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SUMMARY

Thé equivalence between the category of crossed modules
(over groups) and the category of special double groupoids
with connections and with one vertix was proved by R.Brown and
C.B.Spencer . AlLSo - , C.B.Spencer and Y.L.Wong have
shown that there exists an equivalence between the category of
2-categories and the category of double <categories with
connections .

R.Brown and P.J.Higgins have generalised the first
result : they proved that there exists an equivalence between
the category of w-groupoids and the' category of «crossed
complexes (over gfoupoids) .

In this thesis we develop a parallel theory in a more
algebraic context , with expectation of applications 1in
hon-abelian homological and homotopical algebra . We prove an
€quivalence between the categdry of crossed modules (over
algebroids) and the category'of special double algebroids with
connections . Moreover we prove a similar result for the
3-dimensional case , that is , we prove that there exists an
€quivalence between the category (Crs)® of 3—§runcated crossed
complexes and the category (w—-Alg)® of 3-tuple algebroids .
Also we end this work by giving a conjecture for the higher
dimensional case . In particular , we hav;

Theorem: The functors Y , A form an adjoint equivalence
Yy ¢ DA! e—=a C : A

where DA! is the category of special double algebroids with

Connections and C is the category of crossed modules over a@ébrddr-



Theorem: The functors ¥ , XA form an adjoint equivalence

Yy ¢ (W-Alg)D «-o (Crs)n : X

Finally we give a conjecture whose validity would be
sufficignt for the general equivalence of categories of
wfalgebroids’and crossed complexes .

In chapter VI we explain some results which have been
obtained in. the case of groupoids and higher dimensional
groupoids , and suggest the possibility of obtaining similar
results in the case of algebroids and higher dimensional

algebroids .
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INTRODUCTION

A. AIMS AND BACKGROUND:

1. Overall aim:

There are many useful analogies between the theory of
groups and the theory of algebras which are exploited for
example . in homological algebra . Some interesting
‘generalisations of groups are groupoids , crossed modules ,
crossed complexes , double groupoids and w-groupoids , dating
respectively from 1926 [Brandt - 1] , 1946 [J.H.C.Whitehead -
1,2] , 1949 [Blakers - 1] , 1965 [Ehresmann - 1] and 1977
[Brown-Higgins - 8 ] . Corresponding to groupoids as
generalisations of groups . we have algebroids as
generalisations of algebras , a theory due to B.Mitchell
(1972) . There are also notions of crossed modules of
algebras . But a theory of double and n-tuple algebroids does
Not seem to be available , and it is our aim to investigate
this idea .

In order to see the motivation for this investigatibn and
the kind of result to be expected , we first recall some facts
on the group case .

2. Crossed modules , crossed complexes in groups

and w-groupoids:

L3

First , a group homomorphism 3: M --+ P is said to be a
crossed P-module (in groups) if there is given an action of P
on M, (p,m) --+» Pm which satisfies.the following axidms :

(i) 3(Pm) = p (am) p~? (ii) ¥®n® = m m’ m~! for m,m’ € M

and P.G P . Standard examples of crossed modules are :

o



1) the inclusion N --+ P of a normal subgroup N of the group

P , with the'action of P on N given by conjugation ;

2) the zero morphism 0 : M ——+ P in which M is a P-module in
the usual sense ;

3) the boundary map 3 : w,(X,Y,xq) ——» W (Y,xo) from the
- second relative homotopy group to the fundamental group with
‘the standard.action of my(Y,xo) on ma(X,Y,x0) .

As this last example suggests , crossed modules can be
‘used to model certain homotopy types . In fact from the stand-
point of homotopy theory , crossed modules should be viewéd aé
"2-dimensional groups" . It is reasonable to ask then , what
are the n-~dimensional groups (or crossed modules) ?
J.H.C.Whitehead gave a partial answer to this by introducing
what he called a "homotopy system" , but which are now called
crossed complexes . These gadgets consist of a sequence of

groups

E 3p-1 p-2 93 =P 33 _—
teei== Cp ==3 Cpog =73 .... ==% Cg ==3 € —=» €y __] Co

where Co is a single point and satisfy the axioms ;
i) 3, is a crossed module ;
ii) ¢, is abelian for n 3 3 ;
iii) a2 = ¢ ;
iv) ¢, actsvon Ch » n 3 2 and 3,C, acts trivially on C, for
n 3 3. y

Therstandard example of a crossed complex is obtained from
a pointed filtered space (c.f. [Br-3]) .

Work in homotopy theory has de#eloped the well known

notion of "groupoids" , which are categories in which every

arrow is invertidble .
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Since a crossed module has been considered as a "higher
dimensional group" , the question aries : what is a higher
dimensional groupoid ? Ehresmann [Eh-1] has defined the notion
.of double groupoid . R-Brown and C.B.Spencer péve proved that -
there exists an equivalence between the category of crossed
modules (over groups) and ‘the - category of double groupoids
with special‘connections and one verfex . Butvthe general case
has been defined in [B-Hi-8 ] ; namely they have defined
. W-groupoids and crossed complexes (qver groupoids) by using
- the cubical set notion . Moreover they have proved in [B-Hi-2]
there existS an equivalence between the category of w-groupoids
and the category of crossed complexes (over groupoids) .

The above discussion of the development of group theory in
this direction is summarised in the diagram
Groups -- Groupoids'—a Double groupoids;—» w-groupoids .
There are in fact a remarkable collection of equationally
defined categories of (many-sorted) algebras which are non-
triv{ally equivalent to w-groupoids . These are summarised in
the following diagram :

[J-1] [B-Hi-3]
Poly-T-Complexes ¢---+cubical T-complexes ————- 2 W-groupoids

[3-1] | S [B-Hi-2] [B-Hi-4]

Simplicial T- ¢----+ crossed complexes eg————- + ®—-groupoids
complexes [As-1] (B-Hi-4]

in which the arrows denote explicit functors which are
equivalence of categories . The symbols in square brackets

give references to the proofs .

-ijii-



3. Crossed hodules and Crossed complexes over algebras:

The work of [Ge-1] essentially involves the notion of

crossed modules in associative and commutative algebras under

a different name . Also the work of [K-L-1] in algebraic
K-theory has introduced crossed modules of Lie algebras . The
definition af crossed modules in associative algebras is given
on page (9,10) .
The notion of crossed: modules of algebras has been

g€eneralised to crossed complexes over algebras [Po-3] ,
namely ;

Lei R be a commutative ring and let K be an R-algebra . A

crossed complex of R-algebras is a sequence of R-algebras

9n 92 9,
PO Ranaat, 4 Cn ————) Cn—1 e s e T Cz bntaad K

in which

i) 3; is a crossed K-module ,

ii) ¢4 for idl is a K-module on which 3,C; operates trivially
and 9; preserves the actions

1ii) for i 3 1, 3544 33 = 0 .
Now one can ask , what are the higher dimensional

algebraé ? In this thesis we shall give a partial answer to

this question and we will give some extra conjectures .

4. Algebraic geometry:

The idea of this work arose from ,the consideration of
bringing crossed médule ideas into commutative algebra .and
algebraic geometry ; namely an ideal in a polynomialy ring
corresponds to an affine algebraic vatiety . Crossed modules
in commutative algebras are generalisations of ideals .

One would like to know the geometric analogue of a crossed
module , but nothing seems to be knowh on this question ;

-—iv-



The original motivation for this thesis was to see if it
would be easier to find analogues of "double commutative
algebroids™ in algebraic geometry , assuming such were
equivalent to crossed modules . This lead to the problem of
finding. analogues for algebroids of the work of Brown -
Higgins on w-groupoids , and this problem has since occupied
our full atténtion .

There are still many problems in relating this work to

algebraic geometry , but we believe this will eventually be

possible .

B. STRUCTURE AND MAIN RESULTS:

- In chapter I we give an example to show how algebras are:
appropriately generalised to algebroids and we ghow that the
category of R-algebroids is a monoidal closed category . We
€ive the definition of a crossed module over an associative
algebfa and. introduce the definition of a crossed module over
&n algebroid . Also we deduce some properties of crossed
modules similar to the well known properties of crossed
modules over groups .

In chapter II , we define an algebroid in one higher
dimension . In fact we introduce the notion of a double

algebroid by using double categories ; namely a double

R-algebroid D is four related R-algebroids

i . i
(D,D ,3,,€,,+ ,% ,. ) 4 (B,D,,35,€,,%,,%,,..)

i i
(p,,p_,8%,c,+,%,.) , (D_,D_,5.,C,+,%,.)
i (o] 1 2 (o] b4

where i = 0,1 and these algebroids satisfg. ~the following

-v-



axioms :

i) 1 al = o 3l i,J € {0,1)
1) L@+, ) = ala+ alp , dl(x v, B) = 3lx + alp
ai(« *1 B) = ai« 3 aiB . ?i(a *2 B) = ai« X aip
for i = 0,1 , «,B € D and both sides are defined .
Hi) r o (x4, B) = (r . o« +_ (r. B,
r.,(«+ B) = (r e )+, (r ., B)
ro., (x x, B) = (r <y «) X, (r <y B)
ro., (x * B) = (r ‘s ) *1 (r ‘s B)
ro., (s - x) =8 s (r .1-«)

for x,B € D , ry8 € R and both sides are defined .

iv) (x +, B) +, (¥ +4 ®) (x +p ¥) +4 (B +, §)

(x %, ¥) %, (B %, ©)

(x *; B) %, (¥ %4 ®)

(x +, B) %, (¥ +4 §) = (x %, ¥) +, (B %, §)

(x+, B) ¥, (¥ +2 8) = (x ¥; ¥) +, (B ¥, §)
for %, B,7,8 € D and both sides are defined .

V) 51(& + 31)

cia +; €48, ,‘cz(b + by) = €b +y €3b,y
for a,a; € Dy , b,by € D? and the additions are defined . (+)
Thus we get a category of double R—algebroids'gé .

We can ask now what is the relation between the category
of crossed modules (over algebroids) 4hnd the category of
double R-algebroids . At this stage we prove the following ;
Proposition: If D is a double R-algebroid , then we have two
crossed modules associated with D . That is ;vthere exist two

functors from the category of double R-algebroids to the

category of crossed modules (over algebroids) .
) Etand) = Lok g b, fitavb)= fa % ULb, fitrimer; La,

t’(v.ajs v C.a (}n:;b?'lx: T, Lx .



In the end of this chapter we give some examples on this

notion .

In chapter III , we define the notion of a special double

- R-algebroid (this is a double R-algebroid with Dy = D, ) and

.We define a "thin" structure on D which-is a morphism

© : @D, --+ D (where EHD; is a double R-algebroid with
c

°°mmUtin3 squares) . An element €(a d) is called thin ,
b

where a,b,c,d € Dy . Also we define a connection on D to be a

pair of functions r,r*:p, --» D which satisfy

i) I''a %, Ta = ¢4a , P’a‘*l FTa = cpa
ii) I’ (ab) = (L’a %, €sa) ¥, (€pa %, [’Db)
F(ab) = (Fa %, €ob) *, (c,b %, Ib)
iii) I'(a + a,) ¥, (x +; B) %, [(d+d,) = ([’a ¥, « %, [d) +,
(F’a; *, B ¥, [dy)
c c
where «,B € D with boundaries (a N d) , (ay d,) respectively
iv)‘P3ra ¥, (r o4 @) ¥ [rd = r ., (I’a ¥, « ¥, I'd) = [’a %,
(r .o, «) %, Id .
Théorem 1 : Let D ‘be a special double R~algebroid with
connection I'’ , I' . Then there is a morphism of special double
R-algebroids e : BD; --» D which is the identity on D, and
a ‘ 1
Fa = e(a 1) , I'b = e(1 b) , where a,k € D, .
1 b
In fact , the reason fér defining these two structures on
D is that ; .+ i
lt is easier to deal with connection

than with thin structure .
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Also we define a morphism betwgen two special "double
R-algebroids ‘with connection . Thus we have a category DA! of
special double R-algebroids with connection . Then we get a
functor from the category of special double R-algebroids with"
connection to the category of crossed moaules .

Now , to get a functor from the category of crossed
modules to fhe category of special double R-algebroids with
connection we introduce the notion of a "folding operatio;: ¢

which has the effect of "folding" all edges « € D onto the
o
edge 3,% . We prove ;

Proposition: There exists a functor from the category of

crossed modules to the'category of special double R-algebroids
with connections .
In fact , we prove
Theorem 2: These C&ﬂqavies are equivalent .
Finally we introduce the notion of a reflection on a
special double R-algebroid which gives an equivalence between

the two algebroid structures .

In chapter IV , we define an w-algebroid (without
connections) by using the cubical complex idea namely ;

An w-algebroid (without connections) A = {A,; 3? R ci}

s

is a cubical complex and for n 3 1 , A, has n algebroid

o] 1
structures over An—: of the form (An’+i’*i"i’ai’ ai’ci)

1

related appropriately to each other and to 8? ’ ai y €.

i
Thus we can define finite dimensional versions of the above
definition . Therefore we get ;
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Algebras.-» Algebroids —- Double algebroids -+ w-Algebroids,
(the arvows e - the 9generalisatiom of theseé notions).

Also we: define a crossed complex M (over algebroid) to
consist of a sequence of morphisms of R-algebroids over Mo

M: ... My -5, Mp-4 -5, ......—54 M, ~2, M,

satisfying the relatiqns H

i) each © : Mn --+ Mp-y , n > 2 is the identity on My .
ii) M; operates on the right and on the left on each My
(n$2) , by actions (a,m) --» &8mn , (m,b) --+ mb ,
Whénever m € Mu(x,y) , a € My(w,x) , b € M((y,z) and §

PreseYves these actionss
1ii) If m € My(x,y) , m’ € M (y,z) , m" € My(w,x) , then

Sm’ 50)(2 “if n + 3
" *| o’ if n=2
Sm" iowy if n ) 3

o= m"m if n=2

Finally we prove that ;
Thedrem 3: There exists a functor y from the category of
W-algebroids (without connections) to the category of crossed

complexes (over algebroids) .

In chapter V , $1 we define an w-algebroid with
connections and the morphisms between thém and also we give
the definition of a finite dimensional 'Qersions of an
W-algebroid .

In $ 2 we introduce the notion of "folding operation” ¢ ,
which has a similar effect to'thé folding operation in the two

dimensional case . Also we give the relations between this

operation and the axioms of 3 and 4 - tuple algebroids , that

is ,



Proposition: Let a € A, . Then ®a belongs to the associated

crossed complex YA .

Proposition: i) If a,b € A with a?a = 8§b , for @ = 0,1 ,

then ¢(a +j5 b) = ®a 4+, @b E

ii) For n = 3,4 , if a,b € A_ with 33& - 33b , then
u.a v.b
®(a ¥; b) = J (ob) + (¢a) J .
_ a0 o (¢] o] R | 1 | 1

iii) If a € A, and r € R, then

¢(r “ a) = r ‘n da .

Proposition: 1) For n = 3 , let a € A, . Then

¢€ia = ¢Pja = ¢P3& = 0 in dimension 3 for 1 ¢ i ¢ 3 and

1 <¢j«cz2.
2) For n = 4 , let a € A; . Then

°Cia = ¢rja = ¢r33 = dimension 4 for 1 ¢ i n¢ 4 and

|
[=]
[N
=

1¢j¢3.
Also we define a thin structure on A as follows ;
let a € A, , then a is called thin if and only if ¢a = 0 .

In $3 we construct the coskeleton in terms of "shells" for

an n-~tuple algebroid and we define 3? , ci, Pi ’ P; and the

operations on DA, to prove the following ;
EEQRQiiLng: If (Ap,...,Ap) is an n-tuple algebroid , then
(DAn,An,...,Ao) is an (n+l)-tuple algebroid .

Proposition: Let A be an w-algebroid and let M = YA be its

associated crossed complex‘. Let a € DAn_1 and € € M(u,v)

where u = Boa , v = B;a . Then a necceésary and sufficient

. &l



condition for the existence of b € A, such that db = a and

¢ = € is that €€ = €¢3a . Further if b exist , it is unique .
In $4 we construct a functor A from the category of

3-truncated crossed complexes to the category of 3-tuple

181gebroids by using the folding operation . Also-we prove

that ;

Theorem 4: The functors Yy , A form an adjoint gquivalence

Y ¢ (w=Alg)® e-o (Crs)® : 2 .



CHAPTER I

R-ALGEBROIDS

0. INTRQDUCTION :

We beginAthis chapter by defining R-algebroids and their
morphisms . These have been studied in several papers ,
[Po-1] , [Mi-1] , [Mi-2] , [Mi-3] , [A-1] .

For instance B.Mitchell [Mi-1,2,3] has given a
categorical definition of‘R—algebroids', and obtained some
interesting results on these ggdgets . His definition is the
following .

Let R be a commutative ring . An R-category A is a
category equipped with an R-module structure on each hom set
such that composition is R;bilinear . An R-functor is a
functor T: A --+ B between R-categories such that the maps

A T : A(ag,a) -—+ B(Tay,Tajy)
@re R-linear .

In the language of enriched categories , one caﬂ define
8n R-category to be a category which is enriched over the
closed category of R-modules . An R-category with one object
is an associative R-algebra with idengity .

L}

An R-algebroid A is a small R-category . If A and A’ are

R-algebroids , define AGRA’ by Ob(ABRA’) = ObA x ObA’ ,
ABgA’ ((a,b),(a’,b’)) = A(a,a’) ® A’(b,b’) .
Composition is the unique R-bilinear map satisfying

(a®a’)(b&b’) = ab e a’b’



The enveloping R-algebroid of an R-algebroid A is

A€ = A®pA°P
An R-algebroid A is separsble if A considered as its own
hom functor is projective as an A®-module . It is central if

the map;R - HomAe(A,A) is an isomorphism .

- Two R-algebroids are Morita equivalent if their module

categories are R-equivalent .

Before we state the first result of [Mi-3] , let us give
the definition of the Brauer group of fhe commutative ring .

Let R be a commutafive ring and let V(R) denote the
isomorphism classes of allﬂalgebras having R as center and
which are separable over R . Let Vo(R) Be the subset of V(R)
consisting of the algebras Homp(E,E) where E is any finitely
€enerated projective faithful R-module . One can prove that
V(R) , Vo(R) are closed under the operation of tensor product
over R (see [A-G-1]) . |

Define an equivalence relation in V(R) as follows : if
84,8, are in V(R) , then §, is equvalént to §, if there are
algebras A, and A, in Vo(R) such that §,8p4, & $,8p4, .

Let B(R) denote the set of equivalence classes of V(R) . Then
B(R) is an abelian group [A-G-1] . |

Now we are ready to state the result given in [Mi-3] ;
hamely that the Morita class of an R—algeproid A is an
element of B(R) if and only if A is central , separable and
equivalent to an algebra .

One of the reasons'to generalise algebras to algebroids
is that an R—algebtoid A which is only separable need not Se
equivalent to an algebra . Thus algebroids give a new
direction in the theory of separability .

-2-



All the above material has been given in [Mi-1,2,3] .

In [Po-1) , T.Porter has defined an R-algebroid in a
slightly different setting . He has defined an R-algebroid A
on a fixed set of "objects’Ag to be a disjoint family of
R-modules , so that A need not have identities . Also he
defined an action of an R-algebroid on a "C-structure" .
Finally he defined a crossed module and linked crossed
modules with internal groupoids . More precisely , he proved
that in the category of R-algebroids over a fixed set , any
internal category is an internnal groupoid .

Now we move from this setting to say that it is well
known that groups are appropriately generalised to
groupoids , (see for example [Br-1],[Hi-1]) . As explained
above algebras are appropriately generalised to
algebroids ; we give an example inksection 1 to illustrate
this . Moreover we give the definition of a tensor product
between two R-algebroids and reprove the known‘fﬁct that the
°at586ry of algebroids is a monoidal closed category [Mi-1] .

In sections 2 and 3 we give the definition of a crossed
module over an associative algebra (see for example [Ge-1] ,
[K-L-ll » [E1-1] ) and introduce the notion of crossed module
°Ver‘an algebroid . Also we give some properties similar to

those well known for crossed modules over groups .

L3

B S e AL

1. R-ALGEBROIDS :

The material of this section may be found in [Mi-1] ,

[Mi-2] , [(Po-1] . We shall give the definition of an
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R-algebroid A on & set of "objects" Ay in the following way :

Recall that A is called a directed graph over a set Ay if

there are given functions 3° , 3! :A - A, , CiAg —» A,

called respectively the source , target and unit maps , such

that 3% = alg = IA . Then we write
. o

.o

A(x,y) = {a € A : 8% = x , 3dla = y} , and write 1, for ex .

If a € A(x,y) , we also write a:x--+y .

An R-algebroid (A,Ao,a°,a1,§,+,.) (which is abbreviated
to A) is-a directed graph A over A, together with for all
X9¥,2 € Ag
1) an R-module structure on each A(x,y) ,

ii) an R-Silinear function , called composition ,
X 1 A(x,y) X A(y,2z) -+ A(x,z) .
(¢ , b) -————- - axb
The only axioms are that composition is associative , and
that the elements l, , x € Ag , act as identities for
composition : if atx -» y , then 1, x a = a % ly = a .
Thus the composition makes A into a smali category .

A morphism f:A -+ B of R-algebroids A , B is a functor of
the underlying categories which is also R-linear on each
A(x,y) -+ B(fx,fy) . The set of all morphisms A -+ B is
Written Homp(A,B) . Note that a morphism f:A -+ B preserves
the identities . .

The zero of A(x,y) is written 0 , or Oyy if additional
clarity is required . As usual , bilinearity implies
@%x0=0,0%a=0, whenever these are defined .
Examples: |
1) If A, has exactly one object , then an R-algebroid over Ag

is an R-algebra .



2) If A is an R-algebroid over A and x € Ay , then A(x,x) is
an R-algebra .

We now come'to one of the most important features of the
category of R-algebroids namely that'it has an internal hom
functor.

Let 'A,B be R-algebroids . Suppose given f,g € Homp(A,B) ;
we defiﬂe Hom(f,g) to be the set of all "natural
transformations " f -+ g , that is , the set of all functions
b : Ay -+ B such that bx € B(fx,gx) , x € Ag , and for all

X,y € Ao and a€A(x,y) the following square

fx ———==-- 2 gX
fél ga
fy --—E;-‘* gy

Commutes . Then Hom(f,g) is given the structure of R-module
by (rb + r'b*)x = rbx + r'b’x , whenever x € Ag and r,r'e R .
There is a bilinear composition
Hom(f,g) x Hom(g,h) —--+ Hom(f,h)
(b, b ) ——————- + b x b’
Where (b & b’)x = bx * b’x . Then we get ;

Proposition 1.1.1: With the above structure , the family

Hom(A,B) = {Hom(f,g)}y , ¢ HOMR(AsB)'

is ap R-algebroid . o

A special case is when A,B are R-algebras ; we still get
80 R-algebroid Hom(A,B) and this is one of the motivating
€Xamples for éonsidering thé extension from R-algebras to

R"QIEEbroids

Definition 1,1.2: 1f A,B are two R-algebroids over Ao)Bg

resPGCtively » we define the tensor product A®pB over AyxB,




to be the family of R-modules
{A(st)QRB(ro) ! X,y € Ap , u,v € By }
with composition (a’® b’) * (a ® b) = (a’ ¥ a) ® (b’ x b) .,

Lemma 1.1.3: Let A,B be R-algebroids over Ay,B, respectively.

Then A®RB is an R-algebroid over AgxBg . o

| Proposition 1.1.4: Let A,B,C be R-algebroidé « Then there is

& natural isombrphism between Homp(AGgB , C) and

Homp (A, Hom(B,C)) .

Proof: ‘

Define a map n : Homp(A®RB,C) -+ Homp(A,Hom(B,C)) as follows :
if ¢:A8pB -+ ¢ , then n(¢) : A —» Hom(B,C) and if x € Ob(4A) ,
then n(¢)(x) ie to be a morphism B -+ C , given on objects by
Y ==+ ¢(x,y) and on arrow b:y -+ y’ by

() (x)) (b) = ®(1,8) . If a is an arrow in A , then

N(®)(a) € Hom(B,C) which is given on objects by

Y -+ ¢(a®l and on arrows b y =+ y’ by

y)
(n(®) (a))(b)

Define a map n’ : Homp(A,Hom(B,C)) —--+ Homp(A€RB,C) as

¢(a®) .

follows :

if ¢ : A ——» Hom(B,C) , then N'(¥) : ABRB --+ C . If (x,y) is
an object in Ob(A)xOb(B) , then we define

N ($)(x,y) = ¢(x)(y) and if aBb is an arrow in A®RB such that
a X -+ x* ,b:y-»y', then ¥(x),¥(x’) : B -+ C and so
¥(a) 1 g(x) -+ w(x’) and ¥(x)(b):n’¥(x,¥) ~+ R*¥(x,y’) ,
¥(x*)(b) :»n’¢(x’,y) -+ nNY(x’,y’) .

Thus we get the diagram n C




n* (¥) (x,y) ¥EELBL, no gy (x,y0)

¥(a)(y) ¥(a)(y’) .

v v
Define n’¢(a®b) = ¢(a)(y’)¥(x)(b) = $(x*)(b)¢(a)(y) .

Now we want to show that nn’ =1 , n'n =1 . For nn* =1 ,
let ¢ : A -~ Hom(B,C) and let (x,y) € Ob(A)xOb(B) , then
N’ ($) (x,y) = n(¥(x)(y)) = ¥(x,y) . If a8b € A®BRB , then

n(¥(a) (y*)¥(x) (b)) = ¥(a®ly)¥(1,8b) = y(ab) .

nn® (¢) (ab)

Thus nn* = 1 ,
For n'n = 1, let ¢ : AGpB —-- C and let x € Ob(A) , then
(N’ (n(e)) (%)) (y)
n*((n(e))(x))(b)

n’(e(x,y)) = ¢(x)(y) for y € Ob(B) and

n* (6(1,8b)) = &(1,)(y’)e(x)(b) = &(x)(b)

L]

for b:y ~» y* € B .
Hence n*((n(#))(y)) = n’(e(adly)) =
¢(a)(y) ¢(x)(1ly) = &(a)(b) , whenever a :x -+ x’ and
b:y - y' . That is , the category of R-algebroids can be
given the structure of a monoidal closed category ; a

For other properties of the category of R-algebroids
Which are not valid in the category of R-algebras see ,
(M-1,2, 3]

If the unit map is omitted from the algebroid structure

then we obtain an R—algebroid (without identities) .

Remark 1.1.5: Let A,B be algebroids (without identities) and
let M(Ap,B,) denote the set of functions Ag ~-9 By . Let © be

the function



f - -» fo ’

Then each fiﬁre ~1(h) = Homp(A,B;h) can be given the
structure of R-module by (f+g)a = fa + ga , (rf)a = f(ra) ,

for all a €e A, r e R .

2. CROSSED MODULES (OVER ASSOCIATIVE ALGEBRAS):

The general concept of crossed module originates in the
work (1949) of J.H.C.Whitehead [Wh~1],[Wh-2] in algebraic
topology . There the crossed modules were free crossed
modules of groups . Also the notion of crossed module has
been studied by Peiffer [Pe-1] and Reidemeister [R-1] , and
they have defined identities among relations . For further
detail see the survey of Brown—Huebschmgnn [B~Hu-1] .

In the group case , & crossed module generalises the concepts
of a normal subgroup and that of an ordinary module .

The work of [K-L-1] in algebraic K-theory has introduced
Crossed modules of Lie algebras . In fact they have studied a
Tibration in Lie-algebras and they found that the induced map
of the fibration gives a crossed module . The early work of
[Ge-1] , [L-1] and [L-S-1] essentially involvgs the notion of
Crossed modules in associative algebras and commutative
algebras under different names , which they use to define
cohomology groups of algebras . Also [L-R-1] has analysed
Crossed modules in associative algebfas, and the general case
°f crossed modules in a category of interest C has been

discussed in [Po-2] : he has proved that "the category of
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internal categories in a category of interest C is equivalent
to the category of crossed modulesin ¢ . For the precise
result , see [Po-2] .

. In this section , we give the definition of crossed
module in the category of associative algebras in order to
set the stage for the definition of crossed module over
algebrbid iﬁ the next section .

Fix a commutative ring R (with ﬁnit) y and let AL be the
category of associative algebras over R .

We define now an associative action in the category AL as

follows

Let A,M be associative algebras over R . An associative

action of A on M is a pair of maps

\-—.
A XM-2M R M xA-2M
(a,m) -» 8m (m,a) -+ m@

such that M is a left and right A-module (bi-A-module) , that

is ,
i) (ﬁ+m’)8 = m® + m’@ ’ 8(m+m’) = 8m + 8m’® ,
ii) ma"'&’ = ma + ma’ ’ a+a’m = am + a’m s

and satisfy the conditions :

iii) (m.p*)8 = m . m*8 y 8(m.m’) = 8m . m’ ,
i

iV) maa" (ma)a’ ’ aa’m‘ = a(a’m) » (aYH)a: a(m“') ;L‘M: m =

Y a
%m = Yym)

LY

V) r(m®)

mra = (rm)® , ¥ (%m) =
for all r ¢ R, m,m’e M, and a,a’c A .

A crossed module in AL is an associative algebra morphism

K : M -9 A with an associative action of A on M such that :

1) u(®m) = a.(um) , u(m®) = (um).a



g e i

ii) Mg = g p* |, pém’ = g @

for all m,m’€e M and a € A .
Examples: 1) Let A be an associative R-algebra and let I be a
two-sided ideal in A . Let i:I --+ A be the inclusion map ,
then .i with action of A on I given by multiplication is a
crossed‘module .
2) Let A,M be associative algebras and let M be a bi
A-module . Then the zero map from M to A is>a.crossed
module with‘the action given by bimodule structure .

Now we move on aﬁd_in the.next section to give the

definition of crossed module (over an algebroid) by using the.

above definition .

3. CROSSED MODULES (OVER ALGEBROIDS):

In the previous section'. we defined a crossed module in
the context of associative algebras .In this section we
define a croséed module over an algebroid .

Let A, be a set and let A,M be two R-algebroids over Ao ,
where M need not have identities . Suppose A operates on M on
the right and on the left as follows :

Let mix - y € M and a € A(w,x) , b e‘A(y;z) » then we
denote the right action by mP € M(x,z) , and the left action

bY 8m € M(w,y) as shown in the diagram below

x -B- y

w-3- x y -B- 2
8m € M(w,y) nb ¢ M(x,z)
left action . right action

-10-



such that these actions satisfy the following axioms H

(1.3.1)

(am)b =*a(mb) : (1.3.1) (i)

(me)b = pab | bam) = bam , (mm')S m % (1.8.1)(14)

D((M ml) = am m
ma+b = ma + mb ’ a+bm = am + bm

(m + my)b = b + m,b, 8(m + my) = 8m + 8nm, (1.3.1) (1i4)
(rm)b = p pb = prb |, a(rm) = r 8m = rap (1.3.1)(iv)
We assume thad A has an |‘p/€Mﬁl‘l#

Lm = m = ply ‘ (1:3.1)(v)

for all a,b € A, m,m; € M and x,y € Ag . Thus we get :

Definition 1.3.2: Let A,M be two R-algebroids over Ay swch that A
hasS an jdentrty A

morphism u:M --+ A is called a crossed module if there are
actions of A on M satisfying the above axioms and also the
following axioms :

#(md) = (um)b , wu(®m) = a(um) - (1.3.2)(i)

mm’ - m‘m’ - um"l’ : ) (10302)(ii)

for all a,b € A, mym’ € M and both sides are defined .

Definition 1.3.3: A morphism of crossed modules

(“aﬂ):(A,M;u) ——+ (A’,M’,u’) is two algebroid morphisms

XA -5 A B:M ——+ M' such that au = u’B and

’
B(8m) = xagy , g(mP) = Am*P , for all a,b € A , m € M and
XA --5 A® jg to preserve identities . Thus we have a
category C of crossed modules (over algebroids) .

To give examples of such crossed modules , we define a

Subalgebroid and two-sided ideal . R

Definition 1.3.4: Let A be an R-algebroid over Ag . A

Subalgebroid A’ is a disjoint family of R-submodules
A Goy) € Ay e gy

With units and each R-bilinear function

-11-



A’ (x,y) x A’(y,z) -=» A’(x,2)
is the restriction of the R-bilinear function

A(x,y) x A(Y,Z)v"""" A(x,z) .

Definition 1.3.5: Given an R-algebroid A over Ag , a

two-sided ideal I in A is a family of R-submodules

{I(x,y) € MY}y y € Ay o
such that I satisfies the axiom:
if a € 1(x,y) , b € A(2z,x) , c € A(y,w) , then ba € I(z,y)
and ac € I(x,w)
E&nglg: Let A be an R-algebroid over Ay and suppose I is a
two-gsided ideal in A . Let i:I -+ A be the inclusion morphism -

and let A operate on I by

(i) a¢ = ac (ii) Pa = ba , for all a € I , b,c € A .

Then i:I -+ A is a crossed module . Clgarly I is an
R-algebroid (without identities) .

Remark 1.3.6: Let f:A --+ B be an algebroid morphism , where
A,B are defined over the same set A  and Ob(f) = 1A, . Then
ker f = {a € A(x,y): fa = Oxy for all x,y € Ag} is a
two-sided ideal in A .

Proposition 1.83.7: Let 4 : M =2 A be a crossed module of

{um: m € M} is a two-sided ideal in

@lgebroids . Then Im u
A,

Proof: Let aclm u , so there is meM such that um = a , for
Some a € A . Let beA such that ab is defined , then
ab = um p = u(mb) . Thus ab € Im u and similarly ca € Im u R

for ceA and ca is defined . o

-12-



Let I be a two-sided ideal in A . Then we can define
quotient R-modules A(x,y)/I(x,y) for all x,y € Ay . Then
there is an R-bilinear morphism
¥:1A(%,y)/I(x,y) x A(y,2)/I(y,2z) ——» A(x,2)/I(x,z)
and associativity holds
Then we get an R-algebroid A/I which is the family of
quotient R-ﬁodules

{A(x,y)/1(x,y) ¢ X,y € Ao}

We call it the quotient R-algebroid and then there is a

canonical mapping p:A —+ A/I of R-algebroids . Also we have

&n exact sequence

0—> 1 I SO N A/l > O

Thus for any crossed module (A,M,u) , there is an exact
sequence 0—> ker 4 ==/ == Im u 0
We can state some properties of algebroids .
i) Since Imu is a two-sided ideal , then coker u = A/uM exist
and hence there is an exact sequence

| Imu ——-» A -—-+ coker u .,
ii) Since mm*® = M@mp’® , and if um = 0 , then m.M = 0 and
M.m = 0 ., Thus m € Ann(M) (Ann means annihilator) and clearly
Ann(M) is a subalgebroid of M . In particular keru.ker u = 0 .

iii) Coker u = A/Imu acts on ker U .

iv) Let 0 —-» K -=—+ M -B2 A --3 0 be a central extenSion ,
that is , it is a short exact sequence such that if k € K and
m €M, then km = mk = 0 . Then p:M --+ A can be give the
structure of a crossed module .

Proof: For any a € A , let sa denote an element of M such

that p gsa = o (thus s is a'section of p) .

-13-



Define actions of A.on M as follows:

8m = (sa)m , mP = m(sb) .

First , to show that these actions are well-defined .

Let 8’ be a section of p and let m; € M , then we want to
Prove that

8p = (sa5m = (s’a)m for a € A .

Let m, € M ,’then pm, = a and hence my - sa , my —s’a € K .
So (my — sa) m = (my —s’a) m = 0 , then (sa)m = (s’a)m . So
the left action is well-defined . We can prove similarly that
the right hction is well-defined . It is clear that these

actions satisfy the axioms for a crossed module . 0O

_14-



CHAPTER 11

- DOUBLE R—ALGEBROIDS

0. INTRODUCTION:

We beéin this chapter by showing how to mimic the idea
given in chapter I in‘one higher dimension . That is , we look
for "algébroids in two dimensions" . So we need two different
additions and compositions .

In fact , we make an analogy to the idea’given by R.Brown
"Higher dimensional group theory" [Br-2] to define double
R-algebroids .

- In section 2 we prove that there exist two functors from
the category of double R-algebroids to the category of crossed
modules . Also we give examples of double R-algebroids in the

third section .

1. DEFINITIONS:

The notion of double category has occured often in thé
literature (see for example , [Be—l],[Gr-l],[Ma—l],[Wy—l],
[K-S-1}, [B-5-1], [S-W-1] and is due originally to Ehresmann
[th“ll) . In this section we study an object with more

L)

Structure than a double category , which we call a double
R-algebroid .

To define double R-algebroids , we start to give in some
detail the definition of double category ;

Definition ' 2.1.1:[Eh-1},[B-S-1] By a double category D is

meant four related categories

-15—



(] 1 1
(p,0,,3.,3,,%,¢c) , (D,D, 32.32.*2.52)

o .1 ' o .1
(DD 8,8 ,%,€) , (D_,D_,8_,8_,%,¢)

1 2’ 2’ ’

as partially shown in the diagram
Dy \\\\\\
:\\\\\____ kifffff:f

and satisfying the rules (i-v) given below . The elements of D

i

will ‘be called squares , of D,;,D, horizontal and yvertical

edges respectively , and of D, points or objects . We will

8ssume the relation :

i) s ad - sJ al i,j = 0,1

and this allows us to represent a square « € D as having
/

boundary edges pictured as

o
81«
o 1
aza « 82«
1
81a
while the edges are pictured as
Y a )
Sxa —————— - §.a Szb
a €, b
1
s.b
b €D,

From now on we will write the boundary of a square as

8(the square) for example the boundary of « is written as

-16-



a:«
3 = (3% « ale) .
3:«
R | . o
ii) az(cla) = c%.a i=0,1
Je = egd =
3y(e,b) = esib J=20,1.

. So the identities c,é » €2b form squares which have boundaries
a cz

2(c,a) = (ex ey) , 3(cyb) = (b b) .
a cw

1ii) c,ex = ¢ ex

iv) a:(a’*1 B) aia * aiﬁ . i=0,1

3 J J s op
I« x, p) = B« x 31p j= 0,1

for #11 «,B € D such that both sides are defined .
V) (The interchange law)

(x ¥y B) %, (¥ ¥4 8) = (x ¥z ¥) *; (B ¥, g)
whenever «,B,y,6 € D and both sides are defined .

nginitionv_g.l.Z: A double R-algebroid D is four related

R-algebroids

(o) 1 o 1
(D’Dx’axt 31’51’+1’*1”1) ' (D,D2,82,82,52,+2,*2,,2)

(o] 1
(D DO,S:,S:,C,+o*;o) ’ (p ,D ,92,92,5,+,*,.)

1!

88 shown in the diagram

and satisfying the rules given below .

-17-



The elements of D will be called}s uares , of Dy,D, horizontal

and vertical edges respectively and of Dy the set of
"objects"
(2.1.3)

i . _ &J Al . .

§, 3, = 8] 3 i,j € {0,1} .

Then we can represent a square « as having boundary edges

given by
M 1———» 2
3% o« 3lx 1
2
a:a

Wwhere the edges pictured as

O o-8___, ¢t °
S.a s.a | s_b
B€D1 b
1
Szb
b €D,

First , we assume on D four operations +,%,,+,,%, defined in

the following way :

Let «,B,y,5,6 € D have boundaries given by

c c b cy
9« = (a d) , 38 =(ay dy) , 3y =(a’ 4d’), 35 = (a d)
b . b e b1
c’ .
and 3§ = (d e) .
b’

Then « +y B, x ¥, ¥, « +3 8 , « ¥, § have boundary edges in
the form |
[o] c

9« t1 B) = (ata, d+dg) , 3(x ¥, ¥) = (aa’ dd’) ,
b e

~-18-



ctc, cc’

8(x +, 8) = (a d) , 3(x ¥, €) = (a e) .
. b+b, - bb?

So we are ready to give more rules for double R-algebroid

(2.1.4)

ai(« 4, 8) = ata 4 aiﬁ i=0,1 (2.1.4)(i)
3t (« +, B) = alas e i=0,1 (2.1.4)(ii)
il (« ¥, B) = alax aln i= 0,1 (2.1.4)(iii)
31(« X, B) = ai« * aiﬁ i=0,1 (2.1.4)(iv)

for all «,B € D and both sides are defined .
(2.1.5)
We have two scalar multiplications ; for « € D as above and
reR, so we definer .y X, r ., « to have boundary edges in
the form

c rc
Ar .y «) = (ra rd) , Ar .o ® = (a d) .

b rb

These'multiplications are to satisfy the following axioms :

ey (x +, B)

(r .4 ) +3 (r <4 B)
r «2 (« +1 B) 1 } (2'1'5)(1)

2 &) +4 (r .o B)

i n
~
s |

P oy (@ %3 B) = (r .y @ ¥z (r .y B) ,
r ‘: (« *: B) = (l‘ .; «) *f (I‘ .; B) } (2.1.5)(11)

r

1 (8 a0 =8 .z (r .y @ C (2.1.5)(iii)

for all «, €D, r,s € R and both sides are defined .

These rules make sense in terms of boundaries , for

example , let «,B € D have boundaries given by

c Ccy c
Sx = (a d) , 3B = (a d) , then 3(r .y «) = (ra rd) ,
b b, b
Cy . c+ct
r .4 B) = (ra rd) , 3[r .4 (¢ +5 B)] = (ra rd) ,
by | b+b,
-19-



and Q[(r o1 «) +2 (r .1 B)] = (ra

C+Ct
rd) ,
b+b,

that is ,

r ., (« ¥2 B) = (r .4 ) +2 (r .4 B) in terms of boundaries

(2.1.6) (The interchange laws) :

(x +3 B) +5 (¥ +4 8) = (x +2 7) +; (B +; 8) (2.1.6) (i)
which is diagraﬁmatically as shown below :
X c W x S w x __C1 x %1 w
a o« d , ag B d, , a Y y 84 t d,
y b z y b z y b, y b, z
x % _w x 1 w x _Stc1 x ST o
ata,|a+,B [d+d, , ata,y|y+,$ [d+d; , a »“+27 » 84| B+,8(dy
y b 2 Yy b, z Yy b+b, y b+b, z
X c+cy w X .ctcy W
ata,l (a+ B)+,(r+,8) |[d+dy , at+ayl («+¥)+ (B+,8) |d+d, .
v b+b, z y b+b, 2
(x %y B) %, (¥ %4 8) = (x %, ¥) *; (B ¥, §) (2.1.6)(ii)
c c’
a « d ” f
b b?
a’| B a* s If’ .
e e’
(x +1 B) %, (¥ +4 8) = (x ¥, ¥) +; (B *; 8) (2.1.6)(iii)

which is‘diagrammatically given by

-20



cc’ cc

ata,l (x+gB)x,(y+,8) |f+f; , a+a, (0(*27)+;(B*2S) f+f, .

bb’ v Y bb* v
(x +3 B) #; (y 4+, 8) = (x ¥g 7) +2 (B %y §)  (2.1.6)(iv) .
The explenation is similar to that for the interchange law
(iii) , whenever «,B,”,% € D and both éides are defined .
(2.1.7)

We assume that each of the algebroid structures has
identities and then €, , €, give these identities in the
following way ; A
given a € D,(x,y) » b € Dy(x,y) , then €4a , c,b having

boundaries given by ;

a lx
(eya) = (1, ly) » 2(ezb) = (b . b) , such that ¢, , €,
a y

are algebroid morphisms §, <D, — D : &, D;——*'D

We shall need later some simple facts on 2zero elements

namely ;

Remark 2.1.8: If x,y € Do , then we write 0 or Oyy for the

Zero elements in both Dy(x,y) and Dp(x,y) . However if

€ €Dy(x,y) , b € Dg(z,w) , then we have a set

D‘(c,b)'= (a:) -l(c) n (a:) _l(b) and this set has zero which

wWe write 0; . The boundaries of this element are given by

b
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X y
1

0 ’ocb 0

z b w

and it is clear that 0: is the zero for +, in Dl(c,b) ,

b
where D1(c,b) is the set of arrows in direction 1 y from c to

b .

Also we can get a square Ozd with boundaries given in the form

0
X 4

2
a Oad d [}
y 0 W

‘Which is the zero for +, in D2(a,d) . Notice that , if x €D

is given by

1 2 2 . s
then 0Cb X, & = O;e , 0ad ¥, « = 0af by distributivity .

Definition 2.1.9: A morphism between two double R-algebroids

D , E (over the same set of objects) is a triple of furnctions

¥.iD --» E , ¢,:D; ==+ Ey , ¥3:Dp —-» E2 which toqethey
preserves all structures . Thus &e get a category of
double R-algebroids . Also we can define a morphism betweén
two double R-algebroids on different sets of objects , by
Using the definition given in chapter 1 section 1 . Let us
denote the category of double R-algebroids (over .d,’ffgyeﬂ sets
of objects) by DA . |
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2. FUNCTORS (DOUBLE ALGEBROIDS) — (CROSSED MODULES):

In chapter 1 section 2 and in the previous section , we
have defined two categories namely the category of crossed
modules C and the category of double R;algebroids DA .

In ihis section , we make an analogy with the result given
in ([B-S-1] , proposition 1) that is , we want to show how to
obtain from a double R-algebroid two crossed modules (over
algebroids) . We start with the main result of this section

hamely ;

Proposition 2.2.1: If D is a double R-algebroid , then we have

two crossed modules associated with D .
Proof: First , let Ag = Do (the set of objects of D) , and

A2 = D, , the algebroid of arrows of D; . We take M, to

m
consist of squares B with boundary of the form (1 1),
‘ 0
that ig ,
M, (x - . 3%8 = atg=0 e =1, alg=1)
2(x,y) = {BeD:3 B = m , 3, xy ' °2 %' 25 v
~ We define +,%,. on Mp by B+ By = B+, By , RXx B = B x, B

rand r , B = p .2 B, whenever B,B;,B’ € M; and r € R . Thus M,
' 1s an R-algebroid over Ag . Let B € M, as above and let

8’ € Ay(y,z) , a € A,(w,x) . So we get two squares in the form

y 2 W X J
ly Cta' lz ? lw cla lx M

4

' Then we define the right and the left actions of A, on M, by
the formulae
pa’ - g ¥, c,a’ , 8B = t,;a ¥, B as shown below :
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x m , a’ 2 X ma’ W a % m
1y B | €48’ [l = 1y|B¥peqa’(ly , 1§ €4a By =
X Va2 X 0 z a o y

w an

1y C1a*éB ly .

0
We now prove that these actions satisfy the axioms for
crossed modules (1.3.1)(i-iv) .
Axioms (1.3.1)(i-ii) , follow directly from the associativity
of %, ; |
(1.3.1)(iii)
patb - ga + pgb , atbg = ag + bg
(B + p,)b = gb + g,b , 8(B + B) = 88 + 8B,
Proof:

e SN

pa+b

B X, cy(a + b) by definition

n

B %, [€,a +5 €4b] by (2.1.7)

(B %, ¢ a) +, (B ¥z ¢4b) by distributivity

ga + gb

We prove similarly that 8+tbg = 8g + bg | (B + B;) = pb + B.b ,
a(B + Bl) = BB + 8B1 .

For (1.3.1)(iv) , namely (r.B)8 = r . B® = BY8 for all reR ,

(r.p)a = (p .2 B) ¥ €,a by definition
=r ., (B %, €q8) from bilinearity
=r ., B2 = r . B8,

Also by the definition and bilinearity , we get (r.p)a

pra

Clearly (1.3.1)(iv) is satisfied .
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Define now a map H, :M2 -——2 Az by MZB = 31

o

It is clear that up is an algebroid morphism .

Finally , to prove that (A;,M,,4,) is a crossed module

it suffices to verify the axioms (1.3.2)(i-ii) ; namely

B

Uy (B%) = (u Ba , wu (%B) = a (u,B) VBB = phaf’ o HaBg,

The firsf part is clear . Thus we just want to show

that B B! = BH25’= uzBBO

Suppose B ,

(15 1)

B x p°

» (15 1)

B x, B

(Clm *1 B) *2 (B, *1 CIO)

B’

Then

by definition

(Clm *2 B’) *‘ (B *2 510)

by

have boundaries in the form

(2.1.6)(ii) .

Since B x, €,0 = ¢,0 by remark (2.1.8) , we have

m

- M2B

Bx B = (e;m %, B') %, €40 = ¢,m %, B* = "p
by the definition and remark (2.1.8) .
We can use similar argument to get
B x p = B“zp' , as shown in the diagram below
m _n’
Bx p = px, pp= 1 B B' Il
0 0
m m' m ‘m’
1 B c,m’ 1 1 B c,m’ 1
0 mi—— = 0 m’ )
i ¢,0 B 1 1 40 B’ 1
0 0 0 0
_25_

B’

by the identity ruie




= Bm' = BMIB'.
Then we get a crossed module (A2, Mz, u2)

For the second crossed module , we assume Ay = D, and take
M, to consist of squares B with boundary of the form (m i ) ,

that is

b (o] _ 1 _
M (x,y) =(B € D:Bgﬁ =m, 3,8=0, ,38=1;, 318 = 1y}

and clearly ﬁt is an R-algebroid over Ao by B + By = B +, B, ,
Bx p = g X, B and r . B=1T ., BA. Then we can use similar
rgument as above to get a crossed module (A ,M,,u,) . This is
the complete proof of the proposition . a]

The next section gives examples of double R-algebroids .

3. EXAMPLES:

We give in this section three examples of double
algebroids .
1) Let B be an R-algebroid over B, . Then we can construct a
double R-algebroid D = BB of commuting squares in B such that
D and B have the same set of objects (i.e: Dg = Bg) . '
Let D1'= Do = B be the horizontal and vertical algebroid

Structures , and let D consist of quadruples

X:(a\g d) for a,b,c,d € B and cd = ab .
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Thug &« is determined by its boundary edges .

following way :

Let « = (a g d) , B= (ayy dy) , 7= (aptd),

’
$= (a*?® d’) , ¢ = (d g, e) , then we define

e
X +y B = (ata, ¢ d+d,) , &+ 7= (a g:s: d) ,
X ¥, §= (aa’ ©dd’) , %y 6= (a S e) . If r € R
e » © ¥2 bb* ¢’ - ’

It is clear that these dperations are well-defined , for
eéxample +, , since «,B € D , then ab = cd and a,b = cd; hence
(a + a4)b = ¢(d + dy) , so x +4 B €D .
Now we want to show that this structure satisfies the

axXioms for double algebroids
It is obvious that this structure satisfies the axioms
(2.1.4) (i-iv) , (2.1.8),(2.17)- and (2.1.5) (i-ii).
Thus it is enoughlto satisfy the axioms (2.1.4)(i-iv)
or (2.1.4)(i) , let «,B,r,% € D havg boundaries given by

c c cy c,
X=(a d), B=(ay dg) , Y= (a d) , & = (a, d,) ,

b - b b, . b,
so | o

c c

1
(ata, d+dy) , > +; § = (atay ' d+dy) ,
. b 1

)
+
[
™
f

ctcy ctey
(a d) and B +, ® = (a, d,;) and then
b+b, b+b,

R

+
N
N

1}

" ctey :
( +, B) +2 (¥ +4 &) = (a+ta, . d+dy) , and
b+b1
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ctcy
( +5 ¥) +; (B +, §) = (a+a, d+d,) .

b+b
So (a+a,)(b+b,) = (c+c,;)(d+d;) (since ab = cd , asb = cd, ,
ab, = cgd , and a;by = c¢4dy . The explanation for
(2.1.4)(ii-iv) is similar to that of (2.1.4)(i) .

Thus the structure EB with these operations does satisfy

the rules for a double algebroid .

2) Let B be an R-algebra and let B, , B, be two subalgebras of
B . Define D = B(B,,B,) to be the set of commuting squares

c
= (a d) , for a,d € B; , c,b € B, and ab = cd . Let Dg
' b
= {*}‘. If we define the operations +; , +5 , X , %5,

‘1 s .2 on D in a similar way to that in example (1) , we get

2 double R-algebroid .
3) A generalisation of example (2) is: if B is an R-algebra
and B,

» B, are subalgebras of B and given homomorphisms

.92 By -»B, ¢:By-+B.
Define now , Do = {¥} and Dy, = By , D = B, and D to

c
consist of quadruples (a d) , for a,d € By , e, be B, such
b

that (¢a)(wb) = (¥c)(ed) .

We define +y 5, 2 5 ¥4 5 *¥3 , «4 4 .2 0n D in the following

L3

way :
c c
for +, , let « = (a d) , B= (a; dy) , then
b b
c
X+, B= (a+a, d+d,;) . So we want to show that
b
-28~



(¢(a+a,))(¥b) = (¥c)(o(d+dy)) , and this equation follows from
these two eéuations (¢a) (¥b) = (¥c)(e¢d) and
(%a,;) (¥b) =’(wc)(¢d1) and ¢ is a morphism .
For +, , %, , %, , .4y 4 +.2 » We can defjne these operations
similar as in example (2) by using the fact that ¢ , ¢ are
algebra morphisms . |

Cleafly the above structure does satisfy the axioms of a
double R-algebroid . Moreover , the two associated crossed
modules of the above double algebroid easr‘i”:h‘a”’

i) the first crossed module is giveq[by the morphism

: I
Bz ———h Bz

c :
(1 1) --»c ' .
0 essentiolly
ii) The second crossed module is given[by the morphism

I
Bl ———p 31

1

(a 0) -—< a
1
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CHAPTER II1I

THE EQUIVALENCE BETWEEN THE CATEGORY C OF CROSSED

MODULES AND THE CATEGORY DA! OF SPECIAL DOUBLE

ALGEBROIDS WITH CONNECTIONS

0. INTRODUCTION:

R.Brown and.C.B.Spencer [B-S-1]) have defined a functor
(crossed modules over groups) -+ (double groupoids) , and they
showed that this gives an equivalence between the category of
crossed modules over groups and the category of special double
€roupoids with special connections and one vertex .  The
Structure of éonnection on a double groupoid was shown in
(B-H-1] to be equivalent to a structure of thin squares , and
a convenient‘notation for thin squares was later developed and
exploited by R.Brown [Br-2] . Also [S-1] proved an equiQalence
between 2-categories and double categories with connections .
Thin structures on double categories were exploited in
[S‘W—l] . Finally , it was proved in [B-ﬁ-Zj that crossed
modules over groupoids are equivalent to doub}e groupoids with
Connections ;: indeed this is a special case of an equivalence

between crossed complexes (over groupoids) and w-groupoids .
Our programme is to prove results parallel to the above in
the context of algebroids rather than groupoids ; that is we

Would 1like to prove that there exist an equivalence between

- W-algebroids and crossed complexes (over algebroids ) .
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Rather than move to the general case immediately , we give
in this chapter the case n = 2 , that is , for double

algebroid . This will familiarise the reader with the

techniques

involved . Also some of our lemmas for h = 2 will be applied
the genéral case , and the complications of their proof makes
it easier to give the case n = 2 when the notation is simpler

than in general .

As explained in the Introduction , in this thesis we do
hot achéive the general result , but we do obtain a lot of
information on the general situation and complete results for
n = 2,3;4 .

1. THIN STRUCTURES AND CONNECTIONS:

We will use the example which was given in chapter 2 ¢ 3
in order to define the extra structure needed later (we should
Mention that the example of BB given before is analogous to
| the example of double category due to Ehresmann [Eh-1]) . But
before that we start to define a special double algebroid .

Definition 3.1.1: Let D be a double R-algebroid . We say that

D is g special double R-algebroid if Dy = D, .

Refering to the definition (2.1.9) , a mofphism (v/,wi,wz)
of double algebfoids such that ¢; = ¢, is called a morphism of
Special double algebroids . )

Suppose given a special double algebroid D . Then there

will pe squares of D with commuting boundary , that is y» with

edges given by

- -31-
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a d
b
and for which ab = ¢d . Examples of such squares are
degenerate squares ;
X 1x b4 X a .y
a c,al a , 1, c,a iy .
Yy "3 Y X—a ¥

Among the others there seems no way to distinguish any one
from another . We therefore impose on D an additional
Structure of "thin" squares .

| Definition 3.1.2: Let D be a special double algebroid . A thin

Structure on D is a morphism e :BD, ---+ D of special double
algebroids such that © is the identity on D, . Hence
c c c
98(a d) = (a d) . An element 6(a d) is called thin , and
b b b
c

is often written simply (a d) , when e is clear from the

Context .
é Remark 3.1.3: Because 6 is a morphism any composite of thin
8quares is thin ; any sum of thin squares is fhin ; any scalar
Dultiple of a thin square is thin . Thin squares should be
thought of as generalisations of identify elements €58 , c,a
in a special double algebroid .
Instead of thin structures , one can use an alternative
further structure on D , namely a comnection (L , [') ., This

Will be important later for generalisation to higher

dimensions
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(3.1.4)(i) for any a € D,(x,y) » then Ta , TI'a have edges
given by

a 1
X y X X
la 1 s 1]l T’a |a .
y 1 Y X——y

(Clearly these two squares are commutative) .

We assume the following axioms: for all a,b € D, such that ab
is defined
['a ¥, Ta

€,a
(3.1.4)(ii)
['a ¥, Ta = c,a |
D' (ab)=(T’a%,c,a)*,(ca% T’ a)=C"a*,(c,a *,I'b)
' (3.1.4)(iii)
T(ab)=(la %, € b)*,(c,b %, [b)=(Ta %, €,b)%,Tb

for all x € Dy , we have I[’1, = Tl, = c,ex ,

Definition 3.1.4(b):Let D be a special double algebroid with a

weak connection ([,I’) . We said that (I, I’) is a connection

on D if it satisfy these extra axioms .
(3.1.4)(iv) Let «,B,y € D have boundaries given by |

C C ' . C1
8x = (a d) , 3B = (ay d,) , 3y = (a d) ;

b b b,
then we have
I’ (a+a,;) *, (« +, B) ¥, [(d+d,)
(F'a, ¥, B ¥, I'd,) .
I’ (c+e,y) ¥, (x +5 ¥) ¥4 [(b+by)
%, B %, Tby) _
(3.1.4)(v) Let r € R and « € D with boundary given by

(C’c %, « X, Ib) +2'(r’°1.

c
Sx = (a d) ; then we have
b

F’ra *2 (r .1 «) *2 I'rd
’rec ¥, (r ., @) *, I'rd

r .» (I''a ¥, « ¥, rd) ,

These axioms (3.1.4)(ii-iv) make sense in terms of

boundaries , as shown in the diagrams below :

let aix -+ y , b:y -+ z for x,y,z € Do ; then the axiom

(3.1.4)(ii) can be pictured as
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X X a X a y
Il Ia % Fa {1 = 1 e,a |1
X y 1 y X a Y
X . X
1 I'’a P X 1 _ x
X] a Y = a Cza a *
g Ta 1 y 1 y
1 Yy
The axiom (3.1.4)(iii) is pictured as ;
X 1 X 1 X
X 1 X l] O’a a Cpala
1{T’ab [ab = *|—B—y—1 '
X" &b z 1] c¢4a } I''b
X a y b 4
X a T b Z
x 8ab z a Tla 1 c,b [
ab| Tab |1 = y—1 v e
z T z b| c,b T rv 1
z 1 z 1 z
The axjom (3.1.4)(iv) , is pictured as
x ¢  drdy xCd+Cd1z x cd x Cd1
atay o+ B Ped, | = = *2
ata, ¥ Z  Xghta,b’ X2 X a.b
x —x © ., d % x ¢ & Y1
f l 4 « d +5 aJ B ldg
X
V a yr b ¥ a, ¥ b %
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The axiom (3.1.4)(v) , is pictured as ;
the left hand side is ;

d rcd

X % c X z
r% r .4 « |rd = .
X z
ra Y b “ rab

The other side is ;

% X z
r‘2 a d = r .2
a b 2 z *ap °
x red z
= . Thus the boundaries are equal .
X rab 2

Remark 3.1.5: The axioms (3.1.4)(i,ii,iii) are es;entially the
axioms for connection on a double category given in [S-1] .
These axioms involve only the composition and not the
additions or scalar multiplications of the algebroid

Structure '. But the axioms (3.1.4)(iv,v) give relations
between (r,r*) and the additions and scalar multiplications .
These axioms are equivalent to conditions on the folding
OPeration given later in $3.2 and are not used until that
Section .

We go back to define a morphism betwegen two special double

algebroids with connections .

Definition 3.1.6: A morphism ¥ :D -+ E of special double

algebroids with connections (I,F’) , (4,A’) is said to

Breserve the connections if and only if

Av, =y T, A g, = ¢ I,
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Suchtmorphisms form the morphisms of the category of special
double algebroids with connections , denoted by QAL .

We gave in proposition (2.2.1) a functor from double
algebroids to crossed modules (over algebroids) s associating
to D the crossed module (A,M,u) with A = D, and M consisting

m
of squares with boundary of the form (1 ) 1) . We have a
forgetful functor DA! (special double algebroids with
connection) --» (double algebroids) . The composite functor
DA! —— C (crossed modules) will be written as y .

Notice that in a special double algebroid , a thin

Structure implies a connection satisfying (3.1.4)(i,i1,1iii)

a 1
wWhere ['(a) = e(a 1) , I''(a) = 8(1 '~ a) . To complete the

1 a

equivalence between these two structures , we prove first

that in a special double algebroid a thin structure may be
recovered from a;g:s;ection satisfying only (3.1.4)
(inii,iii) . This result leads us to use connections instead
°f thin structures . The idea particularly in higher
dimensions has been given in [B-H-1] in the double‘groupoid
case

, and partially in [S-1] , [S-W-1] , for double

categories .

IQEQEEE__QLL;Z: Let D be a special double algebroid with
Connection I' , I'’ . Then there is a morphism of speéial double
8lgebroids e:AD, -+ D , which is the identity on D,

a 1 |
and such that ra = e(a X 1) , D’a = e(l b b) .
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Proof: For any a,b,c,d € D, satisfying cd = ab , define

functions e, , e, : OD; ---+ D by
c

el(a d) = (Clc *2 r’d) *1 (fa *2 Cib) ’
b
c .

@2(a d) = (c,a ¥, I'b) *, (Fc *, cod) .
b

The two definitions make sense in terms of boundaries :
Appendix I give diagrams for these definitions and for the

Proof of the next lemma .

Lemma 3.1.8: The two definitions 6; , 6, are equivalent , that

is!°1=62.
Proof: Let a,b,c,d € Dy be such that cd = ab , then

C
el(a d) = (th *2 r’d) *‘ (ra *2 Clb)
b

(eqc ¥, I'°d) *, €,48b %, (Ta ¥, €,b) by the identity rule
(eyc %, I''d) %, (['ab %, Fcd) *, (Fa ¥, €4b)
by (3.1.4)(ii) and ecd = ab

(Clc *2 r’d) *1 {[ r’a.*z (Cza *1 P’b) ] *2 [(l"c *1 CZd) *2

rd]} *, (Ta %, €;b) by (3.1.4)(iii)

1]

(eqc %, I°d) *1 {[[’a %, (€8 ¥4 I’'b) ¥, (Fc xy cod)] %,
I'd} x, (Ta %, ¢,b) by associativity
= {{Clc *1 [r’a *2 (528 *1 r.b) *2 (TC *1 c?_d)]} *2

(C'd x, rd)}#*, (Fa ¥, €4b) by (2.1.6)(ii)

legqe %, [ r'a %, (€8 %4 ['b) ¥, (Fc ¥, €,d)]] %,
(Ta %, ¢b) by (3.1.4)(ii)
= €jc %, {{[’a %, [(€za ¥, T'b) ¥, (Tc ¥y €,d)]} *1
 (re X, clb)} by associativity
= €ic %, {(I’a ¥, Ta) ¥, [[(c2a ¥y I’b) ¥, (Tc ¥, c,d)] *,
€1b]}) " by (2.1.6)(ii)
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= (coa %, ['b) %, (Fc ¥, €,d) by the identity rule
’ ¢
= 03(a d) . This is the complete proof of the lemma .
b

Now we continue to prove theorem (3.1.7) , that is , we

Prove e satisfies the following ; wheve 6:0,=6,;

1 1 a a
i) e(a a) =(a a) , ©(1 1) = (1 1) ;
1 1 a a
.. a a 1 1
1i) e(a 1) = (a 1), €1 a) = (1 a) ;
1 1 : a a

. , c c c
1ii) e(a d) +, e(a; dy) = e(a+ay; d+dy) ;
b b b

. c 1 ctc,
iv) e(a d) +, e(a d) = e(a d)
b . b+b,
c [+
V) r., e(a d) = e(ra rd) ;
b b
. c rc
Vi) r ., e(a d) = e(a d)
' b rb
. c c! ) cc’
vii) e(a d) %, e(d e) = o(a d) ;
b b’ bb’
.. c b c
Viii) e(a d) *, e(a’ d’) = e(aa’ dd’) ..
b e e

The proof of (i) , (ii) are easy . To prove (iii) , we use the

interchange law (2.1.6)(iii) , distributive law , (2.1.7) and

. c c -
ez(a b d) +1 ez(al dl) = [(Cza *1 r’b) *z (rC *’. ch)] +‘
b

[(coay %, I'b) %, (Fc %, €2dy)]
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[(coa *x; I’b) +,; (coa,; ¥, ['b)] ¥, [(Fc *, €,d) +,

(Tec *, €£,d,)] | by (2.1.6)(iii)

"

((cza +, €oa,) %, T'b] %, [Tc ¥1 (€xd +4 €,dy)]

by distributivity

(cz(afal) ¥, ['b) %, (Fc %y €x(d+dy)) by (2.1.7)

c
62(3"'81 d+d1) .
b

- To prove (iv) , we use (2.1.7),(2.1.6)(iv) , distributivity ,

and e = e, ;

C Cy )
e;(a d) +, e,(a d) = [(eqc ¥, [’d) ¥, (Ta ¥; €,b)] +,
b b,

[(cyc, %, T’d) %, (Ta %, €3by)]

1)

[(eyc %, I*'d) +, (€icy ¥ ['d)] *; [(Ta ¥, €:b) +,

(fa *, c.b,)] by (2.1.6)(iv)

"

[(eyc +, €,c,) %, ['d] ¥, [Ta ¥, (£4b +, €4b,)]
by distributivity

= (ey(c + cy) ¥, I'd) ¥, (Fa ¥z €,(b + b,)) by (2.1.7)

c+c1

= 8,(a d) .
b+b,

~To bProve (v) , we use the rule (2.1.5)(ii) and e = e, ;

. c
- ®2(ra  rd) = (cora ¥4 [’'b) ¥, (Fc ¥; €prd)
b

= (r .y €,a ¥, I'b) %, (Fc ¥, r .4 €od)

"

(r * 1 (CZB. *tr’b)) *2 (r L3 (rc *l czé))

r .y [(cpa ¥, [’b) *, (Tc ¥4 €2d)] by (2.1.5)(ii)

i

(o
r ., e(a d) .
b

rc c

We can prove similarly that e(a d) =r ., e(a d)
rb b
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by using (2.1.5)(ii) and © = e, .
For (vii)}, we use the interchange law (2.1.6)(ii) , the
identity rule , thé associativity , (3.1.4)(ii) , the equality
cdd’ = abd’ = aa’e and © = 6; ;

cc’

e(a ‘e) = (cqcc’ ¥, [’'e) *; (Fa ¥, €.bb’)
bb'*

n

(€4c %, €,¢” %, [’e) ¥, €ycdb’ *, (Ta ¥, €,b ¥, €,b’)
by the identity rule

= (€4c %, (€4c’ ¥, ['e)) *, (€4c %, €d ¥, €4b°) x4
((Ta *, c,b) %, €4b") by the associativity

= [€4c %, (c4c’ %, [’e)] *; [(cgc ¥, T'd) %, (Td %, €,b°)] *,
[(Ca %, e,b) %, €4b°] by (3.1.4)(ii)

= [(eyc %, (c4c ¥, [’d)) ¥, ((€4c’ %, T'e) *, (Td ¥, €4b’))]
¥y [(Fa %, c,b) *, €4b"] by (2.1.6)(ii)

= [(eqc %, ['d) *, (Ta ¥, €;b)] ¥, [(€4c’ %, T'e) *,

(Td x, ¢,b’) %, €,b’] by the identity rule and (2.1.6)(ii)

"

[(Clc *2 l"d) *1 (I‘a *2 C1b)] *2 [(C’.C’ *2 P’e) *1
- (Td %, ¢,b*)] by the identity rule

c c’

el(a d) *2 61(d e) .
b

b’

"

v c b
We can prove similarly that e(a d) %, e(a’ - d') =
b S

C
®(aa’  dd’) , by using (3.1.4)(ii) , the,identity rule ,
e .

the interchange law (2.1.6)(ii) , cdd' = abd’ = aa'e and

9:32.
Then € is a morphism . This is the complete proof of the
theorem . o
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We move now in the next section to construct a functor

R €C --» DA! by using a v"folding"' operation , whose

—

definition involves the connections .

2. IHE FOLDING OPERATION:

In this section , we introduce on squares of a special

double algebroid with connections D an operation which has the
®ffect of "folding" all edges of « € D onto the edge 3 .

Thig operation ¢ transforms « into an element of the
asSOCiated>crossed module »D .

We define &:D --+ D in the following way ;
€ivep x € D with boundary édges in the form
. , .
a « d : I_—* :

1

"¢ define
ItAis easy to check that this composition and subtraction are

defined . Simply , if « as above , then ®x has boundary in’the

fory
1 c d ab cd-ab
M’'a o] « P rd fl — 1 €qabf1 ‘= 1 ¢ |1 .
a b 1 | ab : 0
Thus 3%« = cd —ab , 36 = 0 , a0 = 1, alex = 1

Md hepce ¢x € ¥D .
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Proposition 3.2.1: ¢x = « if and only if o is in »D . In

particular ®2x = ¢x for all x e D .
- Broof: 1¢ Px = « , then « has boundary edges given by

(1 3 1) , form ¢ D, = D, and then « € yD (by the

Construction given in chapter II) . The converse is clear . 0O
We noQ develbp relations between ® and the operations of

the Special double algebroid D .

Firgt » let 02 = ¢,0 € D , as in the diagram

0

0

Proposition 3.2.2: Let a € Dy(x,y) , then
D errg - 02 , &ra =02,

1) 0,0 = 02, ocpa = 02 .

Rﬂnﬁ} i) Since a € Dy(x,y) , then [’'a has boundary in the

fo rm

1y %

b 4

l1,] I'’a |=a

X a y.

nd then or'’a (r'l, ¥, '’'a x, ra ) —, €,a

c.a —; €42 by (3.1.4)(ii)

02 .

We can prove similarly that ¢la = 02 ,

1y) Since a € D,(x,y) , then € a has boundéry edges given by

X y

X y



a0d then ¢cqa = (I’1l, %, cj8 ¥, Tly) — €48 = 02 . Similarly
We cap prove that ®c,a = 02 by (3.1.4)(ii) . o

The following proposition is the main technical work
required for the éroof of the equivalence of categories given

1a the pext sections .

RﬁﬂﬂﬁﬂLion 3.2.3: Let «x,B € D and r € R , then the following

holq whenever each left-hand side is defined :
i)

®(x +, B)
if) ®( +5 B)

1) ¢ (e ¥, B)

o
(dx *2 glaiB) t, (claza *2 oBR) ,

s ’ 1
ly) ®(x *2 B) (cla:a *2 OB) +2 (dx *2 c‘aip) ,

(Appendix II gives diagrams for the proof of the above
Droposition-) . | |
EQQQi: i) If «, B have boundaries given by
3o . c - c |
= (a d) , 3B = (ay dy) ,

b ' b
thep ®(x +, B) = [[’(ata;) ¥, («x +; B) ¥, T(d+d,)] —,

c (a+tay)db
T [(M'a *, « %, [d)+,(T'ay %z B ¥, Td,)] —, [ci8b +, €, a,b]
by (3.1.4)(iv)

T [(r'a %, « %, rd) —, c4ab] +, [(T'a; %, B %, [d,) — €qa,b]
S0« 4, 0p . '
1) This follows from the algebroid rules for +2 , %5
i) 17 « , B having boundaries given by

c b

Sx = (a d) , 38 = (a’ d’') , then « ¥1 A has boundary
b e ' -
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c
®dges in the form 3(x *; B) = (aa’ dd’)
e

‘Then ®(x %, B) = (['aa’ *, (x *; B) %, [dd’) —, c,aa’e

T{Ir'a ¥, (c,a %, I'a’)] ¥ (x *; B) ¥ [(Fd *; €,d’) ¥,
Td]} -, c,aa’e by (3.1.4)(ii)

*{[Ma %, o %, (Fd %, €,d’)] *; [(c4a %5 T’a’) %, B %, [d'])
T2 Cjaa’e by (2.1.8)(ii) and the asséciativity

S {l(r'a %, « ¥, [d) %, €,d" 1¥,[€ a ¥, (['a’ *, B ¥, [d’)} —,

(tiaa’e X, €,aa’e) by the associativity and the identity rule

*{l(r'a x, « ¥, [d) %, €,d°] —; €jaa’e} *, {[c,a ¥, ([’a’ *,
B % rd")] —; ciaa’e) by (2.1.6)(iv)

" {[(r'a %, « %, [d) %, €4d’] —2 €18bd’ +; €;(abd’ - aa’e)) %
{cza ¥, [(T'a’ %, B %2 rd’) —» €j4a’e]} by distributivity
={{[(r’a X, « ¥, [d) —2 €,ab ] ¥, €4d’} +, €,(abd’ — aa’e)} *,
{tia %, o) by distributivity

S [(0x ¥, c,d*) +, c4(abd’ — aa’e)] ¥ [€40 +, (€8 ¥, ¢x)]
' by the identity rule
¥ (0 ¥, €,d') %, €40] +, [€,(abd’ — aa’e) ¥, (c,a ¥, ¢8)]
by (2.1.8)(iv)

¥ (0« ¥, €,d’) +, (€;a ¥ ®B) by the identity rule
3 1 ]
(P *2 51323) +, (claza *, ®B) .

lv) If « , B have boundaries given by

c c’

Sx = (a d) ’453 = (d e) ,
b b’

then « %, B has boundary edges in the form (a gg. e) .

Now we compute &®(x ¥, B) = [[’a ¥, (x ¥, B) %, Te] — c;abb'
S[(T'a %, «) *, €,d ¥, (B ¥, Te)] —, € abb’
by asgociativity and the identity rule
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" [(T'a %, «) %, (I'*d *, I'd) %, (B %, Fe)] —, € abb’

by (3.1.4) (i)

" {lege %, (P'a %, «)] *, (F°d %, Td) %, [(B %, Te) ¥, €,b"])

n

n

"

"

n

n

n

n

T2 Cyabb’ by the identity rule

{{(ege %, £'d) %, [(F'a %, «) *, [d]} *, [(B %, Te) ¥,

€1b’]} —, €, abb’ by (2.1.6)(ii)

{leqe %, r*d %, B %, Te] %, [(['a %, « %, [d %, €,b"]} -

(€,abb® %, c,abb’) by (2.1.6)(ii) and associativity

{[(e,c X, I''d ¥, B ¥, e) —; €,cdd’] +, €,(cdb’ — abb*)}

X1 {[(I'a %, « %, [d %, €4b’) —; €;abb’]} by (2.1.6)(iv)

{{ege %, [(r'd %, B %, Te) —; €,db*]}+, €,(cdb® — abb’)}

{(r*a ¥, « X, [d) —, €,ab) %, €4b’} by the identity rule

[(eyc %, 9B) +, £,(cdb’ — abb’)] *; [ @x *, £,b*]

[(egyc %, ®8) +, €,(cdb® — abb’)] *; [€,0 +, (dx *, €,b")]

[(eyc %, ®8) *, €40] +, [€,(cdb’ — abb’) *; ($« %, €,b’)]
by (2.1.6)(iv)

(eyc X, ®B) +, (®x %, €,b’) by the identity rule

= (o) . 1
(e, 8%« X, OB) +, (®x ¥, € 3\B) .

It is clear that (v) is satisfied by using (3.1.4)(v) for

e firet rule , and the algebroid laws for the second . This

““mpletes the proof of the proposition . O

We are ready now to construct a functor say A from the

c&tegory C of crossed modules (over algebroids) to the

Qategory DA! of special double algebroids with connections .
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3"“*\EMCTOR A:C —— DA!:

In this section , we construct a special double algebroid
With connections from a crossed module (over an algebroid) by
Using tﬁe folding operation .

Let (A,M,u) be a crossed module (over an algebroid) , and
let Do = A, (thé set of objects) , Dy = D = A (the algebroid
°f arrows of A) . Since OD, = DA is a special double algebroid

“ith thin structure , then the folding operation ¢ applies to

1t nd go for a € DA with boundary edges (a, :g a,) , we have

3° ' )
103 S a_a, —a a, » We let D be given by

< 4 1

D - {(a,8): a € p, , & € M such that u€ = 82¢g} . Thus we

a0 define the maps €. , at ,al,r, (for j = 1,2 and

J 1 2
1= 0,1) in the following way :
' a, ¢ D, , define cja; = (€ja,,0) , where ¢; is defined by

(2.1,7) . Clearly cja; €D (since @ c€ja; = 02) . Also define
i

81 . ai :D ——n D1=D2 by ¢ if (a,8) € D , then the boundary
tdges of (a, c) are to be those of a ,i.e. 3(a,8) = 3 a .

‘ !
’ ’
Define (e, 2 (fa,;0) » [ =(1a,,0 ; wheve [.I ave
d{l:'neé/ Ly» {(2-0-4)
We define now some algebraic structufe on elements of D .
First we define two additions ; namely +4 , +, ,
i
1

a = aig i+ then we

Fol" +1 » let (a,8) ,(b,n) € D with 3
define (ED c) +’. (h’n) = (g +1 h’ ‘;+n) .
For +2 [} let (_a_sC)o(.tl,n) e'D with a‘ig = a‘lg ; we define
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(8,6) +, (B,n) = (a+2 b, & +n) .
We define two scal r multiplications: let (a,8) € D and reR ;
then r ¢4 (EoC) = (l" 1 8 I“C) ’ I‘ 2 (_g,t;)=(r +2 8, I‘.C) .

Note that these definitions make sense . Thus we have

3%a +, 350b = ug + mn = W&+ M),

8°¢
1(3'*1' b) 2

3°
&(r ®a) = r . 3% =r . uL = ulr . C) .

o
al(r .

-, 8)

1 2

Next , we define two compositions :

let (a, ) , (b,n) € D with a:g = afg ; then we define

1 o
( - 3k 3.8
8,8) *1 (b,n) = (9_'*1 b, ¢ + n) . If (a,6),(b,n) €D
With 323 = a:g , then we define
( - aja ab
L) %, (b,n) = (a*¥,b, " n+ET ).

We Dust verify the appropriate boundary condition , we have
3% ) 1 )

1%(a ¥, b) = 3[(%a ¥, €,3,b) + (c,3.a %, ¢b)
= o o 1 o] o ¢]

(3%0a x, a% alb) +, (37c,3ja ¥, 3[0b)

< . o ajb 22
(ug % 3alp) +, (332 ¥, un) = u(& + n)

by (1.3.1)(iii) and (1.3.2)(i) .
Thug we are ready to give the main result of this section .

Rﬂﬁﬁ@gtion 3.3.1: The above structure' is a special double

lgebroid with connections .

EEQQ{: First , we want to verify that (+; , ¥%; , .4) and
(+2:*2,.2) each give an algebroid structure , that is , %, ,

*2 are - R-bilinear morphisms and satisfy the associative

“ondition . It is clear that ¥4 is an R-bilinear morphism .



Thug (+1,%,,.,) an R-algebroid if *, satisfies associativity .

Let (a,8),(b,n),(c,€) €D . Then

1 o
’ | | alb 3%
8,8) ¥, (b,n)] *, (c,8) = [a*, b, & + n] x4 (c,8)
1 o 1 o
S ajb 3a 3,c 32(2 ¥y b)
8% b) ¥, ¢, (85 + “n) + gl .
On the other hand ;
ale 3%

Tari o, e P+ T T e Ty

Clearly (a ¥, b) %, c = a *; (b *; c) . To prove that

alb ao [ (o]
b a 3. ¢ 3a_(a ¥ b) 3,(b *x ¢
(¢ == | "2 ny & o+ 2 Teg=1¢? : +
)
I.a ;Q ; 3gh .
(n + g€) , we start with the right hand side ;
3t x o) 3% alc a%a 3%b '
TeFT LT Ty T 4 T % g) by (1.3.1)(i,iii)
alp 3l 3% alc 3% 3%
< b c a £ 2=, “2=
(¢ 20 %28, TR, T €) by (1.3.1)(i,iii)
alb 3% ale  3aX(a x, b) |
z = = = I

 left hand side . Then .
He,e) 5, (bon)] #; (e0®) = (8,8) %y [(b,n) *; (c,€)] . The
vefification of the associativity with respect to *, is
Similar to that of ¥, . Thus (+2 , *, , .'5) is an
R‘algebroid . So we get algebroid structures for each of these
two kind of operations .

Next , we want to verify the relations between'thesé

0 X .
Perations , and the rules for connections
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For the rules (2.1.3) , (2.i.4) the prodfs are obvious ,
Sith Dy = D, . Now we verify the rule (2.1.5)(i-iii).
Let (a,8),(b,n) € D , then (a,8) +» (b,n) = (& +, b,&+n) and
hence , .y (a +5 h;c+n) = (r .4 (& +2b) , r .4 (&+n))
Tl iiad,r D), ((r . 8) 4 (. )]

-

- Ur 1 8), (r .€)) +5 ({r .4 b) , (r . n))

‘r°1(2.C)+2r.1(Q,n)

We Prove gimilarly that
Tr2l(a, 8) 4, (b, W] =r.2(a, 8 +sr.2(,n,
It (a, g +y (b , n) is defined . Thus the rule (2.1.5)(i) is
satiSfied .
For (2.1.5)(ii) , suppose given (a,8) , (b,n) such that

(2,0 ¥, (b,n) is defined . Then

Tl @), r . (R 8ty

(o]
r ., 2 ¥, r .4 b),(r . n) + (r. ¢ )) by (1.3.1)(iv)
al(r . ) 3(r . b)

e L, ayxu(r oy b)) (r . n)+o(r . §)
by bilinearity

"(r . a,r.6 %¥(r.;b, r.n

-

S (r .y (8,8)) %, (r «, (b,n)) . Similarly for the second part

°f (2.1.5)(i1).
Finally , for (2.1.5)(iii) , given (a,C) € D , then

r.z(s.,._a_,s.C]

v ‘2 [s .y (8,8)]

[r .2 (S .1 _a_),r- (80 c)]

n
]

[s .3 (r .228) , 8. (r. Q)]

"

8 .y [r.8,r.6) = s .y (r .2 (a,8)) .
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Next » we want to verify the interchange laws (2.1.8)(i-iv)

For (2.1.6)(1) , Let (2,8)s(Bsn), (<€), (ds%) € D such that
(8) +, (b,n) , (2,8) 42 (208 + (By1) +2 (4,9) ,

(€,8) +, (d,9) are defined , then

[{a,8) +, (b,n)] 45 [(cs8) +1 (d,9)] = (A +3 b, &+ n) +,
e+, d, g+ v

S lla 4y b) 4, (¢4 d) , (E+ 1) + (8+ 9]

n

[(a +,e) +; (b4, d) , (E+ 8) + (N + ¥)]

@, e, 5648 +y(btad, N+ W

a0 ¥z (c,8)) +1 ((B,n) +2 (d,¥))

For (2.1.8)(ii) , let (g,c).(h.ﬁ).(g.E).(g.w) € D such that
(8,¢) %, (b,n), (a,8) *2 (€,8), (b,n) ¥z (d,¥), (£,8) *4 (d,9)
re defined , then

((a,¢) ¥, (b,n)) *z ((€,8) *; (d,¥)) =

1 [+
d 3_a a._d 3_.c
@ %, b, 62 + Zn)ys,(c*,d, 825 + 24 =
o] 1 [+
[(a & d,(a ¥1 b) 3.d 3.
2 X3 b) ¥ (e %4 d) , (€ + ¢) +
31b aO 1
22 a 3. (c ¥, d)
(¢ R 1 .
. aja 3d  age
[(a %, ¢) ¥, (b %2 &) , (€% + T+
1 0 1
b d_a 3.d
(¢ 27 4+ 2y 7
. a%a ajd  3%adde
[(Q X, ¢) %, (.ll x, d) , ( £) + ¥ +
3;h81d % al4 ‘
¢ e Tty by (1.3.1)(i,iii) .

On the other hand ;
((a,c) %, (c,€)] *; [(Bon) *5 (4,¥)] =
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o] 1 o] 1
d.a 3. ¢ a.b 2.d
[a *2c, Yeg 4+ b X, b4y d, "% + nt -
o 1 1 '
3 a a,c 9_(b x_d)
e +, ¢ ¥, (b ¥, d) , (g + ¢y ? 2 +
o}
az(g X, ¢) 322 atq
S« v + n ') o=
3% ala aic alq

Hed o) 5, (b aa ) o T3 2 4 (e 0y

aoa o o 1
2 9b 3,a 3.d
O (n *H1 by (1.3.1)(i,iid) .

I
" order for these to be equal , we need ;

atcalq 3%3% 3%a3% alpalq
A IR S T Tt
1 .1 1, .1 0o .0 0 .0
d.cd_d 3 b3’ d 3 ad_c 9 ad b
i, =°,2 20, =95z =92
. ¢ 15725 _ T22%aS_ CaBTE . A%
1 .1 1, o1 o .o o .0
le, caigazg — ;b3 d  3.8d3,c = 3,a3b
= ¢
0,.1 0,.1 0o .1 o .1
i.e, caxgazg —3,d3.d 3,838 — 3 ada
= 4
i,e, c%d 0g¢

The
(1.3.2)(11) , since both sides are ¢ * ¢ .

for (2.1.6)(111) , let (2,8),(bsn),(c,€),(d,¥%) € D such that
(a,¢) X, (h,ﬁ) y (€,8) ¥z (d,¥) , (a,8) +, (g;e) ' |
b,n) +, (d,4) are defined , then

[(a,8) %, (Byn)] +4 [(cs8) %5 (d,9)]

-5]1-

last equation follows from the crossed module rule



: ORI AR S
= [(a +; ¢) ¥, (b +;,d) , (" n+ ) + (¢ + € 7))
3% | a‘g

"

((a +; ¢) %, (b +, d) , Tin+w) + (8B

by (1.3.1)(ii) and the above hypothesis

1 —

aj(a+,c) 3;(b+ d)
c) ¥ (b +, d) , (N + @) + (& + 8) ]

!
-
~

jo
+
[y

[a +; ¢, €+8) *, [b+3 d, n+ ¥] .
We can use a similar argument to verify (2.1.6)(iv) .
It is clear that ¢; satisfy the rule (2.1.7) , and e
Satisfy the conditions (3.1.4)(i-v) . This completes
the proof . 0 |
Thus any crossed module (over an algebroid) gives a
Special double algebroid with connections . If (A,M,u) ,
(A',M’,u’) are two croséed modules (over algebroids) and
(«,B) ﬁ(A,M,u) -——s (A'’,M’,’) is a morphism of crossed
modules‘ (over algebroids) , then («,B) determines a morphism
Mea, B) = ¢ :A(A,M, ) -—+ A(A’,M’,u’) where
¥:(p,p ,0_,D ) --» (D’,D},D},Dy) and ¥, = ¢, = «,
' c : xc
Y(m;a d) = (Bn;xa ad) . This defines a functor
b «b
A C —-o QA! , from the éategory C of crossed modules (over

algebroids) to the category DA! of special double algebroids

With connections .

4. THE EQUIVALENCE OF CATEGORIES:

In this section , we want to prove the.main result , which

is the equivalence of the two categories c , pal .

Theorem 3.4.1: The functors y , X defined previously form an
€quivalence .
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, EEQQ{: First , we want to prove that »X is naturally
equiValent to the identity , that is , »x & 1 .

Let .(A,M,u) be an object of C and let (A*,M’,u’) =
YMA,M,0) . Then Ag = Ao’ and A = A’ . It is clear that M’ is

defined on the same set of objects Ao . Define a map g:M-aM’
by

: m
€(m) =(Um; 1 1) , and let I:A --+ A’ be the identity map .
0

We want now to prove that (I,g):(A,M,ﬁ) ——= (A’,M’,u’) is
8 Crossed module mdrphism , that is Iu = u’g and g preserves
the actions . Clearly I,g are algebroid morphisms and u’g = Iu
- So it is enough to show that (I,g) preserves the actions .

Take m:x -» y € M(x,y) and let b:y -2 z € A(y,z) . Thus

b
g(mb) = (mb;1 (um) 1) by (1.3.2)(i)
0 ,
Mm
s (m; 1 - 1) %, €,b = (m; 1 0 1)b = g(m)b .
0

We Prove similarly that g(bm) = Pg(m) .

We define now a map (I,f): (A’ ,M',u') —=o (A.M.L) such that
(I'g) , (I,f) are inverse to each other . Let I:A’ ~-» A be
the identity map and define fi:M’ --+ M by

(7.}
f(m;l 1) =m . . \
0

Clearly I,f are algebroid morphisms and uf = u’* . Thus (I,f)
is & crossed module morphism if it preserves the action , that

ls’

1 Mm
et (m;1 1) € M* and b € A® . Then
0
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(um)b

Py ™ 1yby - rpems1 1) xy e4p] = £0(mbs1 )]
0 v 0 0
- u(mb) Mm
* f(mb;y 1) = mb = [f(m;1 . 11b .
0

It e clear fhat (I,g),(I,f) are inverse to each other .
Therefo;e YA is naturally equivalent to the identitf .

Second , we want to show that )y is naturally equivalent
' the identity , that is , 1 & Ay .
Let p be an object of DA' and let E = 2y(D) . Then Dy = Eq ,
D: =Dy = E;, = E; . We define n:D --+ E to be the identity on
DO and Dy, = D, and on D as follows
let o ¢ D , define n(«) = (3x , 9x) . First we prove ;
Lenng 3.4.1: The map n is a morphism of double R-algebroid
"ith connections (r,r*) . |
25222: If Quffices to prove that n preserves 1, to , kg,

X

2, and the connection ' , I .

‘1 e2

For *1 5 let «,B € D such that « +; B is defined ,Ithen

Me vy B = [3(a+y B, O« +y B]'= (3x +, 38, o + 0B)
(since ®a,®8 ¢ y(D))

S (3w, dax) +, (3B , ®B) = nx +, ng .

We can prove similarly that n(«x.+, B) = n« t2 N8B, if «x +, B

18 defined . |

For ¥1 » let «,B € D such that «,B have boundaries in the

.

fory (a © d) , (a’ b'd’) respectively , then -
b e |
W x, g) = [3(« ¥, B) , o(x ¥, B)]
S (3x ¥, ap , (®a)d’ + a(0g)) by (3.2.3)(iii) .
On the other hana ;
"% X, ng = (3x, Ga) %, (38, ©B)
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T (3x x, 3ap , (0x)d’ + 8(®R)) = n(x ¥; B) :

We prove similarly that n(x *, B) = N« ¥, NB , if « ¥, B is
defineqd |,

For ‘1, let x ¢ Dand r € R ,‘then

Ur i) &) = (3(r o & , &(r oq ®) = (r .3 3%, r .5 o)

by (3.2.3)(v)

n

(r « g 8« , ri. dx) (since dx € ¥D)

"

F vy (3¢, ) = r ., Nx . Similarly for ., , we get
Mr.; 0 =r ., nx.

Finally , for the connection [,[’ , let a € D, = D, , so
Ta e p and then n(la) = (3fa , ®la) = (3la , 02%) by (3.2.2)(i)
*Ta , similarly for ' . This is the complete proof of the
lemmg . o
We continue now to prove the theorem . First , we define

LY SR ﬂ to be the identity on E, and E; = E, and on E by

the formulae :

c ab
n‘(«,C) =0(1 d) ¥, [ 6+, € ab] *0(a 1) as shown below:
cd b
c cd—ab ab ab
1 sy
t, |d x (1 & 1 +2 ljeqab |1 )%, a] t, |1,
cd 0 ab ' b
: c
Yhenever («,¢) has boundary edges of the form (a d) and
. b

tlotz are abbreviations for the thin elements with boundaries
c ab
O "9, 1n.
cd b
LSmma 3.4.3: The maps N , N’ are inverse to each other , that
s , (i) nn* =1 (ii) n'n =1 .
Eﬁ&gﬁ: (i) Let (x,§) € E , withv8:¢« = u§ and « has boundary
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c
tdges given by (a d) , then
b

C- ab
' (x,8) = n[(1  d) ¥4 (®x +, €,8b) *; (a 1)]
cd b

-

= n(«)'= (ga', dx) .

c
It is clear that « , dx heyethe same boundary (a d) , and

b
“®x = ug . Thus nn’(«,8) = (%6) .

S ¢ '
(1i) Let « € D , where « has boundary (a d) , so
b

T\'n(«) = n' (3« , dx) = « (since 8x , « have the same

b°undaries) . This is the complete proof of lemma (3.4.3) . O
This completes the prqof that n:D ---E is an isomorphism .
The naturality of n is clear . So we have proved the natural
equiValencé 1 2 xy. a
We move on to give a prdperty of these objects by using
the above theorem .

S.REFLECTION:

In this section we use the above theorem to show that

“Very object in DA! has a nice property called "reflection" :
in a special double algebroid with éonﬁection the two
‘algebroid structures are isomorphic .

This property has been given in the double groupoid case -
1a [(B-2] under the name "rotation" . ﬁeflections in double
categories with connection have also studied in [s-1],[8-W-] .

For each objéct~(D,r,r’) € DA! , there is a reflection
®: D -5 D such that on edges ¢ behaves as follows :

let % be a square in D , pictured as
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then px is o square in the form

80d px js defined by

P = (ca ¥, I'b) *, [(eq8b — (l’a ¥, « *erd)) +2 €icd] ¥,

a o« d
b
a

c| eox b
d

(Te ¥, ¢,d) , as shown diagrammatically ;

a 1 ab 1 c d
1 €,a I''b |b *,|1]|cgab |1 —21 ['a a§ « d Id
a b ab a b 1
‘ca c d
2 lic,ed |1 ¥, c| [c c,d 1 ,
cd 1 d
a - ab cd cd cd
b *, 1 1l — 1 1 +,1 1*10
ab ab ab cd- d
a ab—cd cd cd
1 b *, 1 +, 1 1 %1 1
ab 0 cd cd
a ab. cd a
S | b %, 1 1 ¥; ¢ l=c| px |b .
ab d d

cd

-5
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IQEQLQQ_Q;QLL: The reflection ¢ satisfies
Y e(Ta) = ra, p(r'a) = I'a, e(c,a) = cya , o(tza) = cpa ,
4f°ra€DzorD1 .
ii) e(x ty B) = epx +, B, (¥ +, 8) = p¥ +;, 0% , whenever
“+, 8 » ¥ +, © are defined . |
iii) o(x ¥, B) = p«x X, pB, (> ¥, §) = p¥ ¥, oS , whenever
¥ 8, y X, © are defined .
V) o2 = 44 .
V) e(r .; &) = r .2vpa , P(r v ®) =r .y px , where r € R .
EE&Q{: By theorem (3.4.1) , we may assume that D is the double
gebrojd arising from a crossed module U:M —--3 A ., So if

c

we may write « = (m;a d) , wherem e M ,
b

% e p

El'bn'.:,d € A and mm = cd - ab . We calculate now ¢(«x) as

follows
o a ab cd’
() = (0;1 b) *x, [((0;1 1) —2 (m;1 1)) +,
ab ab ab
(0;; °¢ °d
il 1)] ¥4 (0;c 1)
cd - d
< a ab ~cd cd
(0;1 b) *x, [((0;1 1) +2 (-m;l 1)) +; (0;1 1)]
ab _ ab - -ab cd
" cd
¥y (0;¢ 1)
d
< a ab cd ~ a
(0;1 b) ¥, (-m;l 1) *4 (0;c 1) = (-m;c  b) .
ab | cd d d

Now we verify the relations (i-v)
{ a ' a
) e(ra) = p(0;a . 1) = (0;a ) 1) = Ta and by similar way for
» C,_a ’ Cza .

~-58~




. c c
i) Let «,B € D with boundaries (a d) , (a, . dy) , then

b
a+a;
(a 1 B) = (-(m+m,); c b) . On the other hand ;
, d+d,
: a ag ata,
®(x) +,-0(B) = (-mjc b) +5 (-myjc b) = (=(m+my);c b)
d d1 d‘f‘dl
f(«x +, B) . Thus p(x +y4 B) = px +, @B . Also we prove

similarly that e(» +, 8) = ¥ +, P% .

c b
111) Let «,B € D with boundaries (a . d) , (a’ d’) , then
' e
. aa’
Ol x, g) = (-(mm’);c e) . On the other hand ;
dd’
( a 8’ aa’
4 = (-m; X -m’;b e) = (- ). .
) ¥z e(8) = (-mic b) ¥z (b e) = (~(mm’)je i ©

Thyg e(x ¥, B)= px %, eB . Similarly for e(¥y ¥, €)= pr ¥, p§ .
The calculation of (iv),(v) are easy to verify . Therefore e

Satisfjes the relations (i-v) . o
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CHAPTER IV

W—ALGEBROIDS (WITHOUT CONNECTIONS) AND

CROSSED COMPLEXES

0. INTRoDUCTION:

In this chapter our aim is to prove that there exists a
fUnctor from the category of w-algebroids (without
°°nnections) to the category of crossed ‘complexes (over
algebroids) . Thus we should define an w-algebroid (without
c°nnections) and crossed complexes (over algebroids) .

An analogous result has been given in [B-Hi-2) where they
Proveq thét the existence of a similar functor in the groupoid
Case |, 1n fact , they proved there exists an equivalence
between “the category of_ w-groupoids and the category of

‘fossed complexes (over groupoids) .

L. W-ALGEBROIDS (WITHOUT CONNECTIONS):

In order to define w-algebroids (without connections) , we
Yecall the definition of cubical complex (see , for example
[B-mi-27) . |

A cubical complex K is a graded set (Kn)n)o with face maps

L)

3%,
it Kn —— Kn-: (i=1,2,...,n ; « = 0,1) and degeneracy maps

Ci S K, (i=1,2,...,n) satisfying the usual cubical
Yelations namely
(4.1.1)

x .B « ' . ,

af af = af_ 3 (i4§) (4.1.1) (i)
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|

€i €5 = €544 €4 : (i4j) (4.1.1)(ii)

&

€519 (i<§)
« « c Qs <.
ai €; = cj ai_1 (ixj) (4.1.1)(iii)
id (i=J)

Qgiiaition 4.1.3: An w-algebroid (without connections)

4= {4, ; %, €, } is a cubical complex and for n 3 1 ,

i
An has n algebroid structures oVervAn_l of the form
(An’+i'*i"i’ ag,a;,ci) related appropriately to each other

8nd to a?,ci. More preciseiy we require the following axioms :
(4.1.3) 1f a,b ¢ Ap , and a +j b is defined (i.e. for « = 0,1,

q _ .
aja = 3?5') then for « = 0,1

3a +;_, 33D (i45)

© .

3 (a +b) = a5a +y ah (i3j) (4.1.3)(i)
afa (i=Jj)
€ia +.j+1 Cib (i(J)

€i(a +;b) = i o (4.1.3)(ii)
€ja +j c;b (ixj)

(4.1.4) 1 a,b € A, , and a ¥; b is defined

(i-e.agb = a;a) , then for « = 0,1

« % x,_ 3% L (i4))
a'(a X b i J—1 1
12 ¥5 % sy |
(o) (o] 1 1
] . = 3, = s =
cia ¥j+1 cib (i<Jj)
€i(a x5 b) =l . (4.1.4)(ii)
cja *j c3b (i>j)
€. 3% *x.a=a-=-a ‘¢ ala (4.1.4) (iii
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(4-1.5) If a €¢ A, , and r € R then r .  a is always defined

and
ooy aja (i4j)
af( r ‘5 a) = Zr.j 8?5 ' (ixj) (4.1.5) (i)
a?a (i=J)
. i ¢
€(r .. a) = ir et (4.1.5)(ii)
S IR (13)
b = a *.(r.,b) (iz=j)
¥ ..(a %; b) = i(r'ia) P 78ty e (4.1.5)(iii)
e (r.;a) *;(r «;b) (iwj) \
Foy(s oja) =8 o5(r oy @) (4.1.5)(iv)

“henever s € R , b €A, .

(4‘1-5) (The interchange laws) : for isj

(a +5 ¢) +i (b +5 d)  (4.1.6)(i)
(a *; c) *; (b x5 d)  (4.1.6)(ii)

(a +; b) +5 (c +3 d)

(a X5 b) '*j (c ¥; d)
(a x5 c) +; (b *5 d)  (4.1.6)(iii)

(a +; b) ¥5 (c +3 d)
whenever a,b,c,d € A, and both sides are defined .
Note that for all n » 2 and 1 < i ¢ n-1 , the pair (Ap,Ap-y)
“ith the two algebroid structures in directions i and i+l

forps a double R-algebroid (without connections) .

An w-subalgebroid (without connections) of A is a cubical

Subcomplex closed under all operations +j , ¥j , .j; . Any set
S of elements of A generates an w—subalggproid ’ |

r‘amely the intersection of all w-subalgebroids containing

§ This w-subalgebroid can be built from S by repeated
8 pplications of all the structure maps and operations .
Definition 4.1.7: A morphism between two w-algebroids (without
Connections) (f:A --» B) is a family of algebroid morphisms
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Such that fniAp --+ B, is to commute with all the structures .
We denote the reslting category of w-algebroids by (w-Alg) .
Clearly we can define finite dimensional versions of the

a e s s '
bove definitions .

Qsiigigion 4.1.8: An m-tuple algebroid (without connections)

18 an m-truncated cubical complex A = (Athm—lo c+eeyh0)
"ithout connections , having n aigebroid structures in
dimension n (n k m) , and satisfying all the laws for an
w‘algebroid (without éonnections) in so far as they make

Senge

We describe now the zero and the identity elements in A, .

Firgt y if u,v € A g then Ag(u,v) denotes the set of

elements a € A such that 83& = u , G;a = v . This set has
n .

8 element cj(u,V) , where CJ: AL XA _ s An namely ,

the 2ero for the j-th algebroid structure on A, , so that if

Ae A;’;(u,V) ’ then QJ(U.V) +j a4 = a +‘j CJ(U.V) = a and if

b ¢ Ag(v.w) , ¢ € Ag(z,u) , then Cj(u,v) *j b = cj(u,w) and

¢ *J CJ(u,v) = cj(z,v) - If n=1, then CJ(U’V) is written
Ouv » as in chapter I . Also note that u =j u = cj(aju,a;u) .

The element cju in Ag(u,u) sy for u € An-z y, is the

identity element at u for the j-th algebroid structure on Ap .

2.CROSSED COMPLEXES:

We first consider some of the history of crossed complexes
°Ver groupoids .

As explained in [B-Hi-5] , crossed complexes may be
thOUght of as chain comple#es with operators from a group (or
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gr°“P°id) but with non-abelian features in dimensions one and
two | rhe crossed compléx definition is motivated by the
staDdard exam#le of the homotopy crossed complex nX of a
filtered space X . ’

A reduced crossed cohplex M is a crossed complex in which
M° is a point . This structure was called "group system" Ey

Blakers [(B1-1] and he used it to apply the homotopy addition

lenmg in his investigation of the relationship between the
h°m010gy and homotopy groups of pairs .

Algo J.ﬁ.C.Whitehead [Wh-1,2] studied reduced crossed
Complexes under the name of "homotopy systems"™ . He proved
that the fundamental crossed complex nX .of a CW-complex
Satisfies in each dimenéion a freeness condition . The paper
[wh‘Z] gives relations between homotopy systems and chain
Complexes with operators . R.Brown and P.J.Higgins [B-Hi-4]
¥eneralised these results to crossed complexes over groupoids.
Also they proved in [B-Hi-2] an equivalence between the
Qate8ory of crossed complexes over groupoids and the category
of W-groupoids .

ﬁuebschmann and others [Hu-1] have shown how crossed
Complexes may be used to give an interpretation of the
cohomology groups HD(G{H) of a group‘é with coefficients in a
S~module n . Lue has explained in [L-2] how related ideas had

be&h developed earlier for varieties of algebras rather than

Just groups .
In this section , we want to define a crossed complex over
81 algebroid by using ideas similar to those of [B-Hi-2] .

Yifinition 4.2.1: A crossed complex M (over an algebroid)

°°nsists of a sequence of morphisms of R-algebroids over M,
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M . s s s s s
¢ e -’Mn—--.Mn—l—_-’ o0 0 -_-’Mz__-'Ml

Sat .
8isfying the relations given below :

i ' . . .
) Each S:Mn--éMn—j », D 32 , is the identity on Mo‘

io
1) The algebroid M; operates on the right and on the left on

a

e -
%h My (n 3 2) by actions written (a,m) --+ %m € M,(w,y) ,

(m’b) - mb € Mn(x,z)l, if m € Mp(x,y) , a € Mg(w,x) ,

b
€ M;(y,2z) as shown below

x -B- y
W —2— X y -g- 2
left action right action

it .
1) 1¢ m € M(x,y) , m* € Ma(v,z) , m" € Ma(w,x) , then

oxz ifn 3 3
]

mSm‘ =
mm’ ~if n = 2
z 0wy if n 3 3

tm"

m =

m"m ifn =2

Th“B $ : M, ——+ M, is a crossed module .

iv . :
) Forn 2, ¢ : Mn —— Mn_1 preserves the actions of

M

!l , where M, acts on itself by composition .

v) €6 = 0 : Mn —_— Mn_2 , for n » 3 .

Defs.. e . ‘
“finition 4.2.2: A morphism of crossed complexes f:M --» N is

® family of algebroid morphisms

| {fptMp —=> Ny | n 3 1}
. Which are compatible with the boundary maps 8:Mp == My, ,
Nn ==+ Np_; and the action of M; , N, oh My Np forn 3 2 .
Th“S we get a cafegory of crossed complexes (over algebroids)

denoted by (Crs) .
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3.THE FUNCTOR (w-Alg) —-» (Crs):

'In chapter two section 2 we proved that there exists a
f“DCtor from the category of double algebroids

to the category of «crossed modules (over

algebroids) .

In ihis section we prove our goal of this chapter ,
enmely » there exists a functor from the category (w-Alg) éf
w\&lsebroids (without connections) to the category (Crs) of

®fossed complexes , that is , there exists a functor say

Y (w=Alg) —-» (Crs) .

For any w-algebroid A , we construct the crossed complex

Y= YA associated with A as follows :

. o« o« _— -
let My = A » M, = A and §° = 3 :A I3 A, (x=0,1) ,

the initial aﬁd final maps . For n32 and x,y € Mg = Ay , let

. s . . S
Mn(XDY) = {a € An! ag& = CI; oxys 1“n y (x,i) « (0,1) and
o - -
3a = 071 ala = "y ) .

For example , if n = 2, then “GI"/Z €x,9) if @ has bjundaries

of the form

o
X 3, a v
1 a (1 I—<z
X y :
0*1
8d for n = 3 an element of Ma(x,y) has'edges and vertices of
the following type




Theorem 4.3.1: The family {Mp}, y 0 can be given the

. o .
Structure of crossed complex with € = 3  ; algebraic

®°Peration on M, given by + = +5 , ¥ = ¥3 , . = .p for n 31

8nd action of My on M, given by

for a11 a,b € M;{ and m € My such that the compositions are

defined .

££Qgi: Clearly the first axiom of the crossed complex is

8atisfied , since My, = Ay . For the rest of the axioms , we
Verify them in these two lemmas :

Lemmg 4.3.2: For n » 2 and x,y € Mg , then

1) if m,m, € My(x,y) » and 2 < j ¢ n , then m +5 m, is

defined , m +5 my = m 4y my, , and m +, m, belongs to Mp(x,y) .
i) if m € My(x,y) , r € R, then r .; m defined and

' onme My(x,y) .

1ii) if m € My(x,y) » m’ € Mp(y,2) , then m *; m’ is defined

n—10

&nd p ¥, m’' € Mp(x,2z) . If n 33, thenm ¥, m’ = €, g

Iv) if n 3 3, then +j = +x for 2 < j,k < n .

Proof: i) Recall that m +j m] is defined if and only if

3: m = 3% m, (x = 0,1) . So for 2 ¢ j £ n , we have
J .

3% . _ .n-2 ;

jm = a‘j m, o= € oxy (since m , m, belong to the

8ssociated crossed complex) , and if j = n , then

aO - .h—1 - 0 1 = n-1 =
b= €, R = an m, and an m ¢, y 3" m_, . Thus

W +;5 my is defined for 2 ¢ j ¢ n .
That p +jmg = m +p my now follows in a standard way from the
ihterchange law for +j , +p .
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We prove now m +, m; € Mp(x,y) , so that we need to show

that g« - 0”2 i ¢ «x,i) ¢« (0,1) and
ai(m +n mi) = ci. 0xy for i n, («1) (0,1)

3° n—1 1 - n¥1

n(m +n ml) =ec, T x 3n( m o+ mi) <, y .

For the first part ;

(n - x by (4.1.3)(i)
it m)=am+ 3 m y ( ) (
= LD=-2 n-2 _ ,h-2
c = € 0 .
1 oxy *h-1 © Xy 1 Xy

For the second part ;

3° _ a0 _ ,.n—1
n(m+ m) = an m =€, X .
3 (m + =alm=¢""1y .
n m,) =3 m=¢€

T .

ii) Since r g m is aiways defined , so we need to prove that

(r .. m) = € 0 , i4n and

[
=]
-
X

«

r . o«
'n @ €M(x,y) , that is, 3,

. n-
(«.1) +« (0,1) and a:(r .nm) =€ X an(r ‘o m) e} v .

For the first part , we get ;

< ' « _ n-2 - P2
i(r n m) = r “n-t ai m=ro .., Xy <, xy °
F .
°f the second part ;
)
Wr . m) = 2% by (4.1.5)(i)
n n ‘
= cz-i X . .
)
n n
_ ,.n-1
=, "y -
T .
bug ¢ en 0 € Mp(x,y) .
ii. * .‘ . . . 0 ” - 1
1) Since m x m' is defined if and only if 3 m' = 3 m
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- 1
81d clearly a: mt = Bty = al

. m, then m *n m’ is defined .

e need to show that m *, m' € Mp(x,z) , that is ,

«
ai(m X m') = c?_? 0, i<n, (xi) # (0,1) and

n-1 b ¥ m?’) = ez
51 X ’ an(m n ) 1

0
8 (m X -m*)
For the first part ;

% by (4.1.4)(i)

]
LT)
B
*
W
B

&
ai (m *n my)

or the second part ;

0 ‘ _ .

% (m x m*) = 3% m= €] ' x and

1 -1

an(m *n m’) = at p = c? z . Thus m *n m’ € Mn(x,z) .

Now to prove that m *n m’ = <, Oxz if m € Mn(xoY) ’

‘.
" € My (y,z) and n 3 3 .

n x _ 1 1 .
n m’ = (m *n m’) *n—l (Clan_i m *n Clan_z m’)

b 1 1 s . .

(mx e 2l m) k(@ ¥, €3, , ) by (4.1.6)(ii) .
Since me My(x,y) » '€ Mp(y,2z) , then
’ n-42 0

1
a n—-2 = €

1 -
n- 0 = € oxy and 3 _ m . vz '(for n = 2 these

®uations are not_true) . Thus

U pr o= RS ' n=1 g =Pt .
n® €, Oxy L yz 1 Xz

V) Given m,my € Mp(x,y) such that m +;5 m3 , m +y m) are

defined for j ¢« k , then
'

. ne
= (m +j Oxy) +k (Oxy +j M) by (4.1.6)(i)
= nm +k m] . ]
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lemna 4,3,3: Let n 3 1 and m € My(x,y) , a € My(w,x) and

b e M,(y,z) , then 8m , mP as defined in theorem (4.3.1) lie
in Mn(w,y) R Mn(x,z) respectively . This action is preserved

Ty € M2_(W,x) and m, € M(v,z) , then

c?_l 0, n >3
Sm g - i y
m = ’
mgy m n = 2
cn—l 0 n » 3
1 Xz
msz =‘§ . .
m mp n = 2

ELQQ{: Since a € Mi(w’x) , then c?_i a € Mn(w,x) and hence

n- . '
cx ! a *n m=%me Mn(w,y) by lemma (4.3.2) .
We Prove similarly that mb € Mp(x,z) .

Let m € M;(x,y) and a € My(w,x) , then

8%y - S[cg_ia ¥ m] = S€  a X_ Sm = €, 'a ¥ Sm

(since ¢ c?_la = 52-1a) . Then

S(am) = c?‘la *n om =‘§(Sm) . Also we can prove similarly

that s(mb) = (Sm)b ; thus the action is preserved by the

Bap ¢ .

For n 3 3, we have

L]

o - - .
in = c? lem x m=c¢ m, ¥ m (since m

1 'n 1 € MZ(W,X) ’

1
8nd Sm, € M,;(w,x)) . Then

Sm - , -1
{t. _ .n-2 U ¢ s s s
‘m = 51 m, X m= c‘ 0wy by lemma (4.3.2)(111) .

We Prove similarly that msz = 62-10 for n 3 3 .

XZ
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s We have
N Sm1 ¥ _ m = (618m1 *2 m) *1 (m1 *2 Czoxy)
(cz Smy ¥, my) %, (m %, czoxy) by (4.1.6)(ii)

oy m .,

As shown in the diagram ,

W X y
M—3 X p €;8m, m I_42
€4%m, m 1 = w X—0 y 1
T my €40
“ 0 o
w9 x x_ Py
m w94 x X —P y
SW—— I %, 1 = my 5 m
m, W 0 X X 0 Y
"o ¥ x—g5 Y |
W qp v
= mym .
W ‘0 v

s ©
We can prove similarly that m 2 = w m, . This is the

Complete proof of theorem (4.3.1) . o

It is clear that the construction of theorem (4.3.1) gives

8 functor

Yy ¢ (wW-Alg) ----+ (Crs) .
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- CHAPTER V

THE EQUIVALENCE BETWEEN n-TUPLE ALGEBROIDS

AND CROSSED COMPLEXES FOR n = 3 AND 4

0. INTRODUCTION:

In this chapter we define w—algebroids » &and n-tuple
lgebroids y, with connéctions , and we prove that there
*Xists an equivalence between the category of n-tuple
algebroids (with connections) and the categofy of n-truncated
Crossed complexes (over algebroids) for the cases n = 3
ind ¢ . Moreover we give a conjecture for the general form of
the °Peration of our folding operation on compositions , which

i true would give the equivalence of the categories of .

w‘algebroids and crossed complexes .

L W-ALGEBROIDS WITH CONNECTIONS:

In chapter IV section 1 we gave the definition of
”‘algebroid without connections . In this section we add extra
Structure to that definition to get an w-algebroid with

Connections ; namely

Qsiigition 5.1.1: Let A be an w-algebroid (without

Connections) . We say that A is an W-algebroid with

Sonnections (or simply an w-algebroid) if it has for n ¥ 2

%dditional structgre maps Fi ’ P; : An_1 —— An (i=1l,...,n-1)

satisfying the following relations
(5.1, 2) .
Five Ty (i<j)
r; Ty, (ixj)
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r’ ] 1y Py
N j+1 ri (idJj) A
r3 ri_, (i>j)
r j+1 1 (145)
i CJ = j F1_1 (ixj) (6.1.2)(iii)
) 2 .
€5 (i=Jj)
. €iea ri (i4j)
€; = |e5 iy (inj) (5.1.2)(iv)
2 .
€5 (i=J)
3° o R
i FJ aj+1 FJ id ? ,
al r - 3t } 1 5.1.2)(v).
ity j+1 rJ CJ BJ
3! re* = 1 ' = i
i 3j4y Ty = 1d } (
a r. [o) s - 0 5.1-2)(Vi)
J J aj+1 rJ € aJ
' « <
<& | rj‘i 9 (i43)
iy~ o (5.1.2)(vii)
T, 35, (i3j+1)
, & I
o rj—i ai (i<j)
i Ty = o (5.1.2) (viii)
r3 3, (ixj+1)
, < .
0o - I‘J._“ l‘i (i<j) .
i L X . - (5.1.2)(ix)
1"j L (i>j+1)

(5,
1.3) If a,b € Ap and a +; b is defined , then

I'.a +, r.b i 4]
D,(a +, b) = i 1w o (el (5.1.3) (1)
Tia +; ;b (idj) )
: ‘T'a +, r: icj
Tj(a +; b) =i S (5.1.3)(i1)
rija +, Iib (inj) It

J
(5,
1.4) 1f a,b € A, and a *¥; b is defined , then
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r.a x,, . T.b (i<j)
Ci(a %, b) = z R AL (5.1.4) (i)
Lja ¥, r.b (ixj) '
crla k... [Ib (i4))
Pi(a x. b) =i Looart (5.1.4)(ii)
J Tja ¥, Tib (i3§) ,
) .
TS a *,,,T;a=ca , Tja*;Tia=cy a (5.1.4)(ii1) .
(5.1.5) 17 o ¢ Apb end r € R, then
~ r.., T.a (iz§)
Lilr o @) =4 97 4 _ (5.1.5) (i)
J ro. r.a (ixj)
Ci(r .. a) = Jrr 1 (5.1.5)(ii)
J r .; Fia (ixj)

[Note that the case i:j in 5.103 s 50104 ’ 5.1.5 are covered

b the rules in (5.1.6)(i,ii) and (5.1.7) below] .
(8.1.6) (i) Let a,b € A, with 3ja = 3jb , then

o] al 1
i+1 i+a i+1

o]
i+g

b
(3,0 +, 30, ) *;,, (a+; b) ¥, T;(3;, a+ a1 b)-=

i

: +. :
1+18) 1+1

(pr 50 o S At
3 (riai+1 riai+1

154, b

X b x

3
i+

a ¥, 8%, 0 i+1 b)

(5.1.6) (ii) Let a € A, and r € R, then

li+1 (I‘ . o

(r .5 a) ¥ i

i+1

. - ’ o .
tvg (Fi35,,8 %5, 8 %54,

(6.1.7) Let a,b € A, with a;

F:a €;b
PJ(a Xj b) = i J J j
) c‘j.‘.:b rJ'b
. T?;:a C: '
r"j(a *J b) ={ J J+1
L cja F'jb

a) %

1
i+1

=

r.a

i (r .

i+1 i a)
.

r 8.+1a) .

i

3%

j Then

»

a

J———ﬂj+1

a J

J
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Note that for all n 3 2 and 1 ¢ i ¢ n-1 , the pair (ApsAp—-y)
With the two algebroid structures in direction i and i+l forms
- 8 double algebroid with connections as in chapter II .

It is clear that we can define an w-subalgebroid in a
simil&t"'way to that in chapter IV .

Yefinition 5.1.8: A morphism between w-algebroids (f:A —-» B)

s o morphism of algebroidé (without connections) preserving

the connections . We denote the resulting category of

“~algebroids by (w-Alg) . |
gsiigition 5.1.9: An m-tuple algebroid A is an m-truncated

Cubical complex with connections having n algebroid structures
in dimension n (n ¢ m) , and satisfying all the laws for an
w‘algebroi& in so far they make sense . Thus 2-tuple
algebroids are exactly the double algebroids of chapter II .
We move on now to give the first stage of constructing a
fllnctor from (Crs) to (w-Alg) . As is to be expected , this

YeQuires the construction of a "folding operation" .

2.FOLDING OPERATIONS:

In this section , we introduce an operation ® on cubes in
8n w-algebroid A which has the effect of "folding" all faces
°f & ¢ A, onto the (0,1)-th face , so that they can be
“ombined to form a "word" in the "folded" faces of a . This
OPeration @ transforms a into an element of the associated

‘rossed complex YA . It is important that ®a is constructed
Trom a and the "shell" 3a consisting of all the faces aja

°f a . This will imply that a itself can be reconstructed from

®a and the shell da .
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Yote: The folding operation ® has a similar effect to the
folding operation in the w-groupoid context in [B-Hi-2] .

_H°WeVer the case of w-algebroids present considerably more
technical difficulty .
First , we define operation ¥j » ®j tAp —-9 A, by the

f°rlﬂulae

1
= r* 3 a X, ax,, T35, a,

vy &= j %j+1 J+r T T+ 0§

1 .
= - 3.V, for a € A_ and 1 n-1 .,
‘ °J a ¢ja j+1 CJ3J¢J a , n ‘ <J <
Alge we define @' = °n—1"' 01 . It may be checked that ¢j’¢j

re Well defined ; the proof is essentially the same as that

in (6.2.1) , (5.2.2) below .

1 .
Second , we define ®3 =¥ 553J¢J » where ¢3 will

b .
€ shown to be well defined on ¢3+1.....¢;_20’a , for a €A .

We define &" = o; ...¢;_2 and will show later that ®" is well

defined on elements ®’a .

Finally , we define & = &" &' ..

Now to give pictures for the above definitions', we shall
USe the cube in dimension 3 .

Let 8 € A; have edges and vertices given by :

h YooOoo l —V¥3 3 1
Va4
Y q Y2

S ¥Yya is in the form
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X3y  hq’ Y2

“0d hence ®,a is of the type

% re—-gr’ Vs

4

X 1—‘]""11‘1-'—172

l

xo Ya

1 0 Y2
Thus Y2®;a is in the form
X

o D
I
p(qf—hq;}/// ///(ie—gr’)s

Yy —mmmV2
!

i

yz—_—_YZ

X

%d 50 ¢,0,a is given by

x———
//6

Y2 ’

X

2

17

"here't = p(qf-hq’) - (re—gr’)s’ .

X
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Now we have ¥,0,%,a of the type

Yy Y2

Thus ®a = ¢;¢201a is in the form

Y2 y .
| )
2 Y2

Thig shoﬁé that the vertices and

the

edges

of ¢a

are

8PPropriate to an element of YA . We will prove later that ¢®a

does belong to YA .

The laws of the previous sections imply various laws for the

%Perations Yj o @j .

Lewma 5.2.1:

[+ 4 . .
« ‘pJ"lai (1£\j)
9 ¥5 = « N
wjai (idj+1)
x o X [« K+ 4
= = -
aJ+1¢J CJaJaJ+1( € Ja )

a?¢Ja'= 3ja *; 3;,,a for a € A_ (5.2.1)(iii)

(5.2.1)(i)

(56.2.1)(ii)

3'v.a =39 ax,6 3a for a e AL (5.2.1)(iv)

-78-



Eroof:

iéég;lliil: For i¢j , let a € Ay . Then

W4 = g% r} 3% a % X r.al aj

J il J+1 j+1 2 Fje1 155440

=ara x 1 .
i J8J+1 *j aia *j 3;Pjaj+1a by (4.1.4) (i)

= 0. o« - o«
J-lajaia *j aia *j r. 18jala ¢J 1313

by (5.1.2)(vii,viii) and (4.1.1)(i) .

§.2.1)(i): For inj+l , let a € A . Then

aq, = 1
5o =3 [rJaJ+1 Ky 8 ¥5p T5%54,8]

n

3%ps 540 « 1 .
i JaJ+1 ¥5401 3i® 541 agrjaj+1a by (4.1.4)(i)

"

I"a « o4 1 < _ «
Jj J+lala *j+1 aia *j+1 rjaj+1aia Wjaia

by (5.1.2)(vii,viii) and (4.1.1)(i) .

3:2.1) (41): Let a € Ap . Then

3% . _ Lo
J+1Wja = J+1[r’ J+1a *j+1 a *j+1 rJaj+xa] .
I X = o0, we get
N ¥.a = 2% r:a° b the‘algebroid axi
J+1758 T C5417 5%+ y on
0.0 .
.8.9.,. .8 b 5.1.2)(vi) .
€5359;541 y ( )(vi)

6;+;¢ja - 3;+,r53;+z° by the algebroid axioms
= e, ; ;+1 by (5.1.2)(v) . )
Thug a?+1wj = cJ8?3;+1 .
8.2.1)(iid):
33¢Ja = a§[r383+1a ¥i4048 ¥50405 ;+1 ]
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s 20
=37r13% o x, 3% x, a%T.3%, a
7355+ T 557 T S5 %
*c.3%° ax, 3% %, 3! .a
J It J J J J+1
= a%a x_ at " (since ¢ 3%3°
N R R e S A
5‘2.1 iv
%8 = al[r1a% a %, a%., T,2
J°J Jthg%3+1° T+t g+t
*aira? 1 ir 3t
J jaj+1a *j aja :lr‘j aer J_Ha
=3 1 atal
Jra® ¥y 950 X5 €595%5+4°
= 3% t i c.at
j+12 *J aja (since 393
gg&ﬁllgry 5.2.2:
e o, _ 33 (i44)
'y o. =
Py i v,8f (i3j+1)
x - 3N 4 .. &
= = .8.9.,
J+1%5 = €535%5 5 559595
ind for a € A, , we have
° ) 1 _ o
85¢Ja = (3ja ¥ 8J+1a) 5 (354,
1 - J-1,a.0,Jj%1 J-
8J¢ja - ¢j+1(cx (3) a0 &
3% - e J (g%yJte
J+1¢j"'°'¢1 C1 (81)
Troof: (5.2.2)(4): Let a € Ay .
QQQ - [e 4 1
i ja = ai[¢ja Ti+1 cjajwja]
= aY -, 3% a3}
i¥58 =5 93%;9;%50
= o« 1 o«
‘P‘j_iaia —j C.j"laj-lq’j—laia
) °J—1a?a :
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" by (4.1.3)(i)
by (5.1.2)(v,vi)

a is an identity)

by (4.1.4)(i)
by (5.1.2)(v,vi)
a is an idenfity)

1
aj+1

(5.2.2) (i)

(5.2.2)(ii) ,

a%a)

J

* (5.2.2)(iii)
Yalyi*ta) (5.2.2)(iv) ,

(5.2.2)(v) .

Then for i<j

.

by (4.1.3)(i)

by(5.2.1)(i) and (4.1.1)(i,iii)



We can prove similarly that 8?¢J = ¢ja? , for idj+l

“L24Zliiil: This is immediate from the algebroid axioms and

Bi2.1y (i)

(8.2.2) (i44):

8°¢ = a0 _ 1
3790 = 35M¥ye =y ©505%5%)
= 3% a —. 3% .3t by (4.1.3)(1)
JwJa 5 ajcjajwja y ( ) (
= 3% a — 3t by (4.1.1)(iii)
JWJa 5 8J¢Ja y (
= (3° t - ° . at by (5.2. iii
(aja *J aj+1a) 5 (aj+1a *J Ja) y (6.2.1)(iii,iv)
5'2-2 1V
3% a = 3t - aty.
§¥;a = 8j('~Pja j+1 Cj J.\PJa)
=3¢ a — alc.aly.a by (4.1.3)(i)
JJ S 1% S R B I
= 3t - . gt by (4.1.1)(iii
ija 541 8j¢ja y ( )( )
N j—1,.0,j+1 J=1,41yJ+1
Sjpp(e) @D e, € (30 Ta)
!\5-2.2Hv2:
% = %% . ...0 ;
T g 3% X 3% 9., ...0 by (5.2. ii
325 1650250005 5mer e 8] BY (82,20 (41)

"

x o [+ 4 .
¢. ..‘° b L ] [ ] i3 iii
CJ_1°J_135_135_1[35—: Jj—2 ] by (4.1.1)(4,44,144) .
Thus by induction , we get
0§ LT
j-oo.oo¢1 —ci (al) b

aQ

J+1?

lemma 5,2.3:
ici¢J_1 (i4j)

€% (idj+1) (5.2.3) (i)

¢Jci =
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&, = .C, = . 5.2.3)(1i
¢JcJ V€541 = €5 ( )(ii)

The Proof of the above lemma is clear by using a simiiar

'argument to that in lemma (5.2.1) .
gL‘Lollarx 5.2.4:

ij—1 .
Ci¢J (13j+1) (5.2.4) (1)

<D.CAz

€. P, (14§)
e <1

If & ¢ A__, , then

*jc.a = o (ed72(a2) 9 e, ed 3]y  a) (5.2.4) (44)

J 3€5+1% S5

¢ : ' o.n n-2,.1 n' s s s
T X N “(ap%a . €77(3) ") (5.2.4)(iid)

2:2.4 i): For i<j , let a € Ap-; , then

®e.a = - aly.c.a
348 = vjeqm 5, €595

e, - v, by (5.2.3)(i \1.1)(ii,ii]
le_la 41 Cjcj—xaa—1¢J—1a y ( )(i),(4.1.1)(ii,iid)

~
-~

W s = s s
¢ can prove similarly that ¢Jci = Ci¢J » for iNj+1 .

8.2.4) (i1

Yieja = wieie =5, €;35¥;¢;a

ftjao, el by (5.2.3)(iD)
ey, o by (4.1.1)(ii1)
TR C ATl RTINS CH AN I

By 8 gimilar arguﬁent one can prove that
c _ Jj-1 J+1 J-1,,1,j+1
J j+18 T CJ+1(51 (3 ) ’ 51 (81) a) .

5-2.4 jii): This is clear by using (5.2.4)(ii)
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lenma 5.2.5;

L.y, (i4j)
wjr. :i 1 g1 ' (5.2.5) (i)
i SNi41 ,
riwj (idj+1)
$.I'. = €. ' , (5.2.5)(ii)
JJ J
: ’ 1
= o a. 5.205
ViTien = T5 *jus Tyun *gun TyCoeadinn | ) (114)
Eroof:

3:2.5)(i) let a € Ap-1 . Then for i4j , we get

¥.r = ° r.a r.a
J it = P"jaj_‘_il‘ia *j+1 rj_a *j+1 J J+1i

"

Ir'r 3° .r.at by (5.1.2)(vii,viii
Jriaja *j+1 Fja ¥5,, rJr1 ;8 y ) ( ) )

"

P.r» a© r. a'a by (5.1.2)(ix
{T)_,2% ¥, Tja %y, DTy, 358 by (5.1.2)(ix)

Y_,3%a X a X rj_za;a) by (5.1.4)(i)

Pi‘P o

J-12

We can prove similarly that ¢jri = ri¢j s if idj+1 .

5.2.5)(ii): Let a € Ap—y . Then

1

1 _ o . r.a. .r,.
3Tya = Tja5, 58 ¥ie0 T2 Xju0 15%5407 50
s pe r.c.ala by (5.1.4)(iii
;e *j+1 Pja *j+1 5593 y ( )( )
“t.ax, c.c.d:a by (4.1.4)(ii) , (5.1.2)(iii)
JT T+ T3
1 o .
c ] .c.3.a is an identit .
;8 ( since €;c;3;a is Y?
(8.2,5)(iii): Let a € Ap—y . Then
Y - o) . , 1
JPJ+13 = rsaj+xrj+1a *J+1 Pj+1a *j+1 rj;5+1rj+1a
= 1 1
rja *j+1 rj+1a *j+1 rjcj+1aj+1a by (5.1.2)(v) .

-83-



Corollary 5.2.6:
‘ (144)

Fi%5=1 5I2 6) (i
ﬂfizirﬁﬁ (i5j+1) (5.2.6) (1)

F
°r a € A,_, , we have

s 3 3 — i+
o.C.a= ¢, (3 23N a, )7 @ ey (5.2.6) (1)

JJ
OCiy = (B *50y Tiua ¥ju4 r5°3+133+1) ~e1
(€5 %544 Lipe€595)  (5.2.6)(ifi) .
EEQQQ: ;
liLngLLil; For i<4j and & € Ap—g » we get
e = e -, ERAN
= Ty .8 =5, cJaJrle_ia by (5.2.5)(1)
- ri*j-xa mer EyF335mayog®  BY (5:1.2)(vid)
SR CTCENU JL L A LR (5.1.2)(iii)
at w._ .a) by (5.1.3)(iii)

H
=
[ S
~
€
o

G-12 T3 Fi-1f5-1t-

ri°J ,8
We can prove similarly that ¢ F = P.¢J ,» for i 3 j+1

1
§.2.6)(ii): Let a € Ap_y . Then

®r g = - aty.r.
R R TR AT A b
1 s s
= Cja ~j+1 Cjajcja by (5.2.5)(ii)
+1 j=1,.1,j+1
= 6y, (370 0)3*1s , edTi(al)Itty) |

1§_‘2.6Hiii}: Let a € Ap_y . Then
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1

v.Tr
J¢

oy .I',, .a
CJ J Jt1

SARAT A RS

= ' L - .atrra x,
(P&a X, r. a *j+1 rjcj+1aj+1a) 541 (cJ 5058 %54,

L c.at Lo .2.5)(i,ii)
c. 're. 3., .8) by (5 ’
305 4a® *gen 6595555405541

. 1 1rs
= - c.d.l%a X%,
(Tja *ji0 Tiaa® *jaa Tie5e095412) Tyea (5595050 *50a

€.3lr

1 L by (4.1.4)(i),(5.1.4)(i)
,JJJ+18 *.’+1 cjajrjc ] a) Y(

J+1 Jt1
1 1
= - c.a %, r. c¢.d.a
(r3° ¥i01 Tjea® 501 rjcj+zaj+1a) J+1 (€58 ¥541 T541%59;

ey cja(ag)za') by (5.1.2)(iii,v,vi,vii) and (4.1.1)(ii,iid)

T (Tha ki, Tiea® ¥j0a chJ+1a3+1a) Tier (550 e r5+153838)
( since rj+1°jasa X544 cjé(a; 2, = rj+1cja;a ) .
lenng 5.2.7:
N
,wjrs = C‘j (5.2.7)(ii)

2 v %, T, (5.2.7)(iii) .
wJ 3+1 = r3 Cj+1aj+1 *j+1 rJ+1 J+sr ( ) (iid)
5.2.7)(i): Let a € Ap-y . Then for igj

' 1
= ° ! .., [.3; Tla
¥ifia = L535+aT1® *j+a Fi® ¥jea 5%+074

iriafa ¥, Tia *5, r;rjdja by (5.1.2)(vii)
J

[/
v
-
©
[+

»*
\®
m..

r d.a by (5.1.2)(ii,ix)

"
=

1
]
iT5-19;

[]
”~~
e |
I

[y
. 1)
<. o
o
*
[+
*

1 s
D QY- I b 5.1.4 v
5 ; Fs_, Ja) y.( ) (iv)

n
e
€
<.
o
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We can prove similarly that ¢jri = Piwj , for ixj+l1 .

5.2.7)(4i): Let a € Ay—y . Then

W.P{ = ! ' . r,. F’a
' g8 rJaJ+1rJa ¥00 T3 %500 05 J+1 J
- ] ’ :
= chJaJa *J+ rja *j+1 Fja by (5f1.2)(v1)
= e, 3% «x. €.a by (5.1.4)(vi)
J J J J+ J
= ° . b 5.1.2)(iv
cjcjaja *j+1.cda y ( Y(iv)
= c.a .

5.2.7)(iii): Let a € Ag—y . Then

ryas, I} j+1 r’+1 *; j+1 r; +1r’+
Hefie et i o

v.r
Jr.i+1a

Sorollary 5.2.8:
rid;_, (i<4j)
e.r: =3 * (5.2.8) (i)
J 1 r:é. (i3j+1)
i
. +1 j—1, .4, +
o0y = ¢y, (cJ o CN yJ , €] 1(3))7 " a) (5.2.8)(ii)
B = (The., 3%,y *apa Diaey ¥je0 T3 —jay (€ rat x
J+1 JEg+1%g+s T+t g+t gt g7 g+t 2T JJ
2,1 .
.€as 5.2.8)(iii
€;°35) ( )(iii)
E&Qgg: The proofs of (i),(ii) are similar to that of corollary

(5.2,6)

5.2.8)(iii): let a € Ap—y . Then

. = - ’
JF5+18 = ¥505448 Ty cJadwer+1
= (r° ° R o ¥, . T.a) —. °
(rJCJ+1aJ+1a ¥jee Tg+a® Ty Ja) J+s Ch (rj J+IaJ+1
% " .
J+1 P3+1a *j+1 rja) _ by (5.2.7)(111)
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- o 1 ‘ — ’ [o]
- (rJ jt+1 j+1 *j+1 rJ+1 *j+1 rja) Jj+1 (CJaJrJ J+18J+1

3 ° o
*J+1 cJaJl‘J+1 *j+1 j J J a) by (4.1.4)(i,ii)
- ’ o . ’ - 2,0
- (rJ J+1aJ+1a *j+1 rJ+l *j+1 rja) jt+1 (Cj aj+1a *j+1
"1 2 1 . <« s
cjrjaja *J+1 c‘j aja) by (6.1.2)(v,vi,vii)
= ’ o ’ - ’ '
- (rjcj+1aj+1a *j+1 rJ+1 *j+1 rja) J+1 (CJrJaJa *j+1
2.1
c. 3,
J Ja)

Proposition 5.2.9:

i) If a,b € A_ with-aga = a§b , where « = 0,1 , then

$.a +, ¢.b (jwi)
q)i(a +j b) :i 1 J i
via 4 wib (§=i)
.. . 1
ii) If a,b € An with Bja = 33b , then
¢ia *j wib if j « i, i+l
= 1 o R -
Vila ¥y b) =7 (¥5m ¥, €5354,0) %y (659,08 ¥y, ¥b) 1T g1

-0 1 .
(ciaia *i+1 wib) *i (¢ia *i+1 ciaib) if j=i+l

iii) If a € Apband r € R, then

r .. ¥.a J wi
wi(r * a) = i J i .
T «j41 Wia J=1
Proof:
i) Let j 3 i+l . Then .
- o 1
Wi(a +j b) P331+1(3+Jb) *i+1(a+jb) *i+1 P181+1(a+jb)
_ o
= (F}a7, .8 +; T35, b) %, (a+;b) x, (T 3i4q8 *5 T335,,0)

by (4.1. 3)(1) , and (5.1.3)(i,1ii)

i

1
’
(r 81+1 *i+1 a *i+1 riai+1a) +j (l‘1 i+1b *i+1 b *i+1
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r.a! o) | by (4.1.6)(iii)

We can prove similarly that wi(a +j b) = ¢ia +j ¢ib for j<i .

For j = i+l , the result is clear by using distributivity
. « _
and the hypothesis that ai+1a = Bi+1b .
Now to prove the second part of (i) , for j = i , we refer

to the case n = 2 . Thus by proposition (3.2.3)

¥i(a +5b) = ¥ja 4 b .

ii) Let j<4i . Then we have

- [) 1
¢i(a *j b) = F181+1(a *j b) *i+1 (a *j b) *i+1 Piai+1(a *jb)

(r:a® X

195412 ¥ Pl 1+1 (T. al a x_ r. a3} b)

b) *1+1 (a *j b) *i+1 ii+s Jg "ii+s
by (4.1.4)(i) and (5.1.4)(i,ii)

]

s 20 : 1
(riai+1° *i+1 a *i+1 rl 1+1°)* (ry a1+1b *1+1 b *i+1 riai+:

by (4.1.6)(ii)

b)

"

¢ia *j ¢ib .

We can prove similarly fhat ¢i(a *j b) = wia *J vib , for

J Y i+l
The equalities for j=i,i+1 follow from proposition (3.2.3)
since (Ap,Ap—4,) is a double algebroid for direction i,i+l .

iii) For j > i+l , then we have

»

a) r.a!

bi(r . j+1 (T oy j+1 Ti9344(r o5 )

i ) a) = Iia

i i+1(r R a) x

1
J-1 aj+1

1]

ri(r . 3° a) x a)

J-1 %ies (r .52 %

i+ FPRR R ¢
by (4.1.5)(1i)

o

1+418) ¥4, (r o @) (r ., I.3;

J *i+1 J i i+1a)

(r “j r;a
by (5.1.5)(i,ii)
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= ’ o ) 1
=r oy [riai+1a *i+1 a *i+1 Fiai+1a]

r *j wia .

We can prove similarly that ¢i(r "3 a) = r .,

J<4i and j = i+l .

J

wia

by (4.1.5)(iii)

, for

Finally , for j = i , we refer again to the case n = 2

then

q’i(r ‘i a) = r LY

Corollary 5.2.10:

i) If a,b € A with 8?& = a?b , then

‘ d.a +, Qib if jei
®.(a +, b) = i 1 J
1 J ¢ia +,

j+1 @ib if j=i

o

ii) If a,b € A_ with 3'a = 3% , then
n J J .

¢;a ¥, &b if j i, i+l
_ o]
®;(a ¥ b) =/(%;a * (c.as

1
s €.d, +.
i+1 181+1b) 1+1 1 ].+1a

X

i+1

¢ib) if j=i

(o] 1 . s s
(€;958 *544 ®3b) +5,,(®5a ¥, €;9;b) if j=i+l

iii) If a € A, and r € R . Then

r .. ®.a (jei)
¢, (r .5 @) —2 J 1
. roejeq %50 (3=1)

Proof: i) For je¢i , let j X i+t . Then

@i(a +j b) = wi(a +. b) -

1
3 €j3;¥3(a +; b)

+31 J

1]

: 1
(¢ia +j ¢ib) ~i+1 ciai(¢ia +J wib)

(q)ia +j wib) Ti+s ititi

[}

(v;8 —

1
i+1 ciai¢ia) +j (¢ib -

1+1

°i a +j @ib .
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by (5.2.9)(i)
(c.3 ¢.a +, cia;¢ib) by (4.1.3)(i,ii)

1 .
€,3,¥;b) by (4.1.6) (i)



We can prove similarly that ¢i(a +j b) = ¢ia +j 0ib , for

J <£i, j=1i+1l . Finally for j = i we refer to the case

n = 2, thus ¢i(a +s b) = 018 +y Gib . Also one can prove

+1
the above equation by using (5.2.9)(i) and (4.1.3)(i,ii) .

ii) For j « i , i+l , let j N i+l . Then

1
0i(a *j b) = wi(a 3 €.3.¢¥.(a *j b)

J b) Ti+1 Ci%iti

1 .
(¢ia *j ¢ib) ~i+ ciai(wia *j wib) by (5.2.9)(ii)

(c.3¢.a x. c.3l¢.b) by (4.1.3)(i,ii)

(¢ia *j ¢ib) Ti+s ii’i Jg i7i'i

1 ~ 1 A
(wia —i+1 Ciaiwia) *j (wib —i{+1 ciaiwib) by (4.1.6)(iii)

4

48 *J Qib .

We can prove similarly that ¢i(a *j b) = Oia *j Qib s for jé4i .
Again the equalities for j = i , j = i+l follow from
proposition (3.2.3) since (Ap,Ap-y) is a double algebroid for

direction i , i+l .

iii) For j #« i , let j 2 i+l . Then

_ _ 1
Qi(r “ a) = ¢j(r .. a) —, ciai¢i(r ., &)

J i+ J
= (r . ¥a) =, €;35(r o ¥ia) by (5.2.9)(ii1)
= (r.j ¥e) =, (r .5 c;3:¢.a) by (4.1.5)(i,ii)
=r “j [¢ia ~i+1 ciazwia] by distributivity

=r ., $.a .
We can prove similarly that ¢i(r " 5 a) = r " j Qia , for jé4i

and j = i+l .
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Finally , if j = i we refer to the case n = 2 , then

Oi(r 3 a) = r S 0ia . Also one can prove the above

equation by using (5.2.9)(iii) and (4.1.5)(i,ii) .
In the folloﬁing corollary we give the general formulae
for ¢(a-+j b) and ®(r . a) for a,b € A, , r € R such that
a +j b is defined . We delay giving the formulae for
®(a Xj b) .

Corollary 5.2.11:

i) If a,b € A_ with B?a = ajb , where « = 0,1 , then
&'(a +. b) = &’a +_ &b .
J S

ii) If a € A, and r € R , then

®’(r .., a) =r . o®'a.
J n
Proof:

i) ¢’ (a +j b) ¢ ...¢1(a +. b)

n-1 J
- ¢n—1°"¢j(0j—1“'¢la +j ¢j_1cou¢lb) by (5.2.10)(1)

n

(Qn_l...Qla) +n (°n—1"'¢1b) by induction and (5.2.10)(1i)

d’a + &°'b .
n

ii) 45’(r".‘j a) = ¢ ...01(r “j a)

n-1
ol SUPEETEL PR € RN S IPLTEL L) by (5.2.10)(iii)
=0y ey, (r ey .00 00) by (5.2.10)(iii) .

Thus by induction , we get
;] - 1
Now we apply the operation ¢" , but before that we show

that 03 is well defined on the required elements , namely

Remark 5.2.12: For 1{j<n-2 , @3 is well defined on
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’ ? ’
¢j+1°"¢n—2° a , for a € A .

. . 3 3 2 ] ? L] 1]
rProof. By its definition ¢J is well defined on °J+1"'¢n—2¢ a

? 3 - 14 3
if and only if 3 ¢J J+1"'°n—2¢ a = ancJaJwJ J+1...¢ _,%'a

x = 0,1‘.

First the left hand side =

3% 8% ... @'a = ¢.3%’ ...0° ®'a by (5.2.1)(i) .

n j j+i1 n-2 Jn j+1 n-2
] ] -—
,.Let °3+2"'¢n—2° a =b , then
_ el _ 1 - o«
L.H.S = ¢jan[¢5+1b n CJ+18J+1 J+1b] ¢jan¢j+1b

by the algebroid axiom .
Thus by repeating this procedure (n-j-1) times , we get

’ s ’ - Ky
d ¢J¢J+1...¢n_2¢ a = \PJ\PJ+1...\P fzan¢> a

=¥y vy J[e)"THEDH M) by (5.2.2)(v)

= ()" 3D "a by (5.2.3)(ii) .
On the other hand ,
- ’ ] 9 - ’ ? 9

by (4.1.1)(i,iii)

c.af
J J

1]

[(cx)““(af)“a) by the above argument

(ci)“"(af)“a by (4.1.1)(iii) .

L

Thus ¢3 is well defined for all 1{j¢n-2 .

Lemma 5.2.13: Let u,v € Ap be such that u +, v is defined and

¢" 'is defined on u +, v . Then ¢"(u +, v) = @"u +, ¢"v .
. " - ’ ’
Proof: ®"(u +, v) $ ....Qn » (u + v)
= ’ - t
01"'°n-—3 [‘Pn—z(u *n v) n n-2 n—zwn 2(u +n V)]



1
+
n-2 n n-2 n cn—z n-z(‘pn—zu n wn—z)]

by (56.2.9)(i)

= 6;...¢' (v u— € 3 ¢ u)+ (v v-—

n-3 n-2 n n-2 n-2 n-2 n n-2 n n-2n-2
¢n-zv2 by (4.1.3)(i,ii)
= @’...0;_3[ ' u + ¢’ _v] . Thus by induction we get

n-2 n n-2
®"(u +, v) = ®"u +, ¥"v .

Corollary 5.2.14:

i) If a,b € A with 8?& = a?b , then

d(a +j b) = ¢®a +n.¢b .

ii) I1f a € A, and r € R, then

&(r ‘j a) = r ‘n da .

Proof:

i) ¢(a +j bj = ¢"¢’(a +, b) = " (Q’a th ¢'b) by (5.2.11)(i)

J

’ ’ ’ ’ '
°1"'¢n—2 (®’a t, @ b)

¢;...0’ (v

’ ’ —
-3 (¢’a t, ¥'b) — ¢

1y (¢'a + ©'b)]

3
n-2 n-2 n-2'n-2

1 (v ®'a +

= ’ » ’ ’ -—

1 n-23 n-2

¢n_2¢’b)] by (5.2.9)(i)

1 '
_,0a— e o3 ¥ 0'a) + (¥

= ’ ’ ’ —
Q1"'¢n-3[(q’n n n-2 n-2 n-2 n_2¢ b n

1 © s
cn_zan_zwn_2¢’b) by (4.1.3)(i,ii)

"

1 ? ’ ? ’ 1 - LY. 3 "a 3
¢1"'°n-3(°n—2° a+ & ¢ b) = ¢"P’a +, ®"®’b by induction

= $a + ¢b .
n
ii) o(r . ja) = o"®'(r . j8) = e"(r .  ¢'a) by (5.2.11)(iii)
= & ,..8 _(r .y ©'8)

1 n-2
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1
n-2 n_2¢n_2(r ‘n ®’a)]

¢’a-o°' [4"

1 n-3 (r .

’ —
¢’a) n €

n-2 n

’ — 1 ’
_20 a) n (r ‘n cn~28n_2¢n_20 a)]

] ?
010 U 1y ¥,

by (5.2.9)(iii) and (4.1.5)(i,ii)

. 1 ’
a[r ‘n (Wn_2° g T cn_zan_2¢n_2¢ a)]

9 ’
°1000¢n_

by distributivity

.; 9 ? ] 3
- ¢1o.o¢n_3[r on ¢n_2Q a] .
Thus by induction , we get ®¢(r ‘5 a) = r ‘n da . n]

Recall from chapter IV $ 1 that the function

C.:A X A -~ A gives the zero from u to v in A
J'"n-1 n-1 n

for the j-th algebroid structure of A, . Also we write

B,a = (a:)na » Ba = (a:)“a » the first and last vertices

respectively of the element a € A, .

Lemma 5.2.15: If («,i) « (0,1) , i < n-1 and a € A, , then

a«

’ ’ - n-2 n—-ea
i+1¢i“’¢;-2¢ a = cn-z((c1) Bo8 s (cl) Bia) .

. ) ’ Yo =
Proof: Let °i+1"°°n-2¢ a=>b, then

X ’ ’ s - a% ’ . o - 1 »
Biea®ir - ¥ %8 = 95, b = 3., ,[¥5b = €;3;¥;b]
_ o _ « 1 .

= 3%, wb - 3f, calep by (4.1.3)(i)

ciafafb s cia;ciafagb by (5.2.1)(i) and (4.1.1)(i,iii)

L3

_ « _ o« ces
= ciaiafb -1 ciaiafb | by (4.1.1)(iii)
_ o X0 1 40

- cn—z(an—iciaiai ' an—zciaiai ) -

Claim 5.2.16:

o & _ , n-2 1 X, _ n-2
Bn_iciaia?b =c, B,8 and an_lciaiaib €, "Ba.
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The proof of the above claim is indicated in Appendix I11

. < ’ ’ ', = n-2
Thus ai+1¢i...¢n_2o a = Cn_l(c1 Boa » €, .

vProposition 5.2.17: 1f («,i) #« (0,1) and a € A, , then

i) afea = ¢ _ ((e )" %Bja , (£,)" " %Ba) , for i ¢n,

<. @ _ n-1,.%n
ii) anéa = (cz) (81) a .

. « = a%pna = 3%a> ’ ’
‘Proof: i) 9, %a 3;0"®’a ai¢1...¢n_20 a .

H ] 1} -
Let ¢2"'¢n—2¢ a = b1 s then

Ky a&pyr A& _ 1
3;%a = 3;¢'b, = 3;(vb - €,3,¥b ]
= 3% b, — 3% 3¢ b, . by (4.1.3)(i)

111 n-1 1 11 11

v, 35p =, €39 3%, by (5.2.1)(i) and (4.1.1)(i,iii)

’ ? b4 -
Let ®5 ...Qn_2¢ a b2 s then

&, _ Kpgy 1, ~Gps
3j%a = ¥,3;9b, Th-g €,3,¥,3;9:0,

"

« 1 1, & 1
W33 lWob, = €3,%,b, ) 4y €,3,¥,95[¥,b, c232¢2b2]

]

1 : 1 .
¢1[¢2a§bz “n-1 Czaquzacixbz] “n-1 C1814'1“’23:'132 “n-1

| cza;wzagsz by (4.1.8)(i),(5.2.1)(i) and (4.1.1)(i,iii)

- x -— 1 — 1
= [v.v.3% ¥,€,3,¢,35D,] [c,a % ¥

o
1'2i 2 n-1 "1 227271 n-1 aibz

2 n-1

€ a‘¢ [ 81¢ a?b

 9,¥,€,3,¥,9,b.1 by (5.2.9)(i) and (4.1.3)(i,ii)

- 1 1
= “’;“’za?bz —_, €,3¥ a?‘sz - [c. 3ty ¢ 3% _ —

1 1 2 21 n-1 1 11 212 n-1

ciangagbz] by (5.2.3)(ii) and (4.1.1)(iii)
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_ _ 1
- ¢1wzagbz n-1 c1ax¢1¢2a§bz .

Thus by repeating this procedure , we have ;

« = - 1

ai¢ﬂ - wx“'¢i—za?bi—z n-1 czazwx“°¢i—za?bi—z ’
- ? 9 ?

whereAbi,_2 =& _,..®,_,%'a . Thus

&, n-2 n-2 _
>ai¢a = ¢1...¢i_2[cn_1((€1) Boa (Ci) Bta)] —

1

€, 3%, .. _, (& ((Cl)n_zB a , (Cl)nnzﬁia)]

"

n-1 o

by lemma (5.2.15)

=g ((cl)n—zﬁ a) .

n-2
n-1 o? ' (cz) Bx

s s o e a%anags - 2%y ’ ’
ii) anOa = 3n¢ ¢’'a = an¢1...0n_2¢ a

i

« ’ ’ ' S 1 ’ s ’

1717172 n-2
= 3:¢1®;...¢;_20’a by the algebroid axiom -
= ¢18:0;...¢;_2¢’a by (5.2.1)(i)
Sl TR S ag ®'a by the induction

"

« . _ n-1,.%.n
WoeeeW 300 Loii®a sy Ly ()T () a)

by (56.2.2)(v)

(cl)""’(af)“a by (4.4.3)(ii),(4.1.1)(ii) and induction . O

Thus ¢a is an element in the associated crossed complex YA .

Corollary 5.2.18: ®a = a if and only if a is an element in

YA . In particular ®2b = ¢b for all b € A .
Proof: Let a € yA , then a € Mj(x,y) for some X,y € Mg . By
(4.4.14) we get vja = a , then 03& = a and hence ®'a = a ,

thus ®a = a . The converse is trivial . a
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In the previous discussion we investigated the folding
operation ¢ in the general case except for the formulae for
~®(a *3 b) . We give now the formulae for ®(a *; b) in the 3
and 4 dimensional cases .

Also we shall prove that there exist an equivalence
between the category (Crs)® of 3-truncated crossed complexes
and the category (w-Alg)3® of 3-tuple algebroids . We start
first with the formulae for ¢(a *; b) namely;

Proposition 65.2.19: If a,b € A, and a *j b is defined

then , for n = 3 (resp.4) and 14(j¢3 (resp. 1<j<4)

®(a *; b) = Uig(eb) o+ (®a) VP
_ 40 o o o
Where ujsa = 8, e aj_l aj+1 .+.d a and
_ ol 1 ]  }
VJ.b— 81...-.85_1 aj"’l oooanb .

The proof of the above proposition is indicated in

Appendix IV .

Proposition 5.2.20:
l) For n = 3 , let a € A, . Then

i) ¢cia = 0 in dimension 3 for 1 ¢ i ¢ 3 ,
ii) orja = 0 in dimension 3 for 1 < j ¢ 2 ,
iii) ¢r3a = 0 in dimension 3 for 1 ¢ j ¢ 2 .

2) For n = 4 , let a € A5 . Then

i) Qcia = 0 in dimension 4 for 1 ¢i ¢ 4 ,
ii) Orja = 0 in diménsion 4 for'1 ¢ Jj ¢33,
ii1) ¢T}a = 0 in dimension 4 for 1 ¢ J <3.

The proof is given in appendix V .
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Now we move to define an extra structure on an w-algebroid
A , which we call "thin structure” .

Definition 5.2.20: An element & € A, (for n = 3 , 4) is called

thin if and only if ¢a = 0 in dimension n .
For all n , the collection of thin elements of A, is
closed under the operations t5 00 0§ o l1 ¢(j ¢n , and this is

also been proved for *; if n < 4

3.COSKELETON OF w-ALGEBROIDS:

If one ignores the elements of dimension higher than n in
an w-algebroid , one obtains an n-tuple algebroid AM . R.Brown
and P.J.Higgins [B-Hi-2] have constructed the skeleton and the
coskeleton in the w-groupoid case . We will follow the
notations and terminology of [B-Hi-2] to costruct a coskeleton
in an w-algebroid .

We start to construct the coskeleton in terms of "shells"

as follows
in a cubical complex K , an r-shell means a family a = (a?)
of r-cubes (i=l,...,r+l , « = 0,1) satisfying

af af = af_, a‘Jﬁ’ for 1¢jzir+1 and «, 8 € {0,1} (5.3.1)(i)

In particular the faces agb of any (r+l)-cube form an r-shell

LY

3b . We denote by OK,. , the set of all r-shells of XK (c.f.
Duskin’s "Simplicial kernel" [D-1]) .

Let K = (Kp,..+.»Kp) be an n-truncated cubical complex .
Thén K' = (DKp,Kps+-+3Kg) will denote the (n+l)-truncated

cubical complex in which , for any a € OK, , 3? is defined to
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be a? and for any b € K, , cjb is defined to be the n-shell

-

c , where

'cj_lagb' (i4j)
x « < s <
c; = cjai_lb (ixj) (5.3.1)(ii)
b (i=j)
If K has connections , we can also define rjb =d, P3b z e
where
« s s o _ ,0 _
) SN (i<j) dj = dj,, =b
d; = (5.3.1)(iii)
! r.a (inj+1) d! = d' = ¢€.3%
3%i-1 Y T A A A
rr 3% i <j © - % =¢.3%
« J-1%i (145) o5 = ejuy = €59
eX = (5.3.1) (iv)
1 y o < s 1 1
l‘jai_lb (ixj+1) e = €4y T b

In this way K’ becomes an (n+l)-truncated cubical complex with

connections

Now we replace K by an n-tuple algebroid A . We define +j

*j v e in DA, as follows

For +, , let a,b € DAy with a?a = B?b . Define a +; b = f
where
& [+ 4
8y *j-1 b3 (14J)
[« 4 . N
f? = af +5 by (i>§) (5.3.1)(v) .
al (= by ) (i=j) .

1 ) . '
For *j , let a,b € DAn with aja = 3jb . Define a *J b =g

where

(6.3.1)(vi)

-99-



al *j_, bs (i4§)
« Z (5.3.1)(vii)

(13))
Finally , for .j; , let a € OA;, and r € R , then we define

r.jas=s h , where

B3 - j-1 a, (igj)
h? =lr . af (inj) (5.3.1)(viii) .
a% (i=j)

Proposition 5.3.2: The above structure A’ (ﬂAn,...,Ao) is an

(n+l)-truncated w-algebroid .
The proof of the above proposition is given in Appendix VI.

Proposition 5.3.3: If AR = (Ap,.....,Apg) is an n-tuple

algebroid , then the w-algebroid AR with
Ag‘ form ¢ n
AD =

n -n ,n
Dm An for m 3 n

and operations defined as above , is the n-coskeleton of AD ,
Proof: If B is any w-algebroid and fi :By --- A} are defined

for k = 0,1,...,n , that is

By ==+ Bp-q4 == ...e. == B4y -=-23 By
¥ N
An -—= An...1 =" chsee — A1 -—== Ao

so as to form a morphism of n-tuple algebroids from

n-truncated B to n-truncated A , then there is a unique
extension to a morphism of w-algebroids f : B --+ AD defined

inductively by , for b € B , fmb = ¢ , where c? = fm_iagb

(m > n) . This shows that AR & Cosk™ AD 8]

-100-



We apply now the folding operations i °j R Q’j s @ in
the w-algebroid Cosk™ A" , where A™ = (A_,...,Ap) . Given an
_ _ « . _ .
n-shell a = (ai) € UAn , we obtain n-shells ¢ja , 0ja , ¢ja
and ®a . By proposition (5.2.16) ¢a € y O AR , that is , all

faces of»@a are zero except the faces (0,1) , («,n) . If B is

a given w-algebroid , adjointness gives a canonical morphism
f: B —— Coskng & Coskn(n-truncated B) with fr+1b = db for

b € Bprygy . Since f preservés the folding operations , so for
any b € B, and n 3 3 , we get
®3b = 3a%b (56.3.4) .

Proposition 5.3.5: Let A be an w-algebroid and let M = YA be

its associated crossed complex . Let a € ODA,_, and € € M (u,vV)

where u = Boa s V = Bla . Then a neccessary and

sufficient condition for the existence of b € A, such that

3b = a and b = € is that €€ = €P3a . Further if b exists , it
is unique .

Proof: The essential point is that the folding ¢®a of a is
constructed from a by applying operations defined on the shell
da of a . further » each of the individual components of ¢ is
reversible , given full information on the shell of the
element to which it is applied . For example , an element b
may be reconstructed from ¢;b and 3b . the proof of this

essentially the same as in the 2-dimensional case . Then
L _ 1
@ib = ¢ib i+1 ciai¢ib and so b may be reconstructed from ¢ib

and @b . A similar remark applies to Gib , when defined . O
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It &s clear from proposition (5.3.2) that (DA,,A;,A;,Ap) is a
3-tuple algebroid , whenever (Az,A;,Ap) is a 2-tuple
‘algebroid .

In the next section we prove that there exists an
equivalence between the category (Crs)® of 3-truncated crossed
complexés and the category (w-Alg)3 of 3-truncated

algebroids .

4, THE EQUIVALENCE OF CATEGORIES:

In this section we start to construct a 3-tuple algebroid
from a 3-truncated crossed complex by wusing the folding
operation . Then we prove the equivalence of the above
categories .

Let M® = (M3,M;,M;,M,) be a 3-truncated crossed complex
and let Ag = Mg , Ay = My . Then A, = XM, , constructed as in

chapter III . Define

A, = {(a,8): a € DA, , & € M such that $& = 3,%a}
define the maps Cj ’ 3? ’ Pi , r; y for « = 0,1 ,

j=1,2,3 and i = 1,2 in the following way :
Let a € A, , define Cja = (cja » 0) , where cja is defined by

(5.3.1)(ii) . Clearly cja €A, (since ¢cja = 0 in

L]

dimension 3 , see proposition (5.2.19)) . Define 3?: Az === A,

by , if (a,€) € Ay , then it is clear that 8?(9,8) = a? .

Finally , define PJ(Q,E) (FJQ,O) and P&(g,e) = (PEQ,O) . It is

clear that rja , r3a € A by proposition (5.2.19) .
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We define now the appropriate algebraic structure on Agj
namely ; additions , compositions and scalar multiplications

as follows

First for (a,8) , (b,n) € Az with B?Q B?Q , we define

(a,€) +5 (byn) = [(a +5b) , €+ n] for j =1,2,3 .

Note that this definition make sense . Thus we have

o _ a0 _ -0 o
3%(a +. b) = 3][%a +_ 0b] = 3%¢a +_ 3

b = €€ + Sn

= §(€ + n)
Second , for (a,f£) , (b,n) € A; with 833 = agg , then we
define

(8,8) #; () = [(a *;b) , “i%n + gvik .

We must verify the appropriate boundary condition , namely

2%(a *, b) = 2°[(ea)V1B +_ Ui2(eb)] by (5.2.18)

U180gph)] = (B:OQ X, afciza;a;g) +,

1]

ajr(ea)Vsl 1 +, I

(3% 23

1.1 o _ 1.1 1.1
16,783, %, 3,0b) = (S8 ¥ €,3,3_b) + (£ 3 3.a ¥ ®n)

3 1 2 3 1 2 3~

. 3l 15l = gvVik | uja
s [(8 % c3,3b) + (c,3,3.a xn)] =8 & + nl .

We can verify similarly that (a,f) 3 (g,n) is well defined
for j = 2,3 .
Finally for (a,€) € A; and r € R , we define

1)

r ¥ (a,€) = (r "3 a, r . €) . Again it is easy to

show that this definition make sense . Thus we are ready to
give the first result of this section , namely ;

Proposition 5.4.1: The above structure is a 3-tuple

algebroid .
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The proof of this proposition is similar to that of
proposition (3.3.1) .

Thus any 3-truncated crossed complex gives rise to a
3-tuple algebroid . This constructiondefines a functor X\ from
the category (Crs)® of 3-truncated crpssed complexes to the
categor& (w-Alg)3 of 3-tuple algebroids , that is

X i (Crs)® —-» (w-Alg)® .
Now we méve on to prove the equivalence between these two
categories .

Theorem 5.4.2: The functors y , X defined previously form an

adjoint equivalence

-——
@—-—

y ¢ (w-Alg)? (Crs)® : X .

The proof again is similar argument to that of theorenm
(3.4.1) .

Note that one can prove there exist an equivalence between
the category (wAlg)#* of 4-tuple algebroids and the category
(Crs)* of 4-truncated crossed complexes by wusing similar

arguments and the formulae of the folding operation for the
composition which was‘given in (5.2.18) .

Now we end this chapter with a conjecture for the higher
dimension ; namely for the n-dimensional case .

First suppose that , if n32 , 1{j¢n and a,b € A, are such

that a x;

3 b is defined , then

u.a v.b )
®(a ¥5b) = I () +, (%a) I .

Then there exist an equivalence between the category((ggg) of
crossed complexes and the category (w-Alg) of w-algebroids .

In the next chapter we suggest possible further work in
the same area to link thg above ideas with homological and
homotopical algebra .
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CHAPTER VI

CONJECTURED RESULTS ON ALGEBROIDS , Ww-ALGEBROIDS

AND CROSSED COMPLEXES

In this chapter we recall briefly various results on
groupoids , w-groupoids , crossed complexes (over groupoids)
and we conjecture that these results carry over to
algebroids ’ Ww-algebroids and crossed complexes (over
algebroids) . We also conjecture a relation between the ideas

of this thesis and algebraic geometry .

First we recall some results in the groupoid case ,
namely ;
1) R.Brown [Br-4] has explored the notion of a fibration of
groupoids :.i.e. a morphism ®:A --+ B of groupoids such that
whenever X € Ag and b € By with €% = ¢(x) , there exists
a € A, such that ®(a) = b and $% = x . Also he proved that if
one starts in the category of groups , then certain

constructions lead naturally to fibrations of a groupoids .

2) J.Howie [Ho-1] extended the notion of' a fibration of
groupoids to that of a fibration of crossed complexes (over
groupoids) . Simply a fibration in the category of crossed
complexes (over groupoids) is a morphis;’sz —-2 N such that

eéch‘groupoid morphism ¢, : M, --» Np (n 3 1) is a fibration

of groupoids .
3) The homotopy addition lemma is given in [B-Hi-2) . This is
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precisely the formulae of the (0,1)-th face for the element ¢®a

where ¢ is a folding operation in an w-groupoid G and a € G, .

4) The results presented by J.H.C.Whitehead [Wh-2] are
generalised in [B-Hi-4] . Namely the functor A’: (free crossed
complexes) NN (chain complexes with operators) is
~generalised to & functor A: (crossed complexes) --+ (chain
complexes with operators) . Moreover in [B-Hi-4] a right

adjoint for the functor A is constructed .

5) The equivélence between the category of e-groupoids and the
category of crossed complexes (over groupoids) is proved in
[B-Hi-6] by using the equivalence of the category of
w-groupoids with the category of crossed complexes (over
groupoids) . More precisely , they héve'proved that for anf
Ww-groupoid there exists an w—groupoid containing the

associated crossed complex .

6) The notion of a tensor product A ® B of crossed complexes
(over groupoids) A , B and internal hom functor CRS(A,B) is
given in [B-Hi-7] . The category of crossed complexes is given
the structure of a symmetric monoidal closed‘category . The
crossed complex CRS(A,B) is in dimension 0 the set of all
morphisms A ~-» B . In dimension m 3 1 , it consists of m-fold
homotopies h:A --+» B over morphisms f:A -~ B .

The material given abéve has been done in the groupoid

case . It is reasonable to conjecture that it will carry over

to the algebroid case
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Now we move on to conjecture other possible result to link

the ideas of algebroids with the algebraic geometry .
In this thesis we have only dealt with the case of
associative algebfoids and not commutative algebroids . The
notion of commutative algebroids ought to be definable , and

ought to be relevant to algebraic geometry .

Finally , the notions of seaparable , central algebroids
have been defined categorically in [Mi-1,2,3] . Namely let A
be an R-algebroid . A is called separable if A , considered as

its own hom functor., is projective as

A® = A © A°P- module . It is central if the map

R --+ Hom,, (A,A) is an isomorphism . Possibly this notion

can be extended to higher dimensions ..
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APPENDIX I

Verification of Theorem (3.1.7) and Lemma (3.1.8):

i) The definition of ©; , 6, :

Let a,b,c,d . € D; with cd ab and o« has boundary given by

b

c ~ :
Since o64(a d) = (€4c %, I’d) %, (Ta *, €;b) and €c4¢c , [’d ,
b

Fa , €,b have boundaries given by

c 1 a b

1{ €¢4c |1 , 1] I’d}d , a| Fa |1 , 1| €.b |1

c d 1 b

and then (cyc %, I'd) , (lFa %, €;b) have boundaries in the

form
c__ 1 a b
1 €,c r:d id , a| la cdb 1.
c d 1 b

Thus (cjc %, I’d) *; (Ta %, c,b) is defined (since cd = ab) ;

namely .
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a b
al
1 b

Similarly for the definition of e,

ii) Lemma 3.1.8:

(o]

e,(a d) = (cic ¥, ['d) %, (Ta ¥, €4b) which is
b

diagrammatically given by

c
1 d
< 1 cd
fece | rrag
p ) ab
= 1 1
a b =5
a| Ta c,db 1
5 ab
a 1
b

(since ¢d = ab) ,
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1
cd
1 1 cd
ab cd
ab 1 1

ab

a 1
b




cd
1 1
1 a a c
a
1 b d
a b
ab
a 1
b
c
l
cd
1 1
1 A a a c
a
1 1 1 b d
L——é""‘ b
ab
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1 1 1 d
C d
1 1 c d
aj a c 1 1 1
d
1 b d d d 1
b 1 1
b
1 il
b
1 C 1
d
c d
a c 1
d
b d d 1
1
1 1 1
c
c 1 )
= (coa %5 I'b) X, (Fc %, €pd) .
d d g
1
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APPENDIX TITI

Verification of proposition (3.2.3) diégrammatically:

i) Let «, B € D be given by

X ¢ w X ¢ w [—» 2
al] o« |d , a;| B {d, , o

y b z y b ¥4 1

thus « +; B is in the form

c

X w
a+81 0<+1_B d+d1 .
y b z

O(x +, B) = [T'(a+ay) x, (« +, B) % [(d+d,)] —, €,(ata,)b ,

% 1 % c W d+d, % (atay)b z
=1 ata, ¢+1B 1d+d1 1 - 1 11
¥ a+a, b %2 1 Z ¥ (atay)b ?
. c(d+dy)—(atas)b _ L cd=b  cdy —apb
= 1 1 =1 1 +, 1 1 .
X 01z z X Oxg z X 0,5 z

On the other hand ;

S +5 oB = [(P'a *2 X X, rd) -2 Cxﬁb] +2

[(T’ay ¥, B ¥, Idy) —; €a,b] , is in the form

% 1 % c d ab

€
N
x
N

1|Ma a|l « d Id |1 =—; 1 |cqab |1 =+,

Z 1 4 X ab 'Z
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81!)

1 r’a; as| . B di rdl 1 C=2 1 Cialb 1

X ay y b ? 1 z X a ;b z
cd—ab 2 % cdy—a,b
= 1 1 +21 » 1
X z X ‘ z
Oxz Oy 2

ii) Similarly for ®(x +, B) = dx +, OB .
‘e Ry ‘ 1 o
iii) Fot ¢(x * B) = (dx *, Cxazﬂ) +, (c181« *, ¢B) .

Let « , B be given by

x S w y b
a « d , a' B | &
y b 2 u Py v

and so « ¥4 B is in the form

X w

aa’ [ox,pB dd’ .

u

Now ®(x *; B) = ([’aa’ %, (x %, B) %, [dd’) —, c,aa’e , which
is diagrammatically pictured as

1. c » dd’ aa’
X X W v X € v

1 aa’ ~ dd’ 1 —2‘ 1 1 =

asa
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X 1 X d z d’

1 d 1

» 1, 1 d

1 4’ d’

X ar U 1 v 1

X ¢ W d’ v

1 o« 1 1
b - a v

X 1 X d’ v

4 a’ d’ 1

X a’ U 1 v

b4 ¢ w d’ v

]1 (+¢ 1 1 -2
b - a v

X 1 3 d’ v

1 a’ a’ 1 -
a’ u 1 v

. aa

aa’ e

88

aa

aa

aa

aa

aa




1 a d 1 1 — 1 [+, 1
X a ¥ b ¢ 1 2 1 V X abd’ Vv X abd’—aa’e V
x 8 y y 1 v b 5, d& x 8 vy y 8 ¢ vy
1 | ox2 a’ da’ 1]—2 1 1 x2 1] |1
X a Y Y a’' U e V 1 V X a Y Y a'e V
cd-ab d’ abd’—aa’e
4 \' X v
1 Qo cd’ {1 +, 1 1
¥ o 2 q V ¥ abd’—aa’e ¥
0 a bd’—a’e
X v X y v
1 c,0 1 +o 1 c,a ¢B 1
X 0 v X a y 0 v
9 ] ]
% (cd-ab)d v a(bd’—a g) v

= 1| ¢x ¥, €,d”|1 +, 1] cya %, ¢ |1 .

\4 X v

0 0
s - o ' P |
iv) For ¢(«x *2 B) = (5181« *2 ORB) +, (dx *2 claiﬁ) .

Let «,B be given by

c : c

X W W u

a < d s d B e ,
AN z z v

then « ¥, B is in the form

-115-



cc'’
X u

al| c<k;Ble .

y bb’

Then ®(x ¥, B) = (['a ¥, (x ¥, B) %, I'd) —, €,abb’ which is in

~116-

the form
‘ 1 cc’ e abb’
X
1| ’a a] ok,B Ce —> 1] ¢4abb’ 1
X a bb’ 1 X abb »v
] 1
X 1 x © W 1 w © u v X abb
= 1 a « ld dl B 1 - 1
¥ a Y b %f 1 % pr V v abb’
% c 1 c’ 4 e v x abb’
d e 1 1
= X L d b’ v -, x—a8bb’ L
(4 1 1
X a b 1 BTV v X abb’® V
x__C 1 c’ e v x__abb’ o
B 1 -2 1 1
c d b’ 1 Vv X  abb’ v
x 1 c d x ab z b’
& "2 1 1 *2 1
X a b 1 X agb Z z p?




X C w w 1 w [ u e v w db’ v X Cdb""ﬂbb’v

1 1 %, |1 dl & |e b =1 1|+, 1 1
c Vv d 2 b’ 1 W v X ¢cdb’—abb’'V
x 0 x cd—ab , z b
1| c,0 1+, [1] o« 1 x, 1 1
X 0 v X 0 z z b* V
x c W w c’e---db’v X cdb’—-abb’v
e ‘ ’ 0 v X cdb’—abb’’
% 0 v cd—ab 2 b’ v
1] €0 |1+, { 1] o« 1 %, 1 1
0 v X 0 z z b Y
9 9 ]
% c w w‘é e—db v ~ cd—ab 2 2 b v
X c W w 0 v X 0 z V4 b, v

(cyc ¥, ®B) +5 (Ox *, €,b*)
v) The rules &(r .y &) =r ., ®x and &(n e2 ) = r ., dx are

clear .
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APPENDIX 111

The proof of claim (5.2.16):

We give a complete proof for the first part of (5.2.16)

Recall that b = ¢! . ®’a .

i+a n-2
3?_,c.37ab = a7 e.afafer ...e' o'a
= €,353%3°0! ....0' ¢'a by (4.1.1)(i,iii) .
Let 0;+2 o °;—2 ¢’a = ¢ . Then
ag-xcia?a?b = cia?a?8§¢i+1c‘= cia§a§a§[¢i+1c “n ci+1a;+1wi+1
= c,a50%a%, , e by (4.1.3)(i)
= ¢, %%, . 2% by (5.2.1)(i)

111 1+1 n

L]

e, a%%y,  3’%!

] ’ ! . .
19i%V%i+1 °n i+2°°+®,_,%"a . Thus by repeating this

procedure , we get
¢’ a .

o o _ - 3N o
an—zciaia?b - ciaiaiq’i-u‘“'q’n-—zan

Now we look at 800’3 = a% cee s a

, n n n-1 1
e 3° 3° o ® by (5.2.2)(ii)
- n_1 n-1 n_1 n—z ® 0 o 1& N y L] - 11 L]

Thus by repeating this procedure , we get
Ohy  _ o o 0.0

o\n
.)

.

= (e )" (3

o 4 = [« 9o ¢ n-1 o.n
ciaiafb €.3°8°%. ... (e )" (3] %a .

1 1 1 1+1 ‘ n—-2

Thus 3°
n-1
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. n-1,.0.n : ,
= €.d.9. (¢t i . =
i9 1( 1) (81) a ( since ¢1Ci+1 ci )

= (cl)n‘z(af)"a ) by (4.1.1)(ii,iii)

_ n-2
=.(e,) | B,a -

We can prove similarly that

al e.3%%

n—-2
. =
n—-1 111 ( 1) BR.a .

1
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APPENDIX IV

The proof of proposition 5.2.19:

We give a complete proof for the case n = 3 . We start

with j=1 . Then

]
®a x, b) = ¢, &, & (a ¥ b)

. 1 o -
¢1 @2 [(¢1a *z cxazb) +2 (Ciaza *2 ¢1b)] byl(5.2.10)(11)

o
¢; ¢2 (czaza ¥, 01b)
by (5.2.10)(i) and (5.2.13)

1
9
® d>2(<b1 *2 ciazb) +3

1

[ (D 1, a1
=0} [(¢’a *, €,3.€,3

1
235€,9, a *3 ®_ c 3. b)] +

o
?
2€,.9, 3 01[(¢ €t .d_a

21 2

(o]
b) +, (£,330,

, 1, . =0 o . ..
*3 c233¢1b) +, (czaaclaza *3 ¢’b)] by (5.2.10)(ii)

’ o 1
¢:(c,3% a x_ ¢ &3

+
2 3 1 122b)3

= &* s | 2,51,2
= °1(0 a ¥ ¢, (32) b) *a

. o 1 , 2,,0,2 ’
¢ (c,®,37a x_ €3¢ b) + 01( ¢ *(37)% x_ ¢'b)

by (5.2.13),(4.1.1)(ii,iii) and (5.2.4)(i) .

: s ms 2,.1,2
Let A1 = ¢1(® a *3 €, (82) b)

. 2,.1,2 1
¢1(¢ a *3 c1 (az) b) -5 € 3y

. 2,.1,2
171 1 (®7a ¥, €,7(3,)7b)

2,.1,2 1 . a1 | 2,.1,2
(¢,0'a x_ ¢ (c)%(3))%) —, (c,3;%,®%a ¥ €. 3}¥ (c,)%(3})%D)

by (5.2.9)(ii) and (4.1.4)(i,ii)

(v,0%a ¥, (€,)%(3})%) — (c,3}¥,®%a x ' (c)%(31) %)

by (5.2.3)(ii) and (4.1.1)(iii)

1
ciaiw

(¢,0’a - ®'a) x_ (c;)z(a;)zb by distributivity

3 1

2,.1,2 . 1.1 ,1.1
®a L (Cz) (82) b . Since 3232- azaa , then

Ay = (0a)¥iP

-120-



We can prove similarly that

A = ¢;[(c1)2(ag)2a X ob = Y18 (ep)

. . N2,.0,2
. $’b) = (cl) (82) a X

3 3

3% a X, €0 alv)

- ]
Let Az - oi(cz 31 1 22

o] 1 1 o) 1
¢1(5233¢1a *3 ci¢282b) s C131w1(czaa¢1a *3 ciozazb)

' o 1 1, ) 1 1
(9,€23,9,8 ¥ ¥,€,9,3,0) —5 (£,3,¥,€,3,%,a ¥, c181¢151¢282b)

by (5.2.9)(ii) and (4.1.4)(i,ii)

o
(5183451

1 (o] 1 :
a X, € ®.3b) — (c,30.a % ¢€&.3b)
by (5.2.3)(ii) and (4.1.1)(iii) .

On the other hand

-
H

R .0 1
ol(c10282a *3 c283¢1b)

(o] 1 1 (o] 1
¢, (c,®,37a ¥ €3¢ b) — ¢ 3¢ (c & 3a* €3.0Db)

o 1 1 o 1 1
(¢‘clozaza *3 ¢1c283¢1b) -5 (cialwlclwzaza *3 c181w1528301b)

by (5.2.9)(ii) and (4.1.4)(i,ii)

¢} 1 1
(€,0,378 ¥, € 3.0 b) —, (c1¢2aga ¥, €,3.0b)

by (5.2.3)(ii) and (4.1.1)(iii) .

_ 0 1 )
Thus Az ts A3 = [(c‘as¢1a *s ci¢282b) ts (cl¢282a *3

1 ‘ o 1 o 1
c183¢1b)] s [(ciaa¢1a *3 c10282b) t, (C1¢zaza *3 c133¢1b)]

_ o o C a1 o 1 '
= 43{83[(clas¢la *3 cx¢282b) +3‘(C101328 *3 Cxaaoxb)] ,
1 o 1 o 1
83[(:183013 L c1¢2azb) +s (5102823 *3 claa®1b)]} .

First we compute

ag[(c 330 a ¥ € 0 33b) +, (c,0 3%a X, € 3ale b))

1 3 1 1 2 2 1 2 2 1 3 1
= agciagbia by (4.1.3)(i) and (4.1.4)(i)
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0.0 . aas
clazaz¢1a by (4.1.1)(i,iii)

= clagclafaia by (5.2.2)(ii)
= (cl)2 (3:)33 : by (4.1.1)(iii) .

Second , we compute

1 o 1, | o 1
aa[(c 3 d,a ¥ c o a_b) +g (5102323 ¥, €30 b)]

1 3 1 1 2 2 1 3 ¢
= aé;iagolb by (4.1.3)(i) and (4.;.4)(1)
= cia;a;¢1b by (4.1.1)(i,iii)
- cia:c1aiaib by (5.2.2)(ii)
= (c‘)z(ai)ab, by (4.1.1)(iii) .
Thus A, +, A, = 6,3 % , (e)%(3)) %] .
Therefore @(a *1 b) = A1 +a A4 = u"a(@.ﬁ\) ts (@b)v1b .

Second for j 2 , we get

¢(a X, b) = @; 02 ¢1 (a *2 b)

o , 1 s
0; ¢2 [(ciala *, ¢1b) +, (Qla ¥, cialb)] by (5.2.10)(ii)

’ o [} ‘ 1
°1°2 (Cxaxa X2 ¢1b) T3 ¢1¢2(¢1a *2 Cxaxb)

by (5.2.10)(1);and (5.2.13)

2 3 1 1

, 0 1 o o R
¢1[(¢25181a *3 c283®1b) +g (c_ 3. c 3. a *3 ®’'b)] +g

. , ' 1 .1 o] 1
¢x[(° a *3 czaacxaxb) *s (czas¢1a *3 02c181b)]

by (5.2.10)(ii)

. 2,0.0 , :
01(c1 azaia *3 ¢'b) +3

, o 1
¢1 (Ci¢1318 *3 C283¢1b) +3

. @1(c283¢1a ¥ 510181b)

by (5.2.13) , (5.2.4)(i) and (4.1.1)(i,ii,iii) .

2.1.1
3jaib) +

? 9
,°1(¢ a *3 c 3
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s o 1
Let A, = ¢1(c1¢18xa L c2a3¢1b)

) 1
¢1(51°181a *5 Czaa°1b> T3 191V 1

1 [o] 1
€, 3,% (c,®3%a ¥ €,3l0D)

(¢ . c ¢ a°a *3‘w [ 816 b) — (e 81¢ c ® 3

o] 1
c 3 ¢
11 1 1 1 2 3 1 3 19171%4% 49,8 *3 b)

1 2 3 1
by (5.2.9)(ii) and (4.1.4)(i,ii)
(o] 1 0 1
aja ¥, €, 3¢ b) — (c,®3ja * c 3.0b)
by (5.2.3)(ii) and (4.1.1)(iii) .

(€,9,3,

On the other hand ;

= s (o] .l
Let A4 = ¢1(czaa¢1a *3 Cx¢1a1b)

= (c.3%

1 o 1, .-
90,8 ¥, € ¢ 3.b) —s (g 3 0 a X, ¢ ¢ 3.b)

1 11 1 3 1 1 11

by similar way as above .

ABy using similar argument as above , we get

A, 4y A, = B 0(ER(D %, (e)%(ah)%)

s 2,0.0
Let Az = @1[(c1) azala *3 ®'b)

2.,0,0

' 2.0.0
v, [ (e,)73,3,a %

. _ 1
®'b] s ciazwl[(ci)ralaaa £ 3

by (4.1.1)(i)

¢’'b]

3 3

[wx(cx)za:a:a *s ¢1¢’b] T3 [;1a:¢i(c1)za?aga *s C1a:w1°’b]-

by (5.2.9)(ii) and (4.1.4)(i,ii)

2,00 1 ,
o [(€)73,37a ¥, €.3 v &'b)

by (5.2.3)(ii) and (4.1.1)(iii)

[(c,)%3%3%a *_ v &°b] -

2 ,0.0 " 1
c, 81333 *3 (¢10 b s € 81¢

. ¢’b) by distributivity

1
_ , 240.0 . ujpa .

= cl.alasa *3 ¢b (¢b) .

We can prove similarly that

- 2,11, v b
Aa = ¢a *3 €, 3133b = (da) .
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Thus ®(a %, b) = 22%(gb) +, (¢a)¥3® .
Finally for j = 3 , we get
. - . ‘ - ’
¢(a *3 b) = ¢;¢2¢1 (a *3 b) = ®1¢2(01a *3 le)
by (5.2.10)(ii)

’ g ° ’ ’ 1
¢1 [(c282®1a ¥, ¢’b) +s (®’a * c282¢1b)]

by (5.2.10)(ii)

s o 1
¢1(528201a *3 $’b) +3 (®’a *3 523201b) by (56.2.13)

’ ’ 1.1
¢1(¢ a *3 czciaialb)

by (5.2.2)(ii) .

’ 0.0 ’
¢1(c2c18131a *3 ®'b) ts

- MY oo ] =’ 200
Let A1 = ¢1(C € 3.3 a X, ¢'b) ¢1(Ci 3182a *3

2 1 1 1 °,b)
' by (4.1.1)(i,ii)

2,0.0 ’ _ 1, ¢ 2,0.0 ,
¢, [(c,)%303%a x_ ®'b] — € 3,¥ [(c,)%373%a *_ ©'b]

2.0.0 , _ 1 .2,0,0 1 .
(¢ 51 alaza *3 ¢1¢ b) s (clalwlc1 ataza *3 c181w1¢ b)

by (5.2.9)(ii) and (4.1.4)(i,ii)

1

2.0.,0 1
[(CI)ZBSGZa ¥, ¥,@'b] — [(c)%3730a x_ €,3 ¢ &'D]

by (5.2.3)(ii) and (4.1.1)(iii)

2,0.0 . . A
€, 8182a *3 ¢b by distributivity

]

u:"a(<bb) . We can prove similarly that A, =~(4>a)v:"b .

Thus ®(a %5 b) = "3%(db) +, (¢a)¥3® .
This compietes the proof for n = 83 ., A similar direct
computational proof for the case n = 4 has been written out ,

but it is too lenghty to include here .
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APPENDIX V

The proof of proposition (5.2.20):

We will prove the first case only and the second case is
similar . For the first case , we start with :

i) For 1 ¢ i ¢ 3 , ¢cia = 0 in dimension 3 , it is immediately

by using (56.2.4)(i,ii)

i1i) For @Fja = 0 in dimension 3 , we start first with j=1 ,
then

OC a = 8,6 6 T a = ¢;¢2[Cz((8:)za , (ai)za)] by (5.2.6)(ii)

= 0 in dimension 3 .

- Second , let j = 2 , then

- ’ = ’ ’ 1 -
oT,a = 010,8 T .a = 80 [([ja *, T a ¥, T c.3a) —,

1 ‘.
(cla *2 chlala)] : by (5.2.6)(iii)

P s 1 e 1
= ¢1¢2[(F1a *2 an) *2 carlaza] s 01¢2(Cla *2 cirla‘a)
by (5.2.9)(i) , (5.2.13) and (5.1.2)(iii) .

' 1
- ’ ]
~Let A, = ¢1¢2[(P1a ¥, an) X, € r, .3 a)

3 1 2
P , ' 1 1 0, ., «
01{[¢2(rla *, rzg) *3 czaacarlaza] +g [(czas(rla *2 Pza)

X, 4152531'13:&]} by (5.2.10)(ii) .

’ ' 1 ‘s s
0;[02(r1a X, an) * czr‘aza] by (5.2.4)(ii),(4.1.1)(iii) .

Now we look at ®z(r;a *2 Pza) which is equal

"

9 1 » o 1 4
(¢2F1a *3 czasrza) tg (czasria *3 ¢2P25)
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. ,
P ? s
= ¢2F1a *3 czasrza by (5.2.6)(ii)

- ’ ’ 1 1
Thus Az = ¢1[(¢2r1a *3 czaarza) *3 czriaza]

c.r 3a*a] by (5.2.8)(i)

’ ’ 1
¢1[r1°la *3 Czasrza *3 2 1 2

(¢ . T’0

1 1 _ a1 ,
RN *3 ¢ c o l.a *3 ¢ €¢I 3 a) (e 3¢y I''®. a *3

1 2 3 2 1 2 1 2 3 111 1 1

1 1 1 1 .. . s
clazwlczaarza X ctaiwxczrlaza) by (5.2.9)(ii),(4.1.4)(i,ii)

1 1
'(Cl¢1a *3 ciasrza *3 ¢ ' 3 a) —

. §
1 1 2 3 (Cl¢la *3 czaarza *3

51F18:a) by (6.2.7)(ii),(5.2.3)(ii) and (4.1.1)(iii)

. o 1 Al
We look first at 83(61¢1a ¥, ¢ 3.l .a ¥, € I''9_a)

1 3 2 1 1 2
= 3¢, ¢a ' by (4.1.4)(i)
= c182¢1a by (4.1.1)(iii)
= ()% (3D 7 a by (5.2.2)(ii)

1 1 1
Second , 83(c1¢1a *3 claarza *3 ciriaza)

= a;cirla;a by (4.1.4) (i)
= clrza:aia by (4.1.1)(i,iii) and (5.1.2)(vii)
= (cl)z (a:)za by (5.1.2)(iii) . Thus

2,.0,2 2 2 . ‘
A = 6,(¢€,°(3)% , €, (ai) a) , that is A_ = 0 in

dimension 3

1
= ’ ’
Now we look at A, ¢1¢2(c1g x, c1r1 axa )

s sl 4 ' -
= 01¢261(a *, Pzala) by (4.1.4)(ii)
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olc & (a *, P;&:a) by (5.2.4) (i)

vy c o (a x

s a1 _ 1 s ol
:€4%, > rlala) c. 9 vy cd® (a x_I'3 a)

3 11111 2 1 1

’ 1 — . 1
Ci¢1(a *2 Piala) s c1¢1(a *2 Plaia)

by (5.2.3)(ii) and (4.1.1)(iii)

. (o] e |
We f1rstvfompute 83 6101(a *2 rlaig)

= €,3;0 (a ¥, I'\3a) Sy (4.1.1)(iii)
= ciclafa: (a %, I'3la) by (5.2.2)(ii)
= ()% "% . by (4.1.4)(i,ii)
Second we compute a;c1¢1(a *2 r;aia)
= c,c,3}3;(a ¥, I3;a) by (4.1.1)(iii) and (5.2.2)(ii)
= (e)%(3) % by (4.1.4)(i,ii) .

2,.0,2 2,.1,2
Thus Qrza = Ca(c1 (81) a, c, (81) a) , and hence ¢Fja = 0

in dimension 3 for 1 ¢ j € 2 .

We can prove similarly that ¢F3& = 0 in dimension 3

for 1<j¢2 .
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APPENDIX VI

The proof of proposition (5.3.2):

Regall that an w-algebroid A is a cubical complex with
connections and satisfy the axioms (4.1.3) , (4.1.4) ,
(4.1.5) , (4.}.6) , (6.1.3) , (5.1.4) and (5.1.5)

It is clear that A’ = (DA, , A , «..., Ag) is a cubical
complex with connections . Thus it is enough to verify the
axioms of an w-algebroid ; namely

(4.1.3)(i): Let a,b € OAp such that a +; b is defined . Then

3%a +.b) = 3% = ¢
1 1

§ by (5.3.1)(v)

e Q

o« e LN
i a. +j—1 bi (i<j)
a

(ix])

i j-1 i

by definition of a‘i" .

_ia‘."a + 3% (i<gj)

« s s

3a + a‘i"b. (13§)
(4.1.3)(ii): Let a,b € Ay such that a +j b is defined . Then
for k<i<cj , we have
« ' _ ‘ « s s
ak[ci(a +j b)] = Ci—zak(a +j b) by (4.1.1)(iii)

a;‘b] =e, 3% +, €. 3% ( since 3% a%

_ «
=€y, (3 +5_ i-1°k® Y5 %i-1% k® * %k

1

are elements in A,_,) and by (4.1.3)(ii)

- « « » s & o
= 8kcia +j akcia by (4.1:1)(iii)
= 3k[cia +j+1 Cib] . Thus Ci(a +j b) = c.a +j+1 cib . We can
use a similar way to show that ¢.(a +., b) = €.a +, €.b ,
i J i J i

for i 3 j .
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(4.1.4)(i): Let a,b € DAy such that a ¥j b is defined . Then

« 1o . .
» . o a; *j-i bi (i4j)
ai(a ¥x.b) = aig = g; = by (5.3.1)(vii)
’ a% x. b% (iN§)
i Y5 Pi 13
« .
iala *J . 3:5 (i<j)
3% x, 3%
i J i

(4.1.4)(ii): Let a,b € A, such that a *; b is defined . Then

for k ¢ i ¢ j , we get

ayle, (a ;b)) = €, ,3(a x5 b) by (4.1.1)(iii)

[a a * ~4 a“b] by (4 1.4)(ii) (51nce 3 . B“b are

elements in An—1)

« .
3kcla *J akcib by (4.1.1) (1)

« .
ak[cia *j+1 cib] by (4.1.4)(i) .

Thus ci(a *j b) = c;a *j+1 cib . We can prove similarly that

ci(a *j b) = €.a *j cib‘, for iyj .

(4.1.4)(iii): Let a € DA, . Then for k<&j , we get

« o = % « .
ak(cjaja *j a) = kCJa .a *J . aka by (4,1.4)(1)
= cj_lag_lafg *i_y aya by (4.1.1)(i,iii)

"

apa by (4.1.4)(iii) (since aya € Ap) .

Thus cjaga *j a = a . We can prove similarly that

1
a = a %, £,d.a .
J JJ

(4.1.5)(i): Let a € DA, and r € R . Then
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r .. a? (i<gj)

j-1
« _ Y 2 « CCs : .
ai(r ¥ a) = B?h = hi =|r “j a; (iyj) by (5.3.1)(viii)
« ..
a, (i=j)
. & . L
r “ -1 3;a (i<j)
=l r . B?a (i>j)
a?a y (i=\j)

(4.1.5)(ii): Let a € A, and r € R . Then for k4i4j , we get

« _ « e
ak[ci(r “ a)] = ci_iak(r 5 a) by (4.1.1)(111)
- (24 .
= Ci—z(r -1 aka) , by (4.1.5)(i)

_ o . . «

= r ‘j ci_laka by (4.1.5)(ii) (since aka € An_.1 )

= r 3%.a by (4.1.1)(iii)

= j 3kCi® y .1. ii

- a L]

= ak(r ‘41 cia) by (4.1.5)(i) .

Thus ci(r “ a) = r 541 c.a . Similarly we can prove the

other parts .

(4.1.5)(iii): Let a,b € OUAp, and r € R such that a *; b is

defined . Then , for k < i and i=j

aplr oy (a ¥ b)) = r ., 3(a *i‘b) by (4.1.5)(1)
=r .., (3a x,_ D) by (4.1.4)(i)
= (r.;_, 3a) %, 3 by (4.1.5)(iii) (since aya , apb

are elements in Ap,)

ap(r .5 8) ¥;_, 3 by (4.1.5)(i)

b] by (4.1.4)(i) . Thus

aﬁ[(r 3 a) *i
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r .. (a %,

i i b) = (r .

i a) *i b . Similarly one can prove

that r .3 (a *i b) = a *i (r 3 b)

Now , for i # j , let k £ min{i,j} , then

aﬁ[r ‘3 ‘a *j b)] = r “i-1 aﬁ(a *j b) by (4.1.5)(i).

(3pa XS, 3,b) by (4.1.4)(i)

Foei-s

= (r . aypa) ¥, (r .., 3b) by (4.1.5)(iii) (since

i-1 J-1 i-1

aﬁa , 8§5 are elements in A_ )

n

a(r ,; a) ¥ ap(r ., b) by (4.1.5)(i)

ag[(r .3 8) *5 (r .y b)) by (4.1.4)(i) . Thus

ro.. (a *j b) = (r -3 a) *j (r 3 b) .

(4.1.5)(iv): Let a € OA, and r,s € R . Then for k < i,j we get

« _ « _ - S

ak[r_.i (s “j a)] = r “i-1 ak(s “5 a) = r “i-1 (s “j-1 aka)
by (4.1.5) (1)

- ( a%a) . by (4.1.5)(iv)(since 3%a € A_)

= s “j-1 ro.g_, 9@ . y .1.5)(iv)(since K& € A

= 3p( a) = [ ( )] by (4.1.5)(i)

= 8 .j-1 k r oi - k s o‘j r oi a y . . 1 .

Thus r 3 (s ‘j a) = s * (r 3 a) .

(4.1.6)(i): Let a,b,c,d € OAp such that (a +; b) +j (c +; 4),

(a +j,c) +; (b +j d) are defined . Then for k ¢ i,j we get

«
ak(c +i d)

apl(a +; b) +5 (e +; d)] = ap(a +; b) i

_ &« - e .
= (3pa +;_, 3b) +5.y (3 +,_, 35d) by (4.1.3)(i)
= (8:3 *ioy 8gc) +i, (a:b 5oy a:d) by (4.1.6)(i) (since
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«
k

&

c , ak

d are in A )
n

= ai(a +5 c) +, ai(b +54) = a:[(a + c) +; (b +, d)]

by (4.1.3) (i)

Thus (a.+i b) +j (c + d) = (a +j c) +; (b +j d)

The proof of (4.1.6)(ii,iii) are similar to that of
(4.1.6) (1)
(6.1.3)(i): Let a,b € A, such that a +j; b is defined . Then

for k<icdj , we get

3y T (a +50) =T, 3, (a +5b) by (5.1.2)(vii)

= ri_lv(afa tiy 0) 3 | by (4.1.3)(i)
=T, agg *s L;_, b by (5.1.3)(i) (siaqe aya , b €A )
= 3 Ta +5 3y T;b by (5.1.2)(vii)
= ag [Tia +5,, rib] by (4.1.3)(i) .
Tbus Fi (a +j b) = Fia +j+1 Fib . For k 31 M j , we can use
similgr argument to pfove that Pi(a +j b) = Fia +j Pib

The proof of (5.1.3)(ii) is similar to that of (5.1.3)(i) .
(6.1.4)(i): Let a,b € A, such that a *; b is defined . Then

for k<i<j , we have

3y [T (a x; b)) =T, 3y (a *; b) by €¢5.1.2)(vii)

=r,_, [ 3a X, ad ] by (4.1.4)(1)‘

=T, ,3 a % r;_,3b by (5.1.4)(i) (since 3;a , b € A __ )
=3[ Ia ¥4y Db ] by (4.1.4)(i) .
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Thus Fi(a *j b) = Fia *j+1 rib . We can prove similarly that

F.(a ¥, b) = T.a ¥, I'b for i  j
1 J i J i

The proof of (5.1.4)(ii) is similar to that of (5.1.4)(i) .

(6.1.4)(iii): Let a € A, . Then for k ¢ j , we get

Ly o PN - « .
ak[rja *j+: Fja] = ak Fja Jlr‘j ak,rja by (4.1.4)(i)
=T}, e X r‘j_la}‘fa by (5.1.2)(vii)

- * o 0o ) . -

= Cj—: aka by (4.1.1)(iii) . Thus Fja *j+1 Fja = cja .

Similarly one can prove that the second part of (5.1.4)(iii) .

(5.1.5)(i): Let a € A, and r € R . Then for k<4i<4j we get

« « -
ak[ri(r “j a)] = ri_l akfr “j a) by (5.1.2)(vii)
« .

= I‘i_1 (r *j-1 aka) by (4.1.5) (i)
= r “ ri~1 a:a by (5.1.5)(i) and (since aﬁa € An-z)
= r 3% r.a by (5.1.2)(vii)

5 % T y 1. vii
- a L3
= ak(r “jee Pia) by.(4.1.5)(1) . Thus
Pi(r “j a) = r “j41 ria .
We can prove similarly that Fi(r ¥ a) = r " j Pia , for ixj

The proof of (5.1.5)(ii) is similar to that of (5.1.5)(i) .
Thus A’ = (DA, ,Apy...-5Ap) 1is an (n+l)-truncated

L]

w-algebroid .
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