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Abstract  1 

Higher land surface temperature (LST) in cities than its surrounding areas presents 2 

a major sustainability challenge for cities. Adaptation and mitigation of the increased 3 

LST require in-depth understanding of the impacts of landscape features on LST. We 4 

studied the influences of different landscape features on LST in five large cities across 5 

China to investigate how the features of a specific urban landscape (endogenous 6 

features), and neighboring environments (exogenous features) impact its LST across a 7 

continuum of spatial scales. Surprisingly, results show that the influence of 8 

endogenous landscape features (Eendo) on LST can be described consistently across all 9 

cities as a nonlinear function of grain size (gs) and neighbor size (ns) (Eendo = βnsgs
-0.5, 10 

where β is a city-specific constant) while the influence of exogenous features (Eexo) 11 

depends only on neighbor size (ns) (Eexo = γ-εns
0.5, where γ and ε are city-specific 12 

constants). In addition, a simple relationship describing the relative strength of 13 

endogenous and exogenous impacts of landscape features on LST was found (Eendo >  14 

Eexo if ns > kgs
2/5, where k is a city-specific parameter; otherwise, Eendo < Eexo). 15 

Overall, vegetation alleviates 40%-60% of the warming effect of built-up while 16 

surface wetness intensifies or reduces it depending on climate conditions. This study 17 

reveals a set of unifying quantitative relationships that effectively describes landscape 18 

impacts on LST across cities, grain and neighbor sizes, which can be instrumental 19 

towards the design of sustainable cities to deal with increasing temperature.  20 

Keywords: Urban heat island; Neighbor landscape features; Scale dependence;  21 



 

Landscape composition; Ridge regression  22 

1 Introduction  23 

The urban heat island (UHI), referring to the elevated land surface temperature 24 

(LST) in urban environments in comparison with that in the surrounding rural areas, 25 

has become a major sustainability challenge for cities because of its various adverse 26 

impacts on the environment and urbanites(Oke, 1982; Swamy et al., 2017). Some of 27 

the major UHI consequences are aggravated water and energy consumption (Li et al., 28 

2019c), exacerbated health-harming heat-stress (Patz et al., 2005; Wang et al., 2019a), 29 

and secondary air pollution from photochemical reaction (Swamy et al., 2017), among 30 

others. It is potentially possible to mitigate the UHI impact through the composition 31 

and patterns of landscape features including vegetation, impermeable surfaces, and 32 

water bodies since UHI is resulted from the differences in their thermal properties  33 

(Jamei et al., 2019; Zhou et al., 2013). Although some “coarse-grained” theories 34 

based on the principle of energy and radiation transmission provide a good basis for 35 

understanding broad-scale UHI physical logics synoptically (Manoli et al., 2019), 36 

they have limited applicability to fine- to local-scale landscape manipulations. Urban 37 

planners and decision-makers urgently need improved knowledge to help them 38 

develop adaptation strategies to climate change as cities expand (Bai et al., 2018).   39 

Understanding the influences of various landscape features on UHI and its 40 

dependence on spatial scale is critical for developing sustainable cities by integrating 41 



 

infrastructure to create environmental and economic efficiency while improving the 42 

overall quality of life (Nam and Pardo, 2011; Ramaswami et al., 2016; Ziter et al.,  43 

2019). These influences, aka UHI sensitivities to “fine-grained” urban landscapes, are 44 

not well understood and a wide range of disparities exist. For example, in summer, a 45 

10% increase in greenspace would result in a decrease of 3.4 oC in LST in Phoenix,  46 

Arizona (Connors et al., 2012), but only 2°C in Manchester, UK (Skelhorn et al., 47 

2014), and 1.1 oC in Delhi, India (Pramanik and Punia, 2019). Similarly, every 10% 48 

increase in the built-up proportion would increase LST by 3.2 °C in Phoenix, Arizona 49 

(Connors et al., 2012), but only by 0.45 °C in the Baltimore–DC metropolitan area 50 

(Tang et al., 2017). Those inconsistent sensitivities of LST bring challenges to city 51 

designers and managers to improve energy efficiency, district heating and cooling.   52 

Although the exact reasons for this inconsistency remain unknown, two possible 53 

explanations exist. First, it is speculated that the interplay among landscape features 54 

across a continuum of scales, following certain scaling relationships, might be 55 

responsible (Nill et al., 2019; Wang et al., 2019b). To find and quantify the intrinsic 56 

influence of landscape features on LST, we must realize that cities are complex 57 

systems with many interactive (Behl and Mangharam, 2016), interdependent 58 

landscape components whose intertwined intrinsic influences on LST must be 59 

untangled using appropriate methods. Meanwhile, the environmental stability of a 60 

landscape and influence intensity of its neighborhood are functions of features on a 61 

range of spatial scales from sub-meters to thousands of meters (Chun and Guldmann, 62 



 

2014). This scale dependency has been described as one of the key challenges in 63 

addressing urban environmental changes (Landauer et al., 2018). Although it is 64 

understood that both own and neighboring landscapes affect the LST of a given urban 65 

land parcel (Chun and Guldmann, 2014), previous studies focus mainly on the 66 

influences of own environment (i.e., endogenous effect) with little attention on the 67 

influences of its neighboring landscapes (i.e., exogenous effect) (Guo et al., 2019; 68 

Zhou et al., 2017). The relative influence of endogenous and exogenous effects and its 69 

variation with spatial scale are not clear, calling for systematic studies investigating 70 

the scaling rules of these effects across scales. Second, the inconsistency could also be 71 

caused by cross-city differences in biophysical conditions. Some paired comparative 72 

studies have shown that the effects of landscape features cross cities varied with 73 

climate zones (Rasul et al., 2015; Xiao et al., 2018). To improve our understanding of 74 

the cross-city variability, we must conduct comprehensive studies with multiple cities 75 

covering a wide range of vegetation conditions, urban landscape features, and climate 76 

regimes (Best and Grimmond, 2016; Taleghani et al., 2019; Theeuwes et al., 2017).  77 

Here, we studied the endogenous and exogenous effects of landscape features on 78 

LST in five large cities (i.e., Beijing, Shanghai, Changsha, Chongqing, and  79 

Changchun) across China (Fig. 1). A range of grid/grain sizes (90-, 360-, 630-, and 80 

900-m length scale) and neighborhood sizes (33, 55, 77, and 99 grid cells) 81 

were used to investigate the change of the endogenous and exogenous effects across 82 

scales (Fig. 2). The research aims of this study were to: (1) compare the influences of 83 



 

different landscape characteristics on LST; (2) investigate the endogenous and 84 

exogenous landscape effects on LST and their scale dependence; (3) examine the 85 

commonality and differences of endogenous and exogenous landscape effects across  86 

cities.  87 

2 Data and Methods   88 

2.1 Study sites  89 

Five major cities (i.e., Beijing, Changchun, Shanghai, Changsha, and Chongqing) 90 

across China were selected to investigate the geographic variations of UHI and the 91 

endogenous and exogenous impacts of landscape features on LST as a function of 92 

grain and neighbor sizes (Fig. 1). These cities were at least provincial capitals, 93 

located in the North, Northeast, East, Central-south, and Southwest China, 94 

respectively. No cities were selected from the Northwest region because no obvious 95 

UHI was found there according to a previous study (Zhou et al., 2014). The climate in 96 

the East, Central-south, and Southeast China typically has hot and rainy summers. In 97 

contrast, North and Northeast China have relatively subhumid/semiarid-temperate and 98 

typical humid-cold climate in summer, respectively (Shi et al., 2014). In addition, the 99 

vegetation types of these five cities also have obvious north-south differences, which 100 

are greatly affected by climate. Specifically, the regional vegetation in Beijing and 101 

Changchun is dominated by temperate mixed deciduous broad-leaved forests, whereas 102 

that in Shanghai, Chongqing, and Changsha is dominated by subtropical evergreen 103 

broad-leaved forests.   104 



 

2.2 Data   105 

UHI studies mainly used two data sources: ground-based measurements (Shaker et 106 

al., 2019; Ziter et al., 2019) and remotely sensed data (Manoli et al., 2019; Zhou et al., 107 

2017). Compared with ground-based measurement, remotely sensed data have been 108 

used frequently in urban thermal studies due to easy access to cross-regional images. 109 

In this study, we used Landsat-8 Thematic Mapper (TM) images with a spatial 110 

resolution of 30 m acquired around 11 AM local time in July of 2017. If no cloudless 111 

images available in July of 2017, images in July of 2016 or 2018 were used. The TM 112 

data for Beijing, Changchun, Shanghai, Changsha, and Chongqing were acquired on  113 

July 10, 2017 (row 32/ path 123), July 4, 2016 (row 30/ path 118), July 23, 2017 (row 114 

38/ path 118), July 26, 2017 (row 41/ path 123), July 26, 2016 (row 39/ path 128), 115 

respectively.   116 

2.2.1 Landscape features calculation   117 

To investigate the impacts of landscape features, proportion of vegetation (PV), 118 

normalized difference built-up index (NDBI), modified normalized difference water 119 

index (MNDWI) and wetness index (Wetness) were calculated from surface 120 

reflectance to represent surface landscape condition (Gautam et al., 2015a; Huang et 121 

al., 2002; Kim, 2013). MNDWI is often used to extract open water features while 122 

Wetness index is more sensitive to soil and plant moisture, and we used both in our 123 

study.  124 



 

The PV has been extensively used to reflect the percentage of vegetative ground 125 

cover (Dwivedi et al., 2018; Neinavaz et al., 2020). It is calculated based on the 126 

normalized difference vegetation index (NDVI) (Rouse et al., 1974):  127 

PV = [(NDVI − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)/(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)]2                                           (1)  128 

Where 𝑁𝐷𝑉𝐼𝑚𝑖𝑛(0.05) and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 (0.7) are the thresholds of soil and 129 

vegetation pixel. The NDVI is calculated as (Xu and Guo, 2014):  130 

NDVI = (NIR − Red)/(NIR + Red)                                                                     (2) 131 

Where NIR is the near infrared band, Red is a red band.  132 

 The NDBI is effective at identifying built-up area from medium-resolution 133 

satellite imagery (Chen et al., 2006; Guha et al., 2018). It is computed as a ratio 134 

involving the short-wave infrared band (SWIR1) and the near infrared band (NRI):  135 

NDBI = (SWIR1 − NIR)/(SWIR1 + NIR)                                                                   (3)  136 

Xu proposed the MNDWI, a more effective index than the NDWI in 137 

distinguishing water in urban areas (Xu, 2006). Water surface is often mixed with 138 

built-up land with NDWI while, after substituting the NIR band with SWIR1 band, 139 

MNDWI  could enhance water presence and more accurately extract open water 140 

features than the NDWI (Gautam et al., 2015b). Specifically, the MNDWI is 141 

calculated as:  142 



 

MNDWI = (Green − SWIR1)/(Green + SWIR1)                                                     (4) 143 

Where Green is a green band, and MNDWI ranges from -1 to 1, and positive values 144 

represent water bodies.  145 

Wetness, a Landsat Thematic Mapper(TM) Tasseled Cap feature, is characterized 146 

by differentials between the sum of the visible and near-infrared bands and the 147 

longerinfrared bands (Crist et al., 1984). The longer-infrared TM bands have been 148 

corroborated to be sensitive to soil and plant moisture, therefore effective in 149 

representing wetness. The Wetness index can be calculated as follows using Landsat 150 

OLI data (Baig et al., 2014):  151 

Wetness = 0.1511 × Blue + 0.1973 × Green + 0.3283 × Red + 0.3407 × 152 

NIR − 0.7117 × SWIR1 − 0.4559 × 153 

SWIR2                                                                                              (5)   154 

Where Blue is a blue band, SWIR1 and SWIR2 are the short-wave infrared bands 155 

(TM band 6 and band 7), respectively.  156 

2.2.2 Land surface temperature (LST)  157 

LST was derived from the thermal infrared band 10 (TIRS1) of the Landsat-8 158 

Thermal Infrared Sensor (TIRS) using the classic radiative transfer equation (RTE) 159 

owing to its higher accuracy than a single-channel algorithm and the split-window 160 

algorithm (Yu et al., 2014). First, the digital number (DN) of TIRS band 10 was 161 



 

converted to absolute radiation brightness, and then the transformation of RTE was 162 

used to calculate black-body radiation brightness as follows (Zhou et al., 2012):  163 

TS = [Lλ − 𝐿 ↑ −τ(1 − ε)𝐿 ↓]/τε                                                                                     (6)  164 

Where TS(watts/m2 *sr*µm) is the black-body radiation, Lλ(watts/m2 *sr*µm) is 165 

the spectral radiation brightness of band 10, τ is the transmittance of thermal infrared 166 

bands in the atmosphere, 𝐿 ↑(watts/m2 *sr*µm) and 𝐿 ↓(watts/m2 *sr*µm) are the 167 

brightness of upward and downward radiation in the atmosphere  168 

(http://atmcorr.gsfc.nasa.gov), respectively, and Ɛ is land surface emissivity calculated 169 

from vegetation proportion (PV) (Sobrino et al., 2004):  170 

ε = (0.004 × PV) + 0.986                                                                                                (7)  171 

Finally, LST was calculated from black-body radiation brightness using the Plank 172 

function (Chander et al., 2003):  173 

  174 

Where T is land surface temperature (oC), K1= 774.89 watts/m2 *sr*µm, K2 = 175 

1321.08 K (values were obtained from the metadata file).  176 

2.3 Statistical analysis  177 

Landscape features such as proportions and spatial form of green space have 178 

strong impacts on the LST of a given land parcel, and the impacts can be categorized 179 

into endogenous  and exogenous (Chun and Guldmann, 2014). The endogenous  180 

http://atmcorr.gsfc.nasa.gov/
http://atmcorr.gsfc.nasa.gov/
http://atmcorr.gsfc.nasa.gov/


 

impact represents the impacts of a grid cell’s own landscape features, and the 181 

exogenous impact is from its neighborhood landscape features. To investigate the 182 

endogenous, exogenous, and their joint impacts of landscape features on LST, we 183 

analyzed the relationships between landscape features and LST at multiple spatial 184 

scales with various grid cell sizes and neighborhood ranges (Fig. 2). Specifically, four 185 

grid cell sizes (i.e., 90 m, 360 m, 630 m, and 900 m) were used. For each grid cell 186 

size, we analyzed the exogenous impacts of landscape features within four classes of 187 

the neighborhood: 33, 55, 77, and 99 grids.   188 

To estimate the impacts of landscape features on LST, the mean LST of a grid cell 189 

was the dependent variable, and the independent variables (i.e., landscape features) 190 

were divided into two categories: endogenous characteristics or the characteristics of 191 

a given grid cell, and exogenous features or the landscape features of its 192 

neighborhood. The endogenous variables used in this study included PV, NDBI, 193 

MNDWI, and Wetness, and the exogenous features were the mean, maximum, and 194 

range of PV, NDBI, MNDWI, and Wetness in the neighborhood, the mean, maximum 195 

and range value of exogenous features denote absolute conditions (average and 196 

highest) and relative conditions (range or heterogeneity) of exogenous landscape 197 

features.   198 

The Pearson correlation, the most common method used to calculate the linear 199 

correlation between two variables without considering the interference of other factors 200 

(Lee Rodgers and Nicewander, 1988), was used first to explore the relationships 201 



 

between LST and landscape features across spatial scales. Then, the partial correlation 202 

coefficients were calculated to investigate the strength of linear relationships between 203 

LST and other landscape features, by holding the effects of some variables constant 204 

(Geladi and Kowalski, 1986).  205 

The standardized coefficients (beta weights) of linear and ridge regression 206 

analyses were used to explore the sensitivity of LST to landscape features (i.e., the 207 

impacts of landscape features on LST). We first used the simple ordinary least squares 208 

(OLS) linear regression to quantify the influence strength of individual landscape 209 

features. The slope of the simple linear regression between LST and any given 210 

variable was referred as the manifested sensitivity of the LST. The use of the phrase  211 

“manifested sensitivity” here was to reflect the fact that this sensitivity manifests not 212 

only the relationship between the independent and dependent variables but also the  213 

(hidden) influences of other variables. It is different from the “intrinsic sensitivity”, 214 

described below, where the influences of other independent variables are removed.   215 

OLS multiple linear regression can potentially be used to examine the effects of 216 

independent variables. We first tested the applicability of the OLS multiple linear  217 

regression using the variance inflation factor (VIF) (O’brien, 2007) and found that 218 

VIF was higher than 10, suggesting that the OLS multiple linear regression was not 219 

applicable due to the existence of strong multicollinearity among independent 220 

variables. Subsequently, we used the ridge regression, a regression method for 221 



 

collinear data analysis (Muniz and Kibria, 2009), to estimate the intrinsic sensitivities 222 

of the independent variables, which are defined by the regression coefficients (i.e.,  223 

LST change as a result of every 1 unit change in a given landscape feature index). In  224 

259  essence, ridge regression is an improved OLS estimation method, penalizing large 

260  coefficients through the L2 Norm, with:  

 𝑚 𝑛 

 𝑟𝑤𝑖)2 + 𝜆 ∑ 𝑤𝑖2  (9) 

𝑓(𝑤) = ∑(𝑦𝑖 − 𝑥𝑖 
 𝑗=1 𝑗=1 

261 where λ is the tuning parameter, wi are the estimated coefficients, and xi has been  

262 centrally standardized. The ridge regression model was developed using a 10-fold 

263  cross validation approach, and we chose the λ at which the mean 

squared error (MSE) 264  was within one standard error of the minimal MSE as 

the best estimator of λ.   

265 Variance partition is an effective way to explain the relative contributions of  

266 independent variables to the variance of LST (Anderson and Cribble, 1998). In 

this  

267 study, the LST variance was partitioned into the following four parts, following 

the  

268 procedures outlined in (Peres-Neto et al., 2006), to elucidate the endogenous,  

269 exogenous, and their joint impacts of landscape features on LST: (1) endogenous  

270 effect of the grid cell’s own characteristics, (2) exogenous effect of neighborhood  



 

271 landscape features, (3) joint effects of own and neighborhood features, (4) 272 

unexplained variance.   

273 All statistical analyses were performed in R (Team, 2013). The following R  

274 packages were used: the “glmnet” for ridge regression, and the “vegan” for 

variance  

275 partitioning.   

 

3 Results  

3.1 Variation of LST and landscape features in cities  

The characteristics of the LST in each city are shown in Fig. S1-S5 and Table S1. 

Although the LST values were not strictly comparable across cities because the 

images were taken at different points in time, the LST observations in each city were 

internally consistent. Therefore, the overall features of LST presented here should 

provide some synoptic overview of the LST distribution in the cities. The mean LST 

was 42.99 oC (range 26.13-55.77 oC) in Beijing, 42.83 oC  (range 24.93-62.12 oC) in 

Chongqing, 40.89 oC (range 27.52-61.14 oC) in Changsha, 40.2 oC (range 24.77-60.38 

oC) in Shanghai, and 38.01 oC (range 24.95-57.05 oC) in Changchun. The frequency 

distributions of LST were slightly left-skewed in each of the five cities.  

The frequency distributions of proportion of vegetation (PV) and normalized 

difference built-up index (NDBI) values were right- and left-skewed, respectively, for 

all five cities (Figs. S1-S5). However, PV and NDBI values were significantly 

different among the five cities (Table S1). The mean values of PV in descending order 



 

were Changsha (0.253), Chongqing (0.246), Changchun (0.225), Shanghai (0.211) 

and Beijing (0.201). NDBI decreased from Changsha (-0.076), Changchun (-0.078), 

Beijing (-0.083), Shanghai (-0.091), to Chongqing (-0.093). In addition, the mean 

modified normalized difference water index (MNDWI) data presented unimodal 

distributions in Beijing and Changchun, and bimodal distributions in Shanghai, 

Chongqing, and Changsha (Figs. S1-S5). The MNDWI and Wetness in similar 

descending order were Shanghai (-0.070, -1079), Chongqing (-0.085, -1517), Beijing 

(-0.085, -1615), Changchun ( -0.108, -2141), and Changsha (-0.474, -2147) (Table 

S1).  

3.2 Correlations between LST and landscape features  

The Pearson correlations between LST and endogenous landscape features showed 

both similarities and differences among the five cities (Fig. S7). LST was significantly 

correlated with NDBI_endo (positively) and Wetness_endo (negatively), and was 

insignificantly and inconsistently correlated with PV_endo and MNDWI_endo across 

all five cities, grain sizes, and neighbor sizes. The PV_endo ~ LST correlations in 

Beijing, Changchun and Shanghai were significant and negative, and those in 

Chongqing and Changsha were mixed in both direction and significance across grain 

and neighborhood sizes. For example, the PV_endo ~ LST correlations were 

significant and positive except grain size of 90 m in Chongqing, the PV_endo ~ LST 

correlations were significant and negative until the grain size larger than 360m in 

Changsha. Moreover, the MNDWI_endo ~ LST correlations were significant and 



 

negative across all grain and neighborhood sizes in Chongqing, Changsha, and 

Shanghai while those in Beijing and Changchun became insignificant as the increase 

of grain and neighbor sizes. The Pearson correlations between LST and exogenous 

landscape features varied greatly across variables (e.g., max, mean, and range) and 

cities (Fig. S7). The signs of the maximum and mean values of exogenous landscape 

features (except MNDWI) to LST were in correspondence with those of endogenous 

landscape features, and LST was positively correlated with MNDWI_exo_max, and 

MNDWI_exo_mean across all five cities, grain sizes, and neighborhood sizes. In 

addition, the correlations of the range of exogenous landscape features were weaker 

than those of the maximum and mean values of exogenous landscape features. It 

implied that LST was mainly impacted by the absolute (average and highest) rather 

than relative (range or heterogeneity) conditions of neighbor landscape features, 

signifying the importance of proportion and evenness of exogenous landscape features 

to LST.  

The partial correlation coefficients between LST and landscape features are shown 

in Fig. S8. First, some clear relationships emerged after controlling the effects of 

water bodies (MNDWI). The endogenous landscape features were all significantly 

correlated with LST regardless of grain and neighbor sizes. LST was negatively 

correlated with PV_endo and Wetness_endo, and the correlation coefficient of 

PV_endo was higher. NDBI_endo~LST correlation was the strongest in all positive 

correlations. The correlations between exogenous landscape features and LST were 



 

consistent across cities, but became not significant when grain sizes increased. Most 

partial correlations of the exogenous variables of PV and Wetness to LST were 

negative, and the strongest and consistent performers among them were  

PV_exo_mean and Wetness_exo_range, respectively. The partial correlations of 

NDBI exogenous variables to LST were positive, and NDBI_exo_mean was the 

strongest performer. Second, when the effects of the PV, Wetness, and NDBI were 

controlled, the partial correlations between MNDWI_endo and LST were significantly 

negative in five cities. Moreover, the MNDWI_exo_mean ~ LST was negative in all 

cities, but MNDWI_exo_max ~ LST and MNDWI_exo_range ~ LST correlations 

were mixed in sign and strength across grain and neighbor scales.  

3.3 LST sensitivity to landscape features  

Table S2 showed the manifested sensitivities of LST to endogenous landscape 

features resulted from OLS linear regressions. These sensitivities, defined as the 

increase (+) or decrease (-) in degrees of LST with every 0.1 increase in a given 

landscape feature index, varied greatly with city, grain size. For instance, LST 

sensitivities to PV_endo increased with grain size at varying speeds in different cities: 

from -1.24 oC to -1.87 oC in Beijing, from -1.43 oC to -2.26 oC in Changchun, from 

0.79 oC to -0.88 oC in Shanghai, from 0.02 oC (not significant) to 0.99 oC in 

Chongqing, and from -0.31 oC to 0.17 oC (not significant) in Changsha when grain 

size increased from 90 m to 900 m. On the contrary, LST sensitivities to  

MNDWI_endo increased with grain size, from -0.10 oC to -0.07 oC (not significant) in  



 

Beijing, from -0.25 oC to -0.90 oC (not significant) in Changchun, from –3.44 oC to - 

4.49 oC in Shanghai, from -2.10 oC to -2.94 oC in Chongqing, and from -1.12 oC to 

1.18 oC in Changsha when grain size increased from 90 m to 900 m. It indicated that 

the small presence of water bodies had insignificant cooling effect in northern cities 

(i.e., Beijing and Changchun), but its large presence had strong cooling effect which 

could acutely pull down LST of non-vegetated areas in southern cities (i.e., Shanghai, 

Chongqing, and Changsha) (also see section 3.2). because the overwhelming cooling 

effect of water bodies could obscure the effect of other landscape features on LST, 

our subsequent analysis was only carried out in the grids without water bodies, 

following Chakraborty et al. (2019) and Yang et al. (2019), and the MNDWI 

representing water bodies was removed accordingly.  

LST demonstrated consistency in direction (or sign) of intrinsic sensitivities to 

any given landscape feature across five cities when the effects of other landscape 

features were removed, as shown by the results from the ridge regression analysis 

(Fig. 3). However, the strength of LST intrinsic sensitivities to any landscape feature 

were different between five cities. The LST intrinsic sensitivities to NDBI_endo was 

the strongest in Changsha (4.01 oC), followed by Chongqing (3.25 oC), Changchun 

(2.16 oC), Beijing (1.65 oC), and Shanghai (1.12 oC); the intrinsic sensitivity of LST to 

PV_endo decreased from Changchun (-1.04 oC), Chongqing (-0.84 oC), Beijing (0.65 

oC), Shanghai (-0.44 oC) to Changsha (-0.40 oC); the intrinsic sensitivity of LST to 



 

Wetness-endo decreased from Chongqing (-1.49 oC), Changsha (-0.53 oC), Shanghai 

(-0.51 oC), Beijing (-0.44 oC) to Changchun (-0.37 oC). 

The intrinsic sensitivities of LST to PV_endo strongly and linearly correlated with 

those of LST to NDBI_endo across a range of grain and neighbor sizes in each city 

(Fig. 4). The slopes of the linear relationship indicate that the strongest offsetting 

effect of vegetation was found in Changchun (66%), followed by Chongqing (56%), 

Beijing (42%), and Shanghai (41%), and the weakest effect was in Changsha (not 

significant at p ＜0.05). Compared with the intrinsic sensitivities of LST to PV_endo, 

the intrinsic sensitivities of LST to Wetness_endo showed more diverse and weaker 

linear relationships with those of LST to NDBI_endo across cities. The slopes of the 

linear relationship were found insignificantly negative in Chongqing, Shanghai, and  

Changchun (p<0.05), and significantly positive in Beijing (18.5%) and Changsha 

(23.6%).  

3.4 Comparison and scaling of endogenous and exogenous landscape 

impacts  

Variance partitioning shows the collective impacts (i.e. total impact of all 

landscape features) of endogenous and exogenous landscape features on LST (Fig. 5). 

For simplicity, we will focus on the separate effects of endogenous and exogenous 

landscapes hereafter as their interactive effects were relatively small. It can be seen 

from Fig. 5 that the relative influences of endogenous and exogenous impacts on LST 

depend strongly on grain size and neighbor size. For example, the endogenous effect 

 



 

(Eendo) was always lower than the exogenous effect (Eexo) across all grid cell sizes 

from 90 m to 900 m when the neighbor size was 33 grid cells. However, this 

relationship changed with other neighbor sizes. For instance, Eendo surpassed Eexo with 

neighbor sizes of 55, 77 or 99 grid cells at the grain size of 630 m.   

Overall, the change of collective impacts of endogenous and exogenous landscape 

with grain size and/or neighbor size can be summarized by the following equations:  

 0.5  (10)  

𝐸𝑒𝑛𝑑𝑜 = 𝛽 × 𝑛𝑠⁄𝑔𝑠 

(11)  

  

where gs (km) is grain size, ns (km) is neighbor size, β, γ, and ε are city-specific 

coefficients derived from nonlinear optimization (Table 1). The optimized parameter 

β varied from 0.09 (Changsha) to 0.20 (Chongqing). The optimized parameters γ and ε 

ranged from 0.48 to 0.60 and from 0.12 to 0.31 across cities, respectively (Fig. 6 a,  

b). It can be seen from Eq. 10 that the endogenous effect is affected by both gs and ns. 

Specifically, the endogenous effect increases linearly with ns/gs
0.5 (Eq. 10). At the 

same time, the exogenous influence declines nonlinearly with ns
0.5 (Eq. 11).  

4 Discussion  

4.1 Demonstrated vs. intrinsic impacts of landscape features on LST   

Manifested LST sensitivity to landscape feature (i.e., LST change per unit change 

in a given landscape feature, and the effects of other features are not excluded) is one 



 

of the most frequently studied phenomena in UHI research  (Guo et al., 2019; Zhang 

et al., 2009). Although it has long been observed, using manifested sensitivities, that 

increased building density could increase LST while increasing vegetation proportion 

or surface water content could effectively reduce LST (Connors et al., 2013; Rasul et 

al., 2015; Sun et al., 2012), our results of manifested LST sensitivities to landscape 

features do not necessarily support this general observation (Fig. S7 and Table S2).  

For instance, the manifested sensitivity of LST to vegetation change is usually 

negative (Connors et al., 2013; Sun and Chen, 2017), but the manifested sensitivities 

in our analysis varied from negative (cooling impact) to positive (warming impact) 

across the five cities. Specifically, the LST manifested sensitivities to PV at the 900 m 

grain scale were all negative in Beijing, and Changchun, and Shanghai, but positive in 

Changsha and in Chongqing (Table S2). The existence of positive manifested 

sensitivities to PV suggests that increasing PV might generate a warming effect, 

conflicting with our conventional wisdom that vegetation tends to decrease the 

temperature in cities.   

Would the increased PV really lead to higher LST, as suggested by the manifested 

sensitivities in Changsha and Chongqing? Subsequent partial correlation and ridge 

regression analyses revealed that this is not the case as shown by the intrinsic 

sensitivities of LST to PV (Fig. 3 and Fig. S8). In fact, analyses from both partial 

correlation (Fig. S8) and ridge regression (Fig. 3) show that LST intrinsic sensitivities 

to any given landscape feature (not just to PV), when water presence was controlled, 



 

was consistent across cities, which can be quite different from the results of Pearson 

correlation analysis. The discrepancy between results of Pearson correlation and 

partial correlation or ridge regression suggests that the inter-city variability of the 

Pearson correlation between LST and landscape features may be caused by the 

difference in hidden landscape features. For example, some cities have large flowing 

water bodies and some do not (Fig. S2, S3, and S5). In essence, cities are not simple 

combination of independent pieces but integration of many facets14, and the interplay 

of multiple landscape features can result in manifested sensitivities that are usually 

quite different from their corresponding intrinsic sensitivities. Manifested sensitivity 

represents the LST sensitivity to a given landscape feature with simultaneous 

influences of all other landscape components, not a suitable measure of the intrinsic 

LST sensitivity to a landscape feature. In consequence, it is very important to remove 

the confounding impacts of other factors when studying the sensitivity of LST to each 

landscape feature.  

4.2 The impacts of built-up, vegetation, and water on LST  

Intrinsic LST sensitivities demonstrated consistent patterns of landscape impacts 

on LST across cities (Fig. 3). First, as expected, the impacts of NDBI were positive 

while those of PV and Wetness were negative, suggesting built-up increases LST 

while vegetation and wetness subside it (Coutts et al., 2012; Gober et al., 2009; Myint 

et al., 2013; Skelhorn et al., 2014). Second, vegetation offsets a relatively constant 

fraction of the warming effect of built-up across a range of grain and neighbor sizes in 



 

each city, as indicated by the strong and negative relationships between intrinsic LST 

sensitivities to PV and NDBI (Fig. 4). The strongest offsetting effect of vegetation 

was found in Changchun (66%), followed by Chongqing (56%), Beijing (42%), and 

Shanghai (41%), and the weakest effect was in Changsha (Fig. 4). Such relatively 

constant offsetting percentages in each city shows that the stronger the heating effect 

of builds, the stronger the ameliorating effect from vegetation, a possible feedback 

mechanism that prevents urban LST from going up spirally and allows it to stay in 

livable ranges. In summary, the cooling effect generated by vegetation could offset 

40%-60% of the heating effect of built-up. However, one outlier from the constant 

strong offsetting was found in Changsha where the offsetting effect varied in a 

nonsignificant narrow range.   

Our study indicated that surface wetness (Wetness) can either intensify or mitigate 

the UHI effect. Significant positive relationship was found in Beijing and Changsha, 

suggesting wetness exacerbates the warming effect of built-up (Fig. 4). The additive 

heating impact of wetness to that of built-up was impressive in Changsha, which was 

higher than that in Beijing. At the same time, cooling (negative) effects, although not 

significant, were observed in Chongqing, Shanghai, and Changchun. The inconsistent 

regulatory power of surface wetness on the urban thermal environment across cities 

can be traced back to the diverse regulation mechanisms of wetness on temperature. 

Surface wetness plays a fundamental role in the reduction of LST through 

evapotranspiration (Rasul et al., 2015; Yang et al., 2013). However, too much surface 



 

wetness would lead to increase of moisture content in the atmosphere, which not only 

reduces incoming radiation but also warms up the air since water vapor is an efficient 

atmospheric greenhouse gas (Boucher et al., 2004; Sheng et al., 2017).   

4.3 The 1/2 power scaling of the influences of endogenous and 

exogenous landscape features on LST in space  

Many studies have attempted to study the influences of endogenous and 

exogenous landscape features on LST (i.e., Eendo and Eexo, respectively) (Feng and 

Myint, 2016; Sun et al., 2018; Zhang et al., 2017) and their scaling across spatial 

scales (Chun and Guldmann, 2014; Dai et al., 2019). For instance, Chun and  

Guldmann (2014) studied the relative strength of Eendo and Eexo in Columbus, OH, 

USA using grain sizes ranging from 120 m to 480 m, they found Eexo values of solar 

radiation, sky view factor, and total NDVI were always smaller than their 

corresponding Eendo, and the difference of the two impacts increased with the grain 

size. Dai et al. (2019) found, Eexo was larger than the Eendo as grain size was within 

180 m in Beijing, whereas, the opposite took place for larger grain size. However, 

most of previous studies only considered the effects of grain size without 

investigating the impacts of neighbor size and city specificity. Our study reveals that 

Eendo and Eexo are nonlinear functions of grain size gs and neighbor size ns (Eq. 10-11), 

independent of cities. Specifically, the Eendo is affected by both the neighbor size ns 

and grain size gs in the form of , indicating that the Eendo increases linearly 

with ns but nonlinearly constrained by gs. Surprisingly, the Eexo is only affected by 



 

neighbor size in the form of −𝑛𝑠0.5, suggesting that the exogenous influence declines 

nonlinearly with ns.   

4.4 A 2/5 power scaling between grain size and neighbor size 

measures the relative strength of endogenous and exogenous 

influences on LST  

Understanding the relative strength of Eendo and Eexo and its change with grain and 

neighbor sizes are of critical importance to urban landscape design in light of UHI 

mitigation (Chun and Guldmann, 2014). It is necessary to understand under what 

conditions the endogenous and exogenous effects become equal to or larger than the 

exogenous effects.  It is often perceived that when the grain size is small Eexo would 

overwhelm Eendo; on the other hand, Eexo would be negligible in comparison with Eendo 

when the grain size is large. However, to our knowledge, no quantitative relationship 

exists prior to this study on how this relative strength of Eendo and Eexo changes with 

scales. The finding of the 1/2 power scaling relationships of Eendo and Eexo brings this 

quantitative relationship into light.    

To figure out the relative strength of Eendo and Eexo, let us first find out the critical 

grain size g(ns) at which Eendo equals to Eexo (i.e., Eq. 10 equals to Eq. 11).  The 

following relationship describing the critical g(ns) as a function of ns can be easily 

derived:  

 𝛽 × 𝑛𝑠

 2

 (12) 

  



 

This relationship suggests that, for a given gs, Eendo would be stronger than, equal 

to, or weaker than its exogenous counterpart Eexo when gs < g(ns), gs = g(ns), or gs > 

g(ns), respectively, for a given ns. Equivalently, the critical neighbor size n(gs) as a 

function of gs can be derived similarly as follows:  

  (13)  

  

for a given ns, Eexo would be stronger than, equal to, or weaker than its endogenous 

counterpart when ns < n(gs), ns = n(gs), or ns > n(gs), respectively, for  

 a 

given gs. Fig. 6c shows all the city-specific equi-impact curves showing the 

equality of Eendo and Eexo, plotted according to Eq. 13 with city-specific coefficients 

of β, γ, and ε.  

The nonlinear change patterns of the equi-impact curves in the ns and gs spaces 

(Eq. 12 and 13) could be expressed by power functions or linear relationships in 

log(ns/gs) and log(gs) spaces (Fig. 6d). As a result, the equi-impact curves in all these 

cities can be further represented by power functions with an exponent of 2/5 as 

follows:  

(14)  

  

  



 

Where k is a city-specific constant. These equi-impact curves present a simple 

power scaling relationship between grain size and neighbor size that can be used to 

measure the relative strength of Eendo and Eexo: if ns > kgs
2/5, Eendo > Eexo; otherwise, 

Eendo < Eexo (Eq. 14). The k values derived from regression were 1.15, 1.36, 1.58, 1.78, 

and 3.01 for Beijing, Chongqing, Changchun, Shanghai, and Changsha, respectively.  

The presence of the equi-impact curves suggests that the (gs, ns) plane can be 

effectively partitioned into two regions (Eq. 12, Eq. 13 and Fig. 6c):  the region above 

the curve where Eendo > Eexo and the region below the curve where Eendo < Eexo. 

Following the equi-impact lines from the origin, we can find the turning point of ns 

growth rate occurred when gs is about 0.2 km: the increase speed of ns was much 

faster than that of gs before the turning point, and the disparity in the rates of change 

of ns and gs narrowed down gradually thereafter. This phenomenon shows that: (1) 

when the landscape patch is small, the influential neighborhood expands rapidly with 

the patch size, and (2) when the patch size is larger than 0.04 km2, the influential 

neighborhood tends to be stable.  

The manipulation of the endogenous landscape to LST can only be realized in the 

area above the equi-impact line for a given city, since only when Eendo > Eexo 

endogenous effects are considered to be manipulable. The manipulability of 

endogenous landscape varied across cities (Fig 6c, d) but follows the following 

descending order:  Beijing, Chongqing, Changchun, Shanghai, and Changsha as 

indicated by the k values in Eq. 14. Previous studies show that difference of 



 

manipulability may be caused by the heat transfer capacity varying from geographical 

backgrounds (Darmanto et al., 2017; Manoli et al., 2019; Yang et al., 2013). For 

instance, the much weaker regulation effect of landscape, especially vegetation and 

water body, on LST in Changsha, compared to other cities, might be explained by the 

fact that it is located in a closed basin surrounded by mountains on three sides and 

crossed  by the Xiangjiang river, causing excessive air humidity that is not conducive 

to convection and heat evacuation (Yang et al., 2013). In contrast, stronger landscape 

control on LST in Chongqing, the most famous "mountain city" in China, may be 

attributed to the discontinuous landscape patterns within a complex terrain of 

mountains and valleys (Darmanto et al., 2017). However, the specific mechanisms 

behind the large inter-city variation are still unclear, and future research should focus 

on the effects of climate regime (Manoli et al., 2019), anthropogenic heat sources (Li 

et al., 2019c), and urban landscape characteristics such as buildings and canopy 

canyons (Li et al., 2019a; Ziter et al., 2019) .   

4.5 Implications on landscape design and future research   

In reality, the influence of landscape features can be manipulated via landscape 

design. Our study can potentially support landscape design in several areas. First, the 

sensitivities of LST to individual landscape features, particularly the intrinsic 

sensitivities, should provide guidance on the selection and layout of various features 

on landscape. The cooling effect generated by vegetation can offset 40%-60% of the 

heating effect of built-up, and wetness exacerbates the warming effect of built-up in 



 

some cities. Such relatively constant offsetting percentages in each city shows that 

there is a possible feedback mechanism that prevents urban LST from going up 

spirally. It also indicates that the cooling effect of vegetation at city level can be 

manipulated through changing vegetation coverage. For example, Changchun’s 

cooling effect from vegetation (66%) was higher than that in Beijing (42%), which 

can probably be attributed to its higher vegetation or PV value (0.225) than that in 

Beijing (0.201) (Table S1). how to manipulate the colling effect of vegetation through 

changing landscape patterns is an important research topic but beyond the scope of 

our current study. Nevertheless, future research should focus more on exploring the 

impact of manipulating features on LST at the landscape scale using field-based 

approaches (Shaker et al., 2019) and/or high-resolution remotely sensed images  

(Dumke et al., 2018; Li et al., 2019b). Second, Eendo depends on both ns and gs (Eq. 

10). This implies that the impact strength of any land patch to itself LST is impacted 

not only by its own area but also by the area of its neighborhood. The scaling 

relationship of Eendo (Eq. 11) suggests that when gs is large enough (its own landscape 

is relatively complete and independent), its interpretation power to focal LST remains 

relatively stable. When ns becomes too large, the exogenous influence to the focal  

LST will be reduced, so that LST is dominantly impacted by its own landscape. Third, 

Eexo decreases nonlinearly with the increase of ns (Eq. 11). That is to say, no matter 

how large gs is, the impact of neighboring landscape to focal LST will be affected 

only by the area of its neighborhood, and the neighboring landscape influence will 



 

decrease with ns. Fourth, manipulation of the relative strength of Eendo and Eexo can be 

realized by adjusting appropriate ns and gs (Eq. 13, Eq. 14). When urban planners 

want to optimize the local thermal environment, they should consider not only the 

local landscape, but also the corresponding scope of neighbor landscape, especially 

when gs is small, as suggested by the 2/5 power scaling relationships of endogenous 

and exogenous impacts shown in this study.  

In this study, we explored the sensitivity of LST to its own and the surrounding 

landscape characteristics and found some intriguing quantitative scaling relationships. 

Most previous studies only observed the variation of endogenous impacts with grain 

size (Rasul et al., 2015; Xiao et al., 2018), few have studied the relative change of the 

exogenous and endogenous impacts on grain and neighbor size (Chun and Guldmann, 

2014). Future studies on the endogenous and exogenous effects of landscape features 

should include more geographically diverse cities. In particular, the variations of the 

city-specific coefficients (β, γ, ε, and k in Eqs. 10, 11 and 14), their physical meanings 

and relationships with landscape features and/or regional climate regimes should be 

explored (Ramaswami et al., 2016; Ziter et al., 2019).  

5 Conclusions  

Understanding the influences of various landscape features on UHI and its 

dependence on spatial scale is critical for developing sustainable, and healthy cities. 

To investigate the influences of different landscape features on LST and how the 

features of a specific urban landscape (endogenous features), and neighboring 



 

environments (exogenous features) impact its LST across a continuum of spatial 

scales. We conducted a comparison study in five large cities (i.e., Beijing, Shanghai,  

Changsha, Chongqing, and Changchun) with very different climatic conditions across 

China, using different statistical approaches and analytical units with varied sizes.  

Results show that (1) the cooling effect generated by vegetation could offset 40%60% 

of the heating effect of built-up, while surface wetness intensifies or reduces it 

depending on climate conditions. Wetness generates cooling effects in Chongqing, 

Shanghai, and Changchun, and exacerbates the warming effect of built-up in Beijing 

and Changsha. (2) The influence of endogenous and exogenous landscape on LST can 

be described consistently across all cities as a nonlinear function of grain size (gs) and 

neighbor size (ns). In addition, a simple relationship describing the relative strength of 

endogenous and exogenous impacts of landscape features on LST was found (Eendo >  

Eexo if ns > kgs
2/5, where k is a city-specific parameter; otherwise, Eendo < Eexo).   
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Tables  

Table. 1 The parameter of Non-Linear System (NLS) regression to combined 

effects of endogenous (Eendo), the formula is 𝐸𝑒𝑛𝑑𝑜 = 𝛽 × 𝑛𝑠⁄𝑔𝑠0.5. And the parameter 

of NLS regression to combined effects of exogenous (Eexo), the formula is 𝐸𝑒𝑥𝑜 = 𝛾 − 𝜀 

× 𝑛𝑠0.5.  

City  

Eendo  
 

  Eexo  
  

  

β  RMSE  R2  γ  ε  RMSE  R2  

Beijing  0.19***  0.09  0.80  0.52***  0.30***  0.05  0.90  

Shanghai  0.14***  0.07  0.72  0.48***  0.18***  0.04  0.80  

Chongqing  0.19***  0.01  0.84  0.60***  0.31***  0.05  0.89  

Changchun  0.17***  0.06  0.87  0.56***  0.24***  0.05  0.87  

 Changsha  0.09***  0.03  0.90  0.49***  0.12***  0.03  0.75  

  



 

  

Figure Captions  

Fig. 1 Locations of the 5 major cities and six regions in China, with the background map 

indicating the topography of China.   

Fig. 2 Grain and neighbor sizes used to characterize scale dependence of landscape features. a 

grain sizes, b neighborhood sizes.  

Fig. 3 Heatmaps of ridge regression coefficients between landscape features and LST in five 

cities. Landscape features: PV, NDBI, MNDWI, and Wetness; endo and exo represent 

endogenous and exogenous, respectively; max, mean, and range represent the maximum, 

mean, and range values of exogenous landscape feature. The relationship between LST and 

landscape features was analyzed at various grain size (x meters length scale) and neighbor size 

(m by m cells), shown as LSTx_mm. The number of stars shows the significance level of 

coefficient, *** p<0.001, ** p<0.01, * p<0.05.  

Fig. 4 Relationships between endogenous and exogenous effects of various landscape features 

on LST (i.e., ridge regression coefficients) in different cities across 16 spatial scales (each 

point represents a scale): PV_endo and NDBI_endo (green), and Wetness_endo and 

NDBI_endo (blue).  

Fig. 5 The results of variance partitioning for endogenous and exogenous landscape features 

across scales (grid and neighborhood scale). a, b, c, d indicate neighbor size of 3×3, 5×5, 7 

×7, and 9×9 grid cells, respectively.  

Fig. 6 Scaling and comparison of collective Eendo and Eexo  across five cities. a The relationship 

between Eendo predicted by Eq. 2 and Eendo partitioned by variance partitioning. b The 

relationship between Eexo predicted by Eq. 3 and Eexo partitioned by variance partitioning. c The 

relationship between Eendo and Eexo in ns and gs spaces. d The relationship between Eendo and 

Eexo in log(ns/gs) and log(gs) spaces.  

    



 

Fig. 1  

 
Fig. 1 Locations of the 5 major cities and six regions in China, with the background 

map indicating the topography of China.   

    

Fig. 2  

 
  

Fig. 2 Grain and neighbor sizes used to characterize scale dependence of landscape 

features. a grain sizes, b neighborhood sizes.   

     



 

Fig. 3   

 
Fig. 3 Heatmaps of ridge regression coefficients between landscape features and LST in five 

cities. Landscape features: PV, NDBI, MNDWI, and Wetness; endo and exo represent 

endogenous and exogenous, respectively; max, mean, and range represent the maximum, 

mean, and range values of exogenous landscape feature. The relationship between LST and 

landscape features was analyzed at various grain size (x meters length scale) and neighbor size 

(m by m cells), shown as LSTx_mm. The number of stars shows the significance level of 

coefficient, *** p<0.001, ** p<0.01, * p<0.05.  



 

Fig. 4  

  

Fig. 4 Relationships between endogenous effects of various landscape features on LST 

(i.e., ridge regression coefficients) in different cities across 16 spatial scales (each point 

represents a scale): PV_endo and NDBI_endo (green), and Wetness_endo and 

NDBI_endo (blue).   

    



 

Fig. 5  

 

Fig. 5 The results of variance partitioning for endogenous and exogenous landscape 

features across scales (grid and neighborhood scale). a, b, c, d indicate neighbor size of 

33, 55, 77, and 99 grid cells, respectively.  

    

  



 

Fig. 6  

 

Fig. 6  Scaling and comparison of collective Eendo and Eexo  across five cities. a The 

relationship between Eendo predicted by Eq. 2 and Eendo partitioned by variance 

partitioning. b The relationship between Eexo predicted by Eq. 3 and Eexo partitioned by 

variance partitioning. c The relationship between Eendo and Eexo in ns and gs spaces. d 

The relationship between Eendo and Eexo in log(ns/gs) and log(gs) spaces.  

 


