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SUMMARY 

The equivalence between the category of crossed modules 

(over groups) and the category of special double groupoids 

with connections and with one vertix was proved by R.Brown and 

C.B.Spencer. ALSO ' , C. B. Spencer and Y. L. Wong have 

shown that there exists an equivalence between the category of 

2-categories and the category of double categories with 

connections • 

R.Brown and P.J.Higgins have generalised the first 

result : they proved that there exists an equivalence between 

the category of w-groupoids and the category of crossed 

complexes (over groupoids) • 

In this thesis we develop a parallel theory in a more 

algebraic context with expectation of applications in 

non-abelian homological and homotopical algebra • We prove an 

equivalence between the category of crossed modules (over 

algebroids) and the category of special double algebroids with 

connections Moreover we prove a similar result for the 

3-dimensional case , that is , we prove that there exists an 

equivalence between the category (Crs) 3 of 3-truncated crossed 

complexes and the category (w-Alg) 3 of 3-tuple algebroids • 

Also we end this work by giving a conjecture for the higher 

dimensional case. In particular, we have 

Theorem: The functors y, ~ form an adjoint equivalence 

y: DA! ~--➔ C ~ 

where DA! is the category of special double algebroids with 

connections and C is the category of crossed modules 0./Qf "'l,eho;J, • 



Theorem: The functors y, >- form an adjoint equivalence 

y : ( w- A 1 g) n +-- - ➔ ( Cr s ) n : >. 

for n = 3 , 4. 

Finally we give a conjecture whose 

sufficient for the general equivalence 

W-algebroids and crossed complexes • 

validity would be 

of categories of 

In chapter VI we explain some results which have been 

obtained in the case of groupoids and higher dimensional 

groupoids , 

results in 

algebroids • 

and suggest the possibility of obtaining similar 

the case of algebroids and higher dimensional 
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INTRODUCTION 

A. AIMS AND BACKGROUND: 

1. Overal 1 aim: 

There are many useful analogies between the theory of 

groups and the theory of algebras which are exploited for 

example in homological algebra Some interesting 

· generalisations of groups are groupoids , crossed modules , 

crossed complexes , double groupoids and w-groupoids , dating 

respectively from 1926 [Brandt - 1] , 1946 [J.H.C.Whitehead -

1,2] 1949 [Blakers - 1] 

[Brown-Higgins 

generalisations 

8 

of 

] 

groups 

generalisations of algebras 

1965 [Ehresmann - l] and 1977 

Corresponding to groupoids as 

we have algebroids as 

a theory due to B.Mitchell 

(1972) • There are also notions of crossed modules of 

algebras • But a theory of double and n-tuple algebroids does 

not seem to be available , and it is our aim to investigate 

this idea. 

In order to see the motivation for this investigation and 

the kind of result to be expected, we first recall some facts 

on the group case • 

2. Crossed modules • crossed complexes in groups 

and w-groupoids: 

First , a group homomorphism a: M --➔ Pis said to be a 

crossed P-module (in groups) if there is given an action of p 

on M, (p,m) --➔ Pm which satisfies the following axioms: 

(ii) amm• =mm' m- 1 for m,m' EM 

and p E P. Standard examples of crossed modules are: 

-i-



1) the inclusion N --➔ P of a normal subgroup N of the group 

P, with the action of Pon N given by conjugation 

2) the zero morphism O : M --➔ Pin which Mis a P-module in 

the usual sense; 

3) the boundary map a 

second relative homotopy group to the fundamental group with 

As this last example suggests , crossed modules can be 

used to model certain homotopy types . In fact from the stand­

point of homotopy theory , crossed modules should be viewed as 

"2-dimensional groups" • It is reasonable to ask then , what 

are then-dimensional groups (or crossed modules) ? 

J.H.C.Whitehead gave a partial answer to this by introducing 

what he called a "homotopy system" , but which are now called 

crossed ·complexes • These gadgets consist of a sequence of 

groups 

•••• --➔ . . . . 
where C0 is a single point and satisfy the axioms 

i) a1 is a crossed module 

ii) Cn is abelian for n) 3 

iii) a2 = o 

iv) C1 acts on Cn, n) 2 and a1c2 acts trivially on Cn for 

n ) 3 • 

The standard example of a crossed complex is obtained from 

a pointed filtered space (c.f. [Br-3]) • 

Work in homotopy theory has developed the well known 

notion of "groupoids" , which are categories in which every 

arrow is invertible • 
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Since a crossed module has been considered as a "higher 

dimensional group" the question aries what is a higher 

dimensional groupoid? Ehresmann [Eh-1] has defined the notion 

of double groupoid. R-Brown and C.B.Spencer ~ave proved that 

there exists an equivalence between the category of crossed 

modules (over groups) and the. category of double groupoids 

with special connections and one vertex • But the general case 

has been defined in [B-Hi-8 J namely they have defined 

w-groupoids and crossed complexes (over groupoids) by using 

the cubical set notion. Moreover they have proved in [B-Hi-2] 

there exists an equivalence between the category of w-groupoids 

and the category of crossed complexes (~ver groupoids) • 

The above discussion of the development of group theory in 

this direction is summarised in the diagram 

Groups-➔ Groupoids -➔ Double groupoids -➔ w-groupoids • 

There are in fact a remarkable collection of equationally 

defined categories of (many-sorted) algebras which are non­

trivially equivalent to w-groupoids • These are summarised in 

the following diagram: 

(J-1] [B-Hi-3] 
poly-T-Complexes ~---➔cubical T-complexes -----➔ w-groupoids 

[.J-l]I 
Simplicial T- ~----➔ crossed complexes 

complexes [As-1] 

IB-Hi-4] 
4------➔ •-groupoids 
[B-Hi-4] 

in which the arrows denote explicit functors which are 

equivalence of categories The symbols in square brackets 

give references to the proofs • 

-iii-



3. Crossed modules and Crossed complexes over algebras: 

The work of [Ge-1] essentially involves the notion of 

crossed modules in associative and commutative algebras under 

a .different name Also the work of [K-L-1] in algebraic 

K-theory has introduced crossed modules of Lie algebras • The 

definition of crossed modules in associative algebras is given 

on page (9,10) . 

The notion of crossed modules of algebras has been 

generalised to crossed complexes over algebras [Po~3] , 

namely; 

Let R be a commutative ring and let K be an R-algebra. A 

crossed complex of R-algebras is a sequence of R-algebras 

in which 

i) a 1 is a crossed K-module, 

ii) Ci for i~l is a K-module on which a 1c 1 operates trivially 
a'nr/ '<).,· p,e.rer11e..r tlte acln'ons 

iii) for i ) 1 , ai+1 ai = 0 • 

Now one can ask, what are the higher dimensional 

algebra~ ? In this thesis we shal 1 give a partial answer to 

this question and we will give some extra conjectures • 

4. Algebraic geometry: 

The idea of this work arose from • the consideration of 

bringing crossed module ideas into commutative algebra and 

algebraic geometry namely an ideal in a polynomial ring 

corresponds to an affine algebraic variety • Crossed modules 

in commutative algebras are generalisations of ideals • 

One would like to know the geometric analogue of a crossed 

module, but nothing seems to b~ known on this question. 
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The original motivation for this thesis was to see if it 

would be easier to find analogues of "double commutative 

algebroids" in algebraic geometry assuming such were 

equivalent to crossed modules • This lead to the problem of 

finding analogues for algebroids of the work of Brown 

Higgins on w-groupoids , and this problem has since occupied 

our full attention • 

There· are still many problems in relating this work to 

algebraic geometry , but we believe this will eventually be 

possible • 

B. STRUCTURE AND MAIN RESULTS: 

In chapter I we give an example to show how algebras are· 

appropriately generalised to algebroids and we show that the 

category of R-algebroids is a monoidal closed category • We 

gi Ve the definition of a crossed module over an associative 

algebra and introduce the definition of a crossed module over 

an algebroid Also we deduce some properties of crossed 

modules similar to the well known properties of crossed 

modules over groups • 

In . chapter II , we define an algebroid in one higher 

dimension In fact we introduce the notion of a double 

algebroid by using double categories 

R-algebroid Dis four related R-algebroids 

namely a double 

where i = 0, l and these algebroids satisf g ··the. fol lowing 
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axioms 

i) ti aj j' ai i,j E {0,1} = t1 2 2 1 

ii) a! ( o: + fl) = aio: + cli/3 ai (o: + fl) = aio: + aifl 
1 2 2 1 2 1 1 

a! ( o: *1 fl) = aio: * ai /3 ai ( o: 
*2 /3) = a!o: * ai 13 

2 2 ' 1 1 

for i = 0,1, o:,13 ED and both sides are defined. 

iii) r • 1 o:) + ( r 
2 

r • 2 ( o: + 1 13) = ( r • 2 o:) + 1 ( r • 2 fl) 

r • 1 ( o: * 2 13) = ( r • 1 o:) * 2 ( r • 1 13) 

r • 2 ( o: * 1 l3) = ( r • 2 o:) * 1 ( r • 2 /3) 

r • 1 ( s • 2 o:) = s • 2 ( r • 1 o:) 

for o:,13 ED, r,s ER and both sides are defined. 

iv) (o: +1 13) +2 (Y +1 t) = (o: +2 Y) +1 (/3 +2 t) 

(o: *1 13) *2 (Y *1 t) = (o: *2 Y) *1 (/3 *2 S) 

( o: + 1 /3) * 2 ( Y + 1 S) = ( o: * 2 Y) + 1 ( /3 * 2 S) 

Co: +2 /3) *1 (Y +2 b) = (o: *1 Y) +2 (/3 *1 t) 

for o:,/3,:r,t ED and both sides are defined. 

v) c 1 ( a + a 1 ) = c: 1 a + 2 c 1 a 1 , c 2 ( b + b 1 ) = c: 2b + 1 c 2b 1 

for a,a 1 E n1 , b,b 1 E D 2 and the additions are defined. ft) 

Thus we get a category of double R-algebroids DA. 

We can ask now what is the relation between the category 

of crossed modules (over algebroids) hnd the category of 

double R-algebroids • At this stage we prove the following 

Proposition: If D is a double R-algebroid , then we have two 

crossed modules associated with D • That is , there exist two 

functors from the category of double R-algebroids to the 

category of crossed modules (over algebroids) • 

tt> I, c~ *~' = t,,. *, t,l,, r, '"""'.,, =- t,.Q .. , r.,1., I t,c>-•o.>:- vi t,", 
('2 (V•A) =,.. 1•.t,.a 1 ('J.a I' f''Jr ~ t, tit • 
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In the end of this chapter we give some examples on this 

notion 

In ~hapter III , we define the notion of a special double 

R-algebroid (this is a double R-algebroid with D1 = ·n 2 ) and 

we define a "thin" structure on D which-is a morphism 

e: 8D 1 --➔ D (where 8D 1 is a double R-algebroid with 

commut1>1,tj 
C 

squares) • An element e(a d) is called thin , 
b 

where a,b,c,d E D1 • Also we define a connection on D to be a 

pair of functions r,r':D 1 --➔ D which satisfy 

i) f'a *2 fa= c 1a ., f'a *1 fa= C2a 

ii) r'(ab) = (f'a * 1 c 1a) * 2 (c 2a * 1 r'b) 

r( ab) = ( fa * 1 c 2b) * 2 ( c 1b * 1 fb) 

iii) r'(a + a 1) * 2 (« + 1 P) * 2 f(d+d 1) = (f'a * 2 « * 2 fd) + 2 

(r'a1 *2 p *2 rd1) 

C C 

where «,PED with boundaries (a d 1) respectively 
b b 

iv) r'ra * 2 (r • 1 «) * 2 rrd = r • 2 (f'a * 2 « *2 rd) = r'a * 2 

( r • 2 «) * 2 rd • 

Theorem I Let D be a special double R-algebroid with 

connection r• 
' 

r . Then there is a morphism of special double 

R-algebroids e . BD 1 --➔ D which is the identity on D1 and . 
a 1 

ra = e(a 1) r'b = e(l b) ' 
where a,b E D1 . 

' 1 b 

In fact 
' the reason for defining these two structures on 

D is that 

lt is easier to deal with connection 

than with thin structure • 
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Also we define a morphism between two special · double 

R-algebroids ·with connection • Thus we have a category DA! of 

special double R-algebroids with connection • Then we get a 

functor from the category of special double R-algebroids with 

connection to the category of crossed modules • 

Now , to get a functor from the category of crossed 

modules to the category of special double R-algebroids with 
' ~ 

connection we introduce the notion of a "folding operation: ~ 

which has the effect of "folding" all edges« c D onto the 

edge a0«. We prove; 
1 

Proposition: There exists a functor from the category of 

crossed modules to the category of special double R-algebroids 

with connections • 

In fact , we prove 

I,_heorem 2: These cate9!>Yi es are equivalent • 

Finally we introduce the notion of a reflection on a 

special double R-algebroid which gives an equivalence between 

the two algebroid structures • 

In chapter IV we define an w-algebroid (without 

connections) by using the cubical complex idea namely 

An w-algebroid (without connections) A= {An; a~, ci) 

is a cubical complex and for n) 1 , An has n algebroid 

related appropriately to each other and to a~, a! , c •• 
. 1 1 1 

Thus we can define finite dimensional versions of the above 

definition. Therefore we get; 
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. 
Algebras-➔ Algebroids -➔ Double algebroids -➔ w-Algebroids, 
(He a.YY-ows g:ve lhe '}eY1e-r11tlira.lto?1 o./' t-1-.ere >to-f1'c>Yl~) .. 

Also we· define a crossed complex M (over algebroid) to 

consist of a sequence of morphisms of R-algebroids over M0 

satisfying the relations ; 

i) each S: Mn--➔ Mn-! , n) 2 is the identity on M0 • 

ii) M1 operates on the right and on the left on each Mn 

(n)2) , by actions (a,m) --➔ am, (m,b) --➔ mb, 

whenever m E Mn(x,y) , a E M1 (w,x) , b E M1 (y,z) onJ S 
f-f'efeYver there acfi'on~• 
iii) If m E Mn(x,y) , m' E M2 (y,z) , m" E M2 (w,x) , then 

Sm' = 1 Oxz 
· if n ) 3 

m 
mm' if n=2 

Sm" 1 
Owy if n ) 3 

m - m"m if n=2 

Finally we prove that 

I,heorem 3: There exists a functor Y from the category of 

W-algebroids (without connections) to the category of crossed 

complexes (over algebroids) • 

In chapter V $1 we define an w-algebroid with 

connections and the morphisms between them and also we give 

the definition of a finite dimensional versions of an 

W-algebroid. 

In $ 2 we introduce the notion of "f"olding operation" ~ , 

which has a similar effect to the folding operation in the two 

dimensional case • Also we give the relations between this 

operation and the axioms of 3 and 4 - tuple algebroids , that 

is , 
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Proposition: Let a E An • Then ~a belongs to the associated 

crossed complex Y!. 

oc 
Proposition: i) If a,b E An with aja = a~ 

J 

ii) For n = 3,4 , if a,b EA 
n 

1 with a.a 
J 

~( a * . b) = 
J 

u.a 
J (~b) + n 

v.b 
( 4>a) J 

for· oc = 0,1 , 

where uja 0 0 0 0 
= a1 ... a. 1a·+ •• a a and VJ.b 

1 1 1 1 = a •. a. 
1
a.+

1 
•• a b 

J- J 1 n 

iii) If a E An and r ER, then 

~( r •. a) = r • ~a . 
J n 

1 J- J n 

Proposition: 1) For n = 3, let a E A2 • Then 

~c.a = 4>r a= ~r~a = 0 in dimension 3 for 1 ( i ( 3 and 
1 J J 

1 ' j ' 2 • 

2) For n = 4, let a E A3 • Then 

~c.a = ~r.a = ~r~a = 0 in dimension 4 for 1 (in( 4 and 
1 J J 

Also we define a thin structure on A as follows ; 

let a E An, then a is called thin if and only if ~a= 0. 

In $3 we construct the coskeleton in terms of "shells" for 

an n-tuple algebroid and we define ar ' C. ' 1 

operations on □An to prove the following; 

ri , r 1 and the 

Proposition: If (An,•••,Ao) is an n-tuple algebroid, then 

(□An,An,•••,Ao) is an (n+l)-tuple algebroid. 

Proposition: Let! be an w-algebroid and let M = Y! be its 

associated crossed complex. Let a E □An-land~ E Mn(u,v) 

where u = ~0 a, v = ~1a. Then a neccessary and sufficient 
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condition for the existence of b ~ An such that ib ~ a and 

~b = e is that se = S~ia. Further if b exist , it is unique. 

In $4 we construct a functor A from the category of 

3-truncated crossed complexes to the category of 3-tuple 

.algebroids by using the folding operation. Also we prove 

that ; 

Theorem 4: The functors y, A form an adjoint equivalence 

y 
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CHAPTER I 

R-ALGEBROIDS 

O. INTRODUCTION 

We begin this chapter by defining R-algebroids and their 

morphisms • These have been studied in several papers, 

[Po-1] , [Mi-1] , [Mi-2] , [Mi-3] , [A-1] • 

For instance B.Mitchell [Mi-1,2,3] has given a 

categorical definition of R-algebroids, and obtained some 

interesting results on these gadgets • His definition is the 

following. 

Let R be a commutative ring. An R-category A is a 

category equipped with an R-module structure on each hom set 

such that composition is R-bilinear. An R-functor is a 

functor T: A--➔ B between R-categories such that the maps 

T: A(a 1 ,a 2 ) --➔ B(Ta 1 ,Ta 2 ) 

are R-linear. 

In the language of enriched categories, one can define 

an R-category to be a category which is enriched over the 

closed category of R-modules. An R-category with one object 

is an associative R-algebra with identity. 

An R-algebroid A is a small R-category. If A and A' are 

R-algebroids , define A8RA' by Ob(A8RA') = ObA x ObA' , 

A8RA'((a 1 b) 1 (a' 1 b 1
)) = A(a,a') 8 A'(b 1 b 1

) • 

Composition is the unique R-bilinear map satisfying 

(a8a')(b8b') = ab 8 a'b' • 
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The enveloping R-algebroid of an R-algebroid A is 

An R-algebroid A is separable if A considered as its own 

hom functor is projective as an Ae-module. It is central if 

the map _R --➔ HomAe(A,A) is an isomorphism 

Two R-algebroids are Morita equivalent if their module 

categories are R-equivalent • 

Before we state the first res~it of [Mi-3] , let us give 

the definition of the Brauer group of the commutative ring. 

Let R be a commutative ring and let V(R) denote the 

isomorphism classes of all algebras having Ras center and 

which are separable over R. Let V0 (R) be the subset of V(R) 

consisting of the algebras Homn(E,E) where Eis any finitely 

generated projective faithful R-module. One can prove that 

V(R) , V0 (R) are closed under the operation of tensor product 

over R (see [A-G-1]) • 

Define an equivalence relation in V(R) as follows : if 

S1,S 2 are in V(R) , then S 1 is equvalent to S 2 if there are 

algebras A1 and Az in V0 (R) such that S 18RA 1 a S 2 8aA 2 • 

Let B(R) denote the set of equivalence classes of V(R) • Then 

B(R) is an abelian group [A-G-1] • 

Now we are ready to state the .result given in [Mi-3) 

namely that the Morita class of an R-algebroid A is an 
• 

element of B(R) if and only if A is central , separable and 

equivalent to an algebra. 

One of the reasons to generalise algebras to algebroids 

is that an R-algebroid A which is only separable need not be 

equivalent to an algebra •. Thus algebroids give a new 

direction in the theory of separability. 
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All the above material has been given in [Mi-1,2,3) • 

In [Po-I]., T.Porter has defined an R-algebroid in a 

slightly different setting. He has defined an R-algebroid A 

on a fixed set of "obJectsuA0 to be a disjoint family of 

R~modules, so that A need not have identities. Also he 

defined an action of an R-algebroid on a "C-structure" • 

. finally he defined a crossed module and linked crossed 

modules with internal groupoids. More precisely, he proved 

that in the category of R-algebroids over a fixed set, any 

internal category is an internnal groupoid. 

Now we move from this setting to say that it is well 

known that groups are appropriately generalised to 

groupoids, (see for example [Br-IJ,[Hi-lJ) • As explained 

above algebras ar~ appropriately generalised to 

algebroids; we give an example in section 1 to illustrate 

this. Moreover we give the definition of a tensor product 

between two R-algebroids and reprove the known fact that the 

category of algebroids is a monoidal closed category [Mi-I] • 

In sections 2 and 3 we give the definition of a crossed 

module over an associative algebra (see for example [Ge-I) , 

[K-L-lJ , [El-lJ ) and introduce the notion of crossed module 

over an algebroid. Also we give some properties similar to 

those well known for crossed modules over groups • 

1. R-ALGEBROIDS 

The material of this section may be found in [Mi-1) , 

[Mi-2] , [Po-I] • We shall give the definition of an 
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R-algebroid A on a set of "objects" A0 in the following way: 

Recall that A is called a directed graph over a set Ao if 

there are given functions ao • a1 :A-.. Ao • c:: Ao -➔ A • 
called respectively the source • target and unit maps • such 

that aoc: = a1c: = 1 . Then we write 
Ao 

A(x,y) = {a E: A a 0 a = X • a1a = y} and write lx for c:x 

If a E: A(x,y) , we also write a:x--+y. 

An R-algebroid (A,A 0 ,a0 ,a1,c:,+,.) (which is abbreviated 
' 

to A) is a directed graph A over A0 together with for all 

x,y,z E: Ao 

i) an R-module structure on each A(x,y) , 

ii) an R-bilinear function, called composition, 

*: A(x,y) x A(y,z) -➔ A(x,z) • 

( a , b) -----➔ a * b 

The only axioms are that composition is associative, and 

that the elements lx, x E: A0 , act as identities for 

composition: if a:x -➔ y, then lx *a= a* ly =a. 

Thus the composition makes A into a small category. 

. 

A morphism f:A - .. B of R-algebroids A, Bis a functor of 

the underlying categories which is also R-linear on each 

A(x,y) - .. B(fx,fy) • The set of all morphisms.A-➔ Bis 

written HomR(A,B) • Note that a morphism f:A -➔ B preserves 

the identities • 

The zero of A(x,y) is written O, or Oxy if additional 

clarity is required. As usual , bilinearity implies 

a* 0 = 0, O *a= O, whenever these are defined. 

Examples: 

1) If A0 has exactly one object , then an R-algebroid over Ao 

is an R-algebra. 
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2) If A is an R-algebroid over A0 and x E A0 , then A(x,x) is 

an R-algebra. 

We now come to one of the most important features of the 

category of R-algebroids namely that it has an internal hom 

functor. 

Let ·A,B be R-algebroids • Suppose given f,g E HomR(A,B) 

We define Hom(f,g) to be the set of all "natural 

transformations" f -➔ g, that is, the set of all functions 

b: A0 -➔ B such that bx E B(fx,gx) , x E A0 , and for all 

x,y E A0 and aEA(x,y) the following square 

fx bx 
-------➔ gx 

fa! l ,a 
fy -------➔ gy by 

commutes. Then Hom(f,g) is given the structure of R-module 

by (rb + r'b')x = rbx + r'b'x, whenever x E A0 and r~r•i R. 

There is a bilinear composition 

Hom(f,g) x Hom(g,h) --➔ Hom(f,h) 

( b, b' ) -------➔ b * b' 

Where (b * b')x =bx* b'x. Then we get; 

f.roposition 1.1.1: With the above structure, the family 

Hom(A,B) = {Hom(f,g)}f,g E Homn(A,B) 

is an R-algebroid. D 

A special case is when A,B are R-algeb~ras i we still get 

an R-algebroid Hom(A,B) and this is one of the motivating 

examples for considering the extension from R-algebras to 

R-algebroids • 

~finition 1.1.2: If A,B are two R-algebroids over A0 ,B 0 

respectively, we define the tensor product A8aB over A0 xB
0 
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to be the family of R-modules 

{A(x,y)8RB(u,v) : x,y £ A0 • u,v £ B0 } 

with composition (a'8 b') * (a 8 b) = (a' * a) 8 (b' * b) • 

Lemma 1.1.3: Let A,B be R-algebroids over A0 ,B 0 respectively. 

Then A8RB is an R-algebroid over A0 xB 0 • 

Proposition 1.1.4: Let A,B,C be R-algebroids 

a 

Then there is 

a natural isomorphism between HomR(A8RB , C) and 

HomR(A,Hom(B,C)) • 

Proof: 

Define a map n HomR(A8RB,C) --+ HomR(A,Hom(B,C)) as follows : 

if ♦ :A8RB --+ C, then n(♦) : A--+ Hom(B,C) and if x £ Ob(A) • 

then n( ♦)(x) is to be a morphism B --+ C • given on objects by 

Y --➔ ♦(x,y) and on arrow b:y --+ y• by 

(n(♦)(x))(b) = ♦(lx8h) • If a is an arrow in A, then 

n( ♦){a) £ Hom(B,C) which is given on objects by 

Y -➔ ♦ (a8ly) and on arrows b: y --+ y' by 

(n( ♦)(a))(b) = •(a8b) • 

Define a map n' : HomR(.A,Hom(B,C)) ---+ HomR(A8RB,C) as 

follows : 

if~: A--➔ Hom(B,C) , then n'(~) : A8RB ---+ C. If (x,y) is 

an object in Ob(A)xOb(B) • then we define 

n'(~)(x,y) = ~(x)(y) and if a8b is an arrow in A8RB such that 

a: x -➔ x' • b : y --+ y• , then ~(x),~(x') : B -➔ C and so 

~(a) : ~(x) -➔ ~(x') and ~(x)(b):n'~(x,y)•-➔ n•~(x,y') , 

~(x')(b) : n•~(x',y) -➔ n'~(x',y') • 

Thus we get the diagram ,rt C 
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~(a)(y) ~(a)(y') 

n'(~)(x',y) ~(x')Ch1 n'(~)(x',y') 

Define n'~(a8b) = ~(a)(y')~(x)(b) = ~(x')(b)~(a)(y) • 

Now we want to show that nn' = 1, n'n = 1. For nn' = 1 , 

let~: A--➔ Hom(B,C) and let (x,y) E Ob(A)xOb(B) , then 

nn'(~)(x,y) = n(~(x)(y)) = ~(x,y) . If a8b E A88B, then 

nn'(~)(a8b) = n(~(a)(y')~(x)(b)) = ~(a8ly)~(lx8b) = ~(a8b) • 

Thus nn• = 1 • 

For n'n = 1 , let ♦: A88B --➔ C and let x E Ob(A) , then 

(n'(n( ♦))(x))(y) = n'( ♦(x,y)) = ♦(x)(y) for y E Ob(B) and 

n'((n( ♦))(x))(b) = n'( ♦(lx8b)) = ♦(lx)(y') ♦(x)(b) = ♦(x)(b) 
for b:y -➔ y' EB . 

Hence n'((n( ♦))(y)) = n'( ♦(a8ly)) = 

♦(a)(y) ♦(x)(ly) = ♦ (a)(b) , whenever a :x -➔ x' and 

b: y -➔ y• • That is , the category of R-algebroids can be 

liven the structure of a monoidal closed category. a 

For other properties of the category of R-algebroids 

Which are not valid in the category of R-algebras see, 

[M-1,2,3] • 

If the unit map is omitted from the aJgebroid structure 

then we obtain an R-algebroid (without identities) • 

Remark 1.1.5: Let A,B be algebroids (without identities) and 

let M(A 0 ,B 0 ) denote the set of functions A0 --➔ B0 • Let e be 

the function 

-7-



e: HomR(A,B) --➔ M(A 0 ,B 0 ) • 
f ------➔ f 0 

Then each fibre e-1 (h) = HomR(A,B;h) can be given the 

structure of R-module by (f+g)a =fa+ ga, (rf)a = f(ra) , 

for all a EA, r ER. 

2. CROSSED MODULES (OVER ASSOCIATIVE ALGEBRAS): 

The general concept of crossed module originates in the 

work (1949) of J.H.C.Whitehead [Wh-l],[Wh-2] in algebraic 

topology. There the crossed modules were free crossed 

modules of groups • ·Also the notion of crossed module has 

been studied by Peiffer [Pe-1] and Reidemeister [R-1] , and 

they have defined identities among relations. For further 

detail see the survey of Brown-Huebschmann [B-Hu-1] • 

In the group case, a crossed module generalises the concepts 

of a normal subgroup and that of an ordinary module. 

The work of [K-L-1] in algebraic K-theory has introduced 

crossed modules of Lie algebras . In fact they have studied a 

fibration in Lie-algebras and they found that the induced map 

of the fibration gives a crossed module. The early work of 

[Ge-1] , (L-1] and (L-S-1] essentially involves the notion of 

crossed modules in associative algebras and commutative 

algebras 
1

under different names, which th~y use to define 

cohomology groups of algebras • Also [L-R-1] has analysed 

crossed modules in associative algebras, and the general case 

of crossed modules in a category of interest Chas been 

discussed in [Po-2) : he has proved that "the category of 
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internal categories in a category of interest C is equivalent 

to the category of crossed modulesin C. For the precise 

result , see [Po-2] • 

In this section, we give the definition of crossed 

module in the category of associative algebras in order to 

set .the stage for the definition of crossed module over 

algebroid in the next section • 

Fix a commutative ring R (with unit) , and let AL be the 

category of associative algebras over R. 

We define now an associative action in the category AL as 

follows 

Let A,M be associative algebras over R. An associative 

action of A on Mis a pair of maps 

A x M -➔ M 

(a,m) -➔ am 

M x A -➔ M 

(m,a) -➔ ma 

such that Mis a left and right A-module (bi-A-module) , that 

is 

i) (m+m')a =ma+ m'a 

ii) ma+a' =ma+ ma' 

8 (m+m') =am+ am• , 

, a+a'm =am+ a'm 

and satisfy the conditions : 

iii) (m.m')a = m . m•B , acm.m') =am. m' , 

iv) maa' 
, 

= (mB)a 
a'"'(~') J, J. , aa'm": a(B'm) , (~)-: m ~ h'I:= 1'r1-::: M 

v) r(ma) = mra = (rm) 8 , Y (&<M) -= Y~n? ::. et Cr m) ~ 

for all r £ R, m,m'£ M, and a,a'£ A. 

A crossed module in AL is an associative algebra morphism 

U: M -➔ A with an associative action of A on M such that: 
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ii) µmm' =mm' mi.Lm' =mm' 

for all m,m'E Mand a EA. 

Examples: 1) Let A be an associative R-algebra and let I be a 

two-sided ideal in A. Let i:I --➔ Abe the inclusion map, 

then .i with action of A on I given by multiplication is a 

crossed module. 

2) Let A,M be associative algebras and let M be a bi 

A-module • Then the zero map from M to A is a crossed 

module with the action given by bimodule structure • 

Now we move on and in the next section to give the 

definition of crossed module (over an algebroid) by using the­

above definition. 

3. CROSSED MODULES (OVER ALGEBROIDS): 

In the previous section, we defined a crossed module in 

the context of associative algebras .In this section we 

define a crossed module over an algebroid. 

Let A0 be a set and let A,M be two R-algebroids over Ao, 

Where M need not have identities • Suppose A operates on Mon 

the right and on the left as follows : 

Let m:x -➔ y EM and a E A(w,x) , b E A(y,z) , then we 

denote the right action by mb E M{x,z) , and the left action 
• 

by am E M(w,y) as shown in the diagram below 

m 
X -➔- y 

a 
W -➔- X 

am E M(w,y) 

left action 
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such that these actions satisfy the following axioms 

(1.3.1) 

cam)b = a(mb) 

(ma)b = mah , b(am) = bam , (m,,,'/: m n1•': 
O<(M m'} -:. &tm m 1 ~ 

ma+b =ma+ mb , a+bm =am+ bm 
(m + m1)b = mb + m1b' a(m + m1) =am+ am1 

(rm)b = r mb = mrb , a(rm) =ram= ram 
We txHl.(m-t -th.~l /I ha.r a.YI i' deY1tJ1•i~ 

1Xm = m = m1Y 

(1.3.l)(i) 

(1.3.l)(ii) 

(1.3.l)(iii) 

(1.3.l)(iv) 

(1.3.l)(v) 

for all a,b EA, m,m 1 EM and x,y E A0 • Thus we get 

Definition 1.3.2: Let A,M be two R-algebroids over A0 suck t~at A 
h. t)t S' ~ rt ,' "t ')'\ + ,- ty . ,:J 
morphism µ:M --➔ A is called a crossed module if there are 

actions of A on M satisfying the above axioms and also the 

following axioms 

µ(am) = a(µm) 

mm' = mµm' = µmm• 

(l.3.2)(i) 

(l.3.2)(ii) 

for all a,b EA, m,m' EM and both sides are defined. 

!Lefinition 1.3.3: A morphism of crossed modules. 

(«,P):(A,M,µ) --➔ (A',M',µ') is two algebroid morphisms 

«:A--➔ A' , P:M --➔ M' such that«µ= µ•p and 

P(am) = «apm, p(mb) = PJn«b, for all a,b EA, m EM and 

«:A--➔ A' is to preserve identities. Thus we have a 

·category~ of crossed modules (over algebroids) • 

To give examples of such crossed modules, we define a 

subalgebroid and two-sided ideal • 

!Lefinition 1.3.4: Let A be an R-algebroid over A0 • A 

subalgebroid A' is a disjoint family of R-submodules 

. {A'(x,y) ~ A(x,y)}x,y E Ao 

with units and each R-bilinear function 
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A'(x,y) x A'(y,z) --➔ A'(x,z) 

is the restriction of the R-bilinear function 

A(x,y) x A(y,z) ---➔ A(x,z) • 

Definition 1.3.5: Given an R-algebroid A over A0 , a 

two-sided ideal I in A is a family of R-submodules 

{I(x,y) ~ A(x,y)}x,y E Ao 

such that I satisfies the axiom: 

if a E I(x,y) , b E A(z,x) , c E A(y,w) , then ba E I(z,y) 

and ac E I(x,w) . 

Example: Let A be an R-algebroid over A0 and suppose I is a 

two-sided ideal in A. Let i:I -➔ Abe the inclusion morphism 

and let A operate on I by 

(i) ac = ac (ii) ba = ba, for all a EI , b,c EA. 

Then i:I -➔ A is a crossed module. Clearly I is an 

R-algebroid (without identities) • 

Hemark 1.3.6: Let f:A --➔ B be an algebroid morphism, where 

A,B are defined over the same set A0 and Ob(f) = 1A
0

• Then 

ker f = {a E A(x,y): fa= Oxy for all x,y E A0 } is a 

two-sided ideal in A. 

f.roposition 1.3.7: Letµ: M -➔ Abe a crossed module of 

algebroids • Then Imµ= {µ.m: •EM} is a two-sided ideal in 

A • 

~roof: Let aEim µ, so there is mEM such that IJ1J1 =a, for 

some a EA. Let bEA such that ab is defined , then 

ab= l,Lm b = µ(mb) • Thus ab E Imµ and similarly ca E Imµ, 

for cEA and ca is defined. D 
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Let I be a two-sided ideal in A. Then we can define 

quotient R-modules A(x,y)/I(x,y) for all x,y £ A0 • Then 

there is an R-bilinear morphism 

*:A(x,y)/I(x,y) x A(y,z)/I(y,z) --➔ A(x,z)/I(x,z) 

and ass~ciativity holds . 

Then we get an R-algebroid A/I which is the family of 

quotient R-modules 

{A(x,y)/I(x,y) : x,y £ A0 } • 

We call it the quotient R-algebroid and then there is a 

canonical mapping p:A -➔ A/I of R-algebroids • Also we have 

an exact sequence 

i 2 --➔ A - ➔ A/I~ 0 

Thus for any crossed module (A,M,µ) , there is an exact 

sequence O ~ ker µ --➔ M ..:,_➔ Im µ ~ 0 

We can state some properties of algebroids • 

i) Since Imµ is a two-sided ideal, then coker µ = A//JM exist 

and hence there is an exact sequence 

Imµ --➔ A --➔ coker µ • 

ii) Since mm' = l,lmm' , and if µm = 0, then m.M = 0 and 

M.m = 0. Thus m E Ann(M) (Ann means annihilator) and clearly 

Ann(M) is a subalgebroid of M. In particular.kerµ.ker µ = O. 

iii) Cokerµ= A/Imµ acts on ker µ. 

iv) Let O --➔ K --➔ M -E➔ A--➔ 0 be a central extension, 

that is, it is a short exact sequence such that if k £Kand 

m £ M, then km= mk = 0. Then p:M --➔ A can be give the 

structure of a crossed module • 

.E,roof: For any a EA, let sa denote an element of M such 

that p sa = a (thus sis a section of p) • 
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Define actions of A on Mas follows: 

am = (sa)m ,. mb = m(sb) • 

First, to show that these actions are well-defined. 

Lets• be a section of p and let m1 EM, then we want to 

prove that 

8 m = (sa)m = (s'a)m for a EA. 

Let m1 EM, then pm 1 = a and hence m1 - sa, m1 - s'a EK. 

So (m 1 sa) m = (m 1 - s'a) m = 0 , then (sa)m = (s'a)m. So 

the left action is well-defined. We can prove similarly that 

the right action is well-defined. It is clear that these 

actions satisfy the axioms for a crossed module. a 
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CHAPTER II 

DOUBLE R-ALGEBROIDS 

O. INTRODUCTION: 

We begin this chapter by showing how to mimic the idea 

given in chapter I in one higher dimension. That is , we look 

for "algebroids in two dimensions" • So we need two different 

additions and compositions • 

In fact , we make an analogy to the idea given by R.Brown 

"Higher dimensional group theory" [Br-2] to define double 

R-algebroids • 

In section 2 we prove that there exist two functors from 

the category of :r:/ou bLe ~- algebroids to the category of crossed 

modules • Also we give examples of double R-algebroids in the 

third section • 

1. DEFINITIONS: 

The notion of double category has occured often in the 

literature (see for example , [Be-1],[Gr-l],[Ma-l],[Wy-l], 

[K-S-l],[B-S-l],[S-W-1] and is due originally to Ehresmann 

[Eh-1]} In this section we study an object with more 

structure than a double category, which we call a double 

R.-algebroid • 

To define double R-algebroids , we start to give in some 

' detail the definition of double category; 

llefinition 2.1.1: [Eh-l],[B-S-1] By a double category D is 

meant four related categories 
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as partially shown in the diagram 

c~D~c2 

~D~ 
and satisfying the rules (i-v) given below. The elements of D 

wi 11 be cal led squares of D 1 , D 2 horizontal and vertical 

edges respectively , and of D0 points or ob,jects • We will 

assume the relation 

i,j = 0,1 

and this allows us to represent a· square oc E:' D as having 
I 

boundary edges pictured as 

While the edges are pictured as 

a ._ _____ _ 

b 

b E: D2 

From now on we will write the boundary of a square as 

l(the square) for example the boundary of oc is written as 
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ao 
0 

1 oc: 
ioc: = (a2.oc: a ~oc:) • 

a!oc: 

ii) a!(c
1
a) = csi 

18 i = 0.1 

aj ( ~ b) = cSjb j = 0,1 • 1 2 2 

So the identities c 1a • c 2b form squares which have boundaries 

a CZ 

b) • 
a cw 

iii) C1CX = C2CX 

iv) ai < * /J) = 2 oc: 1 
aioc: * 2 

ai /J 
2 i = 0,1 

aj < oc: *2 /J) = aJ oc: * aj /3 j = 0,1 
1 1 1 

for all oc:,/3 ED such that both sides are defined. 

v) (The interchange law) 

(oc: *1 /3) *2 (Y *1 S) = (oc: *2 Y) *1 (/J *2 S) , 

whenever oc:,/J,Y,S ED and both sides are defined. 

J!.efinition 2.1.2: A double R-algebroid D is four related 

R-algebroids 

as shown in the diagram 

~D~• 

~D~ 
and satisfying the rules given below. 
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The elements of D will be called squares , of D1,D 2 horizontal 

and vertical edges respectively and of D0 the set of 

"objects" • 

(2.1.3) 

i,j € {0,1} • 

Then we can represent a square o: as having boundary edges 

given by 

1 

where the edges pictured as 

o a 1 S a _____ _. s a 
1 1 

First , we assume on D four operations + 1 ,* 1 ,+ 2 ,* 2 defined in 

the following way 

Let o:,~,Y,S,t € D have boundaries given by 

C C b C1 io: = (a d) ~_13 = (a1 d1) ' iY = (a' d') 
' iS = (a d) ' b b e h1 

c' 
and it = (d e) • 

b' 

Then o: + 1 p, o: *1 y, o: + 2 S, o: *2 t have boundary edges in 

the form 

C C 

dd') , 
e 
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c+c 1 cc' 
!(oe +2 ~) = (a d) t !( oe * 2 t) = (a e) • 

b+b 1 bb' 

So we are ready to give more rules for double R-algebroid 

(2.1.4) 

a!coe + 1· /3) = a1oe + ai /3 i = 0,1 (2.1.4)(i) 2 2 

i 
a1oe + al /3 i 0,1 (2.l.4)(ii) a ( ex + /3) = = 1 2 1 1 

a!coe *1 /3) = a1oe * ai /3 i = 0,1 (2. 1.4) (iii) 
2 2 

ai < * /3) = a1oe * ai /3 i = 0,1 (2.l.4)(iv) 1 oe 2 1 1 

for all oe,/3 ED and both sides are defined. 

(2.1.5) 

We have two scalar multiplications; for oe ED as above and 

r ER, so we definer • 1 oe, r • 2 oe to have boundary edges in 

the form 

C re 
!( r • 1 oe) = ( ra rd) , ~(r • 2 oe) = (a d) • 

b rb 

These multiplications are to satisfy the following axioms 

r • 1 ( oe +2 /3) = (r • 1 oe) +2 (r • 1 /3) } (2.1.5)(1) r • 2 ( oe +1 /3) = (r • 2 oe) +1 (r • 2 /3) 

r • 1 ( ex *2 /3) = (r • 1 oe) *2 (r • 1 /3) } (2.l.5)(ii) r • 2 ( oe *1 /3) = (r • 2 oe) *1 (r • 2 /3) 

r • 1 (s • 2 oe) = s • 2 (r • l oe) (2.l.5)(iii) 

for all oe, /3 E D ' 
r,s E Rand both sides are defined • 

These rules make sense in terms of boundaries t for 

example t let oe, /3 ED have boundaries given by 

C Ct C 
!ex = (a d) i/3 = (a d) then ~(r • l oe) = (ra rd) t • t 

b b1 b 

i(r /3) 
Ct 

![ r ( oe + 2 /3) ] (ra 
c+c 1 

• l = (ra rd) • 1 = rd) t t 

b1 b+b 1 
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and ~[ ( r • 1 o:) + 2 ( r • 1 /3)] = ( ra rd) , that is , 
b+b 1 

r •1 (o: +2 /3) = (r • 1 o:) +2 (r •1 /3) in terms of boundaries 

(2.1.6) (The interchange laws) 

(2.1.6)(i) 

which is diagrammatically as shown below 

:[j: C {]: X Cl W 

' a:o:, ' , a1 [:Jd 1 

y b z y b z y b z y b z. 
1 1 

X C W X C1 W c+c 1 c+c 1 X W X W 

a+a,[oc+ 1 ,a ld+d 1 , a+a 1 E]d+d 1 , a I oc+·+ , a1Bd1 

y b z y b1 z y b+b z y b+b z 1 1 

X 
c+c 1 w X 

,c+c 1 w 

y 
b+b 1 

z y b+b 1 
z 

( ex *1 /3) *2 (Y *1 G) = ( ex *2 Y) *1 ( /3 *2 S) (2.1.6)(ii) 

C ' 

a 0: d >' 

b 

a' /3 d' s 

e e 

( ex +1 /3) *2 (Y +1 S) = ( 0: *2 y) +1 (/3 *2 G) (2.l.6)(iii) 

which is diagrammatically given by 
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cc' x..--_______ ....,u 
X,---------U 

cc' 

y 
bb' V bb' V 

(2.l.6)(iv) • 

The explanation is similar to that for the interchange law 

(iii) , whenever a,~,y,S € D and both sides are defined. 

(2.1.7) 

We assume that each of the algebroid structures has 

identities and then c: 1 , c: 2 give these identities in the 

following way; 

given a € D1 (x,y) 

boundaries given by 

a 
!(c:1a) = (lx ly) 

a 
• 

are algebroid morphisms 

lx 
I(c:2b) = (b 

ly 

t, -:. D, --+ D 

then c: 1 a , 

b) • such that C:1 • C:2 

- r- . Di:,_.- D , :a. . . 

We shall need later some simple facts on zero elements 

namely 

.Remark 2.1.8: If x,y € D0 , then we write O or Oxy for the 

zero elements in both D1 (x,y) and D2(x,y) • However if 

c € D1 (x,y) , b € n1 (z,w) , then we have~ set 

D
1
(c,b) = (a~) -l(c) n (a!) -l(b) and this set has zero which 

we write O~b. The boundaries of this element are given by 
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' t 

X C y 

{~} 
z b w 

and it is clear that 0 1 is the zero for + 1 in D1 (c,b) , ch 

where Dl(c,b) is the set of arrows in direction 1 , from c to 

b • 

Also we can get a square o:d with boundaries given in the form 

Which is the zero for + 2 in D2 (a,d) • Notice that, if«< D 

is given by 

e 

then o 1 *1 « = o 1 
ch ce 

2 2 
, Oad *2 «=Oaf by distributivity. 

~efinition 2.1.9: A morphism between two double R-algebroids 

D , B (over the same set of objects) is a triple of +UnC"t1·ons 

preserves all structures • Thus we get a category of 

double R-algebroids • Also we can define a morphism between 

two double R-algebroids on different sets of objects , by 

using the definition given in chapter 1 sect ion 1 • Let us 

denote the category of double R-algebroids ( over cJ.;f{e,ye.rt sets 

of objects) by DA. 
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2. FUNCTORS (DOUBLE ALGEBROIDS)---+ {CROSSED MODULES): 

In chapter 1 section 2 and in the previous section , we 

have defined two categories namely the category of crossed 

modules C and the category of double R-algebroids DA. 

In this section, we make an analogy with the result given 

in ([B-S-1] , proposition 1) that is , we want to show how to 

obtain from a double R-algebroid two crossed modules (over 

algebroids) • We start with the main result of this section 

namely; 

Proposition 2.2.1: If Dis a double R-algebroid, then we have 

two crossed modules associated with D • 

Proof: First , let Ao= D0 (the set of objects of D) , and 

A2 = D1 , the algebroid of arrows of D1 • We take M2 to 

m 
consist of squares /3 with boundary of the form (1 1) , 

0 

that is 
' 

a1p = o , a0
2 /3 = 1 , a113 = 1 } • 

1 xy X 2 y 

We define +,*,. on M2 by /3 + /31 = /3 +z /31 , /3 * /3' = /3 *2 /3' 

and r. /3 = r • 2 /3, whenever /3,/3 1 ,/3' E M2 and r ER Thus M2 

is an R-algebroid over Ao. Let /3 E M2 as above and let 

a' E A2 (y,z) , a E A2 (w,x) • So we get two squares in the form 

Then we define the right and the left actions of A2 on M2 by 

the formulae 

ap = c 1a *z /3 as shown below 
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a' ma' z X Z 

c: a' r. = lx 111* 2 c 1a'I lz 1 

a' z X O Z 

a m 

= 

We now prove that these actions satisfy the axioms for 

crossed modules (1.3.l)(i-iv) • 

Axioms (1.3.l)(i-ii) , follow directly from the associativity 

of *2 • 

(1.3.l)(iii) 

pa+b = 13a + ,J, 

( 13 + /3 1 ) b = /3b + /3 1 b , a ( /3 + /3 1 ) = a /3 + a /3 1 

f_roof: 

by definition 

= /3 *2 [c: 1 a +2 c:1b] by (2.1.7) 

= (/3 *2 c: 1 a) +2 (/3 *2 C:1b) by distributivity 

= /3a + 13b • 

We Prove similarly that a+b13 = a13 + b13, (/3 + /31) = 13b + /3 1b, 

B( /3 + /31) = a13 + a131 • 

For (1.3.l)(iv) , namely (r./3)a = r. /38 = 13ra for all r£R, 

(r.13)a = (r •2 /3) *2 C:1a 

= r •2 (/3 *2 C:1a) 

= r • 2 13a = r. 13a. 

by definition 
~ 

from bilinearity 

Also by the definition and bilinearity, we get (r./3)8 = 13ra. 

Clearly (1.3.l)(iv) is satisfied. 
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l 

It is clear that µ2 is an algebroid morphism. 

Finally , to prove that (A 2 ,M 2 ,µ2 ) is a crossed module , 

it suffices to verify the axioms (l.3.2)(i-ii) ; namely 

The first part is clear • Thus we just want to show 

Suppose /3, /3' have boundaries in the form 

(1 m m' o 1) , (1 0 1) • Then 

by definition 

= (c:1m *1 /3) *2 ( /3' *1 C:10) by the identity rule 

= ( c: 1m *2 /3' ) *1 ( /3 *2 C:10) by (2.l.6)(ii) . 
Since /3 *2 C:10 = C: 10 by remark (2.1.8) 

' we have 

/3 * /3' = ( c: 1m * 2 /3' ) *2 C:10 = C:1m *2 /3' = m /3' = µ2/313• 

by the definition and remark (2.1.8) . 
We can use similar argument to get 

, as shown in the diagram below 

m m' 

/3 * /3' = /3 * 2 /3' = 1 /3 /3' 1 = 

0 0 

• trim 
I 

m m m' 

l /3 c: m' 1 11 /3 le 1m' k ~~ ,.~] 1 

0 m' = 0 m' = 0 

1 C:10 /3' 
11 

C:10 /3' 
11 ·GJ 

0 0 0 0 0 . 
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= 

Then we get a crossed module (A2 ,M2,U2) • 

For the second crossed module, we assume A1 = D2 and take 

M1 to consist of squares P with boundary of the form (m f 0) , 

that is 

and clearly M1 is an R-algebroid over A0 by P + P1 = P + 1 p 1 , 

P * P' = P *1 P' and r. P = r •1 P. Then we can use similar 

argument as above to get a crossed module (A 1 ,M 1 ,µ 1 ) • This is 

the complete proof of the proposition • □ 

The next section gives examples of double R-algebroids • 

a. EXAMPLES: 

We give in this section three examples of double 

algebroids • 

l) Let B be an R-algebroid over B0 • Then we can construct a 

double R-algebroid D = BB of commuting squares in B such that 

D and B have the same set of objects (i.e\ D0 = B0 ) • 

Let D1 = n2 = B be the horizontal and vertical algebroid 

structures , and let D consist of quadruples 

~- C . 
-(a 'b d) for a,b,c,d ~Band cd = ab • 
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' 

l 

Thus o:: is determined by its boundary edges • 

We define now + 1 , + 2 , * 1 , * 2 , • 1 , • 2 on D in the 

following way: 

s = (a' -b d') 
e 

c' , t = (db' e) , then we define 

cc• 
o:: *1 S = (aa• ~ dd') , o:: * 2 t = (a bb' e) • If r £ R, 

we define r • 1 o:: = (ra ~ rd) and r o:: _ ( red) 
• 2 - a rb • 

It is clear that these operations are well-defined for 

example + 1 , since o::,P £ D, then ab= cd and a 1b = cd 1 hence 

(a+ a 1 )b = c(d + d 1) , so o:: +1 /3 £ D. 

Now we want to show that this structure satisfies the 

axioms for double algebroids . 

It is obvious that this structure satisfies the axioms 

(2.1.1.f-)(i-iv) , (2.1.3) 1 (,2,/•'7)· and (2.1.5) ( i-i;;J • 

Thus it is enough to satisfy the axioms (2.1.~(i-iv) 

or (2.l.6)(i) let o::,/3,'Y,S £ D hav_e boundaries given • 
C C C1 Cl 

0:: = (a d) /3 = (81 d 1) 'Y = (a d) s = (a 1 • • • b b b1 b1 

so 

C C1 
0:: + 1 /3 (a+a 1 d+d 1) 'Y +1 s (a+a 1 ' d+d 1) = = • • 

b b1 

c+c 1 c+c 1 

by 

d 1) 

0:: +2 y = (a d) and /3 +2 s = (a1 d1) and then 
b+b 1 b+b 1 

( <X + 1 /3) +2 ('Y +1 S) = 
c+c 1 

(a+a 1 d+d 1) • and 
b+b 1 

-27-

• 



b+b 1 

So (a+a 1)(b+b 1) = (c+c 1)(d+d 1) (since ab= cd, a 1b = cd 1 , 

ab 1 = c 1 d 

(2.1.4)(ii-iv) is similar to that of (2.1.4)(i) • 

Thus the structure BB with these operations does satisfy 

the rules for a double algebroid • 

2) Let B be an R-algebra and let B1 , B2 be two subalgebras of 

B. Define D = B(B 1,B 2) to be the set of commuting squares 

C 
o:: = (a d) for a,d £ B 1 , c,b £ B 2 and ab= cd. Let D0 

b 

= {*} . If we define the operations +1 , +2, *1 , * 2 , 

•1 , • 2 on Din a similar way to that in example (1) , we get 

a double R-algebroid. 

3) A generalisation of example (2) is: if B is an R-algebra 

and B1 , n2 are subalgebras of Band given homomorphisms 

Define now, Do={*} and D1 = B1, D2 = B2 and D to 

C 

consist of quadruples (a 
b 

that ( ♦a)(~b) = (~c)( ♦d) . 

We define + 1 , + 2 , * 1 , *2 , • 1 , • 2 on D in the following 

way 

C C 

for +1 , let o:: = (a 
b b 

C 
d+d 1) • So we want to show that 

b 
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(~(a+a 1 ))(~b) = (~c)(~(d+d 1 )) , and this equation follows from 

these two equations ( ♦a)(~b) = (~c)( ♦d) and 

(♦a 1 )(~b) = (~c)( ♦d 1 ) and ♦ is a morphism • 

• 1 ' 
• 2 , we can define these operations 

similar as in example (2) by using the fact that ♦ , ~ are 

algebra morphisms • 

Clearly the above structure does satisfy the axioms of a 

double R-algebroid • Moreover , the two associated crossed 

modules of the above double algebroid are :1 , II 
tSS'tl1 IOf J 

i) the first crossed module is givenfby the morphism 

I 
B2 ---➔ 82 

C 

(1 1) --➔ C 

0 

ii) The second crossed module is givenjby the morphism 

I 
B 1 ---➔ B 1 

1 
(a O) --➔ a 

1 
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CHAPTER III 

THE EQUIVALENCE BETWEEN THE CATEGORY C OF CROSSED 

MODULES AND THE CATEGORY DA! OF SPECIAL DOUBLE 

ALGEBROIDS WITH CONNECTIONS 

o. INTRODUCTION: 

R. Brown and C. B. Spencer [B-S-1] have defined a functor 

(crossed modules over groups) -➔ (double groupoids) , and they 

showed that this gives an equivalence between the category of 

crossed modules over groups and the category of special double 

(roupoids with special connections and one vertex The 

structure of connection on a double groupoid was shown in 

[B-H-1] to be equivalent to a structure of thin squares , and 

a convenient notation for thin squares was later developed and 

exploited by R.Brown [Br-2] • Also [S-1] proved an equivalence 

between 2-categories and double categories with connections • 

Thin structures on double categories were exploited in 

[S-W-1] Finally , it was proved in [B-H-2] that crossed 

modules over groupoids are equivalent to double groupoids with 

connections ; indeed this is a special case of an equivalence 

between cross~d complexes (over groupoids) and w-groupoids • 

Our programme is to prove results parallel to the above in 

the context of algebroids rather than groupoids ; that is we 

would like to prove that there exist an equivalence between 

w-algebroids and crossed complexes (over algebroids) • 
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Rather than move to the general case immediately, we give 

in this chapter the case n = 2 , that is for double 

algebroid • This will familiarise the reader with the 

techniques 

involved. Also some of our lemmas for n = 2 will be applied in 

the general case , and the complications of their proof makes 

it easier to give the case n = 2 when the notation is simpler 

than in general • 

As explained in the Introduction , in this thesis we do 

not acheive the general result , but we do obtain a lot of 

information on the general situation and complete results for 

n = 2,3,4 • 

1. I.,_HIN STRUCTURES AND CONNECTIONS: 

We will use the example which was given in chapter 2 $ 3 

in order to define the extra structure needed later (we should 

mention that the example of BB given before is analogous to 

the example of double category due to Ehresmann [Eh-1)) • But 

before that we start to define a special double algebroid. 

Jtefinition 3.1.1: Let D be a double R-algebroid. We say that 

Dis a special double R-algebroid if D1 = D2 • 

Refering to the definition (2.1.9) , a morphism (t, ,t1,t2) 

of double algebroids such that t1 = t2 is called a morphism of 

special double algebroids. 

Suppose given a special double algebroid D • Then there 

w1·11 be squares of D with commuting boundary, that is , with 

edges given by 
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C 

b 

and for which ab= cd. Examples of such squares are 

degenerate squares 

Among the others there seems no way to distinguish any one 

from another We therefore impose on D an additional 

structure of "thin" squares • 

!lefinition 3.1.2: Let D be a special double algebroid. A thin 

~tructure on Dis a morphism e :BD 1 ---➔ D of special double 

algebroids such that e is the identity on D1 • Hence 

je(a d) = (a 
C C C 

b b 
d) • An element e(a 

b 
d) is called thin, and 

C 

is often written simply (a d) , when e is clear from the 
b 

context • 

Remark 3. 1. 3: Because e is a morphism any composite of thin 

squares is thin ; any sum of thin squares is thin; any scalar 

multiple of a thin square is thin • Thin squares should be 

• 
thought of as generalisations of identity elements c 1 a , c 2 a 

in a special double algebroid. 

Instead of thin structures , one can use an alternative 

further structure on D , namely a connection ( r , r•) . This 

Will be important later for generalisation to higher 

dimensions • 
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(3.l.4)(i) 
gi ve_n by 

a 
X y 

a~l 
y I y 

, then ra 

I 
X X 

{~~} 
X y 

a 

(Clearly these two squares are commutative) • 

r' a have edges 

We assume the following axioms: for all a,b £ D2 such that ab 
is defined 

r'a *z ra = C1a 

(3.1.4)(ii) 

r' a * 1 ra = C zB 

r•(ab)=(r'a*1C1a)*z(Cza*1r'a)=r'a*z(Cza *1r'b) 

(3.l.4)(iii) 
r(ab)=(ra *1 Czb)*z(C1b *1 rb)=(ra *1 Czb)*zrb 
for ,all x £ Do , we have r' Ix = rlx = c 1cx • 

Definition 3.l.4(b):Let D be a special double algebroid with a 

weak connection (r, r') . _We_ sai~ that (r, r•) is a connection 
on D if it satisfy these extra axioms : 

(3.l.4)(iv) Let o:,P,:r € D have.boundaiies given by. 

C 

b 

then we have 

r'(a+a1) *2 ( 0: + 1 /3) 

(r'a1 *2 /3 *z rd1) . 
r•cc+c1) *1 ( 0: + 2 :r) 

*1 /3 * 1 rb 1 ) 

C 

d) . ; 
b 

*2 r(d+d 1) = (r'a *2 0: *2 rd) 

*1 f(b+b 1) = (f'c *1 o: *1 fb) 

(3.l.4)(v) Let r € R and o: £ D with boundary given 
C 

.2,0:: = (a d) . then we have t 

b 
f'ra *2 (r • 1 o:) *2 rrd = r • 2 (r'a *2 0: *z rd) ' r• re *1 (r • 2 o:) *1 rrd = r • 2 (r'c *1 0: *1 rb) . 
These axioms (3. l.4)(ii-iv) make sense in terms of 
boundaries , as shown in the diagrams below: 

+2 

+z 

by 

( f' C 1 . 

let a:x -➔ y , b:y -➔ z for x,y,z £ D0 ; then the axiom 

(3.l.4)(ii) can be pictured as 
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1 a a X X 

f 
X y 

~ r'a 
·~ 

ra = {31 
X y 1 

y X . y a a 

1 
X X 

1 r'a :a: y = t a 

ra 1 y y 

1 y 

The axiom (3. 1.4) (iii) is pictured as 

X 
1 1 

X It 

X 1 X 

1Llab 

x-Yz 
1 

= X 

1 

r•a a C:28 a 

a y 1 y 

C:18 l f'b ~ 

X a b z 

a b 
X z 

x ab z ra 1 

ab[~} I 
= y y 

I 
z 1 z b c 2 b b rb 1 

z 1 z l z 

The axiom (3.1.4)(iv) , is pictured as ! c d+d 1 x□• 
cd 

xcr r XO·+, = = a+aj+1P f+d1 = 
z X Z x ab z X b z a+a1 b z ab+a 1b 81 

X C d C dJ.. z 

J j e [ 1 
X ~. ()C +2 a~ /3 I t 

a b X y 
b z· 

81 
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The axiom (3.l.4)(v) 
' 

is pictured as 

the left .hand side is ; 

xf C d red 

rj r • 1 ex Ird [ = xo• 
X X b z ra b ra 

The other side is 

C d 

r • 2 

= :CJ • Thus the boundaries are equal • 

rah 

~mark 3.1.5: The axioms (3.l.4)(i,ii,iii) are essentially the 

axioms for connection on a double category given in [S-1] • 

These axioms involve only the composition and not the 

additions or scalar multiplications of the algebroid 

structure But the axioms (3.l.4)(iv,v) give relations 

between (r,r') and the additions and scalar multiplications • 

These axioms are equivalent to conditions on the folding 

operation given later in $3. 2 and are not · used. until that 

section· • 

We go back to define a morphism betw~en two special double 

algebroids with connections • 

Definition 3. 1.6: A morphism ~ :D -
algebroids with connections cr,r') 
~eserve the connections if and only 

A ~2 = ~- r A'. ~2 = ~- r' • ' 
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Such morphisms form the morphisms of the category of special 

double a~gebroids with connections, denoted by DA! • 

We gave in proposition (2.2.1) a functor from double 

algebroids to crossed modules (over algebroids) , associating 

to D the crossed module (A,M,µ) with A= D2 and M consisting 

m 
of squares with boundary of the form (1 1) • We have a 

0 

forgetful functor DA! (special double algebroids with 

connection) --➔ (double algebroids) • The composite functor 

!M_! --➔ C (crossed modules) will be written as y. 

Notice that . in a special double algebroid , a thin 

structure implies a connection satisfying (3.1.4)(i,ii,iii) 

a 1 
where r(a) = e(a 1), r'(a) = e(l a) . To complete the 

1 a 

equivalence between these two structures , we prove first 

that in a special double algebroid a thin structure may be 
wt•I< 

recovered from alconnection satisfying only (3.1.4) 

(i,ii,iii) • This result leads us to use connections instead 

of thin structures The idea particularly in higher 

dimensions has been given in [B-H-1] in the double groupoid 

case and partially in [ S-1] [S-W-1] for double 

categories • 

.!.heorem 3.1.7: Let D be a special double algebroid with 

connection r, r' . Then there is a morphism of special double 

algebroids e:~o 1 -➔ D, which is the identity on D1 

a 
and such that ra = e(a 

1 
1) , r• a = e( 1 
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Proof: For any a,b,c,d E D1 satisfying cd = ab 

functions 8 1 , 8 2 : OD 1 ---~ D by 

define 

C 

e 1 (a d) = (c 1c * 2 r'd) * 1 (re * 2 c 1b) , 
b 

C 
8 2(a ~) = (c 2 a *l r'b) * 2 (re *1 C2d) • 

b 

The two definitions make sense· in terms of boundaries 

Appendix I give diagrams for these definitions and for the 

Proof of the next lemma. 

1.,emma 3.1.8: The two definitions 8 1 , e 2 are equivalent , that 

is ' 81 = 82 • 

£roof: Let a,b,c,d E D1 be such that cd =ab, then 

C 
8i(a d) = (c 1c *z r'd) *1 (ra * 2 c 1b) 

b 

= (c 1c *2 r'd) *1 c 1ab *, ( ra * 2 c 1b) by the identity rule 

= (c 1e *2 r'd) *1 (r'ab * 2 red) *1 ( ra *2 c 1b) 

by (3.1.4)(ii) anded= ab 

= (c 1c *2 r'd) * 1 { [ r•a *2 (C2B *1 r'b) ] *2 [ ( re * 1 c 2d) 

by (3.1.4)(iii) 

rd} *1 (ra *2 C 1b) by associativity 

= {{c 1c *, [ r' a * 2 ( C 28 *1 r'b) * 2 (re * 1 c 2d))} *2 

(r'd *1 

= [c 1e *1 

(ra *2 

= c,e *1 

(ra *2 

= C1c *1 

rd)]*, (ra * 2 c 1b) by (2.l.6)(ii) 

[ r' a * 2 ( C 28 *1 r I b) * 2 ( re *-1 C 2d) ] ] *1 

c 1b) by (3.1.4)(ii) 

{ { r• a * 2 [ ( C 28 * 1 r'b) * 2 ( r c * 1 c 2d) ]} *' 

c 1b)j 
{ ( r• a *1 ra) *2 

by associativity 

[ [ ( C 28 *1 r'b) *2 

by (2.1.6)(ii) 
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by the identity rule 

C 

d) • This is the complete proof of the lemma 
b 

Now we continue to prove theorem (3.1.7) 
' that is 

' we 

Prove e satisfies the following ; w'k.e-Ye 0.: 0,: B,,: 

1 1 a a 
i) e(a a) = (a a) e(l 1) = (1 1) . 

' 1 1 a a 

a a 1 1 
ii) e(a 1) = (a 1) e(l a) = (1 a) ' 1 1 a a 

C C C 
iii) e(a d) +1 e(a 1 d 1) = e( a+a 1 d+d 1) 

b b b 

C Ct c+c 1 iv) e(a d) +2 e(a d) = e(a d) 
b b1 b+b 1 

C C 
v) r • 1 e(a d) = e(ra rd) 

b b 

C re 
Vi) r • 2 e(a d) = e(a d) 

b rb 

C c' cc' 
Vii) e(a d) *2 e(d e) = e(a d) 

b b' bb' 

C b C 
Viii) e(a d) *1 e(a' d') = e(aa' dd') . . 

b e e 

The proof of (i) ' 
(ii) are easy . To prove (iii) 

' we use the 

interchange law (2.l.6)(iii) ' 
distributlve law 

' (2. 1. 7) and 
e = 82 

C C 82(a d) +1 82( at d1) = [(C:28 *1 r'b) *2 ( re * l C:2d)] +1 b b 

[ ( C: 2 8 1 * 1 r' b) *2 (re * l C: 2d 1)] 
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by (2.l.6)(iii) 

= [ ( C 2a + 1 C 28 1 ) * 1 r' b] * 2 [ re * 1 ( C 2d + 1 C 2d 1) ] 

by distributivity 

by (2.1.7) 

e 

b 

To prove (iv) , we use (2.l.7),(2.l.6)(iv) , distributivity, 

and e = 81 ; 

[(c1c1 *2 r'd) *1 (ra *2 C1b1)l 

= [(c1c *2 r'd) +2 (c1e1 *2 r'd)] *1 [(ra *2 C1b) +2 

(ra *2 c 1b 1 )J by (2.l.6)(iv) 

= [(c 1c + 2 c 1 c 1 ) *2 r'd] * 1 [ra *z (c 1b + 2 c 1b 1 )] 

by distributivity 

c+c 1 = e 1 (a d) 
b+b 1 

To prove (v) , we use the rule (2.l.5)(ii) and e = e 2 

e 
8 2(ra rd) = 

b 
(c 2ra *1 r'b) *2 ( re * 1 c 2rd) 

= (r c 2a * 1 r'b) * 2 ( re * 1 r c 2d) . 1 • 1 
• = (r (C2a *1 r'b)) *2 (r (re *1 c 2d)) • 1 • 1 

by (2.l.5)(ii) 

C 
= r • 1 e( a d) • 

b 

re c 
We can prove similarly that e(a d) = r •2 e(a d) 

rb b 
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by using (2.l.5)(ii) and 8 = 8 1 • 

For (vii) , we use the interchange law (2.l.6)(ii) , the 

identity rule , the associativity, (3.l.4)(ii) , the equality 

cdd' = abd' = aa'e and 8 = 8 1 

cc' 
8(a ·e) = (c: 1cc' * 2 r'e) * 1 (ra *2 c: 1bb') 

bb' 

= Cc:1c *2 C:1c' *2 r'e) *1 c: 1cdb'. *1 (ra * 2 c: 1b *2 C:1b') 

by the identity rule 

= ( C: 1C *2 (c:1c' *2 r'e)) *1 (C:1C *2 c:1d *2 C:1b') *1 

( ( ra *2 c:1b) *2 c:1b') by the associativity 

= [ C: 1 C *2 (c:1c' *2 r'e)J *1 [(c: 1c * 2 r'd) *2 (rd *2 C:1b')] *1 

[ ( ra *2 C:1b) *2 c:1b'] by (3.l.4)(ii) 

= [(c:1c *1 (c: 1c * 2 r'd)) *2 ((c:1c' *2 r'e) *1 (rd * 2 c: 1b'))] 

*1 [(ra *2 C:1b) *2 C:1b'] by (2.l.6)(ii) 

= [(c: 1c * 2 r'd) * 1 (ra * 2 c: 1b)] *2 [(c:1c' *2 r'e) * 1 

(rd *2 C:1b') *1 c:1b'] by the identity rule and (2.l.6)(ii) 

= [(C1c *2 r'd) *1 era *2 c:1b)] *2 [(c1c' *2 r'e) *1 

( rd * 2 C 1b')] by the identity rule 

C c' 

C b 
We can prove similarly that e(a d) *1 e(a' d') = 

b e 

C 
8(aa' dd') , by using (3.l.4)(ii) , the.identity rule, 

e 

the interchange law (2.l.6)(ii) , cdd' = abd' = aa'e and 

e = 

Then 8 is a morphism • This is the complete proof of the 

theorem. a 
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We move now in the next section to construct a functor 

Q --➔ DA! by using a "folding"· operation 

definition involves the connections • 

2• l,HE FOLDING OPERATION: 

whose 

In this section , we introduce on squares of a special 

double algebroid with connections Dan operation which has the 

effect of "folding" all edges of«~ D onto the edge a~«. 

'I'hi·s · "' t f operation ~ rans orms « into an 

688 ociated crossed module YD • 

We define ~:D --➔ Din the following way 

liven«~ D with boundary edges in the form 

C r {~~} 
1 b 

~e define 

~« = (r'a * 2 « *2 rd) -2 c 1ab • 

element of the 

2 

' 

lt is easy to check that this composition and subtraction are 

defined. Simply, if« as above, then~« has boundary in the 

form 

G:8 
C d 

f 
ab cd-ab 

j « t rd -2 {:31. = 1EJ1 • 

a b 1 ab 0 

'l'hus ao~ 
. 1 « = cd - ab 

1 al~« = ' 0 • 
0 

1 ' a~~« 1 a2~« = = 
l:lnd hence ~« ~ YD • 
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f.r.2p 0 sition 3.2.1: ~ex = ex if and only if ex is in YD • In 

Particular ~2ex = ~ex for all ex€ D • 

~: If ~ex= ex, then ex has boundary edges given by 

(l; 1) , form€ D1 = D2 and then ex£ YD (by the 

construction given in chapter II) • The converse is clear. a 

We now develop relations between~ and the operations of 
th

e special double algebroid D • 

First , let 02 = c
1
o € D , as in the diagram 

~sition 3.2.2: 

1> tr•a = 02 

11) tc 1a = 0 2 

Let a€ D1(x,y) , then 

~ra = 0 2 
' 

41c 2 a = O 2 • 

l> 
~: i) Since a £ D 1 (x, y) , then r• a has boundary in the 

forDI 

= C1a -2 C1a 

= 02 • 

by (3.l.4}(ii) 

~e can prove similarly that ~ra = 0 2 • 

11
) Since a€ D1(x,y) , then C1a has boundary edges given by 
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and then «>c 1a = (f'lx *2 c 1 a * 2 fly) - 2 c 1 a = 0 2 • Similarly 

"'e can prove that 4>c 2 a = 0 2 by (3.1.4)(ii) • C 

The following proposition is the main technical work 

required for the proof of the equivalence of categories given 

in the next sections • 

~osition 3.2.3: Let ex, /3 E D and r E R 
' 

then the following 

hold whenever each left-hand side is defined . . 
i) t(« + 1 /3) = 4>ex +2 4>f3 ' 
ii) t(« +2 f3) = 4>ex +2 4>/3 

iii)t(oc * /3) = (4>ex *2 c 1a!/3) + (c 1a~ex *2 4>/3) 
' 1 2 

hr) t(oc * /3) = (c 1a~oc *2 4>/3) + ( 4>oc * 2 c 1a!/3) ' 2 2 

\I) t(r ex) = r 4>ex ' ~(r • 2 ex) = r • 2 ~ex • • 1 • 2 

(Appendix II gives diagrams for the proof of 

l>roposition) 

~: i) If cx,/3 have boundaries given by 

~<x == ( a c d ) 
C 

b 

then t(oc +1 /3) = [r'(a+a 1) *2 (ex + 1 /3) *2 r(d+d 1)] 

c 1 (a+a 1 )b 

the above 

~ [(t'a *2 ex *2 rd)+2(r'a1 *2 /3 *2 rd1)] -2 [C1ab +2 C1a1bl 

by ( 3, 1. 4) (iv) 

~ [(r•a *2 ex *2 rd) -2 C1ab] +2 [(r'a1 *2 /3 *2 rd1) -2 C1a1bl 

~ toe + 
2 

«> /3 • 

i.) 1 This follows from the algebroid rules for + 2 , * 2 • 

iii) If oc, /3 having boundaries given by 

i<x :: ( a c d ) 

b 

b 
, l/3 = (a' d') , then ex *I /3 has boundary 

e 
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C 

edges in the form ~(ex *1 /3) = (aa' dd') • 
e 

Then ~(ex *1 /3) = (r'aa' *2 (ex *1 /3) *2 rdd') - 2 c 1aa'e 

::: { [ r. a * 1 ( C 1 a * 2 r. a. ) ] * 2 ( ex * 1 /3) * 2 [ (rd * 2 C 1 d. ) * 1 

td]) - 2 c 1aa'e by (3.l.4)(ii) 

::: {[t•a *2 ex *2 (rd *2 c 1d')] *1 [(c1a *2 r'a') *2 /3 *2 rd']} 

by (2.l.6)(ii) and the associativity 

::: {[(r•a *2 ex *2 rd) *2 C1d']*dc1a *2 cr•a• *2 /3 *2 rd')} -2 

(t1aa•e *, c
1
aa'e) by the associativity and the identity rule 

::: {[(r•a *2 ex *2 rd) *2 c 1d'] - 2 c 1aa'e} *1 {[c 1a *2 (r'a' *2 

a *2 rd')] - 2 c 1aa'e} by (2.l.6)(iv) 

::: {[(r•a *2 ex *2 rd) *2 c 1d'] - 2 c 1abd' + 2 c 1 (abd' - aa'e)} ~ 

{c,a *2 [(r'a' *2 /3 *2 rd') - 2 c 1a'e]} by distributivity 

::: { { [ ( t' a * 2 ex * 2 rd ) -2 C lab ] * 2 C l d t } + 2 C i( 8 b d ' - a a ' e) } * I 
{c,a *2 ~/3} by distributivity 

::: [(to: *2 c 1d') + 2 c 1 (abd' - aa'e)] *i [c 10 + 2 (c 1a *2 ~ex)] 

by the identity rule 

::: [ ( to: * 2 C l d ' ) · * 2 C l O ] + 2 [ C l ( ab d ' - a a ' e ) * 2 ( C la * 2 ~ /3) ] 

by (2.l.6)(iv) 

::: (to: *2 c 1d') + 2 (c 1a *2 ~/3) by the identity rule 

::: (to: *
2 

c
1
a!P> +

2 
(c1 a~o:: *2 ~/3) • 

iv) If ex, p have boundaries given by 

a C 
c' 

e) ...... o: :: ( a d) , ~/3 = ( d 
b b' 

th cc' en ex *2 f3 has boundary edges in the form (a bb' e) • 

~ow we compute ~(ex *2 /3) = [r'a *2 (ex *2 /3) *2 re] - 2 c 1abb' 

:::[(r•a *2 ex) *2 c 2d *2 (/3 *2 re)] - 2 c 1abb' 

by associativity and the identity rule 
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= [(r•a * 2 «) * 2 (r'd * 1 rd) * 2 (P * 2 re)] - 2 c 1abb' 

by (3.l.4)(i) 

= {[Cle *1 cr•a *2 «)] *2 (r'd *1 rd) *2 [(P *2 re) *1 C1b']} 

by the identity rule 

= {{(c1c * 2 r'd) * 1 [(r'a * 2 «) *2 rd]} *2 [(P *2 re) * 1 

C1b']} - 2 c 1abb' by (2.1.6)(ii) 

= {[clc * 2 r'd * 2 p * 2 re] *l [(r'a *2 « *2 rd *2 C1b']} - 2 

(c1abb' * 1 c 1abb') by (2.1.6)(ii) and associativity 

= {[(c1c * 2 r'd *2 p *2 re) - 2 C1cdd'] +2 C1(cdb' - abb')} 

*1 {[(r'a *2 « *2 rd * 2 c 1b') - 2 c 1abb']} by (2.l.6)(iv) 

= {{c 1c *2 [(r'd *2 p *2 re) -2 C1db']}+2 C1(cdb' - abb')} 

{(r•a *2 « *2 rd) - 2 c 1ab) *2 c 1b'} by the identity rule 

= [(c 1c *2 ~P) +2 c 1(cdb' - abb')] * 1 [ ~« * 2 c 1b'] 

= [(c 1c *2 ~P) +2 c 1(cdb' - abb')] * 1 [c 10 +2 (~« *2 c 1b')] 

= [(c 1c * 2 ~P) * 1 c 10] +2 [c 1(cdb' - abb') * 1 (~« *2 c 1b')J 

by (2.l.6)(iv) 

= (c1c * 2 ~P) +2 (~« * 2 c 1b') by the identity rule 

= (c1a:« *2 ~P). +2 (~« *2 c1a!P> • 

*1 

It is clear that (v) is satisfied by using (3.l.4)(v) for 
th

e first rule , and the algebroid laws for the second • This 

Co~Pletes the proof of the proposition. C 

We are ready now to construct a functor say~ from the 

Category c of crossed modules (over~ algebroids) to the 

Category DA! of special double algebroids with connections • 
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3•.'UJE FUNCTOR ~:C -➔ DA!: 

In this section , we construct a special double algebroid 

With connections from a crossed module (over an algebroid) by 

Using t~e folding operation • 

Let (A,M,µ) be a crossed module (over an algebroid) , and 

let D · 
o = A0 (the set of objects) , D1 = D2 = A (the algebroid 

of arrows of A) • Since CD 1 = CA is a special double algebroid 

With thin structure, then the folding operation~ applies to 

it .. d d d ( a3 ) h Qn so for~ E CA with boun ary e ges a1 
82 

a 4 , we ave 

D = {( M h th t ~ a0 ~} Th ~,C): ~ E CD
1

, ,: E sue a µ~ = 1 ~~ • us we 

can d r · · a1 , a1
2
• , "' , r' e 1ne the maps cj , 1 ~ (for j = 1,2 and 

i = 0 ,1) in the following way 

if 8 1 E D1 , define Cja 1 = (c1a1,0) , where ci is defined by 

<2.1.7) • Clearly Cja 1 ED (since~ Cja 1 = 0 2) • Also define 

ai · i 
1' a 2 :D --➔ D1=D 2 by: if(~,,:) ED , then the boundary 

edges of (~,t) are to be those of~ ,i.e. l(~,t) = l ~. 
I) , , 
efine (a,~ ( fe,;,D) J ja,: ( r4,,D) i Wh~Yf 

We define now some algebraic structure on elements of D • 

ttrst we define two additions ; namely +1 , +
2 

• 

tor + let (~. ,:) , (~,n) E D with ai = a1b 1 t 1~ 1- then we 

define (~, t) +1 (~, n) = (a +1 ~. t+n) . 
tor + let (~, t), (~. n) E D with aJa = aJb 2 

, 
2- 2- we define 
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<!,t:) +2 (!!.,n) = (!!. +2 !!. , t +n) • 

We define two seal r multiplications: let (a,t;) ~ D and r~R 

then r • 1 (!!,, t) = (r !!. r. t;) r • 2 (!!,,t)=(r •2 .!!. • 1 • • 
Note that these definitions make sense . Thus we have 

aot(a +- !!.) = a0 4>a + a 0 4>b = µ,t; + µ,n = µ,( t; + n) • 1 - 1 1 - 2 1 -

a~t(r . !!,) = ao( 4>!!,) :: r . a0 4>a :: r . µ,t; :: µ,( r • 1 1 r • 2 1 -

Next , we define two compositions : 

a 0b; then we define 
1-

a0 a a1
b 

C!,t;) *2 (h,n) = (!!. *2 !!. • 1-n + t 1- ) • 

• r. t;) 

t;) . 

We must verify the appropriate boundary condition , we have 

a~t(!!. *
1 

b) = a~[(4>!!. *2 c 1 a!~> ~ (c 1 a~!!. *2 4>b) 

a1
b a0 

2 2!!. * µ,n) = µ,( t; - + n) 
2 

by (1.3.l)(iii) and (l.3.2)(i) • 

. 

Thus we are ready to give the main result of this section • 

~osition 3.3.1: The above structure• is a special double 

algebroid with connections • 

~: First , we want to verify that (+ 1 , *1 , • 1 ) and 

(+2,* 2 ,. 2) each give an algebroid structure, that is , *1 , 

*2 are R-bilinear morphisms and satisfy the associative 

Condition. It is clear th~t *1 is an R-bilinear morphism. 



Thus (+ 1 ,* 1 ,. 1 ) an R-algebroid if *i satisfies associativity. 

Let (~,t),(b,n),(£,e) € D. Then 

a1 b a0
a 

[<!,I;) * l (~, n)] * l (£, e) = [~ * l b , t 2
- + 

2
- n] * l (£, e) 

a 1b a 0a a
1

c ::: [ ( ~ * ~ ~) * l £ ' ( t 2- + 2-n) 2- + 

On the other hand; 

+ + 

, we start with the right hand side 

a1b l a 0a a
1 c ::: (c; 2- a2£. 2- 2-

) + ( n) 

c3 1b a 0 a a 1 c a
0 (a ::: (,: 2- 2- 2- 2 -

+ n) + 

::: left hand side. Then 

+ 

a 0 a 2-
+ ( 

*1 b) 
e 

a0 b 
2-

a 0b 2-

e) by (1.3.l)(i,iii) 

f:) by (1.3.l)(i,iii) 

by (1.3.l)(i,iii) 

[(!,t:) *i (b,n)J *i (£.,e) = ·(~,t) *1 [(b,n) *i (£.,e}] . The 

~erification of the associativity with respect to *2 is 

81~ilar to that of *i 

~-algebroid. So we get algebroid structures for each of these 

t~o kind of operations • 

Next , we want to verify the relations between these 

0 Perations , and the rules for connections . 
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For the rules (2.1.3) , (2.1.4) the proofs are obvious , 

Since D - D 
1 - 2 • Now we verify the rule (2.l.5)(i-iii). 

Let ( l!., C), (g_, n) £ D , then (1!,,t:) + 2 (b,n) = (1!. + 2 b,C+n) and 

hence r • 1 ( 1!. + 2 b, C+n) = (r • 1 (.!!. +2 b) 
' r • 1 ( C+n)) 

::: [ ( r (r n)) J • 1 .!!. +2 r • 1 b) ' 
((r • C) + . 

::: ((r • 1 Q.) (r n)) • 1 ,!!_) • (r • t:)) +2 ((r ' 
. 

::: 
r • 1 (1!. , C) + 2 r • 1 (b , n) • 

We Prove similarly that 

r 
• 2 [ (,!!. , C) + 1 (b , n) J = r • 2 (.!!. , C) + 1 r ·• 2 (g_ , n) , 

if(,!!., t;) + 1 (b , n) is defined • Thus the rule (2.l.5)(i) is 

satisfied • 

For (2.1.5)(ii) , suppose given (1!,,t:) , (!2..,n) such that 

(&,C) *z (b,n) is defined~ Then 

a0 a 
::: ( r • 1 ( a * 2 b) , r • ( 1

- n + 

a0 a a1 b 
::: ( ( r • 1 .!!. * 2 r • 1 g_) , ( r • 

1
- n) + ( r • C 1 

- ) ) by ( 1 . 3 • 1 ) ( iv ) 

ao(r ) 1 
1 • .!!. a (r. b) 

• 1 b)),( ' (r. n)+ 2 (r. t:) 1 t -

by bilinearity 

::: ( r • 1 .!!. , r • t;) * 2 ( r • 1 b , r • n) 

::: Cr • 1 (1!,,t:)) *2 (r • 1 (b,n)) • Similarly for the second part 

Of (2.l.5)(ii). 

Finally, for (2.l.5)(iii) , given (.!!.,C) ED , then 

r [s ( .!!., ,: ) 1 [s t;] • 2 • 1 = r • 2 • 1 .!!. • s . 
:::: [r (s ,!!) t (s t;) ] [s (r • 2 • 1 r . • = • 1 • 2 .!!.) s (r . C)] t • 
:::: s [ • t;] (r (.!!., C)) • 1 r • 2 .!!. t r = s • 1 • 2 . 
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Next , we want to verify the interchange laws (2.l.6)(i-iv) • 

For (2.l.6)(i) , let (,!!.,C),(~,n),(£,e),(4,~) £ D such that 

<!, t) + 1 (!t, n) , (!!., t) + 2 (.£, t) , (!t, n) + 2 (4, ~) , 

(£.,~) +1 (4,~) are defined, then 

[(!,t) +1 (h,n)J +2 [(£.,t) +1 (4,~)] = (!!. +1 h , c + n) +2 

(£. + 1 d . , t + ~) 

::: [(A +1 b) +2 (.£'+1 d) , (t; + n) + (e + ~)] 

::: [(!!_ +2 .£) +1 (b +2 4) , (t; + t) + (n + ~)] 

::: <!!. + 2 £ , ,; + t) + 1 <~ + 2 4 , n + ~) 

:::cc~.t) +2 (£.,t)) +1 ((~.n) +2 (4,~)). 

For (2.l.6)(ii) , let (,!!.,C),(b,n),(£.,t),(4,~) £ D such that 

<!,<:) *1 (!t,n), (!!.,,;) *2 (£.,t), (!t,n) *2 (4,~), (£.,t) *1 (d,~) 

are defined, then 

<<~.t:) *1 (~,n)) *2 ((£.,e) *1 <4,~» = 

a0 (a ~) a~4 0 

[ (~ * 1 
*1 a2£ 1 -

!t) *2 (£. * 1 4) ' 
ce + ~) + 

alb 0 1 4) (,: 2- a a a (c *1 
2- 1 - ] + n) 

::: [ ( ~ * 2 £.) * 1 ( b * 2 4) , ( 

by (1.3.l)(i,iii) • 

On the other hand; 

[(~,«:) *2 (£.,t)] * 1 [(b,n) *2 (4,~)] = 
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£. ' 

a0 a 
[ ( !!. * 2 £.) * 1 ( b * 2 d) , ( 1

- e + + 

ao(a * 
2 - 2 c) 

( 

[ ( !!. a0 a a 1d a 1 c a 1 d 
* 2 £.) 

1- 2- ( t 1- 2-
*1 (!t * 2 d) ' ( e) + ) + 

ao 
a 0b a 0 a a 1d 2!!. 

( 1-'I') + 2-(n 1-)l by (1.3.l)(i,iii) . 
ln °rder for these to be equal , we need 

+ 

i.e. a 1ca 1d «; 1- 2-
a 1ba 1d a0 aa 0 c a 0aa 0b 2- 1- 1- 2- 2- 1-,: = 

"" "' 
i,e, a 1ca 1d 

1- 2-t 
a 1ba 1d 0 0 a 0 aa 0 b a aa c -2- 1- 1- 2- 2- 1-= "' 

i.e a 0 da 1 d . t 1- 2-
a 0 da 1d a0 aa 1a a0 aa 1 a 2- 1- 1- 2- 2- 1-= "' 

i,e, t~d = 

?be last equation follows from the crossed module rule 

(l,3.2)(ii) , since both sides are t *'I-'. 

tor (2.l.6)(iii) , let (~,t),(!t,n),(£,e),(4,'1') € D such that 

<t,t:) * 2 (h,n) , (£,e) *2 (d,'i') • c~.t) +1 (£,e) , 

(~,~) + 1 (d,'1') are defined I then 

[(!!.,t) *2 (h,n)J +1 [(£,e) *2 (4,'l')J 

ao a1b a0 c a1 d ::: 
[ !!. 1~ 1-

] [£ 1-q, + 1-
*2 !t I n + t +1 *2 4, e ] 

::: a0 a a1 b a0 c a1d 
[ ( !!. * 2 !t) (£. * 2 fl) ( 

1- t 1-) ( 1-q, + e 1-> l + , n + + 
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a0 a a0 c a 1b a 1d 
:: [ ( !!. + 1 £) (Q. +1 g_) ( 1-n 1-4') ( 

1- E: 1-)] *2 , + + C + 

ao a 1d 
:: [ ( !!. + 1 £) g_) 1~ 

+ 4') ( C + E:) 1-] *2 (b +1 (n + 

by (1.3.l)(ii) and the above hypothesis 

a~(!!.+ 1£> a 1(b+ d) 
E:) 1 - 1- ] :: [ ( !!. + 1 £) *2 (Q. +1 d) (n + 4') + (C + 

:: [!!_ + 1 C t C + E:] *2 [Q. + 1 g_ • n + 'JI] . 
We can use a similar argument to verify (2.l.6)(iv) • 

It is clear that Cj satisfy the rule (2.1.7) 

satisfy the conditions (3.l.4)(i-v) . This completes 

the proof. □ 

and e 

Thus any crossed module ( over an algebroid) gives a 

Special double algebroid with connections If (A, M, µ.) 

(A',M',µ.') are two crossed modules (over algebroids) and 

(~,P) :(A,M,µ.) --➔ (A',M',µ.') is a morphism of crossed 

Dlodules (over algebroids) , then (cx,P) determines a morphism 

A(~,P) = ~ :A(A,M,µ.) --➔ A(A',M',µ.') where 

--➔ ( D ' D ' D ' D ' ) and ... 'h = 1 1 1 2 1 0 Tl = T2 (X , 

C <XC 

q,(m;a d) = (Pm;cxa cxd) . This defines a functor 
b cxb 

A: Q --➔ DA! , from the category Q of crossed modules (over 

algebroids) to the category DA! of special double algebroids 

~ith connections . 

4. THE EQUIVALENCE OF CATEGORIES: 

In this section , we want to prove the main result , which 

is the equivalence of the two categories Q, DA! • 

!..,heorem 3. 4. 1: The functors Y , A defined previously form an 

equivalence • 
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l 

~: First we want to prove that Y~ is naturally 

equivalent to the identity, that is, Y~ • 1 • 

Let (A,M,µ) be an object of C and let (A' ,M' ,µ') = 

YX(A,M,U) • Then Ao= A0 ' and A= A' It is clear that M' is 

defined on the same set of objects A0 • Define a map g:M-➔M' 
by 

'.DI 
g(Jn) =(Jim; 1 I) , and let I:A --➔ A' be the identity map • 

0 

We want now to prove that (I,g):(A,M,µ) --➔ (A',M',µ') is 

a Crossed module morphism , that is Iµ= µ'g and g preserves 

the actions • Clearly I,g are algebroid morphisms and µ'g = Iµ 

· So it is enough to show that (I,g) preserves the actions • 

Take m:x -➔ y E M(x,y) and let b:y -➔ z E A(y,z) • Thus 

by (1.3.2)(i) 

µm µm 
~ (lll;l 1) *2 c 1b = (m;l l)b = g(m)b • 

0 0 

We Prove similarly that g(bm) = bg(m) • 

We define now a map (I,f):(A',M',µ') --➔ (A,M,µ) such that 

( l , g) , ( I , f) are in v er s e t o each other • Let I : A • - -➔ A be 

the identity map and define f:M' --➔ M by 
µm 

f( 111 ;1 1) = m. 
0 

Clearly I, f are algebroid morphisms and µf = µ.' • Thus (I, f) 

is a crossed module morphism if it preserves the action , that 

is 

let (m;l µm 1) EM' and b EA' • Then 
0 
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f[(m;l 
J.IJD µm (JJm)b 

l)b] = f[(m;l 1) * 2 c: 1b] = f[(mb;l l)] 
0 0 0 

:: f(mb;l 
µ(mb) µm 

1) = mb = [f(m;l l)]b . 
0 0 

It is clear that (I,g),(I,f) are inverse to each other 

Therefore YA is naturally equivalent to the identity. 

Second , we want to show that AY is naturally equivalent 

to the identity, that is , 1 a AY • 

Let D be an object of DA! and let E = AY(D) • Then D0 = E
0

, 

n, = D2 .= E1 = E2 • We define n:D --➔ E to be the identity on 

no and D 1 = n 2 and on Das follows 

let o: £ D , define n(oc) = (~oc, ~oc) • First we prove ; 

~: The map n is a morphism of double R-algebroid 

~1th connections (r,r') • 

~: It suffices to prove that n preserves + 1 , +
2

, *1 , 

*2 , . 1 , • 2 , and the connection r , r' . 

tor + 1 , let oc,/3 £ D such that oc + 1 /3 is defined, then 

1\(o: + 1 /3) = [~{oc + 1 P) , ~{oc +1 /3)) ·= (~oc + 1 ~J3, ~oc + ~J3) 

(since ~a,~/3 £ Y(D)) 

::: <.~o: , ~oc) + 1 (~/3 , ~/3) = noc + 1 n/3 • 

~e ( can prove similarly that n oc.+ 2 J3) = 

is defined. 

tor *1 , let oc,/3 £ D such that oc,/3 have boundaries in the 

C b 
form (a d) , (a' ~•)respectively, then 

b e 

Cl>( oc * 1 /3) ] 

::: <io: *1 lJ3 , (~a)d' + &(~/3)) 

On the other hand; 

f\o: * 1 n/3 = (Ioc , ~oc) * 1 (~/3 , ~/3) 
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:: (ioc *1 IP• (~cx)d' + a(~P)) = n(cx *1 /3) • 

We Prove similarly that n(ex *2 P) = ncx *2 nP, if ex *2 Pis 

defined • 

For 

:: r 

•1, let ex ED and r ER, then 

~(r • 1 ex))= (r • 1 Ioc, r • 2 ~oc) 

by (3.2.3)(v) 

(since ~oc E YD) 

•1 (Icx, ~oc) = r • 1 nex. Similarly for •2, we get 

f\( r • 2 ex) = r • 2 noc • 

Finally , for the connection r, r• , let a E D 1 = D 2 , so 

ta f: D and then n(ra) = (Ira , ~ra) = (ira , 0 2 ) by (3.2.2)(i) 

:: r a • Similarly for r• 

lenuna • 

• This is the complete proof of the 

a 

We continue now to prove the theorem. First, we define 

f\':B --➔ D to be the identity on Eo and E 1 = E 2 and on Eby 

the formulae 

C ab 

b 
1) as shown below: 

cd 

cd-ab 

1[} 
0 

C 

~henever (cx,t) has boundary edges of the form (a d) and 
b 

t 1,t 2 are abbreviations for the thin elements with boundaries 

(1 
C ab 

d) t (a 1) . 
cd b 

~a 3.4.3: The maps n , n' are inverse to each other t that 

is 
' (i) nn' = 1 (ii) n'n = 1 . 

~: (i) Let (oc,t) EE, with a~~oc = µt and ex has boundary 
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C 
edges given by (a d) , then 

C 

""'(«,t;) = n[(l 
cd 

b 

ab 
l)] 

C 

lt is clear that <X, I« hsVtthe same boundary (a d) , and 
b 

u. t« = µ.t; • Thus nn • ( «, t;) = ( ex, t;) • 

C 

(ii) Let ex€ D, where ex has boundary (a d) , so 
b 

"'"(«) = n' (1.ex , . ~ex) = ex ( since 1.« , ex have the same 

boundaries) • This is the complete proof of lemma (3.4.3) . □ 

This completes the proof that n:D --➔Eis an isomorphism. 

The naturality of n is clear • So we have proved the natural 

equivalence 1 a ~Y. □ 

We move on to give a property of these objects by using 

the above theorem. 

S. !W..FLECTION: 

In this section we use the above theorem to show that 

every object in DA! has a nice property called "reflection" 

in a special double algebroid with connection the two 

&lgebroid structures are isomorphic • 

• This property has been given in the double groupoid case 

[B-2] under the name "rotation" • Reflections in double 

~ategories with connection have also studied in (S-1],(S-W-J • 

For each object (D, r, r') € DA! , there is 'a reflection 

~: D --➔ D such that on edges p behaves as follows : 

let <X be a square in D , pictured as 
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b 

then P~ is a square in the form 

a 

ao d P~ is defined by 

~«:: (c
1
a. *

2 
r'b) * 1 [(c 1 ab -2 (r'a *2 ex *2 rd)) +2 c 1 cdJ *1 

(tc *2 c 1d) , as shown diagrammatically 

--- a 1 1 c d 

l 
r'b b 

-- a b ab a 

C 

C re 1 

l d 

a 
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~rem 3.5.1: The reflection p satisfies 
i) P(ra) = ra p(,'a) = r' a p(c 1a) = c 1a p( C 28) = C:2a ' ' , 
for a E D2 or D 1 . 
ii) P(cx +1 fl) = pcx +2 Pfl p(y +2 S) = PY +1 pS , whenever , 

Q: + 1 /3 , Y + 2 S are defined • 

iii) P(« * 1 fl) = pcx * 2 p/l, p(y * 2 S) = PY *1 pS, whenever 

Q: * 1 /3 , Y * 2 S are defined • 

iv) p 2 = 

V) P(r •1 

id. 

ex) = r • 2 pex , p( r • 2 ex) = r • 1 poc , where r E R • 

' 

~: By theorem (3.4.1) , we may assume that Dis the double 

&lgebroid arising from a crossed module µ:M --➔ A. So if 

C 
Q: E: D 

' we may write ex = (m;a d) , where m E: M • b 

a,b,c,d E A and µm = cd - ab • We calculate now p( oc) as 
fol lows 

a ab cd· 
P( a:) = (O;l b) *1 [((O;l 1) -2 (m;l 1)) +2 

ab ab ab 

Coil cd cd 
1)) *1 (O;c 1) 

cd d 

a ab -cd cd ::: 
( 0; 1 [((O;l 1) (-m;l 1)) (O;l b) *1 +2 +2 l)] 

ab ab -ab cd 

*1 cd 
(O;c 1) 

d 

::: ( 0 j 1 
a ab cd a 

b) *1 (-m;l 1) *1 (O;c 1) = (-m;c b) • ab cd d d 

Now we verify the relations (i-v) • 

i) a a 
P(I'a) = p(O;a 1) = (O;a 1) = ra and by similar way for 

1 1 
[', 8. 

' C:1a ' C:2a . 
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C C 
ii) Let «,/3 £ D with boundaries (a d) , (a 1 d 1) , then 

b b 

P( ex + 1 
a+a 1 

/3) = (-(m+m 1); C b) . On the other hand 
d+d 1 

P( ex) 
a a1 a+a 1 

+z·p(/3) = (-m;c b) +z (-m 1; C b) = (-(m+m 1 );c b) 
d d1 d+d 1 

Thus p( ex. + 1 /3) = P« + z P/1 • Also we prove 

i .. 1 1) Let «,/3 £ D with boundaries (a 
C 

d) (a ' ' 
b 

d') , then 
b e 

aa' 
P( ex * 1 /3) = (-(mm');c e) • On the other hand 

a 
P(cx) *z p(/3) = (-m;c 

d 

dd' 

a' 
b) * z (-m'; b 

d' 

aa' 
e) = (-(mm');c e) • 

dd' 

Thus p(cx. *i /3)= pcx. *z p/3. Similarly for p(y *z S)= py *t ps. 

The calculation of (iv), (v) are easy to verify • Therefore p 

86 tisfies the relations (i-v) • D 
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CHAPTER IV 

w-ALGEBROIDS (WITHOUT CONNECTIONS) AND 

CROSSED COMPLEXES 

O. l,NTRODUCTION: 

In this chapter our aim is to prove that there exists a 

functor from the category of w-algebroids (without 

Connections) to the category of crossed ·complexes (over 

Ellgebroids) • Thus we should define an w-algebroid (without 

Connections) and crossed complexes (over algebroids) • 

An analogous result has been given in [B-Hi-2] where they 

Proved that the existence of a similar functor in the groupoid 

In fact they proved there exists an equivalence 

between the category of w-groupoids and the category of 

Crossed complexes (over groupoids) • 

l. H;:-ALGEBROIDS (WITHOUT CONNECTIONS): 

In order to define w-algebroids (without connections) , we 

recall the definition of cubical complex (see , for example 

[B-IIi-2]) • 

A cubical complex K is a graded set (Kn>n)O with face maps 

a~. 
i' K --➔ K (i=l,2, ••• ,n; « = 0,1) and degeneracy maps n n-1 

ti: K --➔ K (i=l,2, .•• ,n) satisfying the usual cubical n-1 n 

relations namely 

(i ~j) 
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C: i C: • 
J = Cj+1 C· 1 ( i (j) (4. 1. 1) (ii) 

r· a~ 
( iLj) 

J-1 1 
<X 

C. a~ 1 ( i ~j) a. C. = 
1 J J 1-

id (i=j) 

(4.1.l)(iii) 

~nition 4.1.3: An w-algebroid (without connections) 

! ={An; a~, c. } is a cubical complex and for n ) I , 
1 1 

An has n algebroid structures over An-1 of the form 

(An,+ 1.,*·•· ., a?,a~,c.) related appropriately to each other 
1 1 1 1 1 

&nd to a~,c .• More precisely we require the following axioms 
1 1 

<4.1.3) If a,b €An., and a +j bis defined (i.e. for o: = 0,1, 

aoc o:. 
J8 = a.D) then for«= 0,1 

J 

('a+. a~ 1 J-1 1 

a~(a + . b) = :ra + j a~ J 

a.a 
1 

ti(a +j b) i Cia +j+1 cib 
= 

+j c·b Cia 1 

(4.1.4) If a, b c An ' 
and a *. J 

( i • e. a~b 1 then for <X = = aja) ' J 

<X *. 1 a~ 
a~(a *J b) ! a!a J- 1 

= l 
a~ a.a * . 1 J 1 

0 0 1 
a J (a *. b) = a.a ' a j (a 

J J 

tJ a~a *. 
J . J 

( i Lj) 

( i ~j) (4.l.3)(i) 

(i=J) 

( i (j) 

( i ~j) 
(4.l.3)(ii) 

b is defined 

0,1 

( i Lj) 

( i ~j) 

*· b) J 

( i <J) 

( i ~j) 

= 

(4.l.4)(i) 

• 
a 1b j . 

(4.l.4)(ii) 

(4. 1.4) (iii) 
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<4•1.5) If a E An , and r E: R then r •j a is always defined 

and 

a~, r .. a) l J 

c:. ( r a) .. l J 

r •. ( s .. a) l J 

~henever s E 

(4.1.6) (The 

(a +i b) +j 

(a *· 1 b) *j 

(a +1 b) *J 

r . . a':'a 
( i 4'j) 

J-1 1 

= r •. a~a ( i ::1.j) 
J 1 

0: (i=j) a.a 
1 

= 1: •j+l c.a ( i (j) 
1 

( i ::1.j) c.a • j 1 

= ~ (r. ia) *ib = a *i (r. 1b) 

l (r •. a) * .(r •. b) 
1 J 1 

= s •. ( r • i a) 
J 

R t b E An . 
interchange laws) for i11j 

(c +1 d) = (a +j c) +· 1 (b +j 

(c *· d) = (a 
1 

*. J c) *i (b *j 

(c +· d) = (a 
1 

*. J c) +· 1 (b *J 

(4.l.5)(i) 

(4.1.5)(ii) 

(i=j) 

( i "j) 

d) 

d) 

d) 

(4.l.5)(iii) 

(4.l.5)(iv) 

(4.1.6)(i) 

(4.l.6)(ii) 

{4.1.6)(iii) 

~henever a,b,c,d £ An and both sides are defined . 
~Ote that for all n ) 2 and 1 ( i ( n-1 

' the pair (An,An-1> 

~ith the two algebroid structures in directions i and i+l 

forms a double R-algebroid (without connections) • 

An w-subalgebroid (without connections) of A is a cubical 

8 Ubcomplex closed under all operations + J , * J , • J • Any set 

S of elements of A generates an w-subalgebroid, - . . 
na•ely the intersection of all w-subalgebroids containing 

s This w-subalgebroid can be built from S by repeated 

11PP1ications of all the structure maps and operations • 

~nition 4.1.7: A morphism between two w-algebroids (without 

Connections) (f:! --➔ !) is a family of algebroid morphisms 
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such that fn:An --➔ Bn is to commute with all the structures 

We denote h f 1 b 'd b ( Al ) t e reslting category o w-a ge ro1 s y w- g • 

Clearly we can define finite dimensional versions of the 

above definitions • 

~ition 4.1.8: An m-tuple algebroid (without connections) 
is 

an m-truncated cubical complex A= (A ,AM-1• •••• ,Ao) 

~ithout connections 
d· lJDension n (n < m) 

"" 
having n algebroid structures in 

and satisfying all the laws for an 

~-algebroid (without connections) in so far as they make 

sense . 
We describe now the zero and the identity elements in An. 

F'irst 'f A , 1 u,v E n-l , then Aj(u,v) denotes the set of n 

ele1nents a E An such that a1a = u, a}a = v. This set has 

an element tj(u,v) , where tj: An_ 1 x An_
1 
--➔ An namely, 

the zero for the j-th algebroid structure on An , so that if 

c E Aj(z,u) , then tJ(u,v) *· b = t.(u,w) and 
n J J 

0
uv, as in chapter I • Also note that u -J. u = t.(a~u,a~u) 

J J J 

The element c.u 
J 

identity element at 

2•£.ROSSED COMPLEXES: 

in Aj(u,u) , for u EA is the 
n n-1 ' 

• 
u for the j-th algebroid structure on An • 

We first consider some of the history of crossed complexes 
011er groupoids • 

As explained in [B-Hi-5] , crossed complexes may be 

thought of as chain complexes with operators from a group (or 
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(roupoid) but with non-abelian features in dimensions one and 

two The crossed complex definition is motivated by the 

standard example of the homotopy crossed complex ffX of a 

f·1 1 tered space X ~ 

A r~duced crossed complex Mis a crossed complex in which 

Mo is a point • This structure was called "group system" by 

81 akers [Bl-1] , and he used it to apply the homotopy addition 

lenuna in his investigation of the relationship between the 

ho~ology and homotopy groups of pairs ■ 

Also J.H.C.Whitehead [Wh-1,2] studied reduced crossed 

co~Plexes under the name of "homotopy systems" • He proved 

that the fundamental crossed complex ffX of a CW-complex 

Satisfies in each di mens ion a freeness condition • The paper 

[Wh-2] gives relations between homotopy systems and chain 

co~Plexes · with operators • R.Brown and P.J.Higgins [B-Hi-4] 

ieneralised these results to crossed complexes over groupoids. 

Also they proved in [B-Hi-2] an equivalence between the 

Category of crossed complexes over groupoids and the category 

of w-groupoids • 

Huebschmann and others [Hu-I] have shown how crossed 

Co~Plexes may be used to give an inter~retation of the 

Cohomology groups Hn(G;u) of a group G with coefficients in a 

Q-~odule u. Lue has explained in [L-2] how related ideas had 

been developed earlier for varieties of algebras rather than 

Just groups • 

In this section, we want to define a crossed complex over 

an algebroid by using ideas similar to those of [B-Hi-2] • 

½.,inition 4.2.1: A crossed complex M (over an algebroid) 

Consists of a sequence of morphisms of R-algebroids over M0 
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M, s s s s s 
- ' ••••• --➔M --➔M --➔ --➔M --➔M 

n n-1 ••• 2 1 

satisfying the relations given below 

i) Each G:M --➔M , n ) 2 , is the identity on M
0

• 
n n-1 

ii) The algebroid M1 operates on the right and on the left on 

each M0 (n) 2) by actions written (a,m) --➔ am E Mn(w,y) , 

(Ill• b ) - -➔ m b E Mn ( x , z ) , i f m E Mn ( X , Y) , a E M 1 ( W , X ) , 

b 
~ M1(Y,z) as shown below 

Sm' 
DI = 

tm" 
m = 

m 
X -➔- y 

W -➔- X a 

left action 

y -g- z 

right action 

rxz if n ) 3 

mm' if n = 2 

I 
0 if n ) 3 

wy 

m"m if n = 2 

?hus ~: M2 --➔ M1 is a crossed module . 

iv) For n) 2 , s: Mn--➔ Mn-! preserves the actions of 

~1 • where M1 acts on itself by composition • 

V) ~~ = O : Mn--➔ Mn_
2 

, for n ) 3 • 

~ition 4.2.2: A morphism of crossed complexes f:M --➔ • 
a family of algebroid morphisms 

{fn:Mn --➔ Nn In) 1} 

· ~hich are compatible with the boundary maps S:Mn --➔ Mn-l , 

N is 

~n --➔ Nn-l and the action of M1 , N1 on Mn , Nn for n ) 2 • 
1
hus we get a category of crossed complexes (over algebroids) 

denoted by (Crs) • 
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3
•!lJE FUNCTOR (w-Alg) --➔ (Crs): 

· In chapter two section 2 we proved that there exists a 

functor from 

algebroids) • 

the 

to . the 

category 

category 

of double algebroids 

of crossed modules {over 

In this section we prove our goal of this chapter, 

nalllely , there exists a functor from the category {w-Alg) of 

w-algebroids {without connections) to the category {Crs) of 

cr-ossed complexes that is there exists a functor say 

For any w-algebroid A, we construct the crossed complex 

~ = Y! associated with A as follows : 

let Mo = Ao 

the initial and 

P-fn(>c,y) = {a ~ A 

aoa - cn-1 
n - 1 X 

tor- example , if 

of- f~ ,e .. /a >"IVI 

• M1 = A1 and s« 

final maps . For 

(X n-2 . a.a = C 1 Oxy' n . 1 

} . 

n = 2 I 

= a« :A --➔ Ao { (X = 0,1) 1 --➔ , 

n)2 and x,y ~ Mo = Ao ' let 

i" n , { «, i) ~ {0,1) and 

and for n = 3 an element of M3{x, y) has 'edges and vertices of 

the following type 

yr:il >t 
1 l~/-·11/o ~2 

3 1 

y 1 y 
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~orem 4.3.1: The family {Mn}n) 0 can be given the 

st ructure of crossed ~omplex with~= a0 

1 
algebraic 

0 Peration on Mn given by + = +n , * = *n , • = •n for n ) 1 

and action of M1 on Mn given by 

b 
m 

for all a,b E M
1 

and m E Mn such that the compositions are 

defined • 

~: Clearly the first axiom of the crossed complex is 

satisfied , since M1 = A1 • For the rest of the axioms , we 

Verify them in these two lemmas : 

~a 4.3.2: For n) 2 and x,y E M0 , then 

i) if m,m
1 

E Mn(x,y) , and 2 ( j ( n , then m +J m1 is 

defined, m +J m
1 

= m +n m1 , and m +n m1 belongs to Mn(x,y) • 

ii) if mi M
0

(x,y) , r ER, then r •j m defined and 

t' •n m E M0 (x,y) • 

iii) if m E Mn(x,y) , m' E Mn(y,z) , then m *nm' is defined 

and m *n m' E M
0

(x,z) • If n) 3, then m *n m' = cn-10 
1 xz 

iv) 1·f '3 h + n, , ten +j = k for 2 < j, k < n • 

~: i) Recall that m +j m1 is defined if and only if 

a~ m = 
J 

( oc = 0, 1) • So for 2 < j ~ n , we have 

oc n-2 a. m = c. o J 1 l XY 
(since m, m

1 
belong to the 

associated crossed complex) , and if j = n, then 

a0 n-1 o 1 n- 1 1 
n m = c 

1 
x = an m 

1 
and an m = c 1 y = an m 1 • Thus 

- +j m1 is defined for 2 ( j ( n 

That m +j m1 = m +n m1 now follows in a standard way from the 

interchange law for +J , +n • 
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We prove now m +n m1 E Mn(x,y) ' 
so that we need to 

that <X n-2 ( ex, i) (0,1) a. (m + ml) = C: 0 for i ~ n " and 
1 n 1 xy 

a°( + n-1 al( ml) 
n-1 

n DI ml) = cl X m + = C y . 
n ' n n 1 

For the first part . ' 
by (4.1.3)(i) 

.:: c:n-2 0 + n-2 = n-2 0 1 xy n-1 cl 0xy c:1 xy 

For the second part 

at 
(ID + ml) n = n 

'l'hus ID +n m1 E 

ii) Since r • j 

a0 m 
n 

al m n 

n-1 
: C X 

1 

n-1 y = c; 1 

Mn(x,y) . 
m is always defined ' 

so we need to prove 

show 

that 

i~n and 

( o., i) (O,l) a0 (r • m) 
n-1 a 1(r m) n-1 

" and = C X ' = cl y 
1 n n . 

n n 

For the first part we get 
' 

a~(r ex n-2 0 n-2 
0 . m) = r a. m = r . Cl = C: 1 n . n-1 l n-1 xy xy . 

For- the second part 

a°( a0 m n r • m) = n n 
by (4.1.5)(i) 

n-1 = C: 1 X . 
a°( ao n r . m) = m n n 

by (4.1.5)(i) 

11 i) Since m * m' is defined if and only if a0 m' = a1 m 
n n n 
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and clearly a0 m' = cn- 1 y = a1 m, then m * m' is defined. 
n 1 n n 

We need to show that m *nm' E Mn(x,z) , that is , 

a~(m * m,) n-2 0 i L. n ( o:, i) - ( 0, 1) and 
l = C , 

n 1 xz 

a°( 
* ·m') n-1 a1 (m * m,) n-1 

n m = c1 X = c1 z 
n n n 

tor the first part ; 

ao:i (m 0: a°'. m, * m') = a m * n i n-1 1 
by (4.l.4)(i) 

n-2 * 
n-2 0 

n-2 0 = c1 oxy C = Cl . 
n-1 1 xz xz 

tor the second part 

ao( 
* m,) ao n-1 and n m = m = c1 X 

n n 

al ( 
* al n-1 Thus * m' f: Mn(x,z) n m m') = m' = Cl z . m . 

n n n 

Now * m' n-1 0 if f: M (x,y) to prove that m = Cl m 
n xz n , 

Ill' £ Mn(y,z) and ) 3 n . 
Ill * m' (m m') * (Cl al m * C 3 1 m,) = * n n n-1 n-1 n 1 n-1 

::: Cm * a 1 m) * (m' * c a 1 
m') n-1 cl n- 1 n n-1 1 n-1 

by (4.l.6)(ii) • 

d al m' = an n-1 (for n = 2 these 

equations are not true) • Thus 

Ill * n 1 n-1 n-1 • m' - - 0 . * C O = C 0 n - c 1 xy n 1 yz 1 xz 

iv) G· ( ) h th t + 1ven m,m1 E.Mn x,y sue a m j m1, m +k m1 are 

defined for j - k , then 

Ill +. o., 'S 

l'l•f 

m1 = (m +k Oxy) +. (Oxy +k m 1) i.J'1 t Yt r, o_, 
J J ' 

= (m +j Oxy) +k (Oxy +j m1) by (4.1.6)(i) 

= m +k m1 . a 
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~~a 4.3.3: Let.n) 1 and m E Mn(x,y) , a E M1 (w,x) and 

b ~ M1(y,z) , then am , mb as defined in theorem (4.3.1) lie 

in M0 (w,y) , M
0

(x,z) respectively • This action is preserved 

by the map S:Mn --➔ Mn-t for n) 2. Further,if m E Mn(x,y) , 

~l ~ M2(w,x) and m2 E M2(y,z) , then 

l c~-• 0 n ) 3 
Sm 1 

wy 
m = t 

m 1 m n = 2 

n-1 0 n ) 3 

mSm2 1 
Cl xz 

= 
m m2 n = 2 

P n-1 -!.9.tl: Since a E M
1
(w,x) , then c

1 
a E Mn(w,x) and hence 

a 
m E Mn(w,y) by lemma (4.3.2) • 

~e Prove similarly that mb E Mn(x,z) • 

Let m·E M0 (x,y) and a E M1 (w,x) , then 

n-1 * c 1 a n Sm 

n-1 c a) • Then 
1 

= 8 (Sm) • Also we can prove similarly 

that S(mb) = (Sm)b 

~ap S • 

F'or n ) 3 , we have 

thus the action is preserved by the 

tm 1m __ n 1 n-2 
c

1
- Sm

1 
*nm= c 1 m1 *nm (since m

1 
E M2 (w,x) , 

by lemma (4.3.2)(iii) • 
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For n = 2 , we have 

t111 l 
DI = 

by (4.l.6)(ii) 

As shown in the diagram, 

w 
q 

X 
p y 

w q 

I 
p 

[1 
C 1Sm1 m r2 [6•, m = w q x-o-Y 1 

m 1 C10 q 0 

w 0 
l, 

0 
y 

w..--_4 __ x p x ___ -1Y 

:::: .... •,--q.,,._---ix 

m 

*2 
W[Jq X 

= m 1 

W X 

w·----'x 
0 

~e can prove similarly that msm 2 = m m2. This is the 

complete proof of theorem (4.3.1) • a 

It is clear that the construction of theorem (4.3.1) gives 

a functor 

y (w-Alg) ---➔ (Crs) 
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CHAPTER V 

THE EQUIVALENCE BETWEEN n-TUPLE ALGEBROIDS 

AND CROSSED COMPLEXES FOR n = 3 AND 4 

O. l.NTRODUCTION: 

In this chapter we define w-algebroids , and n-tuple 

&lgebroids with connections and we prove that there 

exists an equivalence between the category of n-tuple 

8.lgebroids (with connections) and the category of n-truncated 

crossed complexes (over algebroids) for the cases n = 3 

and 4 • M~reover we give a conjecture for the general form of 

th
e operation of our folding operation on compositions , which 

if true would give the equivalence of the categories of, 

~-algebroids and crossed complexes • 

l. ~-ALGEBROIDS WITH CONNECTIONS: 

In chapter IV section 1 we gave the definition of 

~-algebroid without connections ■ In this section we add extra 

st ructure to that definition to get an w-algebroid with 

Connections 

l>ef • • • ~n1t1on 

namely 

5.1.1: Let A be an w-algebroid (without 

Connections) We say that A is an w-algebroid with 

~ections (or simply an w-algebroid) ~f it has for n ) 2 

8.dditional structure maps r. , r~ : A 
1 l n-1 --➔ A

0 
(i=l, ••• ,n-1) 

88.tisfying the following relations 

(5.1.2) 

f
r·+ r. J 1 1 

r. r. 
1 J 1-

( i <J) 

( i ::i.J) 
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(5.1.2)(i) 



t' t'. i J 

t. C. 
1 J 

r• c: 
i j 

a~ r•. = 
J J 

a~ r•. = 
J J 

« a. r. 
l J 

a« r' 
i J 

= 

a0 r = id 
J+1 j 

al r = 
j+l j 

a1 r' = id 
j+1 j 

a0 r~ 
j+l J 

(X 

1 
r. a. 

J-1 1 

(X r. a. 
1 J 1-

( i <J) 

( i ~j) 

( iLj) 

( i ~j) 

(i=j) 

( i Lj) 

( i ~j) 

(i=J) 

( i Lj) 

( i ~j+l) 

( i Lj) 

( i ~J+l) 

( iLj) 

( i ~j+l) 

(5.l.2)(ii) 

(5.l.2)(iii) 

(5.l.2)(iv) 

(5.l.2)(v) 

(5.l.2)(vi) 

(5.l.2)(vii) 

(5.l.2)(viii) 

(5.1.2)(.ix) 

<5.1.3) If a,b E An and a +j bis defined, then 

( i Lj) 

( i ~j) 

( iLj) 

( i ~j) 

(5.l.3)(i) 

(5.l.3)(ii) • 

(5.1.4) If a,b E An and a *J bis defined, then 
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= l ria *j+1 r.b ( i Lj) 
r. (a * . b) l. 

l. J r.a *J r.b ( i ::i.j) 
l. l. 

= 1 ri• *j+1 r~ b ( i Lj) 
r!(a * . b) 1 

1 J r~ a * . r~ b ( i ::i.J) 
l. J l. 

t•. a * . r.a = c.a r ~ a *J r ~ a = cj+ 1a J J+1 , 
J J J J 

<5.1.5) If a £ An and r £ R , 

r~ ( r •. a) = J 1 1 l 
r • ·+ r~ a 

1 
J r "J ria 

then 

( i Lj) 

( i ::i.J) 

( iLj) 

( i ::i.J) 

(5.1.4)(i) 

(5.1.4)(ii) 

· (5. 1.4) (iii) . 

(5.l.5)(i) 

(5.l.5)(ii) 

[Note that the case i=J in 5. 1.3 • 5.1.4 • 5.1.5 are covered 

by the rules in (5.1.6)(i,ii) and (5.1.7) below] . 
<s.1.s) with 

(X 

a~ then (i) Let a,b £ A a.a = , 
n 1 

(tia:+1 8 *1+1 a *i+1 11a:+1a)+i+1<ria:+1b *1+1 b *i+1 ria:+1b) 

(s.1.6) (ii) Lela£ An and r £ R, then 

t'! ao 1 
l i+t(r •1 a) *i+1 (r "i a) *i+1 1 iai+1(r "i a) = 

I:' • ·c r' a O * a * r a 1 
a) i+t i i+18 i+1 i+t i i+t 
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Note that for all n) 2 and 1 ( i ( n-1 , the pair (An,An- 1 ) 

~ith the two algebroid structures in direction i and i+l forms 

a double algebroid with connections as in chapter II 

It is clear · that we can define an w-subalgebroid in a 

8. 11Dilar _way to that in chapter IV • 

~nition 5.1.8: A morphism between w-algebroids (f:A --➔ B) 

is a morphism of algebroids (without connect ions) preserving 

connections We denote the resulting category of 

~-algebroids by (w-Alg) • 

Def· · ~n1tion 5.1.9: An m-tuple algebroid A is an m-truncated 

cubical complex with connections having n algebroid structures 

in d" • 1mens1on n (n ( m) , and satisfying all the laws for an 

~-algebroid in so far they make sense Thus 2-tuple 

algebroids are exactly the double algebroids of chapter II . 

We move on now to give the first stage of constructing a 

functor from ( Crs) to (w-Alg) • As is to be expected , this 

requires the construction of a "folding operation" • 

2•.tQ,LDING OPERATIONS: 

In this section , we introduce an operation~ on cubes in 

an w-algebroid A which has the effect of "folding" all faces 

Of a £ An onto the (0, 1)-th face so that they can be 

coJDbined to form a "word" in the "folded" faces of a • This 

0Peration ~ transforms a into an element of the associated 

Crossed complex YA. It is important that ~a is constructed 

from a and the "shell" Ia consisting of all the faces ara 

Of a. This will imply that a itself can be reconstructed from 

ta and the shell ia. 
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~: The folding operation ~ has a similar effect to the 

folding 

. llowever 

operation in the w-groupoid context in [B-Hi-2] 

the case of w-algebroids present considerably more 

technical difficulty. 

First , we define operation 'fl j , ~j : An --➔ An 

forlllulae 

qi a= r~ a0 * j J j+1 a j+l 

by the 

1 ~-a= •h a - c.a.q,. a, for a£ A and I / J. / n-1 • 
J Tj j+1 J J J n ' ~ 

Aleo we define~• = ~ • • • ~1 • n-1 It may be checked that 'fl.,~. 
J J 

&re Well defined the proof is essentially the same as that 

in ( 5.2.1) , (5.2.2) below. 

Second, we define ~j = 'f'j 
1 

- c.a.~. , where t~ will 
n J J J J 

he shown to be well defined on ~j+ 1•••·•~~-
2
~'a, for a£ An 

~e define~"=~~ ••• ~~-
2 

and will show later that~" is well 

defined on elements ~•a. 

Finally, we define~=~"~• • 

Now to give pictures for the above definitions , we shall 

Use the cube in dimension 3 • 

let a£ A3 have edges and vertices given by 

~2 

3 I 

So '" T1a is in the form 
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X 3 

~tf 
1 

I (_r' X -Y3 

1/"· 
hq Y2 

and hence ~ 1 a is of the type 

X-----X 

p(qf-hq/ ;~e-gr')s' 

Y2 Y2 
I x- -x 

;/ /o 
Y2 Y2 

X X 

;/ /o 
Y2 Y2 ' I 

x--x 

;/ 
Y2 

V, 
\\>here t = p(qf-hq') - (re-gr')s' 
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x. _____ x 

)~_y(° 
! , -x 

;/ ) 
Y2 Y2 

?bus ~a=~•~~ a is in the form 
1 2 1 

Yi // 
Y2----Y2 

I ;/x- /ox 
2 Y2 

?his shows that the vertices and the edges of ~a are 

8PPropriate to an element of YA• We will prove later that ~a 

does belong to Y!. 

?be laws of the previous sections imply various laws for the 

0 Perations ~j , ~j . 

~a 5.2.1: 

( i -'J) . 

( i ~j+l) 
(5.2.l)(i) 
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(5.2.l)(ii) 

for a ~ A 
n 

for a ~ A 
n 

(5.2.l)(iii) 

(5.2.l)(iv) 



~: 

~-l)(i): For i~j , let a£ An. Then 

accilf> a= acxrr•a 0 * r a1 J J i j j+la *j+l a j+l j j+la 

by (4.1.4)(i) 

::: t• ao CX CX 1 CX CX 
J•- 1 J.a

1
.a *J• a

1
.a *• f. aja,a = '11, a.a J J-1 l J- 1 l 

by (5.I.2)(vii,viii) and (4.1.l)(i) . 

~-l)(i): For i~j+l , let a£ An. Then 

a~q, a - acx[r' a0 * * r a1 J t j - i j j+la j+l a j+l j j+la 

by (5.1.2)(vii,viii) and (4.1.l)(i) • 

~-l)(ii): Let a£ An. Then 

ace . o 1 
J+ 1'i'ja = a~+l[fjaj+la *j+l a *j+l fjaj+la] . 

Ir ex= o, we get 

a0 o 
j+ 1'i'ja = a;+lr,jaj+l 

0 0 
= c.a.a.+ 1a 

J J J 

If ex= 1 , we get 

by the algebroid axiom 

by (5.l.2)(vi) • 

a' 1 1 J+ 1 '11ja = aj+,rjaj+la by the algebroid axioms 

'l'hus 

~.l)(iii): 

(X (X c.a.a.+ 1 J J J 

by (5.1.2)(v) • 
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~ a0
r•a0 * . J J j+1a J 

~ . 0 0 
cja.a. a * . J J+1 J 

~ aJ~a *. a~+ a 
J J 1 

~2 • 1 ) (. i V ) : 

0 a.a 
J 

0 a.a 
J 

0 1 *. ajrjaj+1a J 
by {4.1.3){i) 

1 * . aj+ 1a J 
by {5.1.2){v,vi) 

0 0 
{since c.a.a.+ 1a is an identity) • 

J J J 

a~'l'.a = a1 [f' a0 * * f a1 a] 
J J J J J+1a j+1 a j+1 j j+1 

~ a1 r, o 1 1 1 
J . . a. a*· a.a*· a.r.a.+1a 

J J+1 J J J J J J 

0C ,,, 1~· a. a:- ~. = J-1 1 

l J ~ a~ 
. J 1 

{ i .lj) 

{ i :ii.j+l) 

a« . 0C 0C 0C oc) 
J+t~J = cJaJaJ+t {= cjaJaj 

and for a E An, we have 

0 a.~ a= 
J J 

by {4.1.4){i) 

by {5.l.2){v,vi) 

{5.2.2){i) , 

{5.2.2){ii) , 

{5.2.2){iii) , 

{5.2.2){iv) 

a« ~ ~ = j+1 j ..... 1 
• J {aoc)j+1 { ~1 1 5·.2.2)(v) 

~: (5.2.2)(i): Let a E An. Then for i-'J 

by {4.1.3){i) 
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We can prove similarly that a~~J = ~Ja~, for i~j+l • 

Q..2.2)(ii): This is immediate from the algebroid axioms and 

(S.2.l)(ii) • 

~2 • 2 ) ( i i i ) : 

::: 0 0 1 a jq, ja j a.c.a.lf,.a by (4.1.3)(i) 
J J J J 

::: 0 1 a .q, .a 
j ajq,ja J J 

by (4.1.l)(iii) 

::: (a;a *j aj+
1
a) 

~2. 2) (iv): 

0 1 (a. a*· a.a) by (5.2.l)(iii,iv) 
j J+ 1 J J 

a~t a - a1 (•11 a r a1
•" a) J j - j T j -j+l .., j jT j 

::: at 1 1 
J.lf'J.a - ajc.a.q,.a j+l J J J 

by (4.l.3)(i) 

::: t (c:J- 1 ca0 )J+ta 
j+1 1 1 

by (4.1.l)(iii) 

J-1(a1)J+1 > 
c:1 1 a • 

~.2)(v): 

a~ ~ ~ ~ = r a«a«~ ~ 
J+1 .... j'' .. j-1····· .... 1 "'j j j .... j-1··· .... 1 by (5.2.2)(ii) 

::: cJa~ [c. a~
1
a~ 

1
cz,J. 2 ••• cz, 1 J 

J J-1 J- J- -
by (5.2.2)(ii) 

::: cJ c. a~ a~ ca«J ~ .••• ~ J by (4.I.I)(i,ii,iii) 
-1 J-1 J-1 J-1 -1 J-2 1 • 

Thus by induction, we get 

a~ 
J+1cz,j. • • • • .cz,1 

~Illa 5. 2. 3: 

( i~j) 

( i ~j+ 1) (5.2.3)(i) 
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t.c. = t.c.+ = c. 
J J J J 1 J 

(5.2.3)(ii) 

'l'he Proof of the above lemma is clear by using a similar 

· argument to that in lemma (5.2.1) • 

~lary 5.2.4: 

. l c.~. 1 e - l J-.C. -
J 1 C .~. 

1 J 

lf a E A 
n-1 

~: 

, then 

( i ~j) 

( i ~j+ 1) 
(5.2.4)(i) 

~: For i~j , let a E A0 - 1 , then 

~ t.e. a 
l J-1 

by (4.1.3)(ii) • 

(5.2.4)(iii) 

\Ile can prove similarly that ~.c. = c.~. , for i~j+1 • 
J l l J 

~: 

tJcJ.a = t.c.a -J·+ 1 c.a~t.c.a 
J J J J J J 

~ t.a 
1 . 

by (5.2.3)(ii) 
-J+1 c.a.c.a 

J J J J 
·~ 

t.a by (4.1.l)(iii) -J+1 c.a 
J J 

~ ,: ( J-1,ao)J+1 
J+1 c1 1 a 

j-1,a1)j+1 ) 
c1 1 a 

b~ a similar argument one can prove that 

1> t J-1 o)j+1 cj-1(a1)j+1 ) 
J J+1a = ,:j+1<c1 (a1 a • 1 1 a • 

~-4)(iii): This is clear by using (5.2.4)(ii) . 
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~a 5.2.5: 

1 
r.'I'. 1 

"'. r. = i J-
J l. 

"' r J j+1 

~: 

r."'. 
l. J 

( i ~j) 
(5.2.5){i) 

{ i ~j+ 1) 

(5.2.5)(ii) 

(5.2.5){iii) 

~Leta€ An-l . Then for i~J • we get 

q,Jtia = rja;+lria *j+l fia *J+l rja;+lfia 

::: tJ~riaJ~a *J·+l r.a *· r.r.a~a by {5.1.2)(vii,viii) 
l. J+1 J l. J 

::: r i {r j-1 a;a 

::: ri"'J-1a • 

by {5.l.4)(i) 

~e can prove similarly that q,Jri = riq,j , if i~j+1 • 

~.5)(ii): Let a€ An-l • Then 

q, J rJ. a : rj• a~ rj a * . + f . a * . + 1 f , a ~ + 1 f , a J+1 J 1 J J J J J 

::: tJ.a *· c.c.a~a 
J+1 J J J 

by (5.1.4)(iii) 

by (4.l.4)(ii) , (5.l.2)(iii) 

1 { since c.c.a.a is an identity) • 
J J J 

~.5)(iii): Let a€ An- 1 • Then 

tJr• a= r•a0 f a* f. a* f a1 
f J+1 J j+1 j+1 j+1 j+1 j+1 j j+1 j+1a 

by (5.l.2)(v) • 
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~ollary 5.2.6: 

i r -~. 
1 J-1 

~ .r. = r "' J 1 ..... 
1 J 

( i ~j) 

( i ~j+l) 
(5.2.6)(i) 

For 8 € An-l , we have 

~J rJ. + 
1 

= c r '. *J r . * . r . c . a! ) - . J +1 J+1 J+1 J J+1 J+1 J+l 

(5.2.6)(iii) • 

~: 

~2.6)(i): For i~J and a£ An- 1 , we get 

1 = r . qi • 1 a - ·. + 1 C • a . r . qi • 1 a by ( 5 • 2 . 5 ) ( i ) 
1 J- J J J 1 J-

1 = r.qi. a -.+
1 

cjr.a. 1qi. 1a by (5.1.2)(vii) 
1 · J-1 J 1 J- J-

by (5.1.3)(iii) 

= ri~J-1a 

~e can prove similarly that ~Jri = 

~2.6){ii): Let a E An-l . Then 

tjrJa = qijrJa -j+l cJa;qijrja 

r.~. 
1 J 

for i ~ j+l . 

1 = cja -j+l cjajcja by (5.2.5)(ii) 

= cja -j+l cja by (4.1.l)(iii) 

= ~ (cJ-1(ao)j+1 cj-1,a1)j+1) 
~j+1 1 1 a' 1 1 

8 
• 

~2.6)(iii): Let a E An-l • Then 
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cJ.a~r. a *J c.a~r.c.+ 1a~+ 1a) 
J J+l +1 J J J J J 

by (5.2.5)(i,ii) 

*J+t c. 3 (a~) 2a) by (5.l.2)(iii,v,vi,vii) and (4.1.l)(ii,iii) 
J J 

:::. (rja *j+l rj+la *j+l rjcj+la;+la) -j+l (c:Ja *J+l rj+tcja;a) 

( 1 3 1 2 1 
since rj+tcjaja *J+t c:J (aj) a= rJ+tcJaJa) • 

~: 

( i .C:j) 

( i ~j+l) (5.2.7)(i) 

'1-'.r'. = c:. 
J J J 

(5.2.7)(ii) 

q, r' J j+1 
(5.2.7)(iii) • 

~: 

~: Let a E An-l . Then for i.C:j 

'Jl.r• - r•a 0 r' * r' * r a
1 

r' J i 8 - j j+l i 8 j+l i
8 

j+l j j+1 i
8 

:::. r~ri•a~a *· r!a *J+1 r.r!a~a J J J+l l J l J 
by (5.l.2)(vii) 

:::. r•r• a0 * r' * r•r a1 

i j-1 j 8 j+l i 8 
j+1 i J-1 j

8 by (5.l.2)(ii,ix) 

:::.r,(r' a0 * * r a1
) i J-1 ja J a J J-1 ja 

by (5.l.4)(iv) 

:::. ri"°'J-1a 
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We can prove similarly that ~jr1 = r 1~j , for i~j+l . 

~2.7)(ii): Let a E An-l . Then 

'fl.r'.a 
J J 

= r'.c .a~a 
J J J 

' 0 
= r'.c.a.a 

J J J 

= c.a 
J 

*j+1 r~a * j+ 1 r.a 
J J 

*J+1 c.a 
J 

~2.7)(iii): Let a E An-t . Then 

( i Lj) 

( i ~j+ 1) 

by (5.l.2)(vi) 

by (5.l.4)(vi) 

by (5.l.2)(iv) 

(5.2.B)(i) 

(5.2.B)(ii) 

tJ r •. c r, a O * r ' * r ) ( c r' a 
1 

* J+1 = jCj+1 j+l j+l j+l j+1 j -j+1 j j j j+1 

(5.2.B)(iii) 

~: The proofs of (i),(ii) are similar to that of corollary 

(5.2.6) • 

~2.B)(iii): Let a E An-l . Then 

by (5.2.7)(iii) 
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= (fjcj+ 1a;+ 1a * j+1 fj+ 1a * j+ 1 r.a) -j+1 (c.a~r•.c.+ a~+ a 
J JJJJ1J1 

c.a~r~+ a 
1 by (4.1.4)(i,ii) *J+1 * j+1 cjajrJa) J J J 1 

(fjcj+ 1a;+ 1a rj+ 1a r.a) 2 0 
= *j+1 *. -j+1 (cj aj+1a * J+ 1 J+ 1 J 

by (5.l.2)(v,vi,vii) 

froposition 5.2.9: 

i) If a,b E An with -a~a = a~ , where ex:= O,l , then 
J J 

then 

if j " i , i+l 

iii) If a E An and r ER, then 

froof: 

i) Let j ~ i+l • Then 

j " i 

j = i 

~- b) if j=i 
1 

if J=i+l 

= <ria~+1a +j ria~+1b) *1+1<a+Jb) *i+1<riaI+1a +J r1aI+1b) 
by (4.l.3)(i) , and (5.l.3)(i,ii) 
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= ~- +. ~.b 
1 J 1 

by (4.1.6)(iii) 

We can prove similarly that ~.(a+. b) =~.a+. ~.b for jLi • 
1 J 1 J 1 

For j = i+l , the result is clear by using distributivity 

Now to prove the second part of (i) , for j = i , we refer 

to the case n = 2. Thus by proposition (3.2.3) 

ii) Let jLi . Then we have 

= (ria~+1a *J ria~+1b) *i+1 (a *J b) *i+1 (riaI+1a *J riaI+1b) 
by (4.1.4)(1) and (5.1.4)(i,ii) 

= (rla~+1a *i+t a *i+t ria~+1a)*J(ria~+1b *i+1 b *i+t ria~+tb) 
by (4.l.6)(ii) 

=~.a*· ~ib • 
1 J 

We can prove similarly that ~i(a *J b) = ~ia *J ~ib, for 

J ~ i+l . 

The equalities for j=i,i+l follow from proposition (3.2.3) 

since (An,An-t> is a double algebroid for dir~ction i,i+l. 

iii) For j ~ i+l , then we have 

by (4.l.5)(i) 

by (5.l.5)(i,ii) 
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by (4.l.5)(iii) 

= r •. 'JI.a J 1 

We can prove similarly that 'I'. (r a) = r •. 'JI.a , for 
1 • j J 1 

j~i and j = i+l • 

Finally, for j = i , we refer again to the case n = 2 , 

then 

Corollary 5.2.10: 

i) If a,b EA with a~a = a~ , then 
n J J 

¢,,b 
1 J 1 

= a~b , then 
J 

if j " i 

□ 

if Jt1i 

if j=i 

• i+l 

¢,, (a * . b) 
ta *· 

= (¢,,a*·+ 1 0 
ci 0 i+1b)+i+1<ciai+1a 1 J 1 1 1 

0 ¢,,b) +i+/¢,ia (c.a.a *i+1 *i+1 1 1 1 

iii) If a E An and r ER . Then 

{ .j ¢,,a (j tli) 
¢,. ( r a) 1 .. 

1 J ¢1. a (j=i) 0 i+1 1 

Proof: i) For jt1i , let J ~ i+1. Then 

¢,,(a+. b) = '1'1(a +. b) -·+ c.a~q,.(a +. b) 
1 J J 1 1 1 l. l. J~ 

*i+1 ¢,,b) 
1 

if j=i 

1 c.a.b) if j=i+l 
1 1 

= ('Ilia +. 'I'. b) 
J l. 

1 c.a.('l'.a +. '1'
1
.b) 

l.l. l. J 
by (5.2.9)(i) 

=('JI.a+. '1'1b) -i+l (c.a~'l'.a +. c.a~q,.b) by (4.l.3)(i,ii) 
1 J 1 1 1 J l. 1 1 

= 4>. a+. 4>.b 
1 J 1 
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We can prove similarly that ~i(a +j b) = ~ia +j ~ib , for 

J Li , j = i+l • Finally for j = i we refer to the case 

n = 2 

the above equation by using (5.2.9)(i) and (4.1.3)(1,ii) • 

ii) For j " i , i+l , let j ::. i+l • Then 

1 
~.(a*· b) = q,.(a *· b) -·+ c.a.'l'.(a *j b) 

1 J 1 J 1 1 1 1 1 

= ('l'.a *. 'l'.b) 
1 J 1 

i+1 
1 c. a. ('I'. a *. '1'

1
. b) 

1 1 1 J 

1 1 (c.a.q,.a *J· c.a.q,.b) 
1 1 1 1 1 1 

by (5.2.9)(ii) 

by (4.1.3)(i,ii) 

1 · 1 = ( "1. a - . c . a. "1. a) * . ( "1
1
• b - . + 1 C • a . "1. b) 

1 1+1 1 1 1 J 1 1 1 1 
by (4.1.6)(iii) 

= ~ia *· ~.b • J 1 

We can prove similarly that ~.(a*· b) =~.a*· ~.b ,for jLi • 
1 J 1 J 1 

Again · the equalities for j = i , j = i+l follow from 

proposition (3.2.3) since (An,An- 1) is a double algebroid for 

direction i , i+l • 

iii) For j "i, let j ~ i+l • Then 

~- (r 
1 

= (r 

= (r 

• j 

.j 

'l'.a) -1 i+1 

'l'ia) -i+1 

1 
"1.a) c.a.(r .. 

1 1 J 1 

(r 1 
• j c.a.q,.a) 

1 1 1 

by (5.2.9)(iii) 

by (4.1.5)(i,ii) 

• 
['l'ia -i+1 

1 = r .j c.a.q,.a] by distributivity 
1 1 1 

= r •. ~.a J 1 

We can prove similarly that ~1(r .j a) 

and J = i+l • 
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Finally, if j = i we refer to the case n = 2, then 

~1 (r .i a)= r • 1+
1 

~ia. Also one can prove the above 

equation by using (5.2.9)(iii) and (4.l.5)(i,ii) • 

In the following corollary we give the general formulae 

for ~(a·+j b) and ~(r •j a) for a,b E An, r ER such that 

a +j bis defined. We delay giving the formulae for 

~( a * j b) • 

Corollary 5.2.11: 

i) If a,b EA with a~a = a~, where«= 0,1 , then 
n J J 

~•(a+. b) =~•a+ ~•b 
J n 

ii) If a E An and r ER, then 

~• ( r a) = r • ~• a . • j n 
Proof: 

i) ~•(a +j b) = ~n_
1 
••• ~

1
(a +j b) 

= ~ 1 ..• ~.(~. 
1 
••• ~

1
a +. ~. 1 ••• ~ 1b) by (5.2.lO)(i) n- J J- J J-

= (~n-1·•-~1a) + (~ ••• ~ b) n n-1 1 by induction and (5.2.lO)(i) 

=~•a+ ~•b • 
n 

ii) ~•(r •. a)=~ 
1 
••• ~ (r .j a) 

J n- 1 

= ~ ••• 4> • (r •j+l ~- ... ~ a) by (5.2.lO)(iii) n-1 J J-1 1 

= ~ •• -~j+1 (r ·J ~ .••• ~ a) by (5.2.lO)(iii) n-1 J 1 

Thus by induction ' we get 

~'(r • j a) = r • ~•a . n 

Now we apply the operation~" , but before that we show 

that ~j is well defined on the required elements , namely 

Remark 5.2.12: For l(j(n-2 , ~j is well defined on 
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Proof: By its definition 4>j is well defined on 4>j+ 1 ••. 4>~_ 24>'a 

ex= 0,1. 

First the left hand side= 

a«q,J4>' .•.. 4>'. 4>'a = q,,a«4>~+ ... •' 4>'a by (5.2.l)(i). n. J+1 n-2 J n J 1 n-2 

L.H.S (X 1 (X = q,J.an[IJIJ.+ 1b -n c. a. IJ,. b] = q,,a q,,+ 1b J+1 J+1 J+t J n J 

by the algebroid axiom. 

Thus by repeating this procedure (n-J-1) times , we get 

by (5.2.2)(v) 

by (5.2.3)(ii) • 

On the other hand 

R.H.S 

by (4.1.l)(i,iii) 

= 1 [ )n-1(acx)n) c .a. (c 
1 

a by the above argument 
J J 1 

by (4.1.l)(iii) • 

Thus 4>~ is well defined for all l(j(n-2 • 
J 

Lemma 5.2.13: Let u,v ~ An be such that u +n vis defined and 

~tt ·is defined on u +n v • Then •tt(u +n v) = •ttu +0 4>ttv • 

(u + v) 
n 

v)] 
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- C a1 
(II' U + II' )] n n-2 n-2 n-2 n n-2 

by (5.2.9)(i) 

- "" ' "" ' [ ( ' h U C a 1 
... U ) + ( ,h V - C a l - Wlo • oW 3 T 2 - T T n- n- n n-2 n-2 n-2 n n-2 n n-2 n-2 

by (4.l.3)(i,ii) 

= t' t' [ t' u + t' v] • Thus by induction we get 1·•• n-3 n-2 n n-2 

Corollary 5.2.14: 

i) If a,b EA with 0C at> then a Ja = ' n 

t(a + . b) = ta + tb . 
J n· 

ii) If a E An and r ER 
' 

then 

t(r • j a) = r . n ta . 
Proof: 

by (5.2.ll)(i) 

= t' ••• t' [II' (t'a + t'b) - c a1 q, (t'a + t'b)] 
1 n-3 n-2 n n n-2 n-2 n-2 n 

= t' ... t' [(II' t'a + II' t'b) C a1 (II' ~•a+ 
1 n-3 n-2 n n-2 -n n-2 n-2 n-2 n 

by (5.2.9)(i) 

= t' ••• t' [(II' ~•a - c a1 
II' ~•a) + ('l'n_

2
t'b -n 

1 n-3 n-2 n n-2 n-2 n-2 n 

C a1 
II' t'b) n-2 n-2 n-2 by (4.l.3)(i,ii) 

= t'
1 
••• t' (t' 

2
t'a + t' t'b) = t"t'a + t"t'b by induction n-3 n- n n-2 n 

=ta+ tb • n 
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= 4>1' • • .4>' 3[~ 2(r • ~•a) n- n- n 
1 

- C a ~ (r. n n-2 n-2 n-2 n 4>'a)] 

• ~ 4>'a) - (r ·n c a1 ~ ~•a)] n n-2 n n-2 n-2 n-2 

by (5.2.9)(iii) and (4.1.5)(i,ii) 

• (~ ~•a - C a1 ~ ~•a)] n n-2 n n-2 n-2 n-2 

by distributivity 

= ~• ~• [ ~• ~•a] . ..,1···..,n-3 r ·n ..,n-2.., 

Thus by induction , we get 4>(r •. a) = r • ~a • J n 

Recall from chapter IV$ 1 that the function 

~.:A 1 x A 1 --➔ A gives the zero from u to v in A 
J n- n- n n-1 

for the j-th algebroid structure of An • Also we write 

respectively of the element a£ An. 

Lemma 5.2.15: If (<x:,i) ~ (0,1) , i ~ n-1 and a£ An, then 

Proof: Let 4>!+ ••• ~• 4>'a = b , then 
1 1 n-2 

(X (X 1 
= ai+1~ib a.+ 1c.a.~.b n-1 1 1 l. l. 

(X 1 
a.+ [~.b - c.a.~.bJ 

1 1 1 n 1 1 1 

by (4.l.3)(i) 

□ 

Ciara~ 1 (X <:'b by (5.2.l)(i) and (4.1.1) (i, iii) = c.a.c.a.a. n-1 11111. 

' 
= Ciara~ c.a?=a~ by (4.1.l)(iii) n-1 1 1 l 

Claim 5.2.16: 
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,· 

The proof of the above claim is indicated in Appendix fl! . 

Proposition 5.2.17: If («,i) - (O,l) and a E An, then 

n-1 
« 1 a.c

1
a q, b 

1 1 1 1 
by (4.1.3)(i) 

n-1 

by (4.l.3)(i),(5.2.l)(i) and (4.1.l)(i,iii) 

by (5.2.9)(i) and (4.l.3)(i,ii) 

n-1 

by (5.2.3)(ii) and (4.1.l)(iii) 
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Thus by repeating this procedure, we have; 

where b . = ~ : 1 ••• ~ ' 2~' a • Thus 
i--2 1- n-

by lemma (5.2.15) 

:: a o::q, ~ ' • • • ~ ' 2 ~ ' a by n 1 2 n- the algebroid axiom 

:: 'JI a o::~ ' • • • ~ ' 2 ~ ' a by (5.2.l)(i) 1 n 2 n-

:: q,1···q,n-2 
ao:: ~•a by the induction n 

o:: n- 1 o:: n 
:: 'JI ••• qi a~ 1••••~ a= q,1••••q,n-2((c1) (al) a) 1 n-2 n n- 1 

by (5.2.2)(v) 

= (c )n- 1(ao::)na by (4.4.3)(ii),(4.l.l)(ii) and induction. a 
1 1 

Thus ~a is an element in the associated c~ossed complex Y!. 

Corollary 5.2.18: ~a= a if and only if a is an element in 

YA. In particular ~2b = ~b for all b EA. 

Proof: Let a E YA, then a E Mn(x,y) for some x,y E Mo. By 

(4.4.14) we get 'Jlja = a , then ~ja = a and hence ~•a = a , 

thus ~a= a. The converse is trivial. a 
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In the previous discussion we investigated the folding 

operation~ in the general case except for the formulae for 

~( a * j b) . We give now the formulae for ~( a * j b) in the 3 

and 4 dimensional cases • 

Also we shall prove that there exist an equivalence 

between the category (Crs) 3 of 3-truncated crossed complexes 

and the category (w-Alg) 3 of 3-tuple algebroids • We start 

first with the formulae for ~(a *j b) namely; 

Proposition 5.2.19: If a,b £Anand a *j bis defined 

then, for n = 3 (resp.4) and l(j(3 (resp. l(j(4) 

0 ... a a n 

v.b = a1 
••••• aJ~ 

1 
a~ ••• a1 b J 1 - J+l n 

and 

The proof of the above proposition is indicated in 

Appendix I \I . 

Proposition 5.2.20: 

1) For n = 3, let a£ A2 • Then 

i) ~c.a = 0 in dimension 3 for 1 ( i ( 3 , 
1 

ii) ~r.a = 0 in dimension 3 for 1 < j ( 2, 
J 

iii) ~r~a = 0 in dimension 3 for 1 ( j ( 2 • 
J 

2) For n = 4, let a£ A3 • Then 

i) ~cia = 0 in dimension 4 for 1 < i ( 4 , 

ii) ~r.a = 0 in dimension 4 for 1 < J < 3, 
J 

iii) ~rja = 0 in dimension 4 for 1 ( J < 3 • 

The proof is given in appendix V. 
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Now we move to define an extra structure on an w-algebroid 

! , which we call "thin structure" • 

Definition 5.2.20: An element a E An (for n = 3 , 4) is called 

!..hin. if and only if ~a= 0 in dimension n. 

For all n , the collection of thin elements of An is 

closed under the operations + j , • j , 1 < j < n , and this is 

also been proved for *j if n < 4 . 

3.COSKELETON OF w-ALGEBROIDS: 

If one ignores the elements of dimension higher than n in 

an w-algebroid, one obtains an n-tuple algebroid An. R.Brown 

and P.J.Higgins [B-Hi-2] have constructed the skeleton and the 

coskeleton in the w-groupoid case We will follow the 

notations and terminology of [B-Hi-2] to costruct a coskeleton 

in an w-algebroid. 

We start to construct the coskeleton in terms of "shells" 

as follows : 

In a cubical complex K, an r-shell means a family a 

of r-cubes (i=l, ••. ,r+l , « = 0,1) satisfying 

a/3. « « /3 ai = a. a. J 1-1 J 
for l(jLi(r+l and «,/3 E {O,l} (5.3.l)(i) 

In particular the faces a~ of any (r+l)-cube form an r-shell 
1 

ib • We denote by □Kr, the set of all r-shells of K (c.f. 

Duskin's "Simplicial kernel" [D-1]) • 

Let K = (Kn,·••,Ko) be an n-truncated cubical complex • 

Then K' = ( □Kn,Kn,••••Ko) will denote the (n+l)-truncated 

cubical complex in which, for any a E OKn, a~ is defined to 
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0:: be a. 
1 

and for any b €Kn, Cjb is defined to be then-shell 

c, where 

1
. C. a~ 

J-1 1 
0:: 0:: 

c. = C • a. 
1
b 

1 J 1-
b 

If K has connections , we 

where 

0:: ( i ~j) 1 rJ-1ai do:: 
i 

= r Jaf _1b ( i !a.j+ 1) 

{ r •. a ':"b ( i ~j) J-1 1 
0:: e. = 
1 

r•. a~ b ( i !a.j+ 1) 
J 1-1 

( i ~j) 

( i !a.j) 

(i=j) 

(5.3.l)(ii) 

can also define r.b 
J 

d~ 0 b = d j+1 = 
J 

d~ 
1 0 = d j+ 1 = c .a .b 

J J J 

0 0 0 e. = e j+l = c.a.b 
J J J 

1 1 b e. = e j+1 = J 

= d , r'.b 
J 

= e 

(5.3.l)(iii) 

(5.3.l)(iv) 

In this way K' becomes an (n+l)-truncated cubical complex with 

connections • 

Now we replace K by an n-tuplealgebroid A. We define +j , 

*j , •Jin □An as follows : 

For +j , let a,b € □An with a;a = af> • Define a +j b = f 

where 

0:: 0:: iai +J-1 bi 
fo:: 0:: 0:: 

= a. +J b. i 1 1 

For *. 
J 

where 

0:: 0C 
ai ( = bi ) 

, let a,b € □A n 

( i~J) 

(i!a.j) 

(i=J) 

1 with a.a 
J 
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= a~b • Define a *J b = g 

(5.3.l)(vi) 



oc 
*J b. -1 1 

( i 4!J) 

(5.3.l)(vii) 

(i~J) 

Finally, for ·J , let a E □An and r ER, then we define 

r •J a= h, where 

h':' 
1 r 

r •. 
1 

a':' J- 1 
oc 

= r •. a. J 1 
oc 

al 

( i 4!J ) 

( i ~J) 

(i=j) 

(5.3.l)(viii) • 

Proposition 5.3.2: The above structure A' = ( □An,••••Ao) is an 

(n+l)-truncated w-algebroid. 

The proof of the above proposition is given in Appendix Vl. 

Proposition 5.3.3: If AD= (An,••••••Ao) is an n-tuple 

algebroid, then the w-algebroid AD with 

for m ( n 

for m ~ n 

and operations defined as above, is the n-coskeleton of AD. 

Proof: If Bis any w-algebroid and fk :Bk--➔ Ak are defined 

fork= 0,1, ••• ,n, that is 

Bn --➔ Bn-1 --➔ . . . . . --➔ B1 --➔ Bo 

tfn f+ I rl f1 
.... v 

An--➔ An-1 --➔ . . . . . --➔ A1 --➔ Ao 

so as to form a morphism of n-tuple algebroids from 

n-truncated B ton-truncated A, then there is a unique 

extension to a morphism of w-algebroids f: B --➔ An defined 

inductively by, for b EB 

(m ~ n) • This shows that AD• Cosk 0 AD. a 
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We apply now the folding operations ~j , ~j , ~• j , ~ in 

the w-algebroid Coskn An, where An= (An,···•Ao} • Given an 

0: n-shell a= (a.) E □A , we obtain n-shells ~.a, ~.a, ~~a 
1 n J J J 

and ~a. By proposition (5.2.16) ~a E y □ AD, that is , all 

faces of ~a are zero except the faces (O, 1) , (o:,n) • If ~ is 

a given w-algebroid, adjointness gives a canonical morphism 

b E Br+l • Since f preserves the folding operations , so for 

any b E Bn and n) 3 , we get 

(5.3.4) . 

Proposition 5.3.5: Let A be an w-algebroid and let M = YA be 

its associated crossed complex. Let a E □An-land e E Mn(u,v) 

where u =Pa, v =Pa . Then a neccessary and 
0 1 

sufficient condition for the existence of b E An such that 

ib = a and ~b = e is that se = S~~a. Further if b exists , it 

is unique. 

Proof: The essential point is that the folding ~a of a is 

constructed from a by applying operations defined on the shell 

ia of a • Further, each of the individual components of~ is 

reversible given full information on the shell of the 

element to which it is applied • For example , an element b 

may be reconstructed from ~ib and ~b ;- the proof of this 

essentially the same as in the 2-dimensional case. Then 

1 
~ib = ~.b -·+ c.a.~.b and sob may be reconstructed from ~ib 

1 1 1 1 1 1 

and ib. A similar remark applies to ~!b , when defined. □ 
1 
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It is clear from proposition (5.3.2) that ( □A 2 ,A 2 ,A 1 ,A 0 ) is a 

3-tuple algebroid, whenever (A 2 ,A 1 ,A 0 ) is a 2-tuple 

algebroid. 

In the next section we prove that there exists an 

equivalence between the category (Crs) 3 of 3-truncated crossed 

complexes and the category (w-Alg) 3 of 3-truncated 

algebroids • 

4. THE EQUIVALENCE OF CATEGORIES: 

In this section we start to construct a 3-tuple algebroid 

from a 3-truncated crossed complex by using the folding 

operation 

categories • 

Then we prove the equivalence of the above 

Let M3 = (M 3 ,M 2 ,M 1 ,M 0 ) be a 3-truncated crossed complex 

and let A0 =Mo, A1 = M1 • Then A2 = Y~M 2 , constructed as in 

chapter III. Define 

« 
define the maps CJ , aJ , ri , ri , for«= 0,1 , 

j = 1,2,3 and i = 1,2 in the following way: 

Let a E A2 • define Cja = (cja, 0) , where Cja is defined by 

(5.3.l)(ii) • Clearly cja E A
3 

(since ~cja = 0 in 

dimension 3 • see proposition (5.2.19)) • Define aj: A3 --➔ A2 

by proposition (5.2.19) • 
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We define now the appropriate algebraic structure on A3 

namely ; additions , compositions and scalar multiplications 

as follows : 

First for (!_,e) , (R,n) E A3 with a;!.= a~, we define 
J-

1,2,3 • 

Note that this definition make sense. Thus we have 

=see+ n) 

Second a0.b th ' en we 
J-

define 

We must verify the appropriate boundary condition, namely 

a~~(.!! * 1 b) = a 0 [(~a)V1R + u 1!.( ~b)] by (5.2.18) 
1 - 3 

= a~ [ < ~!.) v iR J + ao( U1!.(~b)] = ca 0 ~a *3 a0 c 2 a 1 a1b) + 3 1 1 - 1 1 2 3- 3 

(a 0 c 2 a1a1 a * a
0
~b) = cse * c 1 a~a!R> + (C: a

1
a

1
a * Sn) 

1 1 2 3- 3 1 - 1 2 3-

We can verify similarly that (,!!, e) * j (b, n) is well defined 

for j = 2,3 • 

Finally for (,!!,e) E A3 and r ER, we define 

r "j (!_,£) = (r "j a, r. t) • Again it is easy to 

show that this definition make sense • Thus we are ready to 

give the first result of this section, namely; 

Proposition 5.4.1: The above structure is a 3-tuple 

algebroid. 
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The proof of this proposition is similar to that of 

proposition (3.3.1) . 

Thus any 3-truncated crossed complex gives rise to a 

3-tuple algebroid • This constructiondefines a functor A from 

the category ( Crs) 3 of 3-truncated crossed complexes to the 

category (w-Alg) 3 of 3-tuple algebroids , that is 

A : (Crs) 3 --➔ (w-Alg) 3 

Now we move on to prove the equivalence between these two 

categories . 

Theorem 5. 4. 2: The functors y • A defined previously form an 

adjoint equivalence 

y : (w-Alg) 3 ---➔ (Crs) 3 : A 
+---- --

The proof again is similar argument to that of theorem 

(3.4.1) • 

Note that one can prove there exist an equivalence between· 

the category (wAlg) 4 of 4-tuple algebroids and the category 

(Crs) 4 of 4-truncated crossed complexes by using similar 

arguments and the formulae of the folding operation for the 

composition which was given in (5.2.18) . 

Now we end this chapter with a conjecture for the higher 

dimension namely for then-dimensional case. 

First suppose that , if n)2 , l<J<n and ~,b ~ An are such 

that a *j bis defined, then 

~( a * j b) = 
u a 

J ( ~b) 

Then there exist an equivalence between the category (Crs) of 

crossed complexes and the category (w-Alg) of w-algebroids . 

In the next chapter we suggest possible further work in 

the same area to link the above ideas with homological and 

homotopical algebra. 
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CHAPTER VI 

CONJECTURED RESULTS ON ALGEBROIDS 

AND CROSSED COMPLEXES 

w-ALGEBROIDS 

In this chapter we re cal 1 briefly various results on 

groupoids , w-groupoids , crossed complexes (over groupoids) 

and we conjecture that these results carry over to 

algebroids w-algebroids and crossed complexes (over 

algebroids) • We also conjecture a relation between the ideas 

of this thesis and algebraic geometry. 

First we recall some results in the groupoid case, 

namely ; 

1) R.Brown [Br-4] has explored the notion of a fibration of 

groupoids : i.e. a morphism ~= A --➔ B of groupoids such that 

whenever x E A0 and b E B1 with s 0 b = ~(x) , there exists 

a E A 1 such that ~(a) =band s0 a = x • Also he proved that if 

one starts in the category of groups then certain 

constructions lead naturally to fibrations of a groupoids • 

2) J.Howie [Ho-1] extended the notion of a fibration of 

groupoids to that of a fibration of crossed complexes (over 

groupoids) . Simply a fibration in the category of crossed 

complexes (over groupoids) is a morphism ~:M --➔ N such that 

each groupoid morphism ~n: Mn--➔ Nn (n ) 1) is a fibration 

of groupoids • 

3) The homotopy addition lemma is given in [B-Hi-2) • This is 
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precisely the formulae of the (0,1)-th face for the element ~a 

where~ is a folding operation in an w-groupoid G and a€ Gn. 

4) The results presented by J.H.C.Whitehead [Wh-2] are 

general:i,sed in [B-Hi-4] • Namely the functor A': (free crossed 

complexes) ---➔ (chain complexes with operators) is 

generalised to a functor A: ( crossed complexes) --➔ ( chain 

complexes with operators) Moreover in [B-Hi-4] a right 

adjoint for the functor A is constructed. 

5) The equivalence between the category of •-groupoids and the 

category of crossed complexes ( over groupoids) is proved in 

[B-Hi-6] by using the equivalence of the category of 

w-groupoids with the category of crossed complexes (over 

groupoids) • More precisely , they have· proved that for any 

w-groupoid there exists an •-groupoid containing the 

associated crossed complex. 

6) The notion of a tensor product A 0 B of crossed complexes 

( over groupoids) A , B and internal hom functor CRS ( A, B) is 

given in [B-Hi-7] • The category of crossed complexes is given 

the structure of a symmetric monoidal closed category . The 

crossed complex CRS(A,B) is in dimension O the set of all 

morphism~A --➔ B • In dimension m) 1 , it consists of m-fold 

homotopies h:A --➔ B over morphisms f:A --➔ B. 

The material given above has been done in the groupoid 

case • It is reasonable to conjecture that it will carry over 

to the algebroid case 
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Now we move on to conjecture other possible result to link 

the ideas of algebroids with the algebraic geometry. 

In this thesis we have only dealt with the case of 

associative algebroids and not commutative algebroids The 

notion of commutative algebroids ought to be definable , and 

ought to be relevant to algebraic geometry. 

Finally , the notions of seaparable , central algebroids 

have been defined categorically in [Mi-1, 2, 3] • Namely let A 

be an R-algebroid. A is called separable if A, considered as 

its own hom functor, is projective as 

Ae = A 0 Aop_ module. It is central if the map 

R --➔ HomAe (A,A) is an isomorphism. Possibly this notion 

can be extended to higher dimensions • 
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APPENDIX I 

Verification of Theorem (3.1.7) and Lemma (3.1.8): 

i) The definition of 8 1 , 8 2 

Let a,b,c,d E D1 with cd = ab and« has boundary given by 

b 

C 

b 

ra ,,c 1b have boundaries given by 

a 

and then (C1C *2 r'd) t ( ra *2 C 1b) have boundaries in the 

form 

C 1 a b 

l C1C r'd d t a ra C1b l . 
C d 1 b 

Thus (c1c *2 r'd) *1 ( ra *2 C1b) is defined (since cd = ab) 

namely 
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C 1 

1 r 
C d 

a b 

1 ~ 
1 b 

Similarly for the definition of e 2 . 
ii) Lemma 3. 1. 8: 

C 

e 1 (a d) = (C1C * 2 r' d) *1 (ra *2 c1b) which is 
b 

diagrammatically given by 

C 

1 1 

C , 
cd C 

1 C1C f'd kJ 

lo 1 1 cd d 

r 

C 

1\ abl cdl = = 
R h 

ab ab 1 1 

a ra C1b 1 

ab b 

ao 1 a 1 

b 

(since cd = ab) , 
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l l C ,i 

1 a a C 1 

= A A 

1 b d d 

a b 1 1 

ab 

a 1 

b 

1 1 

8 a C 1 1 l 

= 

1 1 b d d 1 

a b 1 1 
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C 1 lo 
C 

l□d 
d 

1 1 d 

1 a a C 1 1 1 

= a d 

1 1 1 d d 1 

a b 1 1 

a b 

a□ lo 
1 b 

1 ' 1 1 C 1 

1 kl 

C d 

1 a a C 1 

= 8 ti 

1 b d d 1 

a b 

a 1 

1 b 1 1 1 

1 1 C 

8 a C 1 

= 
1 b d d 

b 1 1 
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APPENDIX II 

Verification of proposition (3.2.3) diagrammatically: 

i) Let ~,fl€ D be given by 

thus« +1 Pis in the form 

X 
1 

X ' 
C d+d1 z 

= 1 a+a 1 «+ 1 fl d+d 1 1 

X . b z 1 z 

On the other hand 

~« +2 ~p = [(r'a *2 « *2 rd) -2 C1ab] +2 

[(r'a 1 *2 fl *2 rd1) - 2 c 1a 1b) , is in the form 

C w 

b 1 z 

ab 
X Z 

1 EJ 1 

x ab z 
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C 

{3 

b 

x□cd1-a. 1b z 

1 1 

X Q Z 
xz 

ii) Similarly for~(« + 2 13) = ~« + 2 ~{3. 

Let«, f3 be given by 

and so« *1 f3 is in the form 

X C W 

88' I ~ 1 /I ] dd' 
U V 

e 

is diagrammatically pictured as 

C 

e 

dd' w 

ldd' 
V 1 

-113-

x□aa'e v 

1 1 

• 
X V aa'e 

= 



1 1 C d d' 
X X w z V 

l a a 0C d 1 

... a y 1 y b z 1 z d' 

] 1 a' /3 d' d' 

V 

1 

lx□l -2 = 

1 x aa e 

X 
a 

y a' u 
e 

V 1 V 
1 V 

1 C d d' 
X X w z 

f 1 ~ al 
(X 

Id 11 X aa'e V 

1 X 
b 1 d' V a 

-2 V = 

a 1 

a•I 

b d' 1 1 X 

lr Id· r j /3 X aa e V 

V a a' e 1 

1 C w d d' x[J X X z 

rl j al 
(X Id 11 -2 1 1 

b 1 d' V "aa'e v a 

= 

a 1 b d' x[J X 

JI a•I 

z V 

j /3 Id' ll -2 1 1 

V 1 x aa'e v a a' e 
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(1] 
1 X C w d z d' V x abd' v 1 X abd'-aa'e I 

a I Id 11 11 -2 lxovl +2 
1 1 

a y b 1 1 x abd'-aa'e v 

= 

(1t]y 1 b 
z d' v) dl 

' Y: 

ra• lytrl *2 I ld' 1 ll -2 
1 *2 

X a y y a' u e a Y Y a'e v 

cd-ab d' "Dabd'-aa'e v 

1 1 

x ab d ' -a a ' e v 

= 

a bd'-a'e 

X i V 1 l,..._c_
1

_a_..t---~-/3--,I I 

X a y O V 

= 

a(bd'-a'e) 

1 l ___ c_1 a_*_2_~_P __ r l 
X O V 

Let «,/3 be given by 

then« *2 /3 is in the form 
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cc' 
X U 

aE} 
y bb t V 

Then~(« * 2 P) = (r'a *2 (« *2 P) * 2 rd) - 2 c 1abb' which is in 

the form 

e 

I· re 

1 

= 

X 1 X C w 1 w 

l d 

-. = X C w d z 

1 a « d 

X a b z 1 z 

1 xi 
C w 1 w c' 

[· l dl 
p 

X C d b' 

= 

X 1 

SI 

C w d z 1 I « id I 1 
X a y b l z 

c' u 

e 

b' V 

b t V 

e V 

I I 
1 V 

Ci: 
:Q. 

e V 

l 

V -2 

1 

1 V 

X 

l 

X 

1 

X 

abb' lox vl 
abb' v 

abb' V 

1 

' 

1 

abb' V 

-2 11::rl 
« abb' v 

--2 lIJ\ *2 lr:=r 1 
X ab z z b' V 
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11]: *{] 
1 w c' u e V 

CJf. :r:::} d] fl le t -2 

X c W d b' 1 w v x cdb'-abb'v 

= 

X 0 V x cd-ab z 

l:tf) 1EJ1 +2 l~l *2 
X Q V X 0 z 

x□cdb'-abb' v 

1 1 

x cdb '-abb 'v 

= 

• 2 

c'e-db' 
W V 

1~~+2 

W Q V 

= ( c 1 c * 2 ~ /3) + 2 ( ~ex * 2 c 1 b ' ) • 

v) The rules ~(r •1 ex) = r • 2 ~ex and ~(r. • 2 ex) = r • 2 ~ex are 

clear • 
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APPENDIX III 

The proof of claim (5.2.16): 

We give a complete proof for the first part of (5.2.16) • 

Recall that b = ~i+l .... ~~- 2 ~•a • 

o ex «. a c.a.a.o 
n-1 1. 1. 1. 

by (4.1.l)(i,iii) 

Let~:+ ..• ~• ~•a= c. Then 
1. 2 n- 2 

o ex «. a c.a.a.o 
n-1 1. 1. 1. 

ex ex o ' 
= c.a.a.a "'·+ 1 c l.l.l.Ol. 

ex ex o = c.a.a.q,.+
1
a c 

l.J.J.l. n 

ex ex o c.a.a.a (q,.
4 

c 
l.l.l.D l.1 

by (4.l.3)(i) 

by (5.2.l)(i) 

= c.a~a~~-+
1 

a0 ~!+
2 
••• ~• ~•a. Thus by repeating this 

J. 1 1. J. n l. n-2 

procedure, we get 

o ex «. a c.a.a.o 
n-1 1. 1. 1. 

a • 

Now we look at a
0
°~•a = a0

~ •••• ~ a n n-1 1 

by (5.2.2)(ii) . 

Thus by repeating this procedure, we get 

Thus a0 c.a~a~ = 
n-1 l l l 

ex ex c.a.a.q, . .... qi 
l. l. 1. 1.+1 n-2 
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by (4.1.l)(ii,iii) 

We can prove similarly that 

1 « oc n-2 a c.a.a.D = (c 1) f3 1a • 
n-1 1 1 1 
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APPENDIX IV 

The proof of proposition 5.2.19: 

We give a complete proof for the case n = 3 • We start 

with j=l . Then 

= ~' ~ (~ * c a1
b) + ~' ~

2 
(c a0

a * ~ b) 
1 2 1 2 12 3 1 12 2 1 

by (5.2.lO)(i) and (5.2.13) 

' * · c a 1~ b) + (e a0

3
c 1a0 a *

3 
~'b)] by (5.2.IO)(ii) 

3 2 3 1 3 2 2 

~~(c1~2a~a *3 c2a!~1b) +3 ~~( c12(a~)2a *3 ~'b) 
by (5.2.13),(4.1.l)(ii,iii) and (5.2.4)(i) • 

= '" (~' * C 2(a1)2b) - a1,t, (~' * C 2(a1)2b) T1 8 3 1 2 3 c1 1T1 a 3 1 2 

= (IJ'1~'a *3 IJ'1(c1)2(a~)2b) -3 (c1a~q,1~'a *3 cia~q,1(c1)2(a~)2b) 

by (5.2.9)(ii) and (4.l.4)(i,ii) 

= (IJ' 1~'a *
3 

(c ) 2(a 1) 2b) - (c a 1q, ~'a*• (c ) 2(a 1) 2b) 
1 2 3 111 3 1 2 

by (5.2.3)(ii) and (4.1.l)(iii) 

by distributivity 
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We can prove similarly that 

= <~1c2a:~1a *3 ~1c1~2a!b) -3 (c1a!•1c2a:~1 8 *3 c1a!~1c1~2a!b) 

by (5.2.9)(ii) and (4.l.4)(i,ii) 

= (c 1a~~ 1a *3 c 1~ 2a!b) - 3 (c 1a~~ 1a *3 c 1~ 2a!b) 

by (5.2.3)(ii) and (4.1.l)(iii) • 

On the other hand 

= (~ 1c 1~ 2a~a *3 ~ 1c 2a!~ 1b) - 3 (c 1a~• 1c 1~ 2a~a * 3 c 1a!~ 1c 2a!t 1b) 

by (5.2.9)(ii) and (4.l.4)(i,ii) 

= (c 1~ 2a~a * 3 c 1a!~ 1b) 3 (c 1~ 2a~a *3 c 1a!~ 1b) 

by (5.2.3)(ii) and (4.1.l)(iii) • 

First we compute 

by (4.l.3)(i) and (4.l.4)(i) 
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= c 1a~a~4> 1a by (4.1.1) (i, iii) 

0 0 0 by (5.2.2)(ii) = c 1
a

2
c

1
a

1
a

1
a 

= (c )2 (a~)
3

a by (4.1.l)(iii) . 
1 

Second; we compute 

= a1c a1~ b 3 1 3 1 by (4.l.3)(i) and (4.1.4)(i) 

= c 1a~a~4> 1b by (4.1.l)(i,iii) 

= C a 1c a 1a 1b by (5.2.2)(ii) 
1 2 1 1 1 

= ( c ) 2 ( a 1) 3b by (4.1.l)(iii) . 
1 1 

Thus A2 +3 A = 3 t:3[(c1)2(a~)3a , ( c 1) 2 ( a! ) 3b ] . 

Therefore 4>(a * 1 b) = A + A 4 = u la(4>a) + ( 4>b) V 1b . 1 3 3 

Second for j = 2 ,, we get 

4>(a *2 b) = 4>' 4>2 4>1 (a *2 b) 1 

= 4> t 4> [(c 1a~a * 4>1b) + ( 4> 1 a *2 c 1 a !b)] by (5.2.lO)(ii) 1 2 2 2 

= 4>~4>2 (c1a~a *2 4>1b) +3 4>~4>2(4>1a *2 c1a!b) 

by (5.2.lO)(i) and (5.2.13) 

4>~[(4>'a *3 c 2a~c 1a!b) +3 (c 2a~4> 1a * 3 4>
2

c 1a!b)] 

by (5.2.lO)(ii) 

. 4>~(4>'a * 3 c 1
2
a!a:b) +3 4>~(c 2 a:4> 1a *3 c 14> 1 a:b) 

by (5.2.13) , (5.2.4)(1) and (4.1.l)(i,ii,iii) • 
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= (~1c1~1a:a *3 ~1c2a!~1b) -3 (c1a!~1c1~1a:a *3 c2a!~1b) 

by (5.2.9)(ii) and (4.l.4)(i,ii) 

= (c 1~ 1a~a * 3 c 1 a!~ 1b) -
3 

(c 1~ 1a~a * 3 c 1a!~ 1b) 

by (5.2.3)(ii) and (4.1.l)(iii) • 

On the other hand; 

= (c 1a~t 1a *
3 

c 1t 1a!b) -
3 

(c 1a~~ 1a *
3 

c 1t 1a!b) · 

by similar way as above. 

By using similar argument as above, we get 

1 2 0 0 
3 c1a1~1[(c1) a1a3a *3 ~'bl 

by (4.1.l)(i) 

= [~ (c ) 2a 0 a0 a * ~ ~'bl - [c a 1
~ (c ) 2a0 a 0 * c a 1•11 ~'bl 

1 1 1 3 3 1 3 1 1 1 1 1 3
8 

3 1 1T1 

by (5.2.9)(ii) and (4.l.4)(i,ii) 

= [(c 1)
2

a~a~a * 3 ~ 1~'b] -
3 

[(c 1)
2
a~a

0
a *

3 
c 1a!~ 1~'b] 

by (5.2.3)(ii) and (4.1.l)(iii) 

We can prove similarly that 
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Finally for j = 3 , we get 

~(a *3 b) = ~~~2~1 (a *3 b) = ~~~2(~1a *3 ~lb) 

by (5.2.lO)(ii) 

= ~~ [(c 2 a~~ 1 a *3 ~'b) + 3 (~'a *3 c
2
a~~

1
b)J 

by (5.2.lO)(ii) 

by (5.2.2)(ii) • 

Let A1 = ~~(c
2
c 1 a~a~a *3 ~•b) = ~~(c 1

2 a~a~a *3 ~•b) 

by (4.1.l)(i,ii) 

= (~ 1 c 1
2 a~a~a *3 t 1~'b) 3 (c 1 a~t 1c 1

2 a~a~a *3 c 1 a~t 1~'b) 

by (5.2.9)(ii) and (4.l.4)(i,ii) 

= [(c 1 )
2 a~a~a *3 t 1~'bJ - 3 ((c

1
)

2 a~a~a *3 c 1 a~t 1~'b] 

by (5.2.3)(ii) and (4.1.l)(iii) 

by distributivity 

This completes the proof for n = 3 . A similar direct 

computational proof for the case n = 4 has been written out , 

but it is too lenghty to include here. 
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APPENDIX V 

The proof of proposition (5.2.20): 

We will prove the first case only and the second case is 

similar. For the first case, we start with 

i) For 1 ( i ( 3, ~c.a = 0 in dimension 3 , it is immediately 
l 

by using (5.2.4)(i,ii) . 

ii) For ~r.a = 0 in dimension 3 , we start first with j=l , 
J 

then 

= 0 in dimension 3 

·Second, let j = 2, then 

2 

by (5.2.6)(iii) 

1 1 
= ~~~2[(r~a *2 r2a) *2 c3r1a2a] -3 ~~~2(c1a *2 c1r1a1a) 

by (5.2.9)(i) , (5.2.13) and (5.1.2)(iii) 

by (5.2.lO)(ii) 

Now we look at ~ 2 (r~a *
2 

r 2a) which is equal 
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by (5.2.6)(ii) • 

by (5.2.B)(i) 

by (5.2.7)(ii),(5.2.3)(ii) and (4.1.l)(iii) • 

0 by (4.1.4)(i) = a3c14>1a 

0 by (4.1.l)(iii) = c1a24>1a 

= (c1)2 (a~)2 a by (5.2.2)(ii) . 

= a 1c r a 1 
3 1 1 28 by (4.l.4)(i) 

= c 1r 1a~a~a by (4.1.l)(i,iii) and (5.1.2)(vii) 

= (c1)2 (c1~)2a by (5.l.2)(iii) . Thus 

A = C ( c 2
(a

0
)

2 c 2 (c1
1

)
2

) , that fs A
1 

= 0 in 1 3 1 1 a, 1 1 a 

dimension 3 • 
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= c1~1(a *2 r~a!a) -3 c1~1(a *2 r~a!a) 

by (5.2.3)(ii) and (4.1.l)(iii) 

0 
r~a:a) by (4.1.l)(iii) = c1a2~1(a *2 

= cc a 0 a 0 
1 1 1 1 

(a *2 r~a!a) by (5.2.2)(ii) 

= (c1)2(a~)2a by (4.l.4)(i,ii) 

= (r 1) 2 (a 1
1) 2 a b (4 1 4)( 0 00

) ... y • • 1.,1.1. • 

in dimension 3 for 1 ( j ( 2 • 

We can prove similarly that ~r~a = 0 in dimension 3 
J 

for l(j(2 • 

-127-



APPENDIX VI 

The proof of proposition (5.3.2): 

Recall that an w-algebroid A is a cubical complex with 

connections and satisfy the axioms (4.1.3) , (4.1.4) , 

(4.1.5) , (4.1.6) , (5.1.3) , (5.1.4) and (5.1.5) . 

I t i s c 1 ear that A ' = ( □An , An , • . • • , AO ) is a cub i ca 1 

complex with connect ions • Thus it is enough to verify the 

axioms of an w-algebroid; namely 

(4.1.3)(i): Let a,b £ □An such that a +j bis defined. Then 

0: + . b~ ( i .!j) =r: J-1 ]. 
0: a~r f~ a. (a +. b) = = by (5.3.l)(v) 
l . J l ]. 

+ . b~ (i~j) . a. 
]. J l 

( i .!j) 

( i ~j) 
by definition of a~ 

l 

(4.l.3)(ii): Let a,b £ An such that a +j bis defined. Then 

for k-'i-'j , we have 

by (4.1.l)(iii) 

0: 0: 0: 0:. 
= C. [ aka +. akb] = C. aka +. C. ak. D 

1-1 J-1 . 1.-1 J 1.-1 
( since 

are elements in An- 1 ) and by (4.l.3)(ii) 

use a similar way to show that c.(a +. b) = c.a +J. c
1
.b , 

l J l 

for i ~ j • 
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(4.l.4)(i): Let a,b £ □An such that a *j bis defined. Then 

la~ *. b~ ( i .l:j) 
1 J-1 1 

(X 

* . b) 
(X . (X by (5.3.l)(vii) a. ( a = a.g = g. 

1 J 1 1 
(X (X 

( ~~j) a. *. b. 
1 J 1 

( i .l:j ) 

(4.l.4)(ii): ·Let a,b € An such that a *j b is defined . Then 

fork-' i ~ j , we get 

by (4.1.l)(iii) 

elements in An-1> 

(X (X 

= akc.a *· akc.b by (4.1.l)(i) 
1 J 1 

Thus c.(a *· b) = c.a *·+ c.b • We can prove similarly that 
1 J 1 J 1 1 

c.(a *· b) = c.a *· c.b , for i~j • 
1 J 1 J 1 

(4.1.4)(iii): Let a£ □An. Then for k.l:j ,·we get 

<X O <X O <X 
ak(c.a.a *·a)·= akc.a.a *· aka 

J J J J J J-1 

0 (X (X 
= c . a . aka *. aka J-1 J-1 . J-1 by (4.1.l)(i,iii) 

0 Thus cjaja *j a= a. We can prove similarly that 

1 a= a*· c.a.a. 
J J J 

(4.1.5)(i): Let a£ □An and r € R. Then 
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( i Lj) 

( i ~j) 

(i=j) 

( i Lj) 

(i~j) by (5.3.l)(viii) 

(i=j) 

(4.l.5)(ii): Let a£ An and r £ R. Then for kLiLj, we get 

0C 
= c. ( r • . 1 aka) 

1-1 J-

(X 

= r . . c. aka 
J 1-1 

(X 
= r • j akcia 

(X 
c.a) = ak(r "j+1 1 

by (4.1.l)(iii) 

by (4.1.5)(i) 

by (4.1.5)(ii) (since 0C ) aka € A n-1 

by (4.1.1) (iii) 

by (4.1.5)(i) . 
Thus ci(r "j a)= r •j+ 1 cia. Similarly we can prove the 

other parts • 

(4.1.5)(iii): Let a,b £ □Anand r £ R such that a *j bis 

defined. Then, fork Li and i=j 

= r ·i-1 by (4.l.5)(i) 

by (4.1.4)(i) 

• 
by (4.1.5)(iii) (since a~a , a~ 

are elements in An) 

by (4.1.5)(i) 

by (4.l.4)(i) • Thus 
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r •. (a *i· b) = (r •. a) *· b . Similarly one can prove 
l l l 

that r • . 
l 

(a*· b) = a*· (r •. b) • 
l l l 

Now, for i - j , let k ~ min{i,j} , then 

= ( r "i-1 

= r 

(X 
aka) *. (r J-1 

"i-1 by (4.1.5)(i) 

by (4.1.4)(i) 

by (4.l.5)(iii) (since 

a~a, a~ are elements in An) 

(X (X 

= ak(r . a) *· 1 ak(r •. b) •1 J- l 
by (4.l.5)(i) 

a)*· (r •. b)] 
J l 

by (4.l.4)(i) • Thus 

r •. (a *. b) = (r •. a) *. (r •. b) • 
l J l J l 

(4.l.5)(iv): Let a E □An and r,s ER. Then fork~ i,j we get 

by (4.1.5)(i) 

(X 
a) 

(X 
(r a)] by (4.l.5)(i) = s ·j-1 ak(r .. = ak [s • j . . . 

l l 

Thus r .. (s . . a) = s .. (r • i a) . 
1 J J 

(4.1.6)(i): Let a,b,c,d E □An such that (a +i b) +j (c +i d), 

(a + . J c) +· l (b +j d) are defined . Then for k ~ i,j we get 

(X 
b) (c d)] 

(X 
b) 

(X 
d) ak[ ( a +. +j +. = ak(a +. + . ak (c +i 1 1 1 J-1 

by (4.1.3)(1) 

by (4.l.6)(i) (since 
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<X <X ak(b +j d) = ak[(a +j c) +i (b +j d)] 

by (4.l.3)(i) . 

Thus (a +. b) +. (c +. d) = (a +. c) +. (b +. d) . 
· 1 J 1 J 1 J 

The proof of (4.1.G)(ii,iii) are similar to that of 

(4.1.G)(i) . 

(5.1.3)(i): Let a,b £ An such that a +j b is defined . Then 

for k~i~j , we get 

acxk r.(a +. b) = r. 
1 

acxk(a +. b) 
l J 1- J 

by (5.1.2)(vii) 

by (4.1.3)(i) 

similar argument to prove that r.(a +. b) = r.a +. r.b . 
l J l J l 

The proof of (5.l.3)(ii) is similar to that of (5.l.3)(i) . 

(5.1.4)(i): Let a,b £ A0 such that a *j b is defined • Then 

for k~i~j , we have 

a«(r ( * b)] r ak« (a *J· b) k • a j = • 1 1-1 

= a«r r * r b J k i 8 j+1 i 
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by (5.l.2)(vii) 

by (4.l.4)(i) 

by (4.1.4)(i) • 

a~k £ A ) n-1 



r.(a *· b) = r.a *· r.b 
1 J 1 J 1 

for i :::i. j . 

The proof of (5.l.4)(ii) is similar to that of (5.l.4)(i) • 

(5.l.4)(iii): Let a£ An. Then fork L j , we get 

by (4.l.4)(i) 

by (5.1.2)(vii) 

0:: 
= c aka J-1 by (4.1.l)(iii) . Thus r~a *· · r.a = c.a. 

J J+ 1 J J 

Similarly one can prove that the second part of (5.l.4)(iii) • 

(5.l.5)(i): Let a£ An and r £ R. Then for kLiLj we get 

= r 

0:: 
= ak(r • ·+ r.a) J 1 1 

by (5.l.2)(vii) 

by (5.l.2)(vii) 

by (4.1.5)(i) • Thus 

We can prove s i mi 1 a r 1 y that r . ( r • . a) = r • . r. a , for i :::i.j • 
1 J J 1 

The proof of (5.l.5)(ii) is similar to that of (5.l.5)(i) • 

Thus A ' = ( □An , An , • . . • , A O ) i s an ( n + 1 ) - tr u n cat e d 

w-algebroid. 
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