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Abstract 22 

Ocean sprawl is a growing threat to marine and coastal ecosystems globally, with wide-23 

ranging consequences for natural habitats and species. Artificial structures built in the marine 24 

environment often support less diverse communities than natural rocky marine habitats 25 

because of low topographic complexity. Some structures can be eco-engineered to increase 26 

their complexity and promote biodiversity. Tried-and-tested eco-engineering approaches 27 

include building-in habitat designs to mimic features of natural reef topography that are 28 

important for biodiversity. Most designs mimic discrete microhabitat features like crevices or 29 

holes and are geometrically-simplified. Here we propose that directly replicating the full 30 

fingerprint of natural reef topography in habitat designs makes a novel addition to the 31 

growing toolkit of eco-engineering options. We developed a five-step process for designing 32 

natural topography-based eco-engineering interventions for marine artificial structures. Given 33 

that topography is highly spatially variable in rocky reef habitats, our targeted approach seeks 34 

to identify and replicate the ‘best’ types of reef topography to satisfy specific eco-engineering 35 

objectives. We demonstrate and evaluate the process by designing three natural topography-36 

based habitat units for intertidal structures, each targeting one of three hypothetical eco-37 

engineering objectives. The process described can be adapted and applied according to user-38 

specific priorities. Expanding the toolkit for eco-engineering marine structures is crucial to 39 

enable ecologically-informed designs that maximise biodiversity benefits from burgeoning 40 

ocean sprawl. 41 

 42 

Keywords: artificial structures, eco-engineering, marine management, ocean sprawl, 43 

topography, urban ecology 44 

 45 
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1. Introduction 46 

Ocean sprawl is a growing threat to marine and coastal ecosystems globally, with wide-47 

ranging consequences for habitats and species (Firth et al., 2016a). Aside from the 48 

environmental impacts of building artificial structures in the sea (Bishop et al., 2017; Heery 49 

et al., 2017), structures generally provide poor quality habitats for biodiversity compared with 50 

natural rocky marine habitats (Moschella et al., 2005; Wilhelmsson & Malm, 2008). In 51 

nature, topographic heterogeneity generates variation in the physical environment and plays 52 

an important role in sustaining biodiversity and functioning (Levin, 1974). Species exist 53 

within the bounds of their differing evolutionary adaptations to physical stresses and a 54 

complex interplay of biotic interactions (Huston, 1999). On rocky reefs, many habitat 55 

features that offer refugia from physical stressors and predation (Aguilera et al., 2019; Hereu 56 

et al., 2005; Menge & Lubchenco, 1981), such as crevices, bumps and holes, are generated as 57 

a function of substrate topography. On artificial structures, topographic complexity is 58 

generally much lower (Moschella et al., 2005; Wilhelmsson & Malm, 2008); for example, 59 

plain concrete seawalls, uniform rock armour, and smooth jetty pilings. This is a key reason 60 

for their reduced biodiversity compared with natural rocky habitats (Firth et al., 2013; 61 

Moschella et al., 2005; Wilhelmsson & Malm, 2008). In some circumstances, absence of 62 

surface complexity and colonisation of marine life is desirable on structures. For example, on 63 

wave and tidal energy infrastructure, where local hydrodynamics are key (Langhamer et al., 64 

2009). But where marine developments contribute to the loss or fragmentation of natural 65 

reefs (Hall et al., 2018), or where reef habitats and species are in decline for other reasons 66 

(Jackson & McIlvenny, 2011; Perkol-Finkel et al., 2012), it would be ecologically-beneficial 67 

if structures provide effective surrogate habitats for these communities, or indeed for other 68 

vulnerable/valued target species.  69 
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There is a growing toolkit of options for eco-engineering marine structures to enhance their 70 

biodiversity value by increasing their topographic complexity (O’Shaughnessy et al., 2020; 71 

Strain et al., 2018b). For example, researchers have trialled creating textured surfaces 72 

(Perkol-Finkel & Sella, 2016; Sella & Perkol-Finkel, 2015), microhabitats like holes and 73 

crevices (Chapman & Underwood, 2011; Hall et al., 2018; Langhamer & Wilhelmsson, 74 

2009), rock pools (Evans et al., 2016; Morris et al., 2017; Waltham & Sheaves, 2020),  and 75 

scaled-up habitat units (Firth et al., 2014; Sella & Perkol-Finkel, 2015). Others have 76 

transplanted target species onto structures (Ng et al., 2015; Perkol-Finkel et al., 2012). The 77 

evidence base for if and how biodiversity can be promoted through such ‘greening-the-grey’ 78 

(Firth et al., 2020; Naylor et al., 2017) eco-engineering interventions is growing rapidly 79 

(Strain et al., 2018b). The popularity of the concept is also growing amongst developers 80 

tasked with demonstrating how their proposals align with increasingly-proactive conservation 81 

and planning legislation (Dafforn et al., 2015; Evans et al., 2019).  82 

The ecological benefits that can be delivered by greening-the-grey options from the eco-83 

engineering toolkit are variable and context-dependent (Strain et al., 2018b). In most cases, 84 

novel habitat designs have been successfully colonised by reef organisms, but have not 85 

always functioned in the same way as comparable natural habitats (e.g. Chapman & 86 

Blockley, 2009; Evans et al., 2016; Langhamer & Wilhelmsson, 2009). This may be partly 87 

because of stressful environmental conditions around artificial structures, such as poor water 88 

quality in urban areas (Pinedo et al., 2007), unfavourable thermal conditions (Waltham & 89 

Sheaves, 2020) or high disturbance regimes (Airoldi & Bulleri, 2011). It may also be because 90 

many designs are geometrically-simplified representations of natural habitat features. For 91 

example, eco-engineered pit, crevice and rock pool habitat designs are commonly drilled or 92 

cast in regular forms for convenience or cost reasons (Firth et al., 2014; Hall et al., 2018; 93 

Langhamer & Wilhelmsson, 2009). Some habitats have been designed theoretically using 94 
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computer-aided design to maximise biodiversity benefits (Loke et al., 2014). Others have 95 

been designed with an emphasis on aesthetics and public engagement (Hall et al., 2019). 96 

Whilst the majority of interventions are inspired by natural rocky habitat features, none have 97 

been designed to directly replicate them (but see MacArthur et al., 2019). With increasing 98 

affordability and accessibility of 3D habitat modelling and printing technologies (Canessa et 99 

al., 2013; D’Urban Jackson et al., 2020), different ecologically-targeted outcomes may be 100 

achieved by directly replicating the full fingerprint of natural reef topography in eco-101 

engineering designs. 102 

Here we describe a novel approach for designing eco-engineering interventions (i.e. habitat 103 

units) for marine artificial structures that directly replicate natural reef topography on 104 

structure surfaces. Given that topography, and hence the distribution of habitat features, 105 

physical conditions and biodiversity, is highly spatially variable on rocky reefs (Aguilera et 106 

al., 2019; Meager et al., 2011), our targeted approach seeks to identify and replicate the ‘best’ 107 

types of reef topography to satisfy specific eco-engineering objectives. This involves first 108 

identifying relationships between features of substrate topography and biodiversity metrics of 109 

interest, then selecting areas of topography to replicate accordingly. Acknowledging that eco-110 

engineering options and objectives are likely to be different for different structures in 111 

different places, we present a five-step process that can be adapted and applied according to 112 

site-specific or species-specific priorities. We then describe and evaluate our own application 113 

of the process to promote three hypothetical eco-engineering objectives for intertidal artificial 114 

structures.  115 

 116 

 117 

 118 
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2. Designing Natural Topography-Based Eco-engineering Habitat Units: A Five-Step 119 

Process 120 

We propose a five-step process for designing ecologically-targeted natural topography-based 121 

eco-engineering habitat units for marine artificial structures (Fig. 1). Prior to applying this 122 

process, the options and objectives of the eco-engineering intervention must be known. In 123 

particular, the species or communities that are the desired targets of the intervention must be 124 

identified, and these must be realistic targets of topography-based intervention. Following 125 

this, Step 1 is to conduct a baseline survey to sample the biology and topography of local reef 126 

habitats that support those target species/communities to varying degrees. The location, scale, 127 

timing and method of baseline survey must be appropriate to their biology and ecology. 128 

Biological sampling must be appropriate for subsequently identifying and selecting the ‘best’ 129 

and ‘worst’ samples for target species/communities, according to the user’s objectives. If a 130 

single species is the target (e.g. for conservation/fisheries interest), simple measures of 131 

presence, abundance and/or population demographics may be sufficient. If groups of species 132 

or full communities are the target (e.g. to promote natural reef communities), then 133 

community-level biodiversity metrics or indices may be necessary and data should be 134 

collected accordingly. Topographic sampling must allow for the construction of three-135 

dimensional digital habitat models (e.g. digital elevation models (DEMs) or point clouds) of 136 

appropriate scale and resolution (e.g. using structure-from-motion (SfM) photogrammetry or 137 

laser-scanning; D’Urban Jackson et al., 2020).  138 

Step 2 is a biological selection step to identify subsets of the ‘best’ and ‘worst’ samples from 139 

the baseline survey for target species/communities. Using appropriate biodiversity metrics, 140 

samples can be scored, ranked and filtered pragmatically to select subsets of the ‘best’ and 141 

‘worst’ samples that contain enough samples for subsequently detecting associations with 142 

topographic features. Step 3 is a topographic selection step to identify topographic features 143 
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characteristic of the ‘best’ but not the ‘worst’ samples, then to shortlist the ‘best candidates’ 144 

based on these. This step should include a rigorous method (e.g. statistical modelling) for 145 

identifying relationships between the target species/communities and features of the 146 

underlying topography. Step 4 is an engineering selection step to identify potential practical 147 

issues for manufacturing eco-engineering habitat units based on the ‘best candidates’. Step 5 148 

is to manufacture habitat units replicating the ultimately selected ‘best’ samples of reef 149 

substrate.  150 

 151 

3. Application of the Five-Step Process 152 

We applied the five-step process (Fig. 1) to design natural topography-based eco-engineering 153 

habitat units for artificial structures in our region (Fig. 2). We aimed to design experimental-154 

scale (25 x 25 cm) habitat units for mid-shore seaward-facing surfaces on intertidal 155 

structures. We applied the approach with three hypothetical eco-engineering objectives in 156 

mind: (A) to maximise the richness of colonising communities; (B) to promote local rocky 157 

reef species that are normally deficient on artificial structures; and (C) to promote rocky reef 158 

species that are rare in our region.  159 

3.1 Step 1 – Baseline Survey 160 

3.1.1 Survey Sites  161 

Natural and artificial intertidal rocky habitats were surveyed at 54 sites around the Irish Sea 162 

coasts of Ireland and Wales during summer 2018 (Fig. 2; Table S1). For every natural habitat 163 

sampled (n = 27), a nearby artificial habitat was sampled (n = 27) with comparable aspect and 164 

wave exposure. Natural habitats were bedrock reefs formed of mixed sand/mudstones, 165 

limestone or granite. Artificial habitats were walls and rock armour constructed from 166 

limestone, granite or concrete. Artificial habitats were sampled because biodiversity metrics 167 
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calculated for two of our hypothetical eco-engineering objectives required data on the 168 

biodiversity colonising artificial structures (see Section 3.2 below).  169 

3.1.2 Biological Sampling  170 

The biological communities in natural and artificial habitats were sampled using ten 25 x 25 171 

cm quadrats. Five quadrats were placed haphazardly on mid-shore seaward-facing surfaces in 172 

each of two patches (approx. 20 m long, ≥20 m apart) in each site. We sampled steep/vertical 173 

surfaces (60–90°) on walls and sloping/horizontal surfaces (0–40°) on rock armour. Surface 174 

inclination was matched at the natural site loosely paired with each artificial structure. 175 

Surfaces with rugosity features >10 cm were avoided. This was on account of the small size 176 

(25 x 25 cm) of the experimental habitat units we wished to produce: (i) to avoid the surface 177 

being dominated by a single microhabitat feature; and (ii) to avoid size/integrity issues when 178 

producing and deploying the units.  179 

The percent cover of canopy algae within quadrats was recorded then the canopy was 180 

removed by cutting just above the holdfast. Mobile fauna were shaken from the canopy and 181 

counted. The percent cover of sub-canopy algae and encrusting fauna, and counts of mobile 182 

fauna remaining within the quadrat, were then recorded. Barnacles and cryptic gastropods 183 

were counted from photoquadrats.  184 

3.1.3 Topographic Sampling  185 

The topography of each 25 x 25 cm quadrat was recorded using structure-from-motion (SfM) 186 

photogrammetry. All organisms were removed from within quadrats and the substrate was 187 

cleaned using a wire brush. A 50 x 50 cm checkerboard frame, with six control points 188 

covering three dimensions, was placed centrally around each cleared area. Photographs were 189 

taken from each corner angled at 45° towards the centre. Then 16 overlapping perpendicular 190 

photographs were taken in a four-by-four grid. From the total of 20 photographs per quadrat, 191 
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we generated accurately-scaled (0.1 mm) DEMs with Cartesian co-ordinates using Agisoft 192 

Photoscan Professional v1.4 (Agisoft LLC, 2018). The central 25 x 25 cm area was clipped 193 

from each model so that the final topography sample was the substrate directly beneath the 194 

biological community sampled. 195 

3.2 Step 2 – Biological Selection 196 

To identify the ‘best’ and ‘worst’ natural substrate samples for our three hypothetical eco-197 

engineering objectives, three corresponding biodiversity indices were calculated: (A) 198 

Richness; (B) Diversity Deficit; and (C) Rare Taxa. Each index was used to rank the 270 199 

natural quadrats sampled (Fig. S1). The top and bottom 5–10% of quadrats in each ranked list 200 

were selected as the ‘best’ and ‘worst’ sample subsets. This equated to 13–27 samples in each 201 

‘best’ or ‘worst’ subset. We considered this a reasonable balance between selecting only the 202 

highest/lowest scores, whilst retaining large enough sample sizes to maintain power to detect 203 

associations in the subsequent topographic selection step. The exact number in each subset 204 

varied according to sensible cut-offs for each index – this was necessarily subjective, given 205 

that there were many joint ranks.  206 

3.2.1 (A) Richness Index (R)  207 

The Richness Index (R) was calculated as the number of taxa per quadrat. Richness in natural 208 

quadrats ranged from 1 to 20 (mean 8.3 ± 4.1SD) (Fig. S1a). Natural quadrats were ranked 209 

from high to low R. The top 14 quadrats contained >16 taxa (R = 17–20). These were selected 210 

as the ‘best’ samples. They were all sampled from sloping/horizontal surfaces. The bottom 24 211 

quadrats from matching substrate inclination contained <5 taxa (R = 1–4). To reduce this 212 

bottom selection, only quadrats from sites in which some had scored above average for R (R 213 

≥ 8.3) were included. This ensured that low richness was not due to paucity in the local 214 
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species pool, thus there was higher likelihood that topography had contributed to the low R 215 

scores. The bottom 15 quadrats that met this criterion were selected as the ‘worst’.  216 

3.2.2 (B) Diversity Deficit Index (DD)  217 

The Diversity Deficit Index (DD) was derived by identifying key characteristic members of 218 

the mid-shore community that were consistently present in natural quadrats but absent or 219 

consistently less abundant in artificial quadrats. Eight diversity-deficit taxa groups were 220 

identified using SIMPER analysis (Table S2). Each natural quadrat was scored and ranked 221 

according to the number of these taxa groups that were present in higher than average 222 

abundances (i.e. > mean across all natural quadrats; Table S2). The top 29 quadrats contained 223 

higher than average abundances of more than four of the eight groups (DD = 5–6) and were 224 

selected as the ‘best’ samples (Fig. S1b). These were all sampled from sloping/horizontal 225 

surfaces. The bottom 28 quadrats from matching substrate inclination did not contain any 226 

diversity-deficit groups in higher than average abundance (DD = 0) and were selected as the 227 

‘worst’.  228 

3.2.3 (C) Rare Taxa Index (RT)  229 

The Rare Taxa Index (RT) was derived by identifying taxa that occurred most infrequently in 230 

our survey (i.e. recorded in ≤5% quadrats sampled). Nine rare taxa groups were identified 231 

(Table S3). Each natural quadrat was scored and ranked according to the number of these 232 

taxa groups that were present. The top 16 quadrats contained more than two of the nine 233 

groups (RT = 3–4) and were selected as the ‘best’ samples (Fig. S1c). These were all sampled 234 

from sloping/horizontal surfaces. The bottom 99 quadrats from matching substrate inclination 235 

did not contain any rare groups (RT = 0). To reduce this bottom selection, only quadrats from 236 

sites in which some had scored highly for RT (RT > 2) were included. This ensured that the 237 

absence of rare taxa was not because they were absent at the site level, thus there was higher 238 
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likelihood that topography had contributed to the zero RT scores. The bottom 23 quadrats that 239 

met this criterion were selected as the ‘worst’.  240 

3.3 Step 3 – Topographic Selection 241 

This step aimed to identify and select features of substrate topography that were characteristic 242 

of the ‘best’ but not the ‘worst’ quadrat samples for each biodiversity index. We first 243 

identified the most important topographic variables for discriminating between the ‘best’ and 244 

‘worst’ subsets for each index (see details below). These variables were then used to re-rank 245 

the ‘best’ subsets and to select five ‘best candidate’ quadrats for each biodiversity index. 246 

‘Best candidates’ were thus the ‘best’ in terms of biodiversity scores and importantly, had 247 

meaningful topographies that were able to distinguish them from the ‘worst’. Therefore, 248 

features of the underlying topography are likely to have contributed, at least in part, to their 249 

high biodiversity scores.   250 

For each quadrat, 13 topographic variables were calculated from the DEMs of the 25 x 25 cm 251 

substrate areas (Table 1). To identify the most important variables for discriminating between 252 

the ‘best’ and ‘worst’ subsets, we used two statistical methods based on a random forest 253 

framework. This allowed us to review variable importance and provide estimates of class 254 

prediction skill (i.e. ‘best’/‘worst’ subset), whilst being robust to correlation within predictors 255 

(Breiman, 2001). We first used 10-fold (5-repeat) cross-validated recursive feature selection 256 

(CV-RFS) within the ‘caret’ package in R (Kuhn, 2008; R Development Core Team 2011) to 257 

identify the best reduced models for predicting class membership of quadrats (Table S5) and 258 

to calculate variable importance ranks (Fig. 3). We then used the ‘randomForest’ package in 259 

R (Liaw & Wiener, 2002) with 500 trees to validate variable importance scores and ranks 260 

within those best reduced models (Fig. 3), and provide overall model performance (i.e. 261 

prediction error rates; Table S6).  262 
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The best performing model for predicting the ‘best’ and ‘worst’ quadrat subsets for the 263 

Richness Index (R) included four topographic variables (Fig. 3a; Table S5a) and had a 3% 264 

prediction error rate (Table S6a). The best model for predicting the Diversity Deficit Index 265 

(DD) included seven variables (Fig. 3b; Table S5b) and had a 16% error rate (Table S6b). 266 

The best model for predicting the Rare Taxa Index (RT) included all 13 variables (Fig. 3c; 267 

Table S5c) and had a 31% error rate (Table S6c). Variable importance ranks from the CV-268 

RFS analysis, and corroborated by the additional random forest analysis, revealed the top 269 

three most important variables for model performance for each biodiversity index (Fig. 3; 270 

Table 1). The ‘best’ quadrats for each of the three biodiversity indices were scored according 271 

to the number of these key topographic variables that had above average values (i.e. > mean 272 

of all ‘best’ quadrats for each index). The ‘best’ quadrats were then re-ranked according to 273 

these scores and the top five quadrats for each biodiversity index were selected as the ‘best 274 

candidates’.  275 

3.4 Step 4 – Engineering Selection 276 

The DEMs of the five ‘best candidate’ quadrats selected for each biodiversity index were 277 

inspected for their suitability for moulding and casting into eco-engineering habitat units. The 278 

overall height (and therefore weight) of units was considered for practicality and feasibility of 279 

deployment. For us, deployment would require manual handling to install experimental units 280 

on artificial structures. For scaled-up eco-engineering intervention, different engineering 281 

considerations may apply. The fragility and completeness of substrate features when the 25 x 282 

25 cm quadrat area was clipped from the DEM was also considered. For example, if this 283 

resulted in partial loss of continuous features of topography that may have influenced the 284 

distribution of species on the natural shore (e.g. a ridge adjacent to an indentation that would 285 

have retained water), the quadrat was considered unsuitable. Subjectivity employed at this 286 

stage maximised the chances that eco-engineered habitat units could replicate the topographic 287 
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(and thus physico-environmental) conditions available to species on the natural shores from 288 

which they were modelled. Ultimately, one ‘best’ quadrat was selected for each biodiversity 289 

index and the DEMs of these were converted to stereolithography (STL) files for mould 290 

creation. 291 

3.5 Step 5 – Manufacture 292 

The STL files of the three selected ‘best’ natural topography samples were 3D printed on a 293 

Prusa MK3 printer using polylactic acid, with 215°C extruder temperature and 60°C bed 294 

temperature. Cura software was used for slicing the STL files into machine-readable g-code. 295 

Mould-making silicone rubber was poured in layers over the printed samples until 10 mm 296 

thick and cured for 16 h. A rigid support shell was built around each mould using two layers 297 

of Plasti-Paste© urethane resin and cured for two hours. Concrete was poured into the 298 

moulds to cast habitat units replicating the original topography samples. These were cured in 299 

water for 30 days. 300 

 301 

4. Results 302 

By following our five-step process (Fig. 1), we selected three of the ‘best’ natural topography 303 

samples from our baseline survey to promote three hypothetical eco-engineering objectives. 304 

We then replicated them into three experimental-scale eco-engineering habitat units (Fig. 4). 305 

When plotted amongst all 270 natural quadrats sampled, the ‘best’ biological subsets (i.e. the 306 

top 5–10% of biodiversity scores) were clearly dissimilar to the ‘worst’ (i.e. the bottom 5–307 

10%) in terms of their multivariate species compositions (Fig. 5 left). This was largely pre-308 

determined, given that the biological selection used elements of these full assemblages to 309 

identify and select the ‘best’ and ‘worst’ subsets. The ‘best’ selected quadrats for the R and 310 

DD Indices (Figs 5a,b left) were more similar to one another than the ‘best’ subsets for the 311 
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RT Index (Fig. 5c left). Numerous quadrat samples not selected by our process apparently had 312 

very similar community structure to those that were (Fig. 5 left). This likely reflects the use 313 

of univariate biodiversity indices for selection, which inevitably obscure much detail in 314 

community structure.  315 

The three biodiversity indices (Fig. 5 middle) and the top three topographic variables (Fig. 5 316 

right) used in the selection process were correlated with the direction of separation between 317 

the ‘best’ and ‘worst’ subsets for each index (Fig. 5 left). However, the ‘best candidate’ 318 

samples and the ultimately-selected ‘best’ quadrats were not always plotted in the quadrant of 319 

maximum values for these (i.e. in the top right corner of the data cloud; Fig. 5 left). For 320 

example, for DD (Fig. 5b left), several ‘best candidates’, including the ultimately-selected 321 

‘best’ sample, plotted relatively central. These quadrats did not have the highest DD scores 322 

compared to others in the ‘best’ subset. Neither did they have the highest values for VRM 323 

(cm), Slope (mm) and Rugosity (mm). Nevertheless, the combination of being in the top 5–324 

10% of DD scores and having above average topography scores led to them being shortlisted. 325 

The manufactured habitat units were deployed experimentally on artificial structures around 326 

Irish Sea coasts during 2019. While monitoring is ongoing, preliminary observations were 327 

encouraging. Limpet recruits appeared in pools and shaded channels provided by the 328 

replicated natural topography within one week (Figs 6a,c). Juvenile and adult limpets were 329 

again observed in these refuge areas several months later (Figs 6b,d), in some cases creating 330 

grazing halos amongst pioneer algal growth (Fig. 6d). 331 

 332 

5. Discussion 333 

We propose a novel five-step approach for designing natural topography-based eco-334 

engineering habitat units for marine artificial structures. We applied the approach to design 335 
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three experimental-scale units for intertidal artificial structures in our region. Each design 336 

targeted one of three hypothetical eco-engineering objectives: (A) to maximise the richness of 337 

colonising communities; (B) to promote local rocky reef species that are normally deficient 338 

on artificial structures; and (C) to promote rocky reef species that are rare in our region. The 339 

habitat units replicated the topography from within three of the ‘best’ natural rocky reef 340 

quadrat samples from our baseline survey, and observations of early colonisation are 341 

promising.  342 

The habitat design to maximise richness had high mm-scale Vector Ruggedness Measure 343 

(VRM), Arc-Chord Ratio and Surface Area: Planar Area Ratio. The designs to reduce the 344 

diversity deficit and promote rare species also had high VRM, as well as high mm-scale 345 

Rugosity and Slope. These parameters each indicate high surface ruggedness and complexity: 346 

qualities known to be instrumental in supporting diversity on intertidal reefs by modulating 347 

temperature, light, humidity and water flow (Aguilera et al., 2019; Guichard & Bourget, 348 

1998; Meager et al., 2011), and providing refuge from predation (Menge & Lubchenco, 349 

1981). Millimetre-scale ruggedness influences barnacle settlement (MacArthur et al., 2019), 350 

creating habitat structure and promoting succession of colonising communities (Harley, 351 

2006). These were not the only topographic variables that characterised the surfaces 352 

replicated in our habitat units. Several others were similarly associated with the ‘best’ 353 

samples for biodiversity metrics and were unintended features of our topographic designs 354 

(Fig. S4). In contrast, Topographic Position Index, the position of a point in relation to its 355 

neighbours, was inversely associated (Fig. S4). Thus, surfaces with more concave than 356 

convex features – more dips than bumps – were better for biodiversity. This reflects the value 357 

of water-retaining features, even at the mm–cm scale, for intertidal biodiversity (Firth et al., 358 

2013).  359 
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A number of topographic variables combined were necessary for accurate discrimination 360 

between the ‘best’ and ‘worst’ quadrat subsets for each biodiversity index. The Richness 361 

Index required the fewest (i.e. 4) topographic variables to predict the ‘best’ samples and had 362 

the highest accuracy. This suggests that species richness on the rocky shores we sampled was 363 

closely associated with those features of the underlying topography. Promoting richness, 364 

therefore, would be a realistic target of topography-based eco-engineering for intertidal 365 

structures in our region. In contrast, for the Rare Taxa Index, all 13 topographic variables 366 

were required in the best predictive model and this still had relatively low accuracy. This was 367 

likely due to the observed greater dissimilarity amongst the ‘best’ samples for this index. It 368 

may reflect a more complex relationship between rare taxa and substrate topography, e.g. if 369 

different rare species have different specialist niche requirements (Verberk, 2011). A single-370 

species approach may, therefore, have been more effective for identifying topographies (at 371 

the 25 x 25 cm scale) to promote rare species in our region. Alternatively, it may indicate a 372 

relatively weak relationship, i.e. that topography was a poor predictor of rare species, and 373 

their distributions were driven by other factors (as seen in different systems: Gunatilleke et 374 

al., 2006, Wang et al., 2009). In this case, a topography-based eco-engineering approach may 375 

not be suitable for the rare species we were targeting. Further work is necessary to improve 376 

our understanding of which species and communities are feasible targets for natural 377 

topography-based eco-engineering. 378 

The fact that four or more topographic variables were required to differentiate the ‘best’ from 379 

the ‘worst’ samples for all three biodiversity indices lends support to our suggestion that 380 

habitat designs based on a single element of topography (e.g. regularly-shaped pits/grooves) 381 

are unlikely to be effective in achieving community-level objectives, compared with an 382 

approach that replicates natural topography directly. Each element of topography influences 383 

and is influenced by its surroundings, within the context of the wider topographic mosaic. It 384 
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also suggests that shortlisting our ‘best candidates’ based on only the top three topographic 385 

variables was perhaps over-simplistic. The quadrat samples on which our designs were 386 

modelled are unlikely to have been the absolute best for biodiversity or the most aligned with 387 

the key topographic drivers out of all the samples from which we could have selected. It was 388 

inevitable that selecting samples based on biodiversity, topography and engineering 389 

practicality would lead to compromise. However, our selection process ensured that each of 390 

the ultimately-selected topography designs satisfy three criteria: 1) the samples were amongst 391 

the top 5–10% of biodiversity scores, thus the units have the capacity to support the ‘best’ 392 

biodiversity for our eco-engineering objectives; 2) the samples scored above average for the 393 

top three most important topographic variables for biodiversity, thus meaningful features of 394 

the topography were likely to have contributed to their high biodiversity scores; and 3) there 395 

were no practical barriers to replicating the sample topography in concrete habitat units, thus 396 

the units have the capacity to replicate the topography-driven physico-environmental 397 

conditions available to species on the natural shore from which they were modelled. 398 

Given that eco-engineering options and objectives vary for different structures in different 399 

locations, our approach can be adapted and applied to user-specific scenarios.  In our 400 

application, we chose three community-level objectives that could be reasonable goals of 401 

eco-engineering. Objectives may alternatively focus on individual target species of 402 

conservation (Perkol-Finkel et al., 2012) or commercial concern (Langhamer & 403 

Wilhelmsson, 2009). Or they may focus on the functional value of organisms/assemblages 404 

(Strain et al., 2018a). If objectives are multi-functional, or include a mixture of community-405 

level and species-specific targets, more than one ‘best’ topography could be replicated and 406 

arranged in a mosaic. They could also be combined with other single-microhabitat 407 

interventions from the eco-engineering toolkit, like rock pools or crevices. Multiple ‘best’ 408 

topographies, each targeting a different species/assemblage, would likely fulfil their roles 409 



18 
 

better than one single topography that is ‘OK’ for everything all at once. However, further 410 

experimental work is necessary to understand what objectives can feasibly be targeted using 411 

topography-based eco-engineering and how different patches would interact. Principally, it is 412 

critical that the objectives of eco-engineering are clear before applying our five-step process. 413 

This is a golden rule in restoration ecology (Ehrenfeld, 2000). The baseline survey would 414 

need to be planned and executed accordingly. Biodiversity metrics and topographic 415 

parameters used to identify optimal areas of topography to replicate would need to be 416 

relevant. Prior to this, though, the essential first step would be to determine whether 417 

replicating natural topography is likely to be effective for the eco-engineering objectives and 418 

site-specific characteristics in the first place. If target species are not likely to be influenced 419 

by substrate topography, or if the context of the site is such that the influence of topography 420 

is likely to be overwhelmed by other factors (e.g. water chemistry, larvae/propagule/food 421 

supply, disturbance/hydrodynamic regime), then this approach is probably unsuitable.  422 

If the user determines that our approach is suitable, the next question would be one of scale, 423 

both spatial and temporal. The spatial scale of sampling units in our baseline survey matched 424 

the small size of the experimental units we wished to produce (25 x 25 cm). We measured 425 

topographic variables at the mm- and cm-scale since we anticipated encountering taxa that 426 

are influenced by habitat complexity at these scales; e.g. larval settlement and refugia for 427 

mobile invertebrates (MacArthur et al., 2019). These scales are likely to be relevant for early 428 

lifeforms of many rocky reef species but may be largely irrelevant for larger-bodied adult fish 429 

and crustaceans that require much larger habitat niches (Caddy & Stamatopoulos, 1990). 430 

Although higher trophic level organisms rely on small-bodied organisms and primary 431 

producers for food and habitat, eco-engineering designs targeting them would also need to 432 

target larger-scale topography. We undertook our baseline survey at the end of summer when 433 

intertidal communities are likely to be well-developed in our region, i.e. with little sand-scour 434 
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from storms. Baseline surveys should, in practice, match the timing when target 435 

species/communities/life stages are expected to be encountered. Repeat surveys (seasonal, 436 

annual) would improve confidence in species distributions but may not be feasible in the 437 

timeframe of planning eco-engineering enhancements for development proposals. Other key 438 

considerations are the orientation, tidal level/depth and aspect of the structures subject to eco-439 

engineering intervention. Habitat units featuring topography from a horizontal orientation 440 

would be unlikely to provide the same niche conditions for organisms if installed vertically, 441 

and vice-versa (Connell, 1999), although this is yet to be formally tested in an eco-442 

engineering context. Similarly, features important for niche provision are likely to be 443 

different for different intertidal levels, subtidal depths, and aspects to wave/current and 444 

sunlight exposure (Firth et al., 2016b; Guichard & Bourget, 1998; Letourneur et al., 2003; 445 

Menge & Lubchenco, 1981). We recommend matching each of these factors in baseline 446 

surveys to the context of the structures to be eco-engineered. 447 

Finally, we do not suggest that this novel approach to eco-engineering marine structures 448 

should replace existing approaches that mimic discrete microhabitats on structure surfaces. 449 

Indeed, different approaches may be complementary. Decision-makers should weigh-up the 450 

options available to them according to their biodiversity objectives, engineering limitations 451 

and budget, consulting the evidence base for what they can expect the cost-benefits to be. We 452 

do not specify how to physically apply scaled-up areas of natural reef topography to different 453 

types of artificial structures, since the mechanics of this are subject to innovation by 454 

designers and civil engineers. Formliners, textured encasements and specialised moulds have 455 

been used in eco-engineering previously (Firth et al., 2014; Perkol-Finkel & Sella, 2016; 456 

Perkol-Finkel et al., 2018; Sella & Perkol-Finkel, 2015; see also the Living Seawalls project 457 

https://www.sims.org.au/page/130/living-seawalls-landing) and could feasibly replicate 458 

natural topography on structure surfaces during construction or retrospectively. Although 459 
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likely to be more expensive than manually drilling holes and crevices into structure surfaces, 460 

the development and use of specialised formliners to impart textured surfaces on concrete is 461 

well-established in the construction sector to add aesthetic value to products. Formliners can 462 

now be re-used repeatedly, leading to by-area cost reductions and making their use 463 

economically viable (Naylor et al. 2017). Using formliners or moulds for the application 464 

described in this paper, however, would involve a bespoke ecologically-driven design 465 

process, which may add to the cost of production. Some of the design-associated costs, 466 

however, may already exist in project budgets for new developments. For example, 467 

environmental assessments may already include surveys of target species/communities in 468 

local natural habitats. Further work is needed to rigorously weigh up the cost-benefits of all 469 

the different approaches to eco-engineering artificial structures (but see Naylor et al., 2017). 470 

In particular, for our proposed natural topography-based addition to the eco-engineering 471 

toolkit, understanding the effects of patch size and configuration on the potential for 472 

topographies to target certain biodiversity outcomes will be key to assessing the potential 473 

costs and benefits of scaled-up implementation. Nevertheless, digital habitat modelling and 474 

3D printing technologies have become increasingly affordable and accessible in recent years 475 

(Canessa et al., 2013; D’Urban Jackson et al., 2020), opening the door to great unrealised 476 

potential for natural topography-based eco-engineering.  477 
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Table 1 Topographic variables calculated from quadrat DEMs. Where indicated, variables 671 

were calculated at two scales (mm, cm) appropriate to the organisms present. Scale-672 

independent variables were calculated once per quadrat. Rank Importance indicates the three 673 

most important variables for discriminating the ‘best’ from ‘worst’ quadrats for three 674 

biodiversity indices (Fig. 3). See Table S4 for references. 675 

Variable Scale Definition Rank Importance 

Topographic Position 

Index (TPI) 

mm The relative elevation of a point to 

its neighbours. 

 

cm  

Slope mm 
The angle of a surface. 

DD2, RT2 

cm  

Rugosity (Rug.) mm The standard deviation of surface 

elevation. 

DD3, RT1 

cm  

Curvature (Curv.) mm The rate and direction of surface 

change. 

 

cm  

Vector Ruggedness 

Measure (VRM) 

mm The dispersal of surface aspects 

(surface unpredictability). 

R1, RT3 

cm DD1 

Surface Area: Planar 

Area Ratio (SA:PA) n/a 
The area of surface contained 

within a 2D space. 
R3 

Typical Elevation n/a 
The net protrusion/depression of a 

surface. 
 

Arc-Chord Ratio 

(ACR) n/a 
Rugosity index quantifying 3D 

structural complexity. 
R2 
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 679 

Figure 1 Five-step process for designing natural topography-based eco-engineering habitat 680 

units for marine artificial structures. Figure by Amy Dozier. 681 
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 682 

Figure 2 Fifty-four natural and artificial survey sites around Irish Sea coasts, with examples 683 

of intertidal rocky habitats surveyed (see Table S1 for site details). Figure by Amy Dozier. 684 
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 687 

Figure 3 Variable importance plots indicating the three most important topographic variables 688 

(Table 1) for predicting quadrat membership to the ‘best’ and ‘worst’ subsets for three 689 

biodiversity indices (A–C). Analyses based on the best predictive models for each index 690 

(Table S5).  691 

 692 

 693 

 694 
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 695 

Figure 4 Left-to-right: in situ photographs, STLs and concrete habitat units of the ‘best’ 696 

selected topography samples for three biodiversity indices (A–C). Examples of the ‘worst’ 697 

samples are shown in Fig. S3. 698 
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 699 

Figure 5 Left: nMDS ordination of multivariate species composition in 270 natural rocky reef quadrats. The ‘best’ and ‘worst’ quadrat subsets, 700 

five ‘best candidates’ and the ultimately-selected ‘best’ quadrats for three biodiversity indices (A–C) are highlighted. Middle/right: vectors 701 

represent the direction and strength of multiple Pearson correlations between biodiversity indices (middle) and topographic variables (right; 702 

Table 1) used in the selection process within the multi-dimensional space. Outer circles represent correlation of 1. Ordination based on Gower-703 

Excluding 0–0 similarities of 4th-root transformed abundances. Analyses carried out in PRIMER v7 (PRIMER-E Ltd., 2015). Vector overlays of 704 

all 13 topographic variables are shown in Fig. S4.   705 
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 706 

Figure 6 (A–B): Water pooling in depressions, with (A) limpet recruit on Rare Taxa habitat 707 

unit after one week and (B) adult and juvenile limpets on Richness habitat unit after four 708 

months. (C–D): Shaded channels on Diversity Deficit unit, with (C) juvenile limpet after one 709 

week and (D) limpet creating a grazing halo amongst pioneer Ulva after two months. 710 


