiple treat-
ment lines [52].

vii. Class e ect bias, which is the possibility that the comparison between drug classes may be confounded by di erences in the type of
patients treated with each class [52].

viii. Aggregate data collection is a limitation of real-world observational studies that do not report individual treatment or drug-level
data. Any subsequent evidence synthesis has to be based on pooled data across treatments at class level, even when there is evidence that
individual drug e ects can vary within a class [11]. Class level treatment e ects are often reported even when access to individual patient
data is available [82].

iX. Missing or inaccurate data may be obtained from real-world practice. Patient registers and administrative databases are rarely set up
for evaluating treatment-sequencing, and may not involve a high level of rigour in recording events [52].

x. Variability in how the same outcome measure is conceived across di erent studies is a particular issue in oncology when using pro-
gression free survival (PFS) to evaluate the impact of a sequence of treatments (e.g. using the sum of the progression free survival period
for each treatment line). PFS is a composite endpoint, which may or may not incorporate a treatment free period before the next treatment
resulting in a di erential impact on the results; this needs to be accounted for in any pooled analysis [11]. Importantly, the use of PFS
associated with each successive treatment line to inform treatment-sequencing assumes that all treatment e ect from each treatment line
stops on progression [11]. Alternative endpoints that have been proposed for evaluating a xed sequence of treatments [183] include:
Duration of disease control (DDC) and Time to failure of strategy (TFS).

NB The type of biases listed here may not be mutually exclusive and the descriptors may not be consistently used in the published litera-
ture, for example the phenomenon described as ‘regression to the mean can also be representative of both a class e ect and a channelling

bias, favouring patients with more severe disease [180].

and to include both meta-analytic techniques and decision-
analytic modelling. It represents an extensive in-depth
review of current methods used to evaluate the clinical
e ectiveness of treatment sequences, representing a broad
and disparate area of research.

A potential limitation of our review is that the reference
database searches were not updated. However, targeted hand
searches were continued during the review process and stud-
ies published beyond 2013 have been included. Neverthe-
less, more recent studies were only included if they contrib-
uted new ndings, and the searches stopped when no new
information was being found. This means that the review
could have potentially missed new methods developed in
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the last few years. Updated targeted hand searches identi ed
a new modelling technique (DICE) that was not previously
included in our review. This has since been included. How-
ever, the methods used to conceptualise treatment sequences
and the level of reality captured in the DICE model did not
change the ndings and recommendation of our review. The
methods used to develop treatments sequencing e ect esti-
mates and the accompanying simplifying assumptions made
within the new studies [45, 46] were also the same as those
included in our review. The assessment of recent studies
included in a new systematic review of economic evalua-
tion of sequences of biological treatments for patients with
rheumatoid arthritis, published in 2020, did not identify any
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studies reporting methods or simplifying assumptions not
already incorporated in our review [44].

4.4 Recommendations for Practice
4.4.1 Primary Study Design

The available evidence base for evaluating new treatments is
often driven by the requirements for regulatory approval, and
thus focuses on discrete treatments used at a de ned point in
the pathway [142, 143]. The lack of data on the e ectiveness
of these treatments when used at another point in the path-
way is a barrier to making policy decisions about the optimal
positioning of new treatments or treatment sequences. The
GetReal project (Sect. 3.2.4) included a stakeholder engage-
ment workshop to solicit views on the usefulness and accept-
ability of their analytic approach [144]. Interestingly, the
regulators considered it to have limited usefulness because
the evidence requirements for marketing authorisation
in rheumatoid arthritis is line speci ¢, whilst the pharma
research and development representatives considered it use-
ful in principal, to better understand the gaps in the evidence
across lines of therapy and aid the design of future clinical
trials [144]. The focus of primary research on discrete treat-
ments is unlikely to change unless the regulatory authorities
specify the importance of treatment sequencing or optimal
positioning of new treatments. The reimbursement agencies
and HTA bodies should also make recommendations on the
nature of the clinical evidence required to inform treatment
sequences [145, 146].

4.4.2 Health Technology Assessment

It is important to identify the relevance of, or the need to
consider, treatment sequencing early on in the technology
assessment process, and incorporate both the clinical and
economic evaluation. Treatment sequencing was often con-
sidered as part of the economic evaluation only, and not
considered in the clinical evaluation [17, 67, 83, 85, 95, 99,
106, 116, 126, 147]. A previous review of NICE technology
appraisals also identi ed a lack of integration or direct use
of the systematic review to inform the economic evaluation,
and the need to consider the data requirement of the eco-
nomic model at an early stage [148].

The development of an initial analytic or conceptual
framework [40, 149] provides an essential tool for the plan-
ning and evaluation of treatment sequences. It can be used
to consolidate the requirements of the clinical and economic
evaluation; assist in communication within the research
team and with a range of stakeholders; think through the
multiple components of the treatment pathways and dis-
ease-speci ¢ events in context; enhance the transparency
of underlying assumptions; and inform choices about the

level of structural complexity required by the model [40,
139, 150 153]. For some chronic diseases, it may be useful
to create a disease-speci ¢ conceptual framework that can
serve as a foundation for developing future HTAs and eco-
nomic models of current and novel treatments [154], thus
potentially allowing for greater stakeholder feedback and
future improvement. There is also a need to depict treat-
ment sequences as a tree, rather than a linear sequence of
treatments, thus accounting for the complex and dynamic
intervention pathways that they represent. Although methods
were developed that accounted for the fact that the reason for
treatment discontinuation (e.g. loss of e ectiveness, adverse
events, non-adherence) might determine the average e ec-
tiveness for the next line of therapy, the reality is that this
may also a ect the choice of therapy for the next line. A
tree structure is adopted in the SMART design, which is a
multistage trial designed to develop and compare treatment
pathways that are adapted over time based on individual s
response and/or adverse e ects [28].

The time and resource constraints of HTA, accompanied
by limited evidence, may render an extensive model unreal-
istic. It may therefore be tempting to simplify the treatment-
sequencing decision problem. However, a model based on
an oversimpli cation of the decision problem and clinical
practice is also unlikely to be useful for decision makers.
An alternative approach would be to develop a model that is
designed to address any/multiple decision problems, rather
than a single use model. This may be relevant, not only for
chronic disease, but also in the introduction of new treat-
ments in a rapidly changing clinical eld, such as oncology
[5]. The likelihood that the available data to inform sequenc-
ing e ects may improve over time also supports develop-
ing a model that is easily updated. This is consistent with
recent calls for the use of disease-speci c reference models
[155], pre-veri ed modules [156], and open-source mod-
els [157] to improve the accuracy of economic evaluations.
Our review identi ed some good examples where a model
was further developed over time to address multiple reim-
bursement decisions (e.g. Birmingham Rheumatoid Arthritis
Model [BRAM] [75, 158], Tran-Duy model [68, 122], Shef-

eld rheumatoid arthritis models [159], and the Advanced
Simulation Model [78]). However, each was developed by
the same research group. An important challenge here is the
need to make su cient detail on the original model openly
available.

A mathematical challenge for comparing multiple per-
mutations of sequences is to determine the proper starting
point of the model. This is also relevant when using a model
designed for multiple uses, which may start at the point of
diagnosis [75], a key point in the treatment pathway (e.g.
initiating DMARD therapy [122] or biologic therapy [78]),
or the point at which the decision is made (Sect. 3.3.2). All
evaluations should start at the point of divergence (i.e. the
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Box 2 Illustration of the di erent types of treatment-sequencing decision problems

decision problem type.
a). Optimum sequences

number of sequences for comparison in advance)

b) Prede ned sequences
A-B-C
B-A-C
X-Y-Z

c) Disease approach
A-B

B-A

or

X-A-B

A-B-X

d) Single point
A-B-C-D
A-B-X-D

e) Di erent points

Comparison of X used at di erent points in the sequence

Comparison of pre-speci ed sequences; also incorporates the following:

As part of the review of modelling studies, a coding scheme was developed for categorising modelling studies according to the type of deci-
sion problem relating to treatment sequences that was evaluated. The codes used are illustrated below. Some studies include more than one

Identifying the best sequence out of all conceivable sequences (as opposed to comparing prede ned sequences, thus selecting a manageable

Comparison of step-up vs step-down approaches, or the use of new drugs rst vs starting with older, established drugs.

Comparison or decision point = C vs X. Treatment C is replaced by X in the second sequence

f) Adding a new treatment to an established sequence

A-B-C-D

A-B-X-C-D

Comparison or decision point = C vs X. Treatment C is displaced by X in the second sequence

point at which a decision might be made) [75]. Models used
for comparing multiple permutations of sequences often
include the same rst one, two, or three lines of treatment.
This will essentially dilute the true incremental e ects
(and costs) of treatment since some patients will have died
(and left the model) before the point of divergence. Thus,
when calculating the incremental outcomes per patient, the
denominator will be greater than should have been used,
meaning that the incremental results will underestimate the
true e ects.

A number of studies developed a model based on an
existing approach. Existing modelling approaches could
also, potentially, be adapted for use in a di erent disease
condition. However, when using an existing model, it is
important to consider what underlying assumptions regard-
ing treatment sequences were applied. For example, the York
psoriasis model [126], which has subsequently been used by
multiple studies evaluating treatment sequences in psoria-
sis [141, 160, 161], is based on the underlying assumption
of treatment independence. The underlying assumptions of
some existing modelling approaches mean that they will not
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be suitable for assessing the treatment sequences for some
chronic conditions.

4.5 Taxonomy of Simplifying Assumptions Relating
to Treatment-Sequencing E ects

The taxonomy of simplifying assumptions (Table 3) pro-
vides a unique and important resource to inform future
practice and has the potential to be an important tool for
clarifying the extent to which treatment-sequencing e ects
have been accounted for within a decision model. It can
be used as a checklist by modellers to help them consider
whether treatment sequencing should be modelled, and what
implicit assumptions they may be making. It can also be
used by reviewers or policy decision makers to appraise or
better understand an existing model. However, to apply the
taxonomy, better reporting of the simplifying assumptions
made is required.

Our taxonomy focused on the simplifying assumptions
made regarding the initial treatment effect (of discrete
treatments conditional on their position in the treatment
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R. A Lewis et al.

Table 3 Taxonomy of simplifying assumptions relating to treatment-sequencing e ects used by studies included in the review

Simplifying assumptions taxonomy

Treatment independence

Substitution with another treatment e ect

Modi cation of treatment e ect

Impact of time since previous treatment

Displacement e ect ignored

The use of uncontrolled/observational studies without bias adjustment

Treatment e ect is independent of positioning in treatment sequence

Treatment e ect is dependent on the number of previous treatments
used, but independent of the type of treatments used

Treatment e ect is the same as an alternative treatment from the same
class, or a generic class e ect irrespective of positioning in the
sequence (generic e ect)

Treatment e ect is the same as an alternative treatment from the same
class, or a generic class e ect matching the same position in the
sequence (positional generic e ect)

Treatment e ect is the same as an alternative (substitute) treatment from
adi erent class of treatments, used at the same point in the sequence
(substitute treatment)

Treatment e ect is reduced/increased, in line with a multiplier (multi-
plication factor), when used at a later point in the sequence. (Here, the
speci ¢ multiplication or reduction factor used to modify the e ect is
informed by the available evidence that is also relevant to the treat-
ment of interest.)

Treatment e ect decrements by the same pre-set amount with each
successive treatment (decrementing e ect). (Here, the same generic
proportional reduction, used to represent the diminishing e ects, is
applied at each point in the sequence irrespective of the treatment
used. The proportion is not necessarily based on a speci c evidence
base.)

Treatment e ect is reduced with disease duration, and treatments are
not as e ective when they are used in late disease

Treatment e ectisnota ected by previous treatments if patients
have been in long-term remission, and thus can re-use the same
treatment(s)/class of treatment(s) as that which achieved the prior
remission

Asingle treatment e ect does not di er when it is displaced (i.e. its
position in the sequence is changed) by the addition of a new prior
treatment (displacement ignored)

Uncontrolled trials or observational studies provide an un-biased esti-
mate of treatment (sequencing) e ects

Expert consensus provides an un-biased estimate of treatment-sequenc-
ing e ects

pathway). This incorporates the impact of previous treat-
ment, di erential reason for discontinuing previous treat-
ment, and increasing disease duration. However, the tax-
onomy did not consider the assumptions made about the
long-term e ect of treatment. Many treatments of chronic
conditions, such as rheumatoid arthritis, result in an initial,
short-term improvement, followed by a period of waning
e ect. In some models, when patients move quickly through
the sequence of treatments (for example, early discontinu-
ation due to adverse e ects), simulated patients can actu-
ally bene t from having multiple short-term bene ts from
di erent treatments, thus gaining an additive e ect. Some
included models of in ammatory arthritis attempted to over-
come this problem by introducing a rebound e ect, which
automatically returns the patient to their starting severity
(used in, for example, the Diamantopoulos model [89]), or
following some natural, background increase (as used in the

A\ Adis

BRAM [158]). Although the evidence to support this type
of assumption is weak, it is arguably better than the false
bene ts generated by models otherwise. Similarly, the issue
of accumulating short-term bene t can also be problematic
where there is an asymmetry in the sequences being com-
pared, for example, the adding decision problem illustrated
in Box 2. A false bene t can be introduced when model-
ling a sequence plus new treatment, in comparison to the
model without the added treatment, simply by allowing more
short-term e ects of treatments.

4.6 Recommendations for Research

An important outcome of the review is the gaps identi ed
in the research evidence. More research is needed to estab-
lish when it is necessary to evaluate treatment sequences,
and how best to make this decision. This is likely to be a
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condition-speci ¢ endeavour, but the methods will be rel-
evant across di erent clinical scenarios.

Further research is needed to identify how best to develop
a summary treatment e ect of whole sequences or discrete
interventions conditional on positioning in the sequence.
This requires improved reporting on previous and subse-
guent treatment within primary studies, including better data
on reasons for discontinuing or switching treatment. Access
to individual patient-level data is also key here [35, 162].

Real-world disease-speci c data sources can provide
essential follow-up data on entire treatment sequences, and
potentially be used to emulate a pragmatic randomised trial
of dynamic treatment sequences [27, 163 165]. If these
data sources are going to be useful, treatment sequences
need to be considered during the planning and development
stages. They will also need to go through many high-quality
validation studies [164]. The evaluation of whole treatment
sequences using real-world data also needs to take into
account the potential biases listed in Box 1.

Finally, little reference was made within existing research
on the potential, or actual role, of incorporating patient per-
spectives into the evaluation of treatment sequences. Further
work is needed to develop the optimal approach for involv-
ing members of the public in HTA of treatment sequences,
which should be informed by existing guidance and recent
research on patient and public involvement in systematic
reviews and economic evaluations [166 171]. As experi-
enced-based experts, patients can contribute essential knowl-
edge that is complementary to that of other key stakeholders,
such as clinicians and policy makers. Their involvement, on
an equal basis to other stakeholders, is likely to be relevant
to all stages of the HTA, including re ning the scope and
decision problem, the evidence synthesis, evidence inter-
pretation and integration, and dissemination and application
[172].

5 Conclusions

The review illuminates a signi cant gap in methods devel-
opment. It also demonstrates important limitations in the
primary studies, which tended to focus on the evaluation
of discrete treatments, with poor reporting of any previous
or subsequent treatments. The increasing use of NMA in
HTA demonstrates an acknowledgment that clinical and
policy decision making should account for the multiple treat-
ments available for many chronic conditions. However, the
sequential use of these treatments has yet to be accounted
for within clinical evaluations, with most meta-analysis
being conducted of discrete treatments that may or may not
be strati ed by line of therapy. The economic modelling
exposes the need to consider treatment sequences, but this
is often based on the simplifying assumption of treatment
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independence. This can lead to misrepresentation of the true
level of uncertainty, potential bias in estimating the e ec-
tiveness and cost-e ectiveness of treatments, and eventually
the wrong decision.

In summary, there has been no co-ordinated approach
to the important issue of evaluating the e ectiveness and
cost-e ectiveness of treatment sequencing. This is a major
shortfall at a time when the cohort of people with com-
plex chronic conditions, requiring sequential treatments,
is increasing. The ndings of the review will help policy
makers and researchers gain traction in answering questions
about the e ectiveness of di erent treatment sequences.
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