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ERRATUM

" The argument of line 15 to line 18, page 99,
is incorrect and should be replaced by the
following:~ " next observe that yé(E) =

jxxx W (B nG(x,x ))du = jxwx(E nG(x,x ))du

where fo:/ﬁfy. Finally, w2 note that'[u&dfq
i5 equivalent t°.I“deH? if, and only if,fL:
is equivalent to pf." The conclusicn of

Theorem 4.2.11 now follows.
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| SUMMARY

This thesis is concerned with topological groupoids, that is,
with categories in which each morphism 1s an isomorphism topologised'
.in such a way that the algebraic operations are compatible with the
topology. Three main areas are examined, they are: topological aspects,
measure theoretic considefations and, thiraly, representations of

_ groupoids. In the first of these, it ié shown that the base space

of the universal bundle of J, Milnor is a classifying space for
certain topological groupoids. The second aspect concerns a notion
of invariant measure for groupoids which generalises that of a group.
It 15 shown that such measures always exist on a locally compact
Hausdorff topological groupoid, and a classification is given with
suitable restrictions. Convolution algebras are then constructed apd
applications to differential geometry and transformation groups are
considered, Finally, a fheory of unitary representations of locally
compact Hausdorff topological groupoids is presented, Amongst the

results obtained, is a version for groupoid5~ of the classical

Peter-Weyl theory for groups.,
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" INTRODUCTION

In 1926, nearly twenty years before categories appeared,
H. Brandt in " Uber ein Verallgemeinerung des Gruppenbegriffes " (Math.
Ann. 96, (1926), 360-366) gave a formal definition of the term groupoid
as used in this thesis. This work attracted little attention however,
and groupoids lay dormant in the 1iteratu:e for a comparatively long
time. Their revival and much of the present day interest centered on
them is due chiefly to Ch. Ehresmann in his fundamental work on local
structures and differential geometry, see for example " Gattungen von
lokalen Strukturen ", Jahresbericht Deutsch. Math. Ver., Bd. 60 (1957)

L9-77. And for a summary, see " Categories et structures ", Dunod,

Paris, 1965.

More recently, G.W. Mackey [l] ’ Pﬂ has opened up a hew'
line of attack on many problems in ergodic theory. It is well known
that a transitive group action determines and is determined up to equi-
valence by,'a conjugaey class of'subgroups, namely, the isotropy sudb-
groups at the points of the G-space. For a non transitiﬁe action there
are no such subgroups, but Mackey has been able to associate with an
. ergodic action an object which, in the general case, does what the clo-
sed subgroup does in the special case. This object is termed a virtual
subgroup. These considerations led him to the concepts of ergodic group-

0id and virtual group. This work is'guided mainly by the analogy between

group actions and representations,
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On the algebraic and topological sides, work of P.J.Higgins
~and R, Brown has shown that certain well known constructions ip~group
theory and ﬁomotopy theory can be'nicéli formulated in terms of group-
oids and that there are advantages in doing this. In particular, we cite
the proof of the theorems of Nielsen-Schreier and Kurosh given by

Higgins in Higgins []] s and the version of the van Kampen theorem

given by R. Brown, see Brown [1] .

One éspect-of groupoids which has so far received little .
attention is the following: the existence of an invariant measure m on
any locally compact Hausdorff topological group G is a fact of fundam-
ental importance in several important areas of modern mathematics. For
example, in the study of the function spaces L'(G) and Cc(G), the exis-
tence of m gives natural algebra structures to these spaces and, in fact,
L'(G) becomes a Banachalgebra. If G is compact, then, using m, it is
possible to average metrics on metrizable G-spaces to obtain invariant
metrics, Similarly, when dealing with.representatiOns of G, one can
- construct unitary representations of G from linear ones, These facts
were first put to use by Peter and Weyl in their theory of compact Lie
groups. It is this area of mathematics with which this thesis is con-
cerned and the original problem, suggested as a research topic by my
supervisor, is that of generalising the above facts from éroups G to
groupoids G, Thus, Chapters L and 5 constitute the heart of the thesis,
Chapters 1, 2 and 3 are prerequisite and grew out of the need for a

preparatory study of topological groupoids.

The breakdown of the chapters is as follows.

Chapter 1 is introductory, it establishes notation, term-

inology and the basic (well known) facts we need throughout, It also
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studies the relationship between groupecids and G-spaces and shows,
-.gssentially,tthat the study of effective'G—spaces is.equivalent to

that of groupéids. Specifically, we show that the category of principal
G-bundles E over B with base point * and an equivariant embedding

i1 : G—E is equivalent to the category of transitive groupoids o
with object set B together with a specific isomorphism G —»%{*}. We
note also that Theorem 1.4.11 is an improvement on the Cayley theorem
of Ramsey [l] y and it is interesting to contrast this theorem, reg-

arded as a representation theorem, with Theorem 4,17 of Chapter 5.

Chapter 2 contains the point set topology that is needed
for the study of Haar systems of measures in Chapter 4 and the study
of representations‘in Chapter 5. Several interesting examples of
topological-groupoids are discussed and coﬁditions are given which

ensure that the grgupoid, 6, associated with a G-space, is locally
trivial.

Chapter 3 studies the locally trivial groupoids of
Ehresmann, and particular attention is focused on the grouPOid,QKS)s
of admissible mabs associated with a principal bundle S. This chapter
is to some extent a continuation of Chapter 1 and we prove topological
versions of several results of Chapter 1. There is one situation,
however, which evades this study, namgly the situation of %(S) for a
non locally trivial principal bundle S. The reasons.fOr this ére
discussed and it is for these reasoﬁs that we prefer to treat the
algebraic case of Chapter 1 separately from the’topological case in
Chapter 3. Throughout this chapter, and elsewhere, tﬁe G-space approach V
to fibre bundles, due to H.Cartan as expounded by Huéemoller [l] , has

been adopted. There are several advantages in this. Firstly, this
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approach is more general than that using charts; secondly, the introduc-
“tion of charts is made only-whereeit is necessary and, moreover, the
charts take care of themselves in thie.theory, see Theorem 3.,4.4; third-
ly, this approach leads to simpler proofs., We comment here that Chapter
3 4s in no way meant to be a new approach to the theory of fibre bundles.
On the contrary, we adopt the view~point that G-spaces and fibre bundles

are well known, but groupoids are not. Thus, we attempt to relate group-

oids to bundles and not vice versa,

In Chapter 4, we study what seems to be a suitable general-
isation of the concept of invariant measure for a group, see Definition

Leh.1. This definition is arrived at via the following three considera-

tions:

i) The hatural generalisation for groupoids G of left multiplication
in a group is provided by the function L_ defined by L glet) = s, where
& 18 some fixed element of G, Since s« is defined if, and only if,

o« g cost,T(s) and then L, ¢ cost, T(s) ——s cost, TT(s), to build in’
to the definition the maximum amount of left invariance, one should
conéider measures p defined on costG#, for each object x, which are
preserved by the functions LS. |
ii) If G acts on a fibre space P:S =X with.metric spece fidbres
(s, d.), in order to obtain invariant metrics on the fibres of S one
would like to consider an expression of the type

¥ (s, 8 = j () e Bpe o 'e 8y dp
Again this makes sense if, and only_if, o € costh and s0 pomust be a
measure My defined on costh. If &z is to be isometric,kthe measures
‘fo must be invariaﬁt ﬁith respect to the functions L, see 5,3.6.

111) If £, g ¢ Cc(G) one would like to define a convolution f#g by



vii,

a formula of the type f;eg(d)'= J.f(p)g(ﬁk)dp(ﬂ). This makes sense

if, énd only if, B e cosidﬂ?u) and, again, it follows.that M ought to
be defined on costaﬂka). Moreover, to obtain associativity of %, we
need exactly the condition that the pt be preserved by the functions
Ls’ for each s ¢ G, see Theorem 4.5.9. If we want to consider L'(G),
then we need a measure m on G, In order to carry out technical constr-
uctions, m must be suitably related to the measures My It turns out
that conditions i) and ii) of Definition 4.4.1 are satisfactory in this
respect,

It should bve observéd that there 1s a resemblance between
our notion of invariant measures on a groupoid, and Mackey's notion
of ergodic groupoid; see Mackey [1] , [2] . However, it is the consid-
erations above that motivate our definition and not those of ergodic
theory. The introduction of measure classes, in our case, 15 merely
an attempt to give a classification of invariant measures, and measure
classes bring some order into what would otherwise be considerable
chaos,

An attempt to construct suitable invariant measures for
groupoidé has aiso been made by J.J. Westman, see Westman [2} . He
defines measures f*xy on G(x,y), for each pair of objects x and y,
rather fhan on costars, His definition is, therefore;essentially
different from ours. We compare Westman's system and ours in Chapier L.

Probably thé most 1mportan£ result of Chépter 4L, as far

as applications are concerned, is Theorem 4.4.18.

The final chapter, Chapter 5, considers a theory of
representations of topological groupoids G in terms of actions of G
on a fibre space P: S —» X, The highlight of this chapter would

~ appear to be Theorem S«4.12, which shows how'to extend. a group action
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" to one of a g}oﬁpoid. We use this theorem in discussing operations on
_represghtations, notably the qugatiqn of direct sum, This theorem

| aiso ﬁékes-itAfossible to prove eﬁbedding theorems for compact locally
.trivial Lie groupoids of.a type considered-by R.S.Palais, for compact
Lie groups; in which we embed an action of such a groupoid in a Euclid-

ean fibre bundle, rather than in Euclidean space. These theorems will

be discussed elsewhere,

Following Halmos, we use the symbol [ to indicate the end
of proof of a theorem, lemma, proposition, remark etc. The working of

our internal reference system is self evident and needs no further com=-

ment.
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Chapter 1. ° ABSTRACT _GROUFDIDS

§0  Introduction

" In this chaptér ﬁéAintr§duée~$ur béSic’defigiéiéns éﬁd gi&e
séme’naturél examples of groupoids. The major part of the chapter is
concerned with a discussion of the general structure of groupoids in
terms of admissible maps between fibres of a "bundle with structural
sheaf". In the same spirit, covering morphisms of groupoids are related
to morphisms of bundles with structural sheaf.

B1 Basic defnitions.

We start with the defnition of a groupoid, which is nothing more
than a small cateéory with inverses. We refer to Brown [17] for more
details concerning our basic definitions and'terminology throughout the
first three sections of this chapter. The first three sections are
entirely expository, but serve to establish our notation and collect

together the elementary facts we need concerning groupoids.

1elele Definition .

A groupoid G consists of :-

a) A set ob(G), called the set of objects or vertices of G.

b) TFor each pair of objects x, y, a set G(x,y) of elements or
morphisms of G, with initial point x and final point ye

¢c) A function (.) : G(y,z) x G(x,y) —=G(x,2)

(B,G) —> Pea

called the composition in G and defined for all tfiples (x,752)

of objects.
These terms are subject to the axioms:-
61) clx,y) n 6(x",y") = # unless x = x’ and y = y,.
G2) If ‘ot c(x,v), psé(y,z) and ¥ €G(z,w), then ¥.(B.a)= (B+8) «as
Thus ;(.) is associative and we cah write X .f.a without ambiguity.
63) For each object x of G there exists an element I e G(x,x)
with the properties:-

“'Ix = a for all a with initial point x
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and Ix"’": o for all a with final point x.

The elements IX ~are called the units or identities of G.
G4) For each element ae G(x,y) there exists an element o e G(y,x)
. . -1 -
satisfying a.a = Iy and a .o Ix.
-1

a is called an inverse of .

1.1.2. Remarks .

i) We shall often denote ob(G) by obG or X and speak of "the
groupoid G over X".
4i) 14141 a) and b) imply that a groupoid & over X is "small” in the

sense that the class Nor G = {J G(x,y) of elements of G is, in

‘ X,ye X
fact, a set.

Note that we usuzlly allow ourselves to confuse G with Mor(G)
unless we specifically wish to refer to the elements of G.
iii) Again, 1.1.4 .‘b) permits us to define two functions # and 7 as
follows:i=-
T ¢ G — ob(G)
defined by w(a) = initial point of a,
/

and #° : G — ob(G)

defined by = (a) = final point of a.

Wé call 7 +the initial function of G and 17" the final

function of G.

1v) If we introduce the set < G x G,where
® ={Guleexe; 7'@)= (@)}
then we can regard the composition as a function ¢.) : &) --—;‘G.
(Bsa) = Bea

. Note that we usually write pa for the composite P.a of B énd .
v) It is straightf‘orward to show that the elemfent’ Ix‘ 'is unique, for

each xe o;o(G), see Brown [1]. This fact permits us to define a

- function w ® ob(G) —= G called the unit function of G.
X l———-O-Ix

vi) We shall always, in future, write G{V‘x}' for the set G(x,x) and

we note that this set is, in fact, a group under the compositicn given
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in G, with identity element I . We call the group G{x} the

. .object or vertex group at x.

"~ For the sake of notation, we introduce the sets
slth = {a.e‘(‘: ; mla) = x} - called the "Star in G at x", and
Costyx = {a.s ¢; 7' ()= x} - called the "Costar in G at x".
We will also write I(G) for the set {Ix ; Xe ob(G)} of
identities in G.

vii) It is straightforward to show that the inverse o,—1 of an element

a of G dis unique, see Brown [1] again, and we can, therefore,

define the inverse function inv : G -—-va_1of' G.
a —= a

viii) Let aeG(x,y) , then since o '@ = I, and a..(o,—1a.) = a we

sometimes refer to Ix as the right identity of a. Similarly, Iy

is sometimes referred to as the left identity of a.

~ ix) Instead of the notation ae G(x,y) we shall make use of the
notaticns a ¢ x —»y or x-:vy when these appear more convenient.
x) Using the identification w : ob(G) —e I(G), we can define a groupoid
as a set equipped with « pértial, associative multiplication which.
possesses identities and inverses, subject to axioms of type
G2) eeee G4). This latter definition is equivalent to 1.1.1 but will

not be specifically used in this thesis; see Mackey [1], however.

82. Some examples and special types of groupoid.

1+2.1. The following example appears in Brown (1].

Let G be a group with identify element e. | Then G can be
regarded as & groupoid with object set { e } and composition just the
binary operation of tk.1e_ group. Its morphisms, orv elements, are Jjust
the elements g of G with initia]_. and final point e, i.e. gtie —» e,

In fact, a groupoid G is a grbuﬁ.if’and only if & = G x G

if ,and only if | ob(G) is a singleton set.
1+2.2. . The following exémple is well known.

Let 1L be a family (set) of sets and for each pair u UZGUIet
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G(u' ,uz) = {bijections:u‘ —»uz}
(so G(u‘,uz) may be empty). Let G = L)G(u',uz)
then G becomes a groupoid in a natural way by defining the composition

(.) to be the usual composition of functions. Thus, if f : U, —= u,

€ G(ul ,uz) and g ¢ u2 —_ u3 € G(uz,us), we define g.f : U —e u,

by g.f(x) = g(£(x)).

The identity Iu is simply the identity function u —e u

and the inverse of £ u—u, is the inverse function f""l : uz-—o- u .

t
Verification of the axioms G1) eese G4) 3is routine. Note that G1)

ensures that we distinguish between £ : u, —u, and f[u, : u"——'— f(u" )

'
/7 /
where u'c u and u’'e u.

Other examples of this fype can be constructed by endowing the
sets ue W with certain structures, and requiring the functions feG
to respect these structures. TFor example, if LL is a set of topological
spaces,' we require the elements f of G to be homeomorphisms. Again,

if UL is a collection of rings, we require the elements f of G to be

ring isomorphisms.

1.2.%. Definition.

A groupoid G is said to be transitive or connected (abstractly)

if G(x,y) =;l=¢ for each pair x,y of objects of G. Otherwise G is said

to be (abstractly) disconnected. If G(x,y) = ¢ for all x and y,

with x#y, G is said to be (abstractly) totally disconnected.

1e2e4 ¢ Definition. .
| A groupoid G is said to be discrete if it is totally disconnected
and G{x} = {Ix} for all x e ob(G). |
Clearly ob(G) can be ide‘ntif'ied with the discrete groupoid
1(G), for any groupoid G. .
:l_._2_.5_. The following example appears in Mackey [1]
Let X be any set and let G € X x X be an equivalence
-relation on X. Thué, | |

i) (x,x) e G for all xe X.
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ii) if tx‘,xz) e G, then (xz,xl) e G. .
Cddd) if,f(x(,xz) .G ‘and.u(xi,xs) e G _then (x{,x3) e G.

We can turn G into a groupoid as‘follows. We take ob(G)
to be X, and for each pair x,y of objects we define G(x,y) = {(x,y) }
if (xy)e Gy = # otherwise.

. Composition is defined by the rule
(752)+(oy) = (nrz)

The units of G are the pairs (x,x) for each x & X and the
inverse of (x,y) is the pair (y,x). Verification of the groupoid
axioms is, again, routine.

Notice that in this particular gr&upoid G(x,y) dis either
empty or a singleton set, for all x and y. Such a groupoid is said
to’be principal. As observed by Mackey'[2], there is a ﬁatural one to
- one correspondence between principal groupoids on the one hand, and sets
with én equivalence relation on the other.

A rather important case occurs when the equivalence relation is
trivial in the sense tﬁat G =Xx X that is, any pair of elements of X
are related. In this case G(x,y) is a‘singleton set for all x and
y in X. A groupoid with this property is called a tree groupoid.

The importance of free groupoids will become appareht in the next section.
1.2.6. | Suppos; G is any traﬁsitive groupoid over X and let x_  be
any object of G. Since G is connected | G(x,y) # ¢ for all x,y € X,
and, using the axiom of choice, we can construct a tree'groupoid T over

X, with T < G; where 'ny denotes tﬁe unique element of T(x,y); for
2ll x,y in X. In fact, T 4is a wide tree subgroupoid of G, see 1e3.1.

Now suppose a & G(x,y), then it is easily seen that we can

represent a in the form

B 4
a = 1; e 5 x
[-] y [~]

for some unique o’ € G{x,}+ And, with this notation, we have the relation
/ ’ 7 ’ '
(Ba) = B.ab

Thus ) G can be recovered from the tree T and one vertex group G{xo}. a
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We refer to Brown [1], Chapter 6 for complete details of this.

1247, Propositionf ' » _
S Let G be. "a Atran.slifive'gr’ouﬁvoid.o‘vex.-' X. Then thé sets G(x,y)
a..re .cardinél equivalent for all x,y in X. In fact, all the vertex
groups are isomorphic.
Proof. See Brown (1], Chapter 6. &
1.2.8. The following has appeared in many places, see Mackey [1].
Iet S be a set and G a group acting on the right of S,
thus we have a map
*: SxG —e 38
 (s,8) —> 5.8
such that the relations:
i) (se5,)e,=s-g8,
ii) s.e = s, e the identity of G,
hold for all s e S and all 8 € G, where 88 denotes the product
of g, and gz in Ge. We define a groupoid structure T on SxG as
follows:-
i) Take ob(G) = S.
ii) f‘or s »8, € 5 define E(s. ’Sz.) by
a’(s‘ ,sz) = {(sl »8) € {‘S.}x G; 8 .g= sz}..
iii) Define composition by :-
6(51,53) x (?(s' ,sz) __-> E(s' ,33)
((s,58,)s (5,58 )) — (5,88)
Thus , (s,,g )+(s ,6 ) is defined if;and only if ) 5.8 = s,and in
this case (sz,gz)(s‘ ,g‘) = (s' ,glgz)'. _
(Note that one can proceed similarly with G acting on the left of S.)
It follows that & =s Li.a’(s‘ »s,) is a groupoid over S.
" The unit -Is =‘(s,e)”artd (s,g)°1 = (s.g,g-1).
To verify GZ), consider {(s3 ,g?’).(sz ,g; )}.(s‘ 8, ) where 5,06 =S

and 8,8, = S, Then we have that

i(a3,ga)o(sz.sz)} (s, 58 ) = (sz,gzés)-(S,,g‘)

(s, .8 (g.8,))
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On the other hand, (s ,g )+(s ,8 ) is defincd and is equal to (s .8 €, ),
and since s‘ .g, gz .= (sl .8. )-ng sz.g% = .83’ w§ see.that‘
(s;;g3).{(éi,gz)(s;,gl) } is defined and equals
(s,58,) (s,,88 )= (s (68 ) )
3 1" 2 ! 1z 3
Thus, by the-associativity of the group multiplication we have
(s,2(58 )8, ) = (5,5 & (g,8,))
hence (s,,6,) {(s,58,) (558 )} ={(s,06,)(s,080] G5 6,)

and so G2) is verified.

The other groupoid axioms.are easily verified and so 6 is a
groupoid over S. Note that ¢ is connected in the abstract sense if |
and only if) G acts transitively on S. Also the vertex group
E{s} =G - the.stability or isotropy subgroup of G.
1+2.9. Suppose G and H are groups and we form the set
Hom (G,H) = {f : G —=H; f is a homomorphism } |
We construct a groupoid GH over the set Hom(G,H) as follows:-

i) ob(GH) = -Hom(G,H).
~ii) For f,g € ob(GH), we define GH(f,g) by
GH(f,g) = {(a,f,g) e Hx{f} x{g}; forall
BeG gB)=a f(ﬂ)a'1}-
iii). Define the composition by
GH(g,h) % GH(f,g) — GH(f,h)

((%,25h), (a,fyg)) —> (Ka.,f,'h).

since  (5a)2(8)(a)™ = ¥a £(p) o'y
= ¥e(®) 5"
= n(p)-,

this compositiori is well defined and makes GH intova. groupoid;

where GH = U GH(Ff,z).
Hom(G,H)

In fact, I, = (e f,f) , where e = identity of H , and
-1 -1
(Q-:fsg) = (“ sgof)'
The verification of axioms G1) ecees Gl..) is routine. This is

an example of the "Functor-Categories" of Freyd and Mitchell and has
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appeared élsewhere.

.2.10. Another good example of a groupomd is prov1ded by the fundamental
group01d,7rX, of a topologlcal space X. Slnce we have no need of this
groupoid, we omit the details of its construction and refer the reader to
Brown [ 1]

83. Further definitions and properties of groupoids.

1 03 ol e Definition .

——————

" Let G be a groupoid over X and let H be a groupoid over Y.

Then H is called a subgroupoid of G if
a) Y < X.

b) for all x,y e Y we have H(x,y) ¢ G(x,y), so that H € G.

c) composition of elements in H coincides with the restriction
to H of the composition in G. |

d) TFor each y e Y the identity in H{y} coincides with the

identity of Gi{y} .

H is called a full subgroupoid if H(x,y) = G(x,y) for all
Xy €Y, end H is called wide if Y = X.

For example, the tree groupoid consﬁructed in 1.2.6 1is a wide
subgroupoid of G, and if G is any groupoid over X and x e X , then
G{x} is a full subgrouboid of G.

| Having defined subgroupoids, we could go on and define "normal"
 subgroupoids and ultimately,’the notibn of "quotient" groupoid. However,
we do not make use of either of these congepts but‘detailsvcan be found
in Brown C1] and Higgins (1] .

14342, Products of groupoids.

Let {(ﬁ1§ be a family of groupoids indexed by the set I, and

let X = ob(Gd). _ We form the product G -of the {(} } as follows:-

We take
x= 17 X as our object set
ae I a
and set G =

T G R as a set.
ae 1 .

We define a composition in G as follows. Let (xa)?(yq)
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and (z ) e-X then, by definition of G, we have 6((x,), G ) =
_ {(gc.) _ea..{aTI Co 3 8o € Ga(xq’}’a)_}_.
' So we define composition by: -

6l )s (34)) % 6(0x,)r (7)) —= 6((x,), (2,

((67)s(g,)) = (ge8)

/ . . ’
where 8y By 18 the composite of ga and ga in Ga.'

With this law of c‘omposition, it is easy to verify that G is
a groupoid over X with

T ym @) e )™ = @), |

It is aiso clear that G dis connected abstractiy if jand only
if Ga. is connected abstractly for each a € I. Again we refer to
Brown [1] for deteils.

1.}'.3. Comronents in a groupoid

Let G be any groupoid over X and let x € X. Let Cx be

o

the full subgroupcid of G on a2ll objects y € X such that G(xo ’Y ) + 5?5 .
Then, if x, y € ob(C, ), G(x,y) # $ , since it contains the composite
o

Pa for some a € G(x,xo) and some B € G(x;,y). Thus | C is

Xo

transitive and is clearly the maximal transitive subgroupoid of G with

x_ as one of its objects. Cx is, therefore, called the component of

G containing (or determined by) X, e
1e3ek. The relation x ~y if and only if Glx,y) # ¢ is an

equivalence relation on X, and its equivalence classes are precisely

the object sets of the componentsvof‘ G

163450 Morphisms of Groupoids

let G and H be two groupoids. A morphism (or homcmorphism)

f : G — H assigns to each object .x of G an object f(x) of H, and
" to each element a & G(x,y) an element f(a) ¢ H(f(x),f(y)) such that:-

N ). If I_e G{x] is the identity at x in G,

then f(Ix) = If(x) - the identity of‘ H at f(x). |

M2). If a:x—»y and B : y—e 2z are elements in G,

then f(Ba) = £(B).fla).
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Thus, a morphism consists of a pair of maps (f, obf), where

obf denotes the map induced by f on object sets, thus obf : ob(G) —» ob(H)
Note that it is a consequence of M1) and M2) that if

(f, obf) : G — H is a morphism, then £y = £(a), for :-

. o ) .
floa) = £ 0) = Lo a))
“y

thus fla)fla™) = If('r'r'(c,)) .

Similarly

£l™).r(a) = Tptra)) °

Whence f(a,"1) i‘(q,)"1 .

A morrhism of groupcids is clearly a f‘unctor: of the underlying
categories. Since wé have an identity morphism IG G —» G, for any
groupoid G, we can define the notion of isomorphism of groupoids:
13460 Definition.

Groupoids G and H are said to be -isomomhic if there is a
morphism f : G — H and a morrhism g : H —» G such that gf = IG
and fg = IH' We denote g by f;1 usually, and we call such an f
an isomorphism.

Note that if f' : Gl — Gz and fz : Gz-——o G3 are
morphisms, tl}en fzf' H G' — G3 is a morphism. However, unlike the

case of groups, the image Im(f) of a morphism of groupoids f : G —s H

is not necessarily a subgroupold of H, see Brown [2]. Nevertheless,

Ker f {c:. eG; fla)e I(H)} - the Kernel of f - is a subgroupoid of G.

et £ : G —» H be a morphism of Groupoids and recall that

Stox e (x) (see 1.4.2vi). Let x e ob(G) and suppose a e St.x,
then w(f(a)) = £(x) and so fla) e StHf‘(x)- Thus, f induces a map
St.f & Stix — StHf‘(x), for each object x of G.

143470 Definition. (see Brown {1] and Higgins [1] ).

Ve say a morphism £ :1 G —= H of groupoids is

a) ster injective

b) star surjective or a fibration

¢) star bijective or a covering morphism
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if, for each X € ob(G), sth is injective, surjective or bijective

respectively.

S4. The structure of groupoids.
| In this section we formulate the notions of principal bundle S

with structural sheaf, admissible map between its fibres and the associated

‘groupoid S(S) of admissible maps. The notion of bundle with structural

sheaf is not essentially new and there are similar definitions to be found
in manf places in the literature, see Hirzebruch [1] for example; they
are, however, topological versions. Also, there are definitions of
"admissible map" between the fibres of a principal coordincte bundle, see
Steenrod [1] s but these definifions involvé éoordinate functions in
their description, and will not, therefore, generalise, especially to the
non locally trivial topological case.

Our definitions are general and using the@ we obtain the new -
results Theorems 1.4.11 and 1.5.10. We shall, howéver, relate our
definitions to the existing ones in Chapter 3, where we also give a
general definition for fibre bundles. Unfortunately, we are unable to
prové analogues of 1.4.11 and 1.5.10 for non-locally trivial toﬁologicél
groupoids due to the lack, at present, of a suitable topology for 8(8).
For this reason, we consider the algebraic case and the locally trivial
topological case separately.

There are several consequences of this study. Firstly, it
reveals the e#sentially G-space theoretic nature of groupoids; secondly
we can give topological versions of our results in Chapter 3 (fof locally
trivial topological groupoids) and this leads to a homotopy classification.

As another consequence, we recover the topology of Danesh-Naruei [1] for

the fundamental groupoid =X, of a space X.

dolrel, Suppose H .is a group and S s right H-set.

‘Thus, we have an action S x H = §

(s,h) > s.h

of H on the right of S. Let s.H = {s.h ; he H} - the orbit of s
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under H, let X = S/H be the set of orbits and let r : S —e X
_ .8 +—» s.H

be the canonical surjection of S onto X. We shall denote by .a(S)
the triple (S, ., r) consisting of the set S together with the
action ‘.’ of H on S and the natural surjection r. We make the
following definition, which, of course, is not new:-
1ehe2., Definition.

An H-morphism g : S —e S’ of Tight H sets S and S,
is amap g : S — = 57 such that g(seh) = g(s)eh for all s e S and
h e H.

1e4.3., Definition.

Amap P:S —e B of S onto B will be called an H-bundle
if the following conditions are satisfigd:
i) There is an action . of the group H on the right of the set S.
ii) a(s) end (S, ., P) are isomorphic in the sense that there is a
bijection f: S/H —» B such that the diagram:-

T
S —=5

rl ) lp

S/ "8

‘is commutative, where I is the identity map. P ¢ S —» B will be

called a principal H-bundle if the action of H on § is effective in

/’..» ’
the sense that if there exists s, h and h with s.h = s¢sh , then

/ ' :
h=h; H is called the structure group of the bundle. As usual, we

call S the total space, B the base space and P the projection.

We remark that our notation a(S) and our terminology is
borrowed from Husemoller [1].' O0f course we are not assuming that S is
a fopdlogical space at présent, nor are we assuming continuity of any of
the functions defined above. Following Husemolier, we shall, in future,

denote an H-bundle P : S— B by (S, P, B).
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1.4.4. Definition.

By a sheaf of groups over a set Y, . We mean a map o> —e Y

of Z onto Y such that 2 ..O'(y) has a g,roup structure, for each
Ye€Y. Ve shall denote this by (5,0, Y). |

We now formulate our notion of "bundle with structural
sheaf" in ;-

1.4.5. Definition.

A map P : S — B will be called a (principal) bundle with

Btructural sheaf if ;=

1) There is given a partition {B } ¢y ©Of B and a sheaf of groups
oC:Z Y, ,
1) p . E(B ) — By is a (principal) Ei bundle for each yeY.
Thus, S is the disjoint union of the sets P (B ).
For notational convenience, we denote P (B ) by Sy and
Often refer simply to the bundle S, or , more precisely, (S, P, B)

with sheaf Z ., Z is called the structure sheaf of S and we call

the bundles P : s&-—a- By the component (principal) bundles. The
set P (b), beB, is called the fibre of S over b.

Notice that the notion of '"sheaf of groups" is exactly that-
of "totally disconnected groupoid", see 1.2.3., but is used here
for reasons of terminology.

. The concepts of "sheaf of'groups" and "bundle with structural
sheaf" are, of course , not new and similar definitions cén be found
in many places in the literature. However, the définitions which
Occur elsewhere are usually "topologised" and » at present , we are
not concerned with topological aspects. :

Observe that if (S, P, B) is-a bundle with sheaf 5 and
beB, then be B, for some unique yeY and there is an induced
action |

| 5!
3 (b)><fy — P (b)
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of* Zy <.>n P'1. (b). With this in mind. we formulate:-
l;é;éf Definition. L A _
| Lét (S, P, B) be a piincipal bundle with structural sheaf
(=, o, Y). Then a map- h between fibres o.f' Sy’ yeY, is called"
admissible if % is a Zy morphism in the sense of 1.4.2.
Ty Theorerr;.
Let (S, P, B) be a principal bundle with structural sheaf

'(Z,o-, Y). Then:-

a) Any admissiBle map is a bijection.
b) ‘The inverse of an admissible map is admissible.
c) The composite of two admissible maps‘is admissible.
d) The identity I : P~ (b) —= P~ (b) is admissible.
e) Given b, b, e By for some y, end s e p! (b) and
8, € p~! (b,), there is a unique admissible map K p-! (bu) —e p1 (bz)

such that WL(s‘) = S,
Proof.
a) Suppose b, , b, € B and that
| - -1
N P (bl) —» P (bz)
is admissible. '
. -1 e
Suppose s s, in .P (b' ), then, by definition of orbit,
there exists w ¢ Zy such that s.w =s5,. Sony (sz) = 71(5. ‘W) = »1(5, ). w
Now, since s, # s,5 w # identity in Zy’ |
hence W (s ).w #n(s, ) by effectiveness of the Zy action,
thus h(s ) # w(s,) and so 1 is injective.
’ "1 “1 ' Vi - -
Now let qe P (bz) and let s e P (b'). set q” =y(s)e P 1(b2)
and, again using the definition of orbit, let w e Zy be such that
— / ' )
q* T qQsw _
Then \1(8-4»). = V)_(S).w =q’.w=q and so 1 is surjective and, hence,
bijeCtiveo ' A
The proofsof b), ¢) and d) are straightforward and will

be omitted.
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: - -1
e) To prove e), suppose b‘ ,bze By and S € P (bl )» s, € P (bz).
‘ N»o‘wl,'gj_ven any s ¢ P-1 (b"),_t'here_ éXiStS w [ Zy su,ch.that sl s = §
and w is unique with this property. Define % : p! (b, ) — p (bz)
as follows

i) h (s' ) s,

ii) if s =5, .w, define Y(s) by »L(s)-—-sz.w,

I

We show FL is admissible.

Now, Ll(s.'w') = Q((s' cw)ew)

'7.(5 ' ww’)

S l. lez, (sz-w) .wl,

ll(s). L’

So ‘L is admissible, and it is clear that ‘Y. is unique with

respect to the property 4 (S,) =5, .
, o - -
- Note.that e) shows that any admissible map n P (b' ) —= P 1(b2.) ,

. . -1 -
1s uniquely determined by a pair (sl ,Sz) eP (ba) x P 1(bz) such that

"L(s' )= 32- ,

Theorem 1.1+.7. allows us to consider the groupoid %(S) of
&dmiésible maps between fibres of S , seé 1.2.2, where S 1is a principal .
bundle with structural sheaf. If %(S)(By) denotes the full SUbgrmlpoid
of G(s) over By’ then %(S)(By) is connected abstractly ang its‘\rertex .
groups are isomorphic with Zy (by effectiveness).

Now let G be any groupoid over X, and let Y X be a set
of objects such that each connected component Cy of G is determineqd
by a unique element y of Y, (i.e« Y is a "section" of the set of
equivalence classes of 1.3.4). TFor each y e Y ;Et By = {x e X ;
G(x,y) # ¢} » S0 that Cy = G(‘By) - the full subgroupoid §f G over By.
‘Set 'Zy = G{y} for each y € Y and define Z‘= ng Zy , then there is
& natural surjection ot Z —= Y , where oﬂ(y) =2, foreach yevy,
and (= , o, Y) is a sheaf of groups over Y. Definé S by

= U
S yeY StGy
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and let =  : S — X be the final map,
/ - .
. _§Q41(_(_Sth)'— By_and i
- 1+4.9. Proposition.
(StGy, 1r/, By) is a principal Zy - bundle for each y ¢ Y.
Proof. There is a natural action of Zy = G{ y} on the right of Sty
define by :-
StGy X Zy — StGy ’
(‘3:0')_ - Pa
where Ba denotes the composite of B and a in G. This is in fact
-an action, by the associatiirity of the composition in G, and is, moreover,
effective since fa = fa’ = a = o’ .
If Bty —x in StGy » then B ’Zy = G(.Y:x) (see 1.2-7)
and S i ={Gx ; xeB 1.
so the orbit set St.y /Zy {6G,x)y ; y}
Define
£ 1 Sty /zy -—-»By ,
{eG,x)} = x

then the diagram

} . / N .‘ V ) ) .
comrutes since fr(B) = £(B.6{y} y=a'()s Thus,_ St,y is a principal

Zy bundle by Definition 1.4.3. 2

It is now clear that (S.=’, X) is a princiﬁal i:undle with
Structural sheaf €,o0, Y) as in 1e4¢5. Now form the‘ groupoid S(S)
of admissible maps with .S = (s, n/,b_x) as in 1.4.8 , we have :-

’

; -1 o e, =1
Let b, b € By and let o @7 (b‘ ) —» 7 »(bz) be
admissible, then there exists unique A € G(p, ’bi) such that h (@) = xa

;o

for all a 5'17-'-1(b ) .
{
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Flrst note that.if N (a) =Aa for all .a e 77". - (b ) and some

Ae G(b b, ), then n is admissible. For if o’ e Z , then
"L(a..a, ) = AMa.a' ) = )\(a.) o = W(a) a’ .

Hence l«L 'ié admissible.

Now suppose b i o (bl) — (b,) is admissible, let
B, e (b)) set ¥ =4(8,) and define N by A =7s;3"1 . Then
t)__("’) =\a forall aea ™ (bl) , using 1A.2.6, and A is unique by the
effectiveness of the group actions. H©

These results lead finally to :-

leie11.  Theorem.

Any groupoid G dis isomorphic to a groupoid of admissible maps -
between fi;bres of a principal bundle with structural shéaf.
Praor. . :
Let G be any groupoid over X and let (S, 1r/, X) be the
Principal bundle ﬁth structural sheaf (,0, Y) as constructed in 1.4.8.
Form the groupoid 8(8) and define |
N:¢c — 8(3)

by () ?Z% on elements

It

and ob [’ jdentity on X ,

' the .
Whe.re "L)\ is/admissible map determined by X in the sense of Lemma

14410, By 1410, we have immediately that r is bijective and,

moreover, the diagrams

r r

Y g(s)
. - and !
% ob obf!
- X X — X
both commute. ' '
Now F(sz‘) = yl-xz)\‘ -5 where ‘ZX X(a) = >\2A'0,
2™

i
H

' >‘2(>‘,(a)) = ‘lx,(‘lk,(a')) R consequenf:ly M) PC)I)F(A‘).

Also P(Ix) = lex and W-Ix(a.) =I1a=a, s0 that L2.:[ is
.. x
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the identity admissible map. The result now follows for it-is an easily

-proved general fact that the inverse of a bijective homomorphism of

grduPoids is itself a homomorphism of groupoids and, hence, an isomorphism. E3
The result we have just established can be regarded as the first

part of a general representation theorem for abstract groupoids. The

-second, and last, step will be taken in the next section, where we discuss

the "uniqueness" of the principal bundle determining a given groupoid iﬁ

the sense of 1.4.11;

B5. Morphisms of Principal Bundles.

This section will be devoted to the notions of "morphism" ang
"isomorphism" between princip_al bundles with structural sheaf. We will
show that if (S, P, B) and (S/, p’, BI) both determine a given groupoid
G, then (S, P, B) and (S/, p/’ Bl) are Visomorphic. This result is
" important in the classification of locally trivial grbupoids, which is °
carried out in Chapter 3.

1_-_5_.14. Definition.
Suppose (Z,O' Y) and (z, o’ > ¥ ) are two sheaves of- groups .

The/a homomorphism (Z,0, Y) — (Z: 0’ Y ) is & pair of maps

K: 2 — 57 ana R:.Y—-——Y such that :
K

i) s K, |
, commutes.
|l
Ky o
Y 4
ii) The restriction Ky = KI o ¢ Z - Z is a homomorphism
a(y) Rey)

of groups. |
One defines .isomogghism of sheaves in thé obvious way, and in
fact a hémom.orphism (K, R,) is an isomorphism if)and only if) K and K
flre bijections. |
‘ Tﬁe cla.ss of sheaves forms a category in a natural way with
morphisms the homomorphiéxhs of sheaves. |

We need the following notion of homomorphism of bundles :-
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1.5.2. ‘Definition.
/ 77
. Let (S, P, B) and (S-, P, B ) befprincipal) bundles with
. ) 7 / 4
stru_ctural sheaves (&, o Y) and (£, o, Y ) respectively. Then a

—_ . ¢t s
pair (f,¥F) of maps is a morphism or bundle map (S, P, B) — (s', P, B )

. . - ’ %
with respect to a homomorphism (K, K) : (&,0, Y) — (=5 o-’, Y )

of sheaves if :-
/ . = 7 .
i) f:8S - S is a bijection, f : B —= B is a surjection

and the diagram :-

) I S commutes
/
Pl 1] |

B —» B ,
3 7 11 €Y, sothat £ : 8 g/
ii) f(By) < B () for é y s | vy — S'%(y)

111) comnutes for each y e Y.

Syx Zy —1—> Sy'
ka,l “f
o T .

—= S_
oM zic-y) w(Y)

In the special case when the two sheaves involved both collapse
to a single group, that is, in the case of bundles with strﬁctural ‘group,
1.5.2 reduces to the appropriate notion of morphism for such bundles.
Note that‘ ii) now becomes redundent of course. Similarly, our notion
of isomorphism 1.5.4 will include this special case.

1.5.3. Remark.

Suppose we have a bundle map (f,F) as in the previous
definition. Let yeY and xe€ By a.nd set f_ = f’P°1 (x) * p! (x)

— p’ -1 (f(x)) « Then f_ is 1-1 since f is bijective. If
(s, P, B) ana (s', P/, B’) are both principal bundles, then the
commutativity of iii) together with.the effectiveness of the actions of
;y angd Z’R(y) implies that Ky is injecfive, for each .y e Y.

The class of bundles with structure sheaf forms a category in

& natural way, its morphisms being the bundle maps as defined in 1.5.2.

154, Definition.

- L,
By a bundle jisomorphism (£,f ) of (S, P, B) and (5, P s B,),
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We mean a bundle map (f,?} with respect to an isomorphism (K ;E) of

o . — - /
.sheaves, such that f is bijective and f(B )-= B., '\ "fo Y :
s J _ ¢ (y) &(y) rall yeVY.

Two bundles (S, P, B) and s’, P', B/-) will be called isomorphic if
there is an isomorphism (f,f) : (S, P, B) —» (3/, p’, B/) .
The following observations 1.5.6, 7 and 8 are key facts in

Proving the Theorem 1.5.10.

Suppose S is an effective right H-space and we form the
H-bundle (S, r, X). ‘Let x_& X , then ™ (x,) =H_,c S is the
orbit of any one s € H that is H_ = s «H. H igherits a (non-
canonical) group structure from H as follows, define
(So -h') (s° .hl) =s.hh, . This law of composition turns H_ into e
group with identity s, and

¢ H—-H
h > s <h
y 01
is an isomorphism of groups.
Define an action of H_ on S by
SxH —» S
o
(s’so.h) t—= Seh .

It is easily seen that this action is effective, so we can form
the principal H, bundle (s, T s Xo) » where X‘° = S/H° a.nd r_ the
canonical surjection associated with the H_, action.

1.5.6.  Proposition (S, r, X) and (S, r,, X ) are isomorphic bundles.
Proof, - A -
Define f : S —+ S to be the identity
and f : X — X,
| by S.H_ —> Soﬂo |
Then f is a bijection and the diagram

s L
r}(f

—_— S ' commutes.
lr
-]

———-»Xo.
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Finally, the diagram SxH —= S
SxH, =5

also commutes since :
f(s).e(n) = s.(so.h) = s.h

f(s.h)

Thus (S, r, X) and (S, T, Xo) are isomorphic.

1¢5¢5 and 1.5.6 show that any H-bundle is isomorphic to a bundle in
which the structure group is embedded, as a fibre, in the total space.
We shall call x _ the base point of S.
1.5.7. Now suppose, as in 1.5.5, that
S xH —»5
is an effective action of the group Ho on S,» and that Hoc_:_ S.
This action induces an effective transitive action on any orbit of H ,
o
in particular,there is the induced action
HxH —H
v -3 -] -] )
in which H_ acts effectively and transitively on the right of H .
-]
et rm,: H x H —» H denote the action of H on the
o (-] o -]
right of Ho obtained by right multiplication; this is an effective
transitive action. It is well known that (.) and r.m. are
eflilivalent)so there is a group isomorphism & : H —= H anda
. [+
bijection $ :+ H —s H_ such that
o o

‘Hy x H_— H,

;fxel | ' l?5

rm.
Hox H° —-—-——>> °

is a commutative diagram.
Let X be the orbit set for the action (.) "and let
r:s --»-x be the usual map. We can choose a transversal
L

{sx er'x); xe X} of S, that is, a cross section of r , which is

such that s, is the identity of H , where H = 1" (x ). Then we
o ) o (-] (-]
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have

S = <& X sx..Ho ..
. ’ U . . e .
Define S = X sxxHo - Whlch is a disjoint union - where

we i i .
dentify sxox Ho and Ho
.The action r.m. extends to an action, which we still denote rem, vhere
Vs ’ ’
rem, : 8§ x H —e S
Also, we can extend & orbit-wise, that is, we define

¢x H Sx . HO .——.' sx x HO

| ’ (sx.h) — Sx X ¢(h>
to obtain a map, which we still denote ¢ , where

¢=U¢:S——PS/.

xeX X
. .5 i
Then: 55 is bijective and S —> S is,clearly, commutative
/
" Jr where I is the identity on X.
T
X —>X ’

Consider _
SxHo —_— 5
'¢x6l - l¢
s'x H, %"
let _ (éx.h',hz) €S x H'o , then -

$ (s +h, oh,)

= s x $(h )

rom, (s x#(h,), e (n,))
s, xp(n,) 6 (n,)

5 % p b eh ) .

 # (s, h 5h)

also rem,( ?5 x 8 )(sx-h‘ ’hz.)

i

Thus,the above diagram commutes and s.o' we hafrc_a an isomorphism

(8, r, X) —= (s, ¢/, X) in the sense of 1.5k " Thus, any H-bundle
(s, p, B)A is isomorphic to a bundle (S,, P, BI) in which the structure
8roup is embedded, as a fibre, in S’ » and the induced right action of
the structure group on itself 'is fhat of right multiplication. We shall

7 /
call (s N P', B ) a regular bundle and say that (SI, P’, B,) .is a
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regular representative of (S, P, B) .

.'1 .508..'

| Let (S, P, B) be any pﬁn;:ipal bundle with structural sheaf
=, o, Y). By working over each component By’ we can obté.in & principal
bundle (S’, P/, B') , with sheaf (ZI, c'/, Y) , in which each of the
component principal bundles is regular in the sense of 1.5.7 ; ang
such that (S, P, B) amnd (S/, P,, B/) are isomorphic. (S,, p', B’)

is called regular and we say it is a regular reoresentative of (s, p, B).

/ / 4
1.5.9. Lemma . Suppose (S, P, B) and (S°, P, B ) are principal
bundles with structural sheéves. Then an isomorphism ( r, ﬁ)
: g(s) — g(sl) of groupoids induces a bundle isomorphism

T Stg(s)x — Stg(s,)ﬁ(X) , for each x € B .

Proof, .
Let x e B, Since " is an isomorphism Jthe restriction
r ' X = ﬁ' . t X —» St ﬁ(x) is a bijection, ang
|st_%(5) > g(s) G(sh ’
: i , Fex)
[ -n" :
LI A ‘, commutes.,
8 — 8

Let w g(s){x} — C'a(S'){ f‘Cx)} be the restriction of r
.0 : >

W is an isomorphism of groups and

5‘3(5)" * G(s){x} —_— Stfacs)x
o)
St%(sr)f'f*)xg(s'){ﬁx} - Stca(s’)hx)
Commutes, since - - .
flh.«) = M) = TR M=)
whereas ). wix) = DM).PCx) = D) M),
Thus, . St%cs)x. —_— St%(s') M ex) is a

* bundle isémorphism with respect to the isomorphism w of groups.
Recall that Theorem 1.4+11 showed that any groupoid G can be regardeq

as a groupoid of admissible maps)y g(S), for some bundle (S, P, B).

We now complete this classification by proving :



1.5.10.  Theorem. _
.. Suppose - (s, P, B) and (S/, P{, Bl) -are principal bundles
wifh strucéﬁral sheaveé. Then the groupoids g(S) and %(S,) are
isomorphic if and only if (s, P, B) and (s, P’, B,) are isomorphic
bundles. ' | |

Let (S, P, B) and (5, PI, B’) have sheaves (=, o, Y)
and (=, OJ; YI) respectively, and suppose (f,f) : (S, P, B) —» (S/,p',B,)
is an isomorphism with respect to the isomorphism (K k) : (5,0, Y)
— (2} 0',, YI) of sheaves.

We show theré is an isomorphism

M: gls) —= g(s)

of groupoids. '

Let §y}y and {Bé}y” denote the partitions associated
‘with B and B’ as in 1.4.5, so that

T(ey) = B &) *
Form g(s) and g(s’ ) as usual and define
e gls) = g6")
i) on object sets B and B’
obl"=F : B—»3" .
.ii) If x5 x, € By and h efS(S)(x.,xz) R
we define »’ € g(sl)(gtil), ?(xz)) as follows.

/

Since f is a fibrewise bijection,we can define i by

,2_,

with f restricted to appropriate fibres. The assignment n k_»‘h:'

=g

now defines [ on elements. |

One easily shows thét, nf vis admissible, so that I' is well
defined, and‘also fhgt " is an isomorphism of groupoids. This;
démonstrates the sufficiency of the conclusion.: |

Conversely, suppose we have an isomorphism
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r. g(s) — g(S')
Whose induced map on object sets is

. — ./
Then [ induces a bijection K : Y —» Y which is such that

- !
r(By) = B %(y) °
We can suppose, by the sufficiency which we have proved, that
/ /7
(s, P, B) and (S', P, B ) are regular in the sense of 1.5.8. So, if
(s, P, B) has sheaf (z,0, Y) and (S/, P/, BI) has sheaf (3, o-', YI),

there are distinguished poiﬁts xy > By , for each ye Y , and x; e B’ ’
' y

for each 'y € Y’, such that :
. -1 / AN o .
> = Z =P X, £
i) . P(xy) and Z (y) or yeY an@yey
- 4
Cii flx )=x for all eY
iii) the induced actions
- 5 -1 S 4 =
P and P :
P (xy) x 2z, —* (Xy) (xy) ny — P (xy)
are those of right multiplication.
Now [’ dinduces an isomorphism
, ' /
r'y "3 g(Sy) — %,(S R'(y)) of transitive groupoids,

whose induced map on objects is

- ’
f = f, +t B — B~
y . By y K(Y) ?
and Fy is a bijection for each y € Y.

There are natural indentifications

I Zy —-—»g,(s){xys

y
g l——»’tg
, : , ,
and . I, Zy .-. %(S ){xy’}
' &g’ P—*‘lg/

2
forall yeY and ye Y , where l'(_g(s) = ges = gs and
= Y : . v
'Lg/ (s) = g'.s =85 Iy and Iy’ are group isomorphisms.

Since ([ S “Yix's

oo €y ¢ 56 L} —~ 567 [z}

is a group isomorphism, we can define a group isomorphism
, .

K

Ky :Zy —_— (y) ’ for »eac‘:h y.e Y , by requiring
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I
Zy —2. %CS){ Xy} to commute.

R

/ I—( ) / v
—* %(S ){ chy)}

®(y)
The collection {K } defines a bijective map
K: S — =7
and 5 s’ commutes,
7y & i
so that (K, K): (Z,0,Y) —» (5. o) ¥))
is an isomorphism of sheaves.
The next step is to construct an isomorphism
(fy, Fy) : sy —_— S,R(y) of principal bundles, and then "extend"
over S, as usual. To do this, we construct a bundle isomorphism

# ¢ S —» St

y " %y G(s)y
the conStruction of which, when carried out for S:? v) ° leads also to a
bundle isomorphism
”5:«» S2@G) — ICH '2(y) *
We then obtain fy by requiring
Sy f SR(y) " to commute,

¢yl = 175;00

’

Stra(g) Xy = St%( 'y X &y

where [' denotes the bundle isomorphism of Lemma 1.5.9.
Let e’y be the identity of Zy , for each Yy eY, so that
-1 ) '
P (x, ) . Define ¢ S St
ey € Sy n | ( y) ¢y y %($)xy
admissible map n such that "L(e ) =85 . (See Theorem 1 ebe7 e).

by 5z9y(s) = unique

Then ¢, is a bijection, by 1e4e7, and
| %

S By :
_ Stfa(s) 4
P l ‘ ‘TT" = ' commutes.
I X .
By ——— By

Next consider the diagram :-
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Syx Zy .._._‘_* Sy

an) &"Z”‘

oty ¥ SN ixy} —— Sto(s)*y

L.et' (s,w)‘e Syxzy , then ¢y(-)(ssw) =525y(s.w) and
?Sy(s.w)(ey) = s.w. On the other hand, (.)(yfyx Iy)(s,w) =52$y(s).1y(w)

=2,
However, by our choice of regular representatives we have :
¢y(S) n (e,) = }253,(5)(%3),)‘= 9'y‘(5)(eyw)
- ¢&(s)(ey.w) = ¢y(s)(ey).w = s.w,

Hence the above diagram commutes, and so ¢y is a
bundle isomorphism for each y € Y . Hence we obtain bundle isomorphigms
(f'y, ?y) for each y € Y and the collection {fy} defines a bijection
f ¢+ § —» S/ .
B ' - by / / 4
Tt is clear that (£,f) : (S, P, B) —= (S 4P, B ) is an
- isomorphism of bundles with respect to the isomorphism (K, R) of sheaves.

This completes the proof of the theorem. [ |

1 05 SRS Remarks .

i)  In Chapter 3 we will show that topological verﬁions of the
results of g4 and §5 can be proved for locally trivial groupoids. This
will lead, with very little extra effort, to a homotopy classificafion of
locally trivial groupoids.

ii) Theorems 1.4.11 and ’1.5;10 allow us to formulate bundle -
theoretic concepts in terms of.groupoid - theoretic Qnes, and conversely.
For example, the notion of normal subgroupoid and quotient groupoid lead

to notions of "normal sub-bundle" and "quotient bundlé";

§5+ Covering Morphisms.

In this section, we shall discuss covering morphisms in terms

of the concepts and results of §1+ and §5. For sim'plicity, we shall
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suppose througilout this section that all groupoids are connected in the
. abstra.ct. sense, although the results _established here. hold generally.
This can be seen by working over transitive pomponents and using sheaves
of groupsv, rather than single groups. We establish a result, for covering
norphisms, anélogous to 1.2.6 for groupoids.
164,  Let G be a transitive groupoid over X » let G be a transitive
groupoid over X and suppose that P E — G is a covering morphism
(see 1'.3.7). Let T denote the induced map obP : X =——=X on
objects. We can choose base points X_ € X and x € X with —Ig(?c'o) = x,
(the shea\}es involved here each consists of precisely one group), and then
we have a commutative diagram
g -
S
; %(St'v X)) i’ %(St x)
& G °
where F and [ are the isomorphisms defined in 1.4.11. Note that
the bottom map is'actuélly ppf-t » of course, but we denote it by P
without causing confusion; it is a covering morphism of transitiv;:
groupoids. '
Since P is a; covering morphism, we have a bijective map

P = St P . St~?c° — 5t x,

G G G
which is such that :
A . " P
a) o St& X, —— Ste‘xo
“" - ‘ T’ commnutes .
o ____E‘__> =
b) P = P"l E{i‘w‘ : G{xo’s -——u‘ GIXO} is an injective group
R .

c) St_x, x G{X} — St_X
G G

% <%| L7

St x x G{x b — 5t x

.° Q
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commutes for : P,(B.a) =P, (fa) =P (B)P, (a) =P (8)P _(a) = P_(8).P, (a) ,
forsll (B,a) e St ¥ x G{X,} . Thus, (B ,P) is o bundle map
St,X —» St x with respect to P ' as in Definition 1.5.2. ©
. G. ° . ¢ © °
642 Lemma .

Suppose (? and G are connected groupdids over X and X

respectively and we have a pair of maps

P :s'cSc’—-——StX

o ’(';"_ o ¢ o
and P 3{' — X satisfying :-
i) g =p|_ : E{,‘g?s — G{x‘:? eand is a group homomorphism.
o -] —d e
G{E§ |
~. . ’ '
14) ®,F) : (st gc, w', X) —= (St X, T, X) is a bundle
° ¢ , : G '

map with respect to f’; .

Then P, can be extended to a covering morphism P : § — ¢
with obP =P .

Proof.

First note that the hypotheses immediately yield that

PR)==x , E is injective and P is a surjection.
[-] .

©
~ ~s

vChoose a wide tree subgroupoid T din G and let 'C; denote
the unique element of T(fo,;) o Define r‘ﬁ(f) by t-ls(i) =P (t;e)
> G(xo ,P(X)) . Now by 1.2.6, any element a e G(X,§) can be represented
as '
1

~ ~ -’
Q,*-C O,O'Cia

t

I

~ for some unique element of G{S‘c’c,% +« Now define P : G —» G by
P(&)

obP

};(1:3,’) f;c @) Pb('t'.'}--c.)'1 on elements, and define P on .objects by

P . We claim that (P,P) is a covering morphism of groupoids.
: Let Eb= 15 E'o 'C.; e"a(}',“z'.) then we have Ba = ‘L’; B; E{° ‘C;
and sb P(E3) = P, (tz)§° (Eo &'o )Po (t‘)«c.)-1 « Since ‘1'50 is a homomorphism

of gi‘oups, we have ' |
| PG = B (B BB @) Pz

Also, P(B)P() is defined in &, by hypothesis ii), and
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P()P(@) {P (z3)% B, R, ‘“W{P (5505, @, o, (2 >'1}

A (t )P (B, )P (a )P (t~)
Thus, we have P(Fd) = P(B) P(&) « If G = I. = . I I; , then

P(a)

P, (1), (1z )P, (z)”

1}

-1
Po(t3) 1, B (T3)

Hence, P(Ii) B(5) Ix B5(x) and so we have | P(Ix) IP(x) « Thus, P

is a morphism of goupo:.ds.

Next, let ¥ e X and let x = P(X¥) and consider

Cd '. ~~ : . Cﬂl i ‘
StgP Stgx — St x Now Tz induces a map
* ~ et ~ L] )
T% :5tgX —e StyX defined by Ty(d) =aTy and, similerly, T

induces a map sth — Stho, and these maps are bijective., Since P

is a morphism, the diagram

. StuP
St~ X —G—-—-h St X
G G
¥* *
Tx l P lz‘x
Sté Xo ___°__—’ StG ?g°

is commutative, whence Sta'P is bijective for each S'c'-s 5(’ . Thus’l;’
is a covering morphism of groupoids. K3
1.6.3. Ve next show that the extension carried out in 1.6.2. is
independent of the choice of the tree &‘I in G .
With the.hy-pothesis of Lemma 1.6 .2,' holding, let %ll and 5

be any two wide tree subgroupoids of ¢ , and let 'C;.-c € E‘" (;?o,i') ,

> —fz(i;,?c') + let P and P, denote the respective extensions of
P by :l‘" and :f';_ as in 1.6.2>. ‘Now any element & e G(%,5) can be

represented either as

in terms of'-f' and Ef;c'o} or as
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in terms of 52 and a{io} . Thus, we have :

S e _ . 7_.1 N} ~ L } 1 .
‘o, = T&' Z'y) a, (ti T}'E) .
~ ~ ‘ 2z | .
Let -Cli'-1 'C;' =B e G{)'E;} , so that ti = 'Ci B « Since Po is a bundle

. 2 . 1 ~ { ~ '-1 2 ‘
map, we have P (T.'i) = Po<t§£) PO(B) =P (ti‘c') P ('Ci- t?{) s whence
~ ! 4 1 ~= 1t (-] Ty o x
5 (2 g = p, @) R ()

We now obtain

(]

>V z ol ~ y 2 -1
®,@) =B () B @) B, (%)

1 2] I\ N g og )2 2\~
P (zz) B, (557 T5) K, @ )E (tp T3 P ()

. ! &~ ! "1
PL(I;) FL(G,) Fg(tf)
by use of * . Hence Pz('c'x',) = P, (@) and so P =P, . 5 ]
Lemma 1.'6.2v and 1.6.3 yield the following analogue of 1.2.6 :

16olie Theorem.

Let P : G — G be a covering morphism of transitive

grouﬁoids E and G , and let X Dbe any object of G « Then P is

.uniquely determined by StEP '= Sta; — StG obP% and any wide

tree subgroupoid of G .
Proof.

P : Stag — St 0bPX , let P = obP

(D1

Let P =St
o

and let T be any wide tree subgroupoid of G. with 'Csr e T(X,y) »

By 1.6.1, P, 1is a bundle map with respect to P = F 5{3&3 , and so

by 1.6<2 and 1.6.3 P, can be extended unique‘ly by T toa covering

o~

morphism P‘ : @ —= ¢ with obPi=§'= obP. If a i‘svrepresented

a 'C~.1 » then

as o = r; °
P (@)

gaﬁgﬁggaﬁﬂ

[}

P(t;) P@E,) P(g;)”

i

p(c;) P(E,) P(5) = P@) -

Thus P‘ = P and the theorem is proved. W
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1+6.5.  Remark.

. It .is possible to formulate a notion of "equivalence of bundle

maPs.", and it follows then that

StaP : Stax -—*StGobe

and - StyP Staf — St ,obPy

are "equivalent", for each pair X,y € X . And so a covering morphism
determinhes uniquely, and is determined by, an "equivalence class" of |

bundle maps, see 3.6.5. I
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Chapter 2. TOPOLOGICAL GROUPQOIDS

) ng}‘ intrddUCtion.'”

In this chapter, following Ehresmann [1], we introduce the
concept of "topological groupoid"\and derive some basic properties which
will be needed in later chapters.

Some of the examples of §2 of Chapter 1 have natural topologies
which are compatible with the groupoid structure, and turn these groupoids
into topolegical groupoids. |

The results 6f,§4 in Chapter 1 will also be discussed briefly
in this chapter, but a thorﬁugh discussion of §5 of Chapter 1 will be

presented in Chapter 3 for the case of "locally trivial" groupoids.

81. Topological groupoids.

Our basic definition is :-

2.4, Definition. (see Ehresmann [1] for example)

A topological grouodid G 1is a groupoid & in which the sets

Mor(G) and ob(G) are topological spaces, and the following functions

are continuous -

1) Composition :@ — Mor(G) and inverse : Uor(G) —e Mor(G).
ii) w and w' : Mor(G) — ob(G)
1i1) u : ob(¢) —— MNor(G), where ulx)=1I_.

241020 Remarks. ‘ -

i) Recall that we allow ourselveé to confuse Mor(G) with G
~with G (see 1¢1.2 Remark ii), and so 'in future we will regard G
itself as a fopological spéce.
ii) ' It is to be understood that & always has the relative topology
inherited from the produc§ topblogy on GXG . |
L 1ii) 0 Let I1(6) ¢ @  ha§e the réiative‘topologyvas a subspace of G ,
thenAxiom ii) of. -2.1 1. dimplies that Wl‘I(G) i I(G) —= ob(a)
is continuous, and 1iii) implies that u : ob(G) —e I(G). is
continuous. Thus, the natural identification ob(G) —%e I(G) is

a homeomorphism. -
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iv) © The sets costyx , stergx and G{x} , for x e ob(G), all
“'inherit subspace topologies, and iﬁ:thié‘tOPOIng» G{x} is a.
‘topological group. It is to be understood, as in the case of I(G)
also, that these spaces always have the subspace topology of G ..

v) We shall say that G is a Hausdorff, compact, locally compact,
normal etc. topological groupoid, provided that both G and ob(G)
are Hausdorff, compact,>locally compact, normal etc. of course,
the appropriate condition on LOb(G) will often be a cbnsequence of
that on G, for exémple, compacfness of ob(G) follows from that of '
G as does the conditioﬁ of being Hausdorff.

vi) The connectedness of G .and ob(G) as topological spaces is,
in general, not related to the connectedﬁess of G in the abstract
sense. For example, any group with the discrete topology is dis-
connected as a topological space, but is an abstractly connected

, top&logical groupoid. On the other hand, any groupoid G with the
indiscrete topology on G and ob(G) is a topological groupoid,
-which is connected as a topological space. It is not, of course, -
necessarily connected in the abstract sense. Howéver, we prove iﬁ a
corollary to the result 2.4.3 .below that if G d4is locally trivial
and ob{(G) is connected, then G is abstractly connected. |

vii) Axiom i.)_'of"the Definition 2.1.1 immediatdly yields that
inverse ¢ G.—» G is a homeomorphism.

viii) There are other interesting structures one can place on a
groupoid G iwith respect fo which the algebraic operationsof the .
groupoid are compatible. For example, Borel structures in which the
t0pologibal spacesvare replaced by Borel spaces inDefinition 2.1.1 ,
apd the continuous functions thére are replaced by Borel measurable
ones. Thus, we obtain Borel groupoids and these will be considered
in Chapter 4. : Likeﬁise, we can replace the.tOpological spaces by cf

. qifferentiable manifolds and replace.the continuous functions by Cr'

~ differentiable ones. Thus;we obtain Cr Lie groupoids, and these
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have been studied by Ehresmann.

.' Before moving on to consider-exam'ples, of topological groupoids,
we shall.prove some simple, but usefui, .results using little more than
the pefinition 241414 |
24143, Pro'gosition.

a) Let G be a topological groupoid in which ob(G) is a T,
space, then for all x, y € ob(G) the sets i) G(x,y) ii) Gix}
1i1) St,x and ivj cost,x are all closed in G . If ob(G)

is a Hausdorff space, then v) @, G{X} is closed in G.
4 xe ob(G)

b) Let G be any topological groupoid .over X. If Uc X
is open (resp. closed), then G(U) - the full subgroupoid of G
on U - is open (resp. closed) in G.
Proof. a) |
Let x e ob(G) be any object of G . Since we can display
Stgx as #'(x) , the continuity of = and the hypothesis ob(G) be

G

T, imply that St x is closed in G , since §x} is closed in ob(G)-

1-1(

This proves iii) and iv) is similar since cost.x =’ " (x).

Since G(x,y) = o (x) n a (y) , it is now immediate that G(x,y) is
closed in G , which is i)y of course 1i) now follows with x =y .-

To prove v), we have

m : G — ob(G) and
7 i 6 —e ob(G)
aré continuous functions into a Hausforff space. If a & U | G {x} ,

_ | xe ob(G)
then a e Giy} for some y and w(a) =y = 7/(@) .  On the other hand,

if 7() =7'() = y for aeG, then a € G{y} ‘and so ae (U G{x} .
‘ - . xe ob(G)

Thus ,' ) G{x}’ is the set of points on which # and -rr/ coincide,

: xe ob(G) '

and so U G{x} is closea.
xe ob(G)
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b) ~ For any set U c X , we have

) =T @) A 7T

and so the result follows from the continuity of =« and i

It is a consequence of this result, that, for T‘ object space,
the subspaces Sth ’ costh and Gix} are compact resp. locally compact,
for each object x , if G is compact resp. locally compact. This
remark will be important later.

| In general, however, sth is not open in G and so G is not
generally a disjoint union or sum of the spaces Sth . (or of the
8pace$ Costh). Likewise, G(x,y) is not geherally open and so St.x
is itself not generally a sum of the ¢(x,y) , for v e ob(G) . .

21 . Proposition.

a Hausdorff space
a) " Let G be a topological groupoid over/ X . Then the set of

units I(G) is closed in G if')and only if’5 G is Hausdorff.

b) - If G is a Hausdorff groupoid, then ® is closed in Gx G .
Proof.
a) First suppose that I(G) is closed in G . Let @& ¢ ) — G

denote the composition function and let ¢ ! G— G denote the inverse
function. Then 9.1 (1(c)) = {(a.,v a.-1) e G x G} is closed in G x G , by b),
since © is continuous. Further, the map I xg : G x 6 —= GxG
 defined by Ix@ (a,p) = (‘1:(3—1) is continuous and so |

@ xg) M@ =axg ) @a)eexa}

{ﬂa,a) EGxG }

A (G) - the diagonal = of ¢ -

- §l

is closed in G. « By the well known fact that a space Y is Hausdorff
“if’and only if‘_’A(Y) is closed in Y x Y , we conclude that G is a
Hausdorff space, and hence a Hausdorff groupoid by Remark v) of 2.1.2.

| .Cc.mversevly, suppose G is a Hausdorff groupoid, then G x G
is a Hausdorff space. Let X = ob(G) and define

£ UG{xi-—-——»GxG
. xe X
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a (G,,Q.z )

and g+ U Gfx} —= GxG-
xe X

a +— (0¥,a) .
Since the composite of f with the projection on either factor
‘is continuous, Qe have f is continuous. Similarly, g 4is continuous.
Now, clearly f(a) = g(a) if a =1I_ for some x & X , on the other
hand if' f(a) = g(a) , then a = o' and so a = I, for some x¢e X .
Thus, the set of points on thch f and g coincide is I(G) and so
I(G) is closed in U G{x} . However, Lj G{x} is closed in G
. xe X xe'X
since G is Hausdorff, by 2.1.3 v) « Thus I(G) is closed in G and
50 the proof of part ‘a) 1is complete.
b) By definition of  , & is the pull-back
9 ——6
A
G v % ,

where X = ob(G) . So if G is a Hausdorff groupoid, X is Hausdorff

and so ¥ is closed in G x G . H

. We have a topological version of 1.2.7 :-

2.1 450 Proposition.

Let G be a topological groupoid over X and suppose G is
transitive. Then : | |
a) ~ 6(x,y) and G(x',y’) are homeomorphic for any objects
X, ¥, % ana yl of ‘G . In particular, the vertex groups Gix}
and vGiy} are isomorphic topological groups for any x, y € ob(G) ;
b) For all objects x and y of G, Styx and Styy are
_homeomorphic and absimilar statement holds for éostars.
a) " Choose a wide tree subgoupoid T in _G and let :xy e T(x,y) .

As shown in 1.2.7,
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g+ Glxy) —= 6&',y")
o p— Ty&pa T;)x

is bijective .From the continuity of the composition in G , it follows
that ?S is continuous and also that ¢.1 is continuous. Hexice, ¢
is a homeomorphism.

In particular, ¢ : 6{x} — G{y}

C.L —— 'ny a 'ny

is an isomorphigm of topological groupse.
b) With the notation of a), the map

T a
a;——»m

is a homeomorphism since the composition in G is continuous. K

Note that we have proved rather more than is stated in 2.1.5
in so much that the homeomorphisms ¢ are determined by G .

- 82. Examples of topological groupoids.

In this section, we discuss natural topologies for some of the
examples of §2 Chapter 1, and show that, with these fopologies, the
examples of §2 are topological groupoids. '

2.2.4.

Any topological group, for example the real 1ine, is a topological ‘
groupoid with one object. More,generally, suppose {Ga. 5 ae I} is a
family of topological groups. Give I the discrete topology and give

6= U Ga. the sum topology. Then G is a groupoid over I, called
ae I i ' , : :

the "sum" of the groups Ga, , with composition defined in terms of that

given in each .Ga . In fact,

®

{ (g,h) e G xG ; gh.,is defined}

U ¢ x6 < 6xXG, and then
a a T
ae I :

composition : ® —s G is defined by (g,h) —m-gh .
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If e e G is the identity of G , for ae I, then I =e .

Wé_éﬁow next that G is a topoldgical groupoid :-

Now G_ is open in G and so G x G. .is open in G x G , for each
a ; a a

ae I } So 85 is open in G X G angd, by definition of the sum

topology, U < G is open if)and only if) U n Ga is open in Gd

(and hence in G) for each a e I « Thus :-

(comp) ™ (0) = (comp)™ (U U a G )
- ae l

U comp—1 U nc)
o
ae Il )

which is open in G X G and hence in ® .+ Thus the continuity of
the composition is established and likewise that of the other functions.

Clearly,the "sum" G = U Ga of a family of topological groupoids Gd
ae I

becoﬁes a topological groupoid in precisely the same way.

Let X be an n-dimensional differentiable manifold and let
X denofe the tangent bundle to X « Then TX can be regarded as a.
fibre bundle with fibre R® and structure group GL(R") - the general
linear grbup. Let g(x) denote the gfoupoid of admissible (iee. linear
bijegtions) mapsAbétween tangent planes of X Then %(X) can be made -
into a topological groupoid (in fact a Lie groupoid) in a natural way e
The details of this‘are a special case of a general construcfion given in
Chapter 3 and will, therefore, be omitted.

. This example_is a particular example of the groupoids constructed

in 1.2.2.

Let G be ény topological grouﬁoid.and H a subgroﬁpoid of
’G as defined in 1.371. Then H becomes a topqlogical subgroupoid of

G if it is given the subspace topology. This follows from the fact that

the restriction of a continuous function to a subspace is continuous. -
2.201{-.

Let X be any topological space and let T be a tree groupoid
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on X with t;y e T(x,y) « If we topologise T by requiring the
- function. -
$p ¢ T — X xX

| fxy — (x,5)
to be a homeomorphism, then T becomes a topological tree groupoid over X .
'T° verify this, we note that essentially o = gi((y,z) (x,y) e (X x x):‘(x x x)
and that the continuity of the composition function is equivalent to the
continuity of

o : 35 — X x X
((752), (x,5)) > (x,z)

The diagram . _
9 L+ xxx
| | e
f
Xxx —>= K
commutes, where Pa and P2 denote projections, and so P'e is
continuous. Likewise{ Pze is continuous and so &8 is continuous.
"Hence, the composition function in T is continuous. A similar
argument establishes the continuity of the inverse function, that of =
and n', and alsq that of w . _

Since anj principal groupoid G on X , as defined in 1.2.5,
can be regarded as a subgroupoid of T , it follows from 2.2.3 that ¢
is a topologlcal groupoid in the subspace topology.

We note that the product topology on T (1.e. that induced by 95 )
is the'goarsesttopology on T making T a topological groupoid. This
follows from the fact fhat the product'topology on X% X 4is initial
with respect to the projections.

Lef S vbé a topological_space and lgﬁ_ G be a topological
group actingbcontinuoﬁsly?on the right of S , tha£ is, we have a

' . . ~
continuous action ¢ S X G — 5 . We show that the groupoid G of
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1.2.8 is a topologlcal groupoid over S as follows. As a set, G is

e

8% x G , and so we glve "G the product topology of S x G . Since

S %G —2s S, we have a natural map
(SxG)xG__o—’-SK.G
((s, 8, )58) +—= (s,8¢,)
and this is continuous since P'(O)((s,g'),gz) = 3 , which is the

projection on the first factor, and PZ(O)((s,g‘),gz) = g 6, » which is

identification multp”

S x (G xG) Fz, ¢ x ¢ Bultp

the composite (S xG) » G

and so PL(O) is continuous, thus O is continuous. Now

~

= {((sz,gz),(S, 8 )) € GxG; 5.8 = 2}
aﬁd composition ¢ P — G is defined by
(s,58,)-(s 58 ) = (s,58,8,) »

which is the composite

83 __;_——4— (S xG) xG —jL—-S X G,

((32381)9(Sl:8‘ )) — ((3' :5' )’gz) — (S' ,g'gz)
and so the composition function is continuous. Continuity of the
remaining functions is easily checked and so, ¢ isa topological grbupoid '
over S . This result is, in fact, a particular case of the equivalence
of the category of‘"topological actions™ with that of "topological coverings",
see Hardy (1] .

For some results on topologising the example‘of 12410 , thaﬁ

is, the fundamental groupoid of X, we refef the reader to Danesh-Naruei [1] .
We note, however, that if X is arcwise connected»and..arcwise.locally
connected, then X admits a universal covering, (z,P) s. which is a
locally trivial principal bundle over X with discréte fiﬁre as shown by
. Steenrod (1) . Since 7X is isomo;phic to .g(i) » we can topolgise X
using the results of Chapter}- We give more details of this in Chapter 3.

83. Mornhi%mo of tovolozical prouo01ds.

Having defined "topological groupoid", it is natural to formulate

& definition of "morphism of topological groupoid“, this we do in :-
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2+3s1¢  Definition.

-. By.-a homomorphismz(or~just morphism) f :+ G —» H of

tOpqlogical groupoids, we mean a morphism of abstract groupoids which
is continuous on both objects and elemenfs.

Thé topological groupoids and morphisms clearly form a category,
.&nd we have a forgetful functor from this category into the category of
abstraqﬁ groupoids and homomorphisms.

Next we sﬁow that a product of topological groupoids can
readily be made into a topological groupoid in:-

20 2020

- Let be a family of topological groupoids with

G
“km el

Xa =_°b(Gd) . Form the product groupmdl&‘:{1 =G over ;EI; Xa =X

" as in 1.3.2, and give G and X the usual product topology. We show
G is a topological groupoid over X , and to do this we have to verify
the continuity of the usual functions. As usual, let
P = {((ga),(ha) eexG; (g )h) is def‘ined} ;
we know that ((ga),(ha)) ed if and pnly if, (ga,ha) e®d, for all
ae I, where S)a is the domain of composition in G, -
Let 96‘3 :_g) —> Ggx Gy, for Pel,
h
this function is clearly continuous for each f e I .
Let : — G
6 p % _ p 2
: — h
- ((g,)s(n,))  8ghg
then 6(5 is the composite of S‘B .and the composition function in G‘3
is, therefore, continuous. Since we have Pﬁ(composition'in G)_= EBﬁ ;
where PB’ denoctes projec#idn on the 'B-factor,.wevhave that composition
in G is continuous. |

A similar argument establishes the continuity of the inverse
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functioﬁ G —»G .
- Por the initial function o : G — X , wé see that
m((e,)) = r (g))) »
where Wo. denotes the initial function of Ga. s and so

= T w7, T G —e T xa. is a continuous function.

aeI ¢ ael & ael
Similarly #’= TT m  and w= T W are both continuous and 50,
) < @ -
ae l ae l

by Definition 2.1.1, G is a topological groupoid over X . ®

‘Note that the projection P‘3 : s Ga, — GB is a
. ae I
morphism of topological groupoids. It is a consequence of this, that

the product IT G_ of topological groﬁpoids {G } has the
a a
acl ae I

usual universal property of products. Explicitly, suppose'
fa. G — GCL is a morphism of topological groupoids for each

ae I « Then there is a unique morphism f ¢ G —e [ G&_,

aeI &
of topological groupoicis, such that Paf = fa. for each ae I .
The following proposition, which has an immediate generalisation to

a family {Ga.} of groupoids together with a family {fa}
a .

el ae I
of morphisms, where £, ¢ G, —* H , is an example of the "Initial
Structures" of Bourbaki.
2.3.3. | Proposition.
Iet £ ¢ G —+ H be a morbhism of groupoids of G onto
H, whére H is a tcpplogical groupoid. Then r induces a topology
on G compatible with the groupoid structure of G and f is then a
morphism of ‘topolog_ical groupoids. |
‘Define a set U< G tobe open if)and only if | U = £ W)
- for some open set V e H , and, if F= ob(f) , define U < ob(G) to

be open if')and only if U = 7 (V ) for some open set V c ob(H) .
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This defines a topology on G and on ob(G) , and f and T being
-~ -surjective are both continuous and open maps'.‘ .

Since the diagram below is commutative:-

G
fxfl lf
Ou
T~ H
where 6(} and GH denote the composition functions of G and H

respectively, it follows that BG is continuous, for if U < G is

open, U = ¢ ] (V) for some open Ve H, and then ¢ (;1 @U) = 9: (f‘-'1 w))
- A -1
- @0 (e )

which is open in & ¢ The continuity of the inverse function is

proved similarly and the commutativity of the diagrams :
T £

G ——» H G—rH obfe)i»(;
L IS £| | £
ob(G) —* ob(H) ob(@) ~Eaob(H) ob(H) —= H

provides the continuity of =« , 7' eand w. Thus the result is

established. &

§l_+_. Locally trivial topological groupocids.

In this section, we introduce Ehresmann's notion of locallyv :
trivial topological groupoids, derive some of their basic properties and
~give some examples of these groupoids. Locally trivial topological
groupoids are, essentially, topological groupoids for which thé initial
and final maps have local sections, and the éxistence- of such sections
ieads to a local product structure on the elements. .

2. Definition. (See Ehresmann (1] for example).

Let G be a topoldgical groupoid over X , Then G is said

to be locally frivial if there is an indexed family {Ua.’ xo;’ A } where:-
_ ' a
ael

.'is an open cover of X and x_ e U for each ael .
ael : : e e C

R

ii) Mo is a continuous function mapping Ua4 into G , for each.
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a€e I, and ka(x) € G(x,xa) for all x ¢ Ua. « Thus, Ay is a

local seétiéh ‘of the map Tl costha —_— X .

We call the family &Ua, X xa} . a local trivialisation
ae ' }

of G, and. call the bover {U“} a trivialising cover. We call the

sets Ucr, trivialising neighbourhoods and say G trivialises over ch, .

We shall say that G dis globally trivial if there is a

distinguished point x, € X and'a'continuous function X : X — G
such thatb A(x) € G(x,x_,) for all xe X . Thus, if G is locally
trivial and U, is a tr1v1al:Ls:Lng neighbourhood in X , then G(U ) -
the full subgroupo:Ld of G over U - is globally trivial.

If G has a trivialising cover'{Uaa Xy ka} » We can always
I

assume that )a‘(xa") =I, foreach ael, for, if p U —= G
a A

"is continuous and Hq(x) € G(x,xa) for all xeU_ , then

A : U —G
Q [0}

. - . .
defined by Aa(x) = ,La(xa) /“a.(x) is clearly continuous, ;a(x) e G(x’xa.)

and xa(xa‘) = qu, . We shall', ip future, always suppose that xa(xa) = Ixa’

for 21l ae I .

We also remark that from a trivialising cover {Uq.’ X, )‘a.}. we

can, merely by composing A, Wwith the inverse function, obtain a

" [ K3 » .

trivialising cover" {Ua.’ X, ,Aa} with ,‘La(x) € G(x“, x) for all

Xe U + The converse is also true.' It will be a matter of convenience

Whether we choose X (x) e G(x, x, ) or A (x) € G(x , x) , although we

normally employ the former sense.

Finally, we remark :-

~ Suppose {Uc‘, X, xa} is a trivialising cover for G so that
I ' -




,\a : Ua -—-—-} G
: is con‘tinﬁ'o“us- a.nd )\G(X) e FG.(x, xd.) for all x'e Ucc . Let xB "be

any point of U_ , let Tp © G(xa, XB) (which is non empty since

-1 _ ‘ . '
/\G(xﬁ) e G—(xa, xp)) , let UB = U and define P ¢ TIB — G by

/"p(x) = T A &) -
Then Ma \is continuous, 'Lﬁ(x) e G(x, xﬁ) for all x ¢ U‘3 and

{UB’ xB, ’*ﬁ} is another local trivialisation of G . ' So we see that
I

within Ud, the choice of x is arbitrary.

Next, suppose that W = {Uj HE > J} is an open base for the

topology of X , so that each U, can be written Ua. = U Uj for some
. : jed .
a

subset J & J . By choosing x,e€ U; for jeJ and restricting Aé ,

we obtain a triviélisation {Uj’ xj, Aj} for G where the Uj are
T J

basic open sets. This fact will be needed later on.
The following result, though simple, is quite important.

24403, 'Proposition.

Let G be a locally trivial topological groupoid over X ,

let vxo € X and let Cx be the transitive component of & determined

by x, in the sense of 1.3;3. Then the object set of Cx. is both

. ©
open and closed in X .

Proof. _
Let ,Yxo = ob(Cxo) s let {Ud, X, AG}I be a trivialising

cover of X‘ » and suppose -Yxo o U+ é . Let ye Y_oon U,
o

] an@ let x equ s SO ,that. ,\a(x) e G(x, xa) and }q(_y) e G(y, .xa'.) ,

‘whence ,\c‘.(x)'-'1 ,\a(y) e G(y,x) and so x¢ Y« Thus, if Y. n Uy .-,e',s
. | .

we must have U < Yx; - However, {Uojl certainly covers Yx° ‘and,

consequently, Yx ~ is a union of some of the Ua. and is, theref‘dre, open.
° .
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Since tﬁe object sets Yx of the components CX partition X , they
‘ o . S °. _ o o

" must be‘cldsed'in' X also. @
Corollagx 1.

If X is connected and G is a locally trivial groupoid over

X, then G dis transitive. - H

Corollagz 2.
If G is a locally trivial groupoid over X , then G is the

topological sum of its transitive components.

Proof.

By 2e4e3., the object sets of the transitive components of G
are both open and closed in X , so, by 213 b), each transitive
component is both open and closed in G « Thus, G is the topological-

sum of the transitive components. - |

Notice that the convefse of corollary 1 is false, as the

following example shows. . Let 3 be the tree groupoid on {0,1} s
blet {0,1} have the discrete topology and let {0,1§ x.{0,1} have
the product of the discrete topologies, which is, of course, discrete.
Now let - : 9 — {0,1}x{ o,’1§ be the natural bijection as in
2.2.4 'and.use ¢ to topologise §J . Thenv 9 is a fOpological'
tree groupoid as shown in ~2.2.4 and is abstractly comnected. It is,
moreover, globally trivial, for we can distinguish 0 e {0,1} and défine

it {0,013 — 9,

by  A(0) =1,

(1) s

then X is continuous since §0,1} is.discrete. However, {0,1} is

f1 € 3(!)0)

not connected of course. ‘
Proposition 2.4.3 also yields :
2eli ok Proposition.

Let G be a topological groupoid over a connected space X
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Then G is locally trivial if,and only if,there is a distinguished
o point - x, '€ X , an open .cover: {Ud} -'of X and continuous functions

J, : U, —+ G such that p (x) e G(?c,xo_) for all xe U_ .

Proof.

For the necessity, suppose {Uo,’ X, )‘o.} is a trivialising
' I

cover of G then, since G is transitive by 243 , we can distinguish

~Xo € X and choose elements Ty © G(xa,xo) « Now define Mo Uo. —_—

by I“'a.(x) =T, )a(x) to obtain the conclusion.

Conversely, given an open cCover {UG'}I of X and continuous

functions M, + U, — G such that ,.La(X) € G(x,xo) for all x ¢ U,
then, since G must be transitive, we can choose xa € Ua, and
K 7—; eG(xo,xa‘) , for all a e I . Nowdefine A\ :U —= G by

Xa(x) = 'Ca /u.a(x) to obtain a lccal trivialisation {Ua.’ X, >‘°’}I for» ¢ .82

For connecteci spaces X , or more generally for transitive
groupoids ‘G , we can regard 2.4 as an equivalent definition of
local triviality.

244450 Progosition.

a) A finite product 11'1;' Gi of topological groupoids is locally
trivial if, and only if, ‘:;lh of the Gi is locally trivial.

b) A product TG, of a family {Gi s ie I} of topological
groupoids is'locally trivial if each Gi is locally trivial, and

" all but a finite number are globally trivial.

c) ~ If a product TG, of a family 16, s ie I} of topological
groupoids is locally trivial, then each 'Gi is locally trivial.

a) Suppose G, , i = 1,2,....,n,»is locaiiyA trivial and

' U ,x , A is'a local trivialisation of G, , 4,2,eee,n &
i 43 %4 “i} a €A , -t .
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It is clear that

{Uax Ud;x oo 2 Uy (X Xy seennX] )AL X Ag x ees xxan}

n i 2 n i IS
n - .
is a local tr1v1allsatlon of I G ‘indexed by A' *® Az X ese xAn .
i=1

The converse of a) will follow from c).

b) Let G. , G. , esoee, G. be locally trivial for
0 1, in
i, _iz, cees in € I and suppose Gi is globally trivial for

igdi,d, eeey i« Let X; =o0b(G;) o Let {Ua“ s X 0 A }
l.j . 1. A

Jd J .
i
J
be a local trivialisation of Gy for J = 1,2,¢ee,n , and let
J
{xi, X5 ,\i} be o global trivialisation of &; for 1 i, i, wur, i .
Then,
{Ua. % UG x coe XUO, X WX (xi) >
: 1 i in - i#lJ
! 2 ‘ j 1,000,!1.
N DS ces XX
ay ¥ Tay% * a; X T o
| 2 n 173

'j 1,.--,!1. .

wherei %; € {xc“} for i-= ij and J = 1,2,eeeyn , is a local

3
trivialisation of TIG. 3indexed by A, x A, x eee XA, .
i i‘ i, . in
c) Let ob(G-i) =X; forall ie I and suppose
{ (x ) s X}, | is a local trivialisation of TTG:L « By 2.2,
_ ach : .
we can suppose that the sets Ua. are basic open sets, so that Ua. is of
the form U, x U, x eee XU, x T Xy » where U, is open in
i i~ i . . i
! 2 n - i+1|’""1n‘ j :

X; 5 3=1,e00,n . Now ,)‘a‘ U --—-‘lTGi is continuous and is such

J , ,
" that Xa((yi)) € G((yi),(xi)a) for all (yl) e U, , where G éTTGi .

Choose an index Jje I and let Pj' denote the projection on
the jth factor, then
vq =P 3 (Ud)

is an open set in X‘j vcoritaining X, = Pj((xi)a) « The choice of | U,
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as a bas;ic open set permits us to define a lpca.l section
) S; .: 'Vé”_;-4¥'ué,":
of éj by .Sa(y) = (yy) » with y; = P,((x;),) for i#J and YiEY
Finally’we define

H — G,
Mo b Vo i
n . . " . .
by M, 1s the composite Pj 2, S » where Pj in this composite
denotes the projection TrGi — G’j . Since the sets V_ cover X,j s
a

{V s X s /“a} is a local trivialisation of Gj « This completes the

proof of the proposition. ®

We also have an obvious result concerning "sums".

A sum U G'a' of topological groupoids is locally trivial if,
ac I

and'only if’each Ga. is locally trivial. B

' We shall need this result later in Chapter 3.

2ehaTe Some examples of locally trivial groupoids.
i) Any topological group is a globally trivial topological

groupoid, and so is the groupoid consisting of the union of a family
{Ga; a € I} of topoiogical groups topologised as in 2.2.1.

ii) If X is a differentiable manifold, and %(X) is the groupoid
.of 24242, tben %(X) is a locally trivial groupoid, but not generally
a globally trivial one. SeAe Chapter 3 fo;‘ details. _

i41)  If T is a tree groupoid over X topologised as in 2.2.4,
then‘ T is globally trivial since the projection P‘ !X xX — X
has a section s, determined by'a point xoe,x s in the sense that
s|(x) = (x,xc) .

dv) | I‘f“ X is an arcwise bonnected,arcvzise,locally corinected-space,

‘then the fundamental groupoid =X is locally trivial. For details
. see Danesh-Naruei [1] » although this' fact also follows from our
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results of Chapter 3 and the fact that #X is isomorphic with %(i) ,
" where - )A(’ ~is the universal covering 'spaée‘ of X o -

§_5_. . Principal "H-snaces" and topological groupoids.

Suppose S is a topological space and H a topological group
acting contiﬁuously on the right of S , that is, we have a continuous
action S xH —» S of H on S . Suppose H acts effectively, as
defined in Chapter 1, and let S* be defined by :-

- : S*={(s,s.h)sl5x55 hGH}CSxS-
The effectiveness of the action of H means that there is a function
t : S5 —» H defined by
t(s,ssh) s h,
and called the translation f‘unction... Give 'S* the subspace topology
of Sx 6§ following Husemoller [1] we make :
2.541. Definition.
. S is a principal H-space if the translation functioﬁ
t S* — H is éontinuous.
We have :-

2.5.2, ‘Proposition.

Let G be a transitive topological groupoid over X and let
x,eX . Then St.x, isa principal G{x. } space.
Proof. '

As shown in Chapter 1, there is a natural eff’ectiv-e action
Stox, % G{xc,} — St,x,
(Bsa) +— Ba
induced by the composition in G . Since the compositiofx is; continuous,
this action is continuous. | ‘

"Let 8= Styx_,, then § = {(B,Ba) i ae G{xa}} and

- * . : ' ’ 1.7/
t 1 5 —» G{xo'} is defined by t((3,8")) BT’ , which is

continuous -since the composition and inverse maps are continuous.
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We say that an action of H on S 1s locally transitive if

there is a covering {Ui}of S by open sets U, such that for any pair

) SssleU ' tﬁ'ere exists heH with the property s.h = s’

i)
2.5.3. Proposition.

Let G be a topological group acting effectively and contin-

uously on the right of the space S, and let G be the groupoid of 2.2.5.
Then G is locally trivial if, and only if, S is a principal G-space
which is locally transitive.
Proof.

For the necessity, let {Ui’ 8y Ai} be a local trivialisation

-~ -| ~
of G, Then, given s, sQ;Ui, we have ki(s') xi(S)G G(s, sl) and s0 S
*
iJ

- *
¥ . * o~
= Uixujn S" form an open covering of S. Suppose Si;j #Sﬁ , then G(si,sj)

is locally transitive with respect to the covering {Ui}. The sets S

) >
-‘#525 , let hea(si,sj). The function t : Sij—-> G can be resolved into

: ~ &~ composition ~
the sequence sij —_—  GxG 2 - G ———PL—>G

(s,8") > (Ai(s.), >J(S, )) *——*Aj(sl )_lhxi(s) — t(s,s )
and so t is continuous - and S is a principal G-space. ' _
o Convefsely, suppose S is locally transitive with respect to
the coﬁering {Ui} of S and t is continuous. For each index i choose
546U, and define A, : Ui——F g vy 2j(s) = (s,t(s,si‘)), to obtain the
local trivialisation {Ui, Sy %i} of G. @

' Notice that if G acts effectively, then G is principal as
defined in 1.2.5. | |
2.5.4. Remark.v Suppose we have a topological.group H acting cont-
inuously on the right of a space S, Following Husemoller [1] y We glve
the orbit set X the quotient topology by Fhe natﬁral surjectibh r
S — X; tﬁen r is continuous and, in fact, open. Wévdefine an He-
morphism g of two H-spaces S and S’ y. &8 i# 1.4.2 excépt thaf we now
ask for g td be continuous. We then call a continuous. surjection

P: S—» B an H-bundle, if there is a continuous H-space structure

~on S and a homeomorphism £ : B —e S/H such that. the diagram
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g L+ 3
L
B T S/u

is commutative, where- I is the identity map S =—s S . If

(s, P, B) is an H-bundle, -then it follows that P must be open and,
hence, an identification map Finally, we call an H-bundle (S, P, B)
& principal H-bundle if the H-space structure on § is effective ang
the translation function t : S* — ﬁ is continuous.

Now suppose G is any transitive tqpological groupoid over X
and let x; € X'« By 2¢5.2, Stho is a principal G£x°i space, and
! St.x  —+ X is a continuous surjection. However,
T 3 Stx_, — X is not generally a principal G{xoi bundle, since
W'/ is notvgenerally a quotient map. An example to show this can be
given as follows. Let G be é group acting transitively on a set §
which contains at least 2 elements (so that G cannot be the trivial group),
_ssi acting on .{1,2,3} - say. Give G the discrgte topology and S the
indiscrete topology, then G 1is a topological group and any action of ¢
on 8 is continuous. Now form the topological groupoid G over - S and
let s'o-e S . >01ear1y’ Stgs, = {5,y x G and so Stys, receives tﬁe
: digcrete topology as a subspace of S X G « It follows, now, that
. Stﬁso ——+ S is continuous but is neither open nor a quotient map.
By relaxing the condition that P be a quotient map, in our

previous definitions, we do obtain that (StGio, 7', X$ is a "principal

Gﬁxo} bundle" in an obvious weaker sense than that above.
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Chapter 3. LOCALLY TRIVIAL TOPOLOGICAL GROUPOIDS.

B0 Introduckion.

This chapter is concerned with a fairly deteiled study of certain
aspects of locally trivial topological groupoids. The main purpose of
this study is to clarify the structure of locally trivial topological
groupoids in preparation for establishing the results of the later chapters.
For example,one constructioh of a "Haar system" of measures, in Chapter i,
depends on the local product structure of a localiy trivial topological
groupoid. Furthermoré, "admissible maps" arise naturally in dealing witﬁ
"representations" of groupoids and "actions" of groupoids on fibre spaces.
A secondary purposeié to use our results to obtain a homotopy classification
of certain locally trivial groupoids.

Yet another purpose of this chapter is to clarify, complete and
extend the work of Ehresmann and Danesh-Naruei [1] on locally trivial
topological groupoids. | In particular,Definition 3.3.1 and its
associated results are new, as are the results of Sections 4, 5 ang 6.

In fact, it appears that much of Ehresmann's work, though used by others,
has not been set down in detail. However, Danesh-Naruei [1] presents a
detailed account of the results of §1 and 82 , and these sections are
almost entirely contained in his work, though they are formulated in a
different way. In facf, we only include in §1 and 32 those results we
need later on. |

Whilst it is not our.intehtion to develoP a comprehensive theory
of fibre bundles.with structural sheaf, we need to investigate certain
concepts within such a theory. Our definition of bundie mo?phism is more
general thah that of Huéemoller [1] s a8 indeed are certaih associated
results; this is true even in the particular casevof bundles with
structural group, tolthe éxtent that we need to work with respect to a
given group'homomorphism. Ouf basic_reference to standard fibre bundle

fheory is Husemoller [1] » although we shall occasionally refer to
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Steenrod [1] .

§1_. .Cocycles and Transition functions.

Thé following proposition is a co.nvénient and dbvious
reformulation of local triviality.
344, Pr-'oposition..

Let G be a transitive topological groupoid over X . Then
G is locally trivial if, and only if, there is a distinguished_point

x, e X , an open cover {Ui} of X and continuous functions
: iel

Xi : U, —s G such that Ai(x) e G(x, xo) for each x ¢ U, .

Proof.

This is, more or less, the same argument as used in proving 2.4..,. B

The system {_Ui’ )‘i’ x, ; ie I} will be called a local trivia-

lisation of G based at x . «

31420

Now suppose G and iUi, Ai’ x, 5 i€ I} are as in 3.1 .1
. ) - -1
end define gy; ¢ Uy n Uy — Gix} by gji(x) Aj(x)ii(x) , for
those pairs i,j of indices such that Ui n U,j e ;15 . The continuity

of the composition, inverse and thé .>'i implies the continuity of the
gji , and it is readily seen that the system {gji 3 ), 1¢ I} is a

system of transition functions in the sense of Husemolle.r [1] 3y that is,

the functions 831 satisfy the cocycle. condition gxi(x) = B ; (x.)vgji(x) ,
for all i, j,x € I and x an element of Ui n Uj N UK « We call
the system {gji 3 i, e I} the "system of transition functions

determined by the local trivialisation i Ui’ P A é I} of G".
There is a notion of equivalence of two systems {g'i } and
o dJ

{ gj/i} of transition functions, see Husemoller (1] .

82. Atlases and locally trivial topological groupoids.

Locally trivial topblogical groupoids have a.local product
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structure as far as their topology is concerned; this is shown in the
- (sketch) . proof of. the follbwing‘-the‘orem of Ehresmann.- -(Some details of
the proof will be needed later).

32.1«  Theorem. (see Danesh-Naruei [1] ).

Let G be a transitive locally trivial topological groupocid
over X and let x_ €& X « Then ' Stex, — X is a locally
trivial bundle in the sonse of Chapter 2 Husemoller [1] .

Proof.
Let {Ui’ Ayr X3 ie I} be a local trivialisation for G
- -]

based at X s and define

P, Uy x Gfx} —= 7 - (u,) a Stox

by %i(x,c.) = >\i(x)-1 @ o The diagram

u; G{x.} i B Tl' (u- 1) N StG

6OMutes, where P, iS the projection on the first factor, and it .is

easily seen that ;éi is a homeomorphism. Thus the theorem follows. ﬂ

.If (B. x c-{xb} s, P, B) 'denof.es the product princiapl G{xo}
bundle over B , then we regard B X G{xol’ as a right (principal)
G{xo'(( - space where | ‘
| (B » 6{x} ) x G{x,} —= B x Gix}

is defined by (b,a).p = (b,ap) . Then, if ¢i PU; X Gix ] —
! (Ui) n Stex, is defined as in 3.2.1, it follows that #; is a
6{x,} - map. That is to say, ¢ ((x,a)sp) = £, (x,a)sp . Thus,

(¢i, Ui) is a chart for Styx, over U, - and so a local 'jtrivialisatioh
{Ui, }‘i’ x_ '; 15 I} of G indqces, in a na‘t;gral ’way_, a.n‘ at.las

{Ui’ ?51} of charts for Sthob. :
_ ielI ' i

Note also that the system {gji% of transition f‘uncti'ons
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; = -1
associated with this atlas is given by gji(x) = kj(x) Xi(x) , and
" .this coincides with the system of ' 3e1.2.
Recall that we showed in Chapter 2, that, if G dis any
transitive topological groupoid over X , Sth° need not be a principal

G{xO} bundlelas defined by Husemoller [1] . However, we now have:

30242, Cbrollagz.

If G is a transitive locally trivial topological groupoid
over X and x € X , then Sth° is a locally trivial principal
G{x,} - bundle over X .

The commutativity of the.diagram

%. ot ’
Wy x Gi{x} —== T (Uj3) n st .x,

‘o'\\ u'i 1

in 3.2.1, means that 7w’ is locally open (since P is) and, hence, is

' 7 .
an open mape Consequently; m° is a quotient map. B

3.2.3.
Let G be a transitive locally trivial topological groupoid
7 ' ‘

and let {Ui, xi, xo} gnd 'gUi, Ai, XO} be two local trivialisations -
for G both based at X, 3 by considering common refinements, we can

suppose they both have the same coordinate neighbourhoods. "If g..

3i
and 35; denote their respective transition functions (3.1.2), then

we have gji(x) = )B(X))i(x)—1' and ggg(x) = };(x))i(x)-1,' Now

define Myoi Uy Ofx} by py() = X () X, ()™, then A is

continuous for each i ‘and iy is readily seen that we have the relation
813 (%) = M0 54 () M )

holding for each pair of indeces i, j and all x e Ui n U Thus,

| 3
by 2.6 of Husemoller [1] any two local trivialisations of G- give

equivalent systems of transition functions and, hence, give isomorphic
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locally trivial principal bundle structures to Stho .

-We ‘also have a theorem concerning‘ costars which is analogous
to 3.2.1. |
324 Theorem.

‘Let G be a transitive topological groupoid over X and let
x, e X « Then cost x is a left principal G{xo} - space. If G
is locally trivial, then o : costho ~—s X 1is a locally trivial left
principal Gixolx - bundle.

| The first assertion is proved in exaptly fhe same fashion as we

proved that St.x_  is a principal G{xo} -space in Chapter 2, making the

G

obvious necessary changes in our definitions.

For the .s}econd assertion; using the choice of local triviali;
sation as in the proof of 3.2.1 we define
951 : G{xo} X ui — }r-1 (Ui) n cost.x by ¢i(@,x) = a..)\i(x) .

One easily checks that ¢i is a fibre preserving Gix 4

~homeomorphism and so the result follows,

Notice that the transition functions &hjii - say = associategd
. = -1
with the atlas {Ui’ 951} are given by hji(x) 6ji(X) » where gji(x)
is defined as in 3.1.2. Thus, two different local trivialisation yield .
equivalent systems of transition functions and, hence, isomorphic

locally trivial principal bundle structures on cost X, =

Finally, we state the following theorem of Ehresmann.

34245, Theorem. (See Danesh-Naruei [1] ).

let G be a transitive locally trivial topological grou‘pc;id
over X and let x,€ X . Then & c-an’ be given the structure of a
coordinate bundle (see Steenrod [1] ) over X ‘X X with projection
(ryr') : 6 — X x X, fibre Gix_ } and group Gix I x Gix, 5

acting (p0551b1y :meff’ectlvely) by left and rlght (1nverse) multlpllcatlon.
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Proof.
We omit the details which are similar to those of the previous
Theorems 3+.2.1 and 3.2.4. Details can, in fact, be found in Danesh-

Namei [1] .

‘83 . Fibre Bundles and Admissible Maps.

In this section, we will introduce our notion of admissible map
between fibres of a -fibre bundle, which will generalise the definition of
Chapter 1, and obtain a groﬁpoid of admissible maps.ll This definition
will also generalise that of Steenrod {1] , which is the one used by
Ehresmann, (see also Westm;n (1] ), in that our definition does not need
local triviality. 1In the case of a locally.trivial fibre bundle, the
groupoid of admissible maps has a natural topology (Ehresmann) which makes
it a:locally trivial topological groupoid, see Westman 1] .

Lef (S, P, B) be a principal H-bundle as in Husemoller [17]

(or Chapter 2) and suppose H X F —= F is a continuoﬁs action of
thé group -H on fhe left of a space F « Then there is a natural
continuous action (8 x F) x H —— 5 X F gefined by

(ss£)eh = (soh,h™" 1) of H on the right of 5 X F . Now, following
Husemoller (1] , we set S; = (8 % F)/h‘ topologised as a quotient with
- respect to the canonical surjection r ¢ 8§ X F —» SF « Finally,
define Py s S —= B by P ((s,f).H) = P(s) to obtain "the fibre
bundle (SF’ Pos B) over B with fibre F , group H and associated
principal H-bundle .(s, P, B)".

o 4
For & point "b & B, the fibre Py (b) over b is given by

]

Py (0) = {(ss)eH 5 p(a) =, £ ¥}

and it is easily seen that
P;' (b) = {(s, J£)eH 5 £ e F}

where s° is some fixed element of P~ (b) : Eurthermore, given such a

fixed element s_ & P~ (b), we have a homeomorphism
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K(s,,b) : F —» P; (b)
" ‘define by K‘(so‘ )(E) = (s.,£)eH .

Now, given a map % P;l (bI ) —» P;' (bz) and elements

s € p- (b‘) and s, € p~! (bz) , we have the diagram

-l ‘7. -1
PF (bl) — P (b,)
K(S.,b')} — T K(sl»bz)
F —t— F
where R is the iuap induced on the fibre making the diagram commute.

Due to the presence of both left and right actions of the group ‘
H » a suitable, canonical definition of admissible map in the spirit of
1e46 does not seem possible. We propose the
Je341. Definition.

‘ - -1 . .

Amp n PF1 (b)) —= Py (v,) is said to be admissible if,
given any pair of elements s, € pt (b‘) ) S, E p~ (b,) » there exists an
element h(s ,s,) € H such that the induced map h : F — F ig
defined by i (f) = h(s,,s,).f forall feF . Thus, n corresponds
to the operation of the element h(s' ss,) on the left of F . .
E. 202‘

We shall first show that if h ¢ P; (b') — p; (bz)
satisfies the pefinition 3.3.1 for one choice of 8 s, then it does
80 with respect to any other choices. '

-1

So suppose K (s ,b )7 B k(s b ) : F —s F corresponds
to left action of the elemgnt geH ,‘and let s ¢ p-1 (b|-) and
s;_ e p~! (bz) be any other choice of elements of § . TIf we let w,

. ‘ '
be the unique element of H such that s = S,.w, , then we have, by

definition of K (s/,b ) , that K(s/,b )(£) = (s/,£).H

(s, ew, ,£).H

]

((S,, wef)e w)H

-(S‘, U'of)cH

K(s, b, )w,.f) .
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Similarly, if w, € H is the unique element of H such that s;_ s 0w,

‘then we have K (s/,b,)(f) = K(s,,b,)(w,f) « * Thus, -
K(s!,b,) " Ws s wef)n)
K (s/50,)7 1 K (s,,b, )(w.5)

K(S-;’bz).1 h K (s, s )(w-:w, of)

K (s{5b,)7 n ®(s/,b )(F)

-1
g8+ (w,w, +f)

-1
(ng w' )'f .

"

And so K(s:_,b&)'1 h K(s",b|) also corresponds to left action of an
element of H .

We show next that , ighoring the topology, the definition
3.341 does generalise' our definition of Chapter 1. To do this, we
first make the following observation. | Suppose (S, P, B) is any
principal H-bundlé and we let H act on itself by left multiplication;
then we can form the fibre bundle (SH, Py B) with group and fibre H
.anc.l associated principal H-bundle (s, b, B) . There ié a natural
idenfiﬁcation_of (s, P, B) and (sH, Py B) defined by

S —_— SH
s = (s, ts,s))eH = (s)e).H
where t denotes the translation function (see 85 of Chapter 2) and e
denotes the identity of H . If we fix 5, € P-1 (b) , this map can be -
regarded as the map s —» | (s, t(s,s))sH and then, under this identi-
fication, the map K(se,b) becomes |
| K (s_,b) : H —= P71 (b)
defined by < (sc,b)(h) = s, +h .
| We shall show that 1 : p! (b') — p (bz) is' admissible

in the sense of 1.4¢6 if, and only if‘, K(S;’bz )'-1 n K(ss ’b )t H—= H
corresponds to left multiplication by an element of H , f‘or.each choice of
s, € p (b,) and s, ¢ p! (b,) - | Suppose f"ir‘st, then, that h is
ad;miss‘ible in the sense of 1.4.6, that K (s| ) =5 and let w be th.e

unique element of H such that s, sw = s .
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K(s,»b, )" n K(s b, )(h)
= K(s,,b,)7 o (s, -h)

= K(s,,5,)7 (s, )h)

= k(s,,b,)7 G - n)

= k(s »b, )" ((s ;o) h)

New  w(n)

= K (sz,b_&)-1 (S,fwh)
= w,h .
Thus, bk (h) = w .h where w 1is an element of H uniquely
determined by the choice of s, and s, .
Conversly, if « (s ,b, )™ h « (s, )h)= w.h for some w ,

then we have:

K (Sz’bz ). w.K(s‘ sb, )—1 (seh)

h (seh)

4
‘ K (Sz’bz ) weh .
“where h’ is such that s.h = 5, . Thus | h (seh) = S e wh' . Now

h(s).h

K(s,»b,) w K (s ;b )7 (s)eh

-1
K(s, »b, ) w (l"h™" )eh

(s, wh h™).h
’
- 320 wh .
And, hence, W is admissible in the sense of 1.4.6. Thus our Definition
334 is a generalisation of pefinition 1.4.6. E'
3e3.3. ProEosition. .
 Let (sF, Pps B) be the fibre bundle with fibre ¥ , group H

and associated principal H-bundle (S, P, B) . Then:

a) Any admissible map is a bijection.
b) The inverse of an admissible map is admissible.
c) The composition of two admissible maps is admissible.
a) The identity map on any fi‘t;re is a.dmissible.
Proot. 4 ‘ , )

The proof gf a), b) and da)  is straightforward. Tovprove '

¢), we proceed in the obvious way and make use of 3.3.2. @
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. Proposition 3.3.3 allows us to form the groupoid S(SF) of
- ‘admissible maps between the fibres of SF and whose object set is. B .

'Wé shall say that a group H .écts faithfully on the left of a
space F if the relation hesf = f , forall f e F , implies h is the
identity of H . This condition is weaker than the condition that H
acts effectively as discussed in Chapters 1 and 2.

Ve now prove that the vertex group %(SF){b§ » forany be B,

is isomorphié with H if, and only if, H acts faithfully on F . To
prove this, consider K(s,b)-15_ K (s,b) for some choice of s & P-1(b)
and n e g(SF){b} - Then the function H — G(S;){b} defined by

h — K(s,b) h K(s,b)'1 is easily seen to be a homomorphism of groups,
and is surjective by 3e3el- Suppbse that 'K (s,b) h K(s,b).1 =

K(s,b) b’ K(s,b).1, then we have the relation

heK(s,b)7 (£) = h'K(s,b) 7 (£)

Rolding for all £ e P (b) . Hence, W he k(s,0) () = w(s,0) 7N (r)
for all f e P;ﬁ(b) e Since t<(s,b). is a homeomorphism,.{his iast
relation implies h = n if, and only if, H acts faithfully and so we
have the required conclusion. H .

Now .SF » B and H are tppo;ogical spaces and so it is natural
fo ask if there is a canonical topologylon g(SF) determined by those of
Sp» B and H, in which G(Sp) is a topological groupoid. It is mot
clear if this is the case in general; however, in the case 6f a locally
trivial fibre bundle SF » the problem Bas a;naturél solution (due to
Ehresmann) and we present the éonstruction later on iﬁ this section.

We remark that the results of this section can be formulated,
and carried out, with respect to a sheaf of groups,.rather than a single
group. However, we content ourselves w1th a single group and observe
that this suffices in the important case of local triviality; this
remark is a consequence of 2. 3 and its corollarles, see §4 . In

fact, the appropriate generallsatlons of the results of 82 are glvan in

§% of this chapter.
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In the case of a fibre bundle (Sp, Py, B) with associated
‘pr:mc:t_pal H-bundle (s, P, B) , the groupoa,ds g(o ) and 8(“’) ‘are
both trans:Ltlve. Also, there is a fibration ¢ %(s) — %(S )
defined as follows. Let S#c S be such that S n P (b) {sbi
- the singléton set contaln:mg Sy~ for each be B . Given

h e g,(s)(b‘ »b,) there exists unique w € H suchv that lL(sbI ) = sbz.w’
define @ by €e(y) = K (.sz ,b_‘). w.K(s‘ ’b, )-1 on elements, and let e
.be the identity map on objects. Thus, the construction of }g;(sF) can
be described in terms of fibrations. If H acts faithfully, then e
is an isomorphism of groupoids, and conversely.

Our next task is to rélate admissible maps and charts in the case
when SF is locally trivial and we are given an atlas for SF .

_'Supposé, (Sps Pp» B) ds the usual fibre bundle with fibre F ,
group H and associated principal H-bundle (s, P, B) . Suppose SF
is locally trivial a.nd that SLUi’ 751; ie I} is an atlas for SF .

. Thus, ¢i + © (Ui) — P; (Ui) is a fibre bundle isomorphism over Ui ,

where, for a space B, © ()= (B= F, P, B) is the product fibre Bundle
over B with fibre F . Also, by 2.2. of Chapter 5 of Husemoller (1] ,
given two charts ¢ ¢ : 6(U) —» P (U) there is a unique continuous
function g : U — H such that ¢ (byf) = & (b,g(b).f) for all
(b,f) e U x F . Consgquently, if ,(Ui, ¢i) and. (Uj’ 9‘5) are two
charts such that U, n Uj o= 95 , there is a unique continuous function
gj3 2 U; n U; —= I such that g, (b,r) = ¢j(b,gj-i(b).f) for all
(b,f) ¢ (Ui n Uj) x F . 1In fact, if the homeomor'phism

. -3, . . = y
¢i,x : P —= Pp (x) is defined by -éi,x(f) = ¢i(x,f),

then (x) _ J,x ¢i,x .
With this notation we now prove:

E.E'é" Theoren. -
Let {Ui, Bi; ie I} be an atlas for Sp g Then a map
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n e P;(x) _., P; (y) is admissible if, and only if, ¢;1,y h éi,x: F —o
.co;;esponds'.to the operation of an element - hlj’i‘ of ' H for all i such that
> Ui and all Jj such that y e Uj .

Proof . |
We shall prove that for any x € B and coordinate neighbourhood
bi containing X, ?Si,x = K(s,x) for some choice of s e P'JI (x) .
The resglt then follows by 3e3.2e
With the notation .of Husemoller [1) , let p = (s, P, B) and
let ¢ = rL[F] = (SF’ Pos B) . For any subset A < B, ,,L[Fle and
( H]A) [F] are canonically A-isomorphic, see Husemoller [1] page L6,
and so it suffices to consider ¢ as the trivial bundle and a chart
?S : 6(B) — € .

| ir 4 =(B% H P B) denotes the product principal H-bundle,
"then 6 (B) = §(F] as a fibre bundle and, if g(r] = (2, g, B) , we
have a natural identification (8,Ip) ¢ (z, 9o B) — (B x F, P, B)
whéré g((b,h,f).H) = (b',h.f) , see Husemoller C1],page 46. Thus, undef
this identification, we are considering a fibre bundle isomorphism

@ : §(F] — @ , which we still denote by #  without causing
confusion. By definition of a fibre bundle isomorphism, # is the
quotient of the H-morphism W X Ip : B X HXPF —» 5 X F "by the
orbits", where W : 5§ —e p  is a principal bundle isomorphism.
Thus ¢ Tz — Sp 1s defined by ¢((b,h,f’).H) = (u(b_,'h),f).n .
Finally, if we fix ‘b € B, set‘ h = the identity e of H

and put s = u(b,e) , then s e p! (b) is fixed and & restricts to a
map $, +F —~ P; (b) defined by |

£.(£) = F((vse,f)eH)
= (u(b,e),f)eH

K(s:b)(f) .

_ Thus 'yﬁb = K(s,b) and the required conclusion follows. B

»
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As already mentioned in the introduction to this section,

. -Theorem 3345 is the definition of adm1551ble map whlch alreaiy exists

in the llterature. (see Danesh-Naruei [1] ).
This theorem makes it possible to topologise g(SF) in the

case SF is locally trivial, and we now give a sketch of this con-

struction in:

3s3.6.- Topologising S(SF)-

Let SF be the fibre bundle with fibre F , group H and

associated principal H-bundle (S, P, B) as usual, and suppose

{Ui"¢i; ie I}- is an atlas for SF « Ve shall now suppose that H

acts faithfully on F . and will retain this hypothesis in future unless

otherwise stated.

Let %(sF’)(Ui,Uj) = e U g(s )(x,y)
: y € 03
and define Ny ’S(SF)(Ui’Uj) —= U; x Uy x H
by-‘A h_ij(g) = (1r(§),1r'(§), f;j) s Where gi'j is

"defined by

/

515 4 a'(s) S ha(s) -

The maps Qij are bijective, for all i and Jj , since H acts
faithfully, and we topologise S(SF) by taking them as homeomorphisms,
and taking the sets 3(3‘)(U.,U.) as a sub-base. It turns out that,
with this topology, %(S ) is a locally tr1V1al topological groupoid over
B. In fact, a local trivialisation -{U’, Xis Ay }- can be defined for

g(SF) as follows. For any coordinate neighbourhood Ui of S we

. F
choose x; € U; and define A, : U, —» ngF) by

)‘ (X) = Pz“i (x’x ’e) ’

- where e is the identity of H .

1 Ne shall not give any details of this, but we refer to Danesh-

Naruei [11 or the papers of Ehresmann, see also Westman [1] « of course,

%(SF) is "locally a product" as a topological space.
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§.§.?. _ Tonoiogising X

Let X Dbe a topplogiqa_.l‘ .space with the local conditions of

11«-)Steenrod [1] and let. P: X —s X be ’Fhe universal covering of X .
Sincé 5(' is a-locally trivial principal bundle with group 7, (X) - the
fundamental group of X , see Steenrod [1] » we can topologise g(i’) using
3346 VHowever, an inspection of #(X) shows that we can identify «(X)
and g(i) . Thus, we can topologise the fundamental groupoid =(X) in
such a v::ay that w(X) is a locally trivial topological groupoid over X .
This topology has been discussed from a different point of view in |

Danesh-Naruei (11 .

8o Isomorphism Theorems.

In this section, we shall prove topélogical versions of the
dsomorphism Theorems 1e4+11 and 1.5¢10 for the case of 1voca11y
trivié.l topological groupoids. Whilst Ehresmann has pointers in the
di_rection we now follow, he seems to have no account of the following

results and certainly has given no details.

We begin by recording some necessary definitions.

By a sheaf o : S — Y .of tovological grouns, we mean g
sheaf of groups in the sense of 1.ek.k ‘in vhich = and Y are topo-
logical spaces, o is continuous.and 0—-1 (y) is a topological group,
for all ye Y . We shall also require the appropriate composition and
inverse funétions to be continuous; thus. Z. is a topological groupoid
over Y if the unit fﬁnction W is continuous.

A continuous function P : S — B, of topological spaces;

will be called a (principal) bundle with structure sheaf if P isa

bundle with structural sheaf as inDefinition 1e4.5, 5 is a sheaf of

topological groups and P : Sy — B.Y is a.(principal) S -bundle as
. y

in Chapter 2, that is, as defined by Husemoller (1] . P :§ — B

will be called locally trivial if each component bundle P : S —s B
' : : y y y

is locally trivial and each of the sets By is Q?eu (and hence closed)
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in B ; in wk;ich case S is the topological sum of the bundles Sy .

Since, by 2.4.3 and its 'cor_'_ollar,ies,. any.ldcally trivial
.'t_opologic'az_t gioupoid G is the topological sum of its transitive
components, it will suffice in proving our theorems to suppose that ¢
is transitive. In which case, it will be convenient to use the
formulation of local triviality given by 3.1.1. |

Let G be any locally trivial topological groupoid over X
and let =’ : s —= X and o ¢ Z —+ Y be constructed as in
Tehe8. If we give S, = and Y the appropriate subspace topologies,
then = is a sheaf of topological groups (in fact, a topological:
groupoid), and the results of Chapter 1, those of 82 of this chapter and
the above remarks show that 7’ 1§ —= X ‘is a locally trivial

principal bundle with structural sheaf o : Z — Y . Since each

By is open, Y has the discrete topology in fact. Moreover, = is a

topological subtgroupoid of G .

We now prove:

éold- oo Theorem.

Let G be any locally trivial t0pc;105ica1 groupoid over X .
Then G is isomorphic to S:(S) f‘or_ some locally trivial principal
bungle with structural sheaf and base sj)ace X « In fact, we can take
S to be the bundle constructed above.

As alrea;iy observed, we can take G to be transitive. Thus,
we ban take a local trivialisation {Ui, )\i’ ‘xo} for G » based at X
as in 3.1.1e Ve shall take S to be ' SthQ — X .

By Theorem 1411, we have an algebraic isomorphism

MN:¢ — %(S) which is defined by [ (a) = b_c; , where

1@ gy (r(a)) — =7

-1 (7' (a)) is defined by *z_a(p) =af. We
will complete the procf of the theorem by shoiving that I is a homeo-

morphism. To do this, it suffices to consider the restriction
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Pié - FIG(Ui,Uj) 2 6U;,U5) — %(S)(Ui%)

"and show that’ Fij is/nomeomorphism for each pair 'i,j of indices.

Now S has charts ¢i 1 Uy x G{x.] — o (U;) o Stex

defined by - yﬁi(x,a) = %i(x)—1a , and so
yLij : %(S)(Ui’uj) — U, x Uj X G{x& is defined by
Tng) = @@ @) 850 e) e Ana)) -

Thus hlj('la) = (x,y, Aj(y)a'-ki(x)-‘l) s where x = VT(G) and

y=7'(a) .
Define ©,, ¢ 6(U;,U;) —= Uy X U x G{x, %
by ©,() = ()i’ (e), Nyl '@)e 2 re))™)

and’ fina-lly, define r'ij : Ui x Uj x G{xo} — Ui X Uj X. G{xolg
to be the identity. The continuity of composition, inverse and the

functions A, shows that eij is a homeomorhphisme.

Since the diagram:-

n.
Glu, uy) = G (U, Uy)

13 & | i l "L‘u'

i}
U.lx Uj xGi{x,} — U.lx UJ. x Gix}

is 'commutétive, it follows that Pij is a homeomorphism and the

theorem is established. &

Remark.

We shall, of course, identify any effective transformation
. of ' ’
group with the group/operators it determines, and, similarly, if G

acts faithfully. It is this remark‘tﬁat.permits us to take Pij
" to be the identity in proving 3ekel, in fact it has already been
used in defining the maps "Lij e | |

Having obtained the topological véfsion of 1.4¢11 that we

require, we now move on to the consideration of a topoiogical version
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of 1.5.10. However, we need some preliminary definitions.

- 7/
. AA_homomorphism ( K,_K,) 2 Z Z . of sheaves of topo-
logical groups is a homor_norphism in the sense of Chapter 1 in which K

and K are continuous. With this definition we make:

3edie2a Definition.
. ! / 4
Suppose (S, P, B) and (S, P, B ) are two (topological)
- » /
principal bundles with structural sheaves Z and Z respectively.
) — /
Then a pair (f,f) : S — S is a bundle map (or morphism) with
- Vg
respect to the homomorphism (K, k) : Z2 —Z » of sheaves of
topological groups, if :-
i) (f,f) is a bundle map in the sense of Definition 1.5.2.
ii) by is. a homeomorphism and ¥ is continuous.
There is, of course, a definition of bundle isomorphism.
Before proceeding with the proof of our main theorem y Jekeb,
we need to investigate how a bundle map treats charts in the case of'
locally trivial bundles. We have the following generalisation of 1.1
pege 59 Husemoller 1] .

2 .L'- . :2 . Lemma .
Let %

(B x H, P, B) be the product principal H-bundle

over B , let ’l.
over B’ end let w :H —s H' bea homomorphism of groups. If
(f-,'f'.') : g — "Z_ is a ‘bundle mep with respect to w , then
£(b,h) = (F(6), g()w(n)) , for all (b,n) € B x H , where

4
& ¢t B —» H 1is continuous.

Proofc

Since (f,f) is a morphism § e ) , we must have
£(o,h) = (F(b), §(bsh)) where §:B x H —= 1’ is continuous.
) Now £((b,h,)eh,) = £(b,h b ) = @), i(bsh,n))) .
f(b,h‘). w(hzj
@), 3(om,))w(n,)
(F(6), 5(o,n ) w(n)) .

i

But £((b,h,)eh)

s I'd /
(8" H', P, ) be the product principal H’-bundle
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Thus,we have tge relation
o ilnn,) = 3(eh,) w(h,) .
Now put h = e - the identity of H , then we have
.i(b,hz) = j(b,e) wh,) - Consequently, j(b,h) = g(b) w(h) , where
g) = j(b,e} and g :+ B — H’ is continuous. Now we have
£(b,h) = E®), gb) w(h))

as required.

We now prove:
3eliolis Theorem.
Let € = (S, Py B) be a locally trivial principal H-bundle

(S’, P,, B,) be a locally trivial principal H,—bundle.

and let y
/ I4 7
Suppose ¢ : U x H —s §|; and $ +V XH — 8], are charts
and (f,f): § —=hH 1isa bundle map with respect to the group homo-
A 4 .
morphism w : H— B o If W=Un T (V) # ¢ , there is a
' 7
continucus function g ¢ W —= H  such that
_ , .
£ ¢ (b,n) = P (F(b), g(b)w(n)) , for all (b,h) e W x H . In other

words we have

# ) £ Py (1) = g()wn)

(o
where g ¢+ W — H, is continuous.
Let (w,F) be defined to make the diagram
f

S‘W —_ Sllv

# 1 le’

commutative. Then u 3is a bundle map and so by 34443, u(b,h) =

' o . : :
F®), g(b)w)) where g : W — H" ds'continuous. Thus,
,¢’-1 £ & (b,h) = (f(v), g(b)w(h)) and so we have

£d(b,h) = B E®), gd)wn)) -

This result has an immediate generalisation to locally trivial
principal bundles with structural sheaves.
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We immediately have a topological version of Lemma 1.5.9 which

“we present as:

: el a5, Lemma, .

Suppose S and S’ are locally trivial principal bundles with
_ / . .
structural sheaves and I : g(s) — S,(S ) is an isomorphism of topo-

logical groupoids. Then the restriction [ Stg(S)X — Stg(s’) My

is an isomorphism of principal bundles, with structural sheaves, for each

element x of the base space of S . ®

~ We are, ‘at last, in a positio;i to prove
3ediebe Theorem.

Let (s, P, B) and (s, P, B') ‘be two locally trivial
principal bundles with structural sheavgs. Then the locally trivial
topological groupoids G(S) and 3(53 are isomorphic if, and only if,
(s, P, B) and (S,, P, B’) are isomorphic.

Proof.

First we prove the sufficiency of the conclusion, and to do
thit; it suffices to consider the case when the sheaves involved each
Consiéts of a single group. | |

So suppose (f,f) : (s, P, B) —= (5’, p’, B,) is a Eundle'
isomorphism with respect to the group isomorphism w ; H —a g’ ,
where the groups H and 1 are the groups of § and s’ 'respecti{/ely.
Define I : G(s) — g(S') by

1) on objects ' =F : B —» B’ .
ii) if Xx,,x,€B and v ¢ %(S)(x,,xz)
define ,”1', € 3(3,)(?(’5 J)oE(x,)) by ’2_/ = £ £™ | uhere the £'s are

appropriately restricted. The assignment no— "LI  then

defines " on elements.

The proof of 1.5.10 . shows that I is an isomorphism of
abstract groupoids and so we have only to show that " is a homeo-

morphism on elements. In doing this, we can suppose that B = VB-' and
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that f = obM = identity on B and we need only consider

M g()w;,05) — 5" )w,,uy) ..

where S.Ui’ 951} and {Ui, 7‘1,} are atlases for S and S respectively.

We hé.ve the diagram

r‘
G(s)(uy, U;) —= GO (u, up)

/
h’ii l . l“-.u’
n y

~ ~s

where [ is defined to make it commutative. In fact, I' is defined by
f‘l(xy h) :b(x',y, ¢’-1 f?‘. oh .}5-1 £ 47 )
il Jsy Y i,x ¢i,x
- ‘ ’
-1
A - and
but the maps y t—» ¢J,y ¢J,y

’
x' — 1,—; ff‘i X ' N

are both r_:ontinuous by 3ekeh since (f,f) is a bundle isomorphism,
whence ﬁ is a homeomorphism and s‘o M is g homeomorphism. This
proves the sufficiency; |

Conversely, suppose we have an isomorphism [* : g(s) ——> g(s’)
of topological groupoids whose induced map on object sets is f - éay.
As in pro&ing 1+5410, wé can suppose, by the sufficiency part of the
theorem, that S and 'S, are regular in the sense of Chapter 1. Thus,
there are base points x & B and x:e B’ with x;=?(x°) and such
that (S, P, B) has group P (x,) and M B') has group P ! (x:) .

We shall show that the map

defined by & (s) = unique admissible map R such that y(e) = s ,

where e = identity of P-JI (xo) » is an isomorphism of locally trivial |

~.principal bundles. Indeed, ¢ is an isomorphism in the algebraic sense

anyway (by the proof of 1.5.10) and so we have only to show that b is

a homeomorphism. Take atlases as above and the local trivialisation of -

%(S) as in  3.3.6 (where #i = A;'co) . Next define & ; p~ (xo) — %CS){onK
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by 6(5) = fg s> Where fg : P'-1 (xo) —_— p"1 (xo) by ‘Sg(S) = gus

" (this fmap was defined in the proof of 1.5.10 and was deroted "I "
. 1 .

there), thén © is an isomorphism of topological groups and so

¢i,x°6 : pl (x ) — %,(S){xo} defined by ¢i,x°s (g) = ¢i,x gg

is a homeomorphism.

The diagram :-

uixﬁ'(xb) ._f__—. P(u )

A'J:x;zﬂ el | | #

WU, xCZ<5){><} Tr(u )ns+

commutes, where %, (x,a) = A (x)7a , for 3
Ppi(xie) = $(H; (6)) end $(&; (6))(e)= &, (g) . Wnence,
B(#, ()= ¢ (&) foral her(x). Kso,
@x .0 0008) = £ (8, )
- Ai(x)_1¢i,x°;g :
2 (x)™ ¢i’x°(g.h)
= 171G oxe) g, | (gah)
P i # x:;g.h)

¢i’x(g-h) for all he p- (x,)

But | Ai(x)-1 ?;i’xo 5, (0)

]

Thus, the above diagram commutes and so ;5 .is a homedmorphism,
Similarly, we have an isomorphism .
/

g 18’ —= st

g(s” e
of locally trivial principal bundles, and these facts, together with

Lemma 34445 , show the existénce of.a bundle isomorphism § S, of

loéally trivial f)rincipal bundles. Thus, the proof of the theorem is,

complef:e I

In the process of prov:.ng 3.4.0, we have proved a result whlch

in itself seems worthwhile 1solating. It is
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i.l;- 070 Theé)rem.

‘Let (s, P, B) be a locally trivial P?incipél bundle with
stfuctural'sheaf, let Y B be a section of the équivélence classes of

143 and form the locally trivial principal bundle ( U St  y, #/ B)

yeY G(s)
with structural sheaf. Then there is an isomorphism '
(95’1)‘: (S: P, B) — (LJ St ¥s 7;—", B)
yeY g(s)
of principal bundles. £
This result is, in fact, indicated in §8 of Steenrod [1] .

Collecting all the results of this section together we have

3,48 Theoreme.

Let G be any locally trivial topological groupoid over X .
Then :
é) There ié_a locally trivial principal bundle S over X ; Withv
strucfural sheaf, such that G 2 %(S) .
" b) | Suppose' s’ is another locally trivial principal bundle over

X with structural sheaf, then G(S) x g(s’) if, and only if, S = § . @

&=

The results of this section have many cénsequences two of which
we stat§ now and a third we give in Section 5 below. They will be used
again in Chaptef L and Chapter 5. |

From standard bundle theory and 34«8 we obtain :.

349, Theorem. | ,
Let G be a transitive locally tfivial topological groupoid

over X « If X is contractible, then G admits a global trivialisation. n

We also have immediately :

3o et Theorem.

Any transitive locally trivial fOpological gréupoid admits a

~ faithful reprasentation on some fibre bundle, as in Westman [1] . B

Another application of 6ur results is given now.in Section 5.
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35. A homotbﬁy classification.

Observe that Theorem 3 «4+8 . implies that' there .is a 1 -1
corres?oﬁdence between isomorphism classes of locally trivial topological
grouboids on thé one hand, and isomorphism classes of locally trivial
principél bundles with structural sheaf on the other. Thus any classi-
fication of such bundles leads to a corresponding classiffication‘of
groupoids, and conversely. It is this fact we exploit below.
| Suppose G is any locally trivial topological groupoid over X

and suppose f ¢ Z — X is a continuous function. Let {B },
y yeY

denote the partition of X dinto the object sets of the transitive
compohents: of G , see Chapter 1. We can suppose y € B.Y (that is,
make an idéntificatic’m) so that Y is a subspace of X which has the
disgrete topology, since each. By is open in X . By 3.4'.8, there is
‘2 locally trivial principal bundle P : S —= X with sheaf ot £ —& ¥
such that’ g,(s) and G are 1somorph1c. - Next form the induced bundle
, £ (s) over z wh:.ch is done in the obvious way of Husemoller (1] by
| work:.ng over the sets By « Then f (s) is a locally trlvial pr1nc1pal
bundle over Z with sheaf Z . Now form C}(f‘ (5)) - If 5, and s,2
are two bundles such that G 2 G(s, ) %(S ) s then 8 = 5 by
34448, hence f*(S.) x f*(Sz)_, see Husemoller [1], and so
%(f*(s,)) x %(f*(sz)) by 3e4e8 again. Thus, f induces a groupoid
f*(Cw) - say - ow}er Z which is unique'up to isomorphism. This construc-
tion, though formulated in an entirely different ma.nner,. .is essentially the |
same aS‘ the construc{:ion of "induced groupoid" given by Ehresmann in
' Ehresmann‘[1] . | | |
Tt will be convenient to employ the following terminology.

‘We shall say that "a groupoid G has sheaf Z " if the construction of
1.4..8 yields a sheaf isomorphic with 'z . “We make :
3541, Y_Def'i»nitiOn.‘ | .

A locally‘trix}ial toﬁological-‘groupoid Gy over X , with
sheaf = , will be called universal if | |
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i) For. each locally trivial topological groupoid G over 2 ,

_ with .She.af Z » there exists a ‘contin'uogs_ function f ¢+t 2 —» X
such that £,(6, ) = G .

ii) If £ and g are two continuous functions mapping Z into X
such that f, (Gz ) and g, (G‘z ) are isomorphic, then f and g are
homotopic.

We have :
3e5e2. . Theorem.
et o ¢ Z — Y be a sheaf of groups over a discrete space

Y in which $ = LJ Zy as a topological space. Then there exists a
yeY

locally trivial topological groupoid G, which is universal for locally
trivial topological groupoids, with sheaf = , over paracompact spaces Z .
Proof. |
let P : 8 X denote the universal v
y»y_.y , . Zy bundle of
Milnor (see Husemoller [1] ) for each y e Y . Let S be the disjoint

uhibn of these bundles, so that S = LI Sy y X=X and P:§ — x

is the obvious map. Then P : S — X 1s a locally trivial pr:i:ncipal
bundle with sheaf 2> . We shall take G_ tobe C}(S) .
Suppose now that G is any locally trivial topological groupoid

over paracompact space Z , with sheaf =z , »and let fo} be the
yeY

usual partition of Z associated with the sheaf 5 ; then B is
paracompact for all y € Y . The properties of Sy- assert the
existence of a continuous function fy : By — Xy such that

6(8,) o (£,)x(G, (X)) « Thus, if £ = y'EJy £, 82 —= X it is

immediate that we have £,(6,) G .

Finally, the homotopy property follows easily from those of the

»-funcfions‘ f& and Theorem 3...8. K&

B6. Covering Morvhisms of topolozical grounoids.

To close this chapter, we shall now consider covering morphisms
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.of' topological groupoids.

W‘e s_ta_:_:'t by recordipg thg_ f_’ol__l_owin.g. definit.iox.l whicﬁ has been
"given in ’Br.own [1] . | This def‘initilon' wili alsé ‘serve. to establigh the
n‘ota:tion we use throughout the section.

2641 Definition.

Let a and G be topological groupoids over ‘)\{’ and X

respectively. A covering morphism (P,-I-’-) ¢ G —/ G is a morphism

of topological groupoids such that P : Sta X —n StG§i' is a homeo-
.morphism for each X in )? .
| Given a covering morphism (P,P) , we can form the fibred

product Gxx)h{' = {(@,3{') e GxX ; 'ﬂ'rr(a),= F(i')} topologised as a subspace
of 6xX . We have a natural map Sp : G-XXJ? — G defined by
vSp(a.,?c') = 35( , where P(Ei-) =a and ".(Ef) =X . sp is bijective
and in fact, S;‘ @)= (P@) , 7@@)) « Clearly S; is cohtinuous.

| Seemingly ‘stronger conditions on P than appear in 3.6.1
have been given by R. Brown and JeP.Le Hardy in Hardy (1], and we

record their definition as :-~

3,6.2.  Definition.

A topological covering morphism P : G —= G is a covering
morphism of topological groupoids f&r which SP is continuﬁus. |

Their definition is designed to obtain an equivalence between
the categories TCov(G) and vTOP(G) » see Hardy (1] . However, we shall
see,tha’c 3.6.1 i.s no less ‘interesting. in that in ‘;tudying covering
morphisms as in 3.6.1 , one is, 'essentially,. studying morphisms of
principal bundles. In fact, in several important cases tﬁese definitions
coincide, as we show in the following theorem. Note. that b) of the

following theorem has an analcgue for Borel groupoi’ds, see Chapter 4.

- 3.6.3. Theorem.

Let P : G —» G be a covering morphism of topological
groupoids. l Then :

.a) If ¢ =X x G 1s the topological groupoid of 2.2.5 and P
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is the natural covering morphism (x,8) }—+ g , then P is s
. :topological.oovering morphism.

~

b) If G is compact Hausdorff and G is Hausdorff, then P is a

topological covering morphism.
c) Ir ¢ ~and G are locally trivial and the composition functions

~

in G and G are open maps, then P dis a topological covering
morphism.
For a) see Hardy {1] .
b) Under these hypotheses Gxxf is Hausdorff, and so SP is a
homeomorphism by a well-known result of.elementary point set topology.
c) We can suppose G and G are transitive, that J?o e X eand
x =P )ex. since ¢ and G are locally trivial, the

‘commutativity of the diagram

Stc“; ;\(o “—‘Pg_.“ St Ko

&
.-n"l _ l_n_/

X —_— X
- where the homeomorphism P = PlStj{o » and the openness of thre mo.ps
o g° ‘
' imply that P 1is an open mape.
Let {Ui, 550, %i} andin, X, %37} be local trivialisations’
for G and G , and choose (reorder if necessary) indices i,j such

that P(U;) = U; and P(Uj) S U; .+ Thus, P :»G(Ui, _Uj) — &, Uj) .

Now consider the diagram 2
. - P
glu;, u;)  —— G(ul,u)x X

! | AT

~ ~ N (5] ~
LLixLLJ xéuixcf ;___..54 _(U'lx u'xﬁi’%)x %

¢

were £, = 57!, F@) = @), /@, N’ <u>>a S @@)™)

( 75 is defined smilarly) and © makes the dlagram commute. Then ©

~s

is defined by e(x y Q
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= ~ ‘—— ~ - ~ ~ - - ~ - _ - _l -
= (PO, B3, NP X)) p, @r (X, ™) 5 @), %) .

--. -Since: P -is open, -Po' is-a homeomorphism and the compositions are open,

it follows that & is open. Whence QP is open and is, therefore, a

homeomorphism. This completes the proof. [

Observe that in proving Lemma 3+4.5 , we did not make essential
use of the invertibility of [' and we can generalise this result to obtain :
36k Proposition.

Suppose S and S/ are locally trivial principal bundle# with
structural sheaves. Then a covering morphism ([, ) @ %(s) —_— %(S')
of locally trivial topological groupoids restricts to a bundle map

St %(S)x —+ St M'x , for each element x of the base space of S . @

4(s”)
Suppose (s, P, B) and (s/:PlsB’) are (t0pologicai) principal
bundles with structural sheaves (Z,o,Y) and ( 2/ ") s and
suppose (f,f) : 5§ — s’/ is a bundle map with respect to |
(k,R): 2 —==" « I£ beB , £:P (6) — 7" Fw)) is
a homeomorphism into, and K(s'.,-f"(b))qf K (s,b)(h) = w(s,s’) Ky(h)
for all h e Zy , where w(s,s’ ) e H for all choices of s and s’
and K(s,b) denotes the map of §3. This fact follows, essentially,
from 3.4.4. Thus, we now see that Ky is an isomorphié.m into of |
topoiogical groups, that is, | Ky is a homeomorphism into.
We next make precise the notiqn of equivalence of bundle maps
which we alluded to at the very end of Chapter 1.

24645, Definition.

VN
Let (S, P, B) and (S ,P',B ) be as avove, let (R, q,C)
4 ’ ‘
and (R ,q/,C. ) be principal bundles with sheaves (8,€, 2) ana
4 4 -— .
(& s € ,z') and let (g,g) be a bundle map R —» R’ with respect

— , 7 _
to (g,2): B, e,2) — (@I,e sZ.) « Then an equivalence

(f,-f-:) ~ (g,E) of bundle inaps consists of bundle isomorphisms

kb /T, ’ ./ . »
(h,h) : 8 —= R and (W',h") : 8 —+ R, with respect to isomorphisms

m,m) . = . 5/ ’ .
(m,@) : 3 — B and (n,n) : X —.—ﬁ of sheaves, respectively,
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such that (g,-g-) o (h,B) = ® .5 l) o (f,f) « Wnere the composites
_invlqll_‘ved are the .c;ompos:_i.tes in the category of principal bundles with
structural sheaves, and 50 the left hand side of the equality has
(2 ,,6.) o (m,m) for its homomorphism of sheaves, whilst that on the
right hand side has (n,1) , (K,K) .

We now have :

3e6.6. Theorem.

Let (£,f) : (S, P, B) —» (S’,P,,B’) be a map of locally
trivial principal bﬁndles with respect to (®,K) : (Z,O‘)Y) — (ZI,O'I,Y,) .
Then (f,f) is equivalent to a bundle map (g,8) : (R, Qs C) —» (R/,q,,cl) ,
of locally trivial principal bundles, with réspect to
(£,2): (B,e,2) — (@I, el,Z_’) s where :
i) (R, ¢, C) and (R/,q',C’) are regular in the sense of 1.5.8.
ii) If §y =g () and l?';y =qd &), then
g ¢ q°1 (c) — ¢ 1G(c)) is a group homomorphism which coincides
with £ . This condition holding for all y e 2 .
| This can be proved by consideriﬁg 1e5¢6, 1:5.7 and 1.5.8
as far as the algebraic part is concerned, and by working locally, as

we have already done many times, to prove continuity of the required

functions. 5 |

By analogy with our previous terminology, we call (g,g) a

regular representative of (f,F) .

We can now'prove the main result of this section

3.6¢7« = Theorem.

: A

Suppose G and G are transitive locaily trivial topological

groupoids over X and X respectively, and suppose we have a pair of maps

P Sta_i’, —_ Sth° and .F : X — X

-]

such that :

~

a) | P = P°l a{i‘o} K E{i’o} — G{xoj is an isomorphism

into of topological groups.
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b) (P, ,F) : (5tz%,, 'y X) —= (Stgx ,m’, X) is & map of
. locally trivial principal bundles with respect to B_ .

'$heﬂ P_ can be extended uniquely to a covefing morphiém
P E —— G of topological groupoids.

Proof.

By the results of §6, Chapter 1, Po can be extended uniquely
to a covering morphism P : G —= G of abstract groupoids. The final
part of the proof of 1.6.2 shows that StaP and P° are equivalent in
the sense of 3.6.5 , thus St&P is a homeomorrhism for each object X
of G .

It remains to prove that P is continuous, for obP=P js
certainly continuous by hypothesis. - Hovever, the continuity of P is
providéd, essentially, by the diagram apd argument of 3.6.3 c¢) except
thaf we are dealing with continuity rather than openness, and we are not

taking fibre products. [}

This result can immediately be generalised to the extent that
we can drop the requirement of transitivity. By use of 3.6.6, 3.6.7
and the argument of 14643 we now see that a map P :.S —_— g’ of.
locally trivial principal bundles, with structural sheaf, induces g
unique covering morphism %(P) : %(S) —_— %,(S’) of locally
trivial topological groupoids. ' |

To summarise, our results show that the study of 1ocally
trivial topoldgical groupoids gnd covering mérphisms,_islequivalent to

the study of locally trivial principal bundles, with structural sheaf,

and bundle maps.
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Chapter 4. INVARIANT MEASURES FOR GROUPOIDS

‘B0«. -Introduction.- ,

o 1£‘is well known that if G is a locally compact Hausdorff
topological group, then G admits an'essentially unique Baire measure
(left Haar ﬁeasure) which is preserved under left translation by elements
of . A similar statement holds for right translations, although a left
invariant Haar measure need notAbe simultaneously right invariant, and
conversely. This fact is of central importance in the analysis of the

representations of G, and also in many branches of mathematics in which

G spaces occur.

The purpose of this cﬁapter‘ié to éstablish analogous results
for locally compact Hausdorff topological groupoids. However, we present
an account of the more measure-theoretic aspects of the problem in the
first threé sections of the chapter. The later sections are concerned
with an application of these results to construct, for groupoids, versions

‘ |
of the convolution algebras CC(G) and L (G) associated with a group

G : 4if G is a locally compact Hausdorff locally trivial topological

. ]
- groupoid, then QC(G) is a convolution algebra but L (G) need not be.

Nevertheless, L'(G) has sufficiently many algebra-like properties to be
of interest and we investigate these in Section 5.

81+ Borel Groupoids.

In this section we record some facts about Bofel spaces and
Borel groupoids which we will need late? on. Our terminology in respect
of Borel spaces is that of Mackey[}]but, as this termiﬁology isvnot as
universal as it might be, we record some of the elementarj facts below
for the convenience of the reader. ‘Again, Mackey'fj] contains all the
statements up to and including 4e1.7. |
kolole Definition.

—————

Let S be any set. By a Borel structure on § we mean a

family B of subsets of S such that :

i) S and ¢ . (the empty set) both belong to B .
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ii) U E, and  E_ both belong to B whenever
E1, E2, seaey En’ esees are elemenﬁs of B .

iii) If Eep , then S NEep .
Byba Borel space we mean a pair (s, B) where B dis a Borel

structure on the set S ; we call the elements of B the RBorel subsets

of S ..

It is to ge observed that a Borel structure on § is precisely
what is more often termed a O -algebra of subsets of S .

As usual, we often suppress the "p" and refer simply to the
Borel space S .

Given any family <F of subsets of S , there is a unique

smallest Borel structure on S which contains €3 and called the Bopel

structure generated by (or sssociated with) the family 3. In particular,

if S is a topological space and 3 the family of all open (or closed)

sets, then the Borel structure obtained is called the Borel structure

-~ generated by the topology of S .

11-01 2 Definition

Lot (S‘:p\) and (Sz,ﬁz) be two Borel spaces. Then a

function f : S —= S: is called a Borel function if f-1(B Yep
L 2 : . ) 2 \

for all element§ B2 of Bz . Ir f is invertible and both ¢ and

-1 ' ' . o ) )
f are Borel functions we call f ' a Borel isomorphism and in this case

S' and Sz_ are said to be isomorphic.

Ir s, and .sz are topological spaces and ﬁ‘ and Bz are
the Borel structures generated by the respective topologies, then any
continuous function £ : 8 —e 5, is a Borel function. Further, any

homeomorphism is a Borel isomorphism. The converse of these statements

is not true of course.

4.1.5 . Constructions on Borel snaceé.

| Let (S,P) be a Borel space and E a subset of § , then
pIE = {E nB; Beg [3} is a Borel structure on E and we call
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(E,ﬁ’E) a Borel subspace of S .

R .{S»} - is.any family of Borel .spaces) we ‘can form the
. ae A ' C |

" disjoint urion or sum § = aE}A S, ©of the S and give S a natural

Borel structure as follows. A subset B of S will be cailed a Borel

subset of S if, and only if, B = ‘UJ B, » where B is a Borel set in
ae A
S, for all aeA. Also, we can form the (Cartesian) product S = TT s
: ae A

and give S the Borel structure generated by the elementary rectangles in
the usual way. Observe that the Borel structure generatea by the topology
of the Cartesian product of a family of topological spaces, is identical
with the Cartesian product of the Borel struétures generated by the
topologies in the factors.

Finally, if £ : § —* S, .where S' is a Borel space and
S, is a set, we can make Sz into a Borel space by declaring B 5,
to be a Borel set if, and only if, f-1(B) is a Borel set in S, - We
calllthis structure the guotient of Sl by £ . Clearly £ is now a

Borel function.

Lt e Definition

A Borel space S will be gal;ed standard if S is Borel iso-
morphic to the Borel sface associated with a Borel sﬁbset of a complete'
separable metric space. |

It turns out thaf a countable product of sum of st;ndard Bofel
spaceé is itself standard. Also, any finite set S with the discreté
Borel structure is a standafd space.

4.1.5.  Definition

A Borel space -(S,B) is éalled countably generated if :

i) .S is separated in that given two points p and q of S,
with ps q , there exists'a Borel set E of S such that
peE and q¢ E . -

ii) There is a sequence E1; Ez, cose, E 5 «eee of Borel ;ubsets

of S which generates B .
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Any standard Borel space is countably_generated, although the
4'.converse.is-false,-. We.now quote Theorem 3.2 of Mackey [3]'which we will
need to use on several occasions.

L6, Theorem

Let £ : S‘ — Sz be a 1 -1 Borel function with § g
) )
standard space and S2 a countably generated space. Then the range of
f is a Borel subset of Sz and f is a Borel isomorphism of its domain

with its range. Iﬂ particular, the range of f is ® standard. B

Finally, we quote :

Lelos7. Corollary

" A subset of a standard Borel space is a standard subspace if,

and only if, it is defined by a Borel subset. K

Having recorded all the facts we need about Borel spaces, we now

turn to Borel groupoids.

. L4148, Definition

By a Borel groupoid G over X we mean a groupoid in which

bothk G and X are Borel spaces and all the functions 1, ﬂ!, u, -
' compoéition and inverse are Borel fUnctions; '

This definition has appeared, essentially,.in Ramsey [11 and in
Mackey [1] and [2]

Agaln,‘we remark that 1t is to be understood that P caxe
has the subspace Borel structure inherited from the product Borel structure
on G X G . And, unless otherwise stated, all subsets of ¢ such as
G{x} ’ costh etc. havé the subspace Borel structuré.
| If G is a Borel groupoid over X , then it is immediate that

WU X I(G;) is a Borel isomorphism,'igverse G —= ¢ is a
Borel isomorphism and that G{x} is a Borel group for each object x of
G . It is also 1mmed1ate that any topological groupoid gives rise to a
Borel groupoid by taking the Borel _structure generated by the topology.

Many of the results recorded for topological group01ds in
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Chapter 2 have valid interpretations in terms of Borel groupoids, also the
Proofs .of such 1nterpretat10ns generally parallel those of. the. tonolo rical
;.result and w1ll therefore be omitted. For example, we have :
k.9, Proposition.
Let G be a Borel groupoid over X . Then :
a) If U c X is a Borel set then G(U) is a Borel subset of G .
If, further, X is standard
b)  G(x,y) » Gix} , Stox and cost,x are Borel sets in G for all
objects x and .y of G . |

c) ) G[x} is a Borel set in G .
‘xe X

Finally, if G is a standard space, then

'd) @ dsaBorelsetin G xG. @

Proposition 2e1.5 also has a Eorel analogue obtained merely b&
replacing the words "topological" and "homeomorphic" by "Borel" and
"Borel isomorphic" respectively. Also, a;l the examples of 82 of
Chapter 2 can be turned into Bbrel groupoids in the_obvious way . in
particular, we draw attention to the B;rel version of 24245, Finally,;

we remark that a product TT G or a sum L} G » of a family of
: ae A o ag A

Borel groupoids {Gd} , can be turned into a Borel groupoid by usiné
ag A

the product Borel structure and the sum Borel structure respectively.

82. Invariant Measures. .

| Suppose G is a topological group.. It is a fact of some
cbnsiderablé importance that an element s of ¢ determinés_a homeo -~
.morphism of G onto itself simply by left multiplication. Moreover, if‘

' G is locally compact and Hausdorff, then it 1s the famous theorenm of Haar-
"Weil that G admits a Baire measure (see §4) - with the properties

i) fL(S'E) = J/4~(E) for any element s & G. and Baire set E of G .
ii) ;L is not ideﬁtically zero. |

Condition i) is paraphrased by saying M~ is left invariant.
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Furthermore, it is the (also famous) result of von-Neumann that if rL,

-is any other Baire measure on G with properties. i) and d4i), then

: . ,
there exists a constant ¢ > O such that M =cp .

An element s € G also determines a homeomorphism of G onto
itself by right multiﬁlication, and the above theorems of Haar-Weil and
von-Neumann hold for right invarian measures. However, the map x x‘1
is a homeomorphism of G onto itself which interchanges right and left.
There is, thereforé, a 1 -1 correspondence between right Haar measures
andvleft Haar measures. . This is not to say that a left invariant measure
is automatically right invariant, and conversely. This need not be true.
Indeed, there is a relationship.between ,L(E) and pr(E.s) , for a left
Haar measure Mo determined by the equation ,A(E.s'1) = <A(5)/*(E) for
all Baire sets E of G and elements s € G, see Berberian [1] ,
Chapter 9.- In this equation A(s) is a positive real number and the
function A: G — R is called the modular function of G . It is

a continuous homomorphism of G into the multiplicati#e group of non

.zero real numbers. If A = 41, then G 1is called unimodular and

this condition is equivalent to the condition that any left invariant
Haar measure be also right invariant. If G is compact, discrete or
Abelian; then if is unimodular. »

One more well known definition we shall need is the following.
Two measures p and rLf on X are said to be equivalent if, and only
if, they have the same null sets. This relation is an equivalence
relation and the equivalence class, [p], ofV,A, is ;alled the measure
class of f; , see Mackey [3] .+ 1In termsiof measure. classes, von-
Neumann's result implies that "the measure class of Haar ﬁeasure og G
is unique".

Guided by the foregoing discussion we now turn our attention to
groupoids’vfirst to Borel groupoids and then to toﬁological groupeids in
. Thus, let G denote a Borel groupoid over X and let s ¢ G(x,2).

We define. Ls ¢ costh — costh by Ls(a) = sa and call Ls the |
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Jleft translaticn by the element s . Similarly, we define the right

' . : , . - -1 L
-translatlon,.Rs "StG$"""'StGZ' by Rsﬁl) = as «° Both Ls and Rs
are Borel isomorphisms end, in fact, (L )7 = Ly ena R )7 = Ry
The purpose in working with costars to define LS is that these give the
maximum amount of composability on the left, whilst when defining R

' s

stars give the maximum amount of composability on the right. Clearly

Ls and Rs are natural generalisations of left and right multiplication,
Tespectively, in a group G ..
With these definitions we propose:

L.2,4, Definition.

——————

Let G be a Borel groupoid over X . A system of left invarlant

{Borel) measures for G consists of a non trivial Borel measure m on G ,

a non trivial Borel measure M on X and non trivial Borel measures f&

x , for each xe X , satlsfylng :

G o
20 .
i) The function X —» R defined by x +—» ,«AX(E A cost

on cost

oX)
is -measurablg for each Borel set E of G, where r>0

~ denotes the non negative extended real line.
1i) m(E) = _)'p. (E A costyx)dp
iii) .}Az(Ls(Ex)) = /Az(sEx) M (E ) for each s e G(x,z) and
Borel set} Ex “in costG .

We refer.to Mackey [3] or Bartle [1] for the definition of Borél
easure etc. in fact, Bartle [1] serves as a general reference for the
measure theory of §2 Aand 83 of this chapter. |

' Observe that the conditions i) and 11) of the above definition
are analogous to those deflnlng a canonical system of measures as in
Rohlin [1] ; the integral in ii) being understood in the sense of
Lebesgue. The reason for their inclusion in the definition will become
apparent later on when deflning L (G) for a topologlcal groupoid.

. One defines a rlght invariant system in a similar way with the

necessary modifications. One is that each measure }Lx is defined on

X . .
%™, and the other is that 1ii) is replaced by 1ii)” iy i
’ : o z(RE) =
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4y :
sz(Exs ) = f&x(Ex) for each s € G(x,z) and Borel set E_ in stox .

s -, . AR {41 .
Since the inverse map is a. Borel isomorphism 'G° —# G and

- the diagram

Lg
Coster ——i CoSth
mv.} | l inv,
Qs
Sth —_— StG'-z_

is commutative, any left invariant system of measures induces a right
invariant system, and conversely. That is, there is & 1 -1 corres-
pondence between left invariant systems and right.invariant systems.
For thié reason we shall stﬁiy only left infariant systems except in one
or two inétances where right invariant ones are easier to handle. Thus,
unless otherwise stated, the term "invariant'system of measures"” means
left invariant system. Such a system will be denoted by'{m,fL,,Ax 1 X e X}».
Considering Definition he2.1, if condition i) is satisfied for
some meésure M on X , then we can define m by ii) and so ii) is
effectively redundent. m is of course determined by p- and the
M X € X, by ii). Moreover, pt can elways be chosen to satisfy i)
. as we shall see later in this section. However, the choice of M wiil
depend»té some extent on circuhstances, at least, as far as the appli-
cations we shall con31der are concerned. Conditions i) and ii) wiil
% play a crucial role 1n constructing L (G) later, and 111) is needed
to obtain associativity of the convolution product. ‘
Note that if G is a group, then 4L.2.1 collapses to the usual
definition of a (left) invariant Borel measure on G .
In terms of.integrals, condition iii) of Definition L.2.1
becomes: let f : costyx —s R be any M integrable function and,
for s e G(x,z), define S costh' —» R by fs(p) = f(s'1p) , then
~_.§ 1 df‘x = 5J. fs ATLZ -

Cost_x
.° Gr ’ ) Costerz

The two problems which immediatély present themselves are:

f§ is Mo integrable and

firstiy, consider the existence of such invariant systéms. : Secondly, to
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what extent are such systems unique? We shall attempt to settle these
questions and we remark that the first can be resolved for the most
.1nterest1ng groupo:uis. That is, such a system ex1sts for these groupoids.
However, the uniqueness is less satisfactory in that such systems are not
usually unique! We shall phrase the results in terms of measufe classes,
and it turns out that the non uniqueness can be measured in terms of the
measure classes of Borel measures on X , at least, for the groupoids of
main interest. Naturaily, we obtein successively sharper results by
imposing successively more conditions on G .. Ve sha.ll‘consider both
problems simultaneously, our first observation being:-
4e2.2. Proposition.

Suppose G is any Borel groupoid over X and that
f_m,p,/ux ;X E X}, and {m’, ,\A,: /u; ; X E X} are two systems of
invariant measures for G . If M is equivelent to /u_' end ,ux is
equivalent' to /k; for each x in X , then m is equivalent to ’m'.

Proof.

Suppose m(E) = 0 « Then, by ii) of 4.2.1, we have

f,u E n cost x)d)u.

x e X\NA where A is some M -null subset of X . By the hypothesis,

0 . Hence,  _(E n costh)'= 0 for all

H’(A) = 0 and also ,U~’x (E n costh) =0 forall xe X“A . Con-

: ’
sequently, m’(E) = J'“): E n costc_x)d/w =0 . Similarly, if

m/(E) = 0 we conclude that m(E) = 0 and we have proved the proposition.

We shall say that two systems {m,f.t,lux; X & x% and
{m/, /u/’ /“;c ;X € x} of invariant measures for G are equivalent if m
is equivalent to m/, J is equivalent to /U/ and Hx is equivalent
to p.’ s 'for each x€ X » Proposition 4.2.2 now asserts that
{m M s Moy ;X € X? is equ:walent to {m ,/-L ,/«Lx ;s X ¢ X} if, and only
if, pm is equlvalent to /u\- and Mo is equivalent to ,LL for each
x € X « Thus, the problem of classifying all such systems up to EQUiva_

lence amounts to classifying all systems {/4 } X € X} and measures H
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on X subject to i) and iii) of L.2.1.
' o v;[f G is any Bo_re.J_.'groppo’i'd over: 'X. and _,:{co_e,X s .then there
.'.is a natural Borel ac-t-ion of G{xb} on the left of Co.stho def‘iﬁed by
c;Jmp‘osition. That is, G{x,} x cost.x, - cost.x_  is defined by
G = af o+ This aétion is eff‘ect:ive in the sense that a.p = a.’. B
implies a = o’ (see Chapter 1), and the orbit Gix,} B is the set
G(vr(ﬁ),xo). + Thus, the orbit set COStGX"A{Xo} is precisely the set
X and the natural surjection costy X, —» CoétG x°/G{x°§ coincides
with the initial map = : Costh° —_— X . |

Apart from the purely measure-theoretic aspects i) ang ii).
of Definifion L...2.'1 , the existence of an invariant system of measures can
be reduced to the problem of finding a measure Hx on costh which is

preserved by the natural action of Gix} on Cost,x . This is the

content of :

4.2.3 - Proposition.

Let G Dbe a Borel groupoid over X and let Y be a section
of the transitive components of G . Then a system of Borel measures |
i /ixA HIP'S e.X} satisfying condition iii) of an invariant system exists
for G if, and only if, for each y € Y , there is a Borel measure H.y
on Cost,y preserved by the naturaliac{:ion of Giy} .

It clearly suffices to suppose G is transitive and Y = {x_3,
also the necessity .of the condition is clear.l

$uppose, conversely, that the.re is such a meé,sure‘ /,on on
costc_xo and let. T « G be a wide tree subgroupoid with 'txe T(x) X)),
Definé Borgl measure M on costh' , for each x e X, by |
» f*x(Ex) = ./uxo(Lt'x(Ex)) » for éach Borel set E  of cost.x . If
‘s e ¢(x,z) and E, is a Borel set in cost.x , then ,uz(sEx) =
#;(‘SL.CZ(SEX)) = /on(tz(sEx))‘ « But g= 7.’;1 so'l‘x" for some unique |
s, € 6{x,} . Consequently, we have ,/LLz (sEx) = ,L(xo(so-cx Ex) = /u"o('chx)'

on using the G{x,} invariance of Mx, « Thus, u (sEy) =,~Lx(Ex) and
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80 {Hx‘ x € x} satisfies iii) OF Le2e1. |
“We: cén prove rather more than is .sta'tedAin the-__con‘clusion,' for
irt 77 is aﬁ‘other wide tree subgroupoid of G with 'C; e TI (x,xo) ,
_ then T:C = u./rx for some unique @ e ¢{x} , thus we have

/ : / _ . v
/-on(-cx Ex) = /uxo (o T, Ex) = /u.xo(’cx Ex) . This means t?xat the system

{,“x ;X € X} is independent of the choice of T .

With the notation of the previous proposition we have

l§-o2ol+. COI‘OllaIxo

G admits an invariant system {m, Popry 3 X8 X% of measures
if, and only if, there is a Gjy} invariant measure fl-y on cost.y ,
for each ye Y .

Again the necessity is clear. So suppose conversely We have
G{y} invariant measures Hy on cost,y , for each ye Y . U;ing |
44243, we obtain a system {/'Lx 5 XE€E X} of Borel measures satisfying

iii) of L4.2.1. Now let s bean ind;i.screte’ measure on X with one

point support (or even countable support). Thus, p(E) =1 if p e E

end p(E)=0 if P ¢ E for each Borel set E of X, where P is a
[ disting\iished point of X . Then for any Borel subset E of G , the
function X +— M E n costG_x) is M -measurable. Thus, we can
define m on G by m(E) = j/«x(E n cost.x)d  to obtain the required
conclusion. H x,

Needless to say, indiscrete' measures [ on X are not vei’y
iﬁteresting. Nevertheless, since an indiscrete measure M- with one
point support is not equivalent to one with two point support on a standard
space X , for instance, it is now appa‘re_nt that systems of invariant
measures on- G are not unique even up to equivalence.'

Ourfnext task is to construct an ipv;riant measure on costh

from oné on G{x} and, 'ultimately, to obtain the general form of such

measures, with suitable restrictions on G . It will suffice to suppose
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G is transitive in what follows.

The General Construction of an Invariant System.

l{-o2o‘5c
Let G be a transitive Borel groupoid over X and let T < ¢
be a wide tree .subgroupoid with 'Cx € T(x:xo) as usual. TFor each
. . - -1
X € X define ¢x P G(xx ) —= 6fx3 by @ (a) T, « Then £_
is a Borel isomorphism which commutes with the natural left actions of
G{xo} on G(x,xo) and G{xo} o Thus, the left invariant Borel measures
on G{x;} are in 1'-1 correspondence with the left invariant Borel
measures on G(x,x;) . More precisely, if ¥ is a left invariant Borel
measure on G{xo} » then 1V, defined by vx_(E) = P( ;éx(E)) s is easily
seen to be a left invariant Borel measure on’ G(x,xo) + Conversely,
given a left invarié.nt Borel measure Vx on G(x,xc) s then v , defined
-1 . . :
by V(E) = ))x( 9‘;: (E)) , is a left invariant Borel measure on Gixo} .

- ‘
Ve denote these measures by ¥ = ¢_ () and V= gfx( V) respectively.

Next suppose that wx‘ is a G{xo} invariant measure for each x e X ,
and choose a Borel measure f~ on X such that the function X —»s R
defined by x =W, (E G(x,x_ )) 1is p -measurable for each Borel
subse"b E of cosi:,Gx o Such a measure /uu always exists, for an
indiscrete measure wifh countable support will do, and what is more it
will do even if G is not transitive; which means that we do not need
the hypothesis of transitivity in our next result (4.2.6). Now define

Borel measure p, on costex by

H'"CE) wa(E'n &(x, xo))cLIQ..

i

If a e'(}{xo} » then p.o(a..E) | ij(a..E N G(x’x;))df‘*
= ij(a(E n Glx,x,)))ap = wa(E n elx,x )dpe = m(B) .

Thus ., is’ G{x 0‘3 invariant. We now prove:

Lo2.6. Theorem.

Let G be any Borel groupoid over X . Theln G admits an

invariant system of measures.
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Proof. -
. As already remarked, we can suppose. G is transitive. 8o,
_with the é.bpve notation, define y on 'G«{xc,% by

VY (E) = the number of elements of E if E is finite.

+ 00 otherwise.

. . . . . _ -1
Then Y is a left invariant Borel measure on G{xc} + Let W, = ¢x (v)
be defined on G(x,xo) and let sk be defined on cost,x_ by
/LO(E) = wa(}g n (;(x,xo))d,/~ for a suitable choice of M+ Then u

is G{_XO} invariant and so we have the result by Corollary L.2.,. B3

Given G{xo} invariant measures co_ on G(x,xo) , for each
X e X, we have seen that we can choose a suitable measure M on X
and define a G{xo} invariant measure on co'stho by
K (E) = ij(E n G(x’xo))df" . Note that this construction does
depend on the choice of T in general, unlike that of L.2.3, see
Leie5. On the other hand, given any Borel measure M on X and
G{xo} invariant measures w,  on G(X:Xo) for each x e X, we can
always choose a function ¢ : X —# R such, that, for each Borel set E

of cost x , the functlon X +—» C (x)w E n G(x,x J)) is

G
M- -measurable. We then define L - on cos’chc> by

" (E) = Jc(x)wx(E n G(x,x_))apm « Then Mo is a G{xol, invariant
Borel measure. We will show that this is the general form of such
measures, with suitable restrictions on G and our invariant systems.

The measure ) defined in proving Theorem 4.2.6 (yermed a

discrete measure) is not, of course, o -finite. If we 1mpose the very

natural condition of o ~finiteness on each measure in an 1nvar1ant system,
it is not clear that Theorem L.2.6 then holds. Indeed, with the degree

- of general:.ty v.hlch holds in the hypothe31s of Theorem 4.2.6 the task of
classifying all mvarla.nt systems seems a hopeless one. We do manage,

however, t0'obta1n below a complete descrlpt;on of G{x} invariant -

measures on costhy | with suitable restrictions, and again when discussing

% ¢ 15 pon-negative of course,
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Haar systems i.n 8k

S\;lppose G is a transitive standz‘ard.Borel groui)oid over a
standard Borel space X and consider a system {m,,;. s My 3 XE X}
invariant measures for G which is finite in the sense that each measure
in the system is finite. We need this assumption to apply theorems of
Rohlin [1] . Since X is a standard space and = : costho —s X is
a Borel function, the decomposition of cost.x = into the‘ sets G(x, xo)
is a measﬁrable decomposition in the sense of Rohlin [1_] + Thus, by the
results of Rohlin [1] , there are finite Borel measures w_ on G(x, xo)
for all x e X\ N such that /J-xo(E) = JWX(E n G(x, xo))d,:s'. for all
Borel sets E of cost X, » where ,'1 denotes the quotient of ,u.x°
by # and I (N)=0 . The measures Wy &re, moreover, unique X mod O.
For the'sake of no'tation wé shall write Ex for E n G(x, xo) « Now

M= f*;; is G{xb} invariant and so, for B e G{xc} » we have
‘,M',,(ﬁ.E)'>= ;Lo(Ej . Thus, ij(B-Ex-)d;i = wa(Ex)dIDt . But
fwx(;a CEJAf = ng (E )4 , where wg ()= w,(B+E ), this

holding for all Borel sets E_ of &(x, x ) « Thus, the relation

“’x(Ex)dF‘ = J"”Ez (Ex)d,{i , for all Borel sets E of costho s

implies B(E ) = l3 E ) = x(Ex) for all x e X\N’ by uniqueness

of the measures W where N is a ﬁ -null set containing N . In
other words the measures w _ are G{:;o?g iﬁvariant for all x e X\N .
By considering a tree subgroupoid of G(N’) and a single point y € XN~ s
We can carry W to G{xo} invariant measures o, on : . xo)‘ o

7/ ' - ~
each x € N', and the relation ,uo(E) = J’wx(E )d/‘*A $till holds.

In fact, we use the technique of Le 2.5 to do thls. This means that we
can assume n = $ for our purposes. Let W, denote the measure thus

obtained on G{xci - it is left invariant. , If T is the wide tree sub-

groupoid of 4e2.5 and & 35 gefined by yfx(a) = a;: , then by
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Theorem B of Halmos (1], g60, there exists a constant C(x) such that

-1
B lw) =0 w, o sodf v =P (w,) s wehave w =cC(x)y_ .

We have now proved:

L.2.8. Theoremn.

Suppose G is a transitive standard Borel groupoid over a

standard space X and o is a finite G{XQ} invariant Borel measure
Xo * Then there exists a wide tree subgroupoid T of G, a

° . finite finite
function ¢ : X —» R, a/Borel measure . on X and a,left invariant

on Cos?

Borel measure ) on G{x,} such that:
i) The function x e c(x)w (E G(x,xo)) is p -measurable

for each Borel set E of Costh° .

ii) M (B) = 5 c(x)wx(E N G(X’XO))d,J. » where o denotes the

X
. measure 95;1 (V) determineddby T . §

In the circumstances we have just considered, any two G{xog
~invariant finite measures w . end 'Vx on G(x, xo) are related by

w_ = c(x)‘))x for some constant c(x) . Using this fact and the
argument of 4.2.2 we have immediately:

Le2.9. >Corollqu.

Assume the hypothesis of L.2.8, then the measure class of Mo

depends only on the measure class of (L  and the set {x e X ; ofx) = .0} @

L.2.10

Our:results, thus fér, enable us to construct in principle all
finite invariant systems for a sfandard Borel groupoid G over a standard
space X « Ve summarise the procedure as follows for a transitive groupoid,
the general case being an obvious modification of this procedure.

i) Wé first choose a finite left invariant Borel me;sure Yy on
some vertéx group G{xoi-~(if there is‘no‘such'measure on G{xo} , then
there are no.finite invariant-systems on G by 4e2.8) and a finite Borel

measure }Ll on X . Next chooée a wide tree subgroupoid T of G to
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obtain measures Ww_ 525;1 (v) on G(x, xo) as in 4.2.8, and, finally,
" - ‘choose a function -c 3 X ~— R §atisfyingx'
A) The function x +—» c(x)w (E n G(x, xo) is p -measurable

for each Borel set E of Costho .

Nowdefine ., on CostyX, by rLo(E) = .S C(X)cux(E A Glx, xo))d,L',
to obtain the most general form of G{xo} invarient measures on Costho .

ii) Next we construct the system {/“'x } X € X} as we did in L.e2.3.
We can use T again to do this, but the definition of P » X € X, does
not depend on T . To complete the construction, we now choose a finite
Borel measure fL2. on X satisfying

B) The function x h——r-f*k(E N Costh) is Moo, -measurable for

each Borel set E of G » .
We now have the system {In,,Lz,/{x 3 xe X } where
n(E) = J (B 0 Costgx)ap, -

X

This procedﬁre depends ostensibly on many choices, but we are
intefested in measure classes rather than measures. By Theorem B of
Halmos [1] §60, the construction does not depend on the choice of v
as far as measure classes are concerned. For the same reason, the
measure class of M, does not depend on the choice of the tree T .
Indeed, in many cases the value of fL, does not.depend on T » see §h;
in particular, see Leke5. The measure class of /10 does depend,
howéver, on the choice of the function ¢ , and we will now investigate
the effect of changing c¢ . First we note that the measuré class of gt
is actually independent of the choice of ¢ up to the set of non-zero
- values of ¢ .. That is,'if we change ¢, to c, where cz(x) 4 0 if,
.'ana oﬁly.if, c,(i) # 0 eand c, satisfies A), then the measure class of:
f, is unchanged. We show next that a greater éhange than this amounts

to changing the measuré M and‘leaving é' unaltered. To see this, -

we proceed as follows. Firstly, note that in the procedure u.2.10, we can
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alwéys start 't;y taking the measure V to be a normalised measure on
.G{x.o_} K It then follows that u) is a probability measure on G(x, xo)

. for each x & X . Now take E = Costox then v (cost ) = j cl(x)df“'.
X

is pr, -measurable and jxc,drg| exists and

and so we conclude thé.t‘ c,

- . -1
is non-zero if Mo is non trivial. Now define c¢,~ ¢ X —» R by
ol 1 . -
= 0 and o (x) =0 if ¢ (x) =0 . Then
c, (x) CTT)-C-) if ¢ (x) -—7(: .

, . 1 .
c-'1 is ., -measurable and the function X + c, (x) c, (x) W (E A G(x’xo))

is M, -measurable for each Borel set E . This means that we can replace c,
by a characteristic function XY , where Y A= -{x e X ; c'(x) % 0% and xy
is p -measurable, end this does not change the null sets of M . That
' .
/
is, Mo is equivalent to the measure gt = where

,U.(E)- JXw (EnG(x,X))dfk s where /.L(Y)a": 0. If we now

change ¢ to c_ , then by this last observatlon we need only consider
| 2

2
Costox by no(E) = j xzwx(E N G(x,xa))df;.| , then
X ,
n (E) = J X uu (B n G(x,x))dlu , for Borel sets E, where

c, = ?Cz where /u.'(z) s 0 . Consequently, if we now define n_ on

(IJL( )/ (\/)) My s an@ n _ is equivalent to

5 °I('x)wx(E N G(x’xo))dlu‘z .
X . ‘s . '
: Finally, condition B) is a condition on the choice of My

and so these remarks together with 4.2.10 lead us ultimately to:

Le2.11. Theoreme.

Let G be a standard Borel groupoid over a standard space X .
Then the number of inequivalent flnlte systems of 1nvar1ant measures is
not greater than the number of pairs | (.c [T ) [yl Y, where o,

and M, are f‘inj.te Borel measures on X . @

‘We shall now discuss two interesting examples of Borel groupoids

for which an invariant system of measures can be constructed in a very

natural way. To do this we need the following definition.
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Le2412. Definition.

Suppose G  is a transitive Borel groupoid ovér X . We say

G is Borel globally trivial if there is a dlstlngulshed p01nt x_eX

and a Borel function X : X —= G 'such that xx) e G(x, xo) for

each xe X ‘.

Conditions under which this is satisfied include those given in
the following result.

L.2.13. Proposition.

Let G be a transitive Borel groupoid over X for which G
and X are standard spéces. The following conditions on G are equivalent:
a) G is Borel globally trivial.
b) There is a point Xx &€ X and a Borel set E in G meeting each
of the sets G(x, xo) in precisely one point.
c) There is' a wide tree subgroupoid of G which is a Borel set in G .
Proof. To s‘how a) implies b).
_ Suppose. N X —» G is a Borel global trivialisation with
M) e 6(x, xo)‘ , for each X € X . Bybhele6b, X is a Borel isomorphism
of X onto E= XN (X) + E is a Borel set and E meets each set
, G(x', x_) in precisely one point. :
: -, To s‘hc-)w b) implies c).
| Suppose E satisfies b), then E is a standard subspace of G .

Define A: X —+ G by A(x)eE n G(x,xo) . Clearly X

- = 7lg
and so -1 1is a Borel function. Thus, by k1.6 again, X\ is a Borel
function since E is standard. Let T be the wide tree subgroupoid of
G defined by T(x,y) = {A(y)'1./\ (i)} andlet [':Xx X —» G be
defined by [ (y,x) = ,\(y)"1>\(x) « Then [' is an injective.Box"el
function whose range is T and so T ’'is a Borel subsetv §f G 7.

Flnally, we show ¢) implies a). |
. Supoose T is a wide tree subgroupoui of G which is a Borel
L o ef 61‘ G and let T ‘s T(x,y) « Define W : P —»_ Xx X by

w( ‘C ) = (xy) then w 1is a Borel isomorphism. - Choose any point
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xoex‘and define A : X —a G by A(x)-= T » then

o.

W ( N(x)) = (x ,xo) Cfor all x e.X .  VWhence, A is a Borel gloﬁal

trivialisation of G and the proof is complete.

Our first example is :

4.2.,1L ., Example.

Let G be a standard,globally trivigl )Borel groupoid over a
standard space X , and let X\ : X — G be a Borel global triviali-
sation of G with A (x) € G(x, xo) . Then the function
M:6 — X x X x G{xo} defined by [M(a) = (7(a),n7'(a) ,

N /(a.))a. )\(1;—(@))"1) is a Borel isomorphism whose restriction
M # Costgx —- X x Gfx,} , defined by T, (a) = (r(a), Ax)a Mr(a))™) |

is also a Borel isomorphism.

Let p, and M, be 0" -finite Borel measures on X and suppose
V is a left invariant o -finite Borel measure on G{x‘of «  The natural
action G{x 3 x (X x Gfx,} ) —= X x 6fx] , defined by
(@, (x,B)) = (x,a) , preserves the product AL, x on

. . N U .
X x G{xo} and, since Px is gqu1var1a.nt, My = r’x ( My xv ) is
preserved by the natural action of G{x % on Costh « An argument exactly
like thgt used to prove l"‘f2‘3 shows that the system {}Ax HED < e X} satisfies
the condition 1ii) of 4.2.1. TFinally, define m on G by
-1 ' L : .

me= | ( I“*\ ")‘*z % v} then by Fubini's theorem (see Bartle [1])
conditions i) and ii) of L.2.1 hold. Thus {m, Fir Py 3 X e x} is
a system of invariant measures for G . The main point to note here is
that the global triviality of G allows us to apply Fubini's theorem and
to then deduce the M, -measurability of X —a Py (E N Cost x) , for
any Borel set . E of G . This sta.tement holdlng for any o ..flnite
measure o

Suppose, conversely, that {m ’ ,.L /ux ; X € X} is any finite
invariant system of measures for G « Theorem 4.2 8 (applied to

X x G{x‘,} rather than Cost.x) shows that the measures /»L; “need not
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be products fea XV as constructed above. However, this theorem
‘does- show that- /.L.,x" is-equivalent to- such a measuré.  And it is now
apparent that in this case, 4.2.11 becomes. . "Suppose G admits one
finite _invariar{t system of measures, then the number of inequivalent
f‘lm.te invariant .systems is equal to the number of pairs (E/A_.J , c“z]) ,

where e and L, are finite Borel measures on X".
]

-

Le2.15.  Examole.

The next example wé shall consider is the groupoid E of ‘2.2.5.

Let G be a Borel group vand S a ;‘ight Borel G-space in which
the ex}aluation map S x G —» S is a Borel function, then, as already
rémarked, G=5 x G is a Borel »groupoid over 3 , see Maékey [1_] and [2] .
We shall consider right invariant systems for [ rather than left invariant
_ones, simply because Sta's =8 x G, forany s e S, and is easier to
-deai with than Cost s -

‘Suppose we have a o -finite Borei measure a4 on S and

- O ~finite left invériant Borel méasﬁre Y on G (note that we do not
ask that P be G-invariant). Let m be the product MXV  on T .
Now, for each‘ s eSS, wc? have a Borel isomorphism as t G —» StES |
defined by es (g) = (s, g) which carries Y to a Borel measure /J.s
on ‘Stys . Ve claim that the system {m,pt, p_ 5 s e S} isa rignt
invariant system fér T . Indéed, conditions i‘) and ii) follow
immediately by Fubini's theorem again. If a = (S', g) ¢ “é(x; z) , so
that x = s and 2 8.8 1J.hen Ra. : Stax — Staz' is defined by

G
mxxxxmmnxmmesxxm » then Ex =x X E for some Borel set E

Ra('(x, h)) = (z, gh). 1r E_ is a Borel set in Stwx tkEx

T4y - . =t —. -1 - '
of ¢ and so p, (R, E)= P, (z,g E) = V(gTE) = v (E) = M (E),
using left invariance of ¥ . Thus, we have established condition iii)
of 4.2.1 for {m,,x,-,;s‘;-s € S}- and with it our claim.
Conversely, suppose . { m,/.l.,./.l.s s S E S} is an inyaria.nt system

of measures for G . Then, for each s ¢ S , 6: carries Mg toa
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measure *Ds-on G. If x,yeS and ge G is such that x.g =y,
N _th'e‘ _invariap.c_e_‘pr?pe_r.ty of _the M implies thgt_ '

| | V(8- E) = V()
for any Borel set E of G . In pax;ticular, if ge E{xi we have
Y (g.E) = : Y (E) for any Borel set E of G . It does not follow
from these relations that the measures ) = are left invariant, unless
G acts trivially nor need Y, and Vy coincide. For consider the
following example. Let 5 =G = {e, a} be the. cyclic group of order 2
with the discrete topology and Borel structure and let G act on S by
right multiplication. Since any groupoid with the discrete topology is
a topological groupoid and, hence, a Borel gfoupoid, it follows that
E = {e , a} X {e ’ a?{ is a globally trivial’standard)Borel groupoid over
{e,a} « Define ',4, on S by #({6}) = 1v and f#({a?) =
define ,*é on Styge by pm((e,e)) =0, m((e,2)) =1 and define
Mg on Stya by fla((as a)) =0, /"a((a: e)) =1 . Finally, define

G
2o & by m(E) = 5 /“'s(E A st~s) d/u_ to obtain the system

&m, Pophg 5 5€ S} It is easily seen to be an invariant system.

However, the image <V of Mo OB ¢ (under ae) is clearly not an

e
invariant measure on G , neither is \)a and, moreover, v v v .
Since there are precisely three measure classes of (non tr1V1al)
Borel measures on S = {e ’ a’s and G is globally trivial, Theorem 4 +2.11
yields "there are exactly nine inequivalent systems of invariant measures
o .
on G ", see 4e2e1%4.
We remark that Example 4.2.15 shows that = and o’ need not

be (m,pL) measure preserving.

§§_. Covering Morphisms and Invariant Measures.

Suppose P : G — G is a cdvering morphism of Borel groupoids
(see below for the ‘definitions) and G admits a system of invariant
" measures.: One is led naturally to ask if P induces or lifta this system

to an 1nvar1ant system on G ? In this section ,we answer this questlon
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.. o
affirmatively with mild restriction on & and G , see Theorem Le3eie

4e344.  Definition.
Suppose ¢ and G are Borel groupoids with object sets X ana

X respectively. A morphism P : G — G is called a Borel morphism

~

" if both P and the induced map obP: X — X are Borel functions.

If P : E’ —» G is a morphism of groupoids, we shall deno{:e

by P the induced map obP on objects.

Now suppose P 1is a covering morphism of abstract groupoids,

-~

P:G —»G, anﬁ. form the fibred product G x>< X = {(a,,')“c) e G x 3‘(",
7'(a) = P(X) } . Since P is star bijective it is also costar bijective
in the sense that the induced map costx?P : cost E?c' — costcﬁ(i) is

a bijection for each X in X . Thus, there is a natural map

s

Sp ¢ G x X —» ¢ , see Section 6,Chapter 2, where SP
' SP(a. sy X) = EJ«E , where &'i’ is the unique element of G which covers o -

~t Zyn -
and ends at X . That is to say, P(a;@ =q and w (q,i,)= % . Te

is defined by

make the following:

Le342, Definition. -

-~ .
A Borel covering morphism P : G —* G is a Borel morphism

which is also an abstract covering morphism satisfying:

a) StEP : S’cai — StG-I;(i) is a Borel isomorphism for each

X in X.
b) The.‘na',tural mep Sp G x X —= @ is a Borel function,
where . G X x ;(’ has the subspace Borel structufe of G Xx 3{ .
Observe that costEP is a Borel isomo_rphism if, and only if,
St —(;;P .is one. _ | |
‘It might appear, at first sight, that the conditions déf‘ining a
Borel4 covering morphism are very res:t:rictivé ; this is not the case for

‘we have

Le3e3e Proposition.

~

Suppose G, G, X and X are all standard Borel spaces and let

~ _
P:G —» G be a Borel morphism which is also a covering morphism of
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abstract groupoids. Then P is a Borel covering morphism.
Proof.
"By hypothesis, StyP : Stg¥ —e St PE is a Borel function

“~s

and is also bijective for each X e X . Since stars are Borel subsets,
they are standard subspaces (see Loto7 and Le1e9) and so St gP isa

Borel »isomoArphism by Lele6. Thus P satisfies a) of L.3.2.

It is easily seenﬁthat Sp is a bijective fuqction and that -
s~ is defined by S; (&) =(P() ,7/(8)) . Since the composite of
SI;1 with each of the projections on G X 3(‘ is a Borel function, it
follows that s; is a Borel function and hence, by L1 o6 again, a Borel

isomorphism. Consequently SP is a Borel function and the proof is

complete.

Note that the proof of Le3e3 also shows that G xxi' is a

~t

standard subspace of G x X and is , therefore, a Borel subset of
G x X . Next we prove :

{t.j ol e Theoreme.

Let § and G be .. standard Borel groupoids with X and X
standard Borel spaces and let P T —> G be a Borel covering
morphis. Suppose {m’f* My 5 XE X} is an invariant system of
measures- on G and /“" is a Borel measure on X which is such that
-1;—1 (A)' is "1 -measurable for each -measurable set A‘ of X . Then'.
P induces an invariant system {‘?"’ Popg s Xe 3('} on G .

Suppose X € X , then S (cost X) = costG.l-3 X x {3’:% » and if

: , - .
P| denotes projection, we have P' Sp = costxP . Define My on

costa'ic' by the relation pMx (8) = Mpg (cost x P(2)) and define n 5
on cost PX x {X} by ‘7_~ &) = /‘*-—., (p E)) . Then S;'
preserves My and ‘L"‘ .

We wish to show thz;t the function y? : ;(‘ —_— R>° defined - '
by ;?5 ) = My E n cosiai‘) is pt -aneaspfabie for each'Borel set E

in ® o To do this, it suffices to consider a basic Borel set of the form
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Cex N aExV=Ex_ ¥
X B x = X Y
X x n X

- . ~ ~
dn 6 XX X , where E < G and Y < X are Borel sets, and to show
~) >/o .
ft -measurability of ¢ X —» R defined by
¢(x) = ‘L; ((Ex)< Y) n cost PX x {x}) . $ince
(E Xy Y) 5 (costGFf x{X}) =(E N °°StG—§£) X{f}: @ (%)
= /*'1553' E n costGFS‘E) and so ¢§ is JL -measurable by hypothesis and

the fact that {m,/u.., M 3 XE X} is an invariant system of measures for G.

Next, define Borel measure ) on G X X by

h(E)

JQ;C, E n (costG'lsf x{:‘c’ } ))d/'l'(fc') for each Borel set E of
. X |

G,xx X and , finally, let m be the image of h  under sP . We

claim that {Bx',/&',/ii s X € X} is an invariant system for § and we

have already dealt with conditions i) and ii) of 4e2.1. To geal

"with the third condition, let I & a(f.- Z) and suppose- E.. is a Borel -

set in costax » then Mo (SEX) /,(_~ (P(SB~)) = /"‘P~(P(")P(E~ ))
; /‘-L.l;i, (P(Ei )) by the invariance of the /My + But, by definition, we

have Mo~ (P(ESE )) = M3 (E;c') and so M~ (§E§)= My (Efc') - ' This

establishes the required property iii) and completes the proof of the

theorenm.

iet G be the groupoid of L.2.15 and let P:G — G be
defined by. P((s,g)) =8+ Then P is a Borel coverlng morphism of
Borel groupoids- Suppose S and G are standard spaces, M- is any
0 ~finite measure on S and Y 1is a left invariant measure on G .
Then an application of Theorem l,.‘;j ol gives exactly the system on & as

we obtained in Le2.15. (except that we worked with right invariant

systems there).

§£t- Haar Measures for Groupoids.

. This section is to some extent a céntinuation of§2 except that

we shall now consider topological groupoids; in :f’act’we shall consider

locelly compact Hausdorff topological groupoids. All the results of §2
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hold for such groupoids but, as we shall see, we can sharpen some resuits.
In partlcular, when we consider locally tr1v1a1 unlmodular group01ds there
o is a canonlcal 1nvaf1ant measure whose form is very satlsfactory. We first
make some remarks concerning our terminology.

If Y is any locally compact Hausdorff space, we shali observe
the terminology of Berberian [1] in respect of measure-theoretic concepts
relating to Y . That is té say, we consider the class & of all
compact G g's of Y and the o -ring S generated on Y by b
The elements of S are called the Baire sets of Y . We use the terms

"Baire function" and "Baire measure” with the meaning given to them by

Berberian [1] . Thus, in particular, a Baire measure M is a measure
on S which is such that M (C) < @@  forall C e L, . Ve shall
not have qccasion to consider the elements of the o -ring generated by .
the class of all compact sets of Y - the so called Borel sets of Y.
For onebthing, this latter concept does not usually coincide with the
usage of "Borel set" we have already introduced in 81 and 82. More
important, however, is the technical fact that the o -ring of Baire
_ Sets in the product topological space X x Y , of two locally compact
Hausdorff spaces, is pfecisely the cartesian product of the O -ring of
Baire sets in Xi with that of Y ; This fact need not hold for the
elements of the o -ring generated by the compact sets. ‘Since we will
need to use Fubini's theorem on several occasions, we consider only
Baire sets.

| Thus, by a "Haar measure" on a locally compact groupv G we
- mean a Baire measure on G with left (or right) invariance, rather than
a Borel measure.. This amounts to considering the Baire contraction‘of a
Haar measure and loses nothing.

Two facts which we will specifically need are &
i) Thé cartésian product of two Baire measures is a Baire measure..
ii) Every Baire measure is o -finite; - every Baire set is
Cf-bounded,:in fact every Baire set is contained in the union of a

seduence of compact G 8'3
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Oné.particular Baire measure we will need to use on several
‘_0Q¢ésiops,(in order to make nonevacuous.certain'ggneral.statements) is the

indiscrete measure .fL ‘with finite suppbrt; as defined in Le2..

Let G be any locally compact Hausdorff topological groupoid
over X . Since a closed (or open) subspace of a locally compact space
is itself locally compact, it follows by a) of Proposition 24143 that
G{x}- is a locally compact Hausdorff topological group, and also costh
is a locally compact space for each x €& X . It follows also, by a) of
Proposition 2.1 .4, that X is a locally compact Hausdorff space. Ir,
further, ¢ is locally trivial, then it follows from Proposition 26l 03
that the transitive components of G (and their object sets) are locally
compact. For any topological groupoid G and s e G (x,z), both R
ané Ls are homeomorphisms. Thus, if G dis locally compact Hausdorf:,
then L, gnd Rs are Baire measurability preserving. The appropriate
version of a system of invariant measures for a locally compact Hausdorff
topological groupoid is

LJd,d.  Definition.

Let G be a locally compact Hausdorff topological groupoid over

X . By a left Haar system of measures for G we mean a Baire measure m

on G ?-a Baire meaéure f:; on _X’ and a Baire measure ’+’x on costh
for each x € X satisfying :
1) The function X — R~ defined by X e p (B A cost,x)
is M -measurable for each Baire set E of ¢ . ;
ii) m() = S-fo(E n costh)d,L’.
X ‘ '
iii) sz(LsEx) = fix(Ex) for any s e G(x, z) and any Baire set E,

of cdsth .

L2,

a———————

Note that we include the condition that m be a Baire measure

in our definition, it does not follow from the other conditions as the

following example shows.

% M*O.,M$O,/«Lx *O.
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Example. Let the additive group of the real line, R , act trivially on the
right of the space [o 1] X , and let G = [0,1] X R . Let 0 be
-"_:ordlnary Lebesgue ‘measure on [O 1] ,.let A be ordlnany Lebesguo
" measure on R and, for each x € [b, 1] s let /ix be defined on
costgx =x x R by M_=f(x)A where £ :[0,1] —~ R is definea
by f(x) = %- if x £ 0, f(0)=1 . Theo, for any Baire set E of G ,
the function x f__,_ﬂ.x(E n costax) is P -measurable and we can
define m on & by m(E) = j/’“x(E N °°Sta'x)d/& « Now 4 isa
4 Lo, 13
Baire measure and so is ka for each xe X . But, 1f E= [k),1] [1),1]
then E is a compact Gi> and m(E) = -f f(X)er JP dx <¢ eo |
EO|3

Thus, m is not a Baire measure. H

Observe, however, that if - is an indiscrete measure with

finite' support, then m dis necessarily a Baire measure.

One defines "right invariant Haar system" in the obvious way
and, again, such systems are in 1 -1 correspondence with left invariaﬁt
ones. For this reason, we usually consider 5ust left invariant Haar
systems and, in future, the term Haa; system means left Haar system.
Indeed, all the results of §2 hold for a Haar system, but we shall now
sharpen some of them and consider the effect of the imposition of a
topology and, in pgrticular, the imposition of 1ocol trivialify.

One definition we need is :

L. .3, Definition.

A locally compact Hausdorff topological groupoid will be called
unimodular if each vertex group is unimodular. |

Of course, if G is'transitive, then G is unimodular if, and
onl& if, any one vertex group . is unimodular. .

Lolpodp General Construction of a Haar System."

Let G be a transitive locally compact Hausdorff topoiogical

-groupoid over X , let T be a wide tree subgroupoid and let T € T(x,x )
. . . . ©
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for each xe X . Let g_: G(x, Xo) —+ G{x,} be the homeomorphism
. defined by ~¢x(°'-) = ""C:_ as in .25 If P  is a left. invariant
Haar measure on G{xo} , then y_ , defined by 'Vx(E) = V( ¢;(E)) , is
& left invariant Baire measure on G(x, xo) . Suppose now that T’ jis

i . ] 7 /
another wide tree subgroupoid of G with 'Cx eT (x, x ) s then, with
[-]

the obvious meaning, we have

viE) = V(g () = Y@ ™)
= VET T T = w(E )T, )
=a(TLT]) Y, (@) .
That is ylE) = AT TY V) eeeen *

where A is the modular function of G{xo} » see Berberian [1] page 260.
Thus, we immediately obtain

L...5.  Proposition.

The extensions of V¥ to G(x, xo) » as above, are in 1 -1
correspondence with the distinct values of the modular function A  on

G{x°} . If G is unimodular, then the extepsion is unique. gg

These facts have been observed by Westerman f2] + He introduces
the notion of a. '"continuous system of measures" which consists of a family
of measures each defined on a set G(x, y) » and subject to a smoothness
" condition. His system is different from ours in several respects. |
Firstly, his invariance condition, not being defingd on costars or stars,
does not reflect the maximum amount of invariance. This means that his
system, when dealing with E =X % &, amounts to considering invariant
measures on the stability subgroups of the action, rather than those on
G , and seems unlikely to give useful :'L'nf'orma.tion about ?‘: . Secondly,
Westman does not include "Iu." or "m"_ in his definition and, hence,
cannot .a.tten'lpt to give L (¢) a convolution g;roc‘iuct structure as we do

in the next section. If we mimic his smoothness condition we would-
include the following in the definition of a Haar system : for each real

valued continuous function f on G , with compact support, the function
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X — R def"ihed. by X jf.d/“x is continuous and has compact
c?stG

sﬁpport. | This condition is not needed for any of the constructions we

carry out and, in any case, is satisfied for 'most of the examples we

consider. In particular, it is satisfied if G is locally trivial or

if ¢ is the groupoid E determined by a Ge-space ; at least, in the

case when the invariant system of measures is the one constructed in

~ 4e2.15. Finally, if one includes this smoothness condition, it is not

clear that a Haar system always exists.

By considering the extension of a Haar measure on a vertex group
to each set G(x, xo) and an indiscrete measure /J._ with countable
support, Theorem Le2.6. yields :

Loy 6. Theorem.

Let G be any locally compact Hausdorff topological groupoid .

over X . Then G admits a Haar system of measures. B

b7

If G dis transitive, T is a wide tree subgroupoid of G' s Y.
is a left Haar measure on Gix 3 , w_ is the image of » under ]

and ¢ : X — R is any function, then the measure Mo defined on

cost . x by /AO(E) = JXC(X) we E n G(X:Xo))d/u is G{xo}
invariant, where M is chosen to make the integrand measurable. By
haie2, Mo need not be a Baire measure however. On the other hang,

given on X we can choose ¢ : X —e R to make

x e p (B A G(x,x_)) pt-measurable and, again, obtain .,  as

above. It is our present aim to shqw that, with suitable restrictions,

every Gi{x c?{ invarian*_t Baire measure has this form.

lf-‘lﬁ'8¢
With the hypothesis of 4.l.4, suppose now that ))x is a left
invariant Baire measure on G(x, xo) « Then vy -, defined on G{xof by

Y = ¢x( vx) , is a left Haar measure. Thus, if Y is a'ﬁxed left

~
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Haar easure c.m‘ G{xo} R wx is any left invariant Baire measure on
6(x,x,) end v, = #,(w,) , then by the von-ieunann theoren there
exists a constant c(x, Tx) such that Vv, = C(X,'Cx) Y « Then, by *
of 4..1‘..24. we have

/ / -1
C(X,Tx) = A(Cxtx )C(x,fx) soe ¥R . |

14-.)-}-.20
 The next step is to apply disintegration theorems to a G{xc}

invariar;t measure on' cost X, e In the case of a Borel groupoid, we
needed standardness of the groupoid, essentially, and finiteness of the
measures to apply theorems of Rohlin. In this case we shall appeal to
theorems of Bourbaki. To do this, we do not need finiteness of the
measures but we do need conditions on G . It will be convenient to
assume rather more than we need; we shall assume that G is o ~bounded,
‘mefrizable and complete in addition to being locally m‘ﬁmpact?le With thése
restrictions, the concepts of Baire set and Borel set, as in §1, coincide;
indeed G is separable and is a standard Borel space.

Thus, with the aforementioned conditions on G , suppose st
is a .G{xo} invariant Baire measure on clostho « Let s be t}he
quotient r( /"Lo) of p, on X , which must nowbe a Baire measure, and
apply Théoreme 1 (dr 2) of §3, Bourbaki [1] to obtain a fémily Cux of

measures on G(x, xo) such that ,u.o(E) = j—wx(E, n alx, x| ))df* ’
: X
for each Baire set E of cost.x . (we can assume that W, exists

for each x € X by the argument of 1+o2o7)- Since /"Lo is G{xo}
invariant, 4.2.7 shows that each «J_ is G{x,} invariant. We need:

L oodirel10e Lemma

' Suppose G is a locally compact Hausdorff topological group,
and let M “be a left invariant measure defined on the Baire sets of G
with the property that /&A(U) < oo  for some .non empty open Baire

subset U of G . ~Then ,u(C) < eo for each compact GS C in G .

In particular , p is a Baire measure.

3 ‘Suppose also that T ¢ costho - X 1s a proper map,see pp 139.
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Proof.
The set _-{g.U‘; g € G} of ‘translates' of U. covers .G . . Thus,
_ if. c is.a.compact GS , there are f‘iniﬁely many elements

4]
of G such that cc U gi.U « Thus, by left

81! 523 sooy gn 199

' L4]
invariance of s  we have ,U~(C) <€ '21 luk(gi U) < nu(U) .
l=

Using this lemma, we show next that (M almost all of the w
of Lole9 are Baire measures. To do this, suppose U is any open Baire
set in G such that /-LO(U) < o0 + The formula

f'_‘o(U) = ij(U'n G(x’xo))df" means th,at WX(U N G(x,xo)) < O
X

for all x e w(U) except possibly on a pt-null subset N of #(U) .
Since U n G(x,x,) is an open non-empty Baire set for all x e w(U) ,
 the Lemma 4o4e10 yields that w is a Baire measure for all

xem(@) N N . (hlel0 is actually applied to the image ¥ = ¢x(w
x

)

of course). To obtain the conclusion, we note that the conditions we

ha.ve» placed on G mean that there is a sequence E1, E2’ E3, ".",..En? .
of compact. Gsts which covers cost.x o Thus, by the Baire Sandwich
Theorem (Berberian [1] s page 176) there exists open Baire sets vn and

compact G C, such that B < V < C for each n . Since pt,

's
S .
is a Baire measure, ’U"O(Cn) is finite for all n . This means.that
there are countably many open Baire sets Vn which cover céstho and
each of which has finite M, megsure. Ifr. Nn < 1r(Vn) denotes the

null set of the previous argument, then U Nn is - -null and, for all
. : n=1 ’

o0 . .
xex s U Nn , wx is a Baire measure. Thus, we may assume all the
n=1
wx are Baire measures and this observation means that we have proved the

anologue for Haar systems of L.2.8 for standard Borel groupoids:-

Leoiet1. Theorem.

Let G be a transitive locally compact topological groupoid
over X for which G is o -bounded, metrizable and complete, and suppose

also that T : costho———v- X is a proper map and, finally, suppose
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[J-o is a. G{ico'} invariant Baire measﬁre on cost %o * Then there
'exists va wide tree subgroupoid T of G, a function ¢ ; X —» R
'a; lm'e.é:s,ﬁr"e. f"‘ onl- X éﬁd é. left .H:clarbmeasui‘e )) on' G{iof such that
i) The function x p—»c(x)w, (B A 6(x,x)) is , -measurable
for each Baire set E of cost.x .

ii) /u'o(E).: j c(X)wx E n G(x,xo))d,uu » where wx = ?5;1())) .

X
Note that e must be a Baire measure. 2 |

Again because of *& of L o8, we have
4eia12. Corollary.
Assume the hypotheses of the previous theorem. Then the

measure class of Mo depends only on the measure class of /]~ and

the set {xeX;C(X)=O}' a

The procedure of 4+2.10 can now be applied to construct in

principle all Haar systems for groupoids satisfying the conditions of

Lr 9.

Suppose now that G is a compact metrizable topological -
groupoid over X . Then G 1s necessarily complete, separable and
O -bounded. Further, the remarks made before Theorem Le2411, concerning

the measure classes of . , apply equally well here and we obtain the

following theorem.

behei3, Theorem.

Suppose G is a compact metrizable topological groupoid over X .
Then the number of inequivalent Haar systems for G is not greater than the
number of pairs ( Cpds Cpm,1) , where M, and M, are Baire measures

on X. 18

Locally compact Hausdorff versions of the two examples of

Le2e1k and 4e2.15 can now be considered, and Haar systems constructed in

exactly the same way.
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Lohe1lie A construction for Locally Trivial Groupoids.

. We next consider _llocally trivial topological .groupoids and
Present a construction 6f a Gixo} -invariant measure on costh
(-4
which utilises the local triviality. Thus, let G denote a transitive,
locally trivial, locally compact, Hausdorff topological groupoid over X ’
and let {Ui’ Ao Xo} be a local trivialisation of G . For x e Ui ,

write ci(x) = c(x, xi(x)) as in Lok e8.  Here c(x, rx) =1 ang

-1
ot T) = oln 3 () = A (A ) T) =0y () + s, i xe v, 4 U,

** 6P ).,.8 shows that cj(x) = A ( %j(X) %i(X)'1) c;(x) . since X

DN and. A are continuous, it follows that Cj is measurable on

J
Ui n U,j if,' and only if, < is . Let. M be a Baire measure on X
for which ¢y is M -measurable on Ui - Let £ be a continuous
function with compact support on 1r.1 (Ui) N COSth o * Since the map
Ui‘ X G{xo} — 1,—’1 (Ui) n costox Qefined~by (x,a) +— o )‘i(x) y
is a homeomorphism, the function X — j fla %i(x))dv(a.) is

Gix.}
continuous, where ) denotes the fixed Haar measure of Lore8. Thus

Jd’*(x) -C_%;J J £(a»;(x)aV(a) exists and defines a Baire measure
i
X G{XO’S

/J-: on- 1r’1 (Ui) n costho which is G{xc} invariant by Lo4e7. Now,

if w, is the left invariant Baire measure defined on G(x, x ) by

i
wi(Ex) =y (Ex)‘i(x)—1) » then it is easy to see that |

) 5 £ (a xi(x))a.v(a.) = J f.(B)d wi(ﬁ) « If xe U n Uj , We can
G-{xo} o G(x:xo) |

also define left invariant Baire measure wJ. on G(x,x } in the same
[«]

‘vay and by lnlulg we have uj(Ex) =4 >‘J (x) )\i(x)-1 )4wi(ﬁx) for any

Baire se£ E  of G(x,xo) . Vhence we have :
[ty = ax@ ™) [ taxr v .
Gix,} | o Gkt

Hence, using the relation cvj(x) = A( )‘j(x) /\i(x)-‘t)%(x)., we have

3
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ACx &) 2 (x)7)

1 ‘ . v -
"mx _( f(a Aj(x))dv(a.) A(/\-(X)Ai(x) )c() j fla X\, (x))dv ()

B 2% T DO D 5

That is, _ﬁ J fla M, (x))dv(a =(':—i1(-)-c7_ J Plah, (x))d v(o,)
oy cixt

which implies that /u: = /u.: on U, n Uy« Under these

'conditions, see Chapter 3, §2 , Prop.1 of Bourbaki [27, there exists a

measure AL, on costg X yhose restriction to 7 (Ui) is /’Lj .

It is clearly G{x‘,?i; invariant. In fact, if E is a compact G—S of

cost,x = with E c (U, ) » then p(B) is given by

Ho (E) = -S '53(327 w (E n G(x,xo)d,u.(xr) .

Now let Vc U and HcC G{x,} be compact & S'S’ so that

V x H is a compact Gy . Let 95K U X G{xo} — costex — (UK )

be the usual homeomorphism defined by %, (x50) = a >\K(x) , and let E

be the Baire set of cost.X_ defined by E = ¢r< (V x H) .  Then

B =R clox) = A ) TH AG) . Bt w (5) -

2)T) = v () .

{ C—j;; V(H)ap = V() ch('ffd'*f
v

X

v (Ex'

Thus, /AO(E)

R v A ),

. ||

where .li.(c';1 ) denotes the average value of 21‘: on V . This shows that

the construction here somewhat resembles a product constructlon, but a
suitable correcting factor is needed. This is supplled by A(c ) over
compact G $'s V. In the next construction (14--14--15) we shall consider '

Unimodular groupoids ; in which circumstances Ck = 1 and so no

correcting‘factor willlbe needed. - Of course, if G is globally trivial,

CK = 1 on X and no correctlng factor is needed in thls case either.

This fact is used in prov:Lng ‘Theorem 4 o549

Next, we define ,ux by ,ui =1 A ()] (,,Lo) «  As we showed
_ ' M
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in A.2.3,. M ‘does not depend on the index i because of the G{xc}
'invarlance of /u. That is, 1f X € U n U s then

L, (x) ("Lo) =L Ay (x) 1(P~°) . Flnally, let /4. be another Baire

measure on X .and define m by m(E) '-"j ,u.x(E n COSth)dl‘*l .

The i -meésurability of the integrand here is a consequence of Fubini's
Theorem and we give details in the next conétruction. In fact, m is
1oc;11y.a product, see huke15, and we have m(¢ (W x E)) = m, (w).p (&)

. for Baire sets W and E where ¢, is defined as in L5, Tt
follows that {m, Mo M X E X} is a Haar system for G , the invariance
being a consequence of 4e.2.3. If E is tbe' Baire ‘set defined above and

M () p (B)

M) p v Eaey) . oo

W is a compact GS in X , then m( %i(w x E))

Loiet5. Haar Systems which are locally a product.

To close this section, we shall now apply a construction of
A. éoetz [1] to construct a Haar system which is locaily a product. In
order to carry out the éonstruction, we need to assume that ¢ ig unimodular
and tiae need for this will become a'ppa.renti as we proceed. It is b}ecau‘se oi_"
Theorem 3.2.5 essentially. A |
- Suppose Ppi SF —> B is a locally trivial fibre bundle with
group H in which the fibre F and base B are locally compact, so that

S is 1oca11y compact. Suppose jve is a Baire measure on B and

F
is a Baire measure on F , and denote by i x the product measure

on B X F.

Loil6. Definition.  (Goetz [17])

A Baire measure m on SF is called the product measure of gt

~and 4 in the fibre bundle sF if for every choice of atlas- {U }

and for each Baire set 2 < Uy x F the equallty m( 95 z)) = ( M=V )(2)
holds.
We shall paraphrase thls by saylng that "m is locally a product

of /L,L and Y "

We need:




118.

14-0!}..17. Theoreme

Let G be a ‘trans:.tn.ve locally tr1v1a1 topologlcal groupoid
O;rer ‘X and let x € X « Then G can be regarded as a locally trivial
fibre bundle with fibre cost Gx s projection o’ and group G{x
acting on the left of cos’ch in the natural way determined by the

composition in G .

Proof.
We shall give the essential details of this in proving the next
theorem.

We shall call a groupqid G. over X countably disconnected if

it has at most countably many transitive components.
We now prove:

Loo18. Theorem. '

Let G be a locally trivial Hmwdxﬂxx topologlca.l groupoid
which is countably disconnected. Then G admits a Haar system
{m',/.:.,,u.x s X € X} in which m and each M« 1is locally a product ir,
and only if, G is unimodular. ' -

: It suff‘ices to consider the transitive case, for Corollary 2 to
2403 shows that G is the topological and measure theoretic sum of its
transitive components.. ’
Sufficiency.

Let {Ui, Ai,x;} be a local trivialisation for G, then

-1 .
¢i . Ui Y G{x.} — T (Ui) N cos‘tho defined by ¢i(x,q) = q ,\i(x)
~ is a chart over Uy fo_r costGVx‘> » see Theoren 3.2.&. Here the

‘4 : - -1
transition function hji(x) = 7‘,3‘,:: ¢i,x corresponds to right multiplication:

by the element /\i(x) )j(x)'d, on-the fibre Gfx,} ..

Let M be a Baire meésure on X and let ¥ be a Haar'

measure on G{xo} « By the hypothesis of uhimédularity, » is both left
a ; . . . )
nd right invariant. Now form the product A x on X x Gix“a} .
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let x ¢ Uy 'and define & Baire measure w_ on G(x,x ) (which is the

.flbre of costh over x) by w (E ) = V(iél.l(Ex)) By Theorem 1
of Goetz ['1] s the def:m:.tlon of (,u is 1ndependent of' the choiic.e of

coordmate neighbourhood containing x . It is also independent of the
choice of atlas {Ui’ ¢i} and, hence, w_  is well defined. The proof

of these statements uses the right invariance of ) « The next step is

to define Baire measure M, on costh° by ,U.a(E) = wa(E n G(szo))d/u

Goetz shows that /u'o is locally a product. We shall now show that it is
Gfxo} invariant. To do this, let a e G{x .} and let E be a Baire set.

Since (G.E)x = a.Ex we have ,U-O(G-E) = f-bax(d-Ex)d/,g_' « But
X

wx(qu) = V(a.Ex My (x)—1) for any i ’such that x ¢ Ui « Thus
_ -1y = . :
wx(a'Ex) =y (Ex )‘i(x) ) wx(Ex) by the left invariance of v .

Hence /.Lo(aE) = /'LD(E) .
B Next, define ¥, : U, x costox, —p ' (Ui) by
%i(x’a) = }‘i(x)-1°’ « One easily shows that 2N is.a chart for ‘G';

‘ in fact, the transition function g, (x) = ¢ !
over U, eand, in fact, ng() }LJ,X %i,x

corresponds- to the operation of the element ,\j(x) /\i(x)-1 of 6{x.} .
Using the functions %i,x : costpx, —» cost,x , we obtain well
defined measures pb = y‘i,x(lu‘o) on costh for each x & X .
Clearly, each /u'xf is locally a product. Now choose another Baire

measure Iu'z on. X and define Baire measure m on G by

n(E) = J,LX(E N ‘costG:_c)d,u_z .

By Goetz. [1} , m is locally a product.

.To co4mplete the‘proof of the sufficiency, we need to show
fhat the system {,U-x 3 X€ X},_is invariant in the sense of iii) of the
definition. However, the definition of . %, . shows that the system
{/"‘x 3 xeX } coincides with t..hat obtained in pi‘oving the sufficiency in

L.2.3. Thus, the invariance follows and so does the sufficiency of the
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theorem. That is"{m’/*z’/*x ; X € X.} is a Haar system in which m
end p, xe X, ds locally a product:
Necessity.

Suppose '{m’/*z’/fx ; X € X}. is a Haar system in which m and

each M 5 is locally a product. If x € X , then ka’ is locally a

(-]

product of a measure L OR X and a measure ) on G{xo} . By
Theorem 1 of Goetz [1] and the bundle structure of cost,x, , Y isa
fight invariant Haar measure. But fM is invariant under the action

of Gix } from which it ea511y follows that v is also left invariant.

Thus, Gixoi. is unimodular and so, therefore, is G .

The proof of the theorem is now complete.

Notice that no restriction was placed on the choice of M and
M, in proving Theorem Lo e18 other than the condition of being Baire measures;
' The measurability of the two integrands occuring in the definition of ,;o
and m , respectively, is a consequence of a local form of Fubini's Theofem,
gée Goetz [1] . | Sincé‘any compact Hausdorff topological groupoid is
unimodular and countably discoﬁnected, we have:

1+ .L’- 1120 Corollam.

TLet G be a locally trivial, compact’metrizable)topological

groupoid over X o Then the ineguivalent Haar systems on G are in 1 =1

correspondence with the paifs ( Er&;], kaz]),Where- M and fh, are

Baire measures on X . B

To concludg our discussion of invariant measures for groupoids,
we remark that the constfuction in u.h718 is independent of the choice of
the coordinate systems, #nd can be regarded as a canonical representative
of each éf the equivalence classes of Haar systems.

The construction of L.k.ik shows that for locally trivial
groupoids m can always be chosen to be locally a product, L...18 shows

: : So - . .
that g can be/chosen if, and only if, G is unimodular.
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83. Convolution Algebras for Groupoids.

. Suppose G is a locally compact Hausdorff topologlcal group
and let .m denote Haar measure on G . ASSOClated with G are the
two function spaces Cc(G) = {f A 1; f is continuous angd
has compact support } , and L'(G) defined by L'(G) = {f 16— C
f isan m intégrable Baire function }_. Here € denotes the complex
field and, as usual, two elements of L (G) will be 1dent1f1ed if they
only dlffer on an m-null set.

It is an important fact in much of analysis that both Cc(G)
and L'(G) have natural multiplications or donvolutions which turn them
into comple# associative algebras. In particular, L'(G) is a Banach
algebra with the usual L; norm, and has been extensively analysed of
late in an effort to gain insight into the structure of ¢ .

The precise definition of convolution is as follows. It £
and g are both elements of CC(G) or of L'(G) we define their
convolution f * g by f * gla) = .[ f(B)g(B-1a)dm(p) « In the case

' G
of i'(G) , this formula only defines f * g m almost e#erywhere, see
Berberian [1] . It is the purpose of this section to attempt a generali-
sation of these facts for groupoids. We then give applications of the
results we obtain in Sections 6 and 7.

Thfoughbut this section G will denote a locally compact
Hausdorff topological groupoid over X and {m,'u, /u"x Cxex } .
denote a Haar system for G . We define two function spaces associated
with G . Firstly, we define |

cc(G) = {f :G —»C ;3 f is continuous and has compact

support }- and

' . .
-secondly L ) = {f G —» C ; f disan m ‘integrable Baire function}”

Ve shall always identify two m integrable Baire functions f and g if
the set of elements of G on which they differ is m-hull. - Both of these

spaces are, of course, complex vector spaces with the usual pointwise

operations of addition and scalar multiplication.
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For two functions f and g in C.(6) we define their

convolution f * g : G —» & by the formula

£re) - £@)e (™ a)ap, () (8) -
costdv'(m)

We observe here that the integrand is a continuous function with compact
support, and so £he integral above exists and f * g is a well defined v
function on G . Ve will also define a convolution product on L'(G)
but will need several preliminary lemmas. As with L'(G) » for G a'
group, the convolution f *-g of.two functions f and g in L'(g)
is only defined m-almost everywhere by the above formula; this causes
ng'real difficulty however.

As we have already noted, a concept of Invariant Measures has

been given by Westman [2] , which differs essentially from ours. Westman

. also defines a convolution for C_ (&) and this too differs essentially .

from ours. Indeed, Westman's definition does not permit a discussion

of L'(G) .
We shall denote by i the uniform norm on ¢ @) so
‘ . c .
that W£ll = sup [f£(x)| where f e Cc(G) . Cc(G) now becomes an "
xe G ‘ A
incomplete normed vector space with norm | || . Ve also define the I,
_ : |
( = )
norm on L ) vy hfll .j—l £l dm as usual. L'(G) now

G

becomes é Banacﬁ space with this norh. If G is g grqup,then L'(G)
is a Banach algebra, that is, the inequality (I * gll, < Nf”' l g H‘
holds on L'(G) « We shall see that this inequality can fail when G
is a groupoid. . |

- Our present task is to define f f g8 for functions ¢ #nd g

. 4
in L (¢) . To this end we shall prove a series of lemmas starting with:

§35.1. Lemma .

. Let £ :6 —=C bean m—integrable Baire function on G, thén:

a) £ [costh is a Baire function on costh for all xe X .
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. . . 1
b) | f ‘ costh is Mg integrable for g4 almost all xe X .
G X costh
Proof.
a) f Icosth denotes the restriction 9f £ to costyx and, since

costh has the relative topology of G and the relative Baire

structure, a) is immediate.

b) If f= XE is a characteristic function on G with m(E) < 0 ,

=%
then f lcosth E n costx « Thus, the relation

n(E) = j/,Lx(E N costh)d}L show§ that /lkx(E n costh) < oo

X . .
for ,U- almost all x o Thus, J f d/u'-x= ﬂx(E N costh) exists

costh )

'for Iu almosta.ll x . Also, '(fdm-m(E) J J fd/.,l d}"'

X cost x

G
'.fhﬁs, b) and ¢) are verified for the case of a characteristic function,
and the usual arguments extend b) and c¢) to the case of a simple functlon.
For the general case, Wwe first observe that f‘ is :Lntegrable if, |
and only if, |f| is integrable and so we can suppose f is real valued |
and non-negative. Define 95 P X — R~ 0 by yﬁ(x) = J’ f d_,; ,

' .costh *
thus 95 can take extended real values. Our task»is to shov} that ¢
is M- -integrable. To do thisv, we shall suppose otherwise and derive a
contradiction. i‘hﬁs; let A denote the set of x & X for which & (x)
is infinite valued, and suppose /'L(A) 7 05 we show that fhis forces

S, fdm  to be infinite: |
C’X .

K
. <" on ~. . ) .
Let f, = z aj z" be a sequence of ‘simple Baire functions

Eal J.

" such that

1) 0 fg £, forall n.
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1) £ 1' £ pointwise.
Such a sequence exists, see Berberlan f1] §16. Then .

[ taqam < (£, = ZaJm(E)€ j_‘fdm.

J=1
.G
Thus, for all n , Z a m(E ) < J fdm and so S fn dm is a
. J =1 G G
. , n
bounded increasing sequence. Define 95 :X —» R Z 0 by
0 ) .
56 (x) _ 5 fn df"'x )

cost.x
G
K, v

T Reey = X.n d " ah (&? ‘

hen ¢ (x) = j Z a En f*x aj /Ax Ej ncosth) .

J ':1
costh J=1 ‘j ‘ J .

. n n+
Since £, is monotone we have # (x) s # (x) < ¢(x) for all n ,

and ¢n is pM -measurable by 1) of the definition of a Haar system,
Kn
n I
Also J¢’n(x)d/“' ) fgé %3 '“x(Ej n costgx)ip =
N =

Kn
= a? J M (Et;l n costx)apm = 21 aJ m(E ) using b) ana c) as
J=1 X J=

verified for simple functions. Thus, the ¢ n form an increasing

Sequence of integrable functions.
 Next we show that lin 4" (x) =gk . Ir xe X\A,

$ (x) is a real number and $7(x) s@f(x) forall n, so by the Beppo

Levi Theorem, Bartle [1] , lim ;An(X) lim J’ £, d/Ax = 5 £apm
‘ costh costh

=fx). If xeh, then 7(x) —» oo 85 n —+o0  for ip

S6!1(x) is bounded, then the Monotone Convergence Theorem of Berberian 1],

page 94, shows that j £ d/Ax is finite which is g contradiction.

‘ costh :

Thus ¢ is a pM -measurable function on X and our supposition that

;&(A) > 0 means that j’x 95 (x) d,.,x is infinite. But this means that

Jx1>n(x) er cannot be'_bounded vhich means, .in turn, that

2 aj m(E ) is not bounded whlch contra.dlcts the boundedness of the
=1 S :

integrals of the fn .
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This proves b) ,and c) follows easily from this. [

For- vany.two;functions fand g defined on ‘G- and taking
 values in & , we define f v g mapping cost.x x cost,x into C
by £ v g (8,0) = £(@)g (87a) , for each x € X . We have:

1-4-05 2 Lemma .

Suppose f and g are Baire functions on G . Then f v g

is a Baire function on costh x cost,x for each xe X .

Proof.
f ¢ g is really the composite

' f
costx x. cost,x —+ costx X ¢ 28 .+ € where the first map is

. G .
(8,0) +—= (8,8 'a) , and is continuous, and fg(B,a) = £(8)e (a) -
Since it is a standard fact that fg is a Baire function, see Berberian [1] ,

884, we have the result. 8

Let f and g be complex functions on G so that, for each

x., we have fy g 3 costgx x costpx —s € . Nowfix a in the

: a .
second factor to obtain (f v &) @ costx —= &  defined by

(¢ v g)(B)=fv & (B,a) » and fix P in the first factor to obta.ixi.

¢
Phese functions are, of course, the sections of f V g . Fora

(v g)y : costx —= © defined by (9 6)la)=rv e ().

function h : ¢ —*> €  and en element a € costh , we define

. - -1 *
n* costyx —* C by n*(@) = h(p “) and for an element B ¢ cost, X

we define hp : costox — C by hﬁ(a) ='vh(B_1u,) « These two functions
will be called the translates of h . - We remark that our notation for
sections and translates will never cause confusion simply because one
cannot take sections of a function of one variable; on the other hand we

. will never be concerned with transla;:es of functions of tvwo‘va'riables.

In any case, it will Ee ¢lear from the context whAether we arev discussihg
translates dr sections. |

We now give explicit formulas for the sections of f V. g in:
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Le5.3.  Lemma.
Let £ and g be complex valued f.‘unct:u.ons on G then
Ca) (f g el =g, that is, (£ v &)%) = £(3)d ()
‘for all B e costh . '
b) (£ ¢ g)‘3 = f(B)gp , that is, (f ¢ 5)B(a) = f(B)gp(a)
for all a ¢ costh . '

Proof.

4

The proof is straightforward and will be omitted.

This lemma immediately gives :-

h-?-h- Lemra .

If £ and g are Baire functions on G , then every section

(f v )% and every section (f v g)‘3 is a Baire function. o

If £ and g are m-integrable Baire functions on ¢ » then
4e541 asserts that there is a set Y € X such that M) =0 ang

el and g ! are both My integrable Baire functions for

| costh cost Gx.

all xe X\Y . If, further, H is the full subgroupoid of ¢ ov‘er Y,
then by ii) of the definition of Haar system of measures we have |
m(H) = 0 . With this notation we obtain :

Let f and g be m integrable Baire functions'on G , then :

/ i) For each B e G H (f v 8)p AiS a /~‘~x integrable Baire
function on costyx , where x = 7'(3) .
ii) " For each x & X\Y the iterated integral .H £
- | : ( v g)d,ux d,;.x
exists. '

Proof.
i) Forany BeGNH (fv 8)‘3(3) f(ﬁ)gﬁ(a) for all a € cost x ,

by Lemma 4543, and so i) follov\{s from the fact that ¢ — ;3"1@
is a homeomorphism which preserves the system {,ux ; x € x} in the

sense of iii) of the definition of a Haar system.
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ii) This follows from i), Fubini's theorem and the invariance of

-~ .-.the system '{/ﬁx s x € x.},‘ M

The final result we need to enable us to define a convolution
on Ll(G) is @

LeHeba Theorem.

Suppose f and g are m-integrable Baire functions on ¢ s
. a . .
then, fér all xe X Y, (fv g) is a M, integrable Baire function
on costh for My almost all a & costh « Indeed, there is a Baire
set Ax in costpx , for all xe¢ ‘X \NY , and. & g integrable Bajire
function h such that :

i) f*x(Ax) =0 .

. a .
ii) B For all a € costh \ Ax s (fv g)" isa M, integrable
_Baire ti hia) = fvg) .
aire function and h(a) I ( veg) dpm
costh
Proof.

Let M X P be the product Baire measure on

G G

of Y, : and g
costG )

cost . x x cost,x for each xe X\Y . By Lemma L4e5.1 and the definition

are /u‘x integrable Baire functions on

costh

costh , and by 452 f ¢ g is a Baire function on costh x costh .

By 4e5.5, the iterated integral ff (fv g)(B,a)d,u.xd/ux exists and so
by Lemma L4e5e4 we can apply the converse of Fubini's theorem (see 41.2 of
Berberian [1] ) and we see that fve is pm  x My integrable. Thus,

by Fubini's theorem,
f(f v s)d(,ux X [\kx)

| ff(fv g)(B:Q)dedex

j{f(f'?vg)“(ﬁ)d,u‘x‘(p)} dp a)

and so by the definition of "iterated integi'al" the desired A and |
; - X

exist.
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Observe finally that the value of j-h d/u is the iterated

- -integral -ijvg d/“‘x d/.Lx o i

We are now in a position to define the convolution of two
m—integrabie Baire functions on G « Let f and g be two such
functions on G , taking complex values, and let Y < X ang Ax c costh
have their usual meanings. Then for a e costh N Ax we define the
convolution f * g of f and g by :-

rre@) = | Gvelip = | 2@kGrap .

costh ' cpsth
Our neﬁct task is to show that £ * g, defined as above, is

defined m almost everywhere on & . Recall that H is the full

subgroupoid of G over Y .

4e5e7 Proposition.
Let A= U A , where A c costex has its usual meaning,
xg XY

then H U A 1is contained in an m-null set of G .
-Let £ = xA be the characteristic function of A and suppose
¢ is a simple Baire function on G which is such that 0 € & < R

n .
We can write 95 =KZ 2 xB s where the sets BK are pairwise disjoint
= K

Baire sets with U B,e4A and 0<a <1, for k=1,2,,,,n.
= _

Now, by 451 we have

dm = d du = Z x
from J et [ L AT e

G
ﬁ a.KJ J‘ de/“‘xd/u'
P8

K=t cost ox
But BK' n costex € A . and so /ux(BK n cost.x) = 0 for all x ,

whence jqﬂ dm = 0 « Thus sup{jG‘;zS dm} =0 where the suPréQO is

taken over all simple Baire functions @ on G such that 0 < L £,
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From this it follows that there is an m-null set. N of G such that

_N 2A. Thus N v, H is an m—null set of G contalning Hu A and

. the proof is complete. 9]

?ropoeition Le5.7 implies that the formula £*gla) = ~( (£ ¢ g)ad}x
| costh
defines f * g m-almost everywhere and we can then define ¢ * g to be
zero on a null set of G toobtain £ * g : G — C ,
For any topological space X we can form the space c(x) of
continuous complex valued functlons on X , with a similar notion ex1st1ng
for.real instead of complex valued functions. If X 4s compact, we again

have the uniform norm on C(X) , denoted by (I | and defineg by

Hell = swp [£(x)|. of course, if X is compact, then C(X)=c¢ (x) .
xe X : ) ; - c

We shall need the following lemma (Lemma 1, page 45, Nachbin 1) .

Le5.8.  Lemma.

Let E be a compact space, F a topological space and
f:EX F —» R a function. Suppose that for each Yy €ETF the
function E —# R defined by x +—» f(x,y) is continuous. ‘ Lep p
R — C(E) be defined by £'G)x) = £(tyy) « Then £ is

continuous if, and only if, £f ¢ E X F —» R is continuous.

It is easy to modify this lemma to allow complex valued functions
instead of real valued ones. ‘
We next prove:

4 e549. Theorem.

Let G be a locally compact, locally trivial, Hausdorff
topological groupoid over X which is countably disconnected. Then
Cc(G) can be given the structure of a complex convolution algebra with
* gas its multiplication.

Proof.

With the stated hypotheses, we can assume G transitive and
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use L;.l;.ﬂ;.. t.o obtain the ﬁaar system {m,)u‘ > My ; X E X} constructed
there, and we can take ® = ;A-l :m that constructlon for s:l.mpllcn.ty.
>The proof‘ of the theorem w111 be' d1v1ded. 1nto three well defined steps.
The steps dealing with the vector space aspectys are well known and will
be omitted, there are three non trivial ones concerning the convolution
product.
i) We show f * g has compact support. So suppose f # 0 has
support ‘contained in A and that 8 ;’.—é O has support contained in B ,
with A and B compact. .Since G is Hausdorff, 9 is closed in
G x G (2.144) and so A x B n 9‘ is compact. Let A . B be the
image comp.(A x B n & ) of A x vB n & under the composition
ﬁnction- A+*B is compact. We show that support of £ * € € A.B .
To do this, we show that a € G\ A.B implies £ * g(a) = 0, wnich is
‘éciuiva;lént to showing that f * gla) % 0 implies ae A.B . So .
suppose £ * gla) # 0, then we have j / £(3)z (g™ “)d/“v'(o,) 4 0
~costr’(a)
| which means that f(ﬁ)g(ﬁ “) # 0 onsome set Ec G n costor (a.)
of positive f*qr/(d)-measure. So for BeE, B e’ support of £ g A
and 5-1@.5 support of g &« B« So a EV'B-B for Bea, when’cé
a € A.B and we conclude that support of f * g < A .,B .-
ii) ﬁext we prove that f * g is cont‘inuous.‘ :

Slnce contlnu:.ty is a local property, We can now suppose G
is globally trivial. Then the constructlon as given in L4044 reduces
to forming ~ px ph % Y on X x X x G{xof » as in example 4.,2.14,
and we are nvow asking for the coﬁtinuity of the function

h=f*g:Xx X x X} @ defineaby.
J' f(Z,y,B)g(x,z,ﬁ a) d(/u.xv )
Cx xefx} |
J [ f(z,y.s)g (x,z,ﬁ a)dv(ﬁ)dmz)
X Gfx,}

Slnce h is of compact supoort, we can suppose X ‘x X X G{x } is

1]

h(x,y,a)
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compact that is, that both X and G{xo} are compact and that both f;
~ and 1) are f‘inite. . Take E =X and F =X x Gfx} in Lemma 4.5.8

and con51der the functlon, for a choice (y,a.) eF , X —» € aefined

by x —» J £(z,y,8) g (x,2,8~ 'a-)d(/u-xv )+ Given & » 0,

| X x 6{x,} . |

the continuity of g ensures the existence of a neighbourhood U Cof x
such that |g(x,z,8” a,) g(x’,z,p” a.)l < €& whenever x’¢ U, . Basic
properties of the integral then yield that

X ‘J. £(z,y,8)eg bgz,ﬁ'da)ﬂ atalnd ) is a continuous function.

X xG6{x} | _

The next step is to show continuity of the function h/ t X x G{xo} — C(x)
defined by n’ (y;0)(x) = h(x,y,a) « Againlet € > 0 be arbitrary, then
by the continuity of the function f£(z,y,8)g (x, z,ﬁ'%,) , for x, y, a

fixed, we can find a nelghbourhood V about (y »@) such that whenever
b',a")evV |

| £(2,7,8) & (x,2,87'a) =£ (2,3",8)6 (x,2 57"

< €
), M)y (6fx )
for all xe X + This implies that
\ f j £(z,y,8) 8 (x: B C") f(z,y Ble (X,Z,B a ) day d,&

zeX B e G{x}

< ;L(X)v(cr{xg)f I dv'd,uue
G{x‘g

this being true for all x . Thus, we must have

sup ,h (y,a)(x) = h (y Q. )(X)’ < € and so we have
xe X . '

Il b (Y:G-) ~-h (y,',o.' I < e
and so h/ is continuous. . Hencve, by_Lemmé. 4458, h is continuous in
the two variables x and (y,a) . , Another épplication of this: lomma
then shows that h is contlnuous in x, y and a , and this observation
completes the proof of the contlnulty of h= f * & .

111) To complete the proof that C, (¢) is a complex algebra, we

show that associativity holds.
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Suppose f, g, h & C_(G) , it is required to prove that

: : (F*g)*h(a)=1* (g*h)a)
for all o e G ; the triple products being defined by i) and ii)
By definition of * we have :- '

Cre)en= [ @) s (M) a6

costy 7' (a)

- A ] e PPy (3D f a6 T adap, 1)

costG‘Tr’(G«) costym ‘(8)

Since B e costym ‘@) , ') = nr ‘(&) so that

(£ * g)*h(u.) = j j f(‘ﬁ)g(ﬁ ﬁ)h(ﬁ- G)d,‘*,”'(q)(‘é)d}%l( )(Q)

cost “(a) costm ()

Noting that the integrand here is a continuous complex function on ¢ % G
with compact support, and that /Lﬂ_/ (0) * /4”( () is a Baire measure on
cost 'rrl(c.) % cost.r'(a) , we can interch '
sty G ’ erchange the order of integration by
Fubini's theorem so that
= r -1 - :
(f*g)* h(a) = f £( %) J’ s(y B)n(p 1a)d/u7r/( YAt () === (1)
. Q -
costym (o) costhr'(u.) . 7 (a) 77
Next, we have by definition of *

£% (g*h) (a) = J f(u)g*h(x a)dpm () (%)
cost (G) '

£(%) J s(8)n (S 3-10')(1/"7' A)(s) ap,
COSt (0.) costGﬂ"(K-da,) (3 G) /u-n- (G)(X) .

Since 1r'({1a.) =.w(%) , we have
£* (g* a) = £ ( 1¢ 3 o’ l |
6*n) @)= [ f£(x) [  s(s)n(gy b (1P (0 —om (2)

costy (a.) costG‘rr( ¥ )

.Now consider j g(x B)h (B~ o.) ap ,( )(5) in (1)

costym (o)

and make the substitution 75-1B = & , so that 'p = ¥S and

p"1> = 5'1 75'1 and we note that % e cost 17(‘5) and

L

5 costG‘rr(zs) —_— cost (a,) preserves the appropriate measures.
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Thus, - J g({“ﬁ)h (5-13) d/"“'tr’(a,)(p) becomes
c.zosthr'.(g,) . N

g(s)h (&' 5"a) ap oy (¥6)

costG-rr'(o.) .

g(s)h( 2:1 3-1a.) M % )(S) by t.he‘
costhr(ﬁ) .

invariance properties of a Haar system. ' Consequently we have (1) = (2) ,

whence (£* g)*h=¢* (g*h) and so the proof is complete.

Le5e10.

We now turn our attention to L' (G) and its convolution product.
Again we shall sﬁppose G is locally trivial and we will also suppose that
¢ is itself a Baire set. Since any Baire set in G dis contained in a
countable union of sets of the form r x o’ )_1 (Ui X Uj) , Goetz (1) ,.
this last assumption means that G 1is countablj disconnected. Thus, we
will suppose G is ‘globally' trivial in the following details. We will
.suppose ¢ is equipped with the Haar syétem we used in proving L.5.9.
Thus, up to an m-null set of G , we have
£ * g(x,y,a) = j f £(z,y,8) & (x,2,87a)ay ®lap(z) .
X Gi{x}
The operation (f,g) ++ f ¥ g is easily seen to be bilinear.
" That is, we have
(£, +£)Vg=f VvV g+f,vg
fvi *+gl=fv g +fv g
t Pl ) 2°
and (cfvg)l=fyc.g= c(fg g) for any scalar
ce C . Precisely the same statement holds for the operation
(f,g) ;-—-» £ * g due to the linearity of the integral..
Let E=E x E , x H and F=F x F_x H_  be Baire
sets in X x X % G{x,} and suppose f = xﬁ and g = xF are
m-integrable.. Then a s_traight'forward c.alc‘ula‘tion shows that
£*gbuy,a) = ME 0 F)VE A )X L g
. . : v 2 12
where H;Hz = {h‘hz; hl € Hl , hze H2} « Thusg, £ * g' is an

m Y. LI E ﬁﬁﬁ Rerhold ﬁ“l I |
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m-integrable Baire function on G . So, by the bilinearily properties
above, if f and g are s:unple m—1ntegrab1e Ba.lre functions on G ,
.'then £ o* g is an m-lntegrable Baire function on G . Moreover, if

—x =x/ 4
£= "B xE xH S £ ExE'le and
} 2 i i 2
/

s X /
g"’xeFxH < 8 F)«F':&H’S()that
1 z 2 ] 2 2

4 ’
E < E, s E_e E / etce the calculation above shows that f*g < £ *g’ .
1 i 2 2
Now suppose f and g are any two m-integrable Baire functions
on G , and that f 4 £ and €n 1‘ g are sequences of simple m
integrable Baire functions converging pointwise to f and g respectively.

* i n increasing sequence of* m-integrable Baire functions and
Then fn g, %@ & g

e [ 5,00 @)apm

Jin (£, * 5 ) (@)
. costGir'(a.)

f(B)‘g (5-10;)6./,1.": =" gla) by the

costhr'(G)

Beppo Levi Theorem, Bartle [1] « Consequently, £ * g dis a Baire function

on G . Howmever, £ * g need not be m-integrable as the following

example shows 3

Exémole.
Suppose G has compact vertex groups and Y (cfx,3) =
For £, g, hel (X), define £x g:X x X x &fx,} —s € by

_ A |
(¢ x g) (x,y,0) = £(x)g (y) ,then £ x g and h x ge L (G) .+ TFor

such functions we have (f x g) * (h x f) (x,y,q.)

[ x ) (2,3,8) (0 x £) (2, Na)av Blap(z)

X x 6{x} .
= { 2)e G)n ()2 (2) apa)
X '

[ @ x8) xys0) £2) apta)
X A : _

(b % &) (x,3,a) j-f?(z) ap(a).
x .
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This means 1-;hat J (r x g) * (b x £)(x,y,a)a( X Y )
X x X x G{xo}
{ J £ <z>dp(z)} J (8 % &) Cersaa( o xp x> -
X x X % G{x_}
But, if },L is not atomic with countable support, we can always find

1 2 i 2
£ - O suchthet fe L (x) and f ¢ L (X), that is, de,.,l.:oO,

Thus, (f x g) * (h x £) is then not integrable.

This means that the operation * dis not closed in general and
so we have * : L (G) x L'(G) > M(G)f, where M(G) is the set of
complex valued Baire functions on G . We summarise the properties of
-(L'(G), *) as follows :

i) ') isa complex vector space.

partial
11) * s L (G) x L (G) > M(G) is a/blnary operation which satisfies :-

a) if £, g8, hel (G) and (F*g)*h and f* (g*h) are defined,
then (£*g)* h=1* (g*h)

b) ¢* (g+h)=f*g+f*h and (F+g)*h=f*h+g*h,
for all f, g, h e L'(G)_

c) (cf*g) =f *cg=c(f*g) for ce C .

These properties hold up to an m-null set of G , of course,
and so (Ll(G): *) has algebra-like properties and oﬁly fails to be an
alg.ebra in that * 1s not closed and, therefore, associativity does not
always hold.

The previous example shows t_hé following.

Suppose, in addition to the prevailing hypotheses, that G has compact
vertex groups and L‘(G)' is an algebra, then . is atomic with
countable support. 'Conversely, if M is atomic with finite support,
theﬁ it is easily seen that L'(¢) is an algebra. If M is atomic
v_iith countzably ihfinite support, then it may or mey not happen that
L'(G) is an algebra. This depends on the values of s+ .

Observe, also, that the identity function identifies L'(c)

T this notation means that  is defined on 2 subset of Uearx L)
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with a subspace of M(G) . One might call (L'(@), *) a hyperalpebra

by analogy wrth recent work of])unkl [1] ’ who considers hypergroups.
‘These are (locally compact) spaces H together with a map

At Hx H —»> Mp(H) satisfying certain group-llke ‘ax1oms, where

M (H) denotes the space of regular probability measures on H . Here,
also, the map x. +—= &, - the measure with mass 1 at x - identifies
H with a subspace of M ) .

To conclude this section, we give an example to show that the
inequality £ * gl < llf'” fl g“| can fail, even if £ * ge L (G) .
Example | _ .

: Let E=E X E,x Hl and F=f|x szHz be Baire sets
in G and suppose f = XE and g = XF are m-integrable, then
£* g (xy,a) = pE n E)vE A aH;j)x'F‘ X E xHH

‘Now suppose G{x } is compact and Y (Gix } ) =1 and take

‘H' =H, = G{xo} , then [l £ * glll = /u.(E|n Fz)/.L(FI))u_(Ez) .« If we
tgke E =F, with 0 < pE )= p(F,) < 1 and take F =E, such
that (P )= p(B)) =1, then [lf*gll = pm(E) . oOn the other
hand, 'Hfll I 3” = I"'(E )2 and so ”f” )l 6“ < |l * g” .

In fact, it is clear that there need not exist a pos:.tlve real number r
such that [l * g” s rliell, Il ell, holas for all f,g e L'(G),
even when f * ge L (G) . _Simi‘larly, if we téke the norm completion éf
Cc (@) with respect to the uniform nor%n, then C_ (¢) dis a Banach space

 pbut it too fails to be a Banach algebra in general. @

 §6. An Application to Differential Geometry.

Let X be & comnected differentisble n-manifold and let TX
be the tangent bundle of X . We can regard TX as a locally trivial
:fibre bundle over X with fibre R® and group GL(n) - t-he general
linear group of R® - acting faithfully on R® . Now form %(TX)
with its topology as in Chapter 3 ; the elements of %(TX) are lineé.r

jsomorphisms between tangent planes of TX . Then %(’l‘x) is locally
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compact Haﬁsdorff and locally trivial. It is in fact unimodular since
GL(n) is unlmodular, see Nachbin [1_] | Thus, we can take a Haar system
: { m,l’“ /’L ’ X & X} on %(Tx) Wthh is locally a product, see L.oiel18.
Let G = %(TX) and apply Theorem he5.9 with Fm,m,pm 5 xeX ]  to
conclude that C (%(TX)) is a complex convolution algebra. In this way
we can associate with X a complex convolutlon algebra C (%(Tx)) We
show next that C (C}(TX)) is an invariant for the appropriate diffeo-
morphisms on X .

Suppose | X and x/ are connected differentiable n-manifolds
and let £ : X —» X, be .a diffeomorphism of X onto X /. Then, see
Lang E1] , T indﬁées an isomorphism Tf : TX —o TX/ of tangent
bundles. It is a consequence of Theorem 3.4.6 and the form of a fibre
bundle isomorphism that Tf induces an isomorphism ¢ : %(TX) -—-»-%(TX,)
o;f' locally trivial topological groupoidé. Suppose now that
{m’/""f""x ;X € X’} and {m', ,u./, ,u;c ; X € X,} are Haar systems for
. (Z(TX) and %(TX') each of which is locally a product. We shall say
that f preserves these two systems if @
i) f i X —» X/ preserves s and '/uk_’
1) &

11i) ¢ < cost %(TX)X —» cost

/
%(TX) — %,(TX) preserves m and m’ .

%(TX

)f(x) preserves M _  and

7/
/“f(x) for al} x eX .

Note that i) and iii) imply ii).
If f preserves the systems {m,/u,/ux s xeX }
. . / )
{m’ ,/,L',Iu.; ; xe X } s then the function
. ’
o :0.(gm) — ¢ (g(rx"))

defined by e (6)(« ) = 8(¢ (o( )) is easily seen to be an isomorphism
. of convolution algebras. - Thus Cc(C}(TX)) is an 1nvar1ant for Haar
system preserving diffeomorphisms.

Remarks.

i) It would be interesting to interpret geometric features of X
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into algebraic facts about Cc( Cz(TX)) , and conversely. One is also

Jed to ask "to what extent does. C (G(TX)) characterise. X 2"

ii) This work also’ra.ises the interest?ng question of reducing the
structure group of TX to the smallest pbasible unimodular groué. This
is a variant of the problem of "G-structures", see Chern [1] .

iii) It would be of some interest to try and replace continuous

functions with compéct support by differentiable functions with compact

support.

g§7. A Remark Concerning G-spaces.

In this final section, wé discuss Briefly the groupoid [ s
aésociated with a transformation group, and the convolution algebra C(a) .

let G be a compact Hausdorff topological group acting con-
tinuously on the right of a compact Hausdorff space X , and form the
compa;ct Hausdorff topological groupoid e s See 2.2.,5. Let Yy be the'
unique probability Haer measure on G , let pt be a Baire measure on X
and construcf the Haar system {m,/u,/*x s X€ X% for G as in Le2.15.
This system is a right invariant Haar system and M 'is defined c;n |
styx = x X ¢ . Let C@)= {£: G — C ;f is continuous}. .
Since the Haar system we' are considering is right invariant, the con-

volution product on C(G) is defined as follows. For © , ¢ e c(@) , we

define © * P (a) = J e (65-1)95(5) dfi"(a)(ﬁ) so that
: Stavr(c,) : :

e ¢¢ : E --'»dlk‘ « In fact, if a = (x,h) and p = (x,g)' £ Stﬂé‘rr(a.) s
then O *F (b)) = [o(xgg h) @ (xe)dp,(6)

Sta‘x

{ e ge™n) g (x,8)a v(g) -
G : o

Let £= 6*@ . Then, for h fixed, the map X —= € defined by

' _ -1 . ‘ '
X b j e (x.g,8 h)¢(x,g)dv (g) is continuous.’ That is,
& | |
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x — f(x,h) is continuous. Let £ i 6 — C(X) be defined by

N .f'_l'(g)(x_) = £(x,g) » . An argument like that used to prove step i) . in
thé proof of Theorem L.5.9 shows that £’ is §ontinuous; Vhence, by
L.5.8, £ = © *# is continuous. Thus, * is a closed operation.
Again associativity of‘ * follows by the argument used in proving

4+5.9, it does not, of course, need 'é’ to be locally trivial and

depenas only on the invariance property of a Haar system. In consequénce

of these facts, we have proved that C(¢) is a complex convolution

algebra.

Remark concerning L.h.9.

In 4.4.9, we have assumed that 1T 3 costho —> X i5 a
proper map. Thus,'T;kK) is compact for each compact set X of X,
sée Bourbaki, General Topology, Chap. 1, § 10.3. This means that
T(p,) 1is 2 Baire measure, This condition is slghtly stronger than
that needed to abply the disintegration theorem (Théoréme 1 ) of
Bourbaki [1] s the condition in Bourbaki's theorem is that T be
- M- propre, see Bourbalki (1] . Also, the condition that G be a Baire
set, that is, G is cﬂ-bounded‘is more than is needed (fhis is need=
ed in 4,4.11),'but_we do neéd that G be metrizable, separable and
complete. |
' We can in fact remove the condition that'ﬂ’beAproper and
apply Théoréme 2, § 3, o 3, Bourbaki [1] . The argumehts of 4.4.9,
4.4.11 and 4.4.12 are otherwise unchanged except that we cannot
cdnclude‘that }L'(a pseudo-image of M by 77 ) is a Baire measure.
' Notice.that jo exists since.we afe'assuming G to be cr-bouﬁdeﬁ,see |

Proposition 1, § 3, ® 2, Bourbaki [ . ,. 
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Chapter 5. REPRESENTATIONS OF GROUPOIDS.

§0. Introduction.

In this chapter,we lay the foundations of a theory of representa-
tions of topolsgical groupoids. We shall formulate our later definitions
and theorems with locally compact Hausdorff topological groupoids in‘mind,
and the representations we shall consider are fibre spaces with Hilbert |
spéce fibres. of course, many.of our definitions and ;tatements will
generalise beyond these restrictions even to the extent of purely abstract
groupoids. »

Our results will enable us to obtain an analogue, for compact
locally trivial Lie grouppids, of the classical Peter-Weyl theory for
compact Lie groups.

The approach we adopt is to consider the concept of a groupoid
. Gv acfing on a fibre space S , but an alternative is to consider a rep-.
resentation as a homomorphism from G into the groupoid E;(S) of
" admissible maps, as indeed Westman does in Westman (1] . Unfortunately,
the lack of a natural topology for gxs)_, in the case of a non locally

trivial fibre bundle S', forces Westman to assume local triviality
throughguf and renders this.approach scmewhét restrictive. Our approach
has the advantage that none of the definitions we make need the condition
of local triviality and many of our theorems will be proved without.this
requirement. | |

Finally, we comment that we shail restrict attention to transitive
groupoids throughout'though, again, it is evident that this restriction is
not an essential one for our theory.

§1. Grdunoid Actions.

We begin this chapter with a brief discussion of the notion of
a groupoid actlng on a fibre space, this concept 13 a special case of
Ehresmann's more general notlon of a category acting on a fibre space,

see Ehresmann [2] » Throughout, G denotes a transitive groupoid over X .
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_ Let P:8S —» X be a surjective function and form the
fibred product ' _ e S e
GxXS=_{(a,s)erS;.p(s)=1r(q,)}
we make 1 '

5. Definition. (Ehresmann)

¢ is said to act on the left of S via P if there is a

functior.l 1 Gxy8 —= 5, called the evaluation map, such that
i) The diagram
G XX S — §
Rl P
/
G

i
--———-b-x

is commutative, where P' denotes the projection; thus,.
Pla.s) = 7' (a) .
ii) For 21l s e S and PB,a e G we have B.(a. s) = Ba.s and
I.5= 58 » for any identity I , whenever these are defined.
In the case G a topological groupoid and P ¢ § —» X a
continuous function (so that S is a fibfe space over X), we give
G %y S the subspace topology of G x S and we make :
5..2. Definition. ‘

¢ is said to act on the left of S in a strongly continubousv

manner via P if G acts on the left of S via P and we have :-
: for each fi i '
a) or each fixed s e 5 the function St.P(s) —e S, defined
by a > a5, is continuous.
b for each fixed a " pl -1
) @€ G the function #, P (r(a)) —= P (@),

defined by ¢“(8) = aes , is ccntinuous.

We say G acts continuousiy on the left of S if the
evaluation map is continuous (Ehresmann). .
' We.point ogt that the cohdition G e;c.:ts' in a continuou$ fashion
is actually stronger than the'.condition G acts in a étrongly continuous

fashion. We amplify this comment and explain our terminology 1n 5eke3e
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5e1e3. Remarks .

i).... . If @ e G(x,y) and G. acts.in a strongly continuous manner,
then it immediately follows that - @_ p~t (x) — P~ (y) is & homeo-
morphism with inverse (géa').‘l = By ' Since we are supposing G is
transitive, it now follows that allathe fibres of S are homeomorphic,
fhus, s is a fibre space with fibre.

ii) ’ The definition of groupoid action collapses to that of group
action in the case G has one object. In any case, there is an induced
action of each vertex group G{x} on the fibre P_1(x) . ~ This induced
action is continuous, respectively strongly continuous, if the action of
G . is continuous, respectively strongly continuous.

iii) One can define right actions of a groupoid G on S in the

obvious way and, as with group actions, there is a 1 -1 correspondence
‘between left and right actions. For this reason, wé shall only discuss:
left actions. | |
| We have the following groupoid analogues of effective and
transitive group actionﬁ.
Sel el Definition.
‘Let G’ ?e a groupoid acting on S via P . We say the action
is effective if the following holds:- '
for_all a,pPeG and sE $ whénever we have a.s = B.s , we must
have a = B - We say the action is transitive if given any pair
S, » sz € S , there exists a € G such that a .5 = S, *
Observe that if G is any groupoid over X ; there is a
natural action of G 6n_ X via the identity ma§ P : X —» X defined
by aex = ﬂ/(a) . This action is transitive if, and oﬁly if, G is a“.
transitive groupoid. ' '
~ Suppose G is.ény tranﬁitive groupoiavdver X acting on the
left of S via P. let x e X and let T < G bé a wide tfee sub-

groupoid of G WeAghow next that the action of G on S cén be
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recovered fx.'om the induced action of T on § and the induced action‘ of
G{_xo} on P—1(x°) :-' T?x:'gs result parjg}lels i.2.f6'. ) |

L'ét' a € ¢ and let s € p] (x) , where x ='1T(CL) . If T
denotes the unique element of T(xo,x) , then a = Ty a T ;1 for some
unique element a_ of G{x,} , where y = r'(a) . Consequentlj,
Qes = (ty Got;1 )es = _Cy.“°° ("C: es) = 'va- (a(o. (t; «s)) using
i) of 5.4.1. Thus, knowing the effect of 2, a, and T we know
the effect of a and so the action of G is determined by those of T
and G{x;} N | |

.It follows immediately fhat we have
5146, Pronositi on. |

Suppose G 1is a transitive groupoid over X actihg on S via
PV . Then. G acts effectively v(tra.nsitively) if, and only if, the induced

action of some one vertex group is effective (t‘ransitive)._ H

Moreover, with the notation of 5.1.5 and writing
-c = ty -C;‘ € T(X,y) s We have the diagram

xy -1 -l
GIx} ® P(x) —— P(X)

exyﬁl : x ¢
Giv} x P —> pey)

bwhe'bre‘ 6 (a) = rxyo‘ Tyx and @ (s) = Txy_'s . If

(a,s) e 6{x} % P~ (x) , then Fla.s)= 'ny. (@es) « On the other
hand, ©f{a). p(s) = r'xy a »ryx'. (-cxy', s) = 'txy a.s = -ny' (@es) o
Thus, the above bqiagram is commutativ;é and rep’resén’cs an equival‘ence of
group actions. It follows from this that we have : |

2;1_:1.‘ Prop_osition. o | | |

SN iet G be a transitive groupoié act'ing on th; left of S via P .
| Then the induced action of each vertex g.roup is effective (transitive) if,
and only if, the induced ‘action' of any one \iérfex group is effective

(transitive).
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It will be convenient to record two definitions.

Flrstly :

5,1 8.  Definition.

) , ,
Let (S, P, X) and (S, P., X) be fibre spaces. A map
/ 'Y L 3 . (3 - . :
© : 8§ —» S is an isomorphism if © 1is a homeomorphism and p’e =P .
And secondly : -

51 90 Definition.

An action of the groupoid G on the left of S is equivalent
(or isomorphic) to an action of G on the left of S’ if there exists a
fibre space isomorphism 6 : 8 —» S/ and a groupoid isomorphism
' : G —» G such that the diagram |

G Xy S —_— S
I”xel l 2]
(5’3<S' = g

‘is commutative.

" 544410, A General Construction.

We have seen that an ac;tion of a groupoid G on a space S
induces an action of each vertex group on the appropriate fibre.‘ It is
c;ur' inténtion to show, conversély, that, ignoring topological considerations
for the present, an action of G{xo} extends to an actioﬁ of G and that

this extension is unique up to equivalence.

Suppose G is a transitive groupoid over X and x e x‘ .

°
Suppose, also, that we ‘am given an acltion 6{x,} x F'—w F of 6{x,}
on the left of a space F ; ‘we have a natural action
‘Stho X ‘G{x,o} .__.’__... Stc_xo » a5 usual. Now form '
(stgx, x F) x 6{x,} —>= Stgx,x F defined by (8,f).a = (Ba,al £)

let S = (St x x F)/G and let (8, f] ~denote the element
{x,

8,£).Gfx,} of 5. Define P:S—= X by P((g,f])=n'(8) ;
then P : S —» X is a fibre space. We shall define an action of G .

on S via P . Here GXxS= i(asrﬁ:f] ) ;v'(@&=vr(a.)}
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define - :Gxy S —= 5 by «.Cg,f] =[ap,f] . Suppose

[p f'] [p ,f ] , then there exlsts ¥ € Gix, } such that

(p L) = (B f) ‘6 ' ([3‘6 ¥ f) | Hence, g’ pzs and £ '3".11" .
Consequently, ap = qf¥ and so (ap ,f ) = (@B, )« %, whence

{qﬁ s f] = [a.@’,f’] . * This means that a..[B , f'] = q .[ﬁ’,f’] and so
n_ v 33 well def‘ihed. We show nextl that "." 4is an action. Consider
Plo.[B>f]) » since a .[ﬁi, f'J = [aﬁ , f] » we have P(a .[b , £]) = 7’ (aB)
= 1r,(a.) and so i) of 5e1e1 holdg. For ii), suppose we form a .[p, f]
(to do this, we need 7’(@) = w(a)) and then form &.(a.[p,f)) (to
4o this, we need 7 (ap) =w(8)). Now S.@.[p,f])= 8.[ap, ]

[5‘55 ,£] .+ On the other hand, $a is defined and #(Sa) = -fr(a,)

= anr’(ﬁ) and so ba .[_—B R f] is defined and equals [§ ap , f] « Thus,
$e(a.[psf])= Ba [B,f] whenever defined. It is easily seen
that I.[p,f]= [B,f] if I= L) ond so 1i) of 5.1 holds

and we do indeed have an action of G on S . This extends the given

‘action of Gix,} 'to one of G (see 5.4.12).

We now demonstrate the uniqueness part of our claim.  Suppose

‘G is a transitive groupo:ul over X and G acts on the fibre space

q ¢ E > X . Let x e X, teke F= a (x ) » so that Gix 3} acts
on F in the induced manner, and form § = (Sth° P F)/G{xo} as

above. Now define the extended action of &G on S via P : 8§ —e X ..

'We will show that the actions of G on E and S are equivalent. To

do this, we define © : S —» E by e([{B,f]l )=B.f . Suppose

/ ’ i .
_ fB , f] = fﬁ T ] , then there exists ¥ ¢ G{xo} auch that

(5':f,)=(‘3’f) « Hence, ﬁf.f{=ﬁ‘6.x f =Bo,f and so
o ( (B, f] Yy=6( Cp’ ,f 1) and 6 is well deflned. Moreover,

a(p . f)-’rr(ﬁ), since G acts on E.via q , and so B feq1("f (5)):

, that is, © P~ (x) — q (x) or, in other words, qe =P . Suppose

G(fﬁ,f])= e(rﬁ ’f .]) » then B.f = ﬁ .f and so ﬁ,-1ﬁ.f = fl.
Hence, (B, f) - e”'g’ )=, ¢ “p.r) = (B',f') which implies that

‘ o v v
[p’f] =_[;3 ,f ] , and so @ is injective. Let. e € q'1 (x) be
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-1

p

Then. . [p.,-f]. e S and. e.([p ,f'] )=B.f =_B.-B-1e.=_e; « Consequently,

any element of E . ©Pick pe G(xo,x) and define f € € q"1 (x )=7F .

) [~

© is bijective and is (algebraically) an isomorphism of fibre spaces.
Finally, we show © is an equivalence of actions. Take [

to be the identity in Definition 5.1.9 and consider
G xS —= S

Ixel L e

Gx;(E —» E

¢ s= [B,f] » then ©fa.s)= ©(a.[prf])=ap.f . On the
other hand, I(a). 8(s) =a. (B+.f)=aB.f .« Thus, the diagram
commutes and this establishes our claim. g

Observe that by setting F = G{x& ~ (with left multiplication),
"we obtain a natural action of G on stho s via 1r/ s which is defined-

/
by composition. ‘

' "§2. _I_rgrariant Sets.

In this section, we investigate the nature of subspaces o.f a .
fibre space which are invariant under a groupoid action. This imfes‘tigatibn

is in preparation for the study of the irreducible representétions of G .

5¢241 Definition.
Suppose G acts on the space S via P : 5 —= X . We call

a subset s’c s G-invariant or G-stable if a.s’ € s/ forall s e 8§
and o & G for which a.s’ is defined. | |
Since we are supposing G to be transitive, it is immediate

that P( S') = X for any Ge-invariant subset. ;S/ of 8. It is also
:immediéte that S N P (x) is G{x§ -invariant for each x e X , this
remark being true whether or not G is transitive.

' Su’ppo»se G acts on the left.of- S via P:S —» X and bsl
is G-invariant. Let x € X, let Tc G bea widé tfee‘ subgroupoid

of G and let TW denote the unique element of T()F,y) . If S;

o
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: ’ - . ‘ . :
denotes S n P 1(xa) , then 5 is G{x ] -invariant and we can form
: o

/ / /8
the set s” =..L) T -x:'sx . . We claim that S =8 and indeed it is
T xeX Too  Te . L
,, / K] ’ I3 ] L]
obvious that S & S since S is G invariant. Now suppose
_ ’ -1 _ / N v
ses n P'(x),then Txxo.seSxo and so T'xox°(rxxo's)_ses .

’ ” ‘
Consequently, S = s“ and we see that the G-invariant subsets S/ of S

are determined by the G{x‘:} invariant subsets of P-‘l (xo) , for any

Now suppose G is a topological groupoid and P ¢ 8§ —+ X
is a fibre space with G acting on S via P . Suppose, also, that
S, c S is a Ge-invariant subset of S « Since we have
G x5 s) n (G x Sl) =G Xy s’ , the induced action + : G Xy s’ —e 87
ot G on .S is the restriction of the action of G on S . Thus,
the action'of G on S, is continuous, respectively strongly continuous,
“{f that of G on 8 is continuous, respectively strongly continuouse.

This analysis exposes the set theoretic nature of a G-invariant

'set S/C S in terms of the subsets which are invariant under the induced

action of any one vertex group.

B3. Actions of locally trivial Groupoids.

We shall now turn to the consideration of actions of locally
trivial topological groupoids on a fibre space S .
5e3ele ,

Let G be a transitive locally trivial topological groupoid
over X and let {Ui, Ai’ X 3 ie I} be a local trivialisation for
G based at X - Suppose G acts in a strongly contippous manner on
the left of the fibre space P : § — X and let S = p-! (=) -
Next define-

| cu A
¢j Uy x5, —= P (Uj)_
by

75 _ -1

jxos) = ax) .S
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Then - 553 is a bijection for each j e I but need be neither continuous
nor. opene. . . However, the 1nduced map

¢j,x 15— P (x)
defined by gﬁj,'x(s) = ¢j(x,s) is a homeomorphism, and, if
X e Ui N ﬁ,j , the homeomorphism

gji(x): ;25:],;1. ¢i,x : 8 —= S_
coincides with thfe action of the element Aj(x) >~i(x)"l of G{xc} .
The continuity of the functions A, and of the operations in G imply
that the assignment | v |

'Bji : Uin Uj —_— G{x°}. "
of x to gyx)= A 5(x) >\-(X)'1 , is continuous. In fact, the system
{33 } is exactly the system of transition functions of 3e1.2.
Now suppose S c S is a G{x -invariant subspace of So

so‘that :

/ ’
gji(x) hd So - so .
: -1 ! ’
That is, Bixt Pix (8) =5,

and so we have the relation
’
¢J. X( o) ¢j,x(so)
for all i, J such that xeU; n Uj

If we now form the set

= U ¢, )= U atx
xex =B xeX i()
iel iel

then S 1is a G-invariant subset of S . To see this, let ace G(x,y)
and s € s’ n P (x) and choose 1,j & I such that xe U; and ye Uj,
i

_ | : _ -
~ then o a = A, (y) k,i(x) for some a_ € G{xolx

and also s = ki(x)q. s, for some s €8 /
. . [+] o
- n
AJ(V) c'o)\i(x) . )Ni(x) 1. 8
_ -1 : '
= )\j(y‘) O.(anoo So)

So K XE:

. . / _
which is an element of‘ S  since A, es € So « The argument of §2 shows,
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o , P
further, that every invariant set S arises in this fashion. Thus,

we have proved HE

§.§. . Prop_osﬁ:lon.
. } /
With the notation of 5.3.1, a subset S < S is Ge-invariant

if, and only if,
s = U & 6arP k). m

" We record the following comments :-
5e343. Remarks.
i) If G acts continuously on S , then the functions ¢i are
homeomorphisms and so in this case S is a locally trivial fibre bundle
with fibre So , group G{x°} and transition functions {gji} . Note
that the transition functions are entirely determined by G .
11) . The significance of the relation (*) in 5341 ana Proposition
5.3.2 is that we obtain S/ as follows. To construct S/ n P"1 (U.j) ,‘

/ -
v keep the index § fizedand forn U gy (5" n P7(x)), ena
. xeU,
J

/ 4 .
similarly, to construct S n p (U ) we keep the index i fixed and

form U 55 (S n P~ (x )) « The point of (*) is that over

U. n Uj these constructions are compatible, that is
i

U #5,6 npleN= U # 6»n?r'&)
xe Uy nU : xo)) .erin Uj ygl:x SRR (xo)) )

From this fact and Remark i) it follows that if G acts continuously
on S , then S is a locally trivial sub~bundle of S .
iii) Let (S, P, X) be any locally trivial fibre bundle with fibre
F and group H . Then there is a natural continuous action of %(S)
on S + In fact we def'ine %(S) X'X S __-_._ g

by S.s= ?(s. ..
.That this deflnes an action of %(S) on S via P is obvious, and e

need only prove the continulty of this f'\mctlon.

Let {Ui, ¢1§ be an atlas for § » then it suffibes to work
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: . . ;.1 -4
loca;ly and prove the continuity of %(S)(Ui,Uj) X P Ui) —s P (Uj) .

Let h‘ij denote the usual homeomorphism

then the di 3 p
on tho dlagren @(s)(ul,uj)xxP(ul) e Pluy)

-1 :
W ix? T T &;
(UpxUxH) X (UyxF) —» UjxF
represents an equivalence of actions where the "bottom" map is (.)
defined by
((rsysh) s (6:£)) —= (7, het)
and is clearly continuous sincevthe two functions
((x5y5h) s (x,£)) +—= (x,y,h) +» y
and  ((xy5h)s (5F)) +—= (B, £) re h.f
are both continuous. The commutativity of the diagram above then gives
us the required cqnfinuity of the action.
This proves
" 5e3ele Proposition.
Let S’c S be a subset of S, let Y = P(s’) and let
2= p(x) . Then 8’ isa locally trivial sub bundle of § if, and

-,
only if, 5 1is %(Z) invariant. o

In the light of these results we make the following observaticn.
5.345. Comment .

It is iﬁteresting to observe that we can view fibre bundles as
fibre spaces P ¢ 8 —% X together'with a continuous action of a
topologlcal group01d G on S8 via P. If G is.locally tri&ial, it
then follows that S is locally tr1v1a1. ’Proposition 5344 shows that
the sub bundles-of S are precisely the 'G-invariant subsets éf S .
This viewpqint coﬁld be taken in an attempt to cast the whole theory of

fibre bundles in terms of fibre spaces and groupoid actionse.
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| Suppose G is a compact Hausdorff locally trivial topological
‘8f5U§°id'dVéf X and { m;Ff;féxi; X € X}f is a Haar system of measures
which is locally a product. Suppose G acts continuously on the fibre

space P ¢ S —* X, then S is a locally trivial fibre bundle by

5e3e3e Suppose, also, that each fibre P~ '(x) has a metric 4 con-

tinuously assigned to it in the usual way from a metric d on the fibre,
say P—1(x°) , see Behe7 iii) « As a typical application of the use of
the system { My pbs p 3 X £ Xl} , we show that each fibre can be equipped
with a metric with respect to which the maps Ajﬁa » @ € G, are isometric.
Define 4 * on P x) by |

220 05) = {4y e s dap @) .

costh

X is compact.

Thus, the integral exists and a,* is well defined. If dx*(s.’sz) =0,

By the hypothesis, the integrand is continuous and cost

then the integrand is zero almost everywhere and so ¢n(u)<“-1s|’“-1sz) =
" for some a € G o Hence, 0-15| = a-isz and, thus, S, T8, . The other
netric axioms are easily verified and so 4 * is a metric on P—1(x) .
Moreover, by choice.of { myphy pr 3 X EX } as locally a product .dx*

is éontinuously assigned from a metric 4* on the fibre P'1(x ) .
Since _d*(s':sz) = S : ﬂ(a) (G .S, - 1s )d/J (G) and d is equi-

' cost . .x

G e

valent to 4 » it follows that d* and 4 are equivalent metrics.
Therefore, by the local triviality of S , changing dx to dx* does
not affect the continuity of P : S8 —= X or the continuity of the
gction of G on S . Finally, we show that the ;60' are isometric

with respect to the metrics d, * . Suppose ' B & G(x,z) , then

RICPT I WO CRERIE & LEEREYE

costh

, o - ' ) ] _
= 5 d”(a)(a 5, 1% -Sz)d/*x by the invariance property of a Haar system.

costh
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Thus, A %8s, B+ 5,) = 425 0s,) -

- 8lie- 'Repregentations-of-Grounoids.

Throughout the remainder of this chapter, unless otherwise stated,
G will,denqte a trans.itive locally cémpa.ct Hausdorff topological groupoid
over X o " Further conditions will be imposed on G as required.

We are now prepared to consider representations of groupoids G ,
and we begin with the following definition which is modelled on that of a
family of vector spaces, as given in Atiyah [1] .
Sebote Definition.

A continuous function P:8 —= X is called a family of

Hilbert spaces over X if

a) For each x & X » P (x) is a complex separable Hilbert space
equlpped with a norm. -1, and an inner product <, > , related
in the usual way, and which are compatlble with the topology mduced by
S on P~ (X) .

bi) | The operations of addition and scalar multiplication are com-
patible with the topology on S in the sense that + : S x, § —= §
and () :C » S —*= S , defined respectively by + (s' ,sz) =g + 3
, [}
and _(°)(K'§) = K.s , are continuous. Here, 5 x, S is defined by ]
Sx, = {(5.’51) €S x S; P(s )= P(sz)}.

We shall frequently refer to the family of Hilbert spaces S‘

. t * 2

is an inner product' preserving’lineér isomorphism of Hilbert spaces H
: !

and H2

Our basic definition is :-

5. 2. Definition.

A (strongly) continubus linear representation of G is a

family P 3+ § —# X of Hilbert spaces over X , together with a

(strongly) continuous action of G on the left of S vida P such that

- -1
each of the maps 950, t P (1r(a,)) —» P (#’(a)) is linear. If each
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of the maps ¢a. is a unitary operator, we call S a <3tr°n512)

continuous unitary representation of G .

; S5elie3. 'Comment.

Suppose H is a Hilbert space and L(H,H) 4is the algebra of

21l bounded linear maps H —= H with its norm or uniform topology.
Let Aut(H) denote the subset of all invertible elements of L(H,H)
with the subspace topology. - Let f be a fixed element of H and
define T, L(§,H) —= H by Tf(A) = A(f) , then the topology on
L(H,H) generated by the family { Tf}:fe . is called the strong operator
topology on L(H,H) . Again, Aut(H) can-be given the strong operator
subspace topology. We remark that the strong operator topology is
weaker or coarser than the uniform topology.

If G is a locally compact topological group and H a complex
Hilbert space, it is usual to define a representation of G on H to bé
‘a homomorphism L : G — Aut(H) which is strongly continuous, that is,
continuous in the strong operator topology on Aut(H) , see Loomis [1] or
Hewitt and Ross [1] . This amounts to considering an action G x H —e
with the pfoperty : for each fixed h e H , the map GA-?—*- H definé& by?
g > geh 1is continuous, and each operation of G is a unitary operator,
or at least, a linear inyertible operator. These comments provide the
motivation for our definition and the terminology we use. However, we
are interested in continuous representations‘as well as strongly con-
tinuous onese. |

Finally, observe that a (strongly) continuous (linear) unitary
representafion of G induces, in the usual way, a (strongly)lcontinuous
(linear).unitary representation of each vertex group. |
5., Definition. |

| A (strongly) continuous representation (s, P,‘x) of G 1is

called reducible if there existé a proper G-invarian£ subspace s’c s

o T
such that (S ,P ,X) isa (strongly) continuous representation of G in
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the induced structure. We call such a representation (S’, P, X) a

subrepresentation of G . If no such proper subrepresentations exist,

r.@g call (S) P; X) irreducible.

A1l our definitions, thus far, collapse to the usual ones for a
group in the case of a groupoid G over one object.

We next prove what may be considered as the first part of a
Peter-VWeyl theory for groupoids.

HelieHe Theorem.

Let G be a transitive locally compact Hausdorff topological

groupoid over X and suppose G has compact vertex groups. Then any

jrreducible strongly continuous unitary representation of G is finite

dimensional.

Proof .

Let (S, P, X) be any strongly continuous unitary representation
: - p-1
of ¢,let x eX andlet 5 =P (x,) - By hypothesis, G{x_ 3} is
‘compact and we have an induced strongly continuous unitary representation
of 6{x,} on S, . Thus, by Theorem 22.13 of Hewitt and Ross [1],
there is a finite dimensional subspace S; E-So which is a strongly -

continuous unitary representation of G{xo} .

let T be a wide tree subgroupoid of G with T denoting
. Xy -

’

Tex * 5,

the unique element of T (x,y) and form the set S’ = U
‘ ' xe X

- !
By 5.2.2, S is G-invariant and, since the 'tx . act as unitary
. / - . [-]
operators, we see that S5 n P 1(x) is a finite dimensional subspace of
L > . I
P 1(x) of the same dimension as S° s for each xe¢ X .
. / r ’ ‘, ’
The relation §'x 5 = (Sx,8) n (8" x §') shows that the
- . ' 3 + [ , 4 /
addition function HEN X S ~—» $5 1s continuous, being the
. obvious réstriction, and similarly for scalar multiplicatioh. Thus,
1 . P c s o |
P:8 —» X is a fam;ly of (finite dimensional) Hilbert spaces over X .

: . ! 4
Given an element 8’ € S , we certainly have that the function

e : StGP(s’) —+ S defined by &(a) = a.s” is continuous, since
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this is true for an element s & S

Flnally,ilt is clear that each of the operators

yﬁa ('n"(a.)) n S — P~ ('rr (@)) n S (restrlcted to

: ‘o /
P! (rr(a)) n S in the usual way) is unitary, and so S is.a strongly
continuous pinite dimensional unitary representation of G . Consequently
2

any irreducible representation of G must be finite dimensional and the

proof is complete. &

Selieb e Corollary.
If G satisfies the hypothesis of Theorem 5.4 .5 and has Abelian

vertex groups, then the irreducible representations of G are one dimensional

Proof .

The irreducible representationsof a compact Abelian group are one

dimensional, see Hewitt and Ross (1 . ®&

S5elie’e Remarks .
i) If G is locally trivial and S is a locally trivial fibre

bundle in the structure of 5.3.1, then the relation (*) of 5.3.1
shows that the set SI constructed in the proof of 5.4.5 is given by
/ /
s = xgx 95 (So) s see 54342, and so it follows,
ie I
_in this case, that S, is a locally trivial finite dimensional
representation of G , that is, s’ 1s a vector bu.ndie.

i) Ve have shown- that a represen'tation S of G is irreducible
if, and only if, S n P (x) is an irreducible rel;resentation of
G{x} for each x € X . | |

3ii) Recall that a fibre bundle (S, P, X) , vﬁ.th Hilbert space
fibre F , is called a bundle with .norm and inner pz;oduCt if the

. coordinate functions are isometric with re'srpect to th.e inner product

and norm on each fibre and the inner product and norm on F .

We next prove :
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5.4 8. Theoren.

 Let G be a transitive locally trivial .topological groupoid
over X and let X, € X . Then any strong}y continuous unitary represen-
_tatién (s, P, X) of G can be given the structure of a locally trivial
fibre bundle with group G{xo} , fibre § = p~ (xo) » on which G{x,}
acts in the induced manner, and transition functions {gjif' as in
5e3el e Moreover, S can be equipped with norm and inner product.

Proof.

Let { Ui’ Sys X be a local trivialisation for G based

°}ieI
et x - Following 5.3.1, we define ¢j'= Uj x 85— p-1 (Uj) by

A -1 R .
¢j(x, s) = Xj(X) . s , and the 753 are bijective. In fact,

& 31 (s) = (P(s) » Aj(P(s)) e s) « If the action of G is continuous,
- then thé ¢j are ho‘meomorphisms and the proof is completg. If net, we
retopologise S by taking the 75 j as homeomorphisms, then it is
‘Mediate that the addition and scalar multiplication functions are still
continuous since S is. now locally a product.

. -1 . :
Now if x e Uy » then 755 x5, — P '(x) is defined by

b

-1 . ' -4
= MN.(x)". s and if we write a = X, (x) " then ., =
¢j:x(s) j( ) , j( ) T © ¢J’x ¢Q *
Thus, if <, >, and I U o are the given inner product and norm
ot =
on So s We havg <s,»'8, > = <¢Q(S°) ’ ¢a(s‘:) >y forall

s ’so/ £ so ' since the ¢o. are unitary. | Hence, we have

<5 so/ > = < ¢j,x(so)’ ';ﬁj,x(so') > . 2nd similarly for the bnorms.

That is, S has norm and inner pfodﬁct induced from those of the fibre S,
Finally, we show that after retopologising S in this fashion,

we still have a strongly continuous representation of G, Let sesS

be fixed with P(s) = x , we have to show that & : Stox | —s S is

continuous in the new topology of S , where 6 (@) =a+s « Let

6. =

: T o1
e s T (U.) n St
J ‘ﬁp-1 (UJ) dJd

-1
X P (Uj) , then

-1 Lo ' : . .
¢j 67 (Uj) n Stex — Uj x 5 is defined by
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o (P(a..s) , A (P(a.s)) « (@es)) « Thus, if P, and P,
denote the. projections, then P qS Gy (@) = Pla.s) = 7r'_(a.) and so

- /
P, qu CE is continuous. Also, Pz¢j ; (.o.) = (xj(ﬁ (@))a).s

which is the coinposite( ) (
™ 1 »5e1) Com
—1 ¢+ =1 jo .
(U)n Sth ._——v-ij'lr (U ) J_ e x o 1(U) o So

o @) e (A @) A @)
z\j('rr'(o.))a. .8
and each map in this series is continuous, the last map () being
continuous by hypothesis and the fact that the t°P91°5Y ofA 50 is

unchanged. Thus © is continuous and the broof of the theorem is

cdmplete. =

SelieTe Remarks .

1) - We have a slight inconsistency in respect éf our terminology in
Thgorem 5.4.8 in that the group G{xo} acts on the fibre S, ina
'stropgly continuous fashion, rather than a continuous fashion. Our
termlnology "fibre bundle" has always previously assumed a continuous
action, but it will be convenient in future to use this slightly more
general terminology. This will cause no confusion and it will be clear
from the context whether the action of the structure group is continuous

or Strongly continuous-

ii) - If bG' is compact és well as being fransitive and locally
trivial, then using the argument of 5.3.6 with an inner product rather than
a metric, from any strongly contipuous linear representation of G we can
obtain évstrongly continupus unitary representation. In doing this, we
can first apply Theorem 5.4.8 and take a locally trivial linear\representa-
tion. The argument is now the samehasused in 5346 noting that although

we assumed a continuous action there, a strongly continuous one is enough,

s s s N % = -
for, in Qeflnlng <$|,sz>x by <§. ,Sz>* = j < a .s ,a. .s > . 'df*x(a)
: X cost.x (a)
e*
s, and s, are fixed and so the'integrand is continuous and <., > *
. ‘ X

is a well defined inner product.
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iii) .Ol.)ser"ve that Theorem 5.4.8 provides a necessary condition that
a fibre space (S, P, X) adm1t a strongly continuous representetion of G .
>We show later that these conditlons are also sufficient ones. Note also
that in changing the topology of S as we did in proving Theorem 5448,
the representation S does not become a continuous one, of course, since
G{xo} acts in tne same way, that is, strongly continuously.

We need 3

5.,.10. Definition.

. , ,

Let P:S —» X and P ¢ 8 -— X be two families of
Hilbert spaces over X . An isomorphism l?. : (S, P, X) (S,,P, %)

. 3
is a homeomorphism W : S5 — s’ such that : '
' y
a) Ph =P
= ‘ . p-l ! o
b) For each x& X, ’1_(__1 : P71 (x) P 1(x) is a
P (x) :
unitary operator.

Heliell e Definition.

Two representations (s, P, X) and (s’ ,P’, X) of G are
equivalent if there is an isomorphism ‘l (s, P, X) (S ,P s X)
such that ¥} 9‘@5 = ;6; for all a e G .

These. definitions are consistent with 54148 and 5.149 an(i.
collapse to the usual ones if G 4is a group. Note, also, that if
(s, Py X) .is a representation of G and k : (S, P, X) —» (S,,P,,'x)
is an isomorphism, then 17_ 1nc1uces an action of G on S and
(s, P, X) and (S ,P » X) are then equivalent representations of G ..

We now turn to the task of‘ proving one of our main results
which is that of pr_oving a topological version of the construction given
in 5.1.10. We emphasise that conclusion a) does not need the hypothesis
of local triviality. And we observe, also,' that the condition of local
compactness is not used in an essential way. ’ .

The theorem we are concerned with is :-.

5.,.12. Theorem. (Extension Theorem).

Let G Dbe a transitive locally compact Haus‘dorff topoiogical
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groupoid over ‘X and let X, € X . Suppose we are given an action of
G{xo} on t,h.e 1e.f_‘t. of _g.Hilb_ert_ .s_.p_ace_‘ F _such_that .G{,xo-} acts as a group
of @ifam operators. 'l‘hen

2) ‘ Ir G{xo} acts cont:_nuously on F , there is a continuous
unifar'y representation P:E —» X of G whose induced representation
or G{x°§ on P—1 (xo) is equivalent to that of G{xo} on. F .

b) If G is locally trivial and the action of G{xo} is strongly
continueus , then there is a _locally trivial strongly continuous unitary
representation P : E —e X of G whose induced representation of G{x,}
on P-1 (xo) is equivalent to that of G{xo?{ . on F « Moreover,

P:E — X is a bundle with norm and inher product induced from those

of F .

c) If G{xo} acts continuously in b), then the representation

P.: E —e X is unique up to equivalence (the equivalence © of 1.5.10).
a) We constmct the fibre space P : E — X with the natural

| action of G on E, as in 5.1410. In this case, the action of .G{xof

on F‘ is continuous and, in any case, the'action of G{xO} on the |
right of StXx, » defined by composition, is continuous. We give E

the quotient topology of StgX, x F by r .. In this topology, P is

continuous. For consider the diagram :

st _x, x F B+ st x
G G °

L

This commutes; where P' = Projection, and 1r'P ~ is continuous. Hence,
P is continuous by the universal property of quotlents. Thus, P ¢t E —= X
is a fibre space w1th Hilbert space flbre. We put a Hilbert space structure
on each fibre as follows. - Now P~ (x) {fB s f] ;' (B) = x } » So, if

: Y (. -1 \ ! . ¢
(p,r] and [B . ] e P (x), then B and B belong to G(x ,x) and

S0 p’ = Ba for some unique a e.Gfxo} . Hence (ﬁl,f,) = (ﬁ:@-fl) . Q
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S Y ’ '
which implies that (g ,f ] = [B ,a+f ] .« We now define an addition

-+ on P (x) by the rule -
| [, f] - ¢ <]

[e,e] + [p,@.'f':] |
=B, ¢ ia.r’].

We need to show that "+" is a well defined operation. Suppose

[e.£]=(p ] ena [¢ '] =[8/,£7] - Then there exists a, and
o ¢ Gfx,} suhthat (8,7)= (.5 ).a, end @)= (@ .e).al .
Suppose” p’ = p¥, s then [Bof] +[pTe'T=[p. v ¥ .£].

suppose B’ = B %, then [B,2]1+[88= [Bor, + 28]

-1 -1 ry
a, '.f‘ ta .7 .f‘ by linearity

Now B a =P a.nda (f+x.f)

-1 .
of the action of G{x,} . But c:.l .f. = f . Consider
-1/ /_1

' - ’ A , .
x.f’=a1ﬁ’-f =a e e =0T e L ow

1 = 1 ’
Thus, X, .f =q X‘ .f“ . Therefore, we

%= p’ a =pp d "

/ 4 ’
Ahave‘a. f +a.1.'a’ £, =f4 ¥, of .+ This implies that
(5,f+x.f).a-(ﬁ f+f°f)and50[ﬁ,f+x.f] [ﬁf+x,f]

which means that + is well defmed on P~ (x) o We define a scalar

multiplication on p(x) by
_ K[ﬁ f]=(_ﬁ Kf],'for‘KsC .
[B fl [[3 ,fl then B,f) = (B ’f )ea for some a € G-{x .

By definition, K{B ,f [ﬁ kf] But ((3 s Kf }ea ({3 o,a 1. Kf )

‘ -
(B a, Ka 1- f,)
since the elements of G{xo{ act as imitary operators. Thus,

6, k£ )ea = (3, Kf) which implies that [[3 Kf] (B, e] .
Vhence, the scalar multiplication is well defined on P~ (x) . It is
routine to show that thesAe operations, of addition and scaiar multipli-
cation, endow p~! (x) with a complex vector space structure.

As usual, we can form the épace E x P E where;

e, el (Bt N eEx B p((g, £1) = P8 2" ]) !
§ > 1] (8D 57 @) =) } , and then we obtain a

=
x
=3

i}

well defined map

+:E)<PE —» E .
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Similarly, we ol‘atain a well defined map

- CxE —*™=E,
defi.n.ed by (k,[B, £]) — Krﬁ ’ f] » and we need to investigate the
continuity of these functions. We do this shortly; first, however, we
define norms and inmer products on Pl (x) .
‘ Let <,> and | denote the inner product and norm,
respectively, on F. If [[3 s f] and [Bl,f,] € p (x) , then Bl = Ba ,
 for some a , and fﬁl :fl] =, [ﬁ:aﬂfl] + Define <, > on P (x) by
<re.t). (81>,

il

/
<fe,f],[Bra.s1>_
; <f ] o L J f’> -
We show < s> < is well defined. With the same choices as we made to

verify well-definedness of addition, we have

<L t1, [8:61>,

<f' N z{l’. f: >

7/ U4
and <[B,£1,[F,61> = <r, %.'>
- / / /-
"Now °'T1'f| = f and .c,'1-‘ ’B’,-f' = ¥,«f « Thus,

1 ’ /

;e ?5. -f|>
! /

<}f', ¥, . L >-

<f3 'K'-f’> <Cl-:10f' s QO

since G{x o} acts as a group of unitary operators. This means that
<5 >y is well defined. Also, we define [l "x on p (x) vy
W, el = del .
v _ b'd
This is well defined. It is easily seen that < ,> x is an inner
product on Pm1 (x) and i "x is a norm on P-‘I (x) e Also, the relation
2
<Ce,el.0ese] > = If,dl,

is clear. . '

Observe that if we choose B & G(xc> »X) , we have a unitary

| ‘ -1 .
operator K(ﬁ ’ X) ¢ F — P (x) 'deflned by K(ﬁ f) X)(f) = [B ) f] "
see §3, Chapter 3. Thus, E induces the correct topology on P-1 (x) ,
for each x in X . Observe, also, that if we choose P = Ix € G{xO} ’
then K(Ix ,xa) ¢t F —» P 1(x°) determines an equivalence between the
_ o _

(given) action of G{x,} on F and that induced on p-1 (xo) .
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-1 » '
Let o e G(x,y), then g =P (x) —» P 1(y) is defined
vy b (B, £] )= [o8 ,f] and it is ob\'rioAusv that g{q is unitary
with respect'to <, >x and <, >y « Thus, G acts on E as a
groupoid of unitary operators. '

Tfme next step is to show that addition and scalar multiplication
are continuous, so that P 3 E — X is a family of Hilbert spaces.
To do this, we first observe that r 1is an open map ; this is proved
in exactly the way 1.4, Chapter k, Husemoller [1] , is proved, we do not
even need continuity of the action for this, only that G{Xo} act as a
group of homeomorphisms . Consequently, rxr is a quotient map
since it, too, is an open map. Define the space
’
(stho x F) X (stho x F)=E by
¢t ’ ,
£ = {((ﬁ‘,f,) ! (ﬁz’fz)) s (B|) =T (Bz)} .

Since |
(‘Staxox F) Xy (StexoxF) —_— StG.x°x F

| e

Staxo& F - ¥

_ ‘ ;7 . ; v
commutes and X is Hausdorff, E  1is closed in (sthox F) x (Stho < F)
’ .
Moreover, rxr :E —* E "P E and is surjective and also EY is
. 4,
rxr - saturated, that is, (rxr ) (B Xp E) = B’ Thus, by

results of Brown (1] , pege 98, Txyr. = Txr |, is en identification

XoxF

map. Now consider * i (stox, % F) x (Stgx,x F) — st

dofined by ((8 ,£), (B,,5,)) v+ (B, £ +g7'8, .1 ) . This
function is continuous, since G{xoi “acts cdntinuously, and so is its

/ .
restriction to E . Finally,

;. o+
E — S.ta’.‘o"F

T r l ’ | lr
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commutes and, hence, + : EXp E — E is continuous by the universal
property of quotien_ts. Ngxt_ we deal with the continuity of scalar
product € x E —» E . Since the scalar product on F is continuous,
the Ih&‘p C x. (Stho x F) — Stho X F defined by («, ®, f£))

— (B, Kf) is continuous. Thus, the continuity of scalar multi-

plication follows from the commutativity of the diagram

c' x(SthoxF) — sthDxF

Ixr" ' l T

Cc x E —_— = E
where I : C — C  is the identity map. Thus, Pt E —s X g
a family of Hilbert spaces over X .

It remains to prove that the action of G on E is continuous.

Let & x, (Stgx,x F)= {(a, ®,£));7'(g) = m(@) § and define
236X, (Stho x F) —» Sth;x F oy af,@E,r))-= (@B, f) .
‘since @ X, (Stgx,x F)= (6 x_  St.x ) x F,  is the restriction
of composition X Ideritity and is, therefore, continuous. Clearly
Ixf :Gxx(Sthox F) — G x . E and
(I < r )'.'1 (¢ x B)=G X o (Stho x F) « Since X is Hausdorff,
G Xy (St.x,_ x F) is closed in G x (Stho x F) and I x T , being

open, is a quotient map. Therefore I X Y =Ixry :
G x, (Stgx_x F)

is a quotient. Finally,

2
Gx,( Stex,xF) — StGXOx e

x| BE

CE - - E
is commutative and so "." is continuous. This completes the proof of a)e
b) - Again we consider the space P : E — X as in a), we give
. -1 . . X . . ' .
each fibre P (x) the norm | ”x and inner product < , >, as above,

and we define addition and scalar multiplication as in a)s |
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{II s Ay X .} be a local trivialisation for G and let

.Ei.~=-P*1(xé)v. - For each-index . J we define -
=]

X
[-]

¢J :ij E — P-1_(U.)'
by .‘ ¢j(x’ [ﬁ’f] ) = )\ (x)~ fB f]

Thus, 955(}{, (g s [/\j(x)"1p R f] . We now topologise the space
E by taking the maps 965 as homeomorphisms. Thus, E is locally a
product'and P: E —» X is continuous in the new topology. Since E
is now a vector bundle, the-operations of addition and scalar multiplication
are continuous; this is proved by_working loqally. Thus ,P t E —e X

JsX

js a family of Hilbert spaces over X « Notice also that & .

| | ¢*J ()
and is, therefore, a unitary operatéor. Thus, P : E —= X is a bundle
with norm and inner product.

Finally, G acts on E in a strongly continuous manner and the
proof of this is exactly the same as that used in proving Theorem 5.4.8.
;Thls completes the proof of b). |
c) This follows by 5.,1410, 5¢3+3 1) and the uniqueness theorem,

Theorem 2.7, of Chapter 5, Husemoller [1] .

‘The proof of the theorem is now cbmplete. [ |

We have the following corollary to 5.4.12.
Vﬁ:&;li. Corollary.

Suppose G is a transitive l§cally compact Hausdorff topo-
loglcal groupoid over X and let x &€ X . Suppose we are given a
strongly continuous action of G{x,] , as a group of unitary operators on
the left of a finite dimensional Hilbert space F . Then there is a
continuoﬁs unitary'representation (s, P, X)ﬂ of G whose induced represén-
.’tation of .G{xoﬁ ~on P.1(x°) is equivalent. to the 6iven'one-of G{xci
on F. | | |

Since F is finite dimensional, it is locally compact. Thus,
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by Ellis [1] , the action of G{x,} on F is necessarily continuous.

_The conclusion now follows by a) _ ,of Theorem pr,.12._

If G dis not locally- trivial, then the extension of the action
of a vertex group to an action of G need not be unique. This is
shovn by:-
Sedrelle Example.

Let G be the cyclic group {+1 , =1 % with the discrete
topology and let X = {x' ’ Xz} with the indiscrete topology. Let &

act on the left of X according to the rules:

Hex =X, .+1.x2=x2
“lex =x_ -1.x1=x'
This determines a continuous action and the resulting groupoid (see 2.2.5)
:is a transitive compact to?ological groupoid over X . Let S, =XxC
and let P| : Sl —+» X be the projection, since S, is a trivial
»bundle, p' : sl e X dis a family of Hilbert spaces over X . We
define an action of ¢ on S, as follows: if ae E{x'} or a'{xz} )
then o must act trivially; if a e E(x‘ R :_cz) » then q,.(x‘,z) = (xa.’;z)'
end if a € '(‘,'(xz, x') , then a.(x,,2} = (xl,z) . This action is cleérly j

unitary and must be strongly continuous since each star is discrete. -

Nowlet S =xxC U x,xC and define P_: S, —a X

by Pz((x‘ ,2)) = x, and Pz((xzsz)) = X, . Then it is easily seen that

pt : sz — » X is a family of Hilbert spaces over X . Define an action
of G on 5, in the same way as we defined that on S .« Again we
obtain a strongly continuous unitary representation of. ¢ . S' and Sz
are not homeomorphic and, hence, are inequivaient representa.fions of ¢ H
however, they induce the same representation of each vertex group. @

" Theorems 5.4.8 and 5.1;.12.together yield |
S5elie15. Theorem. | |

Let G be a locally coxﬁp_act, transitive, loca;lly trivial - .

Hausdorff topological groupoid over ‘X eand let x € X . Then a. fibre

space P : S —s X , with Hilbert space fibre F , admits a strongly
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continuous unitary representation of G if, and only if, P : § — X
) can be given the s_truc‘ture of a Hilbert fibre bundle, with norm and inner

product, group G{xo} acting in a strongly continuous manner on F , as

a group of unitary operators, and transition functions {gjii as usual.

51016, Definition.

We shall call a representation (S, P, X) of G faithful if,
for all a,p € G , the relation B = 95‘5 implies o = .

Ir (s, P, X) is a representation of a groupoid G , then the
set G(S) = {¢@ L G} is a groupoid of unitary operators between
Hilbert spaces, &s in 1.2.2, and the function & : ¢ — G(S) defined
by o —» 950. is a homomorphism of groupoids. To ask that (S, P, X)
be a faithful representation of G is precisely the same thing as to ask
for © = to be injective. Notice that if (S, P, X) is the represen-

" tation constructed in 5.1.10, then ¢a. is an admissible map as def‘ined.
in 83, Chapter 3.

We shall call a continuous unitary representation of G on a

finite dimensional fibre space S a "representation of G as a gfoupoid .

of matrices". We then have the following Peter-Weyl Theorem for groupoids.

5...17. Theorem.

. Let G be a transitive locally compact Hausdorff t°P°10gica1~
groupoid with compact Lie vertex groups. Then G admits a faithful
represenfatioh és a groupﬁid'of matrices.

By the classical Peter—?eyi theory for compact Lie groups, any
vertex group G{xaf admits a faithful representation as a group of
matrices, see Chevalley [1] . Thus, there is a continuous action
G{xo} X F"f’*; F of G{xoi s On a finite dimensional Hilbert space F ,
as a group of unitary operators and this aétionwis faithful. Applying
Theorem 5.&.12 a), we obtain a representation of G as a groupoid of

matrices. The technique_ of proving 54146 shows that this representation

is faithful. 4
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§_5_. Operations on Representations.

. Let G bea tran31t1ve, locally compact Hausdorff topologlcal
groupoid over X . Let u(e) denote the set of equivalence classes of
strongly continuous unltary representations of' G , equivalence being in
the sense of Def:.i.nition 5.ie11, and let U(G) denote the subset of U(G)
consisting of the continuous unitary representations of G . Let
Ls, P, x] denote the equivalence class generated by the representation

(s, P, X) and let 'S lG denote the representation of G{x,3 on
e -

-1 . e 4 _
P (xo) s X, e X , obtained by restiction from S . Then we have a map

r:u@) — U(6x,} ) defined by ['( (S, P, x]) = [s I
_ IG{x

If G is locally trivial, or we consider only finite dimenensional
representations in U(G) , then Theorem 5.4e12 asserts that [' is sur-
. Jjective, In the case G locally trivial, r resfricted to ﬁ((}) is

injective. But " is not generally injective as the Example 5.4e14 shows

--505-1 . Sums of Representations.

If we have a sequence H,, H,, eeceo, H s eeees of Hilbert

spaces and H_ has inner product <, >, then it is possible, as ia

well known, to form their direct sum H = & H ~as follows : H is the

o n=1
T 5, consiots s =
subspace of ALR H consisting of those elements h = (h1’h2""'.’hn""')

such that 21 < h hn>f1 < o0 , vWe then define an inner product

<,> on H by <h,n> Z <h,h’> .
_ , n=1 n n
| Suppose now'thct (S‘ sP‘ ’ X)_ and <Sz’Pz’ X) are twc families
of Hilbert spaces over X , then we can form ' i
f » a new family (S‘@ Sz,q,x)
of Hilbert spaces over X called their direct sum. To construct S ) s '
2
. we proceed a8s follows. Let S ® S {(s ’s, ) € S, x S ; P (s )- P (s )}
and define q : S @ 8, — X by q((s ’S, ) = P (s ) = P, (sz) . Ve
give S5 & 5, the subcpace-tOpology and then q is continuous. Since |

¢ (x)=P(x)® P (x) , we give gq 1(x) the inner product defined in
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the preceeding paragraph. Then it is routine to check that

(S @ 5,549, X). is & famlly of Hllbert spaces. )

Now suppose (S',P , X) and- (S ,P , X) are strongly continuous
unitz;ry representations of G , then (S. @ Sz. + Qs X) can be made into a
strongly continuous unitary representation as follows. If ae Glx,y)
and (s‘,sz) € q.1(x) , we define
a .(s',sl) = (a .8 50 .sz) ----- *

For a fixed element (s.,sz) € S‘ @ S2 we have that the functions

e,  StgP (s,) —= 8§, eand 6 : St.P, (s, ) —» S, are both con-
tinuous, where ©, (@) =a.s and ez(a.) = a.s. « Thus, the function

2

o : Sth(s',sz) — 5, @& 5, defined by 6 (@) =a. (S‘,sz) is

continuous.

Finally, it is easy to check that * defines an action of G
on S,, ® Sz via q and that each of the maps
_ ; -1 . .
¢a . q,1 (r(@)) — (w'(a)) is unitary. We call S, ® S_ the
2

direct sum representation of G .

This definition generalises in the obvious way to a sequence
Sy» Spr eees S,s *e* of families of Hilbert 'spaces, and if each Sx; is

e representation of G , we obtain the direct sum representation &g S .

If all the spaces SA arg locally trivial, this constructioﬁ
coincide§ preciselvaith the Whitney sum of Vectqr bundles. We now pfove:
545020 Theorem. | |

Let G be a transitive, locally trivial; locally compact,
Hausdorff topological groupoid with compact vertex gfoups.v Then any
continuous unitary representation (S P, X) of G 4is the direct sum of
the irréducible subreprésentgtions of G (up to natural equivalence).

First note that each irreducible subrepresentation of G is
finite diménsional by»Theorem 5f4-5- |

Let (S, Py, X) be aﬁy continﬁous.unitary repfesentafién of G,

let x € X and let S = pt (x ). Now G{x } is compact and 8 is
o o [o) ° °
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a continuous unitai'y representation of G{xo} , thus, s° is, up to natural
. : . ' 2

- equivalence;- the direct sum. . F.= Foo F @ eeee & F:aa .esss where

: the action of G{XO} on F is as defined by * of 5.5.1 and

z ) . .
Fo', Fo’ econsy Fil, eeee are the irreducible subrepresentations of S ,
[~]

see Mackey [h] s [5] .
Let E denote the representstion of Theorem 5.412 with fibre

n . . o0 n
F and let E° denote that with fibre Ffo‘ , then E= & E*. By ¢)
n=1

, o
of Theorem 5ele12, we have an equivalence gl:8s — E= & E® of
’ n=1

representations. Now let s" = e(En) for each n , then s® is an

. oD
irreducible subrepresentation of S by Seie? ii). Since S = & gl ,
} n=1

the proof is complete. H

Collecting together the results of 5445 and 5542 we have:
5e543. " Theorem. (Peter-Weyl Theorem for groupoids).

Let G Dbe a transitive, locally compacf, Hausdorff topological
groupoid with compact vertex groups and let X, be any object of G . Then:
a) ‘Every strongly continuous irreducil;le unitary representation | of G

is finite dimensional.
*b) If -G is locally trivial, then every continuous unitary represen-

tation of G is_the' direct sum of (finite dimensional) irreducible

subrepresentations. H

2.5.4. Theoreme.
let G be a locally compact locally trivial Hé.usdorf:f<
topological groupoid over X . Let (S, P, X) be a continuou\s unitary

00 o
& E and S = @ F_ are two
n=1 n:1 n

representation of G and suppose S =
decompositions of S into direct sums of irreducible subrepresentations
of S . Then there exists a permutation = of indices such that E

' . - 'n

" is gquivalent to Fﬂ(n) for each n .
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Proof «
This.is true for the representations of any. vertex group, see

Mackey [5], and so the technique of the previous result, Theorem 5.5.2,

establishes the result.

Thus, to within equivalence, the two decompositions contain the
same irreducible representations and each one that occurs, occurs in both

the same number of times.

5e545e ConcludlnxT Comments.
We shall close with some remarks concerning one of the dlrect:.ons
in which this work may proceed further.
. Suppose H‘A and H2 are Hilbert §paces with inner products
<,> and <, > reséectively, then we can form the tensor product
H ® H, , see Maurin [1] page 82, with inner product <, > defined by
<h -® h, h/@ h/> =<h,h’ >:< b, /> . .
"If G is a locally compact group and Hl and H2 are strongly c°ntinu0us4
unitary representation of G , we can make G act on H‘ ® Hz by
defining g« (h'l e hz.) =ge.h ©® g.h, and this defines a unitary action.
In fact, H| e H‘2 becomes' a strongly continuous uﬁitary representation of :G .
Now let G be a transitive locally compact topological groupoid
over X and let (§,,P» X) and (S ,P,, X) be strongly continuous

unitary representations of G . We can form the tensor product

(s ® 5,545 X) of 8 and S, and, essentially, this construction
amounts to con51der1ng (St X, x (P (x ) @ P"1 (x, )))/ 6{x,} asin
5.1.10. Under suitable conditions, for example G locally trivial and
s, and S, continuous unitary representations, (S' ® 5,4, X) will be
‘a strongly continuous unitary representation of G and, in such circum-

stances, U(G) becomes a semi-ring with operations @ and & .

Now let R(G) denote the ring completion of U(G) , see Husemoller (1],

we call R(G) the ring of unitary reoresentations of G (or just the

representation ring of G) . We can now extend [ to a ring homo-

morphism I : R(G) —» R(Gfx,} ) , the study of which seems worthwhile. W
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