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SUMMARY

For a fairly general algebraic category C (possible
interpretations of € include the categories of groups,
rings (associative, commutative), algebras (associative,
commutative, Lie or Jordan)) we give various alternative
descriptions of an n-fold category internal to C. One of
these descriptions we call a "crossed n-cube in C".
Crossed l-cubes are better known as "crossed modules" (this
latter term being due to Whitehead (Wl1l]). Crossed 2-cubes
in the category of groups are originally due to Loday (L].

We give a combinatorial description of crossed n-cubes
for n = 1,2,3 and C equal to the category of groups, Lie
algebras, commutative algebras aﬁd (n = 1,2) associative
algebras. |

The study of certain universal crossed 2-cubes leads us
to notions of non-abelian tensor, exterior and anti-
Symmetric products of groups and of Lie and commutative
algebras. The tensor and exterior products of groups are
originally due to Brown and Loday [B-L]. We élso look at
the crossed 3-cube analogue of the tensor product of
groups.

We study the relevance of crossed modules and crossed
2-cubes to the homology of groups and Lie algebras. In
particular we prove
THEOREM If 3:M - PE;;Bjective crossed P~module (of groups)

with im 8 = N, then Hz(N) = ker 8 n [M,M].



THEOREM If M,N are normal subgroups of a group G such that
G = MN, then there is an exact sequence

m3(M A N) = Hp(G) = Hz(G/M) @ Ha(G/N) = MAN/[M,N] -

= H1(G) - Hi(G/M) @ H1(G/N) - 1
where 73(M A N) is the kernel of a map M AN -« M from the

exterior product of M and N.

THKOREM If, in the preceding theorem, G = N, then we can
extend the exact sequence by two terms:

H3(G) -~ H3(G/M) -~ m3(M A N).

The second two theorems are originally due to Brown and
Loday [B-L] who obtained them as a corollary to their van
Kampen‘type theorem for squares of maps. The proofs in
this thésis are purely algebraic.

We give the analogue of the second theorem in which
H2(G) 1is replaced by the group Hz(G), this group H3(G)
being the one introduced by Dennis [D] as a kind of "second
homology group suitable for algebraic K-theory".

We give Lie algebra versions of the first two theorems.



INTRODUCTION

For many common algebraic categories there exists a
useful theory of crossed modules. In this thesis we
introduce several equivalent notions of a higher
dimensional crossed module, and we develop certain aspects
of the resulting higher dimensional theory. This work is
motivated by a recent result of R. Brown and J.-L. Loday,
and also by the theory of crossed modules themselves, as we
shall now explain. [In parts, this introduction relies

heavily on [B].

Recall that a group homomorphism 3:M - P is said to be a
crossed P-module (in groups) if there is an action of P on
M, (p,m) - Pm, which satisfies 3(Pm) = p(3m)p~!, Omp' =
mm'm~! for m,m' € M, p € P. Standard examples of crossed
modules are:

(1) the inclusion N = P of a normal subgroup N of the
group P, with the action of P on N given by conjugation
(thrqughout this thesis we shall keep to the convention
that, if x,y are elements of some group then, the conéugate
of x by y is the elementt yxy’l);

(ii) the zero morphism 0:M - P in which M is a P-module in
the usual sense;

(iii) the morphism x:M ~ Aut M from M to the group of
automorphisms of M in which xm is the inner automorphism
determined by m € M, together with the standard action of
Aut M on M;

(iv) the boundary map 8:m3(X,¥,xg) - m1(¥,xg) from the



second relative homotopy group to the fundamental group,
with the standard action of w1(Y,xg) on my(X,Y,xq).

As this last example suggests, crossed modules can be
used to model certain homotopy types.. In particular there
is a functor B:(crossed modules) - (CW-complexes) such that
if a:M » P is a crossed P-module then B(M -+ P) has
fundamental group coker 3 and second homotopy group ker d
[B-H1,L]. Further, any pointed, connected CW-complex X
with 7i(X) = 0 for i ) 2 is of the homotopy type of some
B(M -~ P) [ML-W].

Also, a van Kampen type theorem for w3 (X,Y,xQ)
considered as a crossed n§(Y,x0)-module has been found

[B-H2].

From the standpoint of homotopy theory, crossed modules
should perhaps be viewed as 2-dimensional groups. It is
reasonable to ask then, what are the higher-dimensional
groups (or crossed modules)? J.H.C. Whitehead gave a
partial answer to this by introducing what he called
"homotopy systems"™, but what are now called crossed
complexes. These gadgets consist of a sequence of groups

- Ch <%n .. C3 483 Cc3 .82 cC1

in which:

(i) Cnh is abelian for n 2 3;

(ii) dp-39n = 0;

(iii) Cj acts on Ch, N > 2, and 33Cy acts trivially on Cp,
n 2 3;

(iv) 3y is a crossed module, and each 3n is an equivariant

map.



The standard example of a crossed complex is obtained
from a pointed filtered space X D... Xp 2... XZ‘D X1 o
{xg)} by setting C; = m1(X}1,xX0)s Cn = "n(Xpn,Xn-1,%0) and
taking each 3n to be the boundary operator. Crossed
‘complexes give certain partial generalisations to the
homotopy theoretic results mentioned above involving
crossed modules. However, the abelian nature of crossed
complexes is a bar to the obvious full generalisations.

Note that crossed complexes arise in the cohomology of
groups (ML] since, if P is a group and M is a P-module,
then Hn*l(P;M) can be obtained as equivalence classes of
n-dimensional crossed complexes in which ker 3p = M,
coker 33 = p, ker 3j/im 943 = 0 for 2 < i < n-1. [t seems
reasonable to expect that other notions of higher
dimensibnal crossed modules might also be of relevance to

(co-)homology.

A more recent and important reformulation of the fact
that 3:ma(X,Y,x0) = m1(Y,x0) has a crossed module structure
is that, if P ~ E - B is a fibration, then the induced map
miF = m1E is a crossed module. This is one of the‘reasons.
for the use of crossed modules in algebraic K-theory
(L,GW-L]. Recall that if A is a ring (with unit) then FA
is defined as the homotopy fibre of the inclusion BGLA -
(BGLA)*. Now 71F is the Steinberg group StA , and m1BGLA =
GLA ; thus we have a crossed module StA - GLA . The study
of bi-relative Steinberg groups has led to the definition
of a type of 2-dimensional crossed module, which is called

a "crossed square" [GW-L]. With a few formal modifications



this definition states that a crossed square consists of a

commutative diagram of groups

together with actions of P on I,M and N (hence M acts on L
and N via 8, and N acts on L, and M via 8'), and a function
h:MxN - L such that:
(1) each of the maps \,\',8,8' and the composite 8A' are
crossed modules;
(ii) the maps \,\' preserve the actions of P;
(iii) h(mm',n) = Mh(m',n)h(m,n),
h(m,nn') = h(m,n) Dh(m,n');

(iv) Ph(m,n) = h(Pm,Pn);
(v) Ah(m,n) = ™n n=1, \*h(m,n) = m Mm~1;
(vi) h(m,\1) = ™1 11, n(a'l,n) = 1 N1-1;
for all 1 ¢ L, m,m' € M, n,n' € N, p € P.

The standard examples of crossed modules (see above) can
be extended to examples of crossed squares:

(1) if M,N are normal subgroups of the group P, then the

diagram of inclusions

MAN L N
i )
M - P

together with the actions of P on M,N and MAN given by

4



coniugation, and the function h:MxN - MnN, (m,n) - [m,n],is
a crossed square (throuought this thesis we shall keep to
the convention that, if x,y are elements of some group
then, the comutator [x,y] is the element xyx~ly~1);

(ii) if M,N are ordinary P-modules and A is an arbitrary

abelian group on which P is assumed to act trivially, then

the diagram

in which each map is a zero map, together with the zero map
O:MxN - A, is a crossed square;

(iii) the diagram

M X Inn M

4
X1 3

InnM Lt Aut M

where xm is the inner automorphism determined by m ¢ M and
where ¢ is the inclusion of the inner automorphism
subgroup, together with the standard actions and the
function h:Inn M x Inn M - M, (xm,xm') = [m,m'], is a
crossed square;

(iv) [(B-L] if U,V are subspaces of X with a point xg in

common, then the diagram of boundary maps



m3(X;U,V,xg) - wmw2(V,UnV,xq)
i i

ma(U,UnV,xq) - m1(UnV, xq)

in which 73(X;U,V,xg) is the triad homotopy group, together
with the standard actions and the triad Whitehead product
h:my(U,UnV,xq) x ma(V,UnV,xq) - 73(X;U,V,xq), is a crossed
square.

It is worth noting that the crossed complexes'of length

3 are the crossed squares of the form

In this thesis we shall be very much concerned with

crossed squares and their higher dimensional counterparts.

Let d:M - P be a crossed module. Since P acts on M we
may form the semi-direct product MxP. Let s,b:MxP - P be
given respectively by (m,p) - p, (m,p) - (38m)p. The group
MXP acquires a category structure, with s,b the source and
target maps, and with category composition given by
(m,p) o (m',(8m)p) = (mm',p). The crossed module axioms
are equivalent to this category structure making MxP a
category internal to the category’of groups (a result noted
by several people and published in [B-S]).

This suggests how to define a crossed module internal to

other algebraic categories: consider an internal category



objéct C with source and target maps s,b:C - P; the
associated "crossed module" is the restriction of b to
ker s - P. This process is analysed in [L-R,P1l] and in
Chapter 1 of this thesis. In his work on deformation
theory, Gerstenhaber [G] developes a cohomology based on
crossed modules. Also, Lue [Lul,2] (developing the work of
Gerstenhaber and work of Frohlich [F]) uses "crossed
modules" in varieties of algebras. The commutative algebra
version of crossed modules has been used in essence rather
than in name in [L-S], and has recently been shown to be
closely related to Kozul compléxes [P2].

In view of the widespread use of crossed modules in
other algebraic categories, it is reasonable to expect that
notions of higher dimensional crossed modules might also

find use in these other categories.

The equivalence between crossed modules and categories
internal to the category of groups suggests, as a possible
notion of an n-dimensional crossed module, an n-fold
category internal to the category of groups. Indeed, such
n-fold categories have been introduced by Loday [L] as a
model of truncated homotopy types. Loday gives them (or
more precisely, a slightly reformulated version of them)
the name "n-cat-group®; however, we shall follow the more
recent [B-L] and use the more accurate term catl-group.

Given a catN-group G one can fdrm its iterated nerve, an
(n+tl)-simplicial set, whose geometric realisation BG is
called the classifying space of of G. Conversely, any

pointed, connected CW-complex X with 7iX = 0 for i > n+l is



itsélf of the homotopy type of some BG [L].

Recently a van Kampen type theorem has been found [B-L]
for the "fundamental catl-group of an n-cube of spaces".
Here an n-cube of spaces is just a functor, from the n-fold
product of the category associated with the ordered set
0 ¢ 1, to the category of pointed topological spaces.
Clearly catl-groups are a reasonable generalisation of
crossed modules.

In order to apply the n-dimensional van Kampen type
theorem, one needs to compute colimits of catl-groups. For
such computations a more combiﬁatorial version of
catN-groups is required. For n = 1 crossed modules prove to
be sufficiently combinatorial. It turns out that
cat?_groups are equivalent to crossed squares [L], and that
crossed squares are just the version needed for
applications of the 2-dimensional theorem. For higher

dimensions a notion of a "crossed n-cube" is clearly needed.

A striking fact about the algebraic theory of crossed
modules is that many results on crossed modules in groups,
for instance the crossed complex description of cohomology
(see above), carry over to other algebraic categories. (In
fact, the crossed complex description of cohomology was
first given for varieties of algebras (Lul], and then
rediscovered for the case of groups.) It is likely that
(topologically motivated) results.on "crossed n-cubes in
groups" will also carry over to other algebraic categories,
provided that the various algebraic versions of "crossed

n-cubes" exist.



fn Chapter I of this thesis we give several equivalent
notions of a higher dimensional crossed module. Because of
the many different algebraic categories in which these
notions are likely to be of interest, we adapt
P.J. Higgin's definition [H] of a category of groups with
multiple operators, to obtain a fairly general algebraic
category C which we call a "category of fi-groups". We work
in C throughout the chapter. Possible interpretations of C
include the categories of groups, rings (associative or
commutative), and algebras (associative, commutative, Lie
or Jordan). The notions of hiéher dimensional crossed
moduies which we introduce, and prove equivalences between,
are:
(1) n-fold categories internal to C;
(1i) catN_objects in C;
(iii) crossed n-cubes in C;
(iv) n-simplicial objects in C whose normal complexes are
of length 1;
(v) n-fold crossed modules in C.
Crossed n-cubes will be of most interest to us. For n = 1
they are just crossed modules; for n = 2 (and C the
category of groups)'they are crossed squares (see above).
The observation that simplicial groups whose normal complex
is of length 1 are equivalent to categories internal to the
category of groups, is well knoWn and has led Conduché [C]
to the definition of a "crossed module of length 2"; such
a 'crossed module' being equivalent to a simplicial group
whose normal complex is of length 2. It turns out that

there is a functor from crossed squares to crossed modules



of iength 2.

In Chapter II we give detailed descriptions of some low
dimensional crossed n-cubes for C equal to the category of
groups, Lie algebras, commutative algebras, and associative
algebras.

In Chapter III we look at certain colimits of crossed
2-cubes, and obtain non-abelian generalisations of some
standard constructions: let M,N be groups which act on
each other (and on themselves by conjugation); following
[B-L] we obtain a non abelian tensor product MQ N, which
is the group generated by eleménts m®n forme M, n €N,
subject to the relations |

mm' @ n = (Mm' ® Mr)(m @ n),

m@nn' = (m® n)("m @ Pn').
We obtain a non-abelian exterior product M A N (again
originally due to [B-L]), and a non-abelian anti-symmetric
product M A N (a special case of which has been used in
[D]). The Lie and commutative algebra versions of these
constructions are also given. We consider a certain
colimit of crossed 3-cubes (in groups) which leads us to
the definition of a "cubical tensor product”. In addition

the chapter contains various exact sequences involvihg the

non abelian constructions.

The relevance of crossed modules to cohomology has been
mentioned above. Surprisingly,'little work has been done
on the dual situation of crossed modules in homology. In
Chapter IV we show that if N is a group and 8:M - P is a
pProjective crossed module with im 8 = N, then Ha(N) =

ker 8 n [M,M) (this is joint work with T.Porter [E-P]).

10



Thié formula should perhaps be seen as a crossed version of
Hopf's formula for Hz(N). We give a weaker version of the
formula for the case of Lie algebras. It is worth noting
that our methods give a new and simpler proof of the key
lemma 2.1 of [R]. We go on to investigate the link between
crossed squares and homology. Let R - F - G be a free
presentation of a group G. We obtain, by algebraic means,
two isomorphisms Hp(G) = ker(G A G =~ G), H3(G) = ker(F A R
~ F). We combine these new descriptions of H2(G), H3(G)

with certain of the exact sequences of Chapter III to

obtain:

THEOREM If M,N are normal subgroups of a group G such that
G = MN, then there is an exact sequence

73(M A N) = Hz(G) = Hz(G/M) ® H2(G/N) - MnN/[M,N] -

= H31(G) - H1(G/M) + H1(G/N) - 1

where m3(M A N) is the kernel of a canonical map M A N = M.

THEOREM [f, in the preceding theorem, G = N, then we can
extend the exact seguence by two terms:

H3(G) - H3(G/M) - m3(M A N).

These two theorems are originally due to Brown and Loday
(B-L] who obtained them as a corollary to their
3-dimensional van Kampen type theorem. Our proofs are
purely algebraic, and consequently we are able to give the
Lie algebra version of the first theorem. We also give an
analogue of the first theorem in which H3(G) is replaced by

the group H2(G): the group Hy(G) being the group

11



introduced by Dennis [D] as a kind of "second homology
group suitable for algebraic K-theory".

Chapter V is a collection of miscellaneous comments.

12



CHAPTER 1
VARIOUS ALTERNATIVE DESCRIPTIONS OF I[NTERNAL

n-FOLD CATEGORIES

0. INTRODUCTION

We begin this chapter by defining a "category of
N-groups" C. Interpretations of C include the categories
of groups, rings (associative, commutative), and algebras/
(associative, commutative, Lie and Jordan). Thus the
theory of n-groups provides a convenient setting in which
to work. In $2,3,5,6.we introduce, and prove equivalences
between:
(i) n-fold categories internal to C;
(i1) catP-objects in C;
(iii) crossed n-cubes in C;
(iv) n-simplicial objects in C whose normal complexes are
of length 1.
(v) n-fold crossed modules in C.

In $4 we give a result on colimits of crossed n-cubes in C.

1. CATEGORIES OF N-GROUPS

Our definition of a "category of N-groups" is adapted
from ([H].

A pointed set X is said to admit a set N of finitary
Operations if to each w € N is attached a non-negative
integer n = n(w) called its weight and, for this n, there

is a pointed map of sets X" - X from the n-fold product of
X to X.

A pointed set X which admits a set N of finitary

[-1



opefations is called an N-group if the following five
axioms hold:
(i) the set N contains no operations whose weights are
greater than 2; there is precisely one operation (written
0) of weight 0, and precisely two operations (written +, ¥)
of weight 2; there is a prefered operation (written =) of
weight 1;
(ii) the operations 0, -, + satisfy the axioms of a (non
abelian) group;
(iii) for all x,y,z € X, and unitary operations w, we have
w(x *y) = wx * ? = x * wy
(iv) and, provided w is not the prefered unitary operator -,
w(x + y) = wx + wy;
(v) and (y + ) = x = (Y & x) 4 (2 = x),
x * (y+2) = (x*vy)+ (x*z).
A morphism of N-groups is a set map which preserves the
operations. Any category whose objects are N-groups for
some fixed N1, and whose morphisms are precisely the

morphisms of N-groups, will be called a category of

f1-groups.

EXAMPLE(1.1.1) Let n = {0,-,+,*}. Then the category of

groups is a category of N-groups in which the operation *
i.¢, has constant value 0D

is trivialL The category of rings is a category of

fi-groups in which the operation * is non trivial.

EXAMPLE(1.1.2) Let A be a commutative ring (with unit) and
let n = {0,-,+,*} U {a € A}. Then the categories of

associative, commutative, Lie and Jordan algebras over A

[-2



are categories of N-groups. m wl\'-c\k a€® i scalur Mu“"'Pl';-“,‘ﬂ.“-

EXAMPLE(1.1.3) A categorf of interest (in the sense of
Orzech [0]) which has only two binary operations is a
category of N-groups. We could equally well work with a
notion of N-groups which allows more than two binary
operations, but have no examples to motivate this

generalisation.

EXAMPLE(1.1.4) We note that an n-group has precisely one
operation of weight 0. Thus, for instance, the category of

associative rings with unit is not a category of N-groups.

For the remainder of this chapter we fix a category C of

fN-groups.

2. CATR_.OBJECTS IN C
Recall that a category internal to C consists of: a
pair of objects G,P in C; and four morphisms s:G ~ P, b:G
= P, i:P » G, 0:GXpG = G (here GXpG = {(x,y) € GXpG : bx =
sy}) such that;
(1) si = bi = identity;
(1i) (isx) o x = x, x o (ibx) = x;
(iii) s(x o y) = sx, b(x o y) = by;
(iv) x o (yoz) = (xo0y) oz;
(whenever these last two equations are defined).
A map of categories internal to C is a pair of structure

preserving morphisms ¢:G -~ G', ¥:P - P'.

I-3



ﬁote that, since the category composition o is a
morphism in C, for (u,v), (x,y) € GXpG we have
(1) (uov) + (xo0y) = (u+x)o (v+y)
(2) (uov) * (xo0y) = (u*x)o (v*y).
Also we can write the category composition in terms of the
group structure on G, since
(3) uwuov = (ibu - ibu + u) o (v + 0)

= ((ibu) o v) + ((-ibu + u) o 0) (by 1)

= v - ibu + u.

Suppose now we are given an'arbitrary triple of
morphisms 8:G -~ P, b:G » P, i:P - G in C which satisfy si =
bi = identity. For (u,v) € GxpC we can define uovs=
v - ibu + u. It is readily seen that this partial
operation, together with the three morphisms, constitute a

category internal to C if and only if equations (1) and (2)
hold. But we have:

equation (1)

2 (v - ibu + u) + (y - ibx + x)

= Vv+y - ibx - ibu + u + x

= (-ibu + u) + (y -~ isy)

= (y - isy) + (-ibu + u).
Let ker s, ker b be the kernels of s,b, and denote by
[ker b, ker s] the subobject of G generated by the
commuator elements p + g - p - g with p € ker b, q €
ker s. Then equation (1) states precisely that
[ker b,ker 8] = 0. Under the assumption that

[ker b, ker s8] = 0, we also have:

-4



eéuation (2)

= (v - ibu + u) * (y - ibx + x)

= (v ¥ x) - (ibu ¥ ibx) + (u * x)

g ((v - isv) * (x - ibx)) + ((u - ibu) * (y - isy))

= 0.
Denote by <(ker b,ker s>x the subobject of G generated by
the elements p * q, g * p with p e.ker b, q € ker 8. Then

equation (2) states precisely that <ker b, ker sd>x = 0.

We are thus led to
DEFINITION(1.2.1) A catl-objeét G in C consists of: an
object G in C and a subobject P of G; and two morphisms
8,b:G = P such that;
(i) slp = blp = identity;
(ii) and [ker b, ker 8] = 0, <(ker b,ker s8>x = 0.
A map of catl—objects is a morphism ¢:G -~ G' such that ¢s =
s'¢ and ¢b = b'¢.

We have immediately
PROPOSITION(1.2.2) There is an egquivalence of categories,
(catl-objects in C) « (categories internal to C).

We now aim to generalise this proposition.

DEFINITION(1.2.2) A catD-object G in C‘consists of a
family of catl-objects in C, si,bj:G = Py, 1 < i < n, such
that |

(1) 8383 = sysj, bjby = bjbj, and sjby = bysj (i # J).
(Here 8ijsy is the composition of the map sy with the map
obtained by restricting sj to Pj.)

1-5



A mép of catR-objects is a morphism ¢:G - G' such that ¢sj
= gij'¢ and ¢bj = bj'd.

The notion of a catl-group is due to Loday [L], although
he used the term "n-cat-group”. The term "catl-group" is

used in [B-L].

The definition of a category internal to C can be
restated in purely categorical language. More precisely,
axioms (ii),(iii),(iv) can be replaced by
(ii)' so = s7,, bo = bwr, (where mi:GxpG - G is the ith
projection); |
(iii)*' o(ixo) = o(o0X1):GXpGXpG = G;

(iv)' o(1xib) = o(isx1l) = 4o

Thus for an arbitrary category C' we can form the category
CTl(C') of categories internal to C'. Inductively we
define the category CcTN(C') of n-fold categories internal

to C' to be the category cT™(C') = cTl(CcTn-1(C*)).

PROPOSITION(1.2.3) There is an equivalence of categories,
(catN-objects in C) « (n-fold categories internal to C).
PROOF We have already proved the proposition for n = 1.
Assume it is true for a particular value n. Then there is
an equivalence, CcTRtl(C) « CTl(catn-objects in ¢). So we
need to prove an equivalence between CTl(catn-objects in C)
and (catPtl-objects in C).

Suppose given a category internal to the category of
catN-objects in C. Thus we have four maps s,b:G ~ B, i:P -
G/ 0:6xpG - ¢ of catP-objects. Suppose that the catPh-

object G consists of maps 8i,bj:6 - Pj, 1 < i < n. We
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obtain a catP*l-object from G by setting Pis] = P the
underlying group of P, and setting sj4+1 = 8, bj+1 = b.

Conversely suppose given a catn+1—object which consists
of the maps sj,bj:G = Pj, 1 € 1 € n+tl. Let G' be the
catN-object consisting of the maps sj,bj:G » Pj, 1 < i <
n. Let P' be the catR-object consisting of the restricted
maps 8ilPn41/PilPr41°PRe1 - PinPn+ir 1< i< n. Then the
maps sn+l.bn+1:¢' - P', together with the inclusion P' - G'
and the map G'xp'G' - G' given by (u,v) = v - bpsju + u,
constitute a category internal to the category of
catl-objects in C. |

This correspondence between categories internal to the
category of catl-objects in €, and catPtl-objects in C,

gives rise to a pair of quasi-inverse functors. v

3. CROSSED n-CUBES IN C
Our aim now is a definition of a "crossed module in C"
(we shall also use the term "crossed l-cube in C"), and a

proof that such a gadget is equivalent to a catl—object in
cC.

Suppose that we are given a split, short exact sequence
Ml g é P in C. Thus M,G,P are N-groups; the maps ig,1
are injective (and so we consider M,P to be subobjects of
G); and M = ker s, and si = identity. Let atra*ra*°:pxM -
M be, respectively, the functions

(pm) = (P*)Jm = p+m-p,

(pm) »~ (P*)m = p *m,

(pm) = (P*°)m = m x p.



A triple of functions obtained in this manner will be

called a C-action of P on M.

Suppose now we have an arbitrary triple of functions PxM
=+ P, denoted by at,e*,a*® (we are not assuming that these
functions are a C-action). The underlying set of MXP can
be made to admit the set N of finitary operations (recall
that C is a category of N-groups) by defining:

(m,p) + (m',p') = (m+ (P¥)m',p + p'),

(mp) * (m',p') = ((m*m')+ (PIm' + (P'*Im,p * p"),

-(m,p) = (~6P*)m,-p), |

w(m,p) = (wm,wp) for each unitary operation w except -.
The resulting N-group is the semi-direct product of M with

P and will be denoted MxP.

PROPOSITION(1.3.1) Let M,P be objects in C and let
a*,a*,a*°:PxM ~ M be three functions. These functions are
a C-action if and only if the semi-direct product MXP is an
object in C.

PROOF If the functions are a C-action then they are
derived from a split, short exact sequence M -~ G & P, and C
is isomorphic to MxP. Conversely, if MxP is an object in
C, then the functions are a C-action since they are derived
from the sequence M 30 MxP é P where igm = (m,0), ip =

(0,p), s(m,p) = p. v

This proposition is essentially due to Orzech [0O]. As

an application we give

EXAMPLE(1.3.2) Let C be the category of multiplicative
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gréups with identity e, let M,P be groups, and let at:PxM -
(r,m) = Tm

MLbe a function (we assume that both a*,a*°:PxM = M are the

zero map). In the semi-direct product MxP multiplication

is given by (m,p)(m',p') = (mPm',pp'), the identity is

(e,e), and (m,p)~1 = (P—lm"l,p'l). It is routine to check

that MxN is a group if and only if

(1) ©®m = m,

(i1) P®P'm) = (pPp'Im,

(ii) P(@mm') = (Pm)(Pm'),

for all m,m' e M, p € P. Thus in this case a C-action

coincides with the usual notion of a group action.

We can now state the crucial
DEFINITION(1.3.3) A crossed module in C (or a crossed
1-cube in C) consists of: a pair of objects M,P in C; a
morphism 3:M - P; and a C-action of P on M, such that;
(1) a((P¥)Jm) = p + am - p,
3((P*)m) = p * am,

3((P**Im) = am * p;

(i1) (3m)p' = m+ m' - m,
(3m¥*) o = m*m',
(dm*° )y = v % m;

for m,m' € M, p € P.
A map of crossed modules is a pair of morphisms ¥:M - M',

¢:P - P' such that 3'y = ¢3 and y((PWim) = (#PW)ym for

Y

W = +'*'*°.

When C is the category of groups this definition reduces

to the classical definition of a crossed module [W1l]. The

[-9



~definition also reduces to give the algebraic cases of a
crossed module defined in [L-R]. Our general notion of a
crossed module is essentially the same as the one given in

(P3].

PROPOSITION(1.3.4) There is an equivalence of categories,

(crossed modules in C) = (catl-objects in C).

PROOF Suppose given a catl—object 8,b:G » P. Conjugation

and multiplication in G give rise to a C-action of P on

ker s. The restriction of b to ker 8 ~ P clearly satisfies
axiom (1.3.3.i). We must check axiom (1l.3.3.1ii).

Suppose now we are given a crossed module d:M - P. We
can construct two maps s',b':MxP - P by defining s'(m,p) =
p, b'(m,p) = (dm)p. Axiom (l.3.3.i) ensures that b' is a
morphism in C. The maps s',b' clearly satisfy axiom
(1.2.1.1i). We must check axiom (1.2.1.ii).

We shall show that axiom (1.3.3.ii) is equivalent to
axiom (1.2.1.ii). Let x € ker 8', y € ker b'; then x =

(m,0), vy = (-n,3n) for some m,n € M. We have:

axiom (l.2.1.1i%)

Xty = vy +x
= x*y=0

y ¥*x = 0

(m - n,8n) = (-n + (3n+)p 3n)
= (~(m * n)y + (3n*°)m,0) = (0,0)
(=(n * m) + (3*)m,0) = (0,0)
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n+m-n = (8n+)n
= m*n = (8n*°)pn

n*m = (3n¥)p
= axiom (1.3.3.i1).

We have thus given a correspondence between crossed
modules in C and catl-objects in €. This correspondence

gives rise to an equivalence of categories. v

We can combine propositions'(l.Z.Z) and (l1.3.4) to
obtain an equivalence between categories internal to C and
crossed modules in C. For C equal to the category of
groups this equivalence has been known for some time; it
first seems to have appeared in print in [B-S]. The
equivalence is given in [L-R] for C equal to various common
algebraic categories. Porter [P3] gives the equivalence in

the general setting of a category of groups with multiple

operations.

We now aim for a definition of a "crossed n-cube in C"
and a proof that such a gadget is equivalent to a

catN-object in C. We begin by generalising the notion of a

C-action.

DEFINITION(1.3.5) An n-fold split short exact sequence in
C (abbreviated to n.s.s.e.s) is an object ¢ in C together

with n subobjects Pj and endomorphisms sj:¢ - Pj, 1 € i <
n, such that sjp; = >::%y -

identity.and 3 = 855
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éo a 0.s.s.e.s. is just an object in C; a l.s.s.e.s. is
the standard notion of a split, short exact sequence.

In order to handle n.s.s.e.s.'s we introduce some
notation. Let Inl denote the set {1,2,...,n}, and let Tinl
be the poset consisting of the subsets of Inl. For each ¥
€ I'lnl, let ' = Inl \ 7. Let the largest number in ¥ be
denoted max v. Let 1g,tn:Tin-11 - I'inl be the poset maps

given respectively by ¥ = ¥, v = yu{n}.

Suppose we are given an n.s.s.e.s. as above. For each ¥
€ TInl construct the multiple'intersection
Yy = (Njeyker s8j) N (Njey'Pji).
Thus if n = 1, we have Y{l} = ker s}, ¥§ = P;. If n = 2,
we have Y{1l,2} = ker s} n ker s3, Y{l} = ker s1 n P2,
Y{2} = ker s3 n Py, Y§ = Py n P3.

PROPOSITION(1.3.6) If ¥1 © 72 € T'inl, then there is a
C-action of Yyy on Yv3. |

PROOF For each x € ¥Yy], y € Yy define (X¥)y = x + y - x,
(x*)y = x * y, (X*°)y =y * x. [t is readily seen that
(x+)y, (x*)y, (X*°)y ¢ Yya. Vv

We also have
PROPOSITION(1.3.7) Let v1,¥2 € Tinl be such that v1 ¢ 2,
¥2 ¢ v1. Then there are three functions ht,h*,h*°:Yy] X
Yyy -« Y(vj1uvy) given, respectively, by (x,y) » x +y - x -
Yr (X,¥) ~ X ¥y, (X,) ~y *x. V¥



Note that there are also functions h+',h*',h*°':
Yyy x Yyy = Y(vauv1), and that h*(x,y) = -h*'(y,x),
h*(x,y) = h*°'(y,x), h*°(x,y) = h*'(y,x).

In the light of propositions (1.3.6),(1.3.7), and this
last observation, we make the following
DEFINITION(1.3.8) ‘An n-action ¥, n # 0, consists of:
(a) an object Yy in C for each v € T'inl;
(b) three functions a*,a*,a*°:le X Yyo = Yyz for each v)
c v2 € Tlnl;
(¢) three functions h*,h*;h*°:Y73 X Yyq = ¥Y(v3Uvg) for
each 73,74 € Ilnl such that v3 ¢ v4, 74 ¢ v3 and
max(r3\(r3nNv4)) < max(v4\(r3nrq)):
An n-action which is derived from an n.s.s.e.s. will be

called a C-n-action.

For n = 0, a C-0O-action is just an object in C. For n =
1, a C-l-action is just a C-action. For n = 2, a 2-action
consists of four objects Y{1,2}, Y{1l}, ¥{2)}, Y§ together
with three functions a*,a*,a*':le X Yya - Yyz for each v)
< 72, and precisely three functions h*,h*,h*°:¥{l} X Y{2} ~
Y(1,2}.

Given a l-action at,a*,a*°:PxM ~ M we can construct a
O-action by forming the semi-direct product MxP. The
l-action is easily retrieved from the 0O-action. More
generally, given an n-action ¥ we can construct an

(n-l)-action RY without loosing information. The details

are as follows.
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Suppose given an n-action Y. Recall the poset maps
tortnp:f'in-11 = rinl. For each 7 € I'in-1ll define

RYy = Yipy X YiQ7.
For each v] € v € I'in-11 we can construct three maps
a*,a*,a*°: RYy1 X RYy2 = RYy2 as follows: set

L = Yuarv2,

M = Y072,

N = Yiqvy,

P = Yiovy:
thus RYy) = NXP, RYy) = LxM; it is readily seen that there
are three functions ht*,h*,h*°:MxN - L and that, for each
(n,p,1,m) € RYy] X RYy3, we can define

at(n,p,1,m) = ((M¥)((PH)1) - h+((P*)m,n), (PYIm),

a*(n,p,1,m) = ((M*)1 + (P¥)1 + h*°(m,n), (P¥)Im),

«*°(n,p,1,m) = ((M*°)1 + (P*°)1 + h*(m,n), (P*°)Im).
For each 73,74 € T'In-1l| such that ¥3 ¢ ¥4, 74 ¢ 73,
max (v3\(v3n7v4)) < max(v4\(r3Nv4)), we can construct three
functions h*,h*,h*°:RYy3 x RYyq = RY(y3Uv4) as follows: set

K = Yuin(v3zurg),

L = Yunvs,
M = Yunvs,
N = Yig(r3urg),
P = Yiqv3,

Q = Yuiors:
thus RYy3 = LXP, RY74 = MxQ, RY(¥3Uyq) = KxN; it is
readily checked that there are six triples of functions
h*,h*, h*°:0XL ~ K,
h*,h* , h*°:pxM - K,

h*,h*,h*°:LxM - K,
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ht,h*,h*°:NxL - K,
ht,h*,h*°:NxM - K,
h+'h*'h*°:PxQ - NI

and that for each (l,p,m,g) € RYy3 X RYy4 we can define

h+(1rprm'Q) =
((1)n*(p,m) + h*(1,m) - (M)h¥(h*(p,q),1)
- n¥(h*(p,q),m) - (W¥(P,@)+) ((mH)nt(q,1)), h*(p,q)),

h*(erlmrq) =
(h*(1,m) + h*(p,m) + h*°(q,1), h*(p,q)),

h*o(llprmrq) =

(n*°(1,m) + h*°(p,m) + h*(qg,1), h*"(p,q)).
We have thus completed the construction of RY.

PROPOSITION(1.3.9) An n-action ¥, n » 1, is a C-n-action
if and only if RY is a C-(n-1)-action.

PROOF Suppose Y is a C-n-action. Then Y is derived from
some n.s.s.e.s. which consists of maps s{:G ~ Pj, 1 € 1 <
n, say. It is routine to check that RY is derived from the
(n-1).s.s.e.8. consisting of the maps s8j:G - Pj, 1 € i <
n-1.

Conversely, suppose RY is a C-(n-1l)-action which is
derived from a (n-l).s.s.e.s8. consisting of the maps 83:G =
Pi, 1L € 1 € n-1. For each v € I'in-11 the object RYy is a
semi-direct product; these semi-direct products give rise

to a semi-direct product structure on G, say G = GpXGp. By
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setting sn:G -~ Gg equal to the canonical projection we

obtain an n.s.s.e.s. from which Y is derived. \'4

In Chapter II we use this proposition to obtain explicit
descriptions of C-n-actions for specific choices of C and

low values of n.

We are now in a position to make the main definition of
this section. _
DEFINITION(1.3.10). A crossed n-cube in C consists of a
contravariant functor Y:Tlnl ; C and an n-action structure
on the set {Yy : v € I'lnl} (where Yy denotes the image of
Y under Y), such that:
(i) the n-action is a C-n-action;
(1i) for each 73 © 73 € I'inl the C-action of Yy} on Yy3 is
via the map Yyy =~ Y¢ (in fact we shall assume that for any
Y:¥' € T'lnl, there is a C-action of Yy on Yy' via the map
Yy - ¥@);
(iii) for each y) € ¥2 € Tinl, the map Yy2 = Yy] is a
crossed module, and it preserves the actions of Y{;
(iv) let ¥3,74,75,76 € I'inl be such that ¥3 2 v5, 74 2 76,
Y3 ¢ va, va ¢ v3, v5 ¢ v, vp ¢ ¥5 and max(y3\v3nva) <
max(v4\73Nv4); thus we have maps 83:Yy3 ~ Yvg, 04:Yyq -
Yyg, 8:Y(v3U74) = Y(¥sUvg) (we are allowing the possibility
that certain of these maps may be identity maps) and
functions h*,h* ,h*°:Yy3xYyq - Y(y3Uv4); then
sh*(x,y) = ht(63x,84y)
8h*(x,y) = h*(83x,84y) if max(vs\v5nye) < max(vg\vsnvg),
8h*° (x,y) = h*°(63x%,04y)
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eh*(x,y) = - ht(64y,03x)
6h*(x,y) = h*°(84y,03%)
oh*°(x,y) = h*(84y,83x)

if max(vg\rsnNve) < max(vs\vsnNve);

(v) for each 73,74 € Tinl such that v3 ¢ v4, 74 ¢ v3 and

max (v3\v3n74) < max(v4\r3Nv4), the functions

ht,h*,h*°:Yy3 x Yyq -~ Y(7v3Ur4) and the morphisms 8:Y(v3Uv4)

= Yy3, 8':Y(v3Uvg) - Yvq satisfy

eh*(x,y) = x - (Yt)x,

oh*(x,y) = (¥Y*°)x,
oh*°(x,y) = (¥¥)x,

6'ht(x,y) = (xH)y -y,

6'h*(x,y) = (x¥)y,
O'h*o(x,}’) - (x*o)y;

(vi) and also

h*t(6z,y) = z - (YH)z,

h*(6z,y) = (¥Y*°)gz,
h*°(6z,y) = (¥¥)g,

h*t(x,8'z) = (x¥)z - z,

h*(x,6'z) = (x*)z,

h*°(x,8'z) = (x*°)z;

for all x € Yv3, Yy € Yvq, z € Y(v3Urg).

A map ®:Y -~ Y' of crossed n-cubes is a family of structure

preserving morphisms {¢y:¥y =~ Y'vy}.

We shall frequently use the term crossed module instead

of crossed 1-cube, and crossed square instead of crossed

2-cube.,

For many practical purposes axiom (1.3.10.i) is not

combinatorial enough. The fact that ¥ is a C-n-action
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needs to be expressed in terms of rules governing the
various "h" functions (cf. the description of a crossed
square of groups, i.e. a crossed 2-cube in the category of
groups, which is given in the introduction). In chapter II
we will give such a combinatorial description of crossed
n-cubes for various particular choices of C and low values

of n.

PROPOSITION(1.3.11) There is an equivalence of categories,
(croésed n-cubes Iin C) o« (cathl-objects in C).
PROOF The proposition is trivial for n = 0, so let n > 1.
Suppose given a catll-object consisting of the maps
8i,bj:G - P§, 1 £ i < n. The maps 83, 1 € i € n,
constitute an n.s.s.e.s. and thus give rise to a C-n-action
Y. Given 71 € v € rinl satisfying ¥2\71 = {(k} for some k,
axiom (1.2.1.1) and the commuég;ity conditions of a
catN-object ensure that the morphism bx:G - Pk restricts to
a map Yy + Yyi, and that the resulting diagram is
commutative. Thué Y is a contravariant functor from Tinl
to C. It is readily verified that Y is a crossed n-cube.
Conversely, suppose given a crossed n-cube Y.
Considering Y as a C-n-action, we can construct a
C-(n-1l)-action RY (see above). This construction can be
extended to give a contravariant functor RY:l'in-1l - C
since, for each v] € ¥3 € I'in-11, the maps dn:Yinv2 -
Yinvl, 60:Yigy2 = Yigyl in the image of Y give rise to a
morphism RYvy3 - RYv)l, (x,y) = (8nX,0qay).
CLAIM The functor RY is a crossed (n-1)-cube.

The verification of this claim is routine and we omit
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it. Note that by iterating m times ,1 < m < n, the
construction R we obtain a crossed (n-m)-cube gﬁz say.

For 1 £ i <n let 6§':{1,...,n} = {1,...,n} be the set
map which interchanges i with n and leaves the other
elements of {1l,...,n} unchanged. This map 6i' induces an
endofunctor 6i:I'lnl - I'inl. The composite functor ¥Y6j is
clearly a crossed n-cube. We can thus construct the
crossed l-cube 52:}191, or the equivalent catl-object
8i,bj:RP~1ye (1} x RP~1ypi¢ - RP~lyei@. For convenience
let G = RP-lyg {1} x RN-lyei@d, and let Pj = RP-lys;f. We
shall show how the n such catléobjects combine to form a
catN-object.

For each v € T'inl there is a canonical inclusion Yy -
Gi. There is also an isomorphism ¥j:CGp - Gj whose
restriction to Yy - Yy is the identity. Let Pj' = wi‘lPi
and let sj',bj':Gp = Pi' be the composite maps sj' =
¥i~lsiwi, bi' = ¥i~lbi¥i. For each x e Yy we have 8i'84'x
= 84'sj'x, bj'by'x = by'bj'x, bi'sy'x = 8y'bi'x (i # 3J).
Hence the maps sji',bj':G = Pj', L < i € n, constitute a
catN-object.

We have thus given a correspondence between catM-objects
and crossed n-cubes. This correspondence gives rise to an

equivalence of categories, completing the proof. v

As an illustration of the equivalence between crossed
n-cubes and catM-objects we give the following
EXAMPLE(1.3.12) Suppose given a crossed square in groups
(as described in the Introduction):

[-19



with h:MxN = I,. Form the semi-direct products LxM, NxP and
define a group action of NXP on LXM by (n,P)(1,m) =

(N(P1) h(Pm,n)~1l, Pm). The maps s3,bz:(LXM)X(NXP) =~ NXP
given respectively by (1,m,n,p) = (n,p). (1,m,n,p) -

(A1 ™n, (6m)p) constitute a catl-group.

Now the above diagram of groups together with the
function h':NxM - L, h'(n,m) -'h(m,n)‘l, is also a crossed
square. Thus we can similarly form a catl-group
S1,by: (LXN)X(MxP) -~ MxP.

Let Gz = (LXM)X(NXP), G1 = (LXN)x(MxP), Pp' = NxP, P1' =
MxP (we consider P1',P3' as subgroups of G2). There is an
isomorphism y3:63 - 63, (1,m,n,p) - (lh(m,n),n,m,p). Let
s1',b31':G62 ~ P1' be the composite maps s;' = Vl‘lslvl, by!
= Vl“lblvl. The four maps s31',b1',s82,b2 constitute a
catz—group.

4. ON n-PUSHOUTS OF CROSSED n-CUBES

The computation of colimits of crossed n-cubes (in the
category of groups) is of relevance to the higher
dimensional van Kampen theorem of [B-L]. 1In this section

we look at one particular type of colimit which, following

Brown and Loday, we call an "n-pushout”.

The following definitions will appear in [B-L2] (see

also [Wal). Let C' be an arbitrary category. An n-cube in
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d' is a contravariant functor Y' from 'inl to C'. An
n-corner in C' is a contravariant functor Y from Plnl\ﬁ to
C'. (Here I'ini\@ denotes the poset I'lnl with the empty set
removed.) Suppose colim Y of such a corner exists. Then Y
and the natural transformation ¥ -+ colim Y define an n-cube
Y' in C'. The object colim Y is called the pushout of the

corner ¥, and Y' is called an n-pushout in C'.

It will be convenient to have some functors from crossed
n-cubes to crossed m-cubes m # n.

For L <1< n let Inlj =A{1,2,...,n}\{i} and let Tlinlj
be the poset consisting of the subsets of Inij. The map
in-1l - Inlj{ which takes j to j for 1 < j € i-1, and j to
J+1 for i € J € n-1, induces an isomorphism of posets
h:Cin-11 » rinlj. There is a canonical inclusion {:Tinlj -
I'lnl. Given a crossed n-cube Y:T'Inl - C, we can restrict

to obtain a crossed (n-1)-cube 3iy = Y{h:rin-11 - C.

Given a crossed (n-l)-cube Y in C, let 111 be the unique
crossed n-cube such that airly = Y and Yy = 0 whenever i €
v € TInl. Let ¢1Y be the unique crossed n-cube with 3igiy
= Y and Yy = Y(¥\(i}) whenever i € ¥ € I'lnl and where: the
map Yy - Y(y\{i}) is the identity; and whenever i € 7] ©
Y2 € Tlnl the map Yy ~ Yy] is the same as the map
Y(ra\{1}) - Y(vi\{i}).

The constructions ai,ri,ei are functorial.

Let Y be an n-corner in the category of crossed

n-cubes. So for each 8 € I'Ini\§ we have a crossed n-cube
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Xﬂ.‘ For ¥ € Tinl we shall denote by Y8y the image of ¥
under YgB.

L.et us suppose that Y8y is trivial whenever the
intersection 8 n ¥y is non empty. For all 81, 82 € T'linl
such that the intersections 81 n v, Bp n v are both empty,
let us suppose that Y831y = YB2y and that the maps from Y8317
are the same as those from YA)y7y.

Let us also suppose that all maps of crossed n-cubes in

the corner Y are the canonical inclusions. Then

PROPOSITION(l1.4.1) Let x:rlnllﬂ C be a crossed n-cube.
The following conditions on Y are equivalent:

(i) Y = colim Y is the pushout of the corner ;. Y:
(ii) for 1 € i € n we have

(a) alily = alily(i} and,

(b) given any other crossed n-cube Y' satisfying a{ily' =
a{i}y(i}, the identity maps Yy - Y'y, for Inl # ¥ € Tinl,
extend uniquely to a map of crossed n-cubes ¥ - Y',

PROOF For 1 € i < n the functor 8l has as left and right
adjoints the functors 7i,¢1i. Hence al preserves colimits,
and it follows that (i) implies (ii.a). The rest of the

proof is trivial. v

For C the category of groﬁ?s and n = 2, this proposition
is given in [B-L]. Our proof{%ust a generalisation of the
one given there.

To illustrate the proposition, take n = 2. Then the
following two statements are equivalent:

(1) the diagram of crossed squares in C (i.e. crossed
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Z—Cﬁbes in C)

0 - 0O 0 - N

: ! -t ! Lot

0O . P 0 - P
Lo '

0 - O L - N’

: i -~ ! g

M 08P M' O p!

in which (,t' are the canonical inclusions, is a pushout;

(ii) M' =M, N' = N, P' = P and, given any crossed square

L' . N
! Lo
M JOp

there is a unique morphism a:L -~ L' such that the quadruple

(a,1M,1N,1p) is a map of crossed squares.

5. n-SIMPLICIAL OBJECTS IN C

We shall now show that catPR-objects in C are equivalent
to certain types of n-fold simplicial objects in C, thus
highlighting the fact that simplicial techniques are

applicable to the theory of higher dimensional crossed

modules.
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Let €' be any category. Recall that a simplicial object
K4 in C' consists of a family Kn, n 2 0, of objects in C'
and morphisms dj:Kpn = Kp-1, Vi:Kpn = Kp41r 0 € 1 € N,
satisfying:
(i) djdy = dy-1dj 0<i<3j<n+l,
(1i) vivy = Vy+1Vvi 0<i<j<n-1,
(1ii) djvy = v4-14i i< 3,

divy = vydj-1 i > j+1,
djvy = identity i=3jor j+l.

A map ¥:Ky4 - Kg'of simplicial objects is a family of
structure preserving morphismé ¥n:Xn - Kn'. Suppose that
the category C' has kernels. Then recall that the normal
complex of a simplicial object Ky is obtained by taking for
each n the subobject iElker dj of Kpn; the restriction of dg
to this subobject is the differential of the complex. The
complex is said to be of length r if it is non-trivial in
dimension r and trivial in each dimension greater than r.

We shall denote by sMPlc' the category of simplicial
objects in C' whose normal complexes are of length 1.
Inductively we define SMPNC' = SMPl(sMPN~1c'). An object
in sMPRC' will be called an n-simplicial object in C' whose

normal complexes are of length 1.

PROPOSITION(1.5.1) There is an equivalence of categories,
(n-simplicial objects in C whose normal complexes are of
length 1) « (catR-objects in C).

PROOF We shall first consider the case n = 1. Suppose
given a simplicial object K4 in C whose normal complex is

of length 1. By restricting to dimensions 0,1 we obtain an
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inclusion Kg -~ Kj and two maps dg,d3:K3] - Kg. Axiom
(1.2.1.i) is clearly satisfied. 1In order to verify axiom
(1L.2.1.i1) let x € ker dj, y € ker dg. Then

x+y-x-y = do(vox + vgy - V1Y - vox + viy - voY).

x *y = dg(vox * (voy - V1Y)),

y *x = do((voy - v1y) * vox).
It is now a simple matter to check that the elements

_ image o} the

XxX+y-x-y, x ¥y, y* x all lie in thelintersection
ker dy n ker dz and are hence trivial. Thus dp,d1:K1 =~ Kp
is a cat1~object.

Conversely suppose given a Catl—object s,b:G - P. By
taking the nerve of the associated category we obtain a
simplicial object Ner(G,P). That is Ner(G,P)pg = P,
Ner(G,P); = G, Ner(G,P)n = {(glsr..-+9n) € G" : bgj =
89i+1}, and the maps are:

di(gl:--o:gn) =

bgy . i=0, n=1
sg1 . | i=1n=1
(92+--+rgn), | i=1,nd>1
(91,-..,91-1,9i+1 - bgi + gi,9i+2¢---+9n), 1 < i ¢ n
(91r-..9n-1). ‘ i=n, nd>l

Vi(gl,...,9n) =
(8g1/91s---¢Gn)+ i=0
(91r--.91/bgirGi+1r---+Gn)¢ i 3 n.

(Recall that gj4+1 - bgy + gy is the category composition

9i © gi+1.) The normal complex of Ner(G,P)y4 is of length 1.
We now consider the case n » 1. Suppose giveh an

n-simplicial object in C whose normal complexes are of

length 1. By restricting to dimensions 0,1 we have, for
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"eaéh of the n directions", an associated catl—object. The
n such catl-objects clearly satisfy the commutativity
conditions of definition (l1.2.2) and thus constitute a
catN-object.

Conversely suppose given a catP-object consisting of the
maps sij,bj:G » Pj, 1 € 1 € n. By taking the nerve of the
category associated to the catl-object sj,b1:G - Pj we
obtain a simplicial object Ner(G,Pl)# whose normal complex
is of length 1. Now the catl-object sz,bz,:G = Py induces
a category structure on Ner(G,P1)#. By taking the nerve of
this induced category structure we obtain a 2-simplicial
object whose normal complexes are of length 1. Iterating
the process we obtain an n-simplicial object whose normal
complexes are of length 1.

This correspondence between catl-objects in C and
n-simplicial objects in C whose normal complexes are of

length 1, gives rise to an equivalence of categories. A4

Proposition (1.5.1), for C the category of groups and n
= 1, is given in [L].

6. n-FOLD CROSSED MODULES

A crossed n-cube is, in some sense} equivalent to an
"n-fold crossed module", i.e. a "crossed module in the
category of (n-1)-fold crossed modules". A precise
definition of an "n-fold crossed module" is desirable since
it will enable inductive arguments to be applied to crossed

n-cubes.

In this sectioh we give a definition of an "n-fold
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cfossed module in C", and we outline a proof that such an

entity is equivalent to an n-fold category internal to C.
Let C' be an arbitrary category with kernels and a null

object 0. |

DEFINITION(l1.6.1) A 1-fold crossed module in C' consists

of:

(a) an object E in C' with two subobjects M,P;

(b) four morphisms a:M - P, s:E - P, v:E = PxP, n:MxM - E

such that;

(i) M = ker 8 and the restriction of s to P is the

identity; |

(ii) the diagram}

(1p,0) (1p, 1p)

PXP

is commutative and;

(iii) the diagram

(1M,0) (1M, 1M)

M MxM M

i ‘77 la

M - E - P
is commutative.
A map of 1l-fold crossed modules is a structure preserving

morphism ¥:E - E'.
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Essentially this definition is given in [Pl] for C' the
category of groups, and in [AG] for C' a category of

interest.

PROPOSITION(l1.6.2) There is an equivalence of categories,
(crossed modules in C) =« (l-fold crossed modules in C).
PROOF Suppose given a crossed module d:M - P in C. Then
set E =MxP, let s:MXP - P be the map s(m,p) = p, let v:MxP-
-~ PxXP be the map v(m,p) = (8mp,p), and let m:MxM - MxP be
the map v(m,m') = (mm"l,am').

Conversely suppose given a.l—fold crossed module. Then
there is a map d8:M ~ P, and the split short exact sequence
M- EZ P gives rise to a C-action of P on M.

[t is readily seen that axioms (1.6.1,ii,iii) are
equivalent, respectively, to axioms (1.3.3,1i,ii). So we
have a correspondence between crossed modules in € and
l-fold crossed modules in C; this gives rise to the

required equivalence of categories. v

DEFINITION(1.6.3) An n-fold crossed module In C', n > 1,
is a 1-fold crossed module in the category of (n-1)-fold

crossed modules in C.

In order to prove the n-dimensional version of
proposition (1.6.2) let us digress for a moment, and recall
some results on algebraic theories. A general reference

for this digression is [S]

The category C of N-groups is an algebraic category and
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so, for any category B with a terminal object, we can form
the category C(B) of N-groups over B. For example, when C
is the category of groups and B is the category of pointed
topological spaces, then C(B) is the category of
e et hens and w moll olicdh.

?Let us denote by XP(C(B)), CTR(C(B)) respectively the
category of n-fold crossed modules in C(B) and the category
of n-fold categories internal to C(B). The objects of both
of these categories are many sorted, partial algebraic
theories over B.

Let A(B) be an arbitrary category of many sorted,
partial algebraic theories over B. Let B be the category
whose objects are the funétors from BOPP to the category of
sets, and whose morphisms are the natural transformations
of such functors. The Yoneda embedding induces an
embedding (:A(B) - A(B).

There is a canonical equivalence x:A(B) « (A(sets))BPPP,
where (A(sets))BoPp is the category of functors from BOPP
to the category A(sets), and natural transformations of

such functors.

We can now prove

PROPOSITION(1.6.4) There is an equivalence of categories,
(n-fold categories in C(B)) == (n-fold crossed modules in
C(B)).

PROOF First let us consider the case n = 1. There is a

diagram of functors



crl(c(B)) -t crl(c(B)) -% (crl(c))Bopp

')

xl(c(B)) t' xL¢c(B)) x' (x1l(c))Bopp

in which (,t' are the Yoneda embeddings, k,k' are the
canonical equivalences, and A\ is the equivalence induced by
the equivalence CTl(C) o« Xl(C). The image of the composite
functor Akt is equivalent to the image of the composite
functor «'t'. This proves the proposition for n = 1.
Let us assume that the proposition has been proved in
dimension n-1. Then we have a sequence of equivalences
cTi(c(B)) = cri(ct1(c(B)))
« crl(c(cm-1(B)))
« xl(c(ern-1(B)))
« xlcct=1(c(B)))
« xl(xn-l(c(B))
= XN(C(B)).

This proves the proposition in dimension n. v
Taking B to be the category of pointed sets gives us an

equivalence between n-fold categories in C and n-fold

crossed modules in C.
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CHAPTER I1

EXAMPLES OF CROSSED n-CUBES

0. INTRODUCTION

vIn the last chapter we introduced the notion of a
crossed n-cube in an arbitrary category C of fNi-groups.
Because of the generality in which we worked, the
combinatorial nature of a crossed n-cube was lost. In this
chapter we shall give, for speqific choices of C, a more
combinatorial version of certain low dimensional crossed
n-cubes. In $1,2,3,4 we shall take C respectively to be
the category of groups, Lie algebras, commutative algebras,

and associative algebras.

1. CROSSED n-CUBES IN GROUPS

Let C be the category of groups. All groups will be
written multiplicatively with identity e. Terms such as
"C~-n-action", "crossed n-cube in C" will be replaced by

"group n-action", "crossed n-cube in groups" etc.

Let M,P be groups. A group action of P on M (see
example 1.3.2)) is a map PxM - M, (p,m) ~ Pm satisfying:

em = m,

P(mm') = (Pm)(Pm'),

PP'(m) = P(P'm),

for all m,m' ¢ M, p,p' € P.

A crossed module in groups (see definition (1.3.3)) is a

group homomorphism 3:M - P together with a group action of
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P on M which satisfies:
(1) 3(Pm) = p(am)p~L,
(ii) dmp - mm'm“l,

for all m,m' e M, p € P.

Suppose given: four groups L,M,N,P; group actions of P
on L,M,N, of Mon L, and of N on L; and a function h:MxN -
L. Then
PROPOSITION(2.1.1) This structure is a group 2-action (see
definition (1.3.8)) if and only if:

(1)  Pmp1y = p(myy, |
Pn(p1)y = p(n1);
(ii) h(mm',n) = ®h(m',n)h(m,n),
h(m,nn') = h(m,n) Ph(m,n');
(iii1) Ph(m,n) = h(Pm,Pn);
(iv) M(AL)h(mn) = h(m,n) D(ML);
for all 1 e L, mym' € M, n,n* ¢ N, p € P.
PROOF Strictly speaking a group 2~action should involve
three functions h*,h*,h*°:MxN = L. However h*,h*° are
always trivial. Form the semi-direct products LxM, NxP and
let a:(NxP)x(LxM) - (LxM) be the function
a(n,p,1,m) = (7(Pl) h(Pm,n)~1,Pm).
It follows from proposition (1.3.9) that the structure is a
group 2-action if a is a group action of NXP on LxM. That
is, 1if
a(e,e,l,m) = (1,m),
a((n,p)(n',p"'),1,m) = ea(n,p,a(n’,p',1,m)),
a(n,p,(1,m)(1*,m')) = ea(n,p,1,m) a(n,p,1',m').
This is verified in Appendix [I, verification (1).
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Conversely, by interpreting the function h as
commutation, and by interpreting each group action as
congugation, we see that every group 2-action satisfies

these rules. v

Now suppose given a commutative diagram of groups

with group actions of P on L,M and N (hence there are group
actions of M on L. and N via 8, and group actions of N on L
and M via 8'), and a function h:MxN = L. Then
PROPOSITION(2.1.2) This structure is a crossed square in
groups (see definition (1.3.10)) if and only if:
(1) each of the maps \,\',8,8' and the composite 8'\ is a
crossed module;
(1i) the maps \,\' preserve the actions of P;
(ii1) h(mm',n) = "h(m',n)h(m,n),

h(m,nn') = h(m,n) Ph(m,n*);
(iv) Ph(m,n) = h(Pm,Pn);

(v)  Ah(m,n) Lt

(vi) h(mn1) = m1-1l,
h(x'l,n) = 1D0n1°1;
for all 1 € L, mm' €e M, n,n' ¢ N, p ¢ P.
PROOF From definition (1.3.10) and proposition (2.1.1) we

have that the above structure is a crossed square if and
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onl? if rules (2.1.1,1i,iv), (2.1.2,1i to vi) hold. But
rules. (2.1.1,1,1iv) are redundant (see Appendix II,

verifications (2) and (3)) and so we are done. v

~Suppose now we have a commutative diagram of groups

N YQ — 0
A4
K AM y M
Vp 4]
AL, VR
J/ v
p 8 5
vp [4)
¥ v
L YR >

in which there is a group action of S8 on each of the other
seven groups (hence the eight groups act on each other via
the action of S), and there are six functions

h:0xL, » X,

h:PxM ~ K,

h:NxR =~ K,

i

h:PxR = L,
h:QxR - M,
"h:PxQ = N.

Then

PROPOSITION(2.1.3) This structure is a crossed 3-cube in

[[-4



Siiia ki e s s

groﬁps (see definition 1.3.10)) if and only if:

(1) each of the nine squares

is a crossed square;

A
i

i

i { i ! i i

R L-R M=R N=20

)

S P=S Q ~»S P-~S

for the last three squares the

functions h:LxM - K, h:NxL - K, h:NxM - K are respectively

given by h(l,m) = h(vpl,m), h(n,l) = h(n,vrl), h(n,m) =

h(n, vgrm);

(ii) h((vpn)(vpl),m) h((vgm)(vgn),1) = h(n,(vRl)(vRm));
(1i1) 9nh(h(p,q~1)~l,x) = Ph(q,h(p~1,r)) Th(p,h(q,x"1)"1);

(iv) aph(p,m)
Aph(n,r)
amh(q,1)
AmMh(n,x)
AnNh(p,m)
Anh(q,1)

(v)  h(vgm,1)
h(n,vRrl)

h(n,vrm)

h(p,vrm),
h(vpn,r),
h(q., vgl),
h(in,r),
h(p,vgm),
h(vpl,q)~L;
h(vpl,m)~L;
h(vgn,1);

h(vpn,m);

for all L e L, meM, neN, peP,geQ, ¢

PROOF A crossed 3-cube in groups is defined

contravariant functor ¥ from ri3! to groups,

I[I-5
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helﬁ to rewrite the above cubical diagram:

N = Y{1,2) v Q = Y{2}
K= Y{1,2,3} yM = Y{2,3}

v V)4

P = Y(1) +8 = Y0
v v
L = ¥{1,3} Yy R = Y{3)}

Note that, in addition to the six "h" functions listed
above, a crossed 3-cube involves three functions h:LxM - K,
h:NxL,L ~ K, NXM = K. These extré functions are defined as
in rule (2.1.3.1)

The rules (2.1.3.i to v) are clearly necessary if the
structure is to be a crossed 3-cube. The proof that these
rules are sufficient to give us a crossed 3-cube boils down
to a proof?z£; rules ensure the existence of a group
3-action.

Form the semi-direct products KxN, LXP, MxQ, RxS. Given
an arbitrary element (u,v,x,y) in any one of the direct
products (RXxS)X(KxN), (RxS)x(MxQ), (RxS)x(LxP),
(LXP)X(KXN), (MXxQ)X(KxN), we obtain five group actions by
setting

(V) (x,y) = (Wx h(Vy,u)~L,Vy).

(Here, and in future, we write UVx inétead of W(Vx). This
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abuse of notation is unlikely to cause confusion.) Let
h': (LXxP)x(MxQ) - KXN be the function h'(l,p,m,q) = (k,n)
where
kK =
Ih(p,m)h(1,m) ®a(h(p,q),1)~L h(h(p,q),m)~L h(p:D)mn(q,1)-1,
and
n = h(p,q)-.
Then, by proposition (1.3.9), we have to check that the
four semi-direct products together with the given group
actions and function h', constitute a group 2-action. By
proposition (2.1.1) we see that we must check
(Te8)(m,q) ((x,8) (k,n)) = (r:8)((ma)(k,n)),
(£/8)(1,p)((x,8) (k,n)) = (X,8)((L,P)(k,n)),
h'((L,p)(1',p")mq) = (lLP)n'(1',p',mq) h'(l,p,m,q),
h'(1,p,(m,q)(m',q')) = h'(l,p,m,q) (MDn'(l,p,m',q"),
(£:8)h'(1,p,mq) = h'((r+8)(1,p),(Fr8)(m,q)),
(1,p)((m:d)(x,n)) h'(l,p,m,q) =
n'(l,p,mq) (Ma)((1:P)(k,n)).
These equations are checked in Appendix [I, verifications

(4),(5),(6),(7). V¥

2. CROSSED n-CUBES IN LIE ALGEBRAS

Fix a commutative ring A (with unit). Recall that a Lie
algebra over A is an A-module M together with an A-bilinear
map [,]:MxM - M which satisfies

(x,x] = 0O,

[{x,y),2) + [[y.z]).x] +[[z,x],y] = O,
for all x,y,z € M. We shall assume all Lie algebras to be

over A. Let C be the category of Lie algebras. Terms such
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as 5C-n-action", "crossed n-cube in C" will be replaced by

"Lié n-action', "crossed n-cube in Lie algebras", etc.

Let M,P be Lie algebras. Suppose given a map PxM - M,
(p,m) - Pn.
PROPOSITION(Z.Z:I)‘ This map is a Lie action of P on M if
and only if:
(i) (aP)ym = P(am) = a(Pm);
(ii) P(m +m') = Pm + Pm';
(1ii) (P + P')Jm = Pm + P'm;
(iv) [P/P'Jm = P(P'm) - P'(Pm);
(v) Pmm'] = [Pm,m'] + [m,Pm']);
for all a ¢ A, m,m' € M, p,p' € P.
PROOF Strictly speaking a Lie action should consist of
three maps a*,al+],al+]°:pPxM -~ M. However, since we will
always have at(p,m) = m and a['](p,m) = - a[']°(p,m), we
can take a Lie action to consist of just one map. It is
clear that every Lie action satisfies rules (2.2.1,1i to |
v). Conversely, to show that these rules are sufficient to
give us a Lie action, we must check that the semi-direct
product MxP is a Lie algebra (see proposition (1.3.1)).

This check is routine and we omit it. v

A crossed module in Lie algebras (see definition
(1.3.3)) is a Lie homomorphism 3d:M - P with a Lie action of
P on M such that
(1) a(Pm) = [p,om],

(ii) 9™’ = [m,m'],

for all m,m' e M, p € P.
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Suppose given: four Lie algebras L,M,N,P; Lie actions

of Pon L,Mand N, and of Mon LL,, and of N on L; and a
function h:MxN - L. Then
PROPOSITION(2.2.2) This structure is a Lie 2-action (see
definition (1.3.8)) if and only if:
(i) p(my) = (Pm)1 + m(p1),

p(n1) = (Pn)1 + n(p1);
(ii) ah(m,n) = h(am,n) = h(m,an);
(iii) h(m + m',n) = h(m,n) + h(m',n),

h(m,n + n') = h(m,n) + h(n,m");
(iv) h([mm'],n) = ®h(m',n) - ®'h(m,n),

h(m,[n,n']) = Ph(m,n') - 'h(m,n);
(v) Ph(m,n) = h(Pmn) + h(m,Pn);
(v) ™M) = ™(NM1) + [1,h(mn)];
for all a e A, 1 €L, mm' e M, n,n'* ¢ N, p € P.
PROOF Strictly speaking, a Lie 2-action should involve
three functions h+,h['],h[r]°:MxN -+ I,. However, since
ht(m,n) = 0 and h{/1(m,n) = = h{+/1°(m,n), we can take a Lie
2-action to involve just one function h = hlrl. 1t is
clear that every Lie 2-action satisfies the above rules.

In order to show that the above rules are sufficient to

give us a Lie 2-action we define an action of the

semi-direct product NXP on the semi-direct product LxM by

(n/P)(1,m) = (N1 + Pl - h(m,n),Pm).

By propositions (1.3.9) and (2.2.1) we have to check that
(an,ap)(1,m) = (nr/P)(al,am) = a((NeP)(1,m)),
(nep)((1,my + (1*,m")) = (/P)(1,m) + (ReP)(1',m'y,
((n,p) + (n',p"))(1,m) = (MP)(1,m) + (N'vP")(1,m),
((n,p),(n'sp')1(1,m) =
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=

(n,p)((n'P")(1,m)) - (M"/P")((nN/P)(1,m)),
(n,P)[(1,m),(1',m')] =

[(RP)(1,m), (1" ym')] + [(1,m), (M/PI(L,m")].

These equations are checked in Appendix II, verifications

(8),(9),(10),(11),(12). v

Suppose now we have a commutative diagram of Lie algebras

L M N
At tar
M 0 p

in which there are Lie actions of P on L,M and N (hence
there are Lie actions of Mon LL and N via 8, and of Non L
and M via 8'), and a function h:MxN - L. Then
PROPOSITION(2.2.3) This structure is a crossed square in
Lie algebras (see definition (1.3.10)) if and only if:
(1) each of the maps X,X',b;b‘ and the composite 8'\ is
a crossed module;
(i1) the maps \,\' preserve the actions of P;
(1ii1) ah(m,n) = h(am,n) = h(m,an);
(iv) h(m + m',n) = h(m,n) + h(m',n),

h(m,n + n') = h(m,n) + h(m,n');

(v) h({m,m'],n)

Th(m',n) - ®'h(m,n),
h(m,[n,n')}) = DPh(m,n') - "'h(m,n);

(vi) Ph(m,n) = h(Pm,n) + h(m,Pn);

(vii) Ah(m,n) = Mp,

Ah(m,n) = =~ Nn;

(viii) h(m,x1) = Mm1,
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h(z'l,n) = - 01;
for all 1 e L,, m,m' € M, n,n' ¢ N, p € P.
PROOF The proof boils down to checking that rules (2.2.3,1
to viii) imply rules (2.2.2,i,vi). We check this in

Appendix II, verifications (13),(14). v

Suppose now we have a commutative diagram of Lie algebras

N Vo ! >
y o
R AM >h1///
vVp o]
Ar, VR
v v
p < > S
v (o)
A\ \y/
VR R

~

in which there is a Lie action of S on each of the other
seven algebras (hence all eight algebras act on each other

via the actions of 8), and there are six functions

h:Q0xL, =» K,
h:PxM -~ K,
h:NxR =~ K,
h:PXR = L,
h:QxR = M,
h:PxQ =~ N.
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Then

PROPOSITION(2.2.4)

This structure is a crossed 3-cube in

Lie algebras (see definition (1.3.10)) if and only Iif:

(i) each of the squares

L - R N ~

is a crossed square;

b
i

R L - R M- R N - Q

N~ S P-~S Q-+ S5 P =-S5

for the last three squares the

functions h:LxM = K, h:NxL = X, h:NxM - K are respectively

given by h(l,m) = h(vpl,m), h(n,1) = h(n,vgl), h(n,m) =

h(n,vrm);
(i1) Ph(l,m)

(iii1) h(p.h(q,x))

(iv) Aph(p,m)
Arh(n,r)
amh(q,1)
amh(n,x)
Anh(p,m)
anh(q,1)

(v)  h(vgm,1)
h(n,vrl)

h(n,vrm)

h(P1,m) +

lh(p,m);

= h(h(p,q),x) + h(q,h(p,x));

h(p.vﬁm),
h(vpn,x),
h(q, vrl)
h(vgn,r),
h(p,vgm),

14

~ h(vpl,q);

- h(vpl,m);

h(in,l);

h(an'm) 7

for all 1 e L., m € M, n € N,

p€P, qeQ, r eR.
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PROOF Form the semi-direct products KxN, LxP, MXQ, RXS.
Given an element (u,v,%,y) in any one of the direct
products (RxS)x(KxN), (RxS)x(MxQ), (RxS)X(LxP),
(LXP)X(KXN), (MXQ)x(KxN), we obtain five Lie actions by
setting

(W V) (x,y) = (9% + V¥ - h(y,),Vy).
Let h':(LXP)x(MxQ) -~ KxN be the function

h'(l,p,m,q) = (h(l,m) + h(p,m) - h(q,1), h(p,q)).
The proof boils down to checking that h' satisfies the
rules for a Lie 2-action, i.e. we must check that

ah'(l,p,m,q) = h'(al,ap,m,q) = h'(L,p,am,aq),

(r.8)((1,P)(k,n))

= ((Te8)(1L,p)) (k,n) + (L/P)((¥/8)(k,n)),

(r.8)((mq)(k,n))

= ((T+8)(m,q)) (k,n) + (M Q) ((x,8)(k,n)),

h'((l,p) + (1',p'),m,q) = h'(l,p,mq) + h'(1l',p',mq),

h'(l,p,(m,q) + (m',q')) = h'(l,p,mq) + h'(l,p,m',q"),

h'([(Lp),(1',p") ] maq)

- (LP)h'(1',p',m,q) - (L'+P"In'(1,p,m,q),

h'(l,p,[(m,q),(m',q")])

= (mah'(1,p,m',q') -~ (M3 )In'((1,p,m,q),

(r,8)n'(1,p,m,q)

= hr((r:8)(1,p),maq) + h'(l,p, (¥r8)(m,q)),

(m,q) ((1:P) (k,n))

= (L,p)((mQq)(k,n)) - [(k,n),h'(L,p,m,q)].

This check is routine and we omit it. v
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3.'CROSSED n-CUBES IN COMMUTATIVE ALGEBRAS '

Fix a commutative ring A (with unit). Recall that a
commutative algebra over A is ah A-module M with an
A-bilinear map MxM - M, (m,m') - mm', satisfying:

mm' = m'm,

(mm')m*' = m(m'm'"),
for all m,m',m*'' € M. We shall assume all commutative
algebras to be over A. Let C be the category of .
commutative algebras. We shall replace terms such as
"C-n-action", "crossed n-cube in C" with "commutative
action", "crossed n-cube in commutative algebras", etc.

The proofs of the propositions in this section are
similar to (and simpler than) the corresponding proofs of
the previous section. Forvthis reason we shall omit all

proofs.

Lgt M,P be commutative algebras. Suppose given a map
PxM - M, (p,m) = Pm, |
PROPOSITION(2.3.1) This map is a commutative action if and
only Iif:
(i) a(Pm) = (a8P)m = P(am);
(1) P(m + m') = Pm + Pm';
(ii1) (P + P')Jm = Pm + P'm;
(iv) P(mm') = (Pm)m’';
(v) (pP')m = P(P'm);

for all a € A, m,m' € M, p,p' € P. v

A crossed module in commutative algebras (see definition

- (1.3.3)) is a commutative algebra homomorphism 3:M - P with
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a commatative action of P on M such that:
(i) 38(Pm) = pd(m);
(ii) 9Mp' = mm';

for all m,m*' ¢ M, p € P.

Suppose given a commutative diagram of commutative

algebras

L A N
sod lo,
M .0 p

in which there are commutative actions of P on L,M and N
(hence there are commutative actions of M on L and N, and
of Non L., and M, all via the actions of P), and a function
h:MxN = L. Then
PROPOSITION(2.3.2) This structure is a crossed square In
commutative algebras (see definition (1.3.10)) if and only
if:
(1) each of the maps \,\',8,8' and the composite 8'\ is
a crossed module;
(ii) the maps \,\' preserve the actions of P;
(iii) ah(m,n) = h(am,n) = h(m,an);
(iv) h(m + m',n) = h(m,n) + h(m',n),

h(m,n + n') = h(m,n) + h(m,n");
(v) Ph(m,n) = h(Pm,n) = h(m,Pn);
(vi) \h(m,n) = Mn,

Ah(m,n) = - Nm;

(vii) h(m,A1) = m1,
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h(i'l,n) = - D1;

for all aeA, 1 ¢eL, mm' eM, n,n'* e N, peP. v

Suppose now we have a commutative diagram of commutative

algebras

K > M

vp . Lo}
AL, VR
v v
p 6 > S
v 8
v v
I YR >R

in which there is a commutative action of S on each of the
other seven algebras (hence all eight algebras act on each
other via the4actions of S), and there are six functions

h:QxL, = K,

h:PxM - K,

h:NxR - K,

h:PXR =~ L,

h:OxR - M,

h:PxQ

1

N.
Then

PROPOSITION(2.3.3) This structure is a crossed 3-cube jipn
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B e .

commutative algebras (see definition (1.3.10)) if and only
if:
(1) each of the squares

K~L X-M K-R LR M-R N=0Q

! ! ‘ i ] ‘ ! ! i i i !

Q-5 P =-S5 N=-3S P -5 Q-~3S P =-S5

K-M K-«L K-=M
i i i i ) i

L~R N=»P N=@

is a crossed square; for the last three squares the
functions h:LxM -~ K, h:NxL -~ X, h:NxM - K are respectively
given by h(1l,m) = h(vpl,m), h(n,1) = h(n,vgl), h(n,m) =
h(n,vgm);
(11) h(h(p,q),xr) = h(p,h(q,x)) = h(qg,h(p,x));
(1ii) xgh(p,m) = h(p,vrm),

Arh(n,r) = h(vpn,r),

AmMh(q,1) = h(q,vrl),

AMh(n,r) = h(vgn,r),

Anh(p,m) = h(p,vgm),

Anh(q,1) = h(vpl,q):
(iv) h(vgm,1) = h(vpl,m);

h(n,vrl) = h(in,l);

h(n,vgm) = h(vpn,m);

for all 1 e L,, me M, ne N, peP, geQ, r €R. A\
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4. CROSSED n-CUBES IN ASSOCIATIVE ALGEBRAS
Fix a commutative ring A (with unit). Recall that an
associative algébra over A is an A-module M with an
A-bilinear map MxM - M, (mm') - mm', such that:
m(m'm'*) = (mm')m'’';
for all m,m',m'' € M. We shall assume all associative
algebras to be over A. Let C be the category of
associative algebras. We shall replace terms such as
"C-n-action", "crossed n-cube in C" by "associative
n-action", "crossed n-cube in associative algebras", etc.

In this section we shall again omit all proofs.

Let M,P be associative algebras. Suppose given two maps
(p,m) + Pm, (p,m) = P°m from PxM to M. Then
PROPOSITION(2.4.1) These maps constitute an associative
action of P on M If and only if:

(i) a(Pm) = (2P)m = P(am),
a(P’m) = (aP°)m = P°(am);

(ii) (P *+P')Jm = Pm + P'm,
(p+pP)°m = P'm+ P'°m;

(1ii) P(m + m') = Pm + Pm',
P°(m + m') = P°m + P°m';

(iv) (Pm)m' = P(mm'),
m(P°m') = P°(mm');

(v) P@®'m) = (PP')m,
P°(P'°m) = (pP*') °m;

(vi) P°(P'm) = P'(P°m);

(vii) (P°m)m' = m(Pm');

for all a ¢ A, m,m' ¢ M, p,p' € P. v
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A crossed module in assoclative algebras (see definition
(1.3.3)) is a morphism of associative algebras 3:M -~ P with
an associative action of P on M such that:

(1) 3(Pm) = p(8m),
3(P°m) = (3m)p;
(ii) 9mpy' = mm',
9m°mt = m'mi

for all m,m' ¢ M, p € P.

Suppose given a commutative diagram of associative

algebras

in which there are associative actions of P on L,M and N
(hence there are associative actions of M on L and N, and
of Non L, and M, all via the actions of P), and two
functions h,h°:MxN - L. Then
PROPOSITION(2.3.3) This structure is a crossed square in
associative algebras (see definition (1.3.10)) if and only
if:
(1) each of the maps \,\',8,8' and the composite 8'\ isg
a crossed module;
(i1) the maps \,\' preserve the actions of P;
(iti) ah(m,n) = h(am,n) = h(m,an),

ah®°(m,n) = h°(am,n) = h°(m,an);

(iv) h(m + m',n) = h(m,n) + h(m',n),
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h(m,n + n')

h°(m + m',n)

he(m,n + n')

(v) Ph(m,n)

P°he(m,n)
P°h(m,n)
Ph°(m,n)

h(P°m,n)
h°(Pm,n)
(vi) m™'he(m,n)
N'him,n)
(vii) \h(m,n)

Ah°(m,n)
A'h(m,n)
A'h°(m,n)
(viii) h(m,a1)
h°(m,\1)
h(x'1l,n)

he()x'l,n)

t

= h(m,n) + h(m,n'),
= h°(m,n) + h°(m',n),

= h°(m,n) + h°(m,n');

h(Pm,n),

h°(P°m,n),
h(m,P°n),
he (m,Pn),
h(m,Pn),
he(m,P°n);
m°h(m',n),

n°ho (m,n* )';

mn,

o
m n,
nom’

np;

m]_'

m°1,
n°i

’

nl;

for all aea, L €L, mm' eM, n,n'" e N, p € P.

We shall not bother to work out the axioms for a crossed

3-cube in associative algebras!
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CHAPTER II1I

UNIVERSAL CROSSED n~-CUBES

0. INTRODUCTION

In this chapter we investigate ggtraiﬁ universal crossed [[]
SqQuares and crossed 3-cubes in groups ($1,2), Lie algebras
($3), ang commutative algebras ($4). The universal crossed
Squares involve notions of non-abelian tensor, anti-

Symmetric, and exterior products. We obtain various exact
8equences involving these non-abelian constructions,
Certain of which will be used in Chapter IV when we look at

the relevance of crossed squares to homology.

1. CERTAIN UNIVERSAL CROSSED SQUARES I[N GROUPS

Let M,N be groups such that. there is a group action of M
(resp. N) on N (resp.M). Assume each group acts on itself
by conjugation.

Following [B-L] we define the tensor product of M with N
to be the group M ® N which is generated by the elements
mM&@n, for (m,n) € MxN, subject to the relations
() mm'®n = (™m' @ ™M)(m® n),

(2) m®nn' = (m®n)(™m n').

Note that, when the actions of M and N are trivial, then

M ® N is just the standard tensor product M3P @z Nab of

abelian groups.

FormeM, neN, x €¢ Mor Nwe shall write (M)y

instead of M(Nx), and (NMM)x instead of A(Mx). We can
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consider mn and nm as elements of the free product M*N.
This abuse of notation is unlikely to cause confusion. The

tensor product M @ N is of particular interest when the
actions of M and N are compatible; 1i.e. when

(Om)x <« (nmn7l)y ang (M)x = (mam~l)y,
'In this case we can interpret m® n as a commutator and we
Can interpret the actions of M and N as conjugation:
anything which looks like a universal commutator relation
is then actually a relation in the tensor product M @ N.'
Since much of this section is concerned with obtaining
Consequences of relations (1) and (2), it will be helpful

to have a precise version of this statement.

The tensor product M ® N admits a group action of N,

given by

M"Mm®n) = N'm®n'm.
The resulting semi-direct product (M ® N)XN admits a group
action of M, given by

M(l,n) = (M1 (m @ n), n)

Wwhere m ¢ M, n e N, 1 ¢ M® N. To see this we note that:

(1) m*im(1,n))
= (m'my m'(n @ n)(m' ® n), n)
= (™'mM (m'm@® n), n)
= m'm(1,n);

(11) by expanding (mm' & nn') in two different ways we

Obtain the identity
Mt @ n')y(m®n) = (m®n) "M(m' @n’)

and hence, for any 1 € M @ N, the identity

MIm®n) = (m@ n) NML;
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it follows that
(l,n) ™(1',n")
= (M} (Mm@ n) M1* "(m® n'), nn')
= (M1 M1* (Mm@ n) "(m®®n'), nn')

= (M1 N1'} (m®nn'), nn')

M{(1,n)(1',n")}.

Now the natural inclusions M - ((M @ N)XN)xM), N -
((M ® N)xN)xM) induce a map ¢>:M*N - ((M ®@ N)XN)XM. For
P € M*N we shall denote by <p> the image of p under <>.
For m € M we shall denote by <(m)> the image of m under the
composite map M -1 M*N ~<> ((M ® N)xN)xM where i is the
canonical inclusion. Similarly we shall write <n)> for n €
N. Let ¢:M®N - ((M ® N)XN)XM be the natural inclusion.

As we noted above, the group actions M - Aut M, N -
Aut M give rise to an action M*N - Aut M. Likewise, there
is an action of M*N on N and on M@ N.

Suppose we have an arbitrary generator x of M ® N, which
is of the form

x = Pim; Pam, ., . Pimy @ din, 92n, ., ., 92'ny:

with mji €e M, ni € N, pi,qi € M*N. Then

LEMMA(3.1.1) |If the actions of M and N are compatible, we
have

tx = [<pympy~1.. . <pamppe ™Y, (qinmyqpTy...<qpingegp ).
PROOF The generator x can be expanded into a product of
terms of the form Pmj ® qnj with p,q € M*N, and it suffices
to check the following identity:

(Pmy @‘an, e, e) = [<pm1p’1>, (qnjq‘l)]. (a)
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Note that, for my e M, ngp e N, 1 ¢ M® N, we have:

<mg>(l,e,e)<myd>~1l = (Mol,e,e),

<ngd(l,e,e)<ng>~1 = (Nol,e,e),
and thus, for g € M*N, we have

(q¥(l,e,e)<gd>~1 = (d1l,e,e). (b)
This last identity, together with the identity

(Pm®n, e, e) = [(pmp‘]-), <{n>] (a)'
(where m € M, n € N) imply identity (a) since:

(Pmj ® 9nj, e, o)

= ({9 Pmj; ® ny}, e, €)

= (@ (37" Pmj @ ny, e, e)(g1 using (b)
<g>[<g~lpmip~lgd>, (ny>1¢g>-1 using (a)’

= [<pmip~1>, <(gnyq~1>].
So it remains to verify (a)°'.
It is routine to verify (a)' for p equal to the identity
element of M*N. We shall say that p is of length & (2 > 1)
if we can write p = myn,...my-;ny or p = nymy...ngp.umy with
mj € M, nile N. We shall say that p is of length 0 if p is
the identity element. Fix 2 > 0, suppose that p is of
length &, and suppose that we have verified identity (a)’
for the case when p is of length &. For mg € M we héve

[<mopmp'1mo’l>, {n>]

- <mopmp“>[<mo>-l, (nd>] Mg r¢pmp=ly, <nd>J[<myd, <nd]

- (mopmp'z(mo‘]-@n), e, e)(mg Pm® n, e, e)

= (MPm@® n, e, e) (using compatibility).
For ng € N we have '

[<ngpmp~Ing~1y, <nd]

= (ng>[<pmp~1>, <ng~lnng>J<ngy-1

= (no>(Pm@ nu"lnno, e, e)(n())-l
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= (RoPmQ® n, e, e). (using (b))
Identity (a)', for an arbitrary p, follows by induction. v

As a typical application of this lemma we give
EXAMPLE(3.1.2) Suppose that the actions of M and N are
Compatible, and suppose that we wish to verify that the
relation

(M@ n,m' @n'] = mm~1@®Mn' n'-1
holds in the tensor product. Then using the lemma we note
that

tfm @ n,m' @ n'}

= ((m Np~l@ m'pr nr-ly

= [[(e,e,m),(e,n,e)]),[(e,em"),(e,n',8)])].

From now on let us suppose that the groups M,N and their
actions are obtained from two crossed modules 6:M - P, 8':N

= P. It follows that the actions of M and N are compatible.
The .tensor product M@ N fits into a crossed square

M®N A N

)\'l lol

M Jo p

in which: P acts on M® N by P(m® n) = Pm ® Pn; the maps
AA' are A(m® n) = M n~l, AM(m®n) = mMm~l; and the
function h:MxN -~ M® N is given by h(m,n) = m® n.

The fact that this structure is a crossed square is

Noted and verified in [B-L]. [t is also noted that this
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Crossed square has a defining universal property, namely
Property (1.4.1.ii) for the case n = 2 and C equal to the

category of groups.

Following [B-L] we also define the exterior product of M
wWith N to be the group M A N generated by the elements
mAn, for (mn) € MxN, subject to the relations
(3) mm*'An = (™' A ™)(mAn),

(4) mAnn' = (mAn)(™MmADn',

(5) mAn = e whenever dm = 8'n.

Thus M A N is a quotient of M ® N. The quotient map. M@N

= M A N preserves the crossed square which contains M ® N.

That is to say, the exterior product M A N also fits into a
crossed square, and this crossed square has a defining

universal property.

It seems reasonable to define the anti-symmetric product

of M with N to be the group M A N generated by the

elements m A n, for (m,n) € MxN, subject to the relations
(6) mm' An = ("™mA ™)(mAn),
(7) mAnn' = (mAn)("mAPn'),
(8) mAnN' = (m' An)-l whenever 8m = 6'n and
om' = 0'm’'.
We shall abbreviate the term "anti-symmetric" to
"asymmetric".
Clearly M A N is a quotient of M ® N. It can also be

seen that M A N is a quotient of M A N. Again, the
quotient map M® N - M A N preserves the crossed square

containing M ® N.
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We note that there are isomorphisms

M@N = NO®M,

MAN = NANM,

MAN = NAM.
If we are given an extra crossed module 6'':L - P, then
there are two obvious ways of constructing a triple tensor
Product: in general there is NOT an isomorphism between
(L®M)®N and L ® (M®N). A similar remark applies to

the exterior and asymmetric products.

It will be convenient to have the notion of an "induced

Crossed square". So in the following diagram of group

homomorphisms

Suppose that the back square is a crossed square, that the
Maps y,y' are crossed modules, and that the two pairs
(a,%), (8,v) are maps of crossed modules. Then the crossed

8quare
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is said to be induced by the above diagram if:

(1) there is a homomorphism p:L - L* such that the
quadruple (a@,8,7,p) is a map of crossed squares;

(ii) any other map (a,8,v,p') of crossed squares factors

uniquely through («@,8,7,p).

A routine argument using universal properties shows that
if L=M®N (resp. L=MAN, L =MAN), then
L*~R®S (resp. L*=RAS, L* =R A 5).

This observation together with the following result wiil

be used extensively in this section and in section 4.4.

i
i hee¥ c (shﬁf“)(s bel‘ﬁ),
PROPOSITION(3.1.3) If the maps a,8,Y are surjectiqugnd if
the group L. is generated by the image of the function h:MxN

~ L, then the induced group L* is the quotient of L
obtained by factoring out the subgroup generated by the
elements h(a,n), h(m,b), withm ¢ M, n € N, a € ker «,

b ¢ ker g.
PROOF The proof is a straightforward check which we omit. v

In the remainder of this section we shall give results

concerned with computing the above tensor, exterior and

asymmetric products.

Suppose that the group M contains two subgroups Mp, Mg,
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and that the group N contains two subgroups Np, Ng, such
that aMp = 6'Np = &, DMB‘ = 0'Ng = B say. The crossed
modules 8:M -+ P, 6':N -~ P restrict to give us crossed
Modules 6p:Mpy ~+ A, 8g:Mg ~ B, 8'a:Na ~ A, 8'g:Ng » B. We
Can thus construct the groups Ma ® Na, Mg ® Ng. The
Inclusions Mp -+ M, Na = N induce a map tap:Ma ® N =~ M® N;
Similarly there is a map tg:Mgp @ Ng - M ® N.

Let {Mp,NB> be the subgroup of M & N generated by the
elements a, ® b;, by ® a, with (ag,b;) € MaxNg, (bg,a;) €

MBXNA, Then we have the useful

L151%41\(3.1.4) An arbitrary element x € M ® N can be written
48 a product of elements
X = uvw

With u e ta(Ma @ Np), v € (Mp,Ng>, w € tg(Mg @ Ng). This
assertion also holds if we replace the tensor product with
elther the exterior product or the asymmetric product.
PROOF We shall just consider the tensor product case.
Using lemma (3.1.1) we can see immediately that the
f°llowing identities hold in M @ N:
(9) a(ag @ a,) = 3ap @ 3a,,
(10) bea, ® a;) = (b® 2o0a, a;"1)(ap @ a,),
(11) a(a, @ b,) = (aag @ b;)(ae ® by)~1,
(12) blag @ b,) = (ap @ b)~1 (ag @ bby),
(13) (b ® by)(ap @ b2") =

(ag ® Pob, b,"1)~1(a ® Pob, b,~1 bx')(bo‘ ® b,),

(14)  (by ® by)(be' @ a1) =
(bg Pibg-1 bg' @ a;)(bg Piby™1 ® 3,)"1(by @ b,),

(18) (b, ®by)(ag ® ay) =
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(bg P1by=1 ® 0a,~1 a;)(ay ® a;)(by ® by),
where a, € Mp, bg,by' € Mg, a; € Na, b;.b;' € Ng, and where
& € Mp or Na, b ¢ Mg or Ng as appropriate.

Let x, ® x; be a generator of M ® N, with x4 =
qpbg...ap'by', x, = a;b;...a;'b;'. By repeated application
°f the product rules (1) and (2) we see that x5 ® x, can be
Written as a product of elements of the form P(ag @ a,),
P(by @ by), P(ag ® b,), P(by ® a,) with p € P. Each
©lement of this form can be broken down into a product of
€lements of the same type, without exponent p appearing, by
Tepeated use of rules (9),(10),(1l1l),(12) and the duals of
these rules. Thus any element x of M® N can be written as
4 product of terms (ag @ a;), (by @ by), (ap ® by),

(bg ® b,).

.Assume thét x is written as such a product. Now take
€ach term b, @ b, and commute it to the right (beginning
With the farthermost right one and proceed one at a time)
uUsing the rules (13),(14),(1l5). When this has been done,
take each term ap, ® a, and commute it to the left using the

duals of the rules (13),(14),(15). This gives us x written

a8 a product uvw as required. V

Let \:M@N - N, \':M@® N -~ M be the maps m@ n -~
™M nl, n@n - m"m-l and define
TI(M@® N) = ker(A:M®N = N) n ker(A\'":M®N -+ M).
Similarly define
T3IMM AN) = ker(A:MAN=N)Nnker(\':MAN -~ M),
"T3(MAN) = ker(A:MAN=N)N ker(A':M A N ~ M).
(This notation is in keeping with the topological
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significance of crossed squares since, if a space X is the

Cclassifying space (see [L]) of a crossed square

L A N
)‘.1 16,
M L0 p

then m3Xx = ker A n ker \'.)

PRQPOSITION(B.I.S) The function

(Mp ® Na) x (Mg ® Ng) =~ M@ N, (x,¥) ~ (iax)(tpy)
induces homomorphisms

(1) 73(Ma @ Na) x 73(Mg @ Ng) = m3(M ®@ N),

(i1) m3(Ma A Np) X w3(Mg A Ng) = 73(M A N),

(iii) w3(Ma A Np) x m3(MB A Np) ~ m3(M A N).
PROOF If (x,y) is an element of wm3(Mp ® Np) x m3(Mg ® Ng)
then clearly (tax)(tBy) is an element of 73(M ® N). Now
73(M ® N) lies in the kernel of a crossed module, and is
therefore abelian. It follows that map (i) (and similarly
maps (ii) and (iii)) is a homomorphism. ¥

For an arbitrary group G we shall denote by ¢ ® G,
G AG, GAG the tensor, sxterior and asymmetric products

belonging to the crossed squares

G®G 4 C GAG - G GAG 4 ©
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PROPOSITION(3.1.6) Let G be an arbitrary group and let
ip:A - G, ig:B = G, a:G ~ A, B:G ~ B be homomorphisms
satisfying: aip = 1p, Big = 1, aig = 0, Bip = 0.

Then the three maps of proposition (3.1.5)

(i) ~ 73(A @A) x n3(B ® B) ~ n3(C &®G),

(ii) w3(A A A) x m3(B A B) =~ m3(G A G),

(1ii) wm3(A A A) x w3(B A B) = 73(G A G),

are injective. |

PROOF We shall just consider case (i). The map a induces
a map a#:ng(G‘@ ¢) - m3(A ® A), and the map 8 induces a map
By:m3(G @ G¢) » n3(B ® B). The map (ay,B4):73(C @ G) -
73(A® A) x w3(B ® B) is readily seen to be a splitting of

map (i). v

PROPOSITION(3.1.7) Let G = A*B be the free product of
groups A and B. Then the three maps of proposition (3.1.5)
(1) 73(A® A) x m3(B ® B) - 73(C ® @),

(11) m3(A A A) x m3(B A B) = n3(G A G),

(iii) w3(A A A) x m3(B A B) - m3(G A G).

are Injective. Maps (i1) and (iil) are surjective.

PROOF The injectivity of these maps follows from
proposition (3.1.6). We shall prove map (iii) surjective.
Let x € m3(C A G). By lemma (3.1.4) we can assume that x =
uvw with u € (a(A A A), W € tB(B A B), and (using rule (8))
with v a product of terms (ap A b;)*l, It follows that u ¢
tar3(A A A)), w € 1gm3(B A B), and that the image of v in G
is trivial. 8Since the subgroup [A,B] ¢ G is free on the
commutators [a,b] with a € A\{e}, b € B\{e}, it follows

that v must be trivial. Hence map (iii) is surjective.
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To prove map (ii) surjective it suffices to note that
tule (8) holds in the exterior product, and hence that the

Preceeding argument is valid for the exterior product. \4

EXAMPLE(3.1.8) LLet F1 be the free group of rank 1. It is
easy to see that in this case the exterior product Fy A Fj
is trivial. Let Fh be the free group of rank n. That is
Fn is the n-fold free product of n copies of F;. It
follows from proposition (3.1.7) that ker(Fp A Fp * Fp) is
trivial, and hence that ker(F A F . F) is trivial for an
arbitrary free group F. Thus there is an isomorphism F A F
= [F,F]. This presentation of the commutator subgroup of a
free group is essentially the presentation given by

C. Miller [M] (see also [Ho]). (Indeed, the arguments used
in the proofs‘of lemma (3.1.4) and proposition (3.1.7) are
modifications of Miller's arguments.) This presentation is
also obtained in [B-L] as a corollary td the van Kampen

type theorem for squares of maps.

EXAMPLE(3.1.9) It is easy to see that the asymmetric
pProduct F] A F1 is isomorphic to 23 the group of order 2;
It follows from proposition (3.1.7) that ker(Fn A Fp = Fp)

is the direct sum of n copies of Z.

PROPOSITION(3.1.10) Let G = AXB be the direct product of
groups A and B. Then there are isombrphisms

(1) 73(A A A) x m3(B A B) x a3b ®; Bab =« p3(G A 6),
(i1) m3(A A A) x 73(B A B) x a3b ®; Bab & g3(c A ©).

PROOF We shall just consider case (i). Note that by
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proposition (3.1.7) there is an injection y:w3(A A A) X
m3(B A B) -~ 73(C A G). There is a.homomorphism

¢ :A2D & Bab . 73(G A G), (é,b) - aAb. For (x,y,z) €
m3(A A A) x m3(B A B) x A% ®; Bab, get o(x,y,z) =
¥(x,y)¢z. Clearly 6 is a homomorphism. Let ay:m3(G A G) -
m3(A A A) be the map induced by the projection G ~ A, and
let B4:m3(C A G) » 73(B A B) be the map induced by the
projection ¢ - B. Let ¥:G A G ~ A2P ®; Bab pe the map
(a,b) A (a',b') = a[A,A] ® b[B,B], and let v4:73(C A G) =
Aab @, Bab pe the restriction of ¥. The map (ay,84,74) is
é splitting of the map 6. Hence 0 is injective. To show
that ¢ is surjective suppose we have an arbitrary element x
€ m3(G A G). By lemma (3.1.4) we can write x as a product
x = uvw with u € (pa(A A A), we 1g(BAB) and v ¢

¢ (a2b @, Béb)_ But clearly uw is in the image of the map
¥. It follows that 6 is surjective. v

We shall now investigate the kernels of the quotient
maps M@N--MAN, MAN-MAN.

Let

MxpN "1 N

be the pullback square. (It is interesting, but not of
relevance here, to note that this Square has a natural
structure of a crossed square.) Let {M,N} be the subgroup

of MxpN generated by the elements (m nm‘l,i“mnfﬁbﬁwith me
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M, n € N. This subgroup is normal.

We can define a function MxpN = M ® N, (m,n) » m @ n.
One can check that this function induces a function from
MXpN/{M,N} to M® N (see [B-L]). There is also,
therefore{ a function from MxpN/{M,N} to M A N. e Solow T&L] MJ

In order to analyse the kernel of M@ N » M A NLFecall
the definition of Whitehead's I'-functor [W2], which is the
"universal quadratic functor" from abelian groups to
abelian groups. Let A be an abelian group. Then I'A is the
abelian group with generatofs va, for a € A, and the
following relations:

(1) vy(-a) = wva,
(ii) if g(a,b) = <v(atb) - va - vb, for a,b € B, then

B:AXA - T'A is biadditive.

PROPOSITION(3.1.11) [B-L] The quotient group MxpN/{M,N} is
abelian, and there 1s an exact sequence
T(MxpN/{M,N}) ¥ MO@N . MAN , 1
where ¥(vy(m,n)) = m & n. Also, ¥ has central image.
PROOF  The proof, which is a straightforward algebraic

one, is given in [B-L]. V

PROPOSITION(3.1.12) There is an exact sequence
MxpN/{M,N} @ Z2 ¥ MAN.MAN. 1
where ¥'(m,n) = (m A n).
PROOF We have already noted that the function MxpN/{M,N} -
MAN, (mn) »m®&n is well defined. It is a homomorphism

since
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(WQ‘ Ann') = (m' An)(mAn')(mAn)(m' An')
= (m An)(m' An')
for (m,n), (m',n') € MxpN. When m = m' and n = n' we see
that
(mm A nn) = e.

It follows that y' is a homomorphism. Clearly ¥' maps onto

the kernel of the quotient map M A N - M A N. v

EXAMPLE(3.1.13) There is an exact sequence

gab ®; 22 &Y' GAG L GAC S L.

This particular case is given inl[D]. For this case it is
also shown in [D] that the map ¥' is injective and has a

splitting. In general there is no reason to expect ¥' to

be injective.

We shall end this section with two exact sequences, one
involving the exterior product, the other involving the
asymmetric product. The sequence involving the exterior
product has been obtained previously as a consequence of
the van Kampen theorem for squares of maps [B-L] and is of
relevance to the homology of groups. In Chapter [V we |
shall explain this relevance using purely algebraié

techniques.

THEOREM(3.1.14) Let M,N be normal subgroups of a group G

such that G = MN the group product of the subgroups. Then

there is an exact seguence

m3(M A N) ¥s 73(C A G) Ve ﬂa(G/MvA G/M) x m3(G/N A G/N)
Va3 MnN/[M,N] -¥2 GaP _¥1 (c/m)ab x (g/N)ab . 1 .
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Also, by replacing the exterior product sign A with the
asymmetric product A, we obtain another exact sequence.
PROOF We shall just consider the case of the exterior
product. It will be convenient to have the following
‘notation: if H is a group with two normal subgroups Hgy, H,
then we shall denote by <(Hg,H;>y the subgroup of H A H
generated by the elements ho A h; with hy € Hy, h; € H;.

We must define the maps ¥j.
The map ¥;. Let TltGab -+ (G/M)ab, T,:6ab o (G/N)ab pe the

quotient maps, and define ¥, = (7,,7,).

The map ¥,. This map is induced by the inclusion MAN = @.

The map ¥;. Note that G/M is isomorphic to N/MnN. It

follows from proposition (3.1.3) that ¢6/M A G/M is

isomorphic to N A N/<N,NnMdjN. There is a commutative

diagram

1
i
ker ¢' = 73(G/M A G/M)
¢
1 » (N,NAON + NAN - NANKNNMYN ~ 1
tc” ic ic!

1 = MNN - N - N/MnNN - 1

in which ¢(n A n') = [n,n'], and in which the rows and
‘columns are exact. The diagram gives rise to a map
T3:m3(G/M A G/M) ~ [N,N]nM/[N,MnN]. Similarly there is a
map 7T4:73(G/N A G/N) = [M,M]NN/[M,MNN]. Let
t:[N,N]nM/[N,MNN] - MNN/[M,N] be the map induced by the
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inclusion [N,N]JNM - MNN, let ¢':[M,M]NN/[M,MNN] ~ MNN/[M,N]
be induced by the inclusion [M,M]NN - MnN, and define ¥; to
be the map ¥3(x,y) = (t73%)(L'TY).

The map ¥4. Let 75:73(G A G) = 73(G/M A G/M) be the map

induced by the quotient map G - G/M, and let 74:73(C A G) =
m3(G/N A G/N) be induced by the quotient map G -~ G/N.

Define ¥, = (75,Tg)

The map ¥s. This map is induced by the inclusions M - G

and N ~ G.

We must now check exactness.

Let x = (gM[G,G]), g'N[G,G]) be an arbitrary element of
(6/M)@P x (G/N)aP. Ssince G = MN we can assume that g = mn,
g' = m'n' for some m,m' € M, n,n' € N. The element
nm'[G,G] in GaP is mapped onto x by ¥;. Thus ¥, is
surjective.

The kernel of ¥; is MAN/[G,G]nMNN. Certainly the image
of ¥, is equal to the «ernel of y,.

The kernel of ¥, is [G,G]NMNN/[M,N]. Denote by K the
group ([M,M]NN)([N,NInM)/[M,M][N,N]Jn[M,N]. To see that the
image of ¥3 is equal to the kernel of ¥2 we have only to

show that there is a commutative diagram of groups

73(G/M A G/M) X m3(G/N A G/N) V3 MNN/[M,N]
la ti
K -OB ker wz

in which @ and 8 are surjective and i is the inclusion.
Let p:[N,N]JnM/[N,MNN] + K be the map induced by the
inclusion [N,N]JnM = ([M,M]NnN)([{N,N]JnM), and let
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P':[M,M]INN/[M,MnN] = K be induced by the inclusion [M,M]nN
= ([M,M]NN)([N,N]JnM). Then a is defined by a(x,y) =
(pT3x)(p'T,y) Where 75,7, are given above. The map a is
surjective since the maps 7,5,74,P,p' are all surjective.
The map 8 is induced by the inclusion ([M,M]nN)((N,N]JnM) -
[G,G]nMNN. To see that 8 is surjective it suffices to note
that [G¢,6] = [M,M][N,N](M,N], and that [M,M][N,N]JNMNN =
([M,M]nN) ([N,N]NM).

We now aim to show that the kernel of ¥; is equal to the

image of y,. The following commutative diagram of

Ccanonical maps

1 - ker ¢ - G A G/<M,N>g ~% G/MN
. ‘ ‘
G A G/<(G,M)g =~ G/M

13- [}

1 - wm3(G/M A G/M) = G/M A G/M - c/M

(where ¢ is induced by the map G A G -~ G, g A g' - [g,g'])
gives rise to a map Tj:ker ¢ = m3(G/M A G/M). Similarly we
have a map 7g:ker ¢ = m3(G/N A G/N).

Consider the commutative diagram

m3(G A G) ¥4 w3(G/M A G/M) X m3(G/N A G/N) .¥3 MAN/[M,N]
iy t(79,7g) [}

ker ¥3(74,74) -t ker ¢ - - MON/[M,N]

where v is induced by the quotient map ¢ A G -

G A G/d%N>G, and ¢ is the inclusion. It is readily seen
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that ; is surjective. To prove that the kernel of y, is
equal to the image of ¥y, it suffices to show that the map
(77,7g) is surjective: let (x,y) be an arbitrary element
of m3(G/M A G/M) x m3(G/N A G/N); since G = MN we can
assume that x is a product x = (n1M A n3'M)...(ngM A ny'M)
with nj,nj' € N, and that y is a product y = (mjN A m]'N)..
--(myN A my'N) with mj,mj' € M; the element

(N1 Anjy')...(ng Ang')(mp Amy')...(my A my')<M,Ndg of
ker ¢ is mapped onto (x,y) by (77:,7¢). Thus (714,7g) is

Surjective.

We now want to show that the image of ¥s is equal to the
kernel of y,. By proposition (3.1.3) there are
isomorphisms G/M A G/M = G A G/<{G,M>g and G/N A G/N =
G A G/<G,N>g. It is thus clear that the kernel of y, is
the intersection <G,M>g N <G,N>q¢ N 73(G A G). We shall
show that (G,M)g N <G,N>g = <M,Nd>g, and it will then be
Clear that the image of ¥gs is the kernel of Va-

. Certainly <G,M>g n <G,N>g 2 <{M,N>g. Suppose that x ¢
(G,Mdg n ¢G,N>g. Since G = MN and since x ¢ <G,M)g, we can
write x as a product x = XgX; With x5 € <M,Mdg n <G,N>¢ and
X, € {M,N>g. Note that xp is in the kernel of the canonical
map <M,M>q - G A G = G A G/<G,N>g = M A M/<M,MNN>y. Thus

Xg € (M,MnN)>g and hence x € <(M,N)q. v

Suppose in this last theorem that we have N = ¢. We can

extend the exact sequence(s) by two terms since, if we have

a commutative diagram of groups
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A Y
in which the rows and columns are exact, and the group F is

free, then

THEOREM(3.1.15) There is an exact sequence

m3(F A R) ~¥7 73(F A S) “¥e m3(G A M) Vs 7m3(G AG)
where y¥s is as in the preceding proposition. Again, by
replacing the exterior product sign A with the asymmetric
product A, we obtain another exact sequence.

PROOF Using proposition (3.1.3) we see that we have a

commutative diagram of canonical maps

1 1 1 1
i ) $ $
w3(F A R) n3(F A S) 73(G A M) 73(C A G)
{ i { ' {
FAR = FAS =+ FAS/(F,RY =~ F AF/CF,RF
$ ic i $
F = F - F/R = F/R
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in which the columns are exact, in which <F,R)> denotes the
subgroup of F A S generated by the elements f A r with f ¢
F, r € R, and in which ¢ is the map £ A 8 - [f,s8]. This
diagram induces the maps ¥s5,¥s:¥7. We must check exactness.
Suppose x is an element in the kernel of ¥s;. We can
represent x by an element <(x> of F A S, and we have c(x) ¢
[(F,R]. There exists an <x>' € <F,R> such that c<(x)' =
c<x>~1. The product <x><x>' € m3(F A S) also represents
X. Thus ¥ maps onto the kernel of ¥j;.

Clearly the image of ¥; is equal to the kernel of ¥g.
2. A UNIVERSAL CROSSED 3-CUBE IN GROUPS
We shall now look at the "3~dimensional" analogue of the

tensor product of groups of the preceding section.

Suppose given a diagram of groups

N— ~Q ~5 Q
y
M
VP o} (%)
VR
J/ . [\ g
P 0 >S
v o]
Y
L YR y R
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in which 8 acts on each of the other groups in such a way
that each of the three faces has a crossed square
structure. We want to construct a group T and maps \p:T =
L, \M:T =~ M, AN:T = N, such that the resulting cubical
diagram is a crossed 3-cube with the following defining
universal property (see proposition (1.4.1)): for any
other group T' and maps AL', AM': AN' such that the
resulting cubical diagram is a crossed 3-cube, there is a
unique map T = T' of crossed 3-cubes. We shall call T the

cubical tensor product of the above diagram.

Let T, be the group generated by the elements

9@ 1, p@ m, n@®r
where (q,1) € QOxL, (p,m) € PXM, (n,r) e NxR, subject to the
following relations: (All actions are assumed to be via §,

and we write 8(x ®; y) instead of 8x ®; Sy .)

(1) q@& 11' = (38 1) L(ge; 1),
qq* @, 1 = 9(q' @, 1)(q ®, 1),
pp' ®; m = P(p' @2 m)(p ®; m),
p® mm' = (p&® m) M(p @, m),
nn' ® r = M(n' @ r)(n@® r),

n®; rr' = (n®; r) I(n®; r');

(11) (p®;, m(g® L(p® m~1 = [pmlq@, 1),
(n® t)(g® L(n® r)~1 = [n,rlge, 1),
(@@ L(p® m((a@ 1~1 = [a:11(p e, m),
(nN®; t)(p® M(N®; r)~-1 = (nrl(p @, m,
(@@ LI(n®; r)(g@ 1)~ = [41l(ne; x),
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(p ® m)(n ® r)(p® m~1 = [PPI(n®; x),

(iii) vo(Pm m1) @ 1 = (p® m l(p ® m)~1i,
vg(n rm-1y®, 1 = (n®,; r) 1(n ®; r)-1,
Cwp@1 17y @, m = (@ ® 1) Mg @ 7L,

vp(n fn~ly @ m = (n®; ) Mn®, r)-1,
n@® vr(Pmm-l) = N(p® m(p® mL,
n®, vg(dl 171) ng®, L(g® LI,
p ®, h(q,vrl) = P(a® 1)(g @ 1)-1,

p ® h(vgn,r) = P(n®; r)(n & r)-1,
g ® h(p,vgm) = 9(p & m)(p ® m)-1,
g ®, h(vpn,r) = 9n@; r)(n @ )1,
h(vpl,q) @ r = (L& g) ¥(1® q)~1,
h(p,vgm) @ * = (P ®; m) T(p ®, m)~1;

(iv) ((vpn)(vpl) @2 m)((vom)(vgn) @, 1)
= (n @; (vrl)(VRM)) .

(v) Q(h(p.q'l)'l ®; r)
= P(q ® h(p~l,r)) T(p ®; h(q,r-1)-1) ;

(vi) von® 1 = (vpl®; m)~1,
vpn ® m = n ®; vgrm,

von @, 1 = n @; vrl:

for all 1,1' ¢ L, mm' € M, n,n' € N, p,p' € P, q,9"' € Q,

r,r' € R.
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Note that there is a group action of S on Ty given by

S(ag® 1) = SBq@ ®1,

S(p®;, m) = Sp®, ®m,

5(n®; r) = 2n@®; Sr.

Define maps \p,:Tg = L, AM:To = M, AN:Tg = N on
generators by

\L(@®, 1) = 91171,

AM(p®; m) = h(p,vrm),

A(n ®; r) = h(vepn,r),

aM(q ®; 1) = h(q,vrl),

AM(p @; m) = Pmml,

AM(n ®; r) = h(vgn.xr),

AN(g @, 1) = h(vpl,a)~L,

AN(p 8, m) = h(p.vgm),

aN(n ® r) = n In~l.
It is routine to check that these maps are well defined.

Let us define three functions |

h:QxL = T, (q.1) = a@®, 1,

h:PxM = To, (p,m) = p ®; m,

h:NxR = Ty, (n,r) ~nQ®,; r.

PROPOSITION(3.2.1) The group Ty, is the cubical tensor
product of diagram (*).
PROOF We must check that the above cubical structure is a
crossed 3-cube.

Note that the cubical diagram is commutative, and that
axiom (2.1.3.iv) holds. Axioms (2.1.3,ii,iii,v) follow
respectively from the identities (iv,v,vi) above. It

remains to check rule (2.1.3.1).
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Consider the square

For t € Tg, ¥* € R we clearly'have AL (Tt) = Eap(t). For
t,t' € T, we have (using the first two identities of (i),
and the first two identities of (ii) above) that (ALt)t' =
tt* -1, Thus \p, (and similarly Ay) is a crossed module
and preserves the action of R. The function h:LxM - Tg,
(1,m) =~ vpl ®, m certainly satisfies axioms (2.1.2,1iii,
iv,v,). Axiom (2.1.2.vi) follows from (iii) above. Thus
the square under consideration is a crossed square.

Similarly the square

Ty -YQMW @

Azt ‘s

L. 49YR s

is a crossed square. By symmetry it follows that rule
(2.1.3.1i) holds. Hence the cubical structure under
consideration is a crossed 3-cube. This crossed 3-cube

clearly has the required universal property. v

In certain special cases the cubical tensor product has'

a simpler presentation.

EXAMPLE(3.2.2) Suppose that all maps in (*) are trivial.
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It foilows that each of the groups L,M,N,P,Q,R is abelian,
and that all actions are trivial, and that the cubical
tensor product T is the quotient of the direct sum of
(standard, abelian) tensor products

T = (Q@z L)@ (POzM) ® (N R) / -
obtained by factoring out the relétibns

(h(p,gH)"1® ) = (3@ h(p~t,r)) + (p ® h(g,r~1)-1y,
or equivalently the relations

(h(p/gq) ® r) = (p® h(q,r)) - (@ & h(p,x)),

where p ¢ P, g € Q, r € R.

EXAMPLE(3.2.3) Suppose that all the maps in (*) are
trivial, and that L = P @7 R, M-Q®zR,N-P®ZQ
(where these are standard tensor products of abelian
groups). From the preceding example we see that the
cubical tensor product in this case is the quotient
T = (Q@z(P®zR))@(P®z(Q®ZR))®((P®ZQ)®ZR) /-
obtained by factoring the relations

((p®q)@r) = (PP (A1) -(q@ (p® 1)),
where p €¢ P, q € Q, r € R.

That is, the cubical tensor product T is isomorphic to
(P®z Q8zZ R) @ (P®z Q ® R).

PROPOSITION(3.2.4) Suppose that the maps Vp,vQ,VR in
diagram (*) are surjective, and let T' be the group with a
bresentation consisting of generators q ® 1 for (q,l) €
OxL, and relations:
(1) q@®11' = (g® 1) (g1

qq' ® 1 = AUq' @ 1)(q® 1);
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(ii) q®1 = q® 1' whenever vpl = vPZ'. or vrl = vgl';
(1i1) va® 1 = (in® l')"l whenever vpl = vpn and
VRM = ypl';

for all 1,1' e L, m ¢ M, n ¢ N, q,9' € Q. Then T' is the
cubical tensor product of the diagram (*).
PROOF Let T, be the cubical tensér product with the
Presentation of proposition (3.2.1). There is certainly a
homomorphism ¥:T' - T, given on generators by q@ 1 -
9@, 1. We must construct an inverse to y.

Let us construct a set map ¥' from the generators of To
to the group T' by defining

¥'(ge@; 1) = g@ 1,

¥'(p® m = (vgm®1)"l for 1 e L such that vpl = p,

¥'(n@®; r) = von@® 1l for 1 € L such that vgl = r.
It is clear that y' is independent of any choices. It is
also clear that if we extend ¥' to a map from the free
group on the generators of Ty to T', then ¥' annihilates
the relations (i), (ii),(iii) and (vi) of the presentation
of Tyg. 1[It remains to check that y' alao'annihilates
relations (iv) and (v). That is, we must check that the
following identities hold in T':

vgn ® 1x = (vgm ® y1)-1 ((vgm) (vgn) ® 1)
for x,y,1 e L, m € M, n € N with vgx = VRMm and vpy = vpn;

and

-1
Ug~l Yg@ u) = V(g ® (vl,u]) uu g g-1 @ v)-1
for u,v e L, q € Q.

The check is done in Appendix III, verifications (1) and

(2). v
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EXAMPLE(3.2.5) Suppose that L = M = N = P = Q = R = 8§ (=« G
say), and that all maps in (*) are the identity. Then it
follows from proposition (3.2.4) that the cubical tensor
product in this.casé is isomorphic to the asymmetric

product G A G introduced in the last section.

3. SOME UNIVERSAL CROSSED SQUARES IN LIE ALGEBRAS

Let us fix a commutative ring A (with unit), and assume

all Lie algebras to be over A.

We shall begin this section by recalling the
construction of a free Lie algebra.

A set V with a map VXV = V, (v,v') =« vv', is called a
magma. Given an arbitrary set X we can construct a magma
Vx: let {Xp) be the family of sets with Xj; = X and X, (n >
2) the disjoint union of the sets XpXXq such that p + q =
n; let Vg be the disjoint union of the sets X, and let
VgxVx =+ Vx be the map induced by the canonical map XpXXq =~
Xp+q © Vx. The magma Vx is called the free magma on X.

Given an arbitrary magma V we can construct the free
A-algebra FV whose elements « are finite sums @ = ZIayv
with ay € A, v € V; the multiplication in FV extends the
multiplication in V.

Let I be the two sided ideal of FV generated by the
elements aa , (aB8)Y + (BY)a + (va)B with @,8,v € FV. Let
LV be the quotient FV/I. LV is a Lie algebra. The Lie

algebra Vg is called the free Lie algebra on X.

Let M,N be Lie algebras such that there is a ILie action
of M (resp. N) on N (resp. M). We define their tensor
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product M@ N to be the quotient algebra LV(MxN)/J where
LV(MxN) is the free Lie algebra on the set of elements

m@®n with (m,n) € MxN, and where J is the ideal generated

by the relations

(i) am®n) = am@®n = m® an;

(ii) (m+m')®n = m&®n+m' @n,
m® (n+n') = mO®n+m®n';

(iii) (mm'] ®n = m@ ™n - m' ® M,

m® [n,n'] = "m@®n-"M®n'; N) Tmen, m'en'l = (<"m @"4');

for a ¢ A, m,m' € M, n,n' € N.

Note that if the actions of M and N are trivial (i.e.
if ™h =« 9, Nm = 0 for all m € M, n € N) then the tensor
product M ® N is just the standard tensor product of

A-modules M23P @ N3P, where MaP = M/[M,M], NaD - N/[N,N].

Suppose that the lie algebras M,N and their actions are
obtained from crossed modules 6:M - P, 8':N - P. Then it
is routine to show that the tensor product M® N fits into

a crossed square

M®N .* N

in which: the action of P on M® N is given by

PmMm®n) = Pm®n + mO Pn;
the maps \,\' are given respectively by m®n - ™, m® n =
- Pm; the.function h:MxN = M@ N is (m,n) ~ m&® n.

This crossed square has a defining universal property
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(cf. proposition (1.4.1)).

We define the exterior product M A N to be the quotient
of M® N obtained by factoring out the relations:

(v) m®n = 0, whenever &m = 8'n.

We shall denote by m A n the element of M A N which is

represented by the element m® n in M & N.

The crossed square containing M® N is preserved by the
quotient map M@ N ~ M A N. Thué the exterior product
M A N also fits into a crossed square.

Given an arbitrary Lie algebra L, we shall denote by

L A L. the exterior product belonging to the crossed square

PROPOSITION(3.3.1) FLet LVg be the free Lie algebra on some
set X. Then there is a Lie isomorphism '
(Lvgx, LVx] & LVx A LVx.
PROOF The universal property of the exterior product gives
us a homomorphism ¥:ILVx A LVx = [LVgx,LVg]}, 2 A 2' =
[L,2']). We need to construct an inverse to y. ;
Let Vx be the free magma on X and let Vxi = VX\X be the
submagma obtained by excluding the set X. Let (vaf(FVX)

be the subalgebra of the free algebra FVy generatedfthose
demeds o which can be wrikea ay o Proo‘ut{' W= o, with o0, e
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FPVx. There is a canonical isomorphism (FVx) (FVx) = FVx1.

The ideal I CFFVX which is generated by the elements aa,
(aB)y + (By)a + (vya)B with @8, € FVg, is contained in
(FVg)(FVg). Let I' Fsz be the isomorphic image of 1I.
Then [LVy,LVx] is isomorphic to FVxi/I'.

Each element w € Vx1 can be éxpressed uniquely as a
product w = uv with u,v € Vg. The set map Vy1 ~ LVg A Lvg,
W~ u A v extends to a *.: homomorphism @':FVUxL ~
LVx A LVg. It is readily verified that ¢' induces a
homomorphism ¢:[LVx,LVg] = FVxl/I' - LV A LVg. The

hdmomorphism ¢ is the inverse of y. v

Note that the Lie algebra analogue of proposition
(3.1.3) can easily be proved. Also, a straight forward

translation of our group theoretic arguments gives us

THEOREM(3.3.2) Let G be a Lie algebra containing two
ldeals M,N such that any element g € G can be written as a
sum g = m + n withm € M, n € N. Then there is an exact

sequence!: .
m3(M A N) = m3(G A G) ~ m3(G/M A G/M) @ 73(G/N A G/N) -
~ MNN/[M,N] = 63b - (6/M)ab @ (g/N)ab - g

where G20 = G/[G,G] and T3(M A N) = ker(M AN - M, m A n -

[m,n]) etec. v
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- 4. A UNIVERSAL CROSSED SQUARE IN COMMUTATIVE ALGEBRAS
Let us fix a commutative ring A (with unit), and assume

all commutative algebras to be over A.

The free commutative algebra CVx on a set X is the
quotient FVy/I where FVx is the free algebra on X (see $3)

and I is the two sided ideal generated by the relations a8

= Ba, (aB)y = a(By) for a,8,y € FVY.

Suppose given two crossed modules in commutative
algebras 6:M -~ P, 0':N ~ P. We define their tensor product
M @ N to be the quotient algebra CV(Mxn)/J where CV (MxN)
is the free commutative algebra on the set of elements
m® n with (m,n) € MxN, and where J is the ideal generated

by the relations

(i) am@®n) = am@®n = m® an;

(ii) (mMm+ m')®n = m®n +m' @ n,
m® (n+n') = m@n+m@n';

(iii) (Mm@ n)(m' @ n') = (mm' @ nn');

(iv) Pm®n = m® Pn;

for m,m' ¢ M, n,n' € N, p € P.

It is routine to show that the tensor product M® N fits

into a crossed square

MAN .M N
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in whi.ch: the action of P on M@ N is given by

Pm®n) = Pm@n = m® Pn;
the maps A,\' are given respectively by m@ n - M™n, m® n -
Nm; the function h:MxN ~ M® N is (m,n) » m® n.

This crossed square has a defining universal property

(cf. proposition (1.4.1)).

A possible notion of an exterior product M A N of M with

N is obtained as a quotient of M® N by factoring out the

relations

(v) m®n = m @n' whenevei: ém = &'n' and &m' = 8'n.
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CHAPTER IV
CROSSED MODULES, CROSSED SQUARES AND HOMOLOGY

0. INTRODUCTION

Crossed modules and crossed complexes have been uséd for
some time now to give interpretations of cohomology of
groups and algebras [ML,Lul,Lu2]. In this chapter we shall
study the dual situation of homology. We shall study free
and projective crossed modules ($1) and show how projective
crossed modules in groups ($2) and Lie algebras ($3) can be
used to obtain information on tﬁe 2nd homology. We shall
use the exterior products of Chapter I[II to give
interpretations of the 2nd and 3rd homology of a group ($4)
and of the second homology of a Lie algebra ($5). These
interpretations combined with theorems (3.1.14),(3.1.15)

and (3.3.2) will give us exact sequences in homology.

1. FREE AND PROJECTIVE CROSSED MODULES
In this section we work in an arbitrary category C of

f-groups.

Let us begin by adapting some well known terminology
{B-Hu,R] to the category C.

We shall use the term crossed P-module to mean a crossed
module 3:M -+ P with codomain P. By a map of crossed .
P-modules we shall mean a crossed module map which is the
identity on P. The category of such crossed modules and
maps will be called the category of crossed P-modules.

A projective crossed P-module is a projective object in
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the ca£egory of crossed P-modules.

A crossed P-module 3:C(f) - P is said to be the free
crossed P-module on a function £:X ~ P from a set X to P if
the following universal property is satisfied: the
function f is the composite of 3 with some function v:X -
C(f); given any crossed P-module 8:M = P and function w:X
* M satisfying 8w = dv, there is a unique map ¥:C(f) = M of
crossed P-modules which satisfies ¥v = w.

Clearly free crossed modules are defined uniquely up to
isomorphism, and are particular examples of projective

crossed modules.

We shall now give three elementary results on crossed

modules which will be needed in the following sections.

For an arbitrary fn-group M, let [M,M] denote the
subobject generated by the elements m + m' - m - m', and
let (M,M>x denote the subobject'generated by the elements

m* m' for m,m' € M.

PROPOSITION(4.1.1) Let‘aM - P be a crossed P-module. If
the restricted map 3':M = M has a section s8:3M - M (here s
need not preserve the action of P), then both [M,M] N ker 3
and <(M,M>x n ker 8 are the trivial n-group.

PROOF Since 3' has a section we have that M is isomorphic
to the semi-direct prAduct M = ker 8 X aM. But both

(ker 8,ker 3] and <ker 3, ker d>x are trivial, and 8M acts

trivially on ker 3. The proposition follows. v
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For C equal to the category of groups, proposition

(4.1.1) is given in [B-Hu] and is originally due to J.H.C.

Whitehead.

PROPOSITION(4.1.2) Let 3:C = P be a projective crossed

P-module, let 8:M - P be an arbitrary crossed P-module, and

let ¥:M = C be a surjective map of crossed P-modules. Then

¥ has a section s:C - M.

PROOF The proof is straightforward. v

PROPOSITION(4.1.3) (R. Brown) Let 3:M -+ P, 38':M' -~ P be
crossed P-modules and let ¥:M - M' be a map of crossed
P-modules. Then ¥ 18 a crossed M'-module with M' acting on

M via 3'.
PROOF The proof is a straightforward check. v

2. CROSSED MODULES AND THE SECOND HOMOLOGY OF A GROUP
The contents of this section are joint work with

T. Porter [E-P]. In this section we take C to be the

category of'groups.

we shall need the construction of free crossed modules
(cf. [B-Hu]). So suppose we are given a function f£:X - P
from a set X to a group P. Let E = F(PxX) be the free
group on the set PxX, and let P act on E by
P(p'.x) = (pp',x).
The function f induces a homomorphism 6:E - P which is
defined on generators by

o(p,x) = pf(x)p-l.
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The Peiffér group Q is the subgroup of E generated by the
elements

uvu"l(euv)”l
where u,v € E. The group Q is normal, invariant under the
action of P, and 6Q is trivial. Thus, setting C(f) = E/Q,
we obtain a crossed module 64:C(f) - P; this is the

required free crossed P-module.

PROPOSITION(4.2.1) Let £:X -~ P be a function from a set X
to a group P such that P is generated by the image of f.
Let FX be the free group on X and denote by RX the kernel
of the induced map from FX to P. Then the function £
‘induces a homomorphism FX/[FX,RX] - P; this is the free
crogssed P-module on f.

PROOF This propositioh is a special case of [B-Hu,

proposition 9]. A direct proof is easy. \'4

PROPOSITION(4.2.2) If 3:C - P iIs a free crossed P-module
with 8C = N say, then the restricted map 38':C - N is a free
crogsed N-module.
PROOF The crossed P-module a;c - P is free on some
function £:X = P. - Let T be a transversal of N in P which
contains the identity. The function f induces a function
£f':TxX ~ N given by
f£r(t,x) = tE(x)t~L.

We shall show that the crossed N-module 3':C ~ N satisfies
the universal property of the free crossed N-module on f'.

Let 6:M -+ N be an arbitrary crossed N-module and let

w:TxX - M be a function such that 8w = f'., Recall the
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above aescription of the free crossed P-module on f.
Define a homomorphism w':E - M on generators by

w'(p,x) = Pw(t,x)
where p = nt with n e N, t € T.

The Peiffer group Q is normally generated by the elements

uvu—l(euv)—l
with u,v € PxX (see [B-Hu]). Suppose that u = (q,y), v =
(p/x) with p = nt as before. Since 6u € N we have

wc(euv) = (Gu)nw(t'x)

= Ouyry,
But 6u = 8w'u, so
w'(Buvy = (wru)(w'v) (wra)Tl

That is, w'P is trivial; w' thus induces a homomorphism
¥:C ~ M satisfying 8y = 3. A routine calculation shows
that ¥ is N-equivariant, and thus that ¥ is the required

map of crossed N-modules. ¥

PROPOSITION(4.2.3) Let 3:C = P be a projective crossed
P-module with 8C = N say. Let R o F .M N be an arbitrary
free presentation of N. Then there is an isomorphism

[c,c] % [F,F1/[F,R] given by [c,d] = [x,y][F,R] where
c,d e C, x,y € F and dc % Ax, dd = \y.

PROOF First let us suppose that 3:C - P is a free
P—modgle. It follows from proposition (4.2.2) that the
restriction of 8 to d8':C - N is a free crossed N-module on
some function f:X = N. Let Fy = F(Xx®) be the free group
on XXP and denote by Rg the kernel of the homomorphism F, -
E given on generators by (x,p) = p(fx)p'l. Propositions
(4.1.1),(4.%2.2),(4.2.3) give us [C,C] = [Fq,Fy)/[Fg,Ro]. Now
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_ [F,Fi/[F,R] is an invariant of N. (A proof of invariance
is not difficult, see [Ba].) It follows that {C,C] =
(F.F]/[F,R].

Suppose now that 3:C - P is a projective crossed
P-module. Let 38':C(8) - P be the free crossed P-module on
the map 3:C - P. There is a surjective map of crossed
P-modules ¥:C(3) ~ C. It follows from proposition (4.1l.2)
that ¥ has a section s:C = C(3). Hence by propositions
(4.1.1) and (4.1.3) there is an isomorphism [C(38),C(3)] =
[C/,C]. There is thus an isomorphism [C,C] = [F,F]/[F,R].
It is easily checked that this}isomorphism is as described

in the proposition. v

We now come to the main result of this section.
THEOREM(4.2.4) If N is a group and 8:C » P 1s a projective
crossed P-module with 8C = N, then

Hp(N) = ker 8 n [C,C].
PROOF This proposition follows immediately from

proposition (4.2.3) and Hopf's isomorphism HoN =

RA[F,F]/[F,R]. V¥

REMARK(4.2.5) We could have used the key lemma 2.1 of
Ratcliffe's paper [R] to prove this lasﬁ theorem.
Instead, we will show that our methods give a new and
simple proof of Ratcliffe's lemma which avoids the detailed
elementwise manipulations of the original proof.

Let a:é(f) - P be the free crossed P-module on a
function £:X - P. Recall that C(f) = E/Q. There is an

isomorphism
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[C(£),C(£)] = [E,E]/QN[E,E].
Let I be the kernel of the induced map from E to P. Thus
I ~-E - N is a free éresentation of N and so, by
proposition (4.2.3)

[C(£),C(£)] = [E,E)/[E,1].
It follows that [E,I] = QOn[{E,E]; this equality is lemma

2.1 of [R].

3. CROSSED MODULES AND THE SECOND HOMOLOGY OF A LIE ALGEBRA
In this section we take C to be the category of Lie

algebras over a commutative ring A (with unit).

PROPOSITION(4.3.1) Let f:X = P be a function from a set X
to a Lie algebra P such that the image of f generates P as
an algebra. Let LVx be the free Lie algebra on X and
denote by RVx the kernel of the induced map from LVy to P.
Then the function £ induces a homomorphism fg:LVyx/[LVyx,RVx]
- P; this 1is the free crossed P-module on f.

PROOF We have a short exact sequence RVy - LVx - P. For
each p in P choose an element <{p) in LVx such that <p) maps
down to p. The function P X LVx ~ LVg, (p,1l) - [<p>,1]"
induces a Lie action of P on LVx/[LVx,RVx]. It is routine
to check that fg, together with this Lie action, satisfies
the axioms of a crossed module and has the universal

property of the free crossed P-module on f. v

THEOREM(4.3.2) If 3:C -~ P is a projective crossed P-module

with 8C = P, then
Ha(P) = ker 38 n [C,C].
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PROOF .Let C(3) = P be the free crossed P-module on the
function 3. By proposition (4.3.1) we have

C(3) = LVe/[LVe,RVe] whefe IVe is the free Lie algebra on C
and RVc is the kernel of the induced map LVg -+ P. There is
a surjective map ¥:C(3) = C of crossed P-modules. It
follows from propositions (4.1.2) and (4.1.3) that ¥ is a
crossed C-module with a section s:C -~ C(3). From
proposition (4.1.1) we have [C,C] = [C(3),C(38)]. The
proposition now follows from the Hopf type formula Hy(P) =
RVe n [LVe,LVe]l/[LVe,RVe] (see for example [H-S], Chapter

VII, section 2). v

In view of the group theoretic theorem (4.2.4) it is
reasonable to conjecture that proposition (4.3.2) can be
strengthened to the case where the image of 8 is a proper
ideal of P. 1In order to prove this we need the
construction of the free crossed P-module (in Lie algebras)
on an arbitrary function £:X -~ P. This construction is
more complicated than its group theoretic analogue.

The commutative algebra version of theorem (4.2.4) is

given in [P4].

4. CROSSED SQUARES AND THE SECOND AND THIRD HOMOLOGY OF A

GROUP
In this section we take C to be the category of groups.
Throughout the section let R 4 F .M G be a free

presentation of a group G.

In example (3.1.8) we showed that the exterior product
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‘P AF is isomorphic to the commutator. subgroup [F,F]. By

proposition (3.1.3) we have

PROPOSITION(4.4.1) There is a canonical isomorphism

cAG = [F,F}/[F,R]. A4

Recall that 73(G A G) is the kernel of the commutator

map G A G - G. Proposition (4.4.1) together with the Hopf

formula for Hy(G) gives us

THEOREM(4.4.2) There is an isomorphism
Hz(G) = w3(G A G). v

This description of H2(G) is obtained in [B~L]. It is

also essentially the description given in [M].

Suppose that the group G has two normal subgroups M and
N. Since the inclusions M - G, N - G are crossed modules,
we can construct the group 73(M A N). In some sense,
m3(M A N) is a "relative second homology group of M with

respect to N". Note that theorems (3.1.14) and (4.4.2)v

give us

THEOREM(4.4.3) If the normal subgroups M,N of G are such
that G = MN, then there is an exact sequence
73(M A N) =~ H2(G) = H2(G/M) @ Hz(G/N) -~ MnN/[M,N] -
-~ Hy(e) =~ HI(G/M) @ HL(G/N) =~ 1. v

This sequence is obtained in [B-L] as a consequence of the
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3-dimensional van Kampen type theorem.

The group H2(G) = w3(G A G) has been considered by [D]
as a kind of "second homology group suitable for algebraic
K-theory". In some respects Hy(G) certainly behaves like a
second homology group. For example, given two groups A,B
then we have two isomorphisms

Ha(A*B) = Hy(A) ® Ha(B),

H2(AxB) = Hy(A) @ Hz(B) @ A2P @7 83D,
as a consequence of propositions (3.1.7) and (3.1.10).

Also, theorem (3.1.14) gives us‘

PROPOSITION(4.4.4) If the normal subgroups M,N of G ars
such that G = MN, then there is an exact seguenée
7m3(M A N) =~ Ha(G) =~ Ha(G6/M) @ H2(G/N) =~ MnN/([M,N] =
= H1(G) =~ Hi(G/M) @ Hi(G/N) =~ 1. Vv

We now aim for a description of H3(G) in terms of the

exterior product.
Note that the identity map F - F and the inclusion R = F

are both crossed modules, and that we can thus form the

exterior product F A R.

PROPOSITION(4.4.5) There is a short ex;ct sequence
1 o~ RAR J¥1 FAR .¥2 6@y RrR3D , 3
where IG is the augmentation ideal of G, and B denotes the
usual tensor product of G-modules.
PROOF The canonical map ¥; is injective since we have a

commutative diagram of maps
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RAR = [R,R]
Wy s

FAR = [F,R]

The map ¥, is given on generators by
¥2(f Axr) = (A - 1)® r[R,R] .

The map ¥, is a homomorphism since

VE(E' Ax) vo(f A )

= (MNE£'f-1l) - 1) ® fr£-1{R,R] + (Af - 1) ® r[R,R]

= (N(ff') - Af) ® r[R,R] + (Af - 1) ® r[R,R]

= (M(ff') - 1) ® r[R,R]

= Y, (Ff' A 1),
similarly

¥2(f Ax) ¥.5(f Ax') = ¥3(f Axr'),
and

¥a(r Axr) = 0.
Clearly ¥, is surjective. Set T « F A R/¥;(R A R). 1In
order to show that the kernel of'v2 is equal to the image
of ¥, it will suffice to construct an isomoréhism
16 & rRab 4 T, Note that the quotient T is abelian since,
working in F A R, we have

Az, £' Ax'] = [£,xr] A[f',r'] € ¥,(R A R)
(see example (3.1.2)). For each g in ¢ let <g> be an
element of F such that X<g> = g. The group T has a
G-module structure given by setting

| g(e Ar) = SPf A <Py,
This G-action is well defined since, fofrr' € R, we have

' Aaxr)(fAar)l = r' A[f,r] € ¥,(RAR)

Suppose (x,r(R,R]) is an element of the direct product
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IG x R8P, The augmentation ideal IG is the free abelian
éroup on the set {g - 1 : 1 # g € G}, and so x can be
written uniquely as a sumi(g; - 1) I..;I(gn - 1l). Set
¢(x,x[R,R]) = (<g1> A rff..((gn) A rfi € T. A routine
check shows that ¢ is a well defined G-bilinear map from
IG x Rab to T. It follows that ¢ induces a map
$':16 & R2P - T. The map ¥, induces a map ¥,':T -

IG ® R2P. The maps ¢',¥,' are inverse to each other. Vv

THEOREM(4.4.6) There is an isomorphism
H3(C) = w3(F A R).
PROOF . Let B8:1G @ RaP + RaP be the homomorphism
((g - 1) ® r[R,R]) = <gdrig>~1l[R,R].
Then ‘
H3(G) = Hl(G;Rab) = Kker 8.
(See for example [H-S], Chapter VI, sections 4 and 12.) We

thus have a commutative diagram

1 1
3 i
1 m3(F A R) H3(G)

! ! !
1 - RAR ~ FAR =~ IGG; R - 1

i i I8

=
IS
—
o
-
«
—
i

{(F,R] =~ [F,R]/[R,R] =~ 1
il { 4 |
1 1 1

in which the rows and columns are exact. The proposition
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 follows. v
Theorems (3.1.15), (4.4.3) and (4.4.6) give us

THEOREM(4.4.7) Given a short exact sequence of groups M -
G -~ Q, then we have an eight term exact sequence in the
homology of groups:
H3(G) = H3(Q) -~ m3(G AM) =~ Hz(G) =~ Hz(Q) -~
~ M/[G,M] =~ H1(G) =~ H(Q) =~ 1. v

This sequence is obtained ih [B-L] as a consequence of

the 3-dimensional van Kampen theorem.

It is tempting to define the group H3(G) =Nﬂ3(F A R).
However, wm3(F A R) is dependent on the choice of
presentation of G. To see this, consider the presentation
of the trivial group

Fn = Pp -~ 1
where Fp denotes the free group of rank n. Then from
example (3.1.9) we have that n3(Fnh A Fp) is isomorphic to
the direct sum of n copies of Z3. That is, w3(Fn A Fp)

depends on n.

5. CROSSED SQUARES AND THE SECOND HOMOLOGY OF A LIE ALGEBRA
In this section we take C to be the category of Lie

algebras over a commutative ring A (with unit). Let R = F

- G be a short exact sequence of Lie aigebras in which F is

free.
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éy proposition (3.3.1) we have that the exterior product
F A F is isomorphic to [F,F]. Using the Lie algebra

version of proposition (3.1.3) we get

PROPOSITION(4.5.1) There is an isomorphism

GAG = [F,F]/[F,R] . v

Recall that 7m3(G A G) =ker(GAG -G, gAg' - [g,g']).

The Hopf type formula for H2(G) now gives us

THEOREM(4.5.2) There is an isomorphism

Hp(G) = 7m3(CG AG) . v

Theorems (3.3.2) and (4.5.2) imply

THEOREM(4.5.3) Let G be a Lie algebra containing two
ideals M,N such that any element g € G can be written as a
sumg =m + n withm € M, n € N. Then there is an exact
gequence in homology:

73(M A N) - H2(G) - H2(G/M) ® H2(G/N) - MnNN/[M,N] -

+ H1(G) = HL(G/M) @ H1(G/N) ~ 0. v
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CHAPTER V

MISCELLANEOUS COMMENTS

1. In example (3.2.5) we showed that, in a particular
instance, the cubical tensor'product of groups is
isomorphic to the asymmetric product G A G. R. Brown has
sugqeshed v
w:7zry an alternative proof of this isomorphism as follows.
Let X be a space such that 71X = G, and let T3G be the

cubical tensor product of example (3.2.5). There is an
exact sequence (analogous to the sequence in [B-L, Theorem
5.4])

moX - wWaS2X -+ T3G - miXx - (mX)ab 4 1,
On taking X = K(G,1) we get an exact sequence

0 =~ myS2K(G,1) =~ T3¢ -~ [G,6] = 1.
But there is an exact sequence [B-L, proposition 6.9]

0 - mgsS2K(G,1) - GAG - [C,G] - 1.
Let ¥:6 A G ~ T3G be the map g A g' - g®, g'. Then it is

readily seen that we have a commutative diagram

ker(6 AG ~G) ~ GAG = [G,G]

159 iy "
ker (T3G ~ G) - T3 - [6,6)

One maU’ k le uUt & prove }“' iniu‘.ée,

in which %' is onto, ‘=<l v -« v tsorsivedisier | Hence T3G =
G A G.
2. In theorem (4.4.2) we gave, for axgroup G, an

isomorphism Hz(G) = #3(G A G). 1If G is an abelian group

then 73(G A G) is isomorphic to G A G (where G A G is now
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the standard exterior product of abelian groups). More
generally, for G abelian, there is an isomorphism Hp(G) =
ANG  (see for example [Br]). It is reasonable to expect
this latter isomorphism to generalise to the case where G
is non-abelian (and n 2 3). Even for the case n = 3 there

seems to be no obvious choice for a "non-abelian cubical

exterior product".

3. The six term exact sequence of théorém (4.4.3) is

extended, by the following two terms, in [B-L] as an

application of the van Kampen theorem for squares of maps:
H3(G) =~ H3(G/M) @ H3(G/N) - w3(M A N).

[t ought to be possile to obtain this extension by purely

algebraic means! It is reasonable to expect that both of

the six term exact sequences of theorem (3.1.14) can be

extended by two terms.

4. (R. Brown) If X is a connected CW-complex with mX =«
G, then the following exact sequence is obtained as a
consequence of the van Kampen theorem for squares of spaces
[B-L, Theorem 5.4] |

mpX - m38X o G® G 4 [6,6] 4 1. (%)
This sequence together with Whitehead's I'-sequence [W2]
gives us an exact sequence

H3X =~ TI(G3P) =+ ker(G@ G 4 G) =~ Hyx = 0. (**)
On taking X = K(F,1) where F is a free group, (**) gives us
aﬁ isomorphisml

I‘(Fab) % ker(F®@F - F), (x%)

and so via (*) we recover m3 of a wedge of 2-spheres. In
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deducing (**) from (*) we must use Whitehead's result

I'3X = T'm3X, and the proof of this uses a description of n3
of a wedge of 2-spheres. So we cannot use the isomorphism
(***), so obtained, together with (*) to deduce a
description of a wedge of 2-shperes. Clearly a purely

algebraic proof of (***) is desirable.

5. It would be nice to have the Lie algebra version of

theorem (4.4.6).

6. A description of the homology groups Hp(G) of a group
G in terms of crossed n-cubes is known only for n = 1,2,3.
In contrast a description of the cchomology groups HR(G,A),
where A is a G-module, in terms of catP-groups is known for
all n [L].

To each catRl-group H one can associate a complex of
(non-abelian) groups

CyH:  CpH Sn | o C1H .31 CoH

such that the image of dj4+]1 is normal in the kernel of di
(thus the homology groups Hj(CgH) can be formed). For n >
2 and some fixed integer k # 1, let H(G,A))x be the set
consisting of triples (H,¢,¥) where‘ﬂ is a catn‘z-group, @
is an isomorphism between Hx(C4H) and G, and ¥y is aﬁ
isomorphism between Hp-1(C4H) and A. Moreover, suppose that
Hi(CgH) = 0 if i #'k or n-1. There is a Yoneda equivalence

on the set H(G,A)x such that



THéOREM (L] There is a one-to-one correspondence between
the cohomology group HR(K(G,k);A) and the set

H(G,A)x/(Yoneda equivalence). v

. The construction of the set B(G,A)/(Yoneda equivalence)
is easily extended to the case where G is a Lie algebra
(commutative algebra etc.). It would be worthwhile having
a purely algebraic proof of the above theorem in the case
n = 1, since this proof would likely generalise to the case

where G is a . Lie algebra (etc.).

7. Suppose given a crossed square
L -» N
ard Lot
M L0 P

with classifying space X (see [L]). The homotopy groups
m1X, m2X, n3X are the homology groups of the complex of
(non-abelian) groups
L @ MxN B p
where at = (A'2,A271) and g(m,n) = (8m)(8n). R. Brown has
recently shown that the Whitehead product
maX X waX = #n3X |
is induced by the function
W: XkXer 8 x ker 8 =~ L,
((m,n),(m'.n")) = h(m'~,n)h(m-l,n'y.
It would be satisfying to be able to identify the various

Whitehead products in a crossed n-cube of groups for n > 2.
V-4
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8. - An important result of [(W2] is that if X,Y are
 connected CW-complexes, dim X € n and Y is a Jp-complex
(for example if wjY¥ = 0 for 1 ¢ i < n) then the functor
which takes the space X to its fundamental crossed complex

7X (described in the Introduction) induces a bijection of

hohotopy classes

[X,¥] = [nX,nY].
Further, there is a bijection

(7X,7Y] = [CX,CY]
where CX is the cellular chain complex of the universal
cover of X (considered as a complex of wmiX-modules).

These bijections enable certain homotopy theoretic

calculations to be done purely algebraically [E]. At
present no progress has been made on using crpssed n-cubes
to generalise these bijeétions; the main obst#cle is the
complicated nature of the functor from crossed n-cubes to
CW-complexes which involves taking iterated nerves of the

associated cath-groups.



APPENDIX II

Verification (1) of Proposition (2.1.1)

a(e,e,1l,m)

(€{€1} h(em,e)”1,®m)

(l,m) v

a((n,p)(n',p'),1,m)

((n Pn')(pP'1} h(PP'm,n Pn')-1,pp'm)

: (2.1.1.11)
((n Pn")(pp'1} Nh(PP'm,Pn')-1 h(PP'm,n)-1, PP'm)
, : ' . (2.1.1.111)
(n{(Pn")(PP'1} Ph(P'm,n")-1} h(PP'm,n)-1,PP'm)
(2.1.1.1)

(MP{R'{P'1} h(P'm,n")=1}} h(PP'm,n)-1,PP'm)
a(n,p,"" {P'Ll} h(P'm,n")-1,p'm)

a(n,p,a(n'p',1,m)) v

a(n,p,(1,m)(1',m"))

=

=

(R{P{1 M1'}} h(P{mm'},n)~1,P{mm'})
(2.1.1,1,11)
(n(p1} n{(Pm)(P1'}} h(Pm,n)-1 (PM)h(Pm',n)~1,P(mm'})
| (2.1.1.1v)
(P{P1} h(Pm,n)-1 (Pm)(n¢p1') n(Pm',n)-1},Pm Pm')
("{P1} h(Pm,n)~1,Pm) (N{P1l} h(Pm',n),Pm')

a(n,p,1,m) a(nrprl'lm’) v

Verification (2) of Proposition (2.1.2)

Pm(pl)

) °(pm)(Pl) (2.1.2.1)
= (pom)1

= p(dmy)

= p(m}) v



L]
Similarly Pnp1) = pM1) v

Verification (3) of Proposition (2.1.2)

mn1) h(m,n)
- (6m)(8'n)1 h(m,n)
= h(m,n) h(mrn)—l (bm)(O'n)]_ h(m,n)

2.1.2.1
= h(m,n) (8x'h(mn)~1)(8m)(8'n)1 ( )

(2.1.2.v)
= h(m,n) (8'n)(dm)1

= h(m,n) (M1) v

Verification (4) of Proposition (2.1.3)

The map MXQ - RxS, (m,q) - (vgrm,8q) is a crossed module
and MxQ acts on KxN via this map. Therefore
(r+8)(m,q){(x,8)(k,n)}

- (r.S)(VRm:Oq)(k,n)

- (r,8)((mq)(k,n) w

Similarly

(£:8)(L,p) ((¥,8) (k,n)} = (x,8) ((L/P)(k,n)} v

Verification (5) of Proposition (2.1.3)

The identity .
n'((L,p)(Ll'p')emq) = (L.:P)h'(1',p',m,q) h'(1l,p,m,q)

will follow from the four special cases

(1) h'((e,p)(1',e),m,q) = (eP)h'(1',e,m,q) h'(e,p,m,q),
(ii) h'((l,e)(e,p'),m,q) = (Lre)n(e,p’,m,q) h'(l,e,m,q),
(ii1) h'((e,p)(e,p')/m,q) = (e/P)n'(e,p',m,q) h'(e,p,m,q),
(1v) h'((le)(1'e),maq) = (LeIn'(1',6,mq) h'(L,e,m,q),
since (1) and (iii) imply



h'((e,p)(1',p'),m,q)

v—1
= h((e, '")(P 1',e),m,q)
1 %% 1)
-1 ' (iii)
- (e/p){(e,P"In'(P'""1',e,mq) h'(e,p''/mq)} h'(e,p.m.q)( )
i

- (erpp')h'(P'"ll',e,m,q) h'(e,pp',/m,q)

‘"= (e,P)h'(1',p',m,q) h'(e,p,m,q),
that is
(v) h'((e,p)(1',p'),m,q) = (erp)h'(l',p',m,q)h'(e,p,m,q),

and similarly (ii) and (iv) imply
(vi) n'((L,e)(1',p")mq) = (Lr®n'(1',p',mq)h'(l,e,mq),

and hence
h'((l,p)(1',p'),m,q)
- h'((173)(erp)(l'rp')rmrq)

| (vi)
= (lL.e)n'((e,p)(L',p"),mq) h'(1,e,m,q)
| . (V)
= (,P)h'(1',p',m,q) (1/€)h'(e,p,m,q) h'(1l,e,m,Qq)
| (ii)
= (LPh'(1',p',mq) h'(l,p,mq) V
It remains to verify the four special cases.
cagse (i
h'((e,p)(1,e),m,q)
=« h'(PlL,p/m,q) _
= ( (PLn(p,mn(P1,m) ™a(n(p,q),P1)"1 h(h(p,q),m) "L
h(p,q)mh(q,P1)~1, h(p,
P (q,P1) (prq) ) (2.1.1.1v)

= ( (PLn(p,mh(Pl,m) ®h(h(p,q),P1)~L wh(pP,q)h(q,P1)"1
q) m)~L, h(p, o
h(h(p,q),m) (prq) ) (2.1.2,1i4,iv)
= ( (Pn(p,m)h(Pl,m) ®h(Pqg,P1)-1 n(h(p,q),m) "1, ?épiq% i )
edhedoslV
¢ (PLh(p,m)h(P1,m) ®Ph(q,1)~1 h(h(p,q) m)~L, h(p,q) )

: (2.1.2.1i1)
= ( h(pvpl,m) MPh(q,1)-1 h(h(p,q),m)~1, h(p.q) )

(2.1.2.11)
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( Ph(l,m) h(p,m) MPh(q,1)~L h(h(p,q),m)~1, h(p,q) )
(2.1.1.1v)

( Pth(1,m) M™h(g,1)-1} h(p,m) h(h(p,q),m)~1, h(p.q) )
(e;pP)h'(1,e,m,q) h'(e,p,m,q) v

Cagse (ii

h'((lL,e)(e,p),m,q)

-

h'(l,p,m,q)
( n(p,m)h(1l,m) ®™h(h(p,q),1)"1 h(h(p,q),m)~1

h(p,q)mn(q,1)-1, h(p,q) )
(2.1.3.v)i (2.1.2.1i1)
( Ih(p,m) h((vgm)(vgh(p,q),1)~1 h(h(p,q),m)~

h(p,q)mh(q,1)-1, h(p,q) )
, (2.1.3.11)
( In(p,m) h(h(p,q),(vgl) (vgm))~1 h((vph(p,q))(vpl),m)

h(h(p,q),m)~1 h(p,9)mh(q,1)-1, h(p,q) )

(2.1.2.1i1)
( In(p,m) h(h(p,q),(vgl) (vgm))~1 h(P,A)h(vpl,m)
h(h(p,q),m) h(h(p,q)~1 h(pP,q)mh(q,1)~1, h(p,q))

(2.1.2.11i1)
( In(p,m) lh(h(p,q),m)~1 h(h(p,q),1)~1 h(P/9){h(1,m)

Mh(q,1)~1}, h(p,q) )
(1,e)h*(e,p,m,q) h'(l,e,m,q) V

Case (iii)

h'((erp)(erp')rmrq)

h(e,pp',m,q)

- ( h(pp',myh(h(pp'.q),m)~L, h(pp',q) )

. (2.1.2.111,v)
*,mYh(pp',m)~1 PP'h(Q(pp')-1,m)-1, 'Y
( h(pp' m)h(pp',m) (Fpp*)=2m)=, hipp®e9),), 114y

( Pp'h(9p'~1,m)-1 Ph(P',q)h(9p~1,m)~1, h(pp',q)
( Ph(p',m) Ph(p',m)~1 PP'h(dp'~1,m)-1 Ph(p',q){h(p,m)
h(p,m)~1 pPh(9p~1,m)-1}, h(pp',q) )

(2.1.2.111)
Ph(p'.m) Ph(h(p',q),m)~1 Ph(p',d) (h(p,m)h(h(p,q),m)~1},
Ph(p'/q)h(p.,q) )



- (érp)h'(e,p',m,q) h'(e,p,m,q) v

Case (iv

h'((1,e)(1',e),m,q)

= h'(ll',e,m,q)

= ( h(11',m) Mh(q,11")"1, e)

= (In(1',m)h(l,m) ®lh(q,1')-1 h(q,1)"1, e)
= (l.8)n'(1',e,m,q) h'(l,e,m,q) ¥

Verification (6) of Proposition (2.1.3)

The identity |

(z:8)n'(1,p,mq) = h'((F/8)(1,p),(¥+8)(m,q))
follows from the four special cases

(1) (t.®)h'(e,p,e,q) = h'((r:e)(e,p),(X:8)(e,q)),

(11)  (e:®)h'(e,p,e,q) = h'((er8)(e,p)r (B (e,q)),

(ii1) (r+8)h'(1l,e,e,q) = h'((Fe8)(1,e),(*rB8)(e,q)),

(iv)  (t/8)n'(1,e,me) = h'((r:8)(1,e),(T:8)(m,e)),

since

n' ((¥:8)(1,p), (%+8)(m,q))

= h'((x:8)(1,e) (t:8)(e,p), (Xr8)(m,e) (T:8)(e,q))

- (rrs)(l,e){h-((r,s)(g,p), (x,8) (m,e))
(z:8) (m,e)n' ((x:8) (e,p), (X:8) (e,q)))
h'((x.8)(1,e),(t:8) (m,e))
(rrs)(m,e)h-((r,s)(l,e),(r,s)(e'q))

- (£,8)h(1,p,ma) v (?).(ii).(iii)r(iv)

Cases (ii),(iii),(iv) have one line verifications. It

remains to check

Case (i)

In order to check this case we shall need the following
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three identities:
| (v) Ph(l,m)~! h(n,1) h(n,m) = h(n,m) ®n(n,1) h(lm)"1,
(vi) h(e:a)r In(rq,h(p,z)~1) h(h(p,q),Pr-1)
Pt lh(3p-1,h(q,r)"l) = e
(vii) h(h(p,q),h(g,x)-1) n(Q: ) th(h(p,q) ,h(p,r)~L)
h(h(p,r)~L,h(q,r)-1)-1
= h(p.)h(q,r)"Ih(q,h(p,x)~1)-1 h(h(p,q).T)
h(p,x) " h(p,h(q.x)-1),
8ince then we have
h'((r.e)(e,p),(Xr®)(e,q))
= h'(h(p,r)-1,p,h(q,r)"1,q)
- (¢ he:v) " Ih(p,h(q,r)~1) h(h(p,x)~1,h(g,r)-1)
(2,1 Ia(n(p,q) h(p,r)"1)~1 h(h(p,q) h(q,r)-1)-1
h(p,a)n(a,7) " th(q,h(p,r)-1)1, h(p,q) )
(vii)
= (h(h(p,q),r)”1, h(p,q))
= (r,e)n'(e,p,e,q).

So it remains to check (v),(vi),(vii).

Identity (v)

This identity follows from (2.1.2.iii) and (2.1.3.1ii).

Identity (vi)

h(p,a)x " h(rq,h(p,r)~1) h(h(p,q),Pr-1) pr~lh(ap-1,h(q,r)"1)

= h(p:9n(q,h(p,xr"1)) Ph(h(p-l,q)~1,x-1)
pr~lan(p-1,h(gq=1,z)"1)

- pa(p In(g-l,n(p,r"1))~1 a  h(h(p-1,q)-1,c-1)
t~n(p-1,h(q-1,1)-1)-1)

(2.1.3.11i1)



Identity (vii)

h(h(p,q) +h(g,x)-1) (a2 h(h(p,q), h(p,r)-1)

h(h(p,r)~1,h(q,r))"~L

(]

(v)
h(p:@)h(h(p,r)~1,h(q,r)~1)=1 h(h(p,q) ,h(p,xr)"1)

h(p.t)"Ih(h(p,q) /h(g,r)"1)
h(p:Dh(h(p,r)"L,h(q,r)~1)-1 n(h(p,q) . h(p,r)"1)
h(p,x)"L{oh(9p=-1,h(q, ) ~1)h(p,h(g,))-1)
h(p.q)h(q,x)"th(q,n(p,xr)~1)-1 h(p,@)rr " h(tq, h(p, 1))
h(h(p,q),r) Th(h(p,q),Pr-1) TPr  h(gp-1,h(q,r)"1)
n(p,t) In(p,h(g,r)-1)

(P, )0(a,T) " Th(g,h(p,t)-1)~1 h(h(p,q),r)

n(p,t) Ih(p,h(q,r)-1) v

Verification (7) of Propesition (2.1.3)

The map v:KxN ~ (xP, (k,n) = (Ark,vpn) satisfies
vh'(l,p,mq) = (1,p) (ma)(1,p)-1.

and the verification is a slraighlLforward copy of

verification (3).

Verification (8) of Proposition (2.2.2)

(an,ap)(1,m)

<2

=

(2.2.1.1),(2.2.2.11)

a{(n,p)(1,m)} v

Verification (9) of Proposition (2.2.2)

(nyP){(1L,m) + (L',m"')}

(M{L + 1'} + P{L + 1'}) = h(m + m',n), Pm + Pm')
(n,pP)(L,m) + (n:P)(l;,m') v
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((n,p) + (n',p"))(1,m)
= ((n+n')1 + (P+P'I1L-h(mn+n"), (P+tP)Im
(2.2.1.1iii), (2.2.2.1ii1)
= (N1 + Pl - h(m,n) + N'1 + P'1 - h(m,n'), Pm + P'm)

= (n,p)1,m) + (n'ypP")(1,m) W

Verification (11) of Proposition (2.2.2)
[(n,p),(Nn*,P")](1,m) |
= ([n,n'] +Pn' - P'n, [p,p'])(1,m)

$2.2.l.iii),(2.2.2.iii)

= ((n,n'11 4+ (Pn")1 - (P'n)1 + [P,P'I1 - h(m,[n,n"])

- h(m,Pn') + h(m,P'n), [p/P'Im)
' . (2.2.2,1,1iv,Vv)
= (h(n'ly - n'(n1) + P(n'1) - n'(p1) - P'(N1) + N(P'))
+ P(P'1l) - P'(P1) - Ph(m,n') + N'h(m,n) - Ph(m,n")
+ h(Pm,n') +P'h(m,n) - h(P'm,n), P(P'm) - P'(Pm) )

= (np)(n',P')(1,m)} -~ (n*,p")((n,P)(1,m)} V

Verification (12) of Proposition (2.2.2)

(n,P)L(L,m),(1',m")]
= (N[1,1'] +# N(WML') - n(m'1) + P[1,1'] + P(m1') - p(m'1) -
h({m,m'],n), P{m,m'])
= ((P1,1'] + [P1,1'] - (h(m,n),1'] + (Pm)1+ - m'(n1)
- m'(p1) + ™'h(m,n), (Pm,m'])
+ ((1,M1'] + LL,PL'] - [1,h(m,n)] + M(NL') + M(P1')
- mp(m',n) - Pm')1, [m,Pm'])
= [(n,p)(1,m), (1'ym')] + [(1,m), (M/P)(1',m')] ¥



Verification (13) of Proposition (2.2.3)

p(m1)

p(Oml)
(2.2.1.1v)
[p,0m]1 - O8m(pj1)

(Pm)1 - m(p1) v

Verification (14) of Proposition (2.2.3)

n(ml)

=

8'n(dmy)

(2.2.1.1v)
(6'n,0m]1 + dm(B8'ny)
om(8'ny) - 8\'h(m,n)3

mmn1) + [1,h(mn)] Vv
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APPENDIX III

Verification (1) of proposition (3.2.4)

(vom ® y1)~L1 ((vgm)(vgn) ® 1) where vpy = vpn

Dygm @ 1)L (vom ® y)~1 M(vogn ® 1) (vgm ® 1)

nfl,min  (yon @ x) M(von ® 1) (von ® [1,x])

where vgx = VRm
n{l,x]n (vogn ® x1) (vgn & [1,x])

von @ 1x v

Verification (2) of proposition (3.2.4)

d(g-1 vq ® u) u(ulgg-1 @ v)

Lemma (3.1.1)
q((g=l ®@ v) Y(g~1 ® v)~1} U{(q ® u~1)-1 v(q ® u-1)}

Lemma (3.1l.1)
Vg ® [v-l,u]) v
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