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ABSTRACT 12 

Purpose: To determine the relationship between vitamin D status and upper respiratory tract 13 

infection (URTI) of physically active men and women across seasons (study 1). Then, to 14 

investigate the effects on URTI and mucosal immunity of achieving vitamin D sufficiency 15 

(25(OH)D ≥50 nmol·L-1) by a unique comparison of safe, simulated-sunlight or oral D3 16 

supplementation in winter (study 2). Methods: In study 1, 1,644 military recruits were 17 

observed across basic military training. In study 2, a randomized controlled trial, 250 men 18 

undertaking military training received either placebo, simulated-sunlight (1.3x standard 19 

erythemal dose, three-times-per-week for 4-weeks and then once-per-week for 8-weeks) or 20 

oral vitamin D3 (1,000 IU·day-1 for 4-weeks and then 400 IU·day-1 for 8-weeks). URTI was 21 

diagnosed by physician (study 1) and Jackson common cold questionnaire (study 2). Serum 22 

25(OH)D, salivary secretory immunoglobulin A (SIgA) and cathelicidin were assessed by 23 

LC-MS/MS and ELISA. Results: In study 1, only 21% of recruits were vitamin D sufficient 24 

during winter. Vitamin D sufficient recruits were 40% less likely to suffer URTI than recruits 25 

with 25(OH)D <50 nmol·L-1 (OR (95% CI) = 0.6 (0.4–0.9)); an association that remained 26 

after accounting for sex and smoking. Each URTI caused on average 3 missed training days. 27 

In study 2, vitamin D supplementation strategies were similarly effective to achieve vitamin 28 

D sufficiency in almost all (≥95%). Compared to placebo, vitamin D supplementation 29 

reduced the severity of peak URTI symptoms by 15% and days with URTI by 36% (P < 30 

0.05). These reductions were similar with both vitamin D strategies (P > 0.05). 31 

Supplementation did not affect salivary SIgA or cathelicidin. Conclusion: Vitamin D 32 

sufficiency reduced the URTI burden during military training. 33 

Keywords: cholecalciferol, 25-hydroxyvitamin D, exercise, UVB, immunity, virus.  34 
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INTRODUCTION 35 

Athletes and military personnel experience arduous training and nutritional 36 

inadequacy that may compromise host defense and increase their susceptibility to respiratory 37 

illness such as the common cold, particularly during the autumn-winter (1, 2). The 38 

immunomodulatory effects of vitamin D are considered to play a role in the seasonal stimulus 39 

for upper respiratory tract infection (URTI) (3, 4). This has fuelled considerable interest in 40 

potential prophylactic benefits of vitamin D supplementation on URTI. Vitamin D can be 41 

obtained from diet but is primarily synthesized by skin exposure to sunlight ultraviolet B 42 

(UVB) radiation. As dietary vitamin D intakes in the US and Europe (112–330 IU·day-1, (5-43 

7)) are typically less than recommended (600 IU·day-1, (7, 8)) people who live at latitudes 44 

>35° or live indoors for the majority of sunlight hours and cover-up from the sun are at 45 

higher risk of vitamin D insufficiency. Indeed, epidemiological studies report vitamin D 46 

sufficiency (serum 25-hydroxyvitamin D (25(OH)D) ≥50 nmol·L-1) in only 40–65% of 47 

athletes and military personnel during the winter, when skin exposure to UVB radiation is 48 

negligible (9-11).  49 

Vitamin D is widely accepted to influence both innate and adaptive immunity with 50 

implications for host defense (12, 13). 25(OH)D is converted in the kidney to the biologically 51 

active form 1,25-dihydroxyvitamin D (1,25(OH)2D), which enhances the innate immune 52 

response by the induction of antimicrobial proteins like cathelicidin (13). Antimicrobial 53 

proteins help to prevent URTI as part of the first line of defense. The actions of vitamin D on 54 

adaptive immunity may also be anti-inflammatory or ‘tolerogenic’ (3). Immune tolerance has 55 

been described as the ability to dampen defense yet control infection at a non-damaging level 56 

(14); prompting the search for tolerogenic nutritional supplements to reduce URTI burden 57 

(3). URTI burden can be assessed by URTI prevalence, or the duration or severity of URTI. 58 

As such, maintaining or achieving vitamin D sufficiency may reduce URTI burden by 59 
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preventing URTI symptoms but also by reducing the duration and/or severity of URTI (3, 9, 60 

11)).  61 

Large cross-sectional and randomized, placebo-controlled supplementation studies in 62 

the general population highlight that vitamin D reduces the burden of URTI (4, 15, 16). 63 

However, cross-sectional studies in young healthy and athletic populations present 64 

conflicting findings (17-19), which might be explained by small samples with few URTI, a 65 

limited range of vitamin D concentrations due to single-season data collections, and a lack of 66 

control for factors known to independently influence URTI (e.g. sex and smoking). 67 

Randomized, controlled trials investigating the effect of vitamin D supplementation on URTI 68 

and immunity in military recruits and athletes are extremely limited and present a mixed 69 

picture (20-23). These studies show reduced URTI symptoms (22), improved mucosal 70 

immunity (i.e. salivary cathelicidin and immunoglobulin A (IgA)) (21, 23) and fewer missed 71 

training days due to URTI (20), as well as, no effect on URTI symptoms (20) or mucosal 72 

immunity (22, 23). The significant heterogeneity reported in these trials may stem from 73 

variations in participant baseline vitamin D status and dosing regimens; these factors are 74 

considered to modify the effect of vitamin D on immunity to respiratory pathogens (15). The 75 

participants in these studies were vitamin D sufficient at baseline (20, 21), which likely 76 

limited the need and potential benefit of vitamin D supplementation (11). Also participants 77 

were administered higher oral vitamin D doses than recommended by the Institute of 78 

Medicine (IOM) and European Food Safety Authority (EFSA) (21, 22) increasing the risk of 79 

adverse outcomes (tolerable upper intake 4000 IU·day-1) (7, 8). Although vitamin D is 80 

derived from skin exposure to sunlight the effect of safe skin sunlight exposure on URTI 81 

burden and mucosal immunity has yet to be studied. Ultraviolet (UV) radiation has a range of 82 

vitamin D-dependent and -independent effects on immunity (24); however, whether there are 83 

additional benefits of safe sunlight exposure, compared to oral vitamin D supplementation, is 84 
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unknown. Given the negative impact of URTI on training and performance it is important to 85 

determine whether vitamin D supplementation has measurable and meaningful effects on 86 

URTI in physically active populations (2, 9, 11).  87 

First the relationship between vitamin D status and URTI prevalence was determined 88 

in a large, prospective cohort study of young men and women commencing military training 89 

across all seasons (study 1). It was hypothesized that vitamin D sufficient recruits would be 90 

less likely to suffer URTI, compared to those who had serum 25(OH)D <50 nmol·L-1. Then, 91 

in a randomized, placebo-controlled trial (study 2), the effects on overall URTI burden 92 

(prevalence, duration and severity) and mucosal immunity of achieving vitamin D sufficiency 93 

by either simulated sunlight, following recommendations on safe, low-level sunlight exposure 94 

(25), or oral D3 supplementation, in wintertime was investigated. Vitamin D sufficiency was 95 

targeted because maintaining serum 25(OH)D concentration ≥50 nmol·L-1 has been 96 

recommended for health by the IOM and EFSA and is achievable using safe doses of oral 97 

vitamin D3 and simulated sunlight (7, 8). It was hypothesized that achieving vitamin D 98 

sufficiency during winter by vitamin D supplementation would reduce URTI burden, and 99 

improve mucosal immunity, compared to placebo supplementation. 100 

 101 

METHODS 102 

British Army recruits voluntarily participated in study 1 and study 2 after providing fully 103 

informed written consent and passing a clinician-screened medical assessment, which 104 

excludes for a number of medical conditions, including chronic lung diseases, and asthma 105 

symptoms or treatment in the last year. Men (study 1 and study 2) were located at Infantry 106 

Training Centre Catterick, UK (latitude 54°N), and women (study 1) were located at Army 107 

Training Centre Pirbright, UK (latitude 51°N). All volunteers were studied during 12 weeks 108 
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of Basic Military Training that follows a syllabus of basic military skills including physical 109 

training, weapon handling, map reading, and fieldcraft. The progressive, structured, physical 110 

training program included: endurance training, circuit training, agility-based gymnasium 111 

work, assault course practice, and marching with a load. The studies received ethical approval 112 

from the UK Ministry of Defence Research Ethics Committee and were conducted in 113 

accordance with the Declaration of Helsinki (2013) (study registration references at 114 

www.clinicaltrials.org [NCT02416895, NCT03132103]). 115 

Study one 116 

Participants and study design. 1,644 men and women (n = 1,220 men: 95% white ethnicity, 117 

age 21 ± 3 years; body mass 75.3 ± 9.9 kg, height 1.77 ± 0.06 m, body mass index (BMI) 118 

24.0 ± 2.7 kg·m-2, 38% smokers; n = 424 women: 95% white ethnicity, age 22 ± 3 years, 119 

body mass 64.8 ± 8.2 kg, height 1.65 ± 0.06 m, BMI 23.7 ± 2.4 kg·m-2, 24% smokers) 120 

participated in this prospective cohort study between January 2014 and September 2015. 121 

Participants were included if they gave baseline blood samples and URTI data was available 122 

during the entire 12 weeks of military training.  123 

Experimental procedures. Baseline measures were collected from each participant during 124 

the initial medical assessment; including a venous blood sample for determination of serum 125 

25(OH)D; height and body mass; ethnicity and smoking history by self-reported 126 

questionnaire (Figure 1). Medical records were accessed to obtain physician-diagnosed URTI 127 

and lost training days due to URTI. The URTI were diagnosed by a single general practice-128 

trained physician. A lost training day was recorded when a recruit was unavailable for normal 129 

military training.  130 

Study two 131 

http://www.clinicaltrials.org/
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Participants and study design. 250 men (age 22 ± 7 years, body mass 76.3 ± 10.8 kg, height 132 

1.77 ± 0.06 m, BMI 24.2 ± 3.0 kg·m-2) participated in this double-blind, randomized, 133 

placebo-controlled trial (Figure 1). Participants were recruited at the start of 12 weeks of 134 

Basic Military Training during January and February of 2016 and 2017; when ambient UVB 135 

is negligible at UK latitudes (50–60°N), and serum 25(OH)D is at its annual nadir. 136 

Participants were eligible to participate if they had sun-reactive skin type of I to IV on the 137 

Fitzpatrick Skin Type Scale (26), were not consuming supplements containing vitamin D, and 138 

had not used a sunbed or traveled to a sunny climate in the 3 months before the study.  139 

Experimental procedures. Participants were randomized within their platoons to one of four 140 

intervention groups: 1) oral vitamin D3 supplementation (ORAL); 2) oral placebo 141 

supplementation (ORAL-P); 3) solar simulated radiation (SSR); or, 4) solar simulated 142 

radiation placebo (SSR-P). Block randomization was used (www.randomiser.org) to achieve 143 

an equal distribution of intervention groups within each platoon so any differences in training 144 

conditions between platoons did not influence the outcomes of the study. The intervention 145 

strategy for the SSR and ORAL groups was to restore and then maintain IOM and EFSA 146 

recommended vitamin D sufficiency (serum 25(OH)D ≥50 nmol·L-1). Participants completed 147 

a 4-week restoration phase, necessary because serum 25(OH)D was at its annual wintertime 148 

nadir, followed by an 8-week maintenance phase.  149 

At baseline, during the routine initial medical assessment, height and body mass were 150 

measured, a venous blood sample was collected for the determination of serum 25(OH)D, 151 

and a lifestyle questionnaire was completed to determine smoking and alcohol use. 152 

Additional blood samples were obtained at week 5, and week 12. At baseline, week 5, and 153 

week 12 saliva samples were collected in the evening, between 18:00 and 21:30 h, at least 15 154 

minutes postprandial. Participants were excluded from analysis if they did not achieve ≥80% 155 

http://www.randomiser.org/
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compliance with the intervention. Compliance with the interventions was calculated from 156 

researcher weekly counts of oral capsules remaining in recruit pill boxes and SSR cabinet 157 

visit records. Vitamin D from the diet was estimated in week 12 using a food frequency 158 

questionnaire, and solar UVR exposure was measured in weeks 4 and 11 using polysulphone 159 

badges, worn on the upper chest/anterior shoulder region on the outer clothes, as described 160 

(10, 27). The change in absorbance of the badges due to exposure was measured using a 161 

spectrophotometer and related to the erythemal effective UVR (sunburning) through a 162 

standard polynomial relationship; data are expressed as standard erythemal dose per day (27). 163 

Participant dietary vitamin D intake was calculated excluding the oral D3 supplement 164 

participants received in the ORAL group. On completion of the study, to confirm participant 165 

blinding, participants were asked to guess the intervention they had received. 166 

Simulated sunlight intervention. Simulated sunlight was provided following guidelines on 167 

safe, low-level sunlight exposure for vitamin D synthesis (6); described previously to achieve 168 

serum 25(OH)D ≥50 nmol·L-1 in the majority of individuals with sun-reactive skin type of I 169 

to IV (28). Those assigned to the SSR intervention were exposed three-times-a-week during 170 

the restoration phase and once-per week during the maintenance phase to an experimenter-171 

controlled constant UVR dose using a whole body irradiation cabinet (Hapro Jade, Kapelle, 172 

The Netherlands) fitted with Arimed B fluorescent tubes (Cosmedico, Stuttgart, Germany). 173 

The fluorescent tubes emitted a UVR spectrum similar to sunlight (λ: 290–400 nm; 95% 174 

UVA: 320–400 nm, 5% UVB: 290–320 nm) that was characterized by a spectroradiometer 175 

(USB2000+, Ocean Optics BV, Duiven, The Netherlands) radiometrically calibrated with 176 

traceability to UK national standards.  177 

During each exposure, participants received a 1.3x standard erythemal dose (SED) 178 

whilst wearing shorts and a T-shirt to expose ~40% skin surface area. This dose is equivalent 179 
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to ~15 minutes, midday summer sun exposure six-times-per-week for a casually dressed 180 

individual in northern England (latitude 53.5°N) (28). A constant SSR dose was maintained 181 

during the study by monitoring irradiance using a spectroradiometer (USB2000+, Ocean 182 

Optics BV) and adjusting for any decrease in measured irradiance emitted by increasing 183 

exposure time, as described (28) (mean duration of SSR exposures was 222 ± 23 s). The 184 

exposure time was controlled by using an electronic timer on the irradiation cabinet. For the 185 

SSR-P participants, the number and duration of intervention exposures were the same as 186 

SSR, except the irradiation cabinet fluorescent tubes were covered with transparent UVR 187 

blocking film (DermaGard UV film, SunGard, Woburn, Massachusetts, USA). A 188 

spectroradiometer confirmed the UVR blocking film was effective at preventing transmission 189 

of 99.9% of UVR. 190 

Oral vitamin D3. Participants receiving the ORAL intervention consumed a vitamin D3 191 

capsule daily, containing 1,000 IU and 400 IU during the restoration and maintenance phases, 192 

respectively (Pure Encapsulations, Sudbury, Massachusetts, USA). The restoration dose was 193 

based on previous predictive modeling to achieve serum 25(OH)D ≥50 nmol·L-1 (29), and 194 

pilot investigations that showed it achieved similar serum 25(OH)D concentrations to SSR; 195 

and was less than the tolerable upper intake recommended by the IOM and EFSA (7, 8). The 196 

ORAL maintenance dose was shown in a pilot investigation to maintain serum 25(OH)D ≥50 197 

nmol·L-1 and when accounting for typical habitual dietary intake (5-7) was similar to IOM 198 

and EFSA recommended dietary allowances (7, 8). For 12 weeks, ORAL-P participants 199 

consumed an identical-looking cellulose placebo capsule daily (Almac Group, County 200 

Armagh, UK). Independent analysis found the vitamin D3 content of the 1,000 and 400 IU 201 

capsules to be 1,090 and 460 IU, respectively, and confirmed the placebo did not contain 202 

vitamin D (NSF International Laboratories, Ann Arbor, Michigan, USA). 203 
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URTI diagnosis (study 2). As in study 1, medical records were accessed to obtain data on 204 

physician-diagnosed URTI and lost training days due to URTI. However, URTI was 205 

principally monitored by self-reported daily symptoms recorded using the Jackson common 206 

cold questionnaire (30). A strength of the Jackson common cold questionnaire compared to 207 

physician-diagnosed URTI is that URTI duration and severity, as well as prevalence, can be 208 

assessed. Participants were asked to rate eight symptoms (sneezing, headache, feeling 209 

generally unwell, runny nose, blocked nose, sore throat, cough, chilliness) on a 4-point Likert 210 

scale (not at all = 0, mild = 1, moderate = 2, severe = 3). Data were included when 211 

participants completed ≥80% of their daily Jackson questionnaires. A URTI was defined by a 212 

daily total symptom score of ≥6 for two or more consecutive days (31). Further, average 213 

URTI duration (average duration of all URTI episodes), the peak URTI symptom severity 214 

(maximum URTI severity score on a single day of any URTI episode; maximum possible 215 

peak severity is 24 arbitrary units (AU)), and the total number of days with a URTI during 216 

basic military training for each participant (total days with URTI; military training is 84 days 217 

in total) were also determined. Self-reported URTI data was not reported back to the military 218 

and therefore did not influence physician diagnosis of URTI or lost training days due to 219 

URTI.  220 

Blood analysis (study 1 and 2). Whole blood samples were collected by venipuncture from 221 

an antecubital vein into plain vacutainer tubes (Becton Dickinson, Oxford, UK), and left to 222 

clot for 1 hour. Subsequently, samples were centrifuged at 1500 g for 10 minutes at 4°C and 223 

the serum was aliquoted into universal tubes before being immediately frozen at -80°C for 224 

later analysis. Total serum 25(OH)D was measured with high-pressure liquid 225 

chromatography-tandem mass spectrometry. Analyses were performed in a Vitamin D 226 

External Quality Assurance Scheme certified laboratory (Bioanalytical Facility, University of 227 
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East Anglia, Norwich, UK). The mean intra-assay coefficient of variation (CV) for 25(OH)D3 228 

and 25(OH)D2 were <10% and the lower limit of quantification was 0.1 nmol·L-1 (32). 229 

Saliva collection and analysis (study 2). Saliva was collected for 5 min in a pre-weighed 30 230 

mL tube using the passive dribble method (33). Samples were weighed immediately after 231 

collection, centrifuged at 1500 g and 4°C for 10 minutes, aliquoted, and then stored at -80°C. 232 

Samples were analyzed in duplicate by enzyme-linked immunosorbent assay for secretory 233 

IgA (SIgA) and cathelicidin concentration (Salimetrics, Pennsylvania, USA, and Hycult 234 

Biotech, Pennsylvania, USA). The mean intra-assay CV was 2.3% for saliva SIgA 235 

concentrations ranging from 0.02 to 0.51 mg·mL-1 and 10.2% for saliva cathelicidin 236 

concentrations ranging from 0.30 to 65.90 µg·L-1. Assuming the density to be 1.00 g·mL-1 for 237 

saliva, the secretion rate was calculated by multiplying the saliva flow rate by concentration 238 

(33). 239 

Statistical analysis. Statistical analyses were performed using SPSS Version 25 (IBM Corp, 240 

NY, US). Data points that were more than three times the interquartile range were deemed as 241 

outliers and removed. Where data were not normally distributed they were transformed using 242 

square-root calculation. Significance was set at P < 0.05. For study 1, an estimated minimum 243 

required sample size of 1,286 was calculated, using a type 1 error (one-tailed) of 5%, a power 244 

of 80%, and an anticipated odds ratio of 1.5 (equivalent to a small effect size), and including 245 

a binomial variable at 20%. This was based on previous literature describing the difference in 246 

URTI prevalence between individuals with low and high vitamin D status whereby, 20% of 247 

individuals with high vitamin D status reported a URTI (4), whilst also anticipating that 20% 248 

of individuals would have low vitamin D status across the whole year (34). Logistic 249 

regression were used to compare vitamin D status (25(OH)D ≥50 vs <50 nmol·L-1 and ≥75 vs 250 

<30, ≥50–<75 and <75 nmol·L-1) with URTI prevalence during twelve-weeks military 251 
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training, and the first three weeks of military training; circulating 25(OH)D has an estimated 252 

three-week half-life (35, 36). Sex and smoking were included as covariates as they have 253 

previously been shown to influence URTI susceptibility (37, 38). Chi-square tests were used 254 

to compare URTI prevalence between vitamin D sufficient participants and those with serum 255 

25(OH)D <50 nmol·L-1, and the proportion of vitamin D sufficient participants between 256 

seasons. We used one-way ANOVA to compare 25(OH)D between seasons. For study 2, an 257 

estimated minimum required sample size of 74 (37 in each comparison group) was 258 

calculated, using the anticipated odds ratio of 0.3 for URTI prevalence between vitamin D 259 

and placebo supplemented individuals with low vitamin D status (15), and that 60% would 260 

self-report URTI during basic military training (18, 31, 39), with a type 1 error (one-tailed) of 261 

5%, and a power of 80%. URTI prevalence between vitamin D (SSR and ORAL) and placebo 262 

(SSR-P and ORAL-P) supplementation groups was compared by logistic regression. 263 

Independent samples t-tests (2 groups (SSR and ORAL combined, SSR-P and ORAL-P 264 

combined)) were used to compare vitamin D and placebo supplementation effects on average 265 

URTI duration, total days with URTI, peak URTI severity, saliva flow rate, SIgA, and 266 

cathelicidin. Serum 25(OH)D, total days with URTI, URTI duration, URTI severity, saliva 267 

flow rate, SIgA, and cathelicidin, were compared between vitamin D strategies, and placebo 268 

groups, by mixed-model ANOVA ((4 groups (SSR, ORAL, SSR-P, and ORAL-P) × 3-time 269 

points (baseline, week 5 and 12)). Sunlight exposure and dietary vitamin D intake between 270 

SSR, ORAL, SSR-P, and ORAL-P groups were compared by one-way ANOVA. Cohen’s d 271 

effect sizes (d) are presented to indicate the meaningfulness of group differences for total 272 

days with URTI, URTI duration, and URTI severity; whereby, values greater than 0.2, 0.5, 273 

and 0.8 represent small, medium and large effects, respectively (40).  274 

 275 
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RESULTS 276 

Study one 277 

Low proportion of wintertime vitamin D sufficiency in healthy young men and women 278 

Baseline serum 25(OH)D concentration was lower in winter than all other seasons (P < 0.01, 279 

Figure 2A); when only 21% of participants were vitamin D sufficient (baseline serum 280 

25(OH)D ≥50 nmol·L-1; Figure 2B).  281 

Vitamin D sufficiency associated with reduced URTI prevalence 282 

A total of 110 URTI episodes were recorded with 7% of participants having at least one 283 

physician-diagnosed URTI. On average, each URTI resulted in 3.4 ± 3.3 lost training days 284 

(4% of total training days). Vitamin D sufficient participants at baseline were 40% less likely 285 

to have a physician-diagnosed URTI, during 12 weeks of training, than participants with 286 

baseline serum 25(OH)D <50 nmol·L-1 (6% vs 9%, respectively, OR (95% CI) = 0.6 (0.4–287 

0.9), P < 0.05, Figure 2C). Vitamin D sufficient participants at baseline were half as likely to 288 

have a URTI within the first three weeks of training than participants with a baseline serum 289 

25(OH)D <50 nmol·L-1 (2% vs 5%, OR (95% CI) = 0.5 (0.3–0.8), P < 0.05); approximately 290 

half of all URTI episodes occurred during this period of training (47%, 52 URTI episodes). 291 

The association between vitamin D status and URTI prevalence remained when controlling 292 

for sex and smoking (P < 0.05). URTI prevalence was not different between participants with 293 

a baseline serum 25(OH)D ≥75 nmol·L-1 and baseline serum 25(OH)D of <30, ≥50–<75, or 294 

<75 nmol·L-1 (P > 0.05).  295 

 296 

Study two  297 
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A flow diagram detailing the number of participants assessed, recruited, and excluded from 298 

the analysis is provided in Figure 3. There were no differences between treatment or control 299 

groups in demographics, anthropometrics, or serum total 25(OH)D at baseline (Table 1 and 300 

Figure 4). During the 12-week intervention, daily sunlight exposure (0.35 ± 0.56 SED·d-1) 301 

and dietary vitamin D were not different between groups (153 ± 136 IU·day-1, P > 0.05). 302 

Participants were sufficiently blinded to the intervention since only 38.4% correctly guessed 303 

their allocated group, 27.3% were incorrect, and 34.3% said they did not know whether they 304 

had received an active or placebo intervention.  305 

Winter simulated sunlight and oral vitamin D3 increased vitamin D sufficiency  306 

At baseline, before wintertime vitamin D supplementation began, only one-quarter (27%) of 307 

participants were vitamin D sufficient. Both SSR and ORAL supplementation strategies were 308 

successful in achieving vitamin D sufficiency in almost all by week 5 (≥95%). Week 5 and 309 

12 serum 25(OH)D concentrations in the SSR and ORAL groups were higher than in the 310 

respective placebo groups (P < 0.001, Figure 4).  311 

Winter vitamin D supplementation reduced URTI burden 312 

A total of 93 Jackson-defined URTI episodes were recorded with 69% of participants having 313 

at least one self-reported URTI. The URTI prevalence was similar in vitamin D and placebo 314 

supplementation groups for the restoration (weeks 1–4), maintenance (weeks 5–12), and 315 

entire 12 week period of training (ORAL and SSR vs ORAL-P and SSR-P 57% vs 63%, 29% 316 

vs 32%, and 71% vs 68%, respectively, P > 0.05). The URTI average duration were also 317 

similar in vitamin D and placebo supplementation groups (Figure 5A, P > 0.05). Winter 318 

vitamin D supplementation reduced URTI burden compared to placebo; whereby, 319 

participants had 15% lower peak URTI severity (P < 0.05; Figure 5B), and 36% fewer total 320 

days with a URTI (P < 0.05; Figure 5C). Participants beginning vitamin D supplementation 321 
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with serum 25(OH)D <50 nmol·L-1 had 33% shorter average URTI duration (P = 0.05; Figure 322 

5D), 21% lower peak URTI severity (P < 0.05; Figure 5E) and 43% fewer total days with 323 

URTI (P < 0.05; Figure 5F), when receiving vitamin D rather than placebo supplementation. 324 

There was no difference in URTI prevalence, duration, severity or total days with URTI 325 

between vitamin D supplementation strategies, or between the different placebo groups (P > 326 

0.05). Specifically, the ORAL and SSR vitamin D supplementation strategies effect on URTI 327 

burden was similar (ORAL vs SSR, URTI prevalence 70% vs 72%, total days with URTI 9.2 328 

± 8.4 vs 8.4 ± 6.7 days, URTI average duration 6.9 ± 5.0 vs 6.5 ± 5.7 days, peak URTI 329 

severity 10.8 ± 3.0 vs 12.3 ± 3.8 AU, all P > 0.05). A physician-diagnosed URTI was 330 

recorded for 8% of recruits, which was comparable to 8% prevalence in the same seasonal 331 

period in study 1, and resulted in 3.3 ± 1.3 training days lost. 332 

Vitamin D supplementation and mucosal immunity  333 

Vitamin D supplementation and placebo groups did not differ at baseline, and weeks 5 and 334 

12, for saliva flow rate, SIgA concentration, SIgA secretion rate, cathelicidin concentration, 335 

and cathelicidin secretion rate (P > 0.05; Table 2).  336 

 337 

DISCUSSION 338 

The primary finding of these two studies was that vitamin D sufficiency reduced the 339 

burden of URTI in healthy young adults completing arduous military training. In study 1, 340 

vitamin D sufficient men and women were 40% less likely to suffer a physician-diagnosed 341 

URTI during training than those with serum 25(OH)D <50 nmol·L-1 (Figure 2). Given this 342 

finding, and that only 21% of participants were vitamin D sufficient during winter, study 2 343 

examined the effect of winter vitamin D supplementation on URTI. Compared to placebo, 344 
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vitamin D supplementation reduced the severity of peak URTI symptoms by 15% and days 345 

with URTI by 36% (Figure 5). Study 2 is the first to demonstrate the benefits of vitamin D 346 

supplementation, in line with IOM and EFSA guidelines, on URTI in an active population. 347 

These findings are timely as the nutrition and athletic performance position stands from the 348 

International Olympic Committee and American College of Sports Medicine highlight that 349 

vitamin D insufficiency is widespread in athletes (9, 41). 350 

In study 1, vitamin D sufficient men and women were less likely to suffer a physician-351 

diagnosed URTI during training than those with serum 25(OH)D of <50 nmol·L-1 (Figure 2). 352 

This finding can be considered robust as it was observed after accounting for sex and 353 

smoking, which is a strength of this study when compared to previous research that has not 354 

controlled for factors known to independently influence URTI (17-19). In study 1, the 355 

association between baseline vitamin D status and URTI was stronger during the first three 356 

weeks of the twelve-week training program, which might be expected given the high 357 

incidence of URTI at this time and that 25(OH)D has approximately a three-week half-life 358 

(35, 36). Study 1 extends our understanding of the relationship between vitamin D and URTI 359 

in active populations as data was collected in a large sample, across all seasons, and with a 360 

large range of serum 25(OH)D concentrations. The burden of URTI was evident as each 361 

URTI resulted in an average of 3 days missed training.  362 

In study 2 vitamin D supplementation by simulated-sunlight and oral vitamin D3 was 363 

similarly effective to achieve IOM and EFSA recommended vitamin D sufficiency in the 364 

majority of individuals (≥95%, Figure 4). Vitamin D supplementation did not reduce self-365 

reported URTI prevalence or benefit mucosal immunity compared to placebo (Table 2). 366 

However, vitamin D supplementation reduced URTI burden compared to placebo: 367 

participants receiving vitamin D reported 15% lower peak URTI severity and 36% fewer 368 
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days with URTI compared to placebo (Figure 5). The magnitude of the reduction in URTI 369 

burden in study 2 can be considered meaningful as effect sizes were medium to large. These 370 

findings also broadly agree with the previous research in this area (20, 22), i.e., vitamin D 371 

supplementation reduced URTI symptoms (22) and absence from duty due to respiratory 372 

infection (20).  373 

The different methods used to assess URTI in the studies may explain the difference 374 

between study 1 and 2 prevalence findings. The lower URTI prevalence in study 1 than study 375 

2 (7% vs 69%) indicates that physician diagnosis of URTI compared to daily self-report 376 

likely missed more minor illnesses that did not warrant a medical visit. Further, study 2 377 

physician-diagnosed URTI prevalence was 8%, which was the same as study 1, when 378 

controlling for season. Self-reported URTI data was not reported back to the military and 379 

therefore did not influence physician diagnosis of URTI or lost training days due to URTI. 380 

When considered carefully in the context of these different methods, the findings of studies 1 381 

and 2 are complementary. In study 2, lower peak URTI severity and fewer days with URTI 382 

with vitamin D supplementation, compared to placebo, would be expected to translate to 383 

vitamin D sufficient individuals reporting less to medical services, and consequently having 384 

fewer physician-diagnosed URTI than those individuals with 25(OH)D <50 nmol·L-1. This is 385 

entirely consistent with the main finding of study 1: URTI prevalence was lower in vitamin D 386 

sufficient individuals than those with 25(OH)D <50 nmol·L-1 (Figure 2).  387 

Study 2 findings are notable as they highlight that vitamin D supplementation may 388 

reduce URTI burden, rather than prevent URTI. Vitamin D supplementation did not influence 389 

the innate mucosal antimicrobial proteins SIgA and cathelicidin that form an important part 390 

of the first line of defense against URTI. Based on these findings it is speculated that the 391 

tolerogenic effects of vitamin D may reduce URTI burden by limiting inflammation in 392 
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response to an infection (i.e., controlling infection at a non-damaging level) (3, 14, 42), which 393 

subsequently leads to a reduction in self-reported URTI severity and duration (14). Future 394 

research is warranted to investigate the effect of vitamin D supplementation on URTI and 395 

circulating anti-inflammatory cytokines (3). To better understand the influence of vitamin D 396 

supplementation on the immune pathway these studies should examine serum 1,25(OH)2D, 397 

the biologically active form, as well as 25(OH)D. It is also worth noting that women were not 398 

included in study 2, and therefore future work should determine the influence of vitamin D 399 

supplementation on URTI burden in women.  400 

The pathological determination of URTI using nasopharyngeal throat swabs would 401 

have provided assurance that URTIs reported in study 1 and 2 were infection by origin, rather 402 

than due to some other cause e.g., allergy. Nonetheless, previous research has shown that 403 

infectious pathogens of URTI identified by self-reported questionnaire methods were 404 

confirmed in 82% of recreationally active men and women (31), and in 75% of Winter 405 

Olympic Games athletes (43). Furthermore, study 2 was completed during winter when 406 

common cold and flu are prevalent, and symptoms caused by summer allergies are rare. 407 

Rejecting self-reported URTI for pathogen recognition is not advocated, rather future 408 

research is advised to use a blended approach incorporating the infectious etiology with real-409 

world URTI symptomology. Study 2 findings highlight the importance of the daily 410 

assessment of URTI symptoms to monitor URTI duration and severity as well as prevalence, 411 

regardless of whether pathogen recognition is available. The assessment of URTI duration 412 

and severity will be important in future studies wishing to further examine potential 413 

tolerogenic effects of vitamin D on immune health. Future research should also adopt the 414 

blended approach to more fully understand the effectiveness of other potential treatments for 415 

URTI. 416 
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Currently, there is no consensus for the optimal vitamin D threshold or dose for 417 

immune health (13). Participants beginning supplementation with serum 25(OH)D <50 418 

nmol·L-1 reported shorter URTI duration when receiving vitamin D compared to placebo 419 

supplementation. Further evidence that participants with serum 25(OH)D <50 nmol·L-1 420 

benefitted more from vitamin D supplementation than the entire sample is clear when 421 

examining the effect sizes between vitamin D and placebo for URTI outcomes; small-422 

medium effect sizes for the entire sample, compared to medium and large effect sizes for 423 

participants with serum 25(OH)D <50 nmol·L-1 (Figure 5). Compared to IOM and EFSA 424 

recommended vitamin D sufficiency, no additional protection from URTI of higher vitamin 425 

D status, including a previously proposed optimal threshold (serum 25(OH)D >75 nmol·L-1) 426 

(44) was revealed. These findings alongside, other findings from this research program that 427 

show benefits of vitamin D sufficiency on in vivo immunity (45), support 25(OH)D ≥50 428 

nmol·L-1 for immune health. Further, the current studies highlight that exercise performance 429 

may indirectly benefit from maintaining vitamin D sufficiency by reducing lost training days 430 

to URTI.  431 

No additional benefit of SSR compared to oral vitamin D3 supplementation was 432 

shown on URTI, immune function (this study and (45)), or exercise performance (10). 433 

Consequently, active people are advised to take the 400 IU·day-1 oral vitamin D3 dose, from 434 

the maintenance phase of study 2, to maintain vitamin D sufficiency when exposure to 435 

ambient UVB is inadequate: between early autumn and late winter, and for those that live 436 

and/or exercise indoors for the majority of sunlight hours or cover-up from the sun. When 437 

accounting for typical dietary vitamin D intake, this oral vitamin D3 supplementation 438 

approach corresponds with current IOM and EFSA recommendations (600 IU·day-1) for bone 439 

and general health and, unlike simulated sunlight, there is no time burden for an individual; 440 

no requirement for bulky irradiation cabinets; and oral vitamin D3 supplementation is 441 
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effective regardless of sun-reactive skin type. Nevertheless, low-level sunlight may provide 442 

benefits to human health, additional to vitamin D synthesis, and this remains an area of active 443 

research (24). 444 

CONCLUSIONS 445 

Vitamin D sufficiency reduced URTI burden in military recruits during arduous 446 

training. In study 1, vitamin D sufficient recruits were less likely to have a URTI compared to 447 

those with serum 25(OH)D <50 nmol·L-1. In study 2, winter vitamin D supplementation, 448 

which achieved vitamin D sufficiency in almost all (≥95%), reduced peak URTI severity, and 449 

total days with URTI compared to placebo. To reduce the burden of URTI, maintaining 450 

vitamin D sufficiency is recommended for military personnel and other active populations, 451 

such as athletes who participate in arduous training.  452 
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FIGURE 1. A schematic of the prospective cohort study (study 1) that investigated the 581 

association between vitamin D status (serum 25(OH)D), upper respiratory tract infection 582 

(URTI) and days lost from training, and the randomized controlled trial (study 2) that 583 

investigated the effects of vitamin D supplementation by solar simulated radiation (SSR), oral 584 

vitamin D3 (ORAL), or placebo (SSR-P or ORAL-P) on URTI and mucosal immunity. Blood 585 

samples were collected at baseline (study 1 and 2), week 5, and the end of week 12 (study 2). 586 

Saliva samples were collected at baseline, week 5 and the end of week 12 (study 2). The 587 

syringe icon represents the blood sample; the head and tube icon represent the saliva sample.  588 

 589 

  590 
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FIGURE 2. Seasonal variation in serum 25(OH)D (panel A), vitamin D sufficiency 591 

prevalence (serum 25(OH)D ≥50 nmol·L-1; panel B), and the URTI prevalence when serum 592 

25(OH)D ≥50 nmol·L-1 or <50 nmol·L-1 (panel C) in 1,644 men and women during 12-weeks 593 

of military training. a, lower than summer, P < 0.05. b, lower than autumn, P < 0.05. c, lower 594 

than spring, P < 0.05. *, lower than participants with serum 25(OH)D <50 nmol·L-1, P < 595 

0.05. Panel A data are mean ± SD. Panels B and C are percentages represented by vertical 596 

bars. 597 

 598 
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FIGURE 3. Flow diagram of the randomized controlled trial (study 2) investigating the 599 

effects of vitamin D supplementation on upper respiratory tract infection (URTI) and mucosal 600 

immunity. Flow diagram indicates the number of participants assessed, randomized to solar 601 

simulated radiation (SSR) or oral vitamin D3 (ORAL), or a placebo (solar simulated radiation 602 

placebo (SSR-P) or oral placebo (ORAL-P)), and statistically analyzed for URTI, salivary 603 

secretory immunoglobulin A (SIgA), and cathelicidin.  604 

 605 
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FIGURE 4. Serum 25(OH)D in men completing military training whilst receiving 12-weeks 606 

of vitamin D supplementation (solar simulated radiation (SSR) or oral vitamin D3 (ORAL)) 607 

or a placebo (solar simulated radiation placebo (SSR-P) or oral placebo (ORAL-P)). 608 

Combined vitamin D interventions (SSR and ORAL) vs combined placebo (SSR-P and 609 

ORAL-P; panel A), ORAL vs ORAL-P (panel B), and SSR vs SSR-P (panel C). *, greater 610 

than placebo, P < 0.05. †, greater than baseline, P < 0.05. ‡, greater than week 5, P < 0.05. 611 

Data are mean ± SD. 612 

 613 



This article was accepted in its current form to on 23rd December 2020. This is a post-peer-review, pre-copyedit 

version of an article published in Medicine & Science in Sports & Exercise. 

 

29 
 

FIGURE 5. Upper respiratory tract infection (URTI) average duration (panel A & D), peak 614 

URTI severity (panel B & E), and total days with URTI during military training (panel C & 615 

F), in the vitamin D supplementation (SSR and ORAL) vs placebo supplementation groups 616 

(SSR-P and ORAL-P) in all participants (left-hand column) and participants with a baseline 617 

25(OH)D <50 nmol·L-1 (N = 62; right-hand column). * and #, lower than placebo, P < 0.05 618 

and P = 0.05, respectively. Data are mean ± SD. d = Cohen’s d effect size. a maximum 619 

possible peak severity (24 arbitrary units (AU)), b total number of days for military training 620 

(84 days).  621 
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 622 

TABLE 1. Study 2 baseline participant demographics, anthropometrics, and lifestyle 623 

behaviors in solar simulated radiation (SSR), SSR placebo (SSR-P), oral vitamin D3 (ORAL), 624 

and oral placebo (ORAL-P) supplemented groups. 625 
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Data are presented as mean ± SD unless otherwise stated. There were no differences in demographics, 626 

anthropometrics, or lifestyle behaviors between groups (P > 0.05).  627 

  628 

 SSR  

(N = 63) 

SSR-P  

(N = 59) 

ORAL  

(N = 63) 

ORAL-P  

(N = 65) 

Demographics      

Age (years) 21 ± 3 22 ± 3 21 ± 3 23 ± 12 

Ethnicity (White Caucasian) [n (%)] 61 (98) 57 (97) 63 (100) 65 (100) 

Skin type (I, II, III, IV) [n (%)] 4 (7), 16 (26), 

33 (53), 9 (15) 

4 (7), 16 (27), 

28 (48), 11 (19) 

5 (8), 18 (29), 

33 (52), 7 (11) 

3 (5), 19 (29), 

29 (45), 14 (22) 

Anthropometrics      

Height (m) 1.78 ± 0.06 1.78 ± 0.06 1.77 ± 0.07 1.78 ± 0.06 

Body mass (kg) 76 ± 11 77 ± 11 75 ± 11 77 ± 10 

BMI (kg·m-2) 24 ± 3 24 ± 3 24 ± 3 24 ± 3 

Lifestyle behaviors      

Alcohol user [n (%)] 51 (82) 47 (80) 55 (87) 51 (78) 

Smoker [n (%)] 23 (37) 25 (42) 26 (41) 21 (32) 
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TABLE 2. Influence of 12-weeks solar simulated radiation (SSR), placebo solar simulated 629 

radiation (SSR-P), oral vitamin D3 (ORAL), and oral placebo (ORAL-P) on saliva flow rate 630 

(FR), SIgA concentration, SIgA secretion rate (SR), cathelicidin concentration and 631 

cathelicidin SR.  632 

  SSR SSR-P ORAL ORAL-P 

FR (µL·min-1) Baseline 205 ± 128 184 ± 181 260 ± 214 241 ± 173 

ΔBaseline to 

week 5 

+5 ± 124 +26 ± 160 -36 ± 159 -5 ± 208 

ΔBaseline to 

week 12 † ‡ 

+69 ± 125 +124 ± 207 +24 ± 243 +64 ± 201 

SIgA 

concentration 

(mg·mL-1) 

Baseline 0.14 ± 0.08 0.12 ± 0.06 0.13 ± 0.06 0.12 ± 0.05 

ΔBaseline to 

week 5 † 

+0.01 ± 0.08 +0.04 ± 0.09 +0.02 ± 0.09 +0.02 ± 0.07 

ΔBaseline to 

week 12 † 

+0.00 ± 0.05 +0.03 ± 0.06 +0.03 ± 0.1 +0.03 ± 0.09 

SIgA SR 

(µg·min-1) 

Baseline 27 ± 17 18 ± 11 26 ± 19 25 ± 17 

ΔBaseline to 

week 5 

-2 ± 22 +12 ± 16 +1 ± 18 +1 ± 20 

ΔBaseline to 

week 12 † ‡ 

+9 ± 16 +25 ± 31 +10 ± 22 +14 ± 24 

Cathelicidin 

concentration 

(µg·L-1) 

Baseline 14 ± 11 14 ± 14 13 ± 13 12 ± 11 

ΔBaseline to 

week 5 

-8 ± 16 +6 ± 18 -2 ± 10 -1 ± 15 

ΔBaseline to 

week 12 

-5 ± 14 +1 ± 19 -4 ± 16 -1 ± 17 

Cathelicidin SR 

(ng·min-1) 

Baseline 3.25 ± 3.04 1.69 ± 1.91 2.42 ± 2.28 3.13 ± 4.79 

ΔBaseline to 

week 5 

-0.82 ± 3.82 +0.96 ± 1.81 -0.54 ± 1.78 -1.35 ± 4.25 

ΔBaseline to 

week 12 

-0.70 ± 4.10 +2.15 ± 3.61 +0.14 ± 2.45 -0.64 ± 5.60 

Main effect of time vs baseline, † P < 0.05. Main effect of time vs week 5, ‡ P < 0.05. Data are mean 633 

± SD. 634 


