

Raising science attitudes and perceptions at Key Stage 3

Withers, Emma; McCallum, Delwen; Campbell, Kelly; Owen, Jack Hodkinson; Jones, Siobhan; Murphy, Lorrie

Published: 11/06/2020

Cyswllt i'r cyhoeddiad / Link to publication

Dyfyniad o'r fersiwn a gyhoeddwyd / Citation for published version (APA): Withers, E., McCallum, D., Campbell, K., Owen, J. H., Jones, S., & Murphy, L. (2020). Raising science attitudes and perceptions at Key Stage 3. Poster session presented at Methods in Chemical Education Research 20.

Hawliau Cyffredinol / General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal?

Take down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Raising science attitudes and perceptions at Key Stage 3

Emma Withers, Delwen McCallum, Jack Owen, Kelly Campbell, Siobhan Jones and Lorrie Murphy School of Natural Sciences, Bangor University, Bangor, LL57 2UW

Contact: e.withers@bangor.ac.uk

Context-based learning⁽¹⁾

Real-world applications of the science curriculum.

Non-science applications of science.

Delivery by experts from different areas of science indirectly communicates diverse careers.

Practical focus^(2,3)

Hands-on and visual conceptualisation of complex concepts.

Wet chemistry workshops improve practical skills and confidence.

Team work, problem solving and presentation skills nurtured early on.

Repeat engagement

Enables project-based learning⁽⁴⁾.

Builds familiarity with facilitator for more rounded engagement.

Local emphasis

Bilingual delivery.

Empowerment and relatability.

Background

Low science uptake post-GCSE

Project aims

To increase uptake through enhancing attitudes and perceptions towards science

Strategy

Deliver practical and applied chemistry workshops over a 3 year period

Data collection

Longitudinal study design using questionnaires and focus group interviews

"I don't really know what a science job is"

"It's, like, out of fashion"

Next Steps...

Explore and further validate questionnaire data using Exploratory Factor Analysis and Confirmatory Factor Analysis⁽⁵⁾:

Parallel analysis of PCA determines the number of factors present.

Factor loadings explain interrelationships between latent and observed variables.

CFA applied to test set (30% of data) allows confirmation of the model.

Factor score coefficients allow item weighting when generating overall latent variable 'scores' [6].

Build an understanding of the relationships between science capital, attitudes, perceptions and demographics.

References

1. Sheldrake R Mujtaba T, Reiss MJ. Science teaching and students' attitudes and aspirations: The importance of conveying the applications and relevance of science. Int J Educ Res. 2017;85:167-83. 2. Thomas CL. Assessing high school student learning on science outreach lab activities. J Chem Educ. 2012;89(10):1259–63. 3. Gillies RM. Structuring cooperative group work in classrooms. Int J Educ Res. 2003;39(1–2):35–49. 4. Tseng K-H, Chang C-C, Lou S-J, Chen W-P. Attitudes towards science, technology, engineering and mathematics (STEM) in a project-based learning (PjBL) environment. Int J Technol Des Educ. 2013;23(1):87–102. 5. Kim J, Mueller CW. Quantitative Applications in the Social Sciences: Factor analysis. Thousand Oaks, CA: SAGE Publications, Inc; 1978. 6. DiStefano C, Zhu M, Mîndrilă D. Understanding and using factor scores: Considerations for the applied researcher. Pract Assessment, Res Eval [Internet]. 2009;14:Article 20. Available from: https://scholarworks.umass.edu/pare/vol14/iss1/20