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Abstract

The foreign exchange (FX) market is long established as the largest and most important

global financial market. While a large number of research papers focus on forecasting

in the FX market, there are still gaps in the literature. First, very few papers focus on

improving the parameter estimation process in the forecasting context. Second, artificial

neural networks (ANN) with large sizes have not been applied to FX forecasting with the

recently-fast-developed GPU techniques. Third, forecasting for trading purposes in the

FX market has been limited to either building forecasting models or analysing technical

indicators. A combination of ANN forecasting models with technical indicators is rare

in the existing literature. The use of more-accurate parameter estimation algorithms and

GPU techniques also makes the thesis unique in the methodological sense.

The thesis uses three types of ANN models, namely GARCH-ANN, large Multilayer

Perceptron (MLPNN) and Long Short Term Memory (LSTM), to forecast volatility, the

direction of price movements and price patterns in the FX market. Research is conducted

at three data frequencies, namely monthly, daily and hourly as the analysis goes from the

macro-perspective to the micro-perspective.

In the first empirical chapter, a Recursive Simulation Algorithm (RSGA) is proposed for

estimating the parameters of a volatility forecasting model using GARCH-ANN. The

proposed algorithm significantly improves the stability and accuracy of the estimation

process by dealing with the local-optimum and convergence problems. The second

empirical chapter utilises a large MLPNN model with GPU implementation to forecast

the price direction of different FX pairs, with over 40 macro-economic indicators as input

variables. Highly profitable out-of-sample results are observed for some of the currency

pairs, which challenges the semi-strong form of the Efficient Market Hypothesis (EMH).

Significant efficiency improvement is achieved with the GPU implementation. The third

empirical chapter proposes the use of the Relative Strength Indicator (RSI) as a measure
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of the extent of trend-following and mean-reversion patterns of FX rates. A LSTM model

is utilised to forecast price movement patterns (measured by RSI). The trading strategy

based on forecasting results of price movement patterns generates more stable profits

than the benchmark Moving Average (MA) or RSI implemented on their own. However,

the overall low profitability over time for the four currency pairs fails to challenge the

weak-form EMH.

Overall, with the novel methodologies and technologies implemented within different

models, this thesis finds evidence on some extent of inefficiency of the FX market at

lower trading frequency (e.g. monthly) and less inefficiency of the FX market at higher

trading frequency (e.g. hourly). One possible explanation is that at higher frequencies,

the large number of daily (or higher frequency) traders and high-frequency trading

algorithms reduce both the number of mis-pricing opportunities and the length of time

that any mis-pricing opportunity may last.
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1 Introduction

The foreign exchange (FX) market has expanded dramatically in its size and global

influence since the collapse of the Bretton Woods System1. According to the most recent

Bank for International Settlements (BIS) survey, the daily average turnover in the FX

market has increased from less than 2 trillion USD in 2001 to 6.6 trillion USD in 2019.

The increasing extent of fluctuation of prices since major countries started to adopt

free-floating FX rates has also marked significantly more opportunities for profit making

and an increasing necessity for risk management.

Historically, the extent of fluctuation (termed as "volatility") of FX rates becomes greater

during periods of significant economic, political or social changes. As an example, on 15

January 2015, the Swiss National Bank abandoned its defence against the appreciation

of the Swiss Franc (CHF) against the Euro (EUR) by dropping the 1.20 floor level of

EUR/CHF. Within a day of the announcement, EUR/CHF dropped from 1.20 to 0.85

(roughly 41%). A more recent example is the US dollar (USD) depreciation during the

coronavirus pandemic since early 2020. As a result of fast increasing coronavirus cases

in the US (which leads to lock-down policies and therefore significant deterioration in

economic performances), the Dow Jones FXCM Dollar Index2 has dropped by over 7%

since March (until mid-August) 2020. A significant economic, political or social change

not only affects the concerned currency, but also other currencies as well. Dao et al.

(2019) observe a significant appreciation in safe heaven currencies such as Japanese Yen

(JPY) and CHF, during the UK EU-membership referendum period in June 2016. An

increase in the number of trades and trading volume is also observed for these currencies.

From the trading perspective, as the volatility of FX rates increases, more traders are

1For a brief description of the earlier evolution of the FX market, refer to Subsection 2.1.1

2The Dow Jones FXCM Dollar Index measures the value of the US dollar against a basket of four

currencies: the Euro, the British pound, the Japanese yen and the Australian dollar.
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attracted to participate in the FX market because of the increased potential for making

more profits. This, however, does not mean increased profitability for every trader in

the market. In fact, the Efficient Market Hypothesis (EMH) argues that all information

is reflected in the current price of FX rates. An implication of EMH is that one cannot

make consistent abnormal profits in the market.3 In this thesis, two of the three forms of

EMH (weak form and semi-strong form) will be tested based on empirical evidence in

the FX market.

Just as any other financial market, larger volatility not only means more potential for

profitable trading but also more potential risks. Therefore, speculators are not the

only group of participants who care about volatility. Households/businesses whose

investments/assets are closely related to FX rates (e.g. international investors, trading

companies) must also closely monitor FX volatility. The activity of FX trading in order

to reduce FX rates risks is called FX hedging. Speculation and hedging are not the only

areas where volatility forecasting is significant.

Another case where volatility forecasting plays a crucial role is option pricing. Being able

to accurately forecast volatility will increase profitability in option trading. Angelidis

and Degiannakis (2008), Bandi et al. (2008), Enke and Amornwattana (2008), and Yang

et al. (2019) show that as the performance of their volatility forecasting model improves,

significant abnormal profits can be generated in option trading. Therefore, the significant

abnormal profits made in the option market as a result of successful volatility forecasting

challenge the (weak form) EMH, based on the empirical evidence from these papers.

For the FX market, volatility forecasting4 has drawn researchers’ attention even before

FX trading became popular from the late 1980s onwards. Pioneering research papers in

chronological order include Engle (1982), Bollerslev (1986), and Heston (1993). More

3For more details of the EMH and its three forms, refer to Subsections 2.1.2 and 2.1.4.

4For more details of volatility forecasting models relevant to this thesis, refer to Subsection 2.2.1.
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recent developments on these pioneering papers are Klein and Walther (2016), Diebold

et al. (2017), and Ma and Ji (2019).

The main focus of all of the above papers is model development and financial interpre-

tation of the empirical results. None of them discusses in detail about the parameter

estimation process of the models they build.

Models from the above papers are dynamic models which contain linear/non-linear

combinations of lagged historical values plus a time-dependent error term. The error

term is assumed to follow a random distribution, i.e. normal-distribution, t-distribution.

To estimate parameter values, estimation algorithms are used.

Most of the above papers (and especially in the early years - 1980s and 1990s) use

gradient-based algorithms (e.g. Broyden (1970), Fletcher (1970), Goldfarb (1970) and

Shanno (1970), abbreviated as the BFGS algorithm) to estimate parameters5. For these

algorithms, at each step the parameter values are varied by a small amount in a direction

that makes the cost function (such as negative likelihood) decrease fastest. However, as

the algorithm constantly involves taking derivatives of the likelihood function, the indif-

ferentiability problem might occur, especially for models with more complex likelihood

functions.6

The Genetic Algorithm (GA) was originally developed in the field of biological science.

It is a type of algorithm that does not involve taking derivatives of the likelihood functions.

It mimics the gene selection process in which each generation aims at preserving only

the "best" genes (in terms of, for example, healthiness, strength, ability to adapt to the

environment) for them to be passed onto the next generation. In parameter estimation

terms, parameter values are selected and varied such that the "best" (in terms of generating

5Gradient-based algorithms are still one of the most widely used estimation algorithms even nowadays.

6For more details of parameter estimation algorithms, refer to Subsection 2.2.4.
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the lowest cost function) parameter values are more likely to be passed to the next iteration.

Syarif et al. (2016), Zeng et al. (2017), and Zhang et al. (2017) discuss the use of GA in

the parameter estimation process.

Similar to a gradient-based algorithm, a GA estimates parameter values through a large

number of iterations until the estimated parameter values reach a stable level (this is

termed "parameter convergence"). Despite the large number of iterations, both GA and

gradient-based algorithms face the possibility of trapping into a local minimum (of the

cost function), i.e. the estimated values reaching convergence makes further iterations

useless because among all of their neighbours the estimated values already produce the

smallest cost function. This is called a local-optimum problem.7

In the first empirical chapter (Chapter 3), the main research question is how to deal with

the local-optimum problem for estimating models with complex likelihoods. The complex

likelihoods are linked with volatility forecasting models built for FX volatility forecasting.

The concept of repetitive computation is used to produce the Recursive Simulation

Genetic Algorithm (RSGA). The RSGA recursively utilises previously obtained well-

performing parameter values and repeats the optimisation process a large number of

times. With the simulation algorithm, the variation of forecasting performance is reduced

hence the performance stability is increased. The recursive algorithm increases the

efficiency of simulation by discarding poorly performing candidate values. Six currency

pairs are used for volatility forecasting, including less volatile pairs such as USD/JPY,

EUR/USD and more volatile pairs such as USD/RUB, USD/ZAR. With this methodology,

although it is not guaranteed that a global optimum is reached, significant improvements

7Throughout this thesis, the terms "local-maximum" and "local-minimum" are used on different

occasions, depending on whether the target function needs to be maximised (i.e. for the likelihood

function) or minimised (i.e. for the cost function). The term "local-optimum" is used to refer to the general

case where the target function is not specifically defined.
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are made in terms of accuracy for the forecasting of volatility of less volatile pairs as

well as more volatile pairs.

The fact that the relatively more volatile pairs (e.g. USD/RUB and USD/ZAR) generate

less than expected errors suggests that these two emerging market pairs are easier to

forecast than the other four developed market pairs. In terms of market efficiency, the

evidence in this chapter verifies the emerging markets as less (weak form) efficient than

the developed markets. This is in line with the nature of the two types of markets.

Volatility forecasting is conducted and researched mainly by market participants who

place more focus on financial derivatives pricing or risk management. For investors

(speculators) whose target is to maximise the return/risk ratio, volatility forecasting

is also crucial. Apart from volatility forecasting, return forecasting is a key task for

speculators, in the FX market.

For speculators, return forecasting is central to all tasks as the success or failure of

return forecasting ultimately determines the level of profitability. The significance of

return forecasting has increased since the start of internet trading in the 1990s. As more

and more institutions and individuals are able to trade FX rates online, the FX market

turnover increases dramatically. The fast development of internet speed and data storage

technologies has also made possible the availability of FX data to the general public.

The 24-hour trading property of the FX market and development in artificial intelligence

trading bots push forward the necessity of provision of various data frequencies of FX

rates, from monthly, daily (for long-term researchers and investors, or governments) to

hourly, minute, second, and even tick data (for short-term researchers and high frequency

traders).

The second empirical chapter (Chapter 4) utilises macro-economic indicators to forecast
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monthly FX rates8, with an Artificial Neural Network (ANN) model9. The research

questions of this chapter are (i) whether an increase in the number of neurons in the

input and hidden layers will improve forecasting performance, and (ii) by how much

computation efficiency will be improved with the help of GPU as the number of neurons

increases. The modelling and forecasting processes are conducted on four FX pairs with

the objective of maximising their out-of-sample annualised returns.

A typical ANN model mimics the structure of a human brain. It has several layers, each

containing multiple individual cells to hold values called neurons. The advantage of an

ANN model is that by varying the number of neurons per layer and the number of layers,

an ANN theoretically is able to depict data patterns at any level of complexity, see Zhang

(2003). However, in practice, it is not possible to increase the size of an ANN indefinitely

due to the limits of computation power.

ANN models have been applied to forecast FX rates for the past few decades. Some of

the selected papers include Kamruzzaman and Sarker (2004), Choudhry et al. (2012),

Erdogan and Goksu (2014), Galeshchuk and Mukherjee (2017), and Liu et al. (2017).

For all of these papers, the number of neurons is usually less than 10 and the number of

layers is usually 3-5 (one input layer, one output layer and one to three hidden layers). In

the early days, ANN models with this level of sizes typically take hours even days to train.

However, with the development of improved Graphics Processing Unit (GPU) in the last

five years, training ANN with GPU (instead of the traditional use of Central Processing

Unit - CPU) has dramatically improved efficiency and therefore enhanced the computer’s

ability to train much larger ANN models within a shorter time. In addition, fast ANN

libraries have been developed to boost the training process even more by improving

8The time frame for FX rates is chosen such that it is consistent with the highest data frequency of

most macro-economic indicators.

9For more technical details on the ANN models, refer to Subsection 2.2.2.
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the efficiency of codes. Keras is an open-source library created by Google for training

large ANN models. It has both CPU and GPU implementations and supports multiple

programming languages (such as R and Python).

Chapter 4 utilises Keras-GPU to training large ANN models10 (with number of parameters

over 10 million). The concept of repetitive computation from Chapter 3 is re-applied

in this chapter to improve the performance of the parameter estimation process. With

historical FX rates and macro-economic indicators as input variables, the ANN aims at

forecasting the direction of FX rates movement in the next forecasting period. With a

simple buy-low-sell-high trading rule, the large ANN models achieve significant profits

for all of the four currency pairs (GBP/USD, EUR/USD, USD/JPY and USD/CHF).

These results provide some evidence to challenge the semi-strong form of the Efficient

Market Hypothesis (EMH) in the above markets for the underlying research period11.

One special form of return forecasting is price movement pattern forecasting, which

forecasts the patterns formed by a series of consecutive days of returns. Chapter 5

discusses the topic of pattern forecasting. But before moving onto the details of pattern

forecasting, one question needs to be answered: Since being able to accurately forecast

the return of a future period (a month, a day, or even a minute) can already make the

forecaster significant profits, why bother forecasting patterns?

The reason is because forecasting exact future FX rates (or returns) at higher frequencies

(hourly, minute or higher) is much more challenging than at lower frequencies (annually,

quarterly or monthly). The challenge arises from two aspects: first, higher frequency

means more data points and more combinations of possible patterns therefore the model

needs to be able to depict more patterns to give an accurate forecast of a single future

10The ANN model adopted in this chapter refers to the Multilayer Perceptron Neural Network (MLPNN).

Refer to Subsection 2.2.2 for more details of this kind of ANN.

11Refer to Subsections 2.1.2 and 2.1.4 for more details of EMH.
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value. Second, for higher frequency forecasting, there is no reference to many indicators

such as macroeconomic indicators which are typically published at a monthly, quarterly

or an even lower frequency.

One real-world example is that for most FX traders (many of whom are daily or hourly

traders), very few of them actually base their trading decisions on a forecast value (or

direction of price movement) of FX rates in the future because it would be too risky,

see Fung and Hsieh (1997) and Edwards (2014) for a discussion of different trading

styles. Instead they usually form a brief idea on the overall price pattern and make

decisions based on this idea. For example, if the market is currently trend following

then it is more likely to continue the trend than fluctuating and if the market is moving

around (mean-reverting) then it would bring higher odds to assume that the market is not

following trends.12

As is discussed above, pattern forecasting plays a crucial role in FX trading. However,

there is no consensus on how to define a particular pattern. One way to describe a pattern

(as is shown in the example in the previous paragraph) is by classifying price patterns

into the trend-following pattern and the mean-reversion pattern, see Serban (2010), Wu

(2011), and Chaves and Viswanathan (2016).

The research questions of Chapter 5 are (i) How does a forecasting-trading algorithm’s

(such as the proposed LSTM-RSI) performance differ from a well-established, widely

used trading strategy algorithm (such as an MA or RSI)? (ii) Are trend-following and

mean-reversion patterns (measured by a pre-defined metric) related to different fore-

casting horizons? (iii) How much variation is observed in price movement patterns

for different currency pairs? (iv) What is the implication of the market status being

trend-following or mean-reverting for forecastability/profitability of a given period?

12One key nature of most financial markets (including the FX market) is that almost nothing happens at

certain and everything is about probability.
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Chapter 5 uses a Long Short Term Memory (LSTM) model13 to forecast price movement

patterns measured by the Relative Strength Indicator (RSI). To the author’s best knowl-

edge, this thesis is the first application of RSI to measure the extent of the trend-following

pattern and the mean-reversion pattern. The LSTM-RSI forecasting-trading algorithm is

tested against two most widely used technical trading rules - the Moving Average (MA)

trading rule and the RSI trading rule14. The proposed LSTM-RSI generates relatively

more stable trading performance than both MA and RSI. However, in terms of absolute

profitability, none of the three trading rules is able to generate consistent profits for all

currency pairs, which shows evidence in favour of the weak-form EMH.

Table 1.1 shows a summary and inter-relations of the three empirical chapters.

13The LSTM model is trained with Keras-GPU as is used in Chapter 4. The concept of repetitive

computation from Chapter 3 is applied again for the parameter estimation process in this chapter.

14The RSI trading rule uses the same RSI indicator but the purpose of using this indicator and the logic

of trading is completely different from the LSTM-RSI trading rule.

27



Chapter 3 Chapter 4 Chapter 5

Main focus Parameter estimation &

volatility forecasting

Fundamental analysis &

return forecasting

Technical analysis &

pattern forecasting

Key methodologi-

cal literature

Donaldson and Kamstra

(1997)

Zhang and Hu (1998) Taylor et al. (2001)

Monfared and Enke

(2014)

Guresen et al. (2011) Raza et al. (2014)

Junghans and Darde

(2015)

Bai and Koong (2018) Sang and Pierro (2019)

Engel et al. (2019) Cohen (2020)

EMH context Draw some implications

for the weak form EMH

from volatility forecast-

ing

Test the semi-strong

form EMH with funda-

mental data

Test the weak form

EMH with historical FX

rates data

Key EMH litera-

ture

Fama (1970), Jensen (1978), Fama (1991), and Timmermann and Granger (2004)

Model GARCH-ANN Large MLPNN LSTM-RSI

Model inputs FX returns FX rates and macro-

economic indicators

FX price patterns

Model outputs FX volatility Direction of FX rates

movement

FX price patterns

Estimation tool RSGA Keras-GPU Keras-GPU

Data source Datastream Datastream MetaQuotes history cen-

tre

Data frequency Daily Monthly Hourly

Data period 01/01/08 - 31/12/17 01/01/99 - 01/12/18 04/01/99 - 06/04/20

Table 1.1: A summary table of the three empirical chapters.
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The three empirical chapters focus on parameter estimation, large-MLPNN modelling

and LSTM-technical trading. Three key topics in the FX market are studied. These topics

are volatility forecasting, return forecasting and price pattern forecasting. Implications

of the empirical results on different forms EMH are also discussed.15 Chapter 3 proposes

an estimation algorithm that significantly improves the estimation accuracy of a GA. A

comparison is made between the (weak form) efficiency of emerging markets and the

(weak form) efficiency of developed markets. Chapter 4 extends the number of hidden

neurons from 5-10 (a typical size used by previous researchers) to 2048. With the use

of Keras-GPU to speed up the process of training a large MLPNN model (using the

concept of repetitive training from Chapter 3), highly satisfactory out-of-sample trading

performance is achieved with the model. The significant abnormal profits obtained in

this chapter challenge the semi-strong EMH. Chapter 5 proposes the use of RSI as a

measure of the extent of the market status being trend-following or mean-reversion. A

LSTM model is trained to forecast price patterns (measured by RSI) and the LSTM-RSI

trading rule generates overall more stable trading performance than traditional trading

strategies. However, the proposed algorithm fails to generate consistent abnormal profits

across all currency pairs. This empirical evidence supports the (weak form) EMH.

The remainder of the thesis is organised as follows. Chapter 2 discusses the general

background to help the reader understand more thoroughly about the FX market, the

EMH and technical methodologies used later in the thesis. Chapters 3-5 are the main

empirical chapters. Chapter 6 presents the thesis conclusions.

15For a more thorough discussion of the three forms of EMH and different approaches to test EMH,

refer to Subsection 2.1.2.
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2 Conceptual and methodological background for the

thesis

In this chapter, general concepts, theories and methodologies related to the three empirical

chapters are introduced. The aim is to provide basic background knowledge upon which

the empirical chapters are based.

The sections are organised such that the conceptual background section provides back-

ground on the foreign exchange (FX) market, the Efficient Market Hypothesis (EMH)

and return/volatility forecasting in the FX market. The methodological background

section discusses models and methodologies that are closely related or directly used in

the empirical chapters. The conclusion section summarises the chapter and bridges the

gap between the background and the three empirical chapters.

2.1 Conceptual background

2.1.1 The foreign exchange market

In the early 19th century, countries began to adopt the gold standard. Countries could

convert foreign currencies they receive in trading into gold. This system started to break

down during World War I as European countries started to print more money to pay

for the war. In 1944, the Bretton Woods Conference Meeting was held and the Bretton

Woods system was established. For countries other than the US, the currency of one

currency was fixed against the currency of the other country. Countries could adjust their

foreign exchange (FX) rate against the US dollar, which was pegged to gold. Under this

system, the exchange rates usually experienced much smaller variations in a given time

(compared with nowadays) and were almost completely determined by governments.

In 1971, the Bretton Woods system was abandoned because there was not enough gold

reserve to back the amount of US dollars in circulation. From then on, a free-floating FX
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system started to form. In 1985, G-5 (US, UK, France, Japan and West Germany) held a

secret meeting at the Plaza Hotel in New York. News of the meeting was leaked, forcing

the governments to make an announcement to encourage the appreciation of non-US

dollar currencies. Since then, traders started to realise that despite relatively high level of

government interventions during certain periods, FX rates might still have significant

fluctuations in other periods, i.e. after the government already adjusted the FX rates. In

fact the fluctuations could be so large that more and more traders (also called speculators)

were attracted to trade FX because more fluctuations means more potential profitability.

Individual currencies are referred to as three-letter codes agreed through the International

Organisation for Standardisation (ISO).16 Table 2.1 displays the three-letter codes of the

currencies to be used in this thesis. Since currencies are always traded in pairs, they are

quoted as the relative price of one currency to another called exchange rates, i.e. the

GBP/USD rate represents how much US dollar is needed to buy one British pound and

the USD/JPY rate shows how much Japanese Yen one US dollar can buy.

Three-letter code Currency

USD US dollar

GBP British pound

EUR Euro

JPY Japanese yen

CHF Swiss franc

RUB Russian ruble

ZAR South African rand

Table 2.1: Three-letter representation of the currencies studied in this thesis.

16A full list of three letter currency letters agreed by ISO can be found on www.iso.org/iso-4217

-currency-codes.html.
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USD, GBP, EUR, JPY and CHF are called major currencies as they are traded most

heavily across the globe. RUB and ZAR are much less frequently traded currencies

(named minors) than the major currencies and usually exhibit larger volatility throughout

time.17 The reason for selecting RUB and ZAR among other volatile currencies is that

USD/RUB and USD/ZAR are two of the minor pairs that have longer data availability,

i.e. data of some of the other minor currency pairs is only available from 2010s.

The FX market facilitates trading for governments, companies and individuals to ex-

change currencies for different purposes. For example, governments may exchange

currencies to buy or sell a foreign government’s bond or to control its currency value

against another currency within a target range. Companies which imports or exports

goods and services need to exchange currencies between their own country and the

country they transact with. Individuals who travel or study abroad also have to exchange

their own currency into the currency used in the country they are going to visit. For more

descriptive details on the FX market refer to Chapters 4 and 5 of Weithers (2006).

Apart from the above purposes, institutions and individuals may also use the FX market

for hedging and speculative purposes. Hedging in the FX market refers to exchanging

currencies spot or currency derivatives in order to reduce the risk of future FX rates

moving in the unfavourable direction.18 Speculation is an activity conducted by mar-

ket participants in order to make profits based on correct forecasts of future FX rates

movements. Research papers have shown that speculation increases the volatility of FX

rates, see Aliber (1964), and Driskill and McCafferty (1980). Rothig et al. (2007) find

that depending on whether hedging or speculative strategies are adopted, magnitudes of

recessions and booms are decreased or amplified.

One structural difference between the FX market and the stock market is that the stock

17See Figure 3.3 and Table 3.2 in Chapter 3 for a visualisation and summary.

18The term "FX rates" will be used in this thesis specifically for the spot rate.
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market is centralised, meaning there is only one price for any particular stock at any

given time, determined by a central agency, normally the exchange that the stock is listed

on, i.e. New York Stock Exchange, London Stock Exchange. The FX market, however,

is decentralised as it is controlled by not only one but multiple agencies such as major

banks, governments, hedge funds, FX brokers and so on. Therefore for any currency pair

at any given time every agency may have different quote prices. This is one of the main

reasons why an overview-type-of-study of the relatively "chaotic" FX market is needed.

The Bank of International Settlements (BIS) Triennial Central Bank Survey, conducted

every three years since 1986, provides information on the global FX market and over-

the-counter (OTC) derivatives market. According to the BIS survey in 2019, average

daily turnover of the FX market increased by nearly 30% from 5.1 trillion US dollars in

2016 to 6.6 trillion US dollars in 2019. The US dollar remains the dominant currency

in the market, being on one side of 88% of all trades. Currencies of emerging market

economies reach 25% of global turnover.19

The above paragraphs demonstrate the significance of the FX market in terms of its

functions and development. To improve performance especially for speculative purposes,

forecasting the FX rates has been focused on and researched for decades. However, the

success of forecasting techniques highly depends on the market being (at least partially)

inefficient. The next subsection discusses the Efficient Market Hypothesis (EMH) and

research papers in this area.

19More details on results from the BIS survey are provided in 3.1.1 and 4.1.2.
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2.1.2 Efficient market hypothesis

The concept of "efficient market" was originally developed in the stock market. As one

of the pioneering papers, Fama (1970) describes an efficient market as "a market in

which prices always fully reflect all available information". He considers three subsets

of market efficiency, the weak form efficiency, the semi-strong form efficiency and the

strong form efficiency. More specifically, a stock market is weak form efficient if the

stock price at any time fully reflects all information from historical prices of the stock

up until that given time. A stock market is semi-strong form efficient if the stock price

at any given time fully reflects all publicly available information (e.g. announcements

of earnings, stock splits, etc.) of the stock up until that given time. Finally, a stock

market is strong form efficient if the stock price at any given time fully reflects all private

information relating to the stock up until that given time. One noteworthy nature of the

three forms of efficient market is the cumulative nature, i.e. if a market is semi-strong

form efficient then it is also weak form efficient and if a market is strong form efficient

then it is both semi-strong form efficient and weak form efficient. In terms of inefficiency,

the order of cumulation is reversed, i.e. if a market is semi-strong form inefficient then

it is also strong form inefficient and if a market is weak form inefficient then it is both

semi-strong form inefficient and strong form inefficient.

Although the difference in the three subsets of efficiency is made clear, it is a challenging

task to numerically test the term "fully reflect". As is mentioned in the previous paragraph,

the EMH was originally proposed in the area of the stock market. However, as the key

concept of EMH is whether different kinds of information is reflected in current price of

the underlying security, the EMH is also applicable in other financial markets where the

security price is affected by different sources of information, e.g. the FX market. While

there is a rich vein of academic papers which discuss/test EMH for the stock market, the

number of papers based on the FX market is relatively smaller.
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One reason for the limited discussion is the relatively high efficiency of the FX market.

As is discussed in Subsection 2.1.1, the large trading volume in the FX market and

global trading activities around the clock have made the FX market arguably one of the

most liquid and efficient markets in the world. More recently, the efficiency has been

further enhanced with a larger number of trading algorithms implemented in the past

two decades. These algorithms have significantly reduced both the number of mispricing

opportunities and the time any mispricing opportunity may last. However, despite the

higher extent of efficiency, does it mean the FX market is efficient in all senses, i.e. for

different currency pairs and under different forms of tests? This will be the main question

the three empirical chapters of the thesis aim to answer.

Although the EMH has been widely studied in academia, there is no consensus on how

to define quantitatively (i.e. with a formulae), an efficient market. In other words, there

is a diverse range of choices of methodologies adopted by researchers to test EHM. One

approach is to apply statistical tests on historical FX rates, examples include Burt et

al. (1977), Timmermann and Granger (2004), Karuppiah and Los (2005), Popovic and

Durovic (2014), Makovsky (2014), Narayan et al. (2016), and Caporale and Plastun

(2020).20 In all of the above papers, evidence of different extents of inefficiency is

observed for the FX (or stock) market.

However, statistical tests typically involve only one time series, i.e. historical FX rates,

for the purpose of testing EMH. Therefore, all of the above papers essentially test the

weak-form EMH because no other information than historical FX rates is used to test

EMH. To test the semi-strong and strong-forms of EMH, an approach which involves

multiple time series (e.g. historical FX prices and macroeconomic indicators) is needed.

According to Fama (1991), he considers the Jensen (1978) version of the EMH as an

20Caporale and Plastun (2020) also discuss the use of trading strategies for EMH testing, which is a

second approach to test EMH.
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"economically more sensible" version of the EMH. This version of the EMH states

that "prices reflect information to the point where the marginal benefits of acting on

information (the profits to be made) do not exceed the marginal costs".21 From this point

onwards, the term "EMH" will be used to refer to the Jensen (1978) version of the EMH

unless otherwise specified.

Testing EMH with the performance of trading strategies is one of such approaches to test

the other two forms of EMH because a trading strategy can be built by taking information

from multiple time series. The theoretical basis of this methodology has been discussed

in the previous paragraph. The practical intuition of this approach is discussed as follows.

Under the EMH, an implication is made that no consistent above-normal profit (after

considering transaction costs) can be achieved in the long term. Therefore, being able to

build up persistently profitable trading strategies serves as a sufficient (but not necessary)

condition to challenge the EMH, i.e. if a trading strategy generates significant profits over

the long term then the EMH is challenged but if such a trading strategy does not generate

significant profits, then the conclusion that EMH is verified cannot be drawn. This is

because there could be a numerous number of other models that generate significant

profits and one failed strategy cannot represent the whole world of strategies. This brings

one characteristic of the abnormal-trading-profits approach to test EMH, namely it can

be only used to challenge the EMH but not to verify the EMH, unless the number of

strategies is large enough to fully represent the whole world of trading strategies.

Research papers that utilise the abnormal-trading-profits approach to test EMH in the FX

market include Sweeney (1986), Katusiime et al. (2015) and Zarrabi et al. (2017) and

Caporale and Plastun (2020). Among these papers, Sweeney (1986) looks into the DEM

(Deutsche Mark)/USD rate from 1973 to 1980. Katusiime et al. (2015) test weak-form

21This version of the EMH by Jensen (1978) forms a basis for testing EMH with the abnormal-trading-

profits approach, as is discussed in the following paragraph.
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efficiency of the Ugandan foreign exchange market from 1994 to 2012. Zarrabi et al.

(2017) study six currency pairs, namely GBP/USD, USD/CAD, USD/JPY, USD/NOK,

USD/SEK and USD/CHF from 1994 to 2014. Caporale and Plastun (2020) also study

six currency pairs, namely EUR/USD, USD/JPY, USD/CAD, AUD/USD and EUR/JPY,

from 2008 to 2018. In all of these papers, some extent of weak form market inefficiency

is observed.

One limitation of the above papers is that all of them study only one time frequency - the

daily. There is no logic defect in using only one frequency. However, with multiple time

frequencies, one is able to draw a more thorough conclusion with the comparison among

different time frequencies. This thesis studies EMH in three time frequencies, hourly,

daily and monthly.

In Subsection 2.1.3, two types of forecasting are discussed, namely return forecasting and

volatility forecasting. In Subsection 2.1.4, two types of trading techniques (fundamental

and technical) are discussed and the link between these two techniques and the three

forms of EMH is illustrated.
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2.1.3 Foreign exchange rates and volatility forecasting

Foreign exchange (FX) rates (returns) and volatility are two target time series that

forecasting can be based upon. This subsection discusses the significance of forecasting

FX rates (returns) and volatility and developments in forecasting these two time series.

Price or return forecasting is one of the key financial forecasting tasks because from a

speculator’s perspective forecasting future price movements with high accuracy delivers

significant profits. The returns are typically calculated as percentage price changes or log-

returns. Glaser et al. (2019) study the difference in expectations of return forecasting and

price forecasting. They find that investors hold higher expectations of return forecasting

than price forecasting. This higher expectation is caused by different attitudes of the

subjects towards return forecasting and price forecasting. Most subjects consider price

forecasting as more challenging than return forecasting.

However, based on the quantity of information to be forecast, it makes no difference to

forecast return or forecast price, i.e. you can get the forecast return with the forecast price

and vice versa. In this thesis, the reason for forecasting returns rather than prices from

the modelling perspective is that using returns makes the models easier to generalise with

respect to different value levels, i.e. for the GBP/USD pair the rates are usually between

1 and 2 while for the USD/JPY pair the rates are larger than 100.

When return forecasting is concerned, one of two different types of returns is typically fo-

cused on, log-return or simple return. Hudson and Gregoriou (2015) make a comparison

between log- and simple returns. They show that there is not a one-to-one relationship

between the log-return and the simple return. In this thesis, since FX pairs are studied,

log-returns are more advantageous than percentage price changes because log-returns

are symmetric with respect to one currency pair and its reverse pair. As an illustrating

example, GBP/USD and USD/GBP are reverse pairs which should be considered essen-

tially as the same pair. The factors (i.e. macro or micro-economic news) that affect the
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price of one pair are exactly the same as the factors that affect the other pair. Therefore,

the extent of price change (caused by the same factor) should also match for the reverse

pairs.

Table 2.2 illustrates that for a reverse pair, using simple return generates different absolute

changes while using log-returns generates the same absolute changes.

Currency

pair

Month 1 Month 2 Monthly

simple

return

Monthly

log-return

GBP/USD 1.25 1.28 2.04% 2.37%

USD/GBP 0.80 0.78 -2.34% -2.37%

Table 2.2: A hypothetical example illustrating simple returns and log-returns.

In the FX market, due to the availability of high leverage22 and 24-hour non-stop (except

weekends) trading, there is opportunity to make huge profits (or losses) in a shorter time

period. To be more specific, with the availability of high leverage, FX traders can place

trades that valued more than their account balance and the 24-hour non-stop (except

weekends) trading not only presents more trading opportunities within a given time but

also makes trading algorithms overwhelmingly powerful because unlike humans they

can trade 24 hours a day. This puts price return forecasting at a more significant place in

the FX market than in, for example, the stock market. Tenti (1996), Diebold et al. (1999),

Panda and Narasimhan (2007), Villanueva (2007), Coakley et al. (2016), and Rundo et

al. (2019) demonstrate that significant profits (over buy-and-hold or random walk) can

be made in the FX market.23

22Many FX brokers offer leverage levels from 10 up to 500 while for the stock market for example,

stocks traded through the exchange usually cannot be leveraged.

23More methodological details on the forecasting models are presented in Section 2.2.
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A subclass of return (price) forecasting is called pattern forecasting. It is considered a

subclass because a pattern is formed by a series of consecutive days of returns. Essentially,

the information contained in a pattern is always a proportion of the information contained

in the return series from which the pattern is derived.

Volatility, a measure of price deviation over time, is a key metric of the variance of FX

rates. It is a crucial metric because of the two following reasons.

First, it serves as a measure of risks. From a hedger’s perspective, being able to forecast

volatility of different FX rates with high accuracy helps identify where hedging is most

needed. For example, if the volatility of a currency pair is forecast to be extremely high in

the next few months, this implies a potentially urgent need for hedging. On the contrary,

if the volatility of a currency pair is going to be so low that even the most unfavourable

FX rates movement occurs, the loss is still lower than the cost of hedging then there is

no reason for hedging.

Second, the volatility of different currency pairs in different time periods can be used as

an indicator of whether the underlying pair should be traded in the next forecasting period,

i.e. speculators may find a FX pair less attractive if its forecast volatility is too low and

likewise they may also give up trading one FX pair because the forecast volatility is too

high for their risk tolerance. Dunis and Miao (2005) find that traditional Moving Average

Convergence Divergence (MACD) trading rules perform poorly in volatile periods

compared with less-volatile periods. They implement a volatility filter24 (i.e. no trade

takes place in certain volatility conditions) on traditional Moving Average Convergence

Divergence (MACD) trading rules and significantly improve trading performances in

stock, bond and commodity markets.

24Dunis and Miao (2007) also explore this volatility filter trading rule and confirm its improved

performance in the FX market.
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In addition, one recent real-life example is that during the negotiation between UK

and EU for a deal/no-deal outcome in late 2019, many investment funds anticipated

the volatility of British pound to increase sharply and therefore decided to lower the

maximum leverage allowed for any trades on GBP pairs and others even completely gave

up trading GBP pairs during that time.

One advantage of studying returns (patterns) is that by implementing a trading strategy

based on the forecast returns (patterns), it is possible to test the EMH via the abnormal-

trading-profits approach discussed in Subsection 2.1.2. On the other hand, although it

is technically possible to implement a trading strategy based on the forecast volatility

alone, it does not make much practical sense to do so. For example, a volatility surge

could arise from a significant price increase as well as a significant price decrease.

Therefore, making buy or sell decisions solely based on the forecast volatility does not

seem reasonable. Hence, the abnormal-trading-profits approach cannot be used with

forecast volatilities, yet the forecasting performance can still act as an indication of

how efficient the market is. For example, in a highly efficient market, it would be more

difficult to forecast accurately future volatilities based on historical data alone, than in a

less efficient market. Given that volatility forecasting only gives an indication of market

efficiency to a restricted extent,25 the task of testing EMH is mainly conducted in the

return (or pattern) forecasting processes in Chapters 4 and 5.

In the next subsection, two types of trading techniques (fundamental and technical),

which are adopted in Chapter 4 and Chapter 5 respectively, are discussed in the FX

market context.

25The term "restricted extent" is used to contrast the return (pattern) forecasting case where the abnormal-

trading-profits approach can be adopted to test EMH (the Jensen (1978) version).
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2.1.4 Foreign exchange trading: fundamental, technical analysis, and three types

of EMH-related information

To test EMH, the essential question that needs answering is whether different kinds of

information is reflected in the price of a security (stocks, FX rates, etc.). As is discussed

in Subsection 2.1.2, depending on the type of information concerned, the EMH has

three subsets of forms, namely weak form, semi-strong form and strong form. This

subsection discusses the three types of information, namely fundamental, technical and

private information as well as how these types of information are utilised in two of the

most widely applied trading techniques in practice - fundamental analysis and technical

analysis. The move from information-based analysis to trading-based analysis helps

facilitate the tests of different forms of EMH (the Jensen (1978) version EMH).

Fundamental information

Fundamental information refers to the information that is publicly available and also

closely related to the price of an underlying security. Therefore, fundamental information

is closely related to the semi-strong form EMH. For stocks, fundamental information

includes company earnings results, stock split decisions, stock dividend decisions, etc.

For FX rates, however, fundamental information exists more on a larger scale, i.e. in the

macro-economic sense rather than micro-economic sense. Interest rate is one of such

examples of fundamental information to FX rates.

According to the Interest Rate Parity (IRP) condition, under the non-arbitrage26 as-

sumption, the interest rate differential between two countries is equal to the differential

between the forward FX rate and the spot FX rate. The IRP acts as a connection of

interest rate and FX rate (forward and spot), i.e. forward FX rate is determined by interest

26An arbitrage opportunity refers to the situation where simultaneous purchase and sale of an asset are

conducted to make profits as a result of the price difference.
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rate differential and spot FX rate. Although this thesis does not focus on forward FX

rate pricing or interest rate modelling, the IRP suggests that interest rate should also

be a crucial factor affecting future FX spot rate, as the forward FX rate is a reasonable

forecast of future FX spot rate.

The inflation rate (typical measures of inflation rate include Consumer Price Index - CPI

and Retail Prices Index - RPI) is another factor closely related to FX rates. According

to the Purchasing Power Parity (PPP) relationship, there is a link between prices in two

countries and the exchange rate between the currencies of the two countries. Therefore,

it is reasonable to assume that the inflation rate has some extent of forecasting power on

FX rates. Qiu et al. (2011) forecast FX rates of eight currency pairs, based on historical

deviations (dataset lasts from 1974 to 2007) of the nominal FX rates from the FX rates as

suggested by PPP. They find significant out-of-sample correction patterns of the nominal

FX rates towards the FX rates calculated by PPP. Ca’Zorrzi and Rubaszek (2020) forecast

FX rates based on the mean-reversion patterns of FX rates as implied by PPP. They

show that their forecast of FX rates outperforms the random walk. This paper not only

supports the inflation rate as a significant factor in fundamental analysis, but also links

with Chapter 5 via the forecasting methodology, i.e. making forecast based on price

patterns.

Other examples of fundamental information to FX rates include (but not restricted to)

government fiscal (i.e. government budget and spending) and monetary policy (i.e.

controlled by interest rates), balance of trade (i.e. exports and imports), economic growth

(i.e. GDP), etc.27

From the trading perspective, utilising fundamental information to help make trading

27However, since most of those indicators are published at a low frequency, i.e. monthly, quarterly or

annually, it is practically infeasible to conduct fundamental analysis on a daily (or a higher frequency)

basis.
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decisions is referred to as fundamental analysis (or fundamental trading). Research papers

that study the relationship between macro-economic indicators (fundamental information)

and FX rates include MacDonald (1999), Galati and Ho (2003), Mariano et al. (2016)

and Aka (2020). For these papers, statistical tests (e.g. based on regression models)

are conducted on data to justify the relationship (between fundamental information and

FX rates). Compared with the number of papers that discuss the relationship between

fundamental information and FX rates, there is a smaller number of papers that test the

EMH with the abnormal-trading-profits approach. Examples of these papers include

Dunis and Williams (2002), Eng et al. (2008) and Yildirim et al. (2021). With the

abnormal-trading-profits approach, trading strategies (using fundamental information)

are implemented and a strategy that generates long-lasting abnormal returns serves as a

challenge to the semi-strong form EMH. In all of these three papers, significant out-of-

sample abnormal profits are observed and they therefore challenge the semi-strong form

EMH (within the time period concerned).

Technical information

Technical information includes historical prices (or volumes) of a security or any metrics

directly derived from historical prices (or volumes). Examples of technical information

include returns, trading volumes, direction of price movement, values of technical

indicators, e.g. Moving Average (MA), Relative Strength Indicator (RSI), etc. Unlike

fundamental information for which stocks (company-specific news and statistics) and

FX (macro-economic indicators) differ in terms of the sub-types of information, the

sub-types of technical information are the same for stocks and FX, i.e. historical prices

and derived values from historical prices. Therefore, the use of technical information as

a forecasting tool is closely related to the weak form EMH across different asset classes.

The practice of trading based on technical information is referred to as technical analysis
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or technical trading. Unlike fundamental analysis, technical analysis does not aim at

forecasting the intrinsic value of the underlying security (e.g. stocks or FX rates) but

forecasting future prices based on past price trends or patterns. For example, the MA

indicator utilises moving averages calculated for different lengths of period, e.g. 10-day,

20-day. If the short MA (10-day) crosses above the long MA (20-day) then it is likely

that an upward trend may start to form and if the short MA (10-day) crosses down the

long MA (20-day) then a downward trend may start to form. MA (200-day) is another

widely adopted indicator used for identifying long-term trends. Taylor (2014) provides a

review of technical trading rules (MA and trading range breakout) applied to all members

of the Dow Jones Industrial Average (DJIA) stock index over the period 1928–2012. He

finds that abnormal returns are confined to particular time periods (from the mid-1960s

to mid- 1980s), i.e. no consistent abnormal profits can be obtained.

Other papers that find evidence supporting the weak form EMH include Fyfe et al.

(1999), Hoffmann and Shefrin (2014), and Urquhart et al. (2015). These papers build up

technical trading rules and discover empirically that none of these trading rules generate

consistent abnormal profits. Therefore, these papers provide evidence to support (not

verify)28 the weak form EMH.

There are also papers that provide empirical evidence to challenge the weak form EMH.

In addition to the papers mentioned in Subsection 2.1.2,29 where they use non-technical

trading rules, Menkhoff et al. (2012) implement technical trading rules (momentum-

based strategies) to trade 16 currency pairs from 1976 to 2010. They obtain significant

out-of-sample abnormal profits therefore the weak form EMH is challenged based on

their empirical evidence.

28As is discussed in Subsection 2.1.2, the failure of certain trading rules cannot be used as a means of

verifying the weak form EMH.

29See Burt et al. (1977), Timmermann and Granger (2004), Karuppiah and Los (2005), Popovic and

Durovic (2014), Makovsky (2014), Narayan et al. (2016), and Caporale and Plastun (2020).
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Private information

Private information is a type of information that is available only to a small group of

people. Essentially all sub-types of the fundamental information (regardless of whether it

is in the stock market or the FX market) can be considered as private information before

they are published, e.g. unpublished earnings results, unrevealed central bank decisions

on interest rate cut, etc.

The strong form EMH is related to private information and it is considered as the strongest

form because it can hardly be achieved in reality. For example, for someone who always

has company earnings results beforehand (such as a company leader), it would be much

easier for him to achieve significant abnormal profits by trading on the private information

before the information is made public, than someone who trades the news after it is

released. This is also why trading based on private information by specific people (i.e.

who are given the right to know the private information in advance), also termed as

insider trading, is legally forbidden in most countries. There are, instances where getting

private information is legally permitted, e.g. hedge funds paying for private exit polls (as

they did in the 2016 UK-EU membership referendum). With this type of information

(which is unavailable to the general public), individuals or institutions are more likely to

make more successful (in terms of profitability) investment decisions than most people

who do not have access to the private information.

The strong form EMH is therefore considered least likely to hold compared with the

other two forms. For this reason, the number of papers discussing the strong form EMH

is much smaller than the number of papers discussing the other two forms, e.g. Finnerty

(1976), Givoly and Palmon (1985), Rozeff and Zaman (1988), and Bashir et al. (2020)

find that insiders achieve significantly higher abnormal profits than normal investors,

which provides strong empirical evidence against the strong form EMH.

Due to the relatively strong consensus in academia on whether strong form EMH holds

46



(i.e. not holding) and the practical difficulty in obtaining private information that is

actually used for insider trading,30 the strong form EMH is not focused on in this thesis.

Fundamental and technical analysis in trading practices

Although fundamental and technical analysis differ significantly in terms of source of

information and logic of trading, most trading practitioners adopt a combination of the

two approaches for trading decision making.

Oberlechner (2001) presents results from a questionnaire and interview survey on funda-

mental and technical analysis by traders and financial journalists in the FX market from

several cities across Europe. The results show that most traders use both fundamental

and technical analysis and as time frame goes lower technical analysis are more dom-

inant. Compared with traders, financial journalists generally place more emphasis on

fundamental analysis. His results also show that there has been an increasing popularity

of technical analysis since 1990. The survey conducted by CitiFX Pro (2010) finds that

over 50 percent traders adopt a combination of fundamental and technical analysis.

A similar research is conducted by Lui and Mole (1998) with FX market participants in

Hong Kong. They also find that most traders use both technical and fundamental analysis

and the usage of fundamental analysis decreases as time frame decreases. In addition,

they find that technical analysis is slightly more useful than fundamental analysis in

forecasting trends but significantly more powerful in forecasting turning points.

To provide an overview of the three empirical chapters in the conceptual sense, Chapter 3

utilises daily FX data to forecast FX volatility. With forecast volatility, the EMH cannot

be tested via the abnormal-trading-profits approach. However, the relative easiness of

30How likely is someone who actually performs insider trading willing to reveal it to someone doing the

research?
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forecasting among different pairs and the difference in training and test samples give

some implication of (weak form) EMH in the comparative sense. Chapter 4 employs

monthly data in order to test EMH from the macro-economic perspective. Both historical

FX rates and macro-economic indicators are utilised therefore it will test the semi-strong

form EMH. Chapter 5 studies FX rates at the hourly frequency. The target is to test EMH

in high-frequency settings. Only historical FX rates are used as inputs of the models

therefore the weak-form EMH is tested. The strong-form EMH which involves private

information is not studied in this the thesis, due to the "seemingly" unnecessity in testing

it (i.e. there is arguably no dispute in academia on whether the strong form EMH holds

- it does not hold). Another reason for not testing the strong form EMH is because of

the difficulty in collecting relevant data, as the term "private information" suggests. The

following subsection discusses models that are commonly used to forecast the two types

of target series (return and volatility).

In Section 2.2, time series, Artificial Neural Networks (ANN) and their hybrid models

are discussed in the context of return/volatility forecasting.
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2.2 Methodological background

2.2.1 Time series models (GARCH-type)

Time series models, as the name suggests, aims at modelling and forecasting time

series data, such as financial datasets including FX rates. One of the most well-known

and widely used time series for volatility forecasting is the Generalised Autoregressive

Conditional Heteroskedasticity (GARCH) model proposed by Bollerslev (1986) defined

as:

σ2
t = α +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

γjε
2
t−j, (2.1)

where α, βi and γj all need to be non-negative to guarantee that the conditional variance

σ2
t is non-negative. The advantage of the GARCH model is that the conditional variance

of the next period tends to be larger if its nearest past conditional variances are large

and it tends to be smaller if its nearest past conditional variances are small. This forms

a mimic of the financial prices, which typically exhibit the volatility clustering pattern,

i.e. high-volatility periods are more likely to be followed by high-volatility periods and

low-volatility periods are more likely to be followed by low-volatility periods.

Variations of the GARCH model include EGARCH, IGARCH, NAGARCH, GJR-

GARCH and among others, all of which are called GARCH-type models.

Although all of the variations of the GARCH model may have good performance under

certain circumstances, there is no consensus on which model may perform relatively

well most of the time. However, research papers have demonstrated that the original

GARCH model of the GARCH-type family, even in its simplest form, GARCH(1,1), has

a satisfactory forecasting power in general cases.

McMillan and Speight (2004) point out that the failure of GARCH does not arise from

the model itself but from the failure of specify an appropriate measure of the "true

volatility". With the cumulative daily squared returns instead of daily squared returns
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as the measure of "true volatility", the GARCH model, in a dataset of 17 FX rates,

outperforms smoothing and moving average techniques which have been previously

shown to produce superior results. The same authors (McMillan and Speight (2012))

later compare the performance of the GARCH with other GARCH-type models for

forecasting volatility of higher frequency (intra-day) FX rates. They find that although

the GARCH model can be beaten by others in forecasting volatility of daily FX rates, it

produces the best result in forecasting volatility of intra-day FX rates, based on R2.

Hansen and Lunde (2005) are the earlier explorers of the GARCH(1,1) model in compar-

ison with other GARCH-type models. They compare 330 GARCH-type models for their

performance in forecasting conditional variance with FX rates. They find no evidence

that any of the more sophisticated models can significantly outperform GARCH(1,1) in

their analysis on FX rates.

A later paper by Miah and Rahman (2016) examines the performance of the GARCH

model with different specifications (i.e. different lags of order) on the stock market.

Despite the findings that the stock market are non-normal, negatively skewed and with

high excess kurtosis, the GARCH(1,1) model produces significantly improved results

over other specifications in terms of AIC and BIC.

Although evidence of good performance in forecasting volatility by the GARCH model

(together with its simplest form GARCH(1,1)) has been presented by a number of

research papers, the comparisons are made mainly with other GARCH-type models. This

means any improved performance by the GARCH model could be restricted within the

GARCH-type family while the common limitations of the GARCH-type family are not

revealed in those comparisons.

One limitation of the GARCH-type family is that once the specific model is determined,

the architecture of the model (hence the type of data patterns that the model is best at
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forecasting) cannot be changed. For example, once we decide to use the GARCH model

(with linear increments in past conditional variances and residuals), the fact that the

model might not perform well for datasets which exhibit significant non-linear patterns

will remain the issue. There are, certainly, GARCH-type models that have non-linear

components (such as EGARCH, with logarithmic increments). However, if the dataset

for which volatility is to be forecast has movement patterns significantly different from

the type of increments of the selected GARCH-type family, then performance may be

poor, as a result of inflexibility of the GARCH-type family.

One solution to the inflexibility problem is by using an artificial neural network (ANN).

The next subsection discusses this approach.

2.2.2 Artificial neural networks (ANN)

The term "neural network" origins from the area of information processing in biological

systems. The concept is first proposed by McCulloch and Pitts (1943). One of the

earliest-created and most fundamental ANN structures is the multilayer perceptron

neural network (MLPNN). Many other ANN structures are modified versions based

on MLPNN. Because of its wide popularity, strong forecasting ability and pioneering

status, MLPNN is the main focus of this subsection.31 As an illustrating example, a

simple three-layered network is displayed in Figure 2.1. Each circular node represents

an artificial neuron and an arrow represents a connection from the output of one neuron

to the input of another.

Given an array of input x = (x1, x2, ..., xD), named input units, compute the first layer

a = (a1, ..., aM) by

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 , j = 1, ...,M (2.2)

31In Chapter 5, time-focused ANN - namely recurrent neural networks (RNN) with its developed version

long-short-term-memory (LSTN) will be discussed.
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Figure 2.1: A three-layer neural network

w
(1)
ji are referred to as weights of the first layer and w(1)

j0 as biases of the first layer.

Then each of the aj is transformed using a differentiable, nonlinear function h(·), called

activation function

zj = h(aj) (2.3)

Then the output units (before activation) are given as linear combinations of z1, ..., zM .

ak =
M∑
i=1

w
(2)
kj zj + w

(2)
k0 , k = 1, ..., K (2.4)

Finally each of the ak is activated via an activation function σ(·) to give the final output

y = (y1, ..., yK), where

yk = σ(ak). (2.5)

Combine the previous steps together, a three-layered MLPNN has a structure in the

following format.

yk(x,w) = σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xi + w

(1)
j0

)
+ w

(2)
k0

)
(2.6)
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Two commonly used activation functions are the hyperbolic tangent σ(ak) = tanh(ak)and

the logistic function σ(ak) = (1 + e−ak)−1. Both functions are sigmoid, i.e. S-shaped

bounded and differentiable functions.32 Zhang (2015) shows that using a combination

of different activation functions improves forecasting performance (in terms of Mean

Squared Error - MSE) over using a single type of activation function.

There is a critique on ANN that only what enters and leaves the structure are clear while

what has been done within the hidden layers seems a "black box", see Castelvecchi

(2016). In fact, this is similar to how a brain works. For example, after years and years

of training, a top professional footballer may develop some habitual behaviours (such as

dribbling the ball with high skills). In the training process, his development in dribbling

skills do not arise from knowing in detail why each small body movement works best but

as a result of the brain memorising the overall body movements which have the highest

rate of avoiding opponent tackling, after thousands of training practices.

In modelling with ANN structures, the number of neurons per hidden layer and the

number of hidden layers determine the complexity of the model, i.e. as the number of

neurons per hidden layer and the number of hidden layers increase, the model’s ability

to capture data patterns increases, for example, from linear to quadratic, from cubic to

quartic, and goes up indefinitely to any level of pattern complexity.33 However, as the

numbers of neurons and layers increase, computation time increases dramatically, see

Alvarez and Salzmann (2016). Computation time can be reduced by (1) combining an

ANN with a GARCH-type model (refer to Chapter 3). This approach is able to restrict

the number of neurons and layers without sacrificing too much forecasting power because

of the inclusion of a GARCH-type model. (2) utilising high-efficiency training libraries

and GPU computing to reduce computation time (refer to Chapter 4).

32The estimation of parameters of ANN (as well as GARCH-type models) is discussed in 2.2.4.

33The exploration of MLPNN with a larger structure for FX forecasting is the topic of Chapter 4.
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Overfitting as a result of the massive number of parameters is another problem not to

be neglected but it should be considered later in the training process. In the past few

decades, its capability of adapting to and modelling with complex patterns has earned

ANN models a significant amount of attention and research efforts in the academic world.

One attempt to test the weak-form EMH is made by Yao et al. (1996). They take past FX

rates and technical indicators calculated from past FX rates as inputs of an ANN model.

With empirical evidence from five currency pairs, they conclude that useful information

can be made with historical FX rates (and their derived technical indicators) and forecasts

based on the ANN models generate significant profits with the use of simple technical

indicators.

Another effort to challenge the semi-strong EMH is by Eng et al. (2008), who use

fundamental indicators such as CPI, GDP, trade balance and interest rates together

with historical FX rates as inputs of ANN to forecast FX rates. They find that the

inclusion of macro-economic indicators does not significantly improve the forecasting

performance, despite the close economic relationship between those factors and FX rates.

One possible reason they point out is that the macro-economic indicators they use are

given at a quarterly frequency. Another potential reason is that the ANN they build has

only 4-6 neurons in the hidden layer. It is possible that the relationship between the

macro-economic indicators and FX rates are more complex than a simple ANN is able to

capture.34

A research paper comparing ANN with time series models within the FX market context

is Zhang and Hu (1998). They find that ANN models outperform linear models such as

GARCH in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).

They also focus on the effects of the number of neurons and layers of ANN models. The

34In Chapter 4, monthly collected macro-economic indicators are used and the number of hidden layer

neurons is widely tested from 2 to 4096.
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number of neurons is found to have more impact on the forecasting performance than the

number of layers.35

Erdogan and Goksu (2014) also implement an ANN to forecast FX rates. However,

ANN is used in different forecasting horizons. They show that there are significant

differences in forecasting performance (measured by Mean Squared Error (MSE) and

R2) for different forecasting horizons. This result helps form one of the research questions

of Chapter 5, in which the impact of forecasting horizons on the trading (instead of

forecasting) performance is studied.

Subsections 2.2.1 and 2.2.2 explore the two popular types of forecasting models, time

series models (GARCH-type) and ANN. It is certain that both types of models have

advantages and drawbacks. To cover the other type of model’s drawback while preserving

its advantage, researchers have proposed the use of Time series and ANN hybrid models.

2.2.3 Time series and ANN hybrid models

As is discussed in Subsection 2.2.2, the combination of time series and ANN models

increases forecasting capability of time series models and avoids expanding the size of

the ANN model too much so that computation time can be controlled within reasonable

range.

Two directions in which the combination of time series and ANN models can be made

are discussed below.

The first direction is to use the estimated conditional variance from a time series model

as one of the inputs of an ANN. This is essentially an ANN model with inbuilt time

series specifications. Research papers in this direction include Guresen et al. (2011) and

Pathberiya et al. (2017).

35Therefore in both Chapter 3 and 4, the number of layers keeps unchanged once determined.
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The second direction adds an ANN directly to a time series model. This type of model is

essentially a time series model with an ANN component.36 Examples of research papers

following this direction include Donaldson and Kamstra (1997), Zhang (2003), Aladag

et al. (2009), Babu and Reddy (2014), and Kristjanpoller and Minutolo (2015).

Although almost all of the above papers in either direction succeed in building hybrid

(time series - ANN) models that outperform time series/ANN models alone, none of the

papers have discussed in detail how the coefficients of the hybrid models are estimated.

The question of parameter estimation is of particular interest to hybrid models because

they typically have much more parameters than traditional time series models. High-

dimension parameter estimation is a big challenge for traditional parameter estimation

algorithms (discussed in 2.2.4). Although high-efficiency libraries and GPU computation

techniques (discussed in Chapter 4) can be applied to large ANN models to increase

accuracy and speed up computation, their usage is restricted to a small number of inbuilt

ANN models (e.g. MLPNN, RNN, LSTM). Therefore the hybrid models discussed above

cannot utilise these estimation approaches.

In Chapter 3, an estimation algorithm (RSGA) is proposed to estimate parameters of

the hybrid models which have more parameters than time series models but are not

implemented within high-efficiency libraries.

2.2.4 Parameter estimation algorithms

Following Equation 2.6, the parameters w can be obtained via minimising the error

function

E(w) =
1

2

N∑
n=1

‖y(xn,w)− tn‖2, (2.7)

where y(xn,w) is a collection of {yk(x,w), k = 1, ..., K} defined in Equation 2.6.

36Chapter 3 follows this direction in forecasting FX rates volatility.
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By setting∇E(w) = 0, w may minimise the error functionE(w). This may corresponds

to a local minimum rather than a global minimum. However, for the application of neural

networks finding a local minimum suffices. On the other hand, comparing several local

minima may be needed to give a sufficiently good solution.

Since most of the time finding the analytic solution is impossible, iterative numerical

procedures are carried out. Normally an initial value w0 is needed and w is updated

through

w(τ+1) = w(τ) + ∆w(τ), (2.8)

where τ represents the iteration step.

One simple approach of the numerical procedure is called gradient descent. It chooses

the weight update to comprise a small step in the direction of the negative gradient so

that

w(τ+1) = w(τ) − η∇w(τ), (2.9)

where η > 0 is called the learning rate. At each step the weight vector moves in the

direction of the greatest rate of decrease of the error function.

The main problem of any gradient descent-based algorithm is that it involves calculation

of gradients, i.e. the differentiability of the error function in the parameter search space is

a crucial assumption. When this assumption is violated, the singularity (differentiability)

problem occurs and poorly estimated results may be obtained by the algorithm.

One type of non-gradient-descent algorithm is called Genetic Algorithm (GA). It mimics

the biological gene passing process in which parents’ genes are passed onto their chil-

dren. In parameter estimation, a GA takes an initial sample of parameters to form the

parental population and perform three types of operations on each generation (crossover,

mutation and selection) to produce an offspring generation. In computation terminology,

each generation represents an iteration. After each iteration, the candidate parameter
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coefficients should produce improved results in terms of a pre-defined metric, i.e. the

error function defined by Equation 2.7.

Andreou et al. (2002) apply GA to estimate parameters of a MLPNN model. Their esti-

mated MLPNN structures have up to 46 neurons from the hidden layer. Compared with

its preceding papers (normally using 5-10 hidden neurons), the use of GA for parameter

estimation proves successful from the empirical evidence in FX rates forecasting. The

MLPNN model estimated in this manner outperforms time series models (MA, AR) in

terms of RMSE.

A different GA approach applied also in forecasting FX rates is conducted by Nag

and Mitra (2002). Instead of estimating parameters of a given ANN structure, they

use GA to select among different ANN structures (with different number of neurons,

layers and types of activation functions)37. Their GA-selected ANN structures produce

improved performance over selected GARCH-type models (ARCH, GARCH, AGARCH,

EGARCH and GARCH-M) as well as fixed-structure ANN models.

Hansen et al. (2010) conduct a comparison analysis on the performance of 31 algorithms

in an optimisation task. The task contains optimisations of a collection of functions with

different extent of complexity. According to their empirical results, GA gives improved

performance (in terms of percentage of successfully optimised functions) over BFGS,

especially in optimising more complex functions.

In Chapter 3, therefore, GA is used as the basis of the estimation algorithm in order to

perform a more accurate parameter estimation task of the more complex GARCH-ANN

model.

37This is also considered as parameter estimation because the number of neurons, layers and type of

activation function are also parameters called "hyperparameters".
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2.3 Conclusion

In this chapter, firstly the significance of the FX market in terms of its size and global

presence is demonstrated. This brings the initial motivation of research in the FX market.

While the FX market has a long history and a large number of market participants, the

debate surrounding whether and to what extent the market demonstrates informational

efficiency never disappears. A large number of papers have tested the EMH. It is a crucial

topic because the extent of market efficiency directly determines the forecastability of

FX return and volatility, two of the most significant metrics of FX rates from both the

hedging perspective and the speculation perspective.

In this thesis, two forms of EMH are tested, namely weak form and semi-strong form. A

fundamental approach is used to test the semi-strong form EMH with macro-economic

indicators and a technical approach is utilised to test the weak form EMH.

To test EMH in either the fundamental or technical approach, a model needs to be built

and trained. Two of the most widely used types of models are time series and ANN

models. This chapter discusses the advantages and disadvantages of these two types of

models in terms of their ease-of-training, forecasting power and flexibility.

The training process (estimation of model parameters) is such a crucial but frequently

overlooked step in the training process. Two types of parameter estimation algorithms

(gradient-based and genetic algorithm) are discussed. While both algorithms have been

developed and extensively used for decades, they have the disadvantage of instability

problem especially in estimating models with a relatively large number of parameters

and complex formats.

In Chapter 3, a Recursive Simulation Genetic Algorithm (RSGA) is proposed for fore-

casting FX volatility. The RSGA increases estimation stability and accuracy by adding

a recursively simulating process to the traditional GA. Volatility, as one of the two
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significant metrics (along with return), is forecast based on historical FX rates. As the

parameter estimation process is central in the modelling process, Chapter 3 serves a

preparation purpose for the other two empirical chapters, although some implications

for the weak form EMH are also drawn from the volatility forecasting results. The key

concept of the RSGA (repetitive computation) is re-applied in the parameter estimation

process of Chapter 4 and 5.

Chapter 4 focuses on return forecasting under the fundamental direction. With the

implementation of a multilayer perceptron neural network (MLPNN) this chapter will

test the semi-strong form of the EMH. The use of highly efficient ANN library (Keras)

with the assistance of graphics processing unit (GPU) significantly increases computation

efficiency.

Chapter 5 uses a long short term memory (LSTM) together with a technical trading rule

to trade in the FX market. The relative strength indicator (RSI) is utilised to depict price

movement patterns and the trading rule is based on the forecast of future price movement

patterns by the LSTM model. As the input of the LSTM model contains only historical

FX rates (or technical indicators calculated directly from historical FX rates), this chapter

tests the weak-form of the EMH.
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3 A Recursive Simulation Genetic Algorithm with a GARCH-

ANN model for foreign exchange volatility forecasting

3.1 Introduction

In this chapter, a Recursive Simulation Genetic Algorithm (RSGA) is proposed to

improve the forecasting performance on foreign exchange (FX) volatility by a given

forecasting model (GARCH-ANN). To improve forecasting performance, recent literature

such as Bollerslev et al. (2016), Kristjanpoller and Minutolo (2018), Chatziantoniou et al.

(2019), Wang (2019), and Wu and Wang (2019) focus on forecasting model development

and Bakas and Triantafyllou (2019) and Ma et al. (2019) focus on model input selection.

Model development and input selection are two important steps in a general modelling

process, e.g. return forecasting, volatility forecasting, hence they certainly deserve more

focus.

However, the next step of modelling, namely the parameter estimation, draws much less

attention in terms of the number of research papers discussing the relevant topic, e.g.

Xu (2017) and Ding et al. (2019). Therefore this chapter aims at improving forecasting

performance by designing an algorithm to enhance the parameter estimation process.

The research questions focus on whether and to what extent can forecasting performance

be improved by searching more widely for better coefficient values of the forecasting

model and how to improve computation efficiency in the process.

Because volatility forecasting, together with return forecasting (to be discussed in the

next chapter) are two important forecasting tasks in finance, this chapter will focus on

improving modelling performance in the volatility forecasting process. In the following

subsections, more details will be discussed on volatility forecasting, forecasting models,

research direction and main results.
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3.1.1 Volatility forecasting in the foreign exchange market

Volatility measures the dispersion of returns for a given asset. It is considered as one of

the key metrics of describing the price behaviour of a financial instrument. On the buy-

side, investors can estimate their investment risks by calculating volatility of their current

assets holdings. They can also estimate their future investment risks by forecasting

future volatility of their current assets or any assets to be purchased in the future. On

the sell-side, investment banks which design and sell options need accurately estimated

volatility to price the options. Policy makers such as governments, central banks and

financial regulators also depend on accurately forecasting volatility to oversee how the

market will perform in any future period.

Of all the different financial markets, the foreign exchange (FX) market is the largest

and most heavily traded. According to the Bank of International Settlements (BIS)

2019 survey, the average daily trading volume increased by 30%, from 5.1 trillion US

dollars in 2016 to 6.6 trillion US dollars in 2019. This daily trading volume of FX is

24 times the size of the daily trading volume of the global stock market.38 Volatility

plays such an important role in the FX market because it can behave so differently for

different currency pairs during different time periods. For example, most of the major

currency pairs underwent a high-volatility period in the financial crisis around 2008.

The GBP/USD pair also moved with great volatility after the 2016 UK EU-membership

referendum and since early 2019 as Brexit proceeded. For different currency pairs,

volatility over the same period can vary by a large amount. Detailed literature on this

topic is discussed in Section 3.2.

38According to the World Bank database (https://data.worldbank.org/indicator/CM

.MKT.TRAD.CD?end=2018&start=1975&view=chart), the total trading volume of stocks in

2018 globally was 68.212 trillion US dollars, making the daily traded volume 68.212/253 = 0.27 trillion

US dollars.
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3.1.2 Forecasting models and parameter estimation

To forecast volatility, the most frequently used type of model is the time series model.

Examples of popular time series models are ARIMA (Box and Jenkins, 1970), ARCH

(Engle, 1982), GARCH (Bollerslev, 1986) and many GARCH-type models such as

EGARCH (Nelson and Cao, 1991) and GJR-GARCH (Glosten, Jagannathan and Runkle,

1993). The GARCH-family time series models listed above have the advantage of being

capable of modelling the volatility clustering pattern.39 More recently, another type of

model called Artificial Neural Networks (ANN) has been introduced and used in financial

modelling, e.g. forecasting FX volatility. Compared with time series models, ANN

models have the advantage of being more flexible and able to capture more complex

features especially non-linear patterns, see Donaldson and Kamstra (1997), Al-hnaity

and Abbod (2016), Hajirahimi and Khashei (2016), and Jothimani and Shankar (2017).

Literature on specific models is discussed in Section 3.2.

As is discussed above, one way to improve forecasting performance is to apply different

types of models and find the best performing model for a specific modelling task. Another

direction is to pursue the optimal parameter vector for a given model. This is an important

yet often neglected aspect because most statistical packages with inbuilt parameter

estimation functionality use the "set seed" function 40 in the parameter estimation process.

The fact that every time the estimation process is conducted (on the same dataset)

the same estimated coefficients are returned gives false impression of the estimated

coefficients being optimal. However, the estimated coefficients are normally far from

39The volatility clustering pattern in finance refers to the empirical evidence that high volatile periods

are more likely to be followed by high volatile periods and low volatile periods are more likely to be

followed by low volatile periods.

40The "set seed" function stores a random result under a predetermined number called "seed" and every

time when the random process is run the same output result will be produced as long as the same "seed" is

quoted.
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being optimal. Reasons are described below.

To optimise the parameter vector, a metric called likelihood is formulated based on the

assumed distribution (Gaussian distribution, t-distribution, etc.), parameters of the model

and the dataset. The method to find the "optimal" parameter vector is to choose it such

that the likelihood can be as large as possible, i.e. maximised. The word "optimal" is

used in a comparative sense because it is usually not possible to confirm whether the

chosen parameter vector produces the highest likelihood.41 Because the search space is

usually so large, 42 it is not possible to experiment through all possibilities and find the

optimum. Therefore, estimation algorithms are proposed to accelerate the search.

Traditional algorithms to estimate parameter vectors are usually gradient-based,43 in-

cluding Fletcher and Reeves (1964), Nelder and Mead (NM) (1965), Broyden, Fletcher,

Goldfarb and Shanno (BFGS) (1970), and Byrd et. al. (1995). These methods may seem

dated, but they are still being dominantly used in almost all areas of research whenever

parameter estimation is involved, e.g. time series modelling, ANN forecasting, regression

modelling.

More recently, research papers such as Grefenstette (1986), Cook (2000), Chang (2006),

Elsayed et al. (2014), Thakur et al. (2014), Junghans and Darde (2015), Si et al.

(2017) and Yalcinkaya et al. (2018) use a non gradient-based algorithm called Genetic

Algorithm (GA) for parameter optimisation. GA, as the term "genetic" suggests, is a

41One special case in which the optimal parameter vector can be confirmed is when the likelihood

function is a smooth function (differentiable everywhere), such as a simple quadratic function. However,

none of the likelihood functions is smooth for the distributions discussed above.

42For example, assume we have a model that has six parameters to estimate and each of them ranges

from 0 to 1. Then a search space from 0 to 1 in steps of 0.01, i.e. 0.01, 0.02, ... 0.99, 1, has a size of

1006 = 1 Trillion possibilities.

43The most popular gradient-based algorithm is called gradient descent with which the parameter vector

moves in a way such that the gradient changes fastest.
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search algorithm inspired by Charles Darwin’s theory of natural evolution. Under the

theory, the best possible gene combinations tend to be generated and passed onto future

generations by operators such as selection, crossover and mutation. Detailed discussion

on GA is provided in Section 3.2 and 3.3. Compared with gradient-based algorithms, GA

has the advantage of avoiding the indifferentiability problem that a typical gradient-based

method generally faces. Moreover, it produces similar, if not better estimation within a

shorter time than a typical gradient-based method.44 This chapter is unique in using an

extension of the GA approach in the FX volatility prediction context.

All of the above algorithms start with randomly generating a parameter vector and change

its components so that likelihood is maximised as fast as possible. Therefore, different

random starting parameter vectors usually lead to different final estimated parameter

vectors. There is no guarantee (in fact it is almost impossible) that a random starting

parameter vector will generate an optimal estimated parameter vector. In fact, without

comparing to estimation results generated by other starting parameter vectors, it is not

possible even to tell whether the estimated parameter vector is one of the better ones.

However, as has been discussed, statistical estimation tools use the "set seed" function

so that each time the user estimates the parameter vector of a model given a dataset,

the starting parameter vector is randomly generated and set seeded. Regardless of who

runs the estimation or how many times the estimation is conducted, the same estimated

parameter vector is returned every time. This is problematic because the estimated

coefficients of the parameters may be very poor, in terms of the modelling performance,

and there is hardly any room for improvement because the estimated result is fixed once

the dataset enters the model. The poor performance of the search algorithm becomes

44In an experiment conducted in this chapter, the GA outperforms the BFGS algorithm in terms of

MAE and RMSE in a sample of 100 randomly simulated time series. Performances of BFGS and NM

in estimating conditional variance of currency pairs are also significantly inferior to GA, see Subsection

3.5.4.
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more significant as the estimated model gets more complex. Detailed reasons for this are

explained in the next subsection.

3.1.3 Research direction and main results

Since GARCH-family models have a relatively simple likelihood function, algorithms

(typically GA) may produce good estimated coefficients. However, as the complexity

of the model increases, so does the complexity of the likelihood function, as well as

the increased search space due to more parameters to be estimated. This leads to an

increased possibility of reaching a local optimum, and very likely to be a poor local

optimum. To be more clear about the problem that the mentioned algorithms (GA as

a good performer) face, elaboration is required. As is mentioned previously, it is an

unfortunate fact that, for parameter estimation, especially with a complex likelihood

function, one can never know for sure whether or not a parameter vector generates the

largest likelihood globally. However, one can know for sure that a parameter vector is

not such a good estimation by finding, without much difficulty, other parameter vectors

that generate larger likelihoods. With a single run of a GA, it is almost for sure that one

always gets a not-so-good parameter vector because of the extremely large search space

(difficult to get a good starting parameter vector) and complex likelihood function (very

likely to trap into a local optimum and stop searching for better candidates). This is

further illustrated and visualised in Section 3.4 and 3.5 where both types of estimation

methods are applied to estimate an illustrative example (the GARCH-ANN) on several

selected datasets and simulated datasets as well.

The intuition for this chapter is that instead of relying the estimation accuracy solely

on a single good run of GA, an appropriate number of GA runs should be conducted in

a relatively time-efficient way. The so-called Recursive Simulation (RS) Algorithm is

designed and can be jointly used with GA, hence the name RSGA. The target is not just

to improve estimation results by repeatedly running the estimation algorithm but also to
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design the algorithm such that it is able to reach a globally "good" estimation in a fast way.

Here the word "good" does not mean that the estimated parameter vector is necessarily

the global optimum but it should be "comparatively accurate and time-efficient". A

trade-off exists, i.e. in order to obtain a better estimated parameter vector, the extra

computation time would have been excessive relative to the actual improvement and

therefore not worth further excessive runs.

In short, the RSGA is designed in a way such that after the first iteration all the previous

best candidates are selected into the initial population of the next iteration together with

randomly selected candidates. This will make sure the performance never becomes

inferior as the iterations proceed and thus speeds up the simulation process.

The research results of this chapter are previewed below. For the 100 series simulated with

100 randomly simulated coefficient vectors, the RSGA generates a 24% improvement

over GA in terms of the Mean Absolute Distance (MAD) and a 16% improvement

over GA in terms of the Mean Ratio Distance (MRD). This improvement is further

supported by the estimation of a GARCH-ANN model with six currency pairs (GBP/USD,

EUR/USD, USD/JPY, USD/CHF USD/RUB and USD/ZAR) from 2008 to 2017. The RS

Algorithm again improves significantly the estimation accuracy of conditional variance

in terms of two metrics (Mean Absolute Error and Root Mean Squared Error) for all

six currencies. The average in-sample improvements of RSGA over GA are 74.6% and

74.4% in terms of MAE and RMSE respectively and the out-sample improvements are

74.5% and 70.2% in terms of MAE and RMSE respectively.

The empirical results also have some implications for the EMH. Based on the forecasting

errors of volatility of different currency pairs, two main findings are drawn as below.

First, the emerging market pairs USD/RUB and USD/ZAR are easier to forecast than the

four developed market pairs. Therefore, developed markets do show more efficiency than

emerging markets, as expected. Second, for most of the pairs, the extent of difficulty for
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forecasting varies as time goes on. USD/CHF is the pair for which the extent of difficulty

for forecasting is most consistent. The fact that USD/CHF is consistently more difficult

to forecast (indicated by high errors) indicates that the Swiss market is one of the most

(weak form) efficient markets.

The improvement of the RS Algorithm over the original methods is more significant

in two cases. First, the RS Algorithm provides more significant improvements when

the target model to be estimated has a complex likelihood function. Second, the RS

Algorithm excels in the situation where the search space is large (the number of pa-

rameters is large and the range of each parameter is wide) because in this situation the

number of possibilities from a simulation of the starting values is so large that it’s much

less possible for the randomly-chosen starting value to lie close to the global optimum

value. Therefore traditional single-run algorithms tend to perform poorly on this type of

problem.

The remainder of the chapter is organised as follows. Section 3.2 reviews relevant

literature on the FX market, volatility forecasting models and parameter optimisation

algorithms. Section 3.3 describes models and algorithms used (or built and used) in

this chapter, including the GARCH-ANN model, the Genetic Algorithm and the RS

Algorithm. Section 3.4 simulates 100 series and compares accuracy and timings of

estimating the coefficients between GA and RSGA. Section 3.5 utilises a real-world

dataset (six FX time series), provides estimation results and compares accuracy of

modelling the conditional variance between the GA and RSGA. Section 3.6 concludes

this chapter together with providing potential further research directions.
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3.2 Literature review

3.2.1 The foreign exchange market

According to the Bank for International Settlements’ (BIS) foreign exchange (FX)

turnover survey 2019, the US dollar retained its dominant currency status, being on

one side of 88% of all trades. Emerging market currencies again gained market share,

reaching 25% of global turnover. The dominance of USD in the FX market makes it the

most researched currency (being on one side of most researched currency pairs) and the

increasing trading share of emerging market currencies earns them more attention from

the academic world as well as the financial world.45

Chronologically, the FX market liquidity varies within the day based on trading hours in

different areas. King et al. (2011) discuss that throughout a trading day overall market

liquidity is highest when both London and New York are open and liquidity is low

between 19:00 and 22:00 GMT when most New York traders end their trading day and

most Sydney traders are on their way to work. In terms of a given currency, the liquidity

tends to be higher during its local trading hours.

Geographically, Cheung et al. (2019) study the ongoing diffusion of Renminbi (RMB)

trading across the globe. They find that RMB trading is converging to the geographical

pattern of all currencies. Other emerging market currencies such as Mexican peso

(MXN),Hong Kong dollar (HKD), Indian rupee (INR) and Korean won (KRW) show a

similar pattern, with a slower convergence rate.

In the short term, FX markets are affected highly by macroeconomic announcements.

Chaboud et al. (2007) study the FX market reaction to U.S. macroeconomic announce-

ments. They find that sharp pickup in trading volume (and usually volatility as well)

45For more descriptions on the FX market refer back to 2.1.1.
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generally occurs in the minutes following news announcements. The rise in trading

volume happens even if the data release is entirely in line with market expectations.

A similar research by Piccotti (2018) shows that before jump and cojump events, ex-

change rate quote volume, liquidity, signed order flow, and informed trades are at high

levels and following jump and cojump events, quote volume and return variance remain

at high levels while liquidity, informed trade, and signed order flow drop to low levels.

In the long term, Karnaukh et al. (2015) show that FX liquidity is mainly affected by

funding constraints and global risk dynamics. They suggest that supply side factors are

key drivers of FX liquidity and FX traders are exposed to cross-market factors, e.g. FX

liquidity tends to decrease with volatility of global stock and bond markets. These effects

are stronger for developed country currency pairs.

In addition to liquidity, volatility is also researched for the FX market. As is discussed in

Section 3.1, volatility plays an important role in risk management. Christoffersen and

Diebold (2000) show that although volatility forecasting is of significant relevance for

risk management at the short horizons, it may be much less important at longer horizons.

With empirical evidence they show that in the FX market volatility forecasting provides

useful information for risk management under five days of forecasting horizon.

As has been discussed in 3.1 and 3.2.1, the FX market is arguably the most influential

financial market and volatility is one of the key metrics of FX rates. Therefore, volatility

forecasting models are of particular interest to many researchers and practitioners.

3.2.2 Volatility forecasting models

In terms of volatility forecasting models, various types of models have been proposed by

researchers.46 This subsection will focus on discussing models developed/utilised for

46Refer to Chapter 2 for more general background on volatility forecasting models.
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volatility forecasting. All papers discussed in this subsection focus on either developing

the model or selecting input variables, in order to improve forecasting performance. None

of them focus on parameter estimation, which is the aim of this chapter. Therefore, the

purpose of discussing these models is not to analyse the details (benefits/shortcomings)

of their model development but to provide a general introduction to some relevant models

in the area of volatility forecasting and then introduce the model (GARCH-ANN) to be

used for developing the parameter estimation algorithm. 47

Wang et al. (2001) forecast the FX volatility, with a flexible parametric GARCH model.

It is flexible in the sense that the error distribution is based on the exponential generalized

beta (EGB) family of distributions, rather than the Gaussian or t-distribution. Goodness-

of-fit tests favour the proposed model over the GARCH-t distribution for six currency

pairs with the USD.

Although modified versions of the GARCH model are proposed by researchers and

empirical evidence of better performance of the proposed models is presented, a different

conclusion has also been drawn regarding the effectiveness of more "advanced" GARCH-

family models. Hansen and Lunde (2005) compare 330 GARCH-family models in terms

of their performance in forecasting the conditional variance of FX rates. They find no

evidence of a consistent outperformance from any of the more sophisticated models over

a GARCH (1,1). Their research supports the effectiveness of the GARCH (1,1) model in

terms of both simplicity and performance in forecasting FX volatility.

Hafner (1998) is one of the earlier examples of applying modified versions of GARCH-

family models for volatility modelling. It is particularly noteworthy because it uses a

non-parametric ARCH model to forecast the volatility of FX rates. The model differs

from a traditional GARCH-family model by using a non-parametric function 48 instead

47For more details on general time series (GARCH) models refer back to 2.2.1.

48A non-parametric function is one that at least some part of the function is not determined by pre-defined
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of a deterministic function such as a weighted sum of the past errors and conditional

variances. Most of the traditional GARCH-family models are parametric. By including

non-parametric components in the model the flexibility of the model will be enhanced.

This idea of using non-parametric function is inspiring because other forms of non-

parametric/non-linear function may also be applied to aim at producing good forecasting

results.

In addition to time series model such as GARCH-family models, researchers also im-

plement ANN models together with a GARCH-family model. The idea is similar to

Hafner (1998) in the sense that non-parametric/non-linear components are included in

the model. The inclusion of an ANN component also aims at increasing the flexibility

and therefore enhancing potential forecasting performance of the model. Examples of

the hybrid GARCH-ANN models include the following.

Donaldson and Kamstra (1997) are one of the earliest to implement a hybrid model that

combines a GARCH model with an ANN. They evaluate the model’s ability to model and

forecast stock return volatilities in several countries. They show evidence that the ANN

captures volatility effects overlooked by GARCH-type models. They also mention in

their research that without the ANN component, the GARCH model on its own, despite

its simplicity, lacks the ability to adequately capture non-linear relationship between the

conditional variance and the lagged errors. Donaldson and Kamstra (1997) is considered

as pioneering research. It is not the only paper that utilises the GARCH-ANN model or

any other time series-ANN hybrid models. Later research papers that adopt a similar

approach are briefly presented below.

Monfared and Enke (2014) implement ANN models to improve the performance of

a GARCH-GJR model and show that in high-volatility periods the ANN component

improves the forecasting ability of GARCH-GJR more than it does in low-volatility

parameters but determined from data.
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periods. Kristjanpoller and Minutolo (2015) apply an ANN to a GARCH model to

forecast the gold price (spot and future) volatility. An average reduction of 25% in mean

average percentage error is realised using the GARCH and ANN hybrid model. Bildirici

and Ersin (2009) utilise an ANN with different GARCH-type models to evaluate the

volatility of daily returns at the Istanbul Stock Exchange from 1987 to 2008. There is at

least a 5% reduction in RMSE with different GARCH models. The largest reduction of

more than 23% is with a TGARCH model. The GARCH-ANN reduces the RMSE of a

GARCH model by over 8%. Lu et al. (2016) apply an ANN to different GARCH-type

models to forecast volatility of log-returns of the Chinese energy index. The EGARCH-

ANN model outperforms other models (GARCH-GJR-ANN and those without ANN) in

terms of RMSE.

3.2.3 Parameter optimisation algorithms

The parameter optimisation algorithms discussed below are applicable to modelling

problems in not only finance but also many other areas (as long as parameter estimation

is involved). This subsection selects literature which is most pertinent to the focus of this

chapter.49

The traditional and most widely used estimation algorithms are called "gradient-based"

algorithms. Typical examples include Fletcher and Reeves (1964), Nelder and Mead

(NM) (1965), Broyden, Fletcher, Goldfarb and Shanno (BFGS) (1970), and Byrd et.

al. (1995). These algorithms adopt the "gradient descent" approach which aims at

optimising parameter vectors in the direction of fastest decreasing likelihood function.

However, because this type of algorithm involves calculating gradients of a large number

of different points, problems may very often occur when a certain number of points are

non-differentiable. This problem arises much more often in high dimensional spaces or

49For more details on general parameter estimation algorithms refer to 2.2.4.
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for complex models, i.e. models with over five parameters to estimate or with complex

likelihood functions. No further focus will be concentrated on this type of algorithm

(gradient-descent) because of these problems and limited recent literature exists on

developing those algorithms.

To help solve the differentiability problem typically faced by the gradient-based algo-

rithms, another type of optimisation algorithm which does not involve gradient calculation

was introduced, namely the GA. GA became popular through the work of John Holland

in the early 1970s, and particularly his book Adaptation in Natural and Artificial Systems

(1992). This subsection focuses on a discussion of the literature. Details on how a basic

GA actually works are presented in Section 3.3.

Later research papers have developed the GA approach in various directions. Elsayed

et al. (2014) propose a GA with a new multi-parent crossover. They argue that while

biologically offspring is produced by two parents, this need not be the case in parameter

optimisation. The inclusion of a "third parent" enables their algorithm to visit a wider

searching space within a shorter time.

Similarly, Thakur et al. (2014) focus on improving the crossover operator. They utilise a

bounded exponential crossover, i.e. always create offspring within the variable bounds.

The modified GA is able to produce a larger number of successful runs within a shorter

time than a traditional GA.

A different approach is implemented by Junghans and Darde (2015) for a modified GA.

They introduce a hybrid GA and Simulated Annealing (SA) algorithm. 50 Empirical

evidence shows that their hybrid algorithm can provide more reliable optimisation results

than those provided by the GA alone within a relatively short period of time. Another

50A SA algorithm attempts to avoid trapping into a local optimum by sometimes moving to a neighbour-

hood that decreases the value of the likelihood function.
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key point they also illustrate is that GA does not always provide solutions close to the

global optimum because of the randomness in the search process. This is an important

result because despite being able to improve optimisation performance, none of the

pre-mentioned GA algorithms deal directly with the problem due to randomness in the

estimation process. This brings out the incentive of the RSGA algorithm proposed in this

chapter because statistically speaking, the best way to reduce the randomness problem is

through repetitive simulation.

As is discussed in the previous paragraph, all of the pre-mentioned research papers

concentrate on improving the crossover or redesigning the mutation process. None of

them focus on the initial parent population formation process which is the first step

of GA. The lack of literature on this matter may be due to the fact that the formation

of initial population is a completely random process, i.e. randomly simulate an initial

parent population (a certain number of coefficient vectors in the case of a parameter

estimation task). However, as Junghans and Darde (2015) suggest, it is this randomness

that generates the instability in the estimation performance of a GA because whether the

randomly simulated initial parent population is "good" (some members are close to the

optimum) or "bad" (none of the population members is anywhere close to the optimum)

will affect the estimation result and sometimes the difference between the estimation

performances from different initial parent populations can be very large.

Evidence of the instability of a GA’s performance is shown in Section 3.5 (see Figure 3.4).

The figure shows the significance of the work within this chapter in addition to previous

research on the improvement of GA because improving GA via crossover or mutation

will help improve the performance in some cases but even the best-performing GA may

sometimes fail to obtain a good estimation if it starts with an inappropriate initial parent

population. Therefore the RSGA is proposed to reduce the effect of randomness in the

initial parent formation process, in a time-efficient way.
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The RS algorithm (with appropriate51 programming) can in fact be applied to any of the

pre-mentioned GAs to improve the estimation performance on top of the improvement

they make over the most basic type of GA. However, in this chapter the GA that the RS

works on is chosen to be the most basic type of GA for the purpose of easy illustration

and computation time reduction.

In the next section, descriptions on the estimation model, the basic GA and the proposed

RSGA will be discussed in detail.

51"Appropriate" means not too much extra programming but some adaptation to different models is

needed in order for the RS algorithm to work on other types of GAs.
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3.3 Model description

3.3.1 Model to estimate: GARCH-ANN

The model used for volatility modelling in this chapter is the GARCH-ANN model,

proposed by Donaldson and Kamstra (1997). As has been discussed in Section 3.2, they

evaluate the model’s ability to model and forecast stock return volatilities in several

countries. It’s a hybrid model that combines a GARCH model with an ANN model. They

present evidence that the ANN captures volatility effects overlooked by GARCH-type

models. The model is displayed in Equations 3.1 - 3.4.

σ2
t = α +

p∑
i=1

βiσ
2
t−i +

q∑
j=1

γjε
2
t−j +

s∑
h=1

ξhΨ(ztλh), (3.1)

Ψ(ztλh) =

[
1 + exp

(
λh,0,0 +

ν∑
d=1

[ m∑
w=1

(λh,d,wz
w
t−d)

])]−1
, (3.2)

zt−d = [εt−d − E(ε)]/
√
E(ε2), (3.3)

1

2
λh,d,w ∼ uniform[−1,+1]. (3.4)

In Equation 3.1, the first 3 terms on the right-hand-side of the equation form a GARCH

model while the last term corresponds to the ANN part. Engle (1982) and Bollerslev

(1986) discuss in their papers that the parameters α, βi and γj all need to be non-negative

to guarantee that the conditional variance σ2
t is non-negative. For this GARCH-ANN

model, however, even if the GARCH component is non-negative there is no guarantee

that the ANN component and the sum of the two components are also non-negative.

Therefore all restrictions on the GARCH parameters to guarantee non-negative σ2
t are

removed. Instead, an extra step is added to the parameter estimation process such that

only parameter vectors generating non-negative σ2
t are preserved for further steps.
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Donaldson and Kamstra (1997) argue that without the ANN component, the GARCH

model on its own, despite its simplicity, lacks the ability to adequately capture non-linear

relationships between the conditional variance σ2
t and the lagged innovations εt−j .

Although there are variations of the Donaldson and Kamstra’s model (refer back to sub-

section 3.2.2), they share a similar methodology - to include non-parameter/non-linear

components in the model. There are two main reasons for using the GARCH-ANN model

as the target model for the parameter estimation algorithm build-up in this chapter. The

first reason is that it is able to capture both linear (with the GARCH52 component) and

non-linear (with the ANN component) patterns. This is very important because financial

time series are one of the most complicated time series to analyse and it is expected that

they would exhibit both linear and non-linear elements. One advantage of having an ANN

component in the model is that by adjusting the number of hidden layers and neurons

it can theoretically capture any level of complexity in the dataset.53 The possibility of

over-parameterisation and potential overfitting is one aspect to be considered but it is

not discussed in detail because the focus of this chapter is on parameter estimation of

the GARCH-ANN model. The second reason for using the GARCH-ANN is that it

has a relatively complex likelihood function with multiple parameters to estimate. It

is a situation where some traditional estimating algorithms start to suffer and therefore

the RS algorithm and the idea behind it are likely to be well suited to this problem and

application.

52There are GARCH-family models (such as Exponential GARCH and Realised GARCH) which are

non-linear or non-parametric. However, the GARCH model in this chapter refers to the traditional GARCH

approach proposed by Bollerslev (1986).

53Refer to Chapter 2 and Chapter 4 for more details of ANN.
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3.3.2 Basic estimating algorithm: GA

As has been discussed in Section 3.2, a gradient-based algorithm such as BFGS or

NM estimates the coefficients of a target model, by maximising the model’s likelihood

function. This works very well for most of the time and for most models. However, as

the complexity of the target model increases so does its likelihood function and chance

of getting to a point where the function is indifferentiable increases. An indifferentiable

point may affect the optimisation process of a gradient-based algorithm as it involves

calculating gradients at different points.

This potential problem is especially worrisome in this case because of the complex

likelihood function of the GARCH-ANN model. As is discussed in Section 3.2, the GA

is a non-gradient-based algorithm therefore does not have the potential differentiability

problem. A GA typically involves the following steps:

1. formulating an initial population P0 (a collection of parameter vectors);

2. evaluating the performance of each individual parameter vector pi by using a fitness

function;54

3. selecting individuals for reproduction of a new individual;

4. applying the two genetic operators: crossover and mutation;

5. iterating Step 2-4 until a stopping criterion is reached.

Because the first step of GA is simulating an initial population there is an element of

randomness in the process. The problem, however, is that by formulating an initial popu-

lation, an initial "guess" is made and then evolves to improve itself through reproduction

and mutation. Since this initial "guess" is made randomly, in cases where it’s very far

away from the global optimum point, the possibility that it will finally reach the global

optimum point or somewhere near the global optimum is very low. Another problem is

54As is discussed in Subsection 3.3.1, only parameter vectors generating non-negative σ2
t are preserved.
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pointed out by Ono et al (2003) that GA may fail to generate offspring in some cases

such as when the population size is small relative to the search space and that they also

have difficulty in finding an optimal estimation which is near the boundaries of the search

space.

3.3.3 Proposed estimating algorithm: RSGA

One solution to this problem is to run a reasonable number of times of GA each time

with a new initial population generated. In this way it is more likely to include an initial

population somewhere closer to the global optimum point. The Recursive Simulation

(RS) algorithm is therefore proposed in addition to the GA. The RSGA is divided into

the following steps:

1. Choose the number of successful simulations needed for the loop to end (n.sim) and

the maximum number of iterations (n.max). Set i = j = 0;

2. While i < n.sim and j < n.max, compute the GA with all the previous selected

successful simulation coefficients (known as suggestions) together with simulated popu-

lation;

3. If the estimated GA55 generates larger likelihood L (this is considered as a successful

simulation), add the estimated coefficients to the suggestions for the simulation and

increase i and j by one. Else only increase j by one;

4. Go to Step 2.

A flowchart is displayed in Figure 3.1. The addition of the successful coefficients to

suggestions makes a consecutive of simulations not parallel but recursive because it

ensures every new simulation is based on previous successful simulations, i.e. new

results can only offer improvement (or unchanged) but not inferior to the previous. In

55Only simulations which generate convergent estimations (the estimated coefficients stablise in values)

enter the flowchart.
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this way the optimisation process accelerates as time goes, which makes the algorithm

more time efficient and reduces computation resources.
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Yes

Yes

No
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Figure 3.1: A flowchart of the Recursive Simulation Algorithm for GA. (This flowchart

is a visual representation of the four steps in Subsection 3.3.3.)
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3.4 Estimation with simulated series

With a typical real-world dataset, even if we estimate coefficients of a model, we

would never know how close the estimated coefficients are from the "real" values of

the coefficients. With simulated datasets, we can compare the estimated coefficients

with the coefficients that were used to simulate the dataset. The closer these coefficients

are to each other, the more successful the estimation algorithm is in terms of parameter

estimation accuracy.

In this subsection, 100 coefficient vectors are randomly simulated from a Uniform(-1,1)

distribution and then these coefficient vectors are used to generate 100 simulated datasets

with the GARCH-ANN model.56 The length of each of these 100 series is chosen to

be 200 data points because it’s neither too short to be informative nor too long to be

computationally efficient. The error terms εt are generated from a normal distribution,

similar to how the error terms are generated in a traditional GARCH model. After the

series are generated and estimated with RSGA, the estimated coefficient vectors can be

compared with the original coefficient vectors. Figure 3.2 shows a random sample of 6

of the 100 simulated series. The reason for limiting the range of the variables to (-1,1) is

to exclude those "explosive" series. 57 This range contains the range of a typical financial

log-return series.58

To measure the difference between the estimated coefficients and original coefficients

used to simulate the series, two metrics are used. The first metric (one of the more widely

56Refer to Equation 3.1 as the data generating process.

57"Explosive" means after the daily return reaches an extreme level, it does not come back to the average

level, i.e. 0, whereas for most financial assets the return level almost never stays at an extreme level

indefinitely.

58A daily log-return within (-1,1) corresponds to a daily return within (-271.8%, 271.8%), within which

lie almost all observed financial returns.
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Figure 3.2: A random sample of 6 of the 100 simulated series with length of 200 data

points.
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used metrics) d (also called Mean Absolute Distance) measures the average Euclidean

distance between the estimated coefficients and the coefficients used for simulating the

time series. A formal definition is given in Equation 3.5.

d =
1

n

n∑
i=1

( m∑
j=1

(
p′ij − pij

)2) 1
2

, (3.5)

where n is the number of simulated time series to be estimated, in this case 100, m is the

length of the parameter vector, for the GARCH-ANN we use, m is 6. p′ is the estimated

parameter vector and p is the parameter vector used for simulating the time series.

The Euclidean distance d measures directly how far the estimated coefficients are from

the original coefficients. However, d weighs all differences equally, regardless of the

relative sizes of different coefficients. This could result in false advantage/disadvantage

when comparing two estimated parameter vectors.The following example discusses

this particular problem and the solution to it. Assume we only have one series with

a 2-D parameter vector to estimate, i.e. n = 1, m = 2 in Equation 3.5. If the two

parameter values (used to generate the series) vary a great amount in size, the Euclidean

distance d may suffer in comparing estimated parameter vectors. Below is a hypothetical

example to illustrate a case where the Euclidean distance fails to perform comparison well

enough. If the target parameter vector is p = (0.11, 0.00002) while the first estimation

is p′1 = (0.12, 0.003) and the second estimation is p′2 = (0.13, 0.00001). The Euclidean

distance for the first estimation d1 is calculated to be 0.01 while d2 is 0.02. Based on d, p′1

is more accurate than p′2. However, one might argue that p′2 in fact is a better estimation

than p′1 because p′2’s estimation on the second parameter is much more accurate. This

is because the Euclidean distance measures the errors in the absolute sense. To be

able to compare two estimations after taking into account the relative magnitudes of

the coefficients, another metric r (Mean Ratio Distance) is introduced and defined in
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Equation 3.6.

r =
1

mn

n∑
i=1

m∑
j=1

|(p′ij − pij)/pij| (3.6)

For the same task as above, r1 and r2 is calculated to be 75.04 and 0.34 respectively. This

time p′2 is more accurate than p′1 based on r. While r takes into account the relative values

of the coefficients, it may sometimes exaggerate the outperformance of one estimation

over another, i.e. the goodness of p′2 relative to p′1 is not reflected accurately by the sizes

of the values 75.04 and 0.34. Therefore both metrics are computed and considered so

that both absolute and relative comparisons can be made.

Table 3.1 displays a summary of the comparison between GA and RSGA, based on d, r,

probability of getting convergent estimates (p) and computation time 59 in seconds per

series estimated (t). From the table it can be seen that while estimation time increases

significantly, RSGA makes significant improvements over GA in terms of d, r and p.

At 96%, the original probability of convergence may not cause concern sometimes.

However, in a regular modelling process, when a convergence problem occurs it usually

means a "stop-and-check" to find a solution and sometimes even a new model is needed

to potentially resolve the model. The extra time (and work) needed in those situations

are usually much more significant than the extra computation time used by RSGA.60

59All computations were conducted on a laptop with a typical Intel Core i7 processor.

60With a more advanced processor, the extra time that RSGA consumes is expected to decrease

significantly. The extent of time decrease is more significant than that of a normal GA (because hardware

upgrades generate greater efficiency gains for complex tasks than for less complex tasks).
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d r p t

GA 1.46 1.34 96% 26.21

RSGA 1.11 1.12 100% 465.92

Table 3.1: Comparison of parameter estimation accuracy (d and r), probability of getting

convergent series (p) and estimation time in seconds per series (t) between GA and

RSGA.

3.5 Modelling and forecasting volatility of foreign exchange rates

With simulated series, it is possible to measure how different algorithms perform in

estimating parameter values in a model by comparing the estimated parameter values

with the values used to generate the series.61 However, most financial time series

(including FX rates) move significantly differently from simulated series. In fact, one

might argue that financial time series never follow any distribution, at least not in the

longer term. One example is that financial time series typically have much fatter tails

than a normal distribution (meaning that extreme returns occur more frequently than

a normal distribution). Even if a fatter-tailed distribution such as a t-distribution is

considered, there are other characteristics of financial time series that a t-distribution can

never adequately capture, which in some cases may put the t-distribution at an inferior

position than the normal distribution. Therefore, modelling with financial time series is

very different from modelling with simulated series.

One difference in performance evaluation between the two types of series is that with real-

world time series, since they are not simulated from a predetermined parameter vector,

it is not possible to directly compare the estimated coefficients with the predetermined

parameter vector. Under those circumstances, one way to measure performance of

61Because the error distribution of the GARCH-ANN model is assumed to be normally distributed, the

simulated series also have the normal distribution specification.
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the algorithm is to compare the forecast conditional variance with the real conditional

variance of the dataset which can be approximated by the square of conditional residuals,

see Donaldson and Kamstra (1997).

In the following subsection, FX time series used for this chapter are described and

summary statistics of the FX log-returns are listed.

3.5.1 Data description

In this subsection, six FX return series are used for the purpose of modelling and

forecasting time-varying volatilities with the GARCH-ANN model. The six currency

pairs include GBP/USD, EUR/USD, USD/JPY, USD/CHF, USD/RUB and USD/ZAR.

Daily prices of the six currency pairs are obtained for the time period 1 January 2008

to 31 December 2017 (a total of 2609 data points spanning 10 years). All datasets are

collected from Thomson Reuters Datastream. For the rest of this chapter, GBP, EUR,

JPY, CHF, RUB and ZAR will be used to stand for the daily log-returns (2608 data

points) of the six pairs and "USD" is neglected because it is the counterparty of all other

currencies.

To split the dataset for modelling and testing purposes, it is common to create a training

set and a test set. A training set is a subset of the dataset used for building up the model

and a test set is the rest of the dataset to test how the model built from the training set

works. Following the way in which Sermpinis et al. (2012) split their training and test

set (ratio of number of data points is approximately 2:1 between training and test set),

the datasets (six FX log-returns) in this research are split in to a training set containing

the first 1739 observations and a test set containing the rest 869 observations.

Figure 3.3 shows a time series plot of the six currency pairs. The scale of the y-axis is set

to be the same for all pairs so that a rough visualisation of volatilities can be made. One
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can observe by eyes that GBP, EUR, JPY and CHF have smaller volatilities although

GBP and CHF have some very high-volatility periods while EUR and JPY are more

stable throughout the period. RUB and ZAR, on the other hand, are more volatile during

the period and RUB experienced arguably one of the most volatile periods in year 2015.

This difference in volatilities is also revealed in the summary statistics in Table 3.2. The

reason for choosing FX pairs with significant differences in volatility patterns is that it

will enable us to test whether the model and the algorithm are only good at modelling

certain time series, or they are capable of modelling time series with a wider range of

characteristics. RUB and ZAR are selected among other volatile currencies because

USD/RUB and USD/ZAR have longer data availability than other minor pairs.
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Figure 3.3: Daily log-returns of GBP, EUR, JPY, CHF, RUB and ZAR from 1 January

2008 to 31 December 2017. All currency pairs are against USD. The red line represents

a separation of the training set from the test set. Source of data: Thomson Reuters

Datastream.
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Currency Mean Med Min Max Std. Dev

GBP -1.5e-04 0 -0.0829 0.0443 6.6e-03

EUR -7.9e-05 0 -0.0474 0.0404 6.4e-03

JPY 2.7e-06 0 -0.0460 0.0370 6.9e-03

CHF 5.8e-05 -7.2e-05 -0.0848 0.1142 7.7e-03

RUB 3.3e-04 0 -0.1552 0.1427 1.0e-02

ZAR 2.3e-04 0 -0.0639 0.0981 1.1e-02

Table 3.2: Summary statistics of the daily log-returns of the six currency pairs from 1

January 2008 to 31 December 2017. The median values of 0 in the table are accurate

to 1 × 10−6. All currency pairs are against USD. Source of data: Thomson Reuters

Datastream.

3.5.2 Parameter estimation with GA and RSGA

Each time a GA is run over the same dataset the estimation result is different due to

the random choice of initial parent population. Therefore it is reasonable to compute

multiple times of GA and use their average performance as the overall performance of

the GA. In this chapter, GA is computed 100 times for each of the six currency pairs.

Tables 7.1 and 7.2 in the Appendix show estimated coefficients by one randomly selected

run of GA (out of 100 runs), together with the coefficients estimated by RSGA (in

brackets). Although most coefficients have the same sign for the two algorithms, the

sizes of the coefficients for GA and RSGA are generally unequal. This suggests the

potential difference in estimation performance of the two algorithms.
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3.5.3 Investigating in-sample and out-of-sample performances

The Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), defined in

Equations 3.7 and 3.8, are used to measure the modelling and forecasting performance

of the conditional variance from the estimated model. According to Willmott (1982),

RMSE and MAE are among the best overall measures of model performance, and he

recommends the inclusion of both measures for performance comparison in researches.

MAE =
1

n

n∑
i=1

|xi − yi|, (3.7)

RMSE =

√√√√ 1

n

n∑
i=1

(xi − yi)2, (3.8)

where n is the number of forecasting points, xi is the forecast value and yi is the

benchmark value. In this research, xi is the one-day ahead forecast conditional variance

σ2
i and yi is the real conditional variance which is unobservable but can be approximated

by the square of residuals u2i , refer to Donaldson and Kamstra (1997).

One-day ahead in-sample and out-of-sample MAE and RMSE for the six currency pairs

are computed for each of the 100 rounds of GA. Box-plots of MAE and RMSE of the 100

rounds are displayed in Figure 3.4 to help visualise the level deviation in performance

of a single GA and therefore explain on its own the advantage of the RSGA. As can be

seen from Figure 3.4 that there is a wide range of MAE and RMSE values across the 100

rounds of GA and a number of significant outliers (bad performers) are observed. This

shows us how unstable a single run of GA is in terms of forecasting performance.

Tables 3.3 and 3.4 display the MAE and RMSE values of GA, calculated as the mean of

the error values obtained from the 100 rounds in comparison with the error values from

the RSGA (in brackets). For all currency pairs, the RSGA produces smaller MAE and

RMSE than GA. The percentage improvements, calculated as the percentage difference
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Figure 3.4: Box-plots of MAE and RMSE for the 100 rounds of GA for the six currency

pairs. Source of data: Thomson Reuters Datastream.
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in the errors of the RSGA from GA, are displayed in Table 3.5.62

MAE (×10−4) RMSE (×10−4)

GBP 12.22 (3.26) 12.81 (3.46)

EUR 10.05 (2.23) 10.52 (2.56)

JPY 9.92 (5.22) 10.46 (5.91)

CHF 14.01 (6.38) 14.80 (7.11)

RUB 16.57 (1.27) 17.63 (1.78)

ZAR 18.77 (1.66) 20.11 (4.38)

Table 3.3: In-sample MAE and RMSE of GA (mean error values out of the 100 rounds)

and RSGA (in brackets) of the one-day ahead conditional variance forecast of the six

currency pairs. All currencies are against USD.

MAE (×10−4) RMSE (×10−4)

GBP 12.29 (3.29) 12.96 (4.15)

EUR 10.07 (2.26) 10.46 (2.50)

JPY 9.92 (5.20) 10.39 (5.88)

CHF 14.06 (8.28) 15.30 (8.28)

RUB 16.87 (2.42) 21.37 (12.49)

ZAR 18.78 (1.59) 20.03 (3.13)

Table 3.4: Out-of-sample MAE and RMSE of GA (mean error values out of the 100

rounds) and RSGA (in brackets) of the one-day ahead conditional variance forecast of

the six currency pairs. All currencies are against USD.

62This percentage improvement is calculated such that it lies between 0 and 100. A 0% improvement

suggests there is no improvement of RSGA over GA and a 100% improvement suggests the RSGA reduces

errors to zero (practically impossible to happen but it is always the ultimate target).
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Improvement (MAE) Improvement (RMSE)

GBP 73.3% (73.2%) 73.0% (67.9%)

EUR 77.8.4% (77.6%) 75.6% (76.1%)

JPY 47.3% (47.6%) 43.5% (43.4%)

CHF 54.4% (53.4%) 52.0% (45.9%)

RUB 92.3% (85.6%) 89.9% (41.6%)

ZAR 91.2% (91.6%) 78.2% (84.4%)

Average 74.6% (74.5%) 74.4% (70.2%)

Table 3.5: In-sample and out-of-sample (in brackets) MAE and RMSE improvement of

RSGA over GA (a weaker performance will be represented by a negative percentage

change which never happens in this case). All currencies are against USD.

Overall the percentage improvement of RSGA over GA is significant although the extent

of improvement varies from currency pair to currency pair. The improvement is more

significant for the more volatile currency pairs such as RUB and ZAR and less significant

for the currency pairs with lower volatilities such as JPY and CHF. Due to its instability

in performance, GA can perform very well sometimes and very badly other times. This

leads to another aspect where a comparison can be made between GA and RSGA, which

is to compute the percentage of the 100 rounds in which the GA is outperformed by

RSGA.

To make the comparison, three cases are split up: (1) when the error from a GA is larger

than the error from a RSGA by over 10% it is classified as a "RSGA better" case; (2)

when the error from a GA is smaller than the error from a RSGA by over 10% it is

classified as a "GA better" case; (3) when the difference between the errors is between

-10% and 10% it is classified as an "Indifference" case. Table 3.6 and Table 3.7 show the

performance comparison with respect to MAE and RMSE. While GA does show some
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good performance in the modelling process of JPY and CHF, overall speaking the RSGA

outperforms GA for the majority of time and for the two more volatile currency pairs

RUB and ZAR, the RSGA has a dominant performance over GA.

RSGA better GA better Indifference

GBP 93% (93%) 6% (6%) 1% (1%)

EUR 94% (92%) 3% (6%) 3% (2%)

JPY 74% (75%) 21% (21%) 5% (4%)

CHF 79% (78%) 13% (14%) 8% (8%)

RUB 99% (100%) 0% (0%) 1% (0%)

ZAR 100% (100%) 0% (0%) 0% (0%)

Average 89.8% (89.7%) 7.2% (7.8%) 3.0% (2.5%)

Table 3.6: In-sample and out-of-sample (in brackets) MAE comparison of RSGA with

GA. All currencies are against USD.

RSGA better GA better Indifference

GBP 94% (92%) 4% (6%) 2% (2%)

EUR 96% (95%) 0% (3%) 4% (2%)

JPY 71% (70%) 21% (21%) 8% (9%)

CHF 80% (77%) 14% (14%) 6% (9%)

RUB 100% (72%) 0% (9%) 0% (19%)

ZAR 100% (100%) 0% (0%) 0% (0%)

Average 90.2% (84.4%) 6.5% (8.8%) 3.3% (6.8%)

Table 3.7: In-sample and out-of-sample (in brackets) RMSE comparison of RSGA with

GA. All currencies are against USD.
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3.5.4 Comparison with gradient-based algorithms

In this subsection, comparisons are made between the RSGA and two previously-

mentioned "gradient-based" algorithms in Subsection 3.1.4, namely BFGS and NM.63

The motivation for this is to substantiate the use of the GA (hence also RSGA) over

"gradient-based" algorithms in this chapter. Tables 3.8 and 3.9 show that RSGA generates

significantly smaller errors than the BFGS, NM and GA. Across the six currency pairs,

all four algorithms generate more disappointing results for CHF than for other currency

pairs. This indicates that CHF may be the most challenging currency pair to forecast in

the time period of interest. This is consistent with Kamruzzaman and Sarker (2004) and

Bakhach et al. (2016). In both papers, the CHF pairs (not only against USD but also

against other currencies) turn to be one of the most difficult to accurately forecast.

While BFGS, NM and GA all suffer in forecasting volatile pairs such as RUB and ZAR,

RSGA is able to produce far superior performance results than the other three algorithms.

This shows that RSGA can forecast different types of datasets (regardless of whether

they are volatile or less-volatile) with satisfying performance. The main reason for this

improvement is that through the process of repetitive simulation, RSGA has a higher

chance to move the estimation further away from local optimum points where other

algorithms can easily become trapped.

BFGS and NM, being efficient algorithms in terms of computation time, suffer greatly in

this task of estimating a relatively complex model (GARCH-ANN) for forecasting one

of the most unforecastable financial assets (FX rates). The GA (and RSGA), however,

with the ability to adjust the size and members of its initial parent population, is able

to generate significantly more satisfactory performance results. One should be aware

that the contribution of this chapter rests in the improvement of RSGA over GA. The

63BFGS and NM are two "gradient-based" algorithms that are fast to implement but may sometimes

suffer from the "indifferentiability" problem.
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disappointing performance of BFGS and NM compared with GA is anticipated and the

inclusion of their performance in this subsection is for the purposes of completeness and

robustness checking.

It is also expected that the extra capability of adjustment from the GA and RSGA also

significantly increases computation time. Table 3.10 displays the average computation

time (in seconds) per run out of 100 runs for BFGS, NM and GA, together with the

computation time used by RSGA, rounded over the six currency pairs. Unlike the other

three algorithms for which 100 runs are computed to see the average time (in reality only

one run is computed to get the result), the RSGA runs only once. The GA algorithm

utilises much longer computation time per run than BFGS and NM and the RSGA takes

even longer. However, with more advanced hardware, including using upgraded CPU (or

even GPU for parallelising complex tasks)64 and potentially more efficient programmes

(i.e. redesigning functions within RSGA so that it is more computationally efficient), this

extent of extra computational cost could be significantly reduced.

BFGS (×10−4) NM (×10−4) GA (×10−4) RSGA (×10−4)

GBP 510.22 (510.87) 94.45 (99.57) 12.22 (12.81) 3.26 (3.46)

EUR 689.65 (699.91) 113.10 (117.56) 10.05 (10.52) 2.23 (2.56)

JPY 845.72 (858.24) 70.26 (74.24) 9.92 (10.46) 5.22 (5.91)

CHF 1216.38 (1228.78) 196.24 (217.28) 14.01 (14.80) 6.38 (7.11)

RUB 954.45 (970.72) 240.37 (273.11) 16.57 (17.63) 1.27 (1.78)

ZAR 1114.28 (1137.48) 130.10 (143.87) 18.77 (20.11) 1.66 (4.38)

Table 3.8: In-sample MAE and RMSE (in brackets) comparison of RSGA with GA and

gradient-based algorithms. All currencies are against USD.

64GPU computation is one of the main topics of Chapter 4.
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BFGS (×10−4) NM (×10−4) GA (×10−4) RSGA (×10−4)

GBP 510.59 (522.69) 94.78 (100.30) 12.29 (12.96) 3.2 (4.15)

EUR 691.35 (703.62) 113.36 (119.27) 10.07 (10.46) 2.26 (2.50)

JPY 846.72 (860.97) 70.68 (75.10) 9.92 (10.39) 5.20 (5.88)

CHF 1217.17 (1231.59) 196.31 (217.30) 14.06 (15.30) 8.28 (8.28)

RUB 960.63 (1004.73) 255.53 (319.42) 16.87 (21.37 ) 2.42 (12.49)

ZAR 1115.07 (1138.72) 130.20 (144.62) 18.78 (20.03) 1.59 (3.13)

Table 3.9: Out-of-sample MAE and RMSE (in brackets) comparison of RSGA with GA

and gradient-based algorithms. All currencies are against USD.

BFGS NM GA RSGA

Time (s) 4.14 1.52 233.27 4193.32

Table 3.10: Average computation time (in seconds) per run out of 100 runs for BFGS,

NM and GA, together with the computation time used by RSGA. All times are averaged

through six currency pairs. All currencies are against USD.
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3.5.5 Implications for EMH

From Table 3.2, it can be seen that the emerging market currency pairs USD/RUB and

USD/ZAR have significantly higher volatilities than the four developed market currency

pairs. Therefore it would be natural to presume that in the tasks of forecasting volatility,

the forecast errors of USD/RUB and USD/ZAR should be larger (in value, not necessarily

in percentage) than the other pairs. However, based on the results from Tables 3.8 and

3.9, USD/RUB and USD/ZAR actually have smaller errors (with the RSGA algorithm)

than some of the developed market pairs.

This empirical finding indicates that the emerging market currency pairs are easier to

forecast than the developed market pairs (in terms of volatility forecasting). In other

words, the developed markets are more efficient than the emerging markets. This is in line

with what the terms "developed" and "emerging" suggest. According to the definitions

of three forms of EMH by Fama (1970) in Subsection 2.1.2, the term "efficient" in this

paragraph refers to the weak form efficiency. This is because all information used to

forecast volatility in this chapter is historical FX rates.

Another finding comes from the comparison of forecasting results for the in-sample data

points with the forecasting results for the out-of-sample data points.65 For a specific

time series, it is common to see out-of-sample errors greater than in-sample errors.

This is because parameters of the model have been tuned based on the in-sample data

points in the training process while the model has never seen any data points from the

out-of-sample dataset before.

Based on the results from Tables 3.8 and 3.9, only the in-sample error of USD/CHF

is smaller than its out-of-sample error. For the other pairs, at least one of the metrics

65At this point, only the errors generated by RSGA are considered because the concern is to see how

consistent the performances of the best possible algorithm are.
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(RMSE or MAE) shows the opposite, i.e. in-sample error larger than out-of-sample error.

USD/JPY is the only pair that the in-sample error is larger than the out-of-sample error

for both metrics. For those pairs whose in-sample error is larger than out-of-sample error,

it is a possible explanation that the out-of-sample period is easier to forecast than the

in-sample period, i.e. the underlying market is less (weak form) efficient during the out-

of-sample period than the in-sample period. Therefore, this chapter provides evidence

that the Japanese market has gone through some extent of efficiency decrease since the

start of the out-of-sample period (mid 2014). The Swiss market shows consistency in

the extent of difficulty in forecasting during different periods and the high extent of

(weak form) market efficiency (suggested by relatively large forecasting errors even with

RSGA) also makes it arguable the most difficult pair to forecast in the given period, out

of the six pairs.
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3.6 Conclusion

The FX market, one of the most important financial markets in the world, has been

extensively researched and a significant number of papers focus on modelling the volatil-

ity of FX rates. Most of these papers either propose new models or improve existing

models. Very few of them concentrate on parameter estimation in the modelling process,

where problems such as the convergence problem, the local-maximum problem and the

instability problem occur frequently.

In this chapter, the RSGA is proposed for parameter estimation in order to help deal with

the convergence problem, the local-maximum problem and improve the stability of the

estimation process. The RSGA is applied to estimate coefficients of a GARCH-ANN

model for forecasting volatility of, first of all, 100 simulated time series. Simulated

series are considered first because they provide a large replicable sample for performance

evaluation. Comparisons are made between the traditional GA and the proposed RSGA

based on accuracy, convergence rate and computation timing. With a reasonable extent

of extra computation time, the RSGA is able to provide higher estimation accuracy while

dealing with the convergence problem.

The algorithm is also utilised to model the volatility of six FX pairs: GBP, EUR, JPY, CHF,

RUB and ZAR, all against USD. Among the six pairs, RUB and ZAR (from emerging

economies) are more volatile than the other four pairs (from developed economies).

While GA as expected provides smaller errors for the less-volatile currency pairs than

volatile pairs, RSGA sometimes generates even smaller errors for volatile pairs than

less-volatile pairs. This is confirmed by a significant extent of percentage improvement.

The RSGA algorithm generates higher percentage improvement for high-volatile pairs,

e.g. RUB and ZAR, than for less-volatile pairs. This shows potential superiority of

RSGA in modelling high-volatility emerging market pairs, which can be a desirable

advantage because high-volatility emerging market currency pairs are sometimes more
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profitable due to lower level of speculative activities. In terms of EMH, this can also be

explained by the relatively lower (weak form) efficiency of the emerging markets than

developed markets.

Another finding is that, despite its relatively low volatility, the performance of CHF

volatility forecasting remains one of the poorest across all algorithms. This indicates

the low forecastability of CHF during the period of interest. The consistent difficulty in

forecasting the CHF also marks the Swiss market a relatively informationally efficient

one.

This agrees with the results of Chapter 4 where the ANN models for CHF generate the

lowest direction-of-price-movement accuracy rates and annualised returns. Overall, the

RSGA algorithm provides satisfactory results in modelling volatility of these currency

pairs with smaller errors overall compared with a GA algorithm (and other two "gradient-

based" algorithms).66

In this chapter, the RSGA algorithm is applied in order to estimate the GARCH-ANN

model, i.e. find the parameters that ideally maximise the likelihood function associated

with the model. However, the usefulness of the algorithm in improving estimation results

is not limited to this particular likelihood function. Therefore, one advantage of the

algorithm is that it can be easily migrated to estimate other models.67

The RSGA increases estimation accuracy and deals with the convergence problem, at

the cost of computation time. Considering the relatively small datasets and even smaller

simulation datasets used in this chapter, computation speed-up is a challenging yet

66As is discussed in Subsection 3.5.4, even the GA provides much more accurate forecasting results

than "gradient-based" algorithms such as BFGS and NM.

67The extent of improvement over traditional algorithms will increase as the complexity of the target

model increases.
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rewarding task for further implementation. In particular, it is of great benefit to speed

up the computation such that the RSGA algorithm can be applied to estimate even more

complex models and with much larger datasets, in a time-efficient manner. Three ways

that can be employed to improve computation efficiency (listed in the order of increasing

efficiency improvement) include programming with a faster language such as Python or

C++, upgrading the CPU, and utilising Graphic Processing Units (GPU), given the fast

development in GPU over the past few years.68

Another aspect that may draw further attention is that in this research the errors εt of

all models are assumed to follow a normal distribution, which is by no means a perfect

mimic considering the nature of the FX data. This problem will always exist as long as the

coefficients are estimated with a likelihood-based algorithm which involves making an

assumption on the underlying distribution. One way to deal with this problem is by using

utility/cost functions other than likelihood. With non-likelihood utility/cost functions,

it avoids the necessity of assuming any inappropriate distributions. For modelling with

exchange rates or other financial assets, one example of such a utility/cost function

would be the trading profits with a given trading strategy. Related research on this

includes Alvarez-Diaz and Alvarez (2003), Hirabayashi et al. (2009), and Abreu et al.

(2018). Other types of algorithms such as Particle Swarm Optimisation (PSO) also utilise

non-likelihood utility/cost functions therefore can also act as a potential alternative, see

Eberhart & Kennedy (1995) and Sermpinis et al. (2013). Overall, there is a rich agenda

for other researchers to build on the work of this chapter.

68GPU computing is one of the main topics in Chapter 4.
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4 Using GPU with large neural networks for forecasting

directions of foreign exchange rate movements

4.1 Introduction

4.1.1 The role and approaches of forecasting

Forecasting is one of the most challenging yet important tasks in financial markets.

Volatility forecasting and return forecasting are two of the main directions of research

in the area of forecasting. Volatility forecasting, the main topic discussed in Chapter

3, plays a key role in risk management, portfolio management, and derivative pricing.

Research in these areas includes Christoffersen and Diebold (2000), Brooks and Persand

(2003), Chen et al. (2017), Kongslip and Mateus (2017), Bollerslev et al. (2018). Since

volatility forecasting is not the main focus of this chapter, the mentioned literature is not

discussed in detail. Details of general literature in the area of volatility forecasting can

be found in Chapter 2.

The main focus of this chapter is return forecasting which contributes to success in

hedging and speculation. Three types of frequently-used tools are time series models

(the most popular being Box-Jenkins models, such as the Auto Regressive Integrated

Moving Average Model, or ARIMA), neural network models and modified or hybrid

models built based on both types of models.

Time series models have been developed and applied to the area of finance for nearly

four decades. Wide-ranging research focuses on forecasting in financial markets with

time series models. In recent examples, Tripathy (2017) uses an ARIMA (0,1,1) model

to forecast gold prices and Alkhazaleh (2018) applies an ARIMA (2,0,2) for forecasting

stock returns. Garikai et al. (2019) forecast foreign direct investment with an ARIMA

(0,1,2) model.
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The problem with the time series approach, however, is that the number of variables for

the models is very small (rarely more than five) and normally only lagged values are

utilised as inputs of the model. In other words, future time series values are forecast with

only a few values in the past from the same time series. The time series to be forecast may

indeed contain some important information (internal or external) but many other external

factors which might significantly affect future values of the time series are not absorbed

into the model. In fact, with the time series approach they are not even considered.

Therefore, potential over-simplification of the real situation arises, which can lead to

poor forecast of future values of the time series. Artificial Neural Networks (ANN) is

an alternative approach which takes into account as many variables as the researchers

choose and therefore has the capability of lowering the extent of over-simplification.

ANN models, despite having been studied much earlier, have been implemented for

financial modelling for only about two decades. This is mainly due to high complexity

and low predictability of the financial markets, i.e. forecasting the movement of a

given stock price is far more challenging than forecasting the weather or the electricity

usage of the whole country with a neural network model. Several research papers have

demonstrated the superiority of ANN models over time series models in forecasting

both financial and non-financial series. Details of these papers will be discussed in

the Literature Review section of this chapter. Another reason for using ANN in this

chapter is the fast development of Graphics Processing Units (GPU) in recent years.

GPU, with the help of parallel processing, greatly increases computation speed and

enables the implementation of large neural networks (more informative and therefore

more predictive) within a reasonable time frame.

A common question might arise on the use of predictive models for forecasting future

prices of financial assets based on past prices and values of financial assets and economic

indicators. In the case of a major political or economic event, how possibly can a future
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price be forecast based on the above-mentioned past values? A short answer to this

question is that it cannot. However, to the author’s best knowledge none of the predictive

models aims at modelling even the direction of price movement (less challenging than

modelling the actual prices) at 100% accuracy, nor is it possible to do so. In fact using

a model with just above 50% accuracy can be sufficient in making profits, as long as a

reasonable stop-loss 69 level is set to make sure losses are under control when a false

prediction occurs.

One example is the British pound depreciation after the EU-membership referendum of

the UK in 2016. The final voting result could not be forecast based solely on past prices

of financial assets and values of economic indicators. Without a large and reliable public

opinion poll it can be very difficult to assess what the result might be. In fact even after a

public opinion poll, many agencies, companies and casinos thought it was going to be a

non-exit result, which turned out to be wrong. A similar story happened later in the same

year when Donald Trump was elected as the president of the USA, contrary to many

experts’ predictions. In both cases the actual results may cause potential financial losses

due to high level of unpredictability of the outcome of the political events. These potential

losses can be controlled with a reasonable stop-loss level or used as an opportunity to

invest in the derivative market, i.e. options which benefit from high volatilities in financial

asset prices. Potential losses can be completely avoided by choosing not to involve in

investing in these circumstances where a nearly-unpredictable significant event is due to

happen.

As a result of the above arguments, the key usage of these predictive models is to forecast

buying and selling pressure based on past financial and economic conditions, with an

accuracy rate of over 50% (preferably over 55% or higher), to benefit as much as possible

69A stop-loss is a pre-set level when reached in the case of false prediction of the direction of price

movement, the transaction is terminated to prevent further losses.
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from the correct predictions and control losses with a reasonable stop-loss level for

the false predictions. According to the Law of Large Numbers,70 as the number of

transactions becomes large the actual accuracy rate tends to get closer to the target rate

(the accuracy rate obtained by the selected best model) and with losses controlled by a

good stop-loss level, significant opportunities in the economic sense can potentially be

identified in the FX, stock or commodity markets.

4.1.2 The foreign exchange market as a forecasting context

The foreign exchange (FX) market is the largest and most heavily traded financial market.

According to the Bank of International Settlements (BIS) 2019 survey, the average daily

trading volume increased by 30%, from 5.1 trillion US dollars in 2016 to 6.6 trillion

US dollars in 2019. This daily trading volume is 24 times the size of the daily trading

volume of the global stock markets, 71 making the FX market arguably the most important

financial market in the world. 72

Figure 4.1 from the BIS Triennial Central Bank Survey (2019) suggests that the US

dollar remains the dominant currency, being on one side of 88.3% of all trades in April

2019, an increase by 0.7% since April 2016. In terms of geographical distribution of FX

turnover, trading continues to be concentrated in a few large financial centres. In April

2019, 79% (increased from 77% in 2016) of all FX trading took place in five countries -

the UK, the US, Singapore, Hong Kong SAR and Japan.

70Law of Large Numbers: the average of the results obtained from a large number of trials should be

close to the expected value, and will tend to become closer as more trials are performed.

71According to the World Bank database (https://data.worldbank.org/indicator/CM

.MKT.TRAD.CD?end=2018&start=1975&view=chart), the total trading volume of stocks in

2018 globally was 68.212 trillion US dollars, making the daily traded volume 68.212/253 = 0.27 trillion

US dollars.

72For more general detail on the FX market refer back to Subsection 2.1.1.

108

https://data.worldbank.org/indicator/CM.MKT.TRAD.CD?end=2018&start=1975&view=chart
https://data.worldbank.org/indicator/CM.MKT.TRAD.CD?end=2018&start=1975&view=chart


Figure 4.1: Foreign exchange market turnover by currency and currency pairs in April

2019 and 2016. Source: BIS Triennial Central Bank Survey (2019, 2016).
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In addition to its size and significance, the FX market is also one of the most challenging

financial assets to be researched due to the high complexity of its price change patterns,

the high level of speculation activities (reducing the level of any potential trading profits)

and a large number of influential factors, including both macro and micro indicators.

Two examples are described below.

After two consecutive cuts in deposit facility interest rates in the Euro Zone in June

and September 2014, from 0% to -0.1% and then -0.2%, the EUR/USD exchange rate

dropped by a maximum of 21% in the 8 months following September 2014. However,

after a further cut in deposit facility interest rates to -0.4% in March 2016, the Euro

appreciated almost 5% against USD in just one month. These two similar moves (cutting

interest rates) of the European Central Bank (ECB) caused completely opposite direction

of movement of the exchange rate. One reason for this contradiction could be that

investors held different expectations about the ECB’s movement before the actual cut

took place, resulting in different outcomes after the cut. Another possible reason is that

there were other conditions happening that affected the strength of the currencies. These

conditions could be affecting only the Eurozone, affecting only the USA or affecting

both areas. For this reason, including only the interest rates and even only a few more

indicators might not be enough for a good prediction of future FX rates. More factors

need to be taken into account when building a model.

The UK currency GBP, depreciated against USD by a maximum of 30% in the following

several years since the 2008 financial crisis and depreciated over 17% against USD in

just 4 months during the period immediately after the UK referendum on EU member-

ship in June 2016. Forecasting price movements immediately after a major event is a

challenging task. However, once the immediate effect is gone and weeks or even months

of aftershocks arrive, it is time for predictive models to shine, after taking into account

massive information including financial and economic conditions and market reactions.
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As Brexit proceeded, GBP fluctuated up and down as volatile as an emerging market

currency, leaving tremendous opportunities of making profits for investors. With a good

stop-loss level controlling risks, the correct predictions would generate much more profits

than during those less volatile periods.

Other researchers have also demonstrated that profits of economic significance can be

made within the FX market via different approaches, see Lee and Loh (2002), Qi and Wu

(2006), Gradojevic (2007), Corte et al (2016), and Hsu et al. (2016). These approaches

include the currency volatility premium approach, ANN and hybrid ANN models, the

Genetic Algorithm approach and the technical trading methodology.

4.1.3 Research questions, challenges and main focus

As is discussed in Section 4.1.1, researchers can select as many variables (known as input

neurons) as they desire for an ANN model. Therefore, they can base their forecast on

more information about the market - the very challenging and complicated FX market.

Another advantage of an ANN is that apart from input and output neurons, it also has one

or more in-between levels of variables called hidden layers. The addition of the hidden

layers (originally designed to mimic the way human brain works) greatly increases the

maximum complexity the model can reach hence significantly boosts the interpretability

of the model. However, as the number of input and hidden neurons increases, the total

number of coefficients to be estimated increases at a much faster speed. This will cause

the slow computation problem.

The research questions of this chapter are (i) whether an increase in the number of neurons

in the input and hidden layers will improve forecasting performance and the implications

of the forecasting performance for the EMH, and (ii) by how much computation efficiency

will be improved with the help of GPU as the number of neurons increases and potential

problems arise with the GPU technique in the training process. There are three focuses
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within these research questions. The first focus is the prediction of financial asset prices,

typically FX rates. The second focus is a discussion and development on the prediction

models - ANN with a large number of input and hidden neurons. The third focus

considers computation power with the employment of GPU for the purpose of efficiency

enhancement and computation time reduction.

To achieve the target there are several challenges to overcome. The first challenge is

that a financial asset has far more features (potential input variables) than many other

areas that ANN is frequently applied in (such as speech or photo recognition) therefore

selecting the input variables is a challenging task. Secondly, a challenge arises because

the GPU works in a way such that it utilises a different language from the underlying

programming language (R in this research) and requires special communication with the

computer’s main system. Several programmes including Anaconda, CUDA, Cudnn, all

in the right versions without being incompatible with each other, need to be installed and

maintained routinely to make sure there are no version conflicts due to version update.

The third challenge lies in the programming process whereby in addition to programming

in the main language (R), in order to facilitate GPU and utilise the open-source library

(Keras73), a new language (created specifically for Keras based on Python) needs to be

fluently mastered.

Readers should be aware that the main focus of this research is to explore a newly

developed area (GPU computing) and facilitate its use for predicting FX rates with

large ANN models. In terms of published research, this has not been done as widely

in the financial market as in other areas. In addition, programmes and procedures will

be designed and enhanced such that they complete the heavy computation tasks within

a reasonable time. Performance evaluation metrics such as forecasting accuracy and

73Keras is an open-source library aiming at improving training efficiency in ANN models by using more

efficient codes and allowing for the use of GPU.
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annualised returns are used as key factors to evaluate the model performance and build

up a reasonably profitable model but maximising these metrics to a highly profitable

level is not the main target of this research.

To briefly preview the chapter’s findings, the key outcomes of this research include: (1)

For the four currency pairs researched (GBP/USD, EUR/USD, USD/JPY, USD/CHF),

the MLPNN models with 28 up to 210 neurons are able to produce significantly better

out-of-sample forecasting results in terms of accuracy (a maximum accuracy of 62.5%)

and annualised return (a maximum annualised return of 6.9%) than traditional MLPNN

models built for FX modelling with 5-10 neurons and the benchmark logistic regression

model. The significant out-of-sample abnormal returns provide evidence against the

semi-strong EMH. Out of the four markets, the Swiss market exhibits the least extent of

(semi-strong form) inefficiency; (2) Computation with GPU saves computation time by

over 23% on average and can save up to nearly 33% when the GPU memory is not fully

occupied; (3) GPU computation time increases dramatically (faster than exponential

increment) after its inbuilt memory is full but still saves more than 20% time compared

with CPU computation even when the GPU is at its worst performance.

The remainder of the chapter is organised as follows. Section 4.2 includes contextual

literature on ANN, the FX market, and ANN applied in the FX market. Section 4.3

describes the methodology (and related empirical literature) applied in this research

including the MLPNN74 model used for classification problems, the Keras library and

GPU computing. In Section 4.4, data used in this research are described in terms of

their source, structure and variable selection. Section 4.5 contains the main modelling

process presented in the order of the process (parameter tuning, training, testing). The

final section 4.6 concludes the chapter and suggests potential future research directions.

74MLPNN refers to the Multilayer Perceptron Neural Network. It is a type of ANN that contains

multiple layers (input, output and hidden) of neurons.
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4.2 Literature review

A few frequently mentioned performance metrics are described and defined below. All

of these metrics measure the deviation of the predicted value from the actual value, and

they are useful in evaluating how well a model performs, regardless of whether it’s a

time series model or an ANN model.

Sum Squared Error (SSE): the sum of the squared errors.

Mean Squared Error (MSE): the average of the squared errors.

Root Mean Squared Error (RMSE): the square root of the average of the squared errors.

Mean Absolute Error (MAE): the average of the absolute values of the errors.

Mean Absolute Percentage Error (MAPE): the average of the absolute percentage errors.

SSE =
n∑
i=1

(ŷi − yi)2, (4.1)

MSE =
1

n

n∑
i=1

(ŷi − yi)2, (4.2)

RMSE =

√√√√ 1

n

n∑
i=1

(ŷi − yi)2, (4.3)

MAE =
1

n

n∑
i=1

|ŷi − yi|, (4.4)

MAPE =
1

n

n∑
i=1

| ŷi − yi
yi
|, (4.5)

where ŷi is the predicted value of the ith observation and yi is the actual value of the ith

prediction. n is the total number of observations to be predicted.
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4.2.1 ANN models

ANN in financial forecasting

As a recent overview on the research topic of machine learning, Emerson et al. (2019)

provide a summary of the literature on the machine learning technique in the area of

quantitative finance. According to their research, return forecasting is the most frequently

researched theme of machine learning, followed by portfolio construction, ethics, fraud

detection, decision-making, language processing, and sentiment analysis. In terms of

machine learning techniques, MLPNN is the most frequently utilised and researched

technique, followed by Support Vector Machine (SVM), Long Short-Term Memory

(LSTM), Gated Recurrent Unit (GRU), Recurrent Neural Network (RNN), Convolutional

Neural Network (CNN), Random Forests/Decision Trees (RF/DT), Gaussian Process

Regression (GPR) and Logistic Regression (LR). Both the most frequently researched

theme (return forecasting) and the most popular technique (MLPNN) are pursued within

the research direction and technique of this chapter. 75

In addition to the widely used ANN models mentioned in the previous paragraph, re-

searchers have also implemented modified versions of these models in order to improve

forecasting performance. Cao et al. (2019) combine a CEEMDAN (complete ensemble

empirical mode decomposition with adaptive noise) algorithm with a LSTM neural

network. An EMD (empirical mode decomposition) is an adaptive signal time-frequency

processing method that decomposes the series into a finite number of intrinsic mode

functions. A CEEMDAN is a modified version of EMD that aims at reducing reconstruc-

tion errors of an EMD. The hybrid CEEMDAN-LSTM model is compared against the

benchmark LSTM model. Empirical results show that their proposed model gives better

forecasting results on 4 stock indices (S&P 500, HSI, DAX and SSE) in terms of MAE,

MAPE and RMSE.

75For more general details on ANN (MLPNN) refer back to Subsection 2.2.2.
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Two other recent research papers also focus on forecasting stock indices. The first is Tran

et al. (2018), who forecast stock prices with a temporal attention augmented bilinear

network. The layer structure they propose includes the formulation of an attention

mechanism, which encourages the competition between neurons representing the same

feature at different time instances. Based on forecasting results of 5 different stocks in

NASDAQ Nordic coming from different industrial sectors, they show the effectiveness

of their proposed model over SVM, CNN and LSTM in terms of forecast accuracy, even

with only two hidden layers. Their research suggests that the ANN can work well even

with very few hidden layers. This result helps in deciding to use a small number of

hidden layers in this research in order to save computation time.

The second recent paper aiming at forecasting stock indices is Mo and Wang (2018).

They propose a stochastic time strength neural network (STSNN) model to forecast stock

indices from China and USA. They utilise a stochastic time strength function, giving a

weight to each of the data points, to make the model exhibit some level of randomness.

The empirical results show that the STSNN model outperforms the benchmark back

propagation neural network (BPNN) in terms of RMSE, MAE and MAPE.

Apart from the "model-design" research direction (building up different types of ANN

models), another direction is the "parameter-optimisation" (looking for the optimal

number of parameters to be used in a given model). Kaastra and Boyd (1996) discuss

that the large number of parameters to be estimated in a neural network means that the

modelling process involves much trial and error and the trade-off between estimation

performance and computation time exists as in many other types of models. A few

other papers overlook the power of a large ANN with many neurons by pointing out the

overfitting problem. While this paper puts forward the computation time problem that a

large neural network generally faces, it confirms the extra performance improvement a

large ANN can bring. This helps in forming the motivation of exploring large ANN in
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this chapter.

A more precise research on the optimal number of input and hidden neurons is Zhang

and Hu (1998). They examine the effects of the number of input and hidden neurons

in an ANN for the prediction of the GBP/USD currency pair. With RMSE, MAE, and

MAPE as the performance measures, they show that the ANN becomes more powerful

in modelling the data as the number of hidden nodes increases. As the number of input

nodes increases, the performance from the test set enhances first and then worsens,

suggesting that too many input nodes may reduce the ability of generalisation of the

model. Similar to Kaastra and Boyd (1996), the conclusion of this research that an

increase in the number of input and hidden neurons makes the ANN more powerful

provides support and motivation for this chapter. On the other hand, Zhang and Hu

(1998) only compare ANN with hidden neurons from 4 up to 20, possibly due to the

limitation on computation power at the time of their research. It is now reasonable for

researchers today to expand this range to test the performance of neural networks of

much larger sizes.

Unlike all pre-mentioned papers which aim at forecasting the exact values of a financial

asset, Chen et al. (2003) model and predict the direction of returns on the Taiwan Stock

Exchange with the Probabilistic Neural Network (PNN) model. Comparison is made

with the Generalized Methods of Moments (GMM) and the random walk model. Given

a buy-and-hold trading strategy, the PNN model obtains higher returns than the other

two models. One advantage of predicting the direction of return rather than the value of

return is that a trading strategy can be easily implemented and therefore trading returns

can be obtained as a practical performance metric, in addition to statistical metrics such

as MAE, RMSE and MAPE.

Principal Component Analysis (PCA)76 is a frequently used tool in machine learning

76PCA is a procedure that uses an orthogonal transformation to convert a number of (possibly) correlated
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for the purpose of dimensionality reduction. It helps to reduce the number of variables

without losing too much information, by absorbing some of the useful information into

the transformed components. Wang and Wang (2015) apply PCA on the input data and

then forecast several stock indices with a Stochastic Time Effective Function Neural

Network (STNN). Comparison is made of the proposed model with a traditional back-

propagation ANN model. The proposed model achieves better results than the benchmark

model in terms of MAE, RMSE and MAPE.

The same authors (Wang and Wang (2016)) use a recurrent neural network for forecasting

crude oil prices. The model they use, Elman Recurrent Neural Network (ERNN), is a

time-varying predictive control system which has the ability to keep memory of recent

information for future prediction. They use Complexity Invariant Distance (CID) instead

of traditional metrics such as MAE, RMSE and MAPE as the performance measure.

The proposed model outperforms traditional back-propagation ANN models in terms

of CID. A similar paper by Wang et al. (2016) utilises the same model with the same

performance measure CID. They apply their model on stock indices such as SSE, TWSE,

KOSPI and Nikkei 225 and their model again produces better forecasting results than the

benchmark model (back-propagation ANN) in terms of CID.

Repetitive training, discussed in detail in Chapter 3 and also to be implemented in this

chapter, is an essential yet often omitted process in the training of ANN models (and

many other models which involve parameter estimation). Without the repetitive training

process, the training performance can be very unstable, due to the randomness in choosing

initial values of the parameters to be estimated. Chen et al. (2017) propose a novel

double-layer ANN for forecasting prices of 100 stocks with the largest capitalisation

from the S&P 500. Their proposed model allows updating over time to achieve the best

goodness-of-fit. They also train their model several times to increase the stability of

variables into a (smaller) number of uncorrelated variables called principal components.
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the model. Their trained model produces significantly better results than the normal

double-layer ANN, in terms of prediction accuracy and returns.

ANN compared with time series models

With the fast development of GPU computing in recent years, more attention has been

drawn to ANN models. Compared with time series models, ANN models have greater

interpretability of data due to their ability in adding a large number of input and hidden

neurons.

Researchers have made performance comparisons of the ANN models and time series

models within several circumstances. Kaytez et al. (2015) utilise both regression

models and ANN models to predict electricity consumption in Turkey and ANN models

significantly outperform regression models in terms of Maximum Error (ME), Mean

Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared

Error (RMSE), Sum Squared Error (SSE) and Receiver Operating Characteristic (ROC)

analysis.

Another application is also carried out on non-financial time series. Oshodi et al. (2017)

compare the performance of Box-Jenkins models and ANN models in forecasting tender

price index77 of Hong Kong. Their empirical results suggest that the ANN outperforms

the Box-Jenkins model in terms of MAPE.

Here are two examples of performance comparisons based on financial datasets. Cocianu

and Grigoryan (2015) compare the performance of an ANN model against standard

ARIMA models on predicting 300 weekly stock prices. The ANN model significantly

outperforms standard ARIMA models in terms of MSE. Singh and Mishra (2015) model

commodity prices with an ARIMA model and an ANN model. Criteria for comparing

77Tender price index is a measure that tracks movements in construction costs over time.
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forecasting accuracy include MAE, MAPE, MSE and RMSE. They use monthly prices of

groundnut oil in Mumbai from April 1994 to July 2010. The ANN model outperforms the

ARIMA model significantly. They attribute the outperformance to the chaotic behaviour

the data exhibits which cannot be fully captured by the linear ARIMA model.

Large ANN models

A typical ANN has an input layer, an output layer and one or more hidden layers, all

of which contain nodes called neurons. While the number of neurons in the input and

output layers will be fixed once the input variables and output variable(s) are determined,

the number of neurons in the hidden layers is fully decided by the researcher’s choice.

Around one or two decades ago most researches use 3-10 neurons in the hidden layers,

or 5-15 neurons in total for ANN models.

For example, Yao and Tan (2000) apply ANN models with the number of input neurons

ranging from 9 to 11 to forecast foreign exchange rates. They show that useful prediction

can be made without the use of extensive market data or knowledge. Dunis and Williams

(2002) use an ANN with 9 input neurons to model and forecast foreign exchange rates

and confirm its potential in forecasting EUR/USD returns for the period investigated.

Guresen et al. (2011) model and forecast stock market indices with several ANN models

(with 4-6 input neurons) including MLP and dynamic artificial neural network (DAN).

Some believe that a smaller number of neurons works better because they couldn’t

investigate that many neurons due to limitations on computation power. Especially

during 2016-19, computation power has strengthened dramatically, in terms of both

software (open-source libraries built specifically for ANN modelling) and hardware

(high-end General Purpose Graphics Processing Units - GPU).

Large ANN models refer to those with a large number of neurons, typically over 100

neurons in each layer. These large ANN models have been built in a wide range of areas
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such as text classification, image recognition, sound recognition and many others. Recent

papers in the above-mentioned areas include Lai et al. (2015), Piczak (2017), Maggiori

et al. (2017), Salamon and Bello (2017), Ju et al. (2018), Le et al. (2018), and Kum

and Nam (2019). While large ANN models have been applied in a wide range of areas

mentioned above, they have not been applied nearly as much in the finance area. Just as

ANN was applied in finance almost three decades after it had been applied in biological

and computational areas, there is a time lag (maybe not as long as three decades) for

large ANN models to be applied in finance as well because it is very difficult to select a

large pool of influential variables from an ocean of variables consisting of all kinds of

economic, financial, political and market information.

4.2.2 The foreign exchange market

Since the asset class researched in this chapter is foreign exchange (FX) rates, some

recent literature on the FX market forecasting context is reviewed and discussed below.

During periods when major events happen, jumps in the FX rates are very likely to occur.

Piccotti (2018) discusses how the FX market changes before and after an exchange rate

jump event happens. By conducting event studies, he finds that before an exchange rate

jump event happens, quote volume, illiquidity, signed order flow, and informed trades are

at higher levels and after an exchange rate jump event happens, quote volume and return

variance remain at higher levels while illiquidity, informed trade, and signed order flow

are at lower levels. The result reveals that jump events are consistent with rational dealer

quoting behaviour. This research suggested that variables that contain information on

volume, order flow, liquidity can be used for modelling price changes, especially during

price jumps.

Cheung, Fatum and Yamamoto (2019)78 focus on what news could have caused those

78A full list of authors is provided instead of Cheung et al. (2019) to differentiate from another Cheung
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jumps. They conduct a study on whether the effects of macro news on FX rates are time

and state- dependent. They compare the influence of US and Japanese macro news on

USD/JPY quotes before, during and after the financial crisis from 1 August 1999 to 31

August 2016. Their results suggest that while the US news became more important than

before the crisis, Japanese maco news became near irrelevant. While it’s a great idea

to forecast FX rates with news on its own by using structural models, it is practically

difficult to include both news information and variable values in a single ANN model.

This is because some news is too important to exclude but also too difficult to quantify

and to be used as input neurons of an ANN model.

A few other recent papers focus on exploring the relationship between the FX rates

and prices of other financial assets such as oil price and stock prices, and macroeco-

nomic indicators such as risk-free interest rate and inflation. Utilising multivariate

Markov switching vector autoregressive (MS-VAR) models, Roubaud and Arouri (2018)

find significant non-linear interrelations between currency, oil and stock markets and

interrelations are stronger in volatile periods.

Bai and Koong (2018) show that the US dollar index is negatively correlated with oil

price shocks and positively correlated with stock price shocks, by using a diagonal

BEKK (Baba, Engle, Kraft, and Kroner (1991)) model. With different models (VARs

and GARCH), Mollick and Sakaki (2019) find similar results on the correlation between

changes in the US dollar rates with oil price shocks and stock price shocks. In addition

to also suggesting the negative relationship between exchange rates (based on USD)

and oil prices, Yang et al. (2018), with the dynamic conditional correlation-mixed data

sampling (DCC-MIDAS) model, present research on the relationship between exchange

rates, risk-free interest rate and inflation. They find that the risk-free interest rate has a

positive effect on FX rates while inflation is negatively correlated with FX rates.

paper in the same year with different co-authors.
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In this context, the inflation rate (one of the most widely used measures of inflation

is the Consumer Price Index - CPI) is very important. Engel et al. (2019) study the

interest parity puzzle and FX rates forecasting. Their research results suggest that the

US inflation variable is highly significant in forecasting changes in the US exchange

rates (high inflation in one month forecasts appreciation in USD in the next month)

while the interest rate differential is not significant in forecasting the US exchange rates.

This research guides us on how macroeconomic indicators affect FX rates and equally

importantly the effects are shown to exist on a monthly basis.

All of the above papers on the relationship between macroeconomic indicators and FX

rates provide useful suggestions on what variables could be chosen as input neurons for

an ANN in predicting FX rates. Examples of influential variables suggested by these

papers include oil prices, stock prices, interest rates and inflation rates.

One of the important purposes of forecasting FX rates is trading. Cao et al. (2019)

explore the FX rate predictability by using a generalised (term structure) model to

capture dynamics between the risk premium component of FX rates and a wide range of

variables. They also evaluate statistical and economic significance of the model and find

that the model generates performance returns at 6.5% per annum.

Apart from forecasting the actual FX rates one can also forecast the direction of change

of FX rates. By forecasting the direction of change it’s easier to implement a simple

Buy-Low-Sell-High trading strategy and thereby to use trading performance as a new

evaluation metric for a wider assessment. In Cheung, Chin, Pascual and Zhang (2019),

forecasting the direction of change is one of their research questions. They expand

traditional exchange rate models e.g. Meese and Rogoff (1983) and Cheung et al. (2005)

to include Taylor rule fundamentals, yield curve factors, and to incorporate shadow

rates, risk and liquidity factors. They compare the performance of the proposed models

with that of a random walk benchmark. The models are examined at different forecast
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horizons (1 quarter, 4 quarters and 20 quarters) using several metrics (MSE and direction

of change). They find that with MSE, no model consistently outperforms a random

walk with statistical significance. However, with the direction of change metric, certain

structural models do outperform a random walk with statistical significance. This research

supports this chapter’s decision to forecast the direction of change rather than the actual

value/return value of FX rates because models should be implemented to forecast what

they are best at modelling rather than what they are bad at forecasting.

4.2.3 ANN in forecasting foreign exchange rates

In the finance world, although ANN models have been introduced for over 15 years,

the reported sizes of the ANN models remains small relative to those models used in

the above-mentioned non-financial areas. This is true especially in the modelling and

predicting of foreign exchange (FX) rates. ANN models are utilised for modelling FX

and other financial assets as a result of their strong interpretation power. Designed as a

mimic to the human brain, although the complexity of an ANN with current computing

power is nowhere near that of a human brain, it is able to learn from a large dataset (tens

of millions of observations) in days or even hours whereas it would take at least years, if

not longer for a human to learn from a dataset of a similar size. Existing literature on

modelling FX rates with ANN models is discussed here.

Among the earliest research on using an MLPNN to forecast FX rates is Yao and Tan

(2000). They use a traditional rescaled range (R/S) analysis to test the "efficiency" of

several currency markets, and they show that without the use of extensive market data or

knowledge, useful prediction can be made for out-of-sample data with simple technical

indicators. However, the data frequency they adopt is the weekly data which means the

number of observations they have for both the training and test sets is small. The ANN

they applied all have only three layers (one input layer, one hidden layer and one output

layer) with an average of only 9 neurons in total in each model. To estimate datasets of
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larger sizes and increase estimation accuracy in the longer term, a more complex model

with more neurons is needed.

Unlike Yao and Tan (2000) who use technical indicators as the inputs of the neural

networks, Dunis and Williams (2002) choose lagged values of different indices such as

stock market price indices, 3-month interest rates, 10-year benchmark bond yields, Brent

Crude oil price and gold bullion price. To model and forecast the currency pair EUR/USD,

they build up a MLPNN with some of the above-mentioned indices as input neurons

against benchmark models such as the Naive strategy, the Moving Average Convergence

Divergence (MACD) strategy, ARMA and Logit models. The MLPNN produces the

highest correct directional change forecast rate and also the highest annualised return.

Unlike most other research where the main focus is on predicting the future values of FX

they focus on forecasting the moving direction of future prices. The key methodology

difference between these two directions is that a value-based research uses regression-

type models while a direction-based research utilises classification-type models, in which

the two types of models differ from each other mainly by the loss function. More

details related to this issue will be discussed in the methodology section. Cheung, Chin,

Pascual and Zhang (2019) support the use of direction-based models by finding that

certain structural models outperform a random walk with statistical significance along a

direction-of-change dimension.

In addition to modelling FX rates, FX volatilities are also modelled with ANN. Nag

and Mitra (2002) build up a Genetic Algorithm Neural Network (GANN) to forecast

GBP/USD and EUR/USD. Lagged returns are inserted into the model as input neurons.

A significant improvement is achieved over traditional time series models (for volatil-

ity modelling) such as ARCH(1), GARCH(1,1), AGARCH(1,1) EGARCH(1,1) and

GARCH(1,1)-M, according to MAPE, MSE, Max AE and R-SQ.

All of these ANN models applied in FX modelling adopt a relatively small number (fewer
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than 20) of neurons compared to other areas. Smaller ANN models have the advantage of

being easy to interpret, fast to train and simple to improve. However, since most would

agree that the FX price patterns are no less trivial than a voice recognition problem or a

photo classification problem, it is reasonable to think that modelling the FX prices with

larger ANN models would produce better forecasting results. Another perspective from

which we can see this topic is that an ANN essentially mimics the human brain in the

learning process. Therefore a larger ANN represents a more powerful brain and stronger

learning abilities.

Table 4.1 presents a summary of key papers including their year of publication, research

contents and link with this chapter. Support from previous research papers on the use

of large ANN models (or more specifically large MLPNN models) has been discussed,

together with the advantage of using ANN to predict directions of price movement. In

Section 4.3, the detailed methodology of MLPNN models for classification problems,79

packages for computing with ANN, and GPU computing will be discussed.

79Predicting direction of price movement is a special case of a classification problem where only two

classes exist - the price either goes up or down. The situation when no price change occurs is not considered

because no transaction will be placed in this case anyway.
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4.3 Methodology and related empirical literature

4.3.1 MLPNN for classification problems

An MLPNN model usually contains at least three layers: one input, one output and one

or more hidden layers. All input neurons are computed such that a weighted sum of the

neurons are passed into the next layer. This process goes on until the output layer is

reached. During the process each weighted sum is transformed using a function called

the activation function.80 An MLPNN, as the name suggests, distinguishes itself from

a linear perceptron by its multiple layers and non-linear activation functions.81 Typical

activation functions include the hyperbolic tangent function, the logistic function and

the Rectifier Linear Unit (ReLU) function. These three types of activation functions are

defined as below.

Hyperbolic tangent function:

f(x) = tanh(x), (4.6)

Logistic function:

f(x) = (1 + e−x)−1, (4.7)

ReLU function:

f(x) = max(0, x). (4.8)

Both the hyperbolic tangent and the logistic function are called a sigmoid function (a

function with "S-shape"). Despite being smooth functions (differentiable everywhere),

sigmoid activation functions have the advantage of less complex implementation. Chung

et al. (2016) make a comparison between the performance of the ReLU and sigmoid

functions in handwritten digit recognition. In their empirical research, the model with

80Activation function: a function that transforms the weighted sum (could be a very large or very small

number) into a value within a smaller range, i.e. (0,1) with the logistic function.

81Refer to Chapter 2 for more details on MLPNN.
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sigmoid functions predicts at an error rate of 7.93% while the model with ReLU functions

predicts at an error rate of 1.99%. Their handwritten digit recognition task is essentially

a classification problem. For example, if English is the underlying language then the

number of classes is 26 (or 52 if upper and lower cases are considered differently) because

there are 26 English letters. Therefore the ReLU function is used as the activation function

for this chapter to predict direction of price movement, which is also a classification task.

For the prediction of the direction of FX rates movement with classification models,

the y-variable has two levels (classes). It is equal to 1 if the price goes up in the next

forecasting period and 0 if the price goes down or stays unchanged. For each prediction

made the forecast class is either right or wrong. Therefore researchers often use the

overall accuracy rate as the measure of performance and generally accuracy greater

than 50% suggests potential profitability and accuracy exceeding 60% may very likely

generate stable and significant profits in the forecasting period.82

To justify the decision of predicting direction (of price movement) rather than values of

FX rates, another type of model called a regression model is introduced. A regression

model, despite potentially being able to predict actual values of FX rates, encounters

difficulty in measuring its trading performance. The most widely used performance

metrics for regression models include Mean Squared Error (MSE), Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error

(MAPE). These metrics are straightforward to calculate and have the ability to measure

the overall performance to a certain extent. However, none of these types of metrics

is able to differentiate the correctly-predicted-direction errors and wrongly-predicted-

direction errors. To be more precise, a proper performance metric should work in a

82The trading strategy used is very simple: buy if the FX rate is predicted to increase and sell if the FX

rate is predicted to decrease. More sophisticated trading strategies could be studied in the future but will

not be focused on in this chapter.
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way such that models generating similar values of the performance metric should be

able to produce a similar level of potential profitability given a certain trading strategy.

However, since all the above-mentioned metrics treat errors the same way (by summing

up, squaring, averaging or taking square root), regardless of whether the direction of

movement of the FX rate is predicted correctly. For example, if the direction of FX

rates movement is predicted wrongly then a higher error means more losses while if the

direction is predicted correctly then a higher error actually means more profits. Being

incapable of considering the difference between these two situations limits the practical

value of the regression-type models, especially from the trading perspective. For this

reason, classification-type models will be considered in this research.

Different types of ANN have been widely applied in areas such as text classification e.g.

Lai et al. (2015), Le et al. (2018), image classification, e.g. Maggiori et al. (2017), Ju et

al. (2018) and voice/sound classification, e.g. Piczak (2017), Salamon and Bello (2017),

Kum and Nam (2019). In the area of finance, the published research is much more

limited. Examples include Tang et al. (2018), in which a neural network model is applied

in credit classification analysis, i.e. whether a bank should approve a loan application

from someone, given the information the bank collected from the person (for example

employment, wage, age, education, and other factors). Sezer and Ozbayoglu (2018) apply

a Convolution Neural Network (CNN) to image analysis (graphs of technical trading

indicators) for the purpose of classifying trading decisions (Buy/Sell).

To determine which type of ANN to use, one aspect to consider is what information is

used as inputs and what result is to be predicted. If the complexity of output is far more

than that of the inputs then the model could be over-simplified and any good predicting

result could be due to pure luck. This brings the limit of a Recurrent Neural Network

(RNN) and a Convolution Neural Network (CNN) in the world of finance, which arguably

generates the most complicated patterns of data. RNN typically works with time series
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data and the information it contains as inputs are past values of the dataset so that nothing

other than the time series itself is included. The CNN, although it is capable of analysing

very complex graphs, the number of indicators on which the graphs are based is normally

very small. In both types of models, the information used as inputs is too limited to

produce a well-performing and long-lasting model. An MLPNN model, despite being

longer established compared with some other neural networks, has the advantage of

being able to include as many variables as the model builder can justify for inclusion.

Therefore with an MLPNN model, much more information can be inserted as inputs

of the model to increase its prediction power. The potential overfitting problem due

to the inclusion of irrelevant variables is addressed in the modelling process in a later

subsection.

4.3.2 An introduction to Keras for neural network modelling

As is discussed in the previous section, if the overfitting problem can be dealt with

properly, then the more variables to include as inputs the better because one cannot

be worse off by holding more information about the market. A reasonable question

may arise: if the use of more input variables can generate potentially better models,

why haven’t previous researchers used a 30-variable MLPNN? Instead they typically

only used 5-10 variables as inputs. One reason is that selecting a large number of

possibly influential variables from a pool of a vast number of variables is a difficult

and time-consuming task. Another reason is the limitation on computation power. The

computation power of even just 3-5 years ago, is non-comparable to what has been

achievable in the past two years. The term computation power refers to both software

and hardware aspects. In this section, the software aspect is discussed and the hardware

aspect will be focused on in the next section.

To understand why computation power matters so much in this kind of research problem,
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a simple calculation is made on a 3-layer MLPNN in which the input layer has 5 variables

(n1), the output layer has two classes (n3) and the only hidden layer has 3 neurons (n2).

Then even for this very simple MLPNN, the number of parameters to be estimated is:

n1 × n2 + n2 × n3 = 5× 3 + 3× 2 = 21 (4.9)

The estimation process developed in the first chapter takes around 3 hours in R to estimate

a model with just 6 parameters. Turning to a faster programming language such as C++ or

Java could boost the computation speed. According to Aruoba and Fernandez-Villaverde

(2014), C++ runs the fastest among Fortran, Java, Julia, Python, Matlab, Mathematica

and R 83 in solving a stochastic maximisation problem, about 3.66 to 5.41 times faster

than R and 1.24 to 1.64 times faster than Matlab. However, not many research papers

use C++ as the programming language because it does not have inbuilt packages such

as ANN, regression, and third-party libraries such as Tensorflow and Keras (described

below), all of which are implemented in R and Python.

Open-source libraries accelerate the estimation process dramatically. Keras, an open-

source neural network library, was initially released in 2015 and its stable version was

released in late 2018. It is a very new tool designed to enable fast modelling with

neural networks. Keras is based on a neural network modelling tool called Tensorflow

(developed by Google) and can be implemented in several languages such as python and

R.84

Because of the way Keras and Tensorflow are programmed the training time of large

models is reduced significantly. This speed-up therefore enables us to work with large

83Matlab, Mathematica and R are technically not traditional programming languages as the others.

They are software with many user-friendly mathematical/statistical packages. The term "programming

language" is used because all these software have their own grammar of programming and compile at

different speeds, just like the traditional programming languages.

84Keras-GPU in R: https://tensorflow.rstudio.com/tools/local_gpu.html
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models which are impossible to be estimated within a reasonable time a few years ago.

Choi et al. (2017) utilise the Keras library for audio and music signal preprocessing,

with a 5-layer neural network (around 160,000 parameters to be estimated in total) and

achieved an average training time of only around 450 seconds.

4.3.3 CPU vs GPU computation

The Keras library has two versions: a CPU version and a GPU one. The GPU version

needs an NVIDIA GPU together with a parallel computing programme developed by

NVIDIA for general computing on graphical processing units called Compute Unified

Device Architecture (CUDA).

Computations done in most of the previous researches, without specifically pointing out,

are conducted on computer CPUs. While the development of CPU has been constantly

fast, the number of cores (reflecting the ability of conducting parallelisable tasks) has

only increased from a typical single-core 20 years ago to a 32-core one as one of the

top-end CPUs today. Considering the performance boost of each single core during the

years, the improvement is a great achievement in terms of computation power for data

researchers.

However, this core-number based boost is not even close to what the GPU has gone

through. Up to today, a top-end GPU can easily have over 5000 cores. To see how this

core boost makes the difference, imagine a 32-core CPU as a team of 32 professors and

the 5000-core GPU as a team of 5000 high school students. Which team performs better

depends on the type of task to be completed. If the task is to publish 100 academic

papers then the team made of professors should excel because of the complexity of the

task and non-parallelism of the task, meaning that all 100 papers are different in terms

of level of complexity and also time to complete. However, if the task is to conduct
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10000 addition and subtraction calculations within the range 1-100, then the team of high

school students definitely has an upper end because the task is parallelisable.

A parallelisable task refers to one which can be split into parallel and simpler tasks. For

estimating parameters of neural networks, the task is highly parallelisable because it

simply involves trying a large number of values for the parameters to achieve a smaller

loss function. While the difference between a CPU and GPU in completing a non-

parallelisable or even lowly-parallelisable task is small, the difference could be very

significant as the level of parallelisation goes up.

Several research papers make a comparison of CPU and GPU computation speeds in

different circumstances. Li et al. (2015) utilise a CNN for face detection and conduct the

training process on both a CPU and a GPU. The GPU completes the training process 7

times faster than the CPU in estimating their CNN. Han et al. (2016) make a comparison

on the performance of a CPU and GPU on the same deep neural network and report a

14.5 times speed-up by the GPU over CPU. Coelho et al. (2017) examines the power of

GPU computing on time series forecasting.Their GPU strategy appears to be scalable as

the number of time series training rounds increases. An average of 15 times speed up is

achieved using GPU and a maximum of 45 times speed up is observed with GPU as the

number of time series training rounds increases. McNally et al. (2018) apply a Recurrent

Neural Network (RNN) and a Long Short Term Memory (LSTM) to predict the moving

direction of Bitcoin prices. The training process takes 67.7% less time on a GPU than on

a CPU. The reason for this smaller improvement of GPU over CPU than Coelho et al.

(2017) is that the RNN and LSTM estimated in this research are path-dependent therefore

much less parallelisable than other types of neural network and time series models. For

all of the above research, the GPU leads to a speed-up in the training process. However,

the extent of the speed-up varies according to the usage of different CPU/GPU devices

and different levels of parallelism of the tasks.
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In Section 4.4, the data used for this research will be discussed in detail, including the

source of data, how the data is re-structured to work for MLPNN and summary statistics

of the data.

4.4 Data explanation

4.4.1 Data source

All data mentioned in this subsection are collected from Thomson Reuters Datastream.

The initial response variables (y) include four monthly foreign exchange rates GBP/USD,

EUR/USD, USD/JPY, USD/CHF from 1 January 1999 to 1 December 2018, a total of

240 observations per currency pair. Although the number of observations is not large,

the time period covers less volatile periods as well as extremely volatile periods (for

example financial crisis in 2008, European sovereign debt crisis between 2010 and 2012

and Brexit referendum in 2016). Any strong performance of the model is very unlikely

to arise due to pure luck because sustaining good performance would be achieved even

in the toughest and most unpredictable economic conditions.

42 explanatory variables (x) are selected and collected at the same frequency within the

same period as the response variables. A list of the explanatory variables is provided in

the Appendix. There is no missing value for the whole dataset, due to the high reporting

disclosure in the relevant economies.

The main reason for using monthly data (not higher frequencies such as weekly or daily)

is that many of the explanatory variables are macroeconomic indicators collected at

monthly or even quarterly frequency. Utilising higher-frequency data would exclude

many of these explanatory variables from the model and therefore deviate from one of

the main targets of this chapter - working with large ANN models in terms of the number

of input and hidden neurons.
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4.4.2 Generation of the response variable

Since it is the direction of price movement rather than actual prices to be modelled, the

initial response variables (FX rates) are transformed such that two classes are created to

represent price moving up or down (or staying unchanged) in the following month. Since

it is monthly data to be worked with, the likelihood of an unchanged price from month to

month is very low. Therefore a third "unchanged" class is not created but combined with

the "down" class.85

4.4.3 Selection of the explanatory variables

The selection of variables as inputs of neural network or time series models can be

informed by prior literature including Zhang and Hu (1998), Panda and Narasimhan

(2007), and Sermpinis et al. (2012), all of which utilise lagged FX values as inputs

for their time series models. Dunis and Williams (2002) take several financial indices

include FTSE100, DAX30, S&P500, Nikkei225, CAC40, Gold Bullion, Brent Crude as

input variables for a neural network for the modelling and prediction of EUR/USD.

Stock indices suggest, to a certain extent, how well the economy is doing and a good

stock market condition usually comes as a result of a booming economy. A similar

situation exists for CPI and interest rates as normally a strong economy accompanies

with higher CPI and reducing interest rates is often used as a tool to boost a bad economy.

It is usually the case that during bad economic times the currency tends to be weaker and

during good economic times the currency tends to be stronger. Therefore stock indices,

CPI and interest rates, all of which are indicative of the economic condition of a country,

should also be suggestive of the strength of the currency.

As for the oil price, due to the fact that different economies rely on oil at different levels,

85For the time period researched in this chapter, none of the 4 currency pairs has any zero-movement on

a monthly basis.
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currencies might react differently to a change in oil prices. Gold and government bonds

are usually considered as an alternative to the stock and FX markets and also as the safe

haven when economic condition is very bad or highly risky, which causes high volatility

in the FX and stock markets. Therefore some level of correlation may exist between gold

prices, interest rates86 and FX rates, see Sjaastad and Scacciavillani (1996), Baur and

McDermott (2010), and Hameed and Rose (2016).

The 42 variables selected for this research include main stock indices of the countries

involved87, lending/borrowing rates of countries involved, bond prices, CPI, Crude Oil

prices, Gold Bullion and volatility indices. A list of Datastream variable ID is provided

in the Appendix. All these variable are collected at the same frequency for the same

period of time as the FX rates mentioned above. Summary statistics of the 42 variables

are provided in Tables 7.3 - 7.4 in the Appendix.

All of the explanatory variables enter the model in levels (after standardisation) rather

than differences. For ANN models, what goes into the model as inputs is essentially

information. Levels are used as inputs in this chapter because they contain all information

that differences hold.88 Another reason for using levels as inputs is that unlike time series

models which usually require the data be stationary89 (and differencing data increases

the level of stationarity), ANN models do not impose such restrictions on the input data.

With a large number of input variables, it is reasonable to implement feature selection on

the dataset, i.e. only include those input variables which have more dominant effects on

86For a discussion of the relationship between FX rates and interest rates as a result of the Interest Rate

Parity (IRP), refer to Subsection 2.1.4.

87For example when modelling GBP/USD as the focus of investigation then FTSE100, Dow Jones and

NASDAQ are the indices included.

88Because differences are obtained from levels, levels contain no less information than differences.

89Refer back to Chapter 2 for more discussion on stationarity with time series models.
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the response variable and exclude those which play a less important role. For a regression

model, for example, feature selection can help improve statistical significance of the

estimated coefficients and save computation power. Previously proposed feature selection

algorithms include Fisher Score (Duda et al., 2012), Chi-square (Liu and Setiono, 1995),

Low Variance (Pedregosa et al., 2011) and others. The problem, however, is that with

feature selection every candidate input variable is either included in or excluded from the

model, depending on some criteria from past data. There is no "in-between" state for a

candidate input variable. However, this can be problematic if a variable, for example,

significantly affects the response variable in certain periods and has a much weaker effect

in other periods. Under those circumstances, it would be unwise to simply include or

exclude the candidate input variable. With ANN models, all potential input variables

are included (unless there is an obvious reason not to) and then interpreted by layers of

hidden neurons like human brains. In this way, each potential input variable is learned

more thoroughly. For this reason, feature selection is not conducted in this chapter to

avoid excluding potentially useful variables.

4.4.4 Standardisation of the explanatory variables

Standardisation in data analysis refers to the process of transforming a group of variables

(with different mean and variance) into variables of mean 0 and variance 1. It is a

widely applied methodology in many areas of data analysis, e.g. regression analysis,

ANN training, time series analysis. Since the response variable (FX rates) has been

transformed into classes depending on whether they increase or decrease in the next

period, only the explanatory variables need standardisation. To standardise a variable X ,

each of its n observations xi (i = 1, ...n) needs to be rescaled into the standardised value

si:

si =
xi − x̄
sd(x)

, (4.10)
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where

x̄ =
1

n

n∑
i=1

xi, (4.11)

and

sd(x) =
1

n− 1

n∑
i=1

(xi − x̄)2. (4.12)

4.4.5 Split of the training, validation and test sets

In terms of the sizes of training and test sets, there is no consensus on what the most

appropriate training/test ratio would be.90 For example, Donaldson and Kamstra (1997)

use a training/test ratio of 1:1 and Sermpinis et al. (2012) adopt a training/test ratio of

2:1. In this chapter, since the training set is going to be further split to form a separate

validation set, the ratio of 2:1 is used so that the size of the test set would not exceed

that of the training set. 20% of the observations from the training set is then used as a

validation set, i.e. the training/validation/test ratio is 1.6:0.4:1, or 8:2:5. In terms of the

timespan, the training set starts in January 1999 and ends in January 2009. The validation

set lasts from February 2009 to June 2012. The test set starts in July 2012 and ends in

December 2018. The reason for having an extra validation set is to be able to perform

overfitting detection and model selection without using the test set. For more details of

detecting and reducing the overfitting problem, refer to Subsection 4.5.3.

One key difference between a time-series-type dataset and other types of non-time-series

datasets is that in the process of splitting the training and test set with a time series dataset

the selection cannot be random because otherwise the model would use information from

the future in the training set to predict the test set and exaggerate the test set prediction

performance. Instead, researchers usually split the training and test set in time order91,

90Except the fact that it is rare to see a smaller training set than the test set, i.e. usually more emphasis

is placed on obtaining a well-performing model with the training set.

91See Yao and Tan (2000), Nag and Mitra (2002), Panda and Narasimhan (2007), Sermpinis et al.
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i.e. in this case the training set takes up the first two-thirds of observations and the test

uses the rest one third of the observations.

After splitting the training and test sets, cross-validation92 can be applied in the training

process to increase the stability of the model estimation process. However, in this chapter,

because monthly data is used the number of data points from the training set is too small

for a further split into smaller validation samples. Instead, a repetitive training process

is introduced to increase stability. This is further discussed in the Modelling section

(Section 4.5).

4.4.6 Descriptive plots and summary statistics of the FX rates

Figures 4.2 - 4.4 display the monthly FX rates, log-returns and monthly variation93

of the four currency pairs: GBP/USD, EUR/USD, USD/JPY and USD/CHF. Unlike

realised volatility, a standard measure of volatility, monthly variation does not need to

utilise daily data to compute monthly volatility. The objective of using monthly variation

is simply for visualisation of volatility, instead of addressing a research question on

measuring volatility. From Figure 4.4, it can be observed that although all currency pairs

experienced a volatility increment in the 2008 global financial crisis, GBP/USD and

USD/CHF have much greater volatilities than USD/JPY and EUR/USD. Despite having

lower volatilities in the crisis, EUR/USD and USD/JPY underwent a period of higher

volatilities in the late 90s and early 2000s. High volatilities in different periods generate

great opportunities for investors to take advantage of the price movement in those periods.

(2012), and Rehman et al. (2014).

92Cross-validation is the process of splitting the training set into smaller validation samples. Each

validation sample can be used on its own to estimate coefficients of the model and estimated coefficients

from different validation samples can be compared with each other.

93Monthly variation is calculated as the monthly change of the square root of the cumulative squared

monthly log-returns.
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Such great opportunities exist because of the large price movement and continuing price

movement, also known as "momentum",94 in those extremely volatile periods.

A few papers research on the momentum pattern in several financial markets. For

example, Jegadeesh and Titman (1993) show that buying or selling stocks following their

previous performance generates significant positive returns over 3-12 month holding

periods. Apart from the stock market, Moskowitz and Pedersen (2012) find persistence

in returns from one to 12 months in equity index, currency, commodity, and bond futures.

Both Jegadeesh and Titman (1993) and Moskowitz et al. (2012) show that after 12

months the momentum pattern turns into a reversal pattern, i.e. positive returns are more

likely to be followed by negative returns and vice versa. In addition to time horizon, He

and Li (2015) conclude that market dominance of momentum traders also determines

the performance of momentum trading strategy. The literature of the momentum pattern

discussed here does not aim at illustrating the trading models they use but showing that

the existence of the momentum pattern might affect performance of trading models.

94The term "momentum" refers to the extent to which the sign of price movement continues, i.e. positive

changes follow previous positive changes and negative changes follow previous negative changes.
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Figure 4.2: Monthly rates of the four currency pairs: GBP/USD, EUR/USD, USD/JPY

and USD/CHF.
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Figure 4.3: Monthly log-returns of the four currency pairs: GBP/USD, EUR/USD,

USD/JPY and USD/CHF.
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Figure 4.4: Monthly variation of the four currency pairs: GBP/USD, EUR/USD,

USD/JPY and USD/CHF.
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Table 4.2 shows summary statistics including maximum, minimum, mean, median,

standard deviation, percentage of positive changes and percentage of negative changes of

log-returns of the FX rates. Summary statistics tables of the 42 explanatory variables are

displayed in the Appendix. From Table 4.2, GBP/USD has the highest level of imbalance

GBP EUR JPY CHF

Maximum 0.101 0.099 0.090 0.140

Minimum -0.111 -0.093 -0.065 -0.129

Mean -0.001 -0.0001 0.00003 -0.001

Median -0.002 0.001 0.0004 -0.001

Standard deviation 0.026 0.029 0.028 0.031

Positive changes (%) 46 51 51 49

Negative changes (%) 54 49 49 51

Table 4.2: Summary statistics of log-returns of FX rates: GBP, EUR, JPY, CHF. All

currencies are against USD.

95 in terms of percentage of positive changes and negative changes, this could potentially

increase the predictability of GBP/USD over the other three currency pairs.

As has been discussed briefly earlier, momentum is an important aspect to consider

regarding to positive and negative changes. One way to measure momentum is by using

the percentage of price movement continuation.96 Table 4.3 shows the percentage of

price movement continuation of the four currency pairs for the whole dataset, the training

set and the test set. Comparing the percentage of price movement continuation of the

95The "highest level of imbalance" of GBP/USD means that the absolute difference (8%) between

percentage of positive changes and negative changes is larger than other currency pairs.

96The percentage of price movement continuation is calculated as the ratio of price movement where

the sign of movement remains unchanged for the next period, to the total number of price movement.
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training set with the test set provides a measure of the similarity between the training

and test set and hence the predictability of the test set. In Table 4.3, the log ratio is

calculated by taking logarithm of the ratio of percentage of price movement continuation

for the training set and the test set. A positive log ratio indicates that the training set

has greater momentum than the test set and a negative ratio indicates the opposite. The

absolute value of the log ratio, on the other hand, shows the deviation of the test set

from the training set in terms of percentage of price movement continuation. A larger

(absolute) log ratio indicates a larger deviation of the test set from the training set in terms

percentage of price movement continuation. USD/JPY has the highest train-test log ratio

of the four currency pairs. GBP/USD and EUR/USD have significantly lower train-test

log ratio than the other two currencies. This will be confirmed by better forecasting

performance of these two pairs in the later modelling section.

GBP EUR JPY CHF

Whole dataset (%) 44.54 51.26 48.73 44.96

Training set (%) 44.94 50.63 53.16 48.10

Test set (%) 43.04 51.90 40.50 37.97

Train-test log ratio 0.04 -0.02 0.27 0.23

Table 4.3: Percentage of price movement continuation for the four currency pairs. All

pairs are against USD.
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4.5 Modelling

4.5.1 Overall process

A single currency pair (GBP/USD) is focused on initially to identify any problems in the

modelling process. The reason for this is that as long as the problems are not related to

a certain currency pair, it is not necessary to spend time on repeating the computation

once the problems are already identified. These problems will then be investigated and

if an improvement is made the improved model will be used for modelling with other

currency pairs for best possible performance. All graphics and tables in this section,

without specifying which currency pair is being modelled, refer to the GBP/USD pair.

A key step in the training of a neural network is parameter tuning and parameter estima-

tion. Parameter tuning refers to the process of deciding for example how many neurons

to include per layer and how many layers to use. Once these two aspects are fixed the

number of parameters to be estimated is known and the parameters can be estimated.

However, researchers have found that the number of neurons is far more important than

the number of hidden layers. According to Donaldson and Kamstra (1997), if a sufficient

number of nodes are placed on the first hidden layer, higher layers are not usually needed

to establish satisfactory connection between the initial input and final output. Stathakis

(2009) points out that any continuous function can be represented by a neural network

that has only one hidden layer. Therefore the main tuning process in this research only

involves the tuning of the number of neurons.

In the estimation process two key aspects are illustrated: the loss function and the

overfitting problem.

4.5.2 Loss function

The rule to estimate parameters is that we first define a loss function and then aim to

find the parameters that minimise the loss function. A commonly used loss function for
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classification problems is the cross-entropy error function, which is defined as follows.

Assume we have a 2-class classification problem, i.e. the output variable y ∈ {0, 1}.

If the predicted output for one prediction is denoted as ŷ then the cross-entropy error

function for this prediction is:

H = −y log ŷ − (1− y) log(1− ŷ), (4.13)

and for multiple (N ) predictions to calculate the cross-entropy loss the error functions

for all predictions are averaged:

J = − 1

N

N∑
i=1

(
− yi log ŷi − (1− yi) log(1− ŷi)

)
, (4.14)

where J is also called the cost function.

Unlike a simple quadratic function where the global maximum/minimum is known to

exist and easy to find, a function like the cross-entropy loss, especially after plugging in

as ŷ the expressions of numerous neurons in different layers, generates great difficulty

in finding the global optimum97. Therefore, in machine learning it is usually the local

optimum that is sought. A traditional training process starts with random initial values of

the parameters to be estimated and the subsequent values (called "optimiser") develop

such that the loss function reduces as fast as possible until convergence (stability) is

reached.

4.5.3 The overfitting problem

Another important issue in deep learning is the overfitting problem where the number of

parameters is so large that the model essentially remembers the dataset rather than learns

from it and therefore loses the ability to generalise. As this chapter works with a large

number of input variables, the overfitting problem should not be neglected.

97In a case where there is one or more singularities (undefined points that lead to infinity values), the

global optimum might not even exist.
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In the training process of ANN models, one way to deal with the overfitting problem is

called early stopping. To perform an early stopping process, a random small fraction of

the training set is selected as a validation set (not used in the initial training process),

see Subsection 4.4.5. The training process will stop when the error on the validation set

starts to increase. Figure 4.5 helps visualise the early stopping idea.

Figure 4.5: A plot showing early stopping in the training process of ANN models.

The reason for selecting a separate portion of the training set as the validation set (instead

of using the test set for selecting non-overfitting models) is to avoid the use of the test set

in the model selection process, which would cause the problem of "utilising the future

data to forecast past data". Larsen et al. (1996), Bylander and Tate (2006), Guresen et

al. (2011), Alvarez and Salzmann (2016), Lever et al. (2016), and Xu and Goodacre

(2018) use a validation set for overfitting detection and model selection. All papers

produce evidence that with the extra validation set, the problem of overfitting has been

significantly mitigated.

Another recently developed method to deal with the overfitting problem is the adoption of

drop-out layers. The word "drop-out" refers to randomly ignoring some neurons (along

with their connections) during the training phase. Figure 4.6 visualises how drop-out
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works. Srivastava et al. (2014) conduct a detailed discussion on this methodology

and show that the drop-out methodology significantly improves the performance of

neural networks on supervised learning tasks in vision, speech recognition, document

classification and computational biology.

Figure 4.6: A plot showing a drop-out structure in the training process of ANN models.

Source of figure: Srivastava et al. (2014).

4.5.4 Estimation performance improvement

Due to the randomness in selection of initial values, a single run of the network training

process very often generates unstable estimation results and unluckily most of the time a

single run will generate a bad result rather than a good one as good estimated values for

parameters are only a small proportion of the whole parameter search space. Another

reason which supports the use of multiple runs is that (as mentioned before) different

number of neurons will be compared with each other in terms of their forecasting
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performance and then the most appropriate number of neurons will be used for modelling

in the next stage. Therefore using the performance of a single run is inappropriate and

unfair. One way to deal with this problem and therefore improve performance is to run

the training process multiple times. This methodology has been adopted in the machine

learning area recently. Fischetti and Jo (2018) run their deep neural network 100 times

in order to compare two models based on a few metrics. Namin and Namin (2018) also

discuss the improvement of multiple runs of a LSTM over a single run in forecasting

financial indices and economic indicators.

4.5.5 Evaluation metrics

Once the model is trained the next step is to evaluate the model using different evaluation

metrics. The cross-entropy loss function used for estimating the parameters on the

training set is one option. However, as the datasets to be modelled and predicted in

this chapter are all financial time series (currency pairs), the cross-entropy loss function

is not the best choice in terms of practical value. Therefore two financial metrics are

introduced: prediction accuracy and annualised return with a simple buy-low-sell-high

trading strategy. The prediction accuracy measures the percentage of correctly predicted98

observations and annualised return is calculated on a monthly basis.

Since multiple outcomes of the estimation algorithm are run every time, the mean

accuracy and annualised return (together with their corresponding standard deviations)

are displayed. This will not only enable the location of the best performing model with

the most appropriate number of neurons but also identify how stable models with a

certain number of neurons are performing. For both accuracy and annualised return, their

standard deviation is also considered important, as a measure of stability in performance.

Therefore, it is possible to obtain two models, say Model A and Model B, such that

98A correct prediction refers to one that we predict the exchange rate to move up/down during the next

month and it does move in that direction.
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Model A produces a higher accuracy percentage than Model B while Model B generates

results more stable than Model A. A similar situation can happen for the annualised

return metric. In both cases it is not clear which model performs better. It is therefore

reasonable to construct a combination of the performance metric value and its standard

deviation. One possible combination is an average of the metric value and its standard

deviation. However, as the magnitude of the metric value and its standard deviation are

not at the same level, taking averages is not a proper choice. An alternative combination

is the ratio of the metric value and its standard deviation. The underlying idea for this

combination to be effective is that the metric value (accuracy or annualised return) is

positive-directional, i.e. the larger the value the better the model, while the standard

deviation is negative-directional, i.e. the smaller the value the better the model. The

ratio of the metric value and its standard deviation will increase if either the metric value

increases or its standard deviation decreases, i.e. a high ratio reflects good performance

of the model due to high accuracy/annualised return or low standard deviation or both

and a low ratio reflects bad performance of the model due to low accuracy/annualised

return or high standard deviation or both. The ratio of accuracy and its standard deviation,

denoted as RA and the ratio of annualised return and its standard deviation, denoted as

RP will therefore be constructed and used for comparing models whose metric values

and standard deviations disagree on which model is better.

A time metric showing how long it takes on average for a single run is also introduced,

for the purpose of evaluating computational cost.

4.5.6 Training

The GPU used for this research is NVIDIA RTX 2080TI with 11GB memory. As has

been explained the number of layers is not such an important factor, a traditional 3-layer

network is constructed with one input layer, one hidden layer and one output layer,

together with the drop-out structure. The number of neurons to be tested on ranges from
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(2, 22, 23, ..., 212). For the maximum value 212 neurons, the total number of parameters

becomes over 16 million. Together with the optimiser indices and other types of data, a

single run of the programme is close to taking up the memory limit of the GPU.

One problem encountered while training models with different numbers of neurons is

that as each trained model gets larger the GPU memory gets full very quickly and starts

to utilise the computer’s memory which has significantly slower data transfer speed than

that of the GPU. This will dramatically slow down the training process.

Table 4.4 shows that as the number of parameter increases there is not an increasing

pattern in computation time. In fact some of the smaller models take a longer time

to train. This is mainly because of the randomness in the training process that causes

different convergence times. This effect is not evident in the 30-run training process

since the computation time increases as the number of parameters increases. However, if

we compare horizontally in the table, the time difference between the two situations is so

large. To be more precise, with 4096 neurons if we restart R (the easiest way to clear

GPU memory) every time a single run is complete and conduct 30 runs, this would take

around 352 seconds ( close to 6 minutes) while if the 30 runs are conducted one by one

without restarting R, i.e. within a for-loop, it would take almost an hour of computation

time. Unfortunately it is impractical to restart every time by hand before starting the next

run because it limits the number of runs we can take and after the number of neurons is

fixed it would take ideally no less than 100 runs for the training process to generate a

good result.

Attempts have been made to put a restart command right after each iteration within the

for-loop so that all runs can be conducted in one go and GPU clears its memory after each

run. However, this does not work due to data loading problems. In fact, after extensive

investigation it is discovered that a restarting command within a for-loop is impossible to

implement.
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N T1 T30

1 2 9.25 11.09

2 4 15.93 15.49

3 8 7.45 19.15

4 16 7.37 25.26

5 32 7.50 31.08

6 64 7.72 37.06

7 128 7.86 45.54

8 256 7.85 53.76

9 512 8.00 63.81

10 1024 8.18 76.12

11 2048 8.88 92.31

12 4096 11.72 112.53

Table 4.4: A table showing computation time per run measured in seconds for a single

run and 30 runs with different numbers of neurons. N is the number of neurons per

hidden layer, T1 is the computation time of a single run and T30 is the computation time

per run as an average of 30 runs for the 12 levels of N . Note: An attempt to repeat

the computation in this table is unlikely to generate the exact same computation time

in seconds. However, the increase in computation time per run as the number of runs

increases, i.e. from T1 to T30, remains significant, especially when the model includes

more neurons (larger N ). This is what the table aims to show.
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Another direction in which this problem can be dealt with is to compromise the number

of runs in the parameter tuning process and increase it to the ideal amount once the

parameter tuning finishes and the finalised model is to be trained. After a few experiments,

the number of runs for the parameter tuning process is set to be 10, providing relatively

reliable performances for comparison within a reasonable time.

The annualised return (P) is defined as:

P =
(
(1 + r1)(1 + r2)...(1 + rn)

)1/n − 1, (4.15)

where ri represents the return of the i’th period and n is the number of periods.

Table 4.5 presents the performance metrics from 10 runs of the 12 specifications. Since

there are 4 financial metrics on which the comparison is based, it is unlikely that all 4

would agree on the best performer, hence a ratio of accuracy to its standard deviation

and a ratio of annualised return to its standard deviation are computed. As has been

discussed in the "Evaluation metrics" section, these ratios are considered because we

want accuracy and annualised return as high as possible and the standard deviations as

low as possible. The ratios of these two pairs will serve as an overall measurement and

help compare models whose metric values and standard deviations disagree on which

model is better. The better-performing model will always have higher ratios.

Based on RA and RP , the two best performers are when N = 1024 and N = 2048, one

with higher RA and the other with higher RP . Given that the difference between these

two specification are very small, the smaller specification N = 1024 is chosen due to

shorter computation time.

The process of neuron number selection in this chapter not only serves a purpose of

modelling but also supports the use of large MLPNN over traditional MLPNN with much

fewer neurons.
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N A (%) SDA P (%) SDP T10 (s) RA RP

2 50.50 0.0633 -0.32 0.0381 8.12 7.9785 -0.0843

4 49.50 0.0757 -0.49 0.0435 10.59 6.5421 -0.1126

8 56.12 0.0473 1.95 0.1383 12.31 11.8776 0.1408

16 52.88 0.0696 0.10 0.0577 12.97 7.5961 0.1644

32 54.87 0.0535 2.13 0.1563 13.48 10.2650 0.1365

64 50.88 0.0716 0.66 0.0738 14.56 7.1054 0.0897

128 55.75 0.0363 2.56 0.1379 16.12 15.3520 0.1857

256 56.87 0.0528 3.85 0.2359 17.26 10.7694 0.1633

512 56.38 0.0449 3.11 0.1925 18.64 12.5617 0.1614

1024 58.50 0.0146 3.89 0.2351 20.75 40.1306 0.1653

2048 59.13 0.0148 3.93 0.2318 22.83 39.8337 0.1694

4096 56.12 0.0479 2.63 0.1392 26.10 11.7148 0.1889

Table 4.5: A table displaying performance evaluation metrics on the test set for different

numbers of neurons with 10 runs, where N is the number of neurons, A represents the

mean accuracy rate from the 10 runs for a given number of neurons, SDA denotes the

standard deviation of accuracy, P denotes Annualised return, SDP denotes the standard

deviation of annualised return, T10 denotes the average computation time in seconds per

run out of the 10 runs, RA denotes the ratio of accuracy to its standard deviation and RP

denotes the ratio of annualised return to its standard deviation. The underlying currency

pair is GBP/USD. Computation results for EUR/USD, USD/JPY and USD/CHF are

displayed in Tables 7.15 - 7.17 in the Appendix.
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4.5.7 Test set prediction with 100 runs of the 1024-neuron MLPNN

After the number of neurons is selected to be 1024 the next step is to run the ANN

a significant number of times so that the best possible results can be obtained. Table

4.6 displays part of the 100 runs of the network and their corresponding performance

evaluation metrics. Out of the 100 runs the best accuracy achieved is 62.5% and the

highest annualised return achieved is 6.7%.

The choice of 100 runs is checked by plotting accuracy/annualised return as the number

of runs increases. Figure 4.7 shows the highest accuracy obtained as the number of

runs increases and Figure 4.8 displays the highest return obtained as the number of

runs increases. In addition, Figure 4.9 plots the computation time of each of the 100

runs. Both the accuracy and return series display a convergence patten. While accuracy

completely stablises before 20 runs, return still has some improvement after even 90

runs, supporting the decision of choosing 100 as the number of runs. Figure 4.9 shows

an increasing trend (certainly faster than linear increment) of computation time as the

number of runs increases. To see how fast the slowdown speeds up, the start and end

points are used to estimate the following functions: linear, exponential and factorial.

Figure 4.10 shows a comparison of the computation time with the other three types of

increments. As can be seen from Figure 4.10, the computation time increment speed is

faster than (due to larger second-order derivatives) linear and exponential but slower than

factorial increment. This is mainly due to the GPU reaching its maximum memory and,

as a result of the fast time increment speed, if we used a 100-run approach for each of the

12 specifications in the parameter tuning process, computation time needed to complete

the task would have been enormous.
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Run number Accuracy (%) Annualised return (%) Time (seconds)

1 57.50 2.75 9.53

2 57.50 2.75 16.58

3 60.00 4.43 23.75

4 57.50 2.75 31.36

5 60.00 4.43 39.20

6 58.75 4.02 46.75

7 60.00 4.41 55.06

8 60.00 4.62 62.89

9 62.50 5.27 70.80

10 61.25 5.70 79.03

. . . . . . . . . . . . . . . . . . . .

91 57.50 3.89 1184.73

92 60.00 4.43 1204.08

93 57.50 4.53 1223.66

94 60.00 4.10 1243.27

95 45.00 -1.85 1263.03

96 62.50 5.73 1283.16

97 61.25 6.67 1303.52

98 58.75 4.68 1324.20

99 57.50 2.75 1344.92

100 58.75 5.31 1365.83

Table 4.6: The GBP/USD test set prediction performance from 100 runs of a 1024-neuron

MLPNN. Only the first and last 10 runs are listed due to space limit. The full results are

provided in Tables 7.5 - 7.9 in the Appendix.
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Figure 4.7: A plot showing the highest accuracy obtained as the number of runs increases.

159



Number of runs

H
ig

he
st

 a
nn

ua
lis

ed
 r

et
ur

n 
ob

ta
in

ed
 (

%
)

0 20 40 60 80 100

3
4

5
6

Figure 4.8: A plot showing the highest return obtained as the number of runs increases
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Figure 4.9: A plot showing the computation time for the 100 runs.
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Figure 4.10: A plot showing the computation time for the 100 runs compared with linear,

exponential, and factorial increments.
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4.5.8 Comparison of CPU and GPU computation time

As reported computations are conducted via GPU. This subsection reports results for

the same computations using CPU99 so that any difference in computation time can be

compared. The same task (test set prediction with 100 runs of the 1024-neuron MLPNN)

is conducted and the computation time of each of the 100 runs is recorded. Table 4.11

shows a comparison of the computation time of the 100 runs between CPU and GPU.100

From Table 4.7 it can be seen that the GPU always finishes the task faster than the CPU.

The mean speed-up is almost 24%. However, the actual speed-up percentage varies.

Figure 4.11 plots the GPU speed-up percentage for the 100 runs. The graph shows

that GPU speed-up percentage increases first and then decreases. The reason for the

increment initially is that GPU takes longer time to initialise than CPU and the decrement

at a later stage is mainly due to the maximum memory of the GPU being reached. The

maximum speed-up occurs at around the 6th run, meaning that after the 6th run the GPU

memory exceeds its limit and starts to utilise the computer’s memory which is much

slower than the GPU’s memory. Another interesting fact is that after the peak speed-up

is reached, the speed-up decrement slows down and has a tendency to converge as the

number of runs increases. The convergence level of speed-up refers to the level GPU

speed-up over CPU when the maximum memory of the computer is almost reached, after

which both CPU and GPU will stop working as a result of no available memory.

99The CPU used in this research is an AMD Ryzen Threadripper 1950x 16-core processor.

100Again only the first and last 10 runs are displayed which is enough to observe the pattern.
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CPU time (s) GPU time (s) GPU speed-up (%)

1 10.81 9.53 13.43

2 20.98 16.58 26.54

3 30.89 23.75 30.06

4 41.15 31.36 31.22

5 51.87 39.20 32.32

6 62.12 46.75 32.88

7 72.57 55.06 31.80

8 83.25 62.89 32.37

9 94.07 70.80 32.87

10 104.78 79.03 32.58

. . . . . . . . . . . .

91 1430.86 1184.73 20.78

92 1453.20 1204.08 20.69

93 1475.67 1223.66 20.59

94 1498.36 1243.27 20.52

95 1521.15 1263.03 20.44

96 1544.53 1283.16 20.37

97 1567.79 1303.52 20.27

98 1591.64 1324.20 20.20

99 1615.67 1344.92 20.13

100 1639.73 1365.83 20.05

Mean 711.46 576.24 23.47

Table 4.7: A table showing the CPU computation time against the GPU computation

time and the GPU speed-up for part of the 100 runs. Full table is provided in Tables 7.10

- 7.14 in the Appendix.
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Figure 4.11: A plot showing the GPU speed-up percentage for the 100 runs.
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4.5.9 Modelling and predicting with selected currencies

Another three currency pairs (EUR/USD, USD/JPY and USD/CHF) are modelled and

predicted with the same procedure as for GBP/USD. Table 4.8 displays the test set

prediction results from the best performing model for all three currency pairs together

with GBP/USD.

Currency N1 N2 Best A (%) Highest P (%) PBH (%)

GBP 210 1102850 62.50 6.67 -1.05

EUR 28 79106 58.75 5.56 -0.77

JPY 29 289282 61.25 6.92 1.60

CHF 27 23170 53.75 4.45 0.51

Table 4.8: Test set prediction results for the four currency pairs. N1 - number of neurons,

N2 - total number of parameters. Best A - best accuracy. Highest P - highest annualised

return. PBH - annualised return with a simple "buy and hold" strategy. All currency pairs

are against USD. Note: transaction costs are not considered because the estimated annual

transaction costs are negligible compared with the annualised returns. Refer to Table 4.9

of Subsection 4.5.10 for more details on the estimation of transaction costs.

From Table 4.8, we can observe that models with more parameters (for modelling GBP

and JPY) produce better accuracy and higher annualised return as well, while models

with fewer parameters (for modelling EUR and CHF) generate lower accuracy and

annualised return. This, however, does not mean that more neurons should simply be

added to the model but the amount of information the ANN can learn from the given

information (dataset) is more limited than for the other two more profitable currency

pairs.

With the simple "Buy and hold" strategy, the base currency (for example GBP is the base
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currency for the pair GBP/USD) is bought and held till the end of the relevant period. It

serves as a benchmark strategy as opposed to the "Buy-Low-Sell-High" strategy. The

ANNs for all four currency pairs generate significant improvement over the "Buy and

hold" strategy.
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4.5.10 Transaction costs

Whenever trading profits are concerned, transaction costs are a crucial factor not to be

neglected. However, the effect of including transaction costs not only depends on the size

of the bid/ask spread but also on the frequency of trading as well. Below is an illustrative

example.

If trader A is a long-term trader who places only one trade per year and trader B is

a daily trader who places one trade per trading day (or approximately 253 trades per

year). Assume both make an annual return (not considering bid/ask spread) of 10%.

Assume the average transaction cost per trade is 0.02%. Because trader A only makes

one trade, the transaction cost is deducted once. Therefore, trader A makes a 9.98%

profit after considering transaction costs. However, for trader B who makes 253 trades,

the transaction costs are incurred 253 times. If we assume that the 10% annual return

is distributed evenly among 253 trades and profit compounding is not considered, then

the average profit per trade (before transaction costs) is approximately 0.04%. After

accounting for 0.02% of transaction cost per trade, trader B makes a profit of 0.02% per

trade, or 7.06% in a year. This is over 2% less than trader A makes, although both makes

the same amount of profit in that year before transaction is considered. An astounding

fact is that if the transaction cost per trade goes up to 0.04%, then trader A makes 9.96%

in that year while trader B makes 0%.

A concluding remark on this hypothetical example is that transaction costs affect high

frequency traders significantly more than low frequency traders.

Bid-ask spreads are generally not available for non-tick data. Therefore for Chapters 4

and 5 where the data frequencies are monthly and hourly, it is practically infeasible to

obtain a spread for every data point and therefore account for transaction costs in the

most accurate way.
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However, transaction costs can be estimated with data provided by some FX brokers.

OANDA Corporation publishes recent spreads up to 3 months for most major currency

pairs.101 The median spread values in Table 4.9 as summarised from OANDA are in

line with McGroarty et al. (2007).102 The median spread values are used as an estimate

of the percentage transaction cost per trade. Since trades are made on a monthly basis,

i.e. the annual number of trades is fixed at 12, the annual percentage transaction cost

is estimated by multiplying the estimated percentage transaction cost per trade by 12.

Table 4.9 displays the estimated annual transaction costs for the four currencies. Based

on a trading frequency of 12 times a year (as the trading strategy in this chapter works),

transaction costs are negligible and therefore neglected in this chapter.103

FX pair Median spread Average percentage cost (%) Annual percentage cost (%)

GBP 0.00018 0.015 0.18

EUR 0.00015 0.012 0.14

JPY 0.013 0.012 0.14

CHF 0.00018 0.015 0.18

Table 4.9: A table showing an estimate of annual transaction costs for the four currency

pairs. The "Median spread" and "Average percentage cost" are calculated as per trade.

Since in Chapter 4, trades are placed exactly once per month, the "Annual percentage

cost" is estimated by multiplying the "Average percentage cost" by 12. All pairs are

against USD.

101Visit https://www1.oanda.com/forex-trading/markets/recent for a link to the

website.

102For example, for the currency pair that both this thesis and McGroarty et al. (2007) study - USD/CHF,

the estimated bid-ask spread is 0.000180 in this thesis and 0.000177 by McGroarty et al. (2007).

103None of the four pairs incurs more than 0.2% transaction costs per year and 0.2% is negligible

compared with all of the annual profits, i.e. in Table 4.8, the lowest annual profit is 4.45%.

169

https://www1.oanda.com/forex-trading/markets/recent


4.5.11 Comparing large MLPNN with a benchmark model

A benchmark model, logistic regression is also applied on the same dataset. Logistic

regression is a frequently used technique for dealing with classification problems. To

predict the class of a variable Y , logistic regression computes the probability of Y given

a set of explanatory variables Xi, i = 1, ..., n as:

P (Y |X1, ...Xn) =
exp(β0 +

∑n
i=1 βiXi)

1 + exp(β0 +
∑n

i=1 βiXi)
, (4.16)

The right-hand-side of the equation is always between 0 and 1, making sure that the

probability never lies outside this range.

Currency Accuracy (%) Annualised return (%)

GBP 51.90 2.42

EUR 49.37 1.59

JPY 49.37 1.12

CHF 54.43 3.06

Table 4.10: Test set prediction results for the four currency pairs with the benchmark

model - logistic regression. All currency pairs are against USD. Note: transaction costs

are not considered because the estimated annual transaction costs are negligible compared

with the annualised returns. Refer to Table 4.9 of Subsection 4.5.10 for more details on

the estimation of transaction costs.

Estimated coefficients of the logistic regression model for the four currency pairs are

displayed in Tables 7.18 - 7.29 in the Appendix. Test set prediction results with logistic

regression are displayed in Table 4.10. Both GBP/USD and USD/CHF generate accuracy

over 50% while EUR/USD and USD/JPY generate lower than 50% accuracy rates. In

terms of annualised return, USD/JPY pair has the lowest annualised return at 1.12% and
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USD/CHF has the highest annualised return at 3.06%. As has been discussed in Section

4.4 (see Table 4.3), one main reason for the low annualised return of USD/JPY with the

logistic regression is the large deviation of the test set from the training set in terms of

momentum measured by percentage of price movement continuation.

Comparing the performance of logistic regression with MLPNN, MLPNN provides

better forecasting results in terms of both accuracy (except USD/CHF for which logistic

regression slightly outperforms MLPNN) and annualised return for all four currency

pairs. Extra attention needs to be paid to the surprisingly good performance of MLPNN

in forecasting USD/JPY, even with the large deviation of the test set from the training set

in terms of momentum. This empirical result shows MLPNN is able to perform better

forecasting than logistic regression even when the test data is very different from the

training data, i.e. better at learning and adapting to newly-revealed features.

To compare this chapter with other research papers using ANN, Yao and Tan (2000)

predicts GBP, JPY and CHF against USD. For GBP they obtain a percentage of correct

directional change prediction at 54.74% and a 2.30% return. For JPY the percentage

of correct directional change prediction is 53.40% and the return is 3.00%. Finally, for

CHF the percentage of correct directional change is 56.00% and the return is 8.40%.

According to Yao and Tan (2000), CHF generates the highest success rate with highest

return. This differs from the result of this chapter and other chapters of this thesis

where CHF is the most challenging currency to forecast and make profit on. Possible

explanations for the difference include data frequency difference and difference in the

period of interest. For example, some time periods include market interventions by the

Swiss National Bank (i.e. the Swiss National Bank decided to drop the CHF/EUR limit

of 1.2 in 2015) while other periods do not.

The performance of ANN on modelling other financial assets include Sezer and Ozbayo-

glu (2018) where their MLPNN model (similar to the model in this chapter but with
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much fewer variables) achieve an average of 5.45% annualised return over 28 traded

stocks compared with the RSI (5.01%), SMA (3.78%) and LSTM (6.48%).

4.5.12 Implications for EMH

In this chapter, the Jensen (1978) version of the EMH is tested,104 i.e. utilising significant

out-of-sample abnormal returns as a challenge to the EMH. In terms of the three forms

of EMH as defined in Subsection 2.1.2, it is the semi-strong form EMH that is tested.

This is because information used for forecasting not only includes historical FX rates,

but also publicly available macro-economic indicators.

Empirical results of this chapter show that although all of the four currency pairs are

from developed markets, some extent of (semi-strong form) market inefficiency does

exist. This is suggested by the significant out-of-sample abnormal returns generated by

the trained MLPNNs, see Table 4.8. There is not a dramatic difference in the level of

(semi-strong form) inefficiency across the four markets. The Swiss market, indicated by

the lowest abnormal return, shows the least extent of (semi-strong form) inefficiency. In

brief, the results provide empirical evidence which challenges the semi-strong EMH for

all four currency pairs.

104For more details of the Jensen (1978) version of the EMH, refer to Subsection 2.1.2.
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4.6 Conclusion

In this chapter, large MLPNN models have been constructed and trained in order to

perform modelling and prediction of FX rates. In order to test the semi-strong form of

the EMH,105 macro-economic indicators as well as historical FX rates are used as model

inputs. Significant out-of-sample profits for all of the four currency pairs are present and

therefore considered as evidence against the semi-strong form EMH, during the sample

period of 20 years studied in this chapter.

Due to the large number of neurons hence a massive number of total parameters, tra-

ditional training algorithms with CPU computing can hardly complete the task in a

reasonable time. However, with GPU computation built into the Keras library, the whole

training and testing process is done within half an hour. GPU computation power is

tested and compared with CPU computation power and one conclusion from this research

is that although GPU computation has the slow-down problem as its maximum memory

is reached it still stands as a better choice than CPU computation especially when con-

ducting highly parallelisable tasks such as training models of large sizes. By comparing

performance of models made up of different number of neurons, larger models show

superiority in predicting complex patterns (such as the price pattern in the financial

world) with as many inputs as we can possibly obtain. Research papers have shown that

models perform better with more inputs (hence more information) entering them.

The problem, however, is that since MLPNN of this size has not been applied to financial

series (at least not widely) such as FX rate before, the input variable selection process is

challenging and time-consuming due to limited literature as suggestions and the large

amount of candidate variables in the search pool.

Although this research has expanded the size of the MLPNN model used in financial time

105For more details on the EMH refer back to Subsection 2.1.2.
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series by a large amount, more efforts are still needed to further expand the space for

input variables as the 44 variables used in this research represent a significant yet small

portion of the whole information space available in the market. As Hsu et al. (2016)

discuss, substantial predictability and excess profitability can be achieved by technical

analysis. This research result suggests the use of technical indicators as potential input

variables of a large MLPNN model.

Another direction worthy of efforts is to make a step increment (in steps of 10 or 20)

instead of an exponential increment of the number of neurons in the parameter tuning

process. This will help boost the prediction performance by exploring more possibilities.

However, this will certainly be at the cost of computation time and extra programming

efforts.

One way to help facilitate the above direction of research is to deal with the GPU slow-

down problem. The following three solutions would all help eliminate or at least reduce

the slow-down problem: (1) to increase GPU memory by upgrading the GPU or adding

more GPUs; (2) to upgrade or increase computer memory so that when GPU memory

is filled up computer memory is used and the upgrade/increment would speed up data

transfer rate therefore reduce slow-down; (3) to experiment with other programming

languages to see if restarting (therefore refreshing GPU memory) is possible in the

computation process. Among these three solutions, the first two are the most straight

forward but financially expensive and even the upgrade is made it will still face the

slow-down problem when the model to be trained gets large enough. While the final

solution requires most effort (i.e. learning another language) and might still not work

(for example in Python it is also impossible to restart within the process), the slow-down

problem would be almost (if not completely) solved should it prove to be working.

In terms of the financial aspect, this chapter shows that the balance of the percentages

of positive and negative FX rates movements affects the predictability of the currency
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pair. The more unbalanced the percentages of positive and negative FX rates movements

are, the more predictable (hence more profitable) the underlying currency pair is. One

potential further research direction is to split the whole time span into different shorter

periods and utilise higher frequency data to ensure a reasonable number of data points in

each sub-sample. The predictability of FX rates in each sub-sample (representing periods

under different economic conditions) can then be studied in detail.

Another factor that can possibly affect the predictability of a currency pair is whether

this currency pair is an emerging market pair (at least one side of the currency pair is an

emerging market currency) or a developed country pair (both sides of the currency pair

are currencies from developed countries). Hsu et al. (2016) show that their emerging

market currency pairs portfolio generates an annualised return of 7.32% while their

developed country currency pairs portfolio only generates an annualised return of 1.35%.

Since all currency pairs discussed in this chapter are developed country pairs, it raises

the research direction of exploring emerging market pairs. One large difference between

a developed country pair and an emerging market pair is liquidity.106 Generally speaking,

developed country currency pairs have higher liquidity than emerging market pairs, due

to more significant amount of trading activities. It can be expected that more significant

amount of trading activities reduces the number of, as well as shorten the lasting time of,

trading opportunities due to mis-pricing. However, the extent to which these effects take

place for different FX pairs during different time periods is worth further research.

Apart from predictability, profitability is another important aspect in this chapter since

specifications of all models are optimised in order to maximise annualised return (and

forecast accuracy). For simplicity, an one-step-ahead Buy-Low-Sell-High strategy is

implemented. With this strategy, a Buy/Sell market order is placed if prediction for the

106In the FX market, liquidity refers to the extent to which one currency can be exchanged into another

without causing a large change in the FX rate.
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direction of FX rate movement next month is up/down and will be closed by the end of

next month. However, if the strategy is used for speculation (profit making) rather than

hedging (risk management), then it may sometimes close the order too early to profit

from continuing price movement in the correctly predicted direction and sometimes close

the order too late to stop at a reasonable loss in the case of a wrongly predicted price

movement. Under those circumstances, more sophisticated trading strategies such as

trend following and mean reversion can be implemented so that more promising trading

performance can be achieved.

176



5 Using a LSTM-RSI trading algorithm for technical

trading strategies in the foreign exchange market

5.1 Introduction

5.1.1 From forecasting to trading

In Chapter 4, the topic of financial forecasting is discussed and a large ANN model is

built to forecast the direction of price movement of FX rates with the assistance of GPU

in the training process. However, forecasting in general, is by no means the ultimate

target by itself. One of such ultimate targets is maximising profits in trading (others

include hedging, policy making and education) - the process of making decisions on

whether to open/close a buy/sell order.107 In this process, a set of pre-defined rules (called

a trading strategy/rule) will need to be built such that it specifies explicitly different

actions to be taken under different market conditions.

5.1.2 Technical trading

To help depict market conditions numerically, values derived from market prices called

technical indicators are introduced. Using technical indicators to analyse the market

and make trading decisions is called technical analysis and technical trading. Chang

(2019), Gerritsen et al. (2019), Psaradellis et al. (2019), and Grobys et al. (2020) study

the performance of technical trading rules in several markets including the FX market,

the cryptocurrency market, and the crude oil market. In all of these papers, significant

returns are obtained, and they therefore provide evidence of some extent of inefficiency

107In trading practice, an order can be placed at the current market price. This is called a market order.

Traders sometimes also place an order with a pre-defined entry level and the order will be automatically

triggered later only when the price hits the pre-defined level. This is called a limit order. In this chapter,

only the market order is considered.
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in the above markets. More details of literature on technical trading can be found in

Section 5.2. While a technical trading rule generally makes a forecast on future prices,

this forecast is usually more qualitative and can be difficult to quantify.

For example, a very popular technical trading rule is called Moving Average (MA). It

calculates the average of the past i prices until the present. i is a configurable integer

that can be modified to reflect the periodicity of the trading instrument, i.e. MA(5) on a

daily chart shows the moving average of the price of an instrument for the past 5 trading

days/one week. The MA line created by connecting consecutive moving averages helps

to show the overall price trend. The MA trading rule uses the MA line as the indicator.

It triggers a buy order when the market price just rises above the MA line and places

a sell order when the market price just falls below the MA line.108 As is discussed at

the end of the previous paragraph, decision-making of the MA rule is not determined by

a numerical forecast of future prices. Instead, a technical trading rule forms an overall

belief of the price trend in the near future. This is different from, for example, using

the forecast value of a large MLPNN model to trade FX rates in Chapter 4. Cases when

technical trading rules succeed and fail are discussed as follows.

The MA trading rule holds a belief that when price breaks the trend line, it is a signal of

a strong trend-following period in which the price will move in the same direction as the

breakout. This belief makes an assumption on the market being "trend-following", i.e. a

strong price increase is more likely to be followed by a further price increase and a strong

price drop is more likely to be followed by a further price drop. However, problems could

occur when the assumption on the trend-following market is violated. In fact, in almost

all financial markets, there are periods of time when the market is not trend-following. In

such times, trend-following trading rules usually suffer from great losses.

On the other hand, when a market is not trend-following, i.e. it is fluctuating up and

108In trading terminology, a scenario when a price penetrates a trend line is called a breakout.
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down, such a price movement pattern is called "mean-reversion".109 A typical technical

trading rule based on the assumption of the market being mean-reverting is the Relative

Strength Indicator (RSI).110 The RSI indicator measures the relative price increase size to

price decrease size. Bhargavi et al. (2017), Pedirappagari and Babu (2019), and Cohen

(2020) have investigated trading strategies based on the RSI indicator to invest in the

cryptocurrency market and the stock market.

A formal definition of the RSI indicator will be given in Section 5.3. In general, a high

RSI shows that the market is experiencing many upward movements and a low RSI

shows that the market is experiencing many downward movements. The RSI trading rule

triggers a buy order when the RSI is high and places a sell order when the RSI is low.

The assumption made by the RSI trading rule is that when the market has been going up

for a long time (identified by a high RSI), it is likely to be overbought and a sell order

should be placed in anticipation of the price falling, and vice versa for the low RSI case.

Similar to the trend-following based trading rules, the performance of mean-reversion

based rules is also highly dependent upon the market condition. And once again, the

market condition usually switches between trend-following and mean-reversion patterns

rather than remaining in one of the patterns. Therefore, mean-reversion based trading

rules may also suffer from significant losses in certain times. One solution to deal with

the problem is to implement a forecasting model (which forecasts the state of the market

in the near future, i.e. whether it’s trend-following or mean-reverting) and form a trading

rule based on this forecast.

109Trend-following and mean-reversion are two types of the overall price trend, which is a characteristic

of price movement patterns. More details and literature on price movement patterns will be discussed in

Subsection 5.2.2.

110Just like the term MA which can represent either the trading rule or the indicator, the term RSI can be

used to represent either the RSI trading rule or the RSI indicator that the trading rule uses.
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The problem, however, is that it is difficult to define specifically and differentiate with

certainty between trend-following and mean-reversion patterns. This is because the

concept of trend-following and mean-reversion is in the relative sense, i.e. there is no

such case as absolute trend-following or mean-reversion. Instead, the price movements

behave to a greater or lesser extent of being trend-following or mean-reversion.

This chapter utilises the RSI indicator as a measure of the extent of the market status

being trend-following and mean-reversion. This is the first usage of the RSI indicator for

this purpose, to the author’s best knowledge. To forecast future RSI values, a forecasting

model is needed. Subsection 5.1.3 discusses briefly the forecasting model used in this

chapter and more details of the forecasting model are presented in Section 5.2 and Section

5.3.

5.1.3 Forecasting-trading algorithms

A forecasting-trading algorithm has a forecasting model implemented upon which a

trading rule is based. The main difference between a forecasting-trading algorithm and

a simple trading algorithm is that instead of using indicators together with assumption

about the market (whether the market is trend-following or mean-reverting), a forecasting-

trading algorithm utilises the implemented model to forecast information (price or price

movement patterns) on the market in the future.

One advantage of using a forecasting-trading algorithm is that the performance of the

algorithm does not rely on the assumption about the market being trend-following

or mean-reverting. Instead, the performance of the forecasting-trading algorithm is

highly dependent upon the the performance of the forecasting model. Sang and Pierro

(2019) use a Long Short Term Memory (LSTM) model111 to improve performance of

111A LSTM model is a type of ANN models that specialises in dealing with time series datasets. More

technical details of this type of model will be provided in Section 5.2 and Section 5.3.
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technical trading rules. In this chapter, the LSTM model is also used as the forecasting

model because of its great capability of working with time series datasets. Similar to

the MLPNN model as discussed in Chapter 4, LSTM models are implemented in the

Keras-GPU framework as well, for faster training on large datasets.

5.1.4 Research questions

The research questions of this chapter are defined in the context of the modelling frame-

work. They are (i) How does the trading performance of a forecasting-trading algorithm

(such as the proposed LSTM-RSI) differ from a well-established, widely used trading

algorithm (such as an MA or RSI)? (ii) Are trend-following and mean-reversion patterns

related to forecasting horizon? (iii) How much variation is observed in price movement

patterns for different currency pairs? (iv) What is the implication of the market sta-

tus being trend-following or mean-reverting for forecastability/profitability of a given

period?

Below is a brief preview of some of the research outcomes. A LSTM-RSI trading

algorithm is built to first forecast the RSI value of the next period and then use training

results to determine the best trading rule given the forecast RSI. Key results include (1)

The proposed forecasting-trading algorithm, LSTM-RSI provides more stable profitability

than the most widely used trading rules (MA and RSI) across time among different

currency pairs. The LSTM-RSI algorithm has the advantage of controlling the number

of trades therefore reducing transaction cost, over MA and RSI; (2) By working with

four major currency pairs, GBP/USD, EUR/USD, USD/JPY and USD/CHF from 1999

to 2019, mean-reversion patterns exist more frequently in shorter time frames (e.g. on

a weekly basis) while trend-following patterns appear more in longer terms (e.g. on

a monthly basis); (3) USD/JPY and USD/CHF exhibit more mean-reversion patterns

than GBP/USD and EUR/USD. USD/CHF is the most mean-reverting pair of all four

pairs during the period of interest; (4) The forecastability therefore profitability of
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the four currency pairs are higher for the pairs with higher level of trend-following

pattens. Forecastability and profitability are lower for the pairs with higher level of mean-

reversion patterns; (5) None of the four currency pairs generate consistent abnormal

profits, especially after transaction costs are deducted. This empirical evidence supports

the weak form EMH.

The remainder of the chapter is organised as follows. Section 5.2 reviews literature on

technical trading, price movement patterns, and the LSTM model applied for technical

trading. Section 5.3 describes the methodology used in this chapter including using RSI

to measure price movement patterns and using LSTM to forecast RSI values. Section 5.4

discusses the source of data used in this chapter, the process of splitting the training/test

sets and preparation of the dataset as LSTM inputs and outputs. Section 5.5 contains

the main modelling and trading process. Section 5.6 concludes the chapter and suggests

potential future research directions.
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5.2 Literature review

5.2.1 Technical trading and trading rules

Technical trading is a combinatorial use of technical indicators and technical trading

rules.112 A number of recent research papers on technical indicators and technical trading

rules are presented below.

The question of whether technical trading generates significant profits in financial markets

has been debatable in the academic world. Chang (2019) utilises a variable-length moving

averages (VMA) to trade the daily exchange rates of New Taiwan Dollars (NTD) against

USD. The VMA has the advantage of flexible length of moving average period over a

simple MA. The results show that the VMA significantly outperforms the buy and hold

strategy.

In addition to the FX market, other financial markets have also been explored with

technical trading rules. Psaradellis et al. (2019) investigate different types of trading rules

on the crude oil market. Their results suggest that contrary to the in-sample outstanding

results, no persistent and significant profits can be obtained with the technical trading

rules.

A different conclusion is drawn for another market - the Cryptocurrency market - by

Gerritsen et al. (2019).113 They analyse the performance of MA, RSI, MACD and trading

range breakout strategies on Bitcoin prices. Significant profits can be made with the

trading range breakout strategy. Their findings provide evidence against market efficiency

of Bitcoin.

A similar paper on testing technical trading performance on the Bitcoin market is Cohen

112For more description on technical trading refer back to Subsection 2.1.4.

113Since the price surge of Bitcoin (and other Cryptocurrencies) in 2017, it has drawn the most attention

from the academic world based on the number of recent publications.
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(2020). He explores three types of trading strategies - RSI, MACD and pivot reversal

(PR). His results demonstrate that the RSI produces the poorest results of the three

strategies and both MACD and PR generate greater profits than the buy and hold strategy.

Despite the poor performance of the RSI strategy in the Bitcoin market, Bhargavi et al.

(2017) provide evidence of good performance of RSI in the stock market. An important

contribution of their research is that instead of using RSI to trade according to the

traditional rule they use the RSI as a filter to select stocks to form a portfolio that contains

undervalued (overpriced) stocks with which buy (sell) decisions can be made. Therefore,

the usage of an indicator may not be restricted to the traditional usage for which the

indicator was initially designed.

Although all the above papers investigate performance of technical trading rules, their

main focus is on whether and how much a trading rule makes profits for a financial

instrument in a given period. The questions of, why one trading rule makes profits while

the other rule suffers from losses, why a trading rule performs much better in certain

periods than in other times, and why even the same trading rule’s performances differ

significantly with respect to different financial instruments, have not been explored in

these papers.

5.2.2 Price movement patterns

The key cause for the variations in performances as described in the previous paragraph

is the difference in price movement patterns. Strictly speaking, the same pattern almost

never happens again because not only the direction of price movement but also the

value of price movement makes the price movement pattern of every period unique.

In reality, it is not necessary nor possible to depict every single characteristic of the

price movement pattern within a period. Therefore, more crucial characteristics should

deserve more attention. Overall trend is one of those more crucial characteristics. The
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trend characteristic can be classified into two types, trend-following (momentum) and

mean-reversion.

Two directions of description on trend-following/mean-reversion patterns are (1) statisti-

cally testing the existence of momentum/mean-reversion patterns; and (2) determining

trend patterns with performances of trend-following/mean-reversion based trading rules.

For the first direction, there are much more papers testing mean-reversion patterns than

trend-following pattern. The main reason for this imbalance is that there are more

statistical tools to test mean-reversion than trend-following patterns. The most widely

used test is the Unit Root test, e.g. augmented Dicky-Fuller test, Phillips-Perron test,

KPSS test and others. Testing a trend-following pattern, however, is much more difficult

because of the uncertainty in the speed of price increase/decrease, i.e. even if we can

visually tell a price series is in an up-trend, it’s difficult to test whether it’s a linear

up-trend, a quadratic up-trend or some other types of increase that cannot even be

mathematically modelled.

Mukherji (2011) indicates that significant mean-reversion patterns exist in the US stock

market from 1926 to 2007. Although the mean-reversion pattern weakens in the past

decade prior to 2007, it persists for small company stocks. Despite studying a different

asset class from this chapter, his paper suggests that price trend patterns vary, for different

periods as well as for different sub-classes, i.e. stocks of different companies.

Taylor et al. (2001) imply that real dollar FX rates over the post-Bretton Woods period

not only exhibits mean-reversion patterns but also non-linear mean-reversion patterns.

Their research result supports the use of non-linear models to forecast FX price patterns.

In addition to statistically testing trend patterns, researchers have also implemented

different trading rules (trend-following trading rules or mean-reversion trading rules)

for several asset classes. The performance of the implemented trading rule reflects
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the trend pattern in the underlying period. For example, if using a trend-following

strategy generates higher returns than using a mean-reversion strategy, this suggests the

underlying period exhibits more trend-following patterns than mean-reversion patterns,

and vice versa.

Szakmary et al. (2010) use trend-following strategies to trade the commodity futures

market from 1996 to 2007. They find that the MA strategies with all MA lengths yield

positive excess returns in 22 out of the 28 markets. Another paper on the commodity fu-

tures market is Lubnau and Todorova (2015). They implement mean-reversion strategies

on Crude Oil, Natural Gas, Gasoline and Heating Oil futures from 1992 to 2013. Their

mean-reversion strategies, with appropriate strategy parameters, also gain significant

profits in the given time.

Since the market does not always exhibit trend-following or mean-reversion patterns

(instead the two patterns usually happen interchangeably), there are papers that combine

the two types of trend-following and mean-reversion strategies. Both Serban (2010) and

Wu (2011) suggest a strategy that switches between a trend-following strategy and a

mean-reversion strategy. The strategy by Serban (2010) generates significant abnormal

returns for both the stock market and the FX market. The combined strategy by Wu

(2011) generates greater profits in the stock market than either the trend-following or

mean-reversion strategy implemented alone.

Not only do time period and asset classes, but also time horizon affects price trend

patterns. Raza et al. (2014) investigate whether momentum (trend-following) or reversal

pattern is dominant in short horizon (1-4 weeks) FX rate returns.Their empirical results

show that momentum based strategies generate much larger profits than reversal based

strategies, based on a sample of 63 emerging and developed market currency pairs. This

result suggests that the momentum pattern is more prevalent than the reversal pattern on

a 1-4 weeks horizon.
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All the previous trading rules in Subsections 5.2.1 and 5.2.2 base their forecast of the

future price on technical indicators, i.e. MA and RSI. However, indicators such as

MA are lagging, as suggested by Ellis and Parbery (2005). For example, a typical MA

line goes up by a significant amount only after the underlying asset price has already

increased for some time. Another approach of setting up a trading strategy is to base the

trading rule on the forecast results given by a forecasting model. The advantage of this

approach is that non-lagging indicators can be used as inputs of the forecasting model in

order to make a precise forecast about the future price/trend of an asset.

5.2.3 LSTM as a forecasting model for technical trading

Within the universe of forecasting models, Artificial Neural Networks (ANN) are one of

the most widely used and extensively researched models. As is discussed in Chapter 4,

ANN has the advantage of being highly adaptive, able to model non-linear patterns and

fast to train with the rapid-developing GPU computation techniques. The Multi-Layer

Perceptron Neural Network (MLPNN) model used in Chapter 4 is good at forecasting

non-time series datasets with multiple explanatory variables (multi-dimensional), e.g.

GDP, interest rates, CPI. In this chapter, price movement patterns which are single-

dimensional time series, are the focus. Therefore, it would be advantageous to use an

ANN capable of working with time series datasets to forecast price movement patterns.

The LSTM model, proposed by Hochreiter and Schmidhuber (1997), is one of the ANN

models that takes time series data as input variables. It has the capability of storing

short-term sequential information and retrieving the information many time steps later.

In this subsection, literature on LSTM applied in a trading context will be explored.114

Although there is a wide range of literature utilising ANN models to forecast financial

asset prices (as is discussed in Section 4.2), very few research papers focus on ANN

114More technical details of the LSTM model are given in Section 5.3.
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models for the purpose of technical trading.

Sang and Pierro (2019) apply LSTM to help trade in the US stock market (stocks are

divided into 9 sectors). They use the LSTM model as a filter of trading decisions made by

technical trading rules (MA, RSI and MACD), i.e. place a buy order only when the MA

strategy suggests a buy and the LSTM model also forecasts future price to increase. By

implementing the LSTM model, a trading performance improvement (over the trading

rules applied without the LSTM filtration) is achieved for almost all sectors for all three

trading rules.

The number of papers on LSTM models for the purpose of technical trading within the

FX market is very limited as LSTM has been introduced to the financial world for a

relatively short time. This brings motivation as well as novelty of implementing LSTM

in the FX market for technical trading purposes.

To present a brief summary of the literature, the popularity of ANN models in financial

asset price forecasting has increased over the past few years. However, ANN models

have not been extensively applied in the area of technical trading, i.e. very few papers

have focused on forecasting-trading algorithms. Therefore, this chapter will explore

forecasting-trading algorithms in the FX market. Section 5.3 will discuss details of the

measurement of price patterns, the forecasting model and performance metrics.
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5.3 Methodology

In this section, a brief work-flow of the modelling and trading process is discussed, based

on the different parts of a trading algorithm. Both the trading rule and the forecasting

model (LSTM) are discussed. More details on the training process of LSTM are presented

in Section 5.5.

A traditional trading algorithm takes one or more indicators such as MA and RSI and

uses a set of trading rules based on the (up-till-current) values of the indicators to suggest

potential entrance or exit price levels. As is discussed in Section 5.1 and 5.2, these

algorithms lack the ability to adjust to the current market price pattern and may suffer

great losses from a change in the market price pattern. For example, a trend-following

trading algorithm (such as MA) performs poorly in a period with significant mean-

reversion patterns. With these traditional algorithms, it is not possible to foresee the

upcoming poor performance until a loss has occurred.

This is why a trading algorithm with more powerful forecasting ability is desired. In this

chapter, such algorithms are termed forecasting-trading algorithms. A forecasting-trading

algorithm consists of two components, a forecasting component and a trading component.

The forecasting component builds up (trains and tests) a model that takes past data (or

metrics derived from past data) as inputs and delivers output values as trading indicators.

The trading component pre-defines a set of trading rules (criteria to trigger or close a

buy/sell order) based on the trading indicators obtained from the forecasting component.

5.3.1 Measurement of price movement patterns

In this chapter, I utilise a LSTM model as the modelling component, to forecast future

price movement patterns based on past price movement patterns. In order to quantify

price movement patterns, this chapter proposes the use of RSI as a measure of movement
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patterns. This is different from previous research papers, all of which use RSI as the

indicator for making trading decisions. The RSI is defined as:

RSIn = 100− 100

1 + AGn

ALn

, (5.1)

where RSIn represents the RSI value of a period lasting n units of time. AGn measures

the average gain over the period lasting n units of time and ALn calculates the average

loss over the same period.

To help visualise how price movement patterns are closely related to the RSI values,

Figures 5.1 - 5.3 show 9 randomly selected sub-periods of GBP/USD with three levels of

RSI: above 70, below 30 and around 50.115 It can be clearly observed that all sub-periods

with high RSI values follow an up-trend price movement, all sub-periods with low RSI

values follow an down-trend price movement and all sub-periods with medium RSI

values move sideways and exhibit much greater fluctuation patterns.

To calculate a RSI value, a sub-period needs to be specified. In this chapter, the dataset

(with a large number of data points) will be split into sub-periods of equal length. The

RSI for each sub-period will then be calculated and used as the inputs and outputs of

the LSTM model, i.e. RSI values of a number of past sub-periods are used as inputs to

forecast a RSI value (output of the LSTM model) of a future sub-period.

After a forecast RSI value for the next sub-period is obtained, and depending on its value,

a trading decision to open/close a buy/sell order can be made.

115Traditionally, a RSI value greater than 70 is recognised as an indication of the financial asset being

overbought and a RSI value less than 30 is considered as an indication of the financial asset being oversold.
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(a) A randomly selected period with a large RSI value (>70). Currency pair:

hourly GBP/USD.

(b) A randomly selected period with a large RSI value (>70). Currency pair:

hourly GBP/USD.

(c) A randomly selected period with a large RSI value (>70). Currency pair:

hourly GBP/USD.

Figure 5.1: Three randomly selected periods with large RSI (>70) values. Currency pair:

hourly GBP/USD
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(a) A randomly selected period with a small RSI value (<30). Currency pair:

hourly GBP/USD.

(b) A randomly selected period with a small RSI value (<30). Currency pair:

hourly GBP/USD.

(c) A randomly selected period with a small RSI value (<30). Currency pair:

hourly GBP/USD.

Figure 5.2: Three randomly selected periods with small RSI (<30) values. Currency pair:

hourly GBP/USD
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(a) A randomly selected period with a medium RSI value (around 50). Cur-

rency pair: hourly GBP/USD.

(b) A randomly selected period with a medium RSI value (around 50). Cur-

rency pair: hourly GBP/USD.

(c) A randomly selected period with a medium RSI value (around 50). Cur-

rency pair: hourly GBP/USD.

Figure 5.3: Randomly selected periods with medium RSI (around 50) values. Currency

pair: hourly GBP/USD
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5.3.2 LSTM to forecast price movement patterns

The LSTM model is implemented after the RSI value (which measures the trend patterns)

of each sub-period is calculated. To formulate a LSTM structure, following the symbol

usage from Zhang et al. (2017), symbols are denoted and defined as below.

At each time t, the LSTM has an input vector (e.g. RSI values of sub-periods) xt, a

memory state vector ct, a hidden state vector ht and the output vector ot. Each of these

vectors is defined as:

it = σ(Wixt + Uiht−1 + bi), (5.2)

ft = σ(Wfxt + Ufht−1 + bf ), (5.3)

c̃t = tanh(Wcxt + Ucht−1 + bc), (5.4)

ct = it ◦ c̃t (5.5)

ot = σ(Woxt + Uoht−1 + Voct + bo), (5.6)

ht = ot ◦ tanh(ct), (5.7)

where W∗ and U∗ are the weight matrices and b∗ are the bias vectors (all of the weight

matrices and bias vectors to be estimated in the training process). The σ() represents

the sigmoid function, as is defined in Subsection 2.2.2. it, ft and ot are the input gate,

forget gate and output gate respectively. The input modulation c̃t and output ht take

the hyperbolic tangent function tanh() as the activation function. The ◦ sign denotes

point-wise multiplication.
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Figure 5.4: A plot showing the structure of a LSTM model. Source of graph: Zhang et al.

(2017).
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The input gate controls information (e.g. RSI values of sub-periods) that enters the model

and the output gate allows processed information (forecast RSI value for the next period)

to form the output. The forget gate decides what information is kept in the model and

what information should be (temporarily) discarded. Therefore the LSTM model has the

ability to balance long and short term memories of a time series.

The technical details of how LSTM works are not discussed in detail because the purpose

of discussing LSTM in this subsection is to use it as a tool for forecasting in later sections,

rather than developing or improving LSTM as a methodology.

5.3.3 Performance metrics

To measure how a forecasting-trading algorithm performs, two performance metrics

(one for each of the forecasting and trading component) are utilised. (1) To evaluate the

performance of the LSTM model the Mean Squared Error (MSE) is used.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2, (5.8)

where n is the total number of forecasts made, Yi is the real value, and Ŷi is the forecast

value.

(2) To measure the trading performance, the Annualised Return (AR, in %) is used.

AR =
((

(1 + r1)(1 + r2)...(1 + rn)
)1/n − 1

)
× 100, (5.9)

where ri represents the return of the i’th period and n is the number of periods.
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5.4 Data description

5.4.1 Data source

Four currency pairs are researched in this chapter, namely GBP/USD, EUR/USD,

USD/JPY and USD/CHF. Similar to Chapter 4, only the major pairs are considered

because they provide a longer time period of high frequency data availability.116

The datasets for the four currency pairs (close price) are collected at an hourly frequency

from January 1999 to April 2020. The source of the data is the MetaQuotes Software

Corp. history centre. Data is accessible and downloadable from an MetaTrader 4 platform

supported by most FX brokers.

The reason for using hourly data is because it provides a sufficient number of data points

for training the LSTM model within a reasonable amount of time. With lower frequency

data such as daily data, the number of data points is insufficient to train the model and

with higher frequency data such as minute data, the computation time would be too long.

5.4.2 Split of training, test and validation sets

With the same approach of splitting training/test sets as the previous two empirical

chapters, a 2:1 training/test ratio is adopted. A further 20% of observations from the

training set is used as a validation set to reduce overfitting.

The training/test set split is useful in both components of the forecasting-trading algo-

rithm. For the forecasting component, the training set is used to train the LSTM model

(i.e. optimise the parameters of the model) and afterwards for the trading component, the

training set is used to configure the trading rule117 to generate best trading performance.

116From MetaQuotes Software Corp. history centre, hourly data of the above four major pairs are

available from 1999. However, for minor pairs, hourly data is only available from the 2010s.

117Refer to Subsection 5.5.2 for more discussion of the trading rules.
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5.4.3 Preparation of the raw data as LSTM inputs and outputs

As is described in Section 5.3, the dataset needs to be spilt into sub-periods in order to

calculate RSI values. The length of each sub-period is an important factor to consider.

In this chapter, four different lengths are considered, 120, 240 360 and 480. Given that

the data frequency is hourly and FX markets are usually open 24 hours per day and 5

days per week. The four lengths last 1 week, 2 weeks, 3 weeks and 4 weeks, respectively.

Shorter lengths are not considered because it would make the number of observations per

sub-period too small to observe significant price movement patterns. On the other hand,

the length of each sub-period is also restricted by an upper bound because a longer length

leads to a smaller number of sub-periods available (each of which forms a potential

input neuron for the LSTM model), i.e. for the maximum length of 480 hours used in

this chapter, the number of sub-periods is around 274, making it 274 individual data

points for the LSTM model as inputs. As the length increases, the number of sub-periods

becomes so small that the trained LSTM may fail to generalise.

After the sub-periods division, the RSI value, which describes the price movement pattern

of the underlying period, is calculated for each sub-period. These RSI values form the

input dataset for the LSTM to train. To forecast the RSI value for the next sub-period, the

RSI values of previous sub-periods are used as inputs of the LSTM. A range of numbers

of look-back sub-periods are considered, from 1 to 10. This look-back number essentially

represents the input size of the LSTM model, i.e. how long in the past does the model

take to forecast the future.
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5.5 Modelling and forecasting

5.5.1 The iterative training process

Given one combination of the sub-period length and number of look-back sub-periods,

the best LSTM model can be obtained by iteratively training on the training set. The

concept of iterative training is the main topic of Chapter 3 and is also introduced in

Chapter 4. To briefly remind the reader of the concept, the training process generally

involves taking random initial values of the parameters and improve the performance

metric by adjusting the initial values. By repeating the training process multiple times

(instead of taking the first training result), it is almost sure that an improved model can

be obtained.

While it is true that improved performance will almost always be achieved as the number

of iterations increases, the time it takes for a new improvement to be made tends to

increase over time, i.e. the marginal time cost increases. Therefore it is important to find

an optimal number of iterations. The word "optimal" means it should aim for a good

balance between performance improvement and computation time.

An experiment is conducted on the GBP/USD pair for the 40 combinations of length of

sub-periods and number of look-back sub-periods, in order to find an optimal number of

iterations. In the experiment, a maximum of 100 iterations are carried out.118 Table 5.1

shows the minimum number of iterations needed for the model to achieve at least 99%

of the performance improvement (in terms of MSE) out of the 100 iterations.119 None

118It takes nearly 72 hours to run 100 iterations for the 40 combinations of settings for a single currency

pair. Therefore, the experiment is restricted to one currency pair only.

119As a hypothetical illustration, suppose that after 100 iterations, the decrease of MSE is 0.01. If a

decrease of MSE by 0.0099 (99% of 0.01) is achieved right after, for example, 70 iterations, then it can

be said that using 70 iterations will generate a 99% improvement of the total improvement made by 100

iterations.
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of the combinations of settings require more than 10 iterations to achieve a satisfactory

percentage of performance improvement.

Therefore, in this chapter, the number of iterations is set to be 20 for all four currency

pairs. The number is increased from 10 to 20 to allow for possible deviation among

different currency pairs, i.e. some currency pairs might require more iterations to obtain

optimal performance than others.

120 240 360 480

1 8 6 5 5

2 8 6 5 4

3 7 6 5 4

4 7 5 4 4

5 7 5 4 4

6 7 5 4 4

7 7 5 4 4

8 7 5 4 4

9 7 5 4 4

10 7 5 4 4

Table 5.1: A table showing the minimum number of iterations needed for the model

to achieve at least 99% of the performance improvement (in terms of MSE) out of

100 iterations for different sub-period length and number of look-back sub-periods

combinations. Currency pair: GBP/USD.
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5.5.2 Trading rules

Based the forecasting value of a future RSI, decisions of whether to open/close a buy/sell

order can be made to maximise trading profits. As a result of the RSI nature, i.e. lower

(than 50) RSI values usually accompany down-trends and higher (than 50) RSI values

usually represent up-trends, the trading rule associated with this model, is set to be

opening a sell order (and closing an existing buy order) when the forecast RSI value

is below a certain value (called a "Low RSI") and placing a buy order (and closing an

existing sell order) when the forecast RSI is above a certain value (called a "High RSI").

Empirical analysis is conducted on the training set for a Low RSI ranging from 30 to

50 and a High RSI from 50 to 70 to find the best RSI trading rule for each of the 40

"sub-period length & number of look-backs" combinations. The RSI value 50 overlaps

because it is possible for both Low RSI and High RSI to be 50. In this case, a buy order

is placed (existing sell order closed) for higher-than-50 forecast RSI and a sell order is

placed (existing buy order closed) for lower-than-50 forecast RSI.

The gap in values between the Low RSI and the High RSI is an important indicator

of whether the market is trending or mean-reverting. In the above example when the

Low RSI and High RSI overlaps (at 50), orders are constantly placed as long as the

Low and High RSIs are not equal to 50. This represents a trending period (upward or

downward) in which trading is strongly encouraged to maximise trading profits. On the

other hand, when the Low RSI and High RSI have a large gap in values, i.e. very small

Low RSI and very large High RSI, trading is discouraged with the strict trade-entering

criteria. This type of trading rule (i.e. a large-gap between Low and High RSIs) typically

appears within a fluctuating period. In such a period, the market direction is usually

indecisive. No trade will take place unless there is evidence of a strong trend, indicated

by an extremely high or low forecast RSI value.
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5.5.3 Transaction costs

As is discussed in Chapter 4, the effect of transaction costs is largely dependent upon

the frequency of trading. In this chapter, since data frequency has been increased from

monthly to hourly data, trading frequency is also likely to increase. Therefore, the

average annual transaction cost is expected to increase. In Chapter 4, the number of

trades is fixed at once per month because in each month the simple Buy-Low-Sell-High

trading rule always makes either a buy or sell order. However, in Chapter 5, the number of

trades depends on the trading decisions made by the trading rule (LSTM-RSI and the two

benchmarks MA and RSI), which varies across different periods, as illustrated in the next

paragraph. Therefore, the annual transaction cost cannot be estimated by multiplying the

number of trades placed per year by the average percentage transaction cost per trade

as in Chapter 4.120 Instead the transaction cost is estimated on a trade-by-trade basis,

i.e. each time the underlying trading strategy places a trade, the average percentage

transaction cost (as estimated in Subsection 4.5.10 of Chapter 4) is deducted.

As an illustrative example, suppose that transaction cost is to be estimated in the process

of trading the USD/JPY pair with the best in-sample specification for LSTM-RSI being

[3, 120, 50, 52]. The specification [3, 120, 50, 52] means that the past 3 sub-periods

(each lasting 120 hours) are used to forecast the RSI value of the next sub-period. If the

forecast RSI is greater than 52, open a buy order and if the forecast RSI if less than 50,

open a sell order. If the forecast RSI is between 50 and 52, no trade is placed. Based on

the above information, for each sub-period, the algorithm may or may not instigate an

order. Therefore, as is discussed in the previous paragraph, it is not possible to estimate

the (annual) transaction cost by multiplying the number of trades placed per year by the

average percentage transaction cost per trade. Given this circumstance, the calculation

120The average percentage transaction cost is calculated with the spread values from OANDA as in Table

4.9 of Subsection 4.5.10.
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of transaction cost is programmed into the trading algorithm such that whenever the

algorithm instigates a trade (i.e. forecast RSI is above 52 or below 50 for USD/JPY as an

example), the estimated transaction cost per trade (0.012% for USD/JPY as estimated in

Table 4.9 of Subsection 4.5.10) is deducted, and when no trade is opened (i.e. forecast

RSI is between 50 and 52 for USD/JPY), no transaction cost is incurred. Transaction

costs are estimated in a similar way for the benchmark strategies, MA and RSI, both of

which place a varied number of trades from year to year.

5.5.4 Training/test results and interpretation

In Tables 5.3, 5.6, 5.9 and 5.12, the best (in terms of annualised return) RSI rules are

displayed for each of the 40 combinations of settings. Table 5.2 summarises the mean

RSI differences between the Low RSI and the High RSI for the four currency pairs in

different lengths of forecasting periods.

From Table 5.2, it can be seen that across different lengths of forecasting periods, the

gap between the Low RSI and the High RSI almost always decreases as the length of

forecasting period increases. This provides evidence to answer the question of whether

the market is in trend-following or mean-reversion status: in the short term (i.e. on a

weekly basis), the four FX pairs tend to be mean-reverting while in the long term (i.e. on

a monthly basis), the four FX pairs tend to be trend-following.

To compare across different currency pairs, the USD/JPY and USD/CHF pairs have

larger RSI gaps than the other two pairs, meaning that USD/JPY and USD/CHF are more

mean-reverting than GBP/USD and EUR/USD. Especially for the USD/CHF pair, which

has almost twice the RSI gap values of the second largest RSI gap pair - USD/JPY. Out

of the four pairs, the EUR/USD pair has the smallest and most stable RSI gap values,

making it the most trend-following pair in all time frames.
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120 240 360 480

GBP/USD 7 2.4 3.5 1.5

EUR/USD 2.8 2 1.9 1.3

USD/JPY 8.8 4.2 3.4 2.5

USD/CHF 16 9.7 7.7 3.6

Table 5.2: A table showing the mean RSI differences between the Low RSI and the High

RSI for the four currency pairs in different lengths of forecasting periods.

120 240 360 480

1 [48, 65] [50, 56] [50, 58] [48, 51]

2 [50, 59] [50, 56] [48, 53] [49, 51]

3 [50, 56] [50, 55] [48, 52] [49, 52]

4 [50, 58] [50, 52] [49, 53] [49, 52]

5 [50, 55] [50, 52] [49, 52] [49, 52]

6 [50, 54] [50, 50] [49, 52] [50, 50]

7 [50, 53] [50, 50] [49, 54] [50, 50]

8 [49, 55] [50, 50] [49, 51] [49, 51]

9 [49, 56] [49, 51] [49, 50] [50, 50]

10 [48, 53] [49, 50] [50, 50] [50, 50]

Mean-Diff 7 2.4 3.5 1.5

Table 5.3: A table showing the best (in terms of annualised return) in-sample trading

rules with 10 iterative runs for different period lengths and numbers of look-back periods.

Mean-Diff is calculated as the mean of the differences between the High RSI and the

Low RSI of each column. Currency pair: GBP/USD.
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120 240 360 480 R-Mean

1 2.94 1.35 1.15 -0.34 1.28

2 2.26 0.56 0.85 1.31 1.24

3 2.14 1.12 2.24 3.68 2.30

4 2.89 2.06 1.61 2.46 2.25

5 1.68 2.58 2.04 3.19 2.37

6 2.35 5.04 1.90 3.66 3.24

7 1.58 7.93 1.71 0.90 3.03

8 2.36 5.12 3.25 3.11 3.46

9 2.00 3.69 2.20 1.38 2.32

10 1.10 5.98 3.92 3.50 3.62

C-Mean 2.13 3.54 2.09 2.28

Table 5.4: A table showing the highest in-sample annualised returns (%) for different

period lengths and numbers of look-back periods. "R-Mean" calculates the mean of each

row and "C-Mean" calculates the mean of each column. Currency pair: GBP/USD.
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120 240 360 480 R-Mean

1 -2.28 1.50 -0.41 2.58 0.35

2 -1.18 1.61 1.51 3.64 1.39

3 -0.12 0.45 0.69 1.94 0.74

4 -0.54 2.59 0.88 2.01 1.23

5 -0.83 1.35 2.23 1.69 1.11

6 -1.09 -0.58 1.71 1.77 0.45

7 -1.20 0.94 1.96 3.79 1.37

8 -0.75 3.52 2.16 1.74 1.67

9 -0.49 1.89 0.60 3.55 1.39

10 0.14 0.01 1.33 2.90 1.10

C-Mean -0.84 1.33 1.27 2.56

Table 5.5: A table showing the highest test annualised returns (%) for different period

lengths and numbers of look-back periods. "R-Mean" calculates the mean of each row

and "C-Mean" calculates the mean of each column. Currency pair: GBP/USD.

206



120 240 360 480

1 [43, 54] [50, 50] [49, 53] [49, 51]

2 [50, 56] [49, 53] [49, 50] [47, 51]

3 [49, 50] [49, 51] [49, 50] [50, 50]

4 [49, 50] [50, 50] [50, 52] [50, 50]

5 [50, 50] [49, 50] [49, 52] [50, 50]

6 [49, 50] [49, 51] [49, 52] [50, 50]

7 [49, 54] [48, 51] [50, 50] [50, 51]

8 [49, 53] [49, 51] [49, 51] [49, 52]

9 [49, 50] [48, 51] [50, 50] [50, 51]

10 [50, 50] [48, 52] [49, 52] [49, 51]

Mean-Diff 2.8 2 1.9 1.3

Table 5.6: A table showing the best (in terms of annualised return) in-sample trading

rules with 10 iterative runs for different period lengths and numbers of look-back periods.

Mean-Diff is calculated as the mean of the differences between the High RSI and the

Low RSI of each column. Currency pair: EUR/USD.
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120 240 360 480 R-Mean

1 0.53 5.30 3.63 2.52 2.99

2 1.89 3.65 5.24 2.67 3.36

3 6.35 3.67 4.47 4.17 4.67

4 5.08 3.42 3.40 4.19 4.02

5 7.04 3.84 3.52 5.54 4.98

6 5.78 3.04 2.93 4.58 4.08

7 3.87 3.30 4.93 3.37 3.86

8 3.84 4.74 2.80 2.23 3.40

9 5.47 3.95 4.59 3.29 4.33

10 5.02 1.66 3.64 4.14 3.62

C-Mean 4.49 3.66 3.92 3.67

Table 5.7: A table showing the highest in-sample annualised returns (%) for different

period lengths and numbers of look-back periods. "R-Mean" calculates the mean of each

row and "C-Mean" calculates the mean of each column. Currency pair: EUR/USD.
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120 240 360 480 R-Mean

1 1.13 0.54 1.15 3.41 1.56

2 -0.62 1.82 -0.12 0.89 0.49

3 -2.16 2.08 0.29 -0.83 -0.15

4 0.04 0.86 1.67 1.35 0.98

5 0.60 -0.44 2.84 -0.45 0.64

6 -0.03 2.02 2.62 0.18 1.20

7 2.31 1.83 -0.14 1.21 1.30

8 1.52 0.77 2.22 2.56 1.77

9 0.31 1.77 0.34 1.85 1.07

10 3.08 2.43 2.79 0.90 2.30

C-Mean 0.62 1.37 1.37 1.11

Table 5.8: A table showing the highest test annualised returns (%) for different period

lengths and numbers of look-back periods. "R-Mean" calculates the mean of each row

and "C-Mean" calculates the mean of each column. Currency pair: EUR/USD.
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120 240 360 480

1 [42, 52] [47, 53] [45, 52] [50, 50]

2 [42, 53] [50, 55] [50, 53] [49, 52]

3 [50, 52] [50, 54] [49, 53] [50, 51]

4 [30, 52] [49, 54] [49, 53] [49, 52]

5 [50, 51] [50, 52] [49, 52] [49, 52]

6 [48, 52] [50, 53] [49, 52] [48, 51]

7 [50, 55] [48, 54] [49, 54] [49, 52]

8 [50, 54] [49, 52] [49, 51] [48, 52]

9 [30, 52] [49, 52] [50, 52] [50, 52]

10 [46, 53] [48, 53] [50, 51] [49, 52]

Mean-Diff 8.8 4.2 3.4 2.5

Table 5.9: A table showing the best (in terms of annualised return) in-sample trading

rules with 10 iterative runs for different period lengths and numbers of look-back periods.

Mean-Diff is calculated as the mean of the differences between the High RSI and the

Low RSI of each column. Currency pair: USD/JPY.
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120 240 360 480 R-Mean

1 2.58 2.87 0.92 1.88 2.06

2 2.27 2.35 2.50 1.56 2.17

3 3.71 2.24 1.96 2.18 2.52

4 1.38 3.00 1.58 2.28 2.06

5 2.93 2.17 2.34 2.92 2.59

6 1.81 2.40 2.91 2.37 2.37

7 2.34 1.83 2.87 2.49 2.38

8 3.01 2.56 2.82 1.78 2.54

9 1.35 3.49 2.51 1.62 2.24

10 2.14 3.19 1.80 0.73 1.96

C-Mean 2.35 2.61 2.22 1.98

Table 5.10: A table showing the highest in-sample annualised returns (%) for different

period lengths and numbers of look-back periods. "R-Mean" calculates the mean of each

row and "C-Mean" calculates the mean of each column. Currency pair: USD/JPY
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120 240 360 480 R-Mean

1 0.95 -0.84 2.66 5.24 2.00

2 -0.12 0.56 0.84 3.30 1.14

3 -1.37 2.61 1.30 2.09 1.16

4 0.64 0.99 -0.29 1.91 0.81

5 0.88 1.79 0.95 2.21 1.46

6 0.12 0.75 1.04 2.34 1.06

7 -0.76 1.56 1.54 3.15 1.37

8 -1.64 0.79 1.29 2.24 0.67

9 1.97 1.66 1.98 3.49 2.28

10 0.55 0.68 1.55 3.72 1.62

C-Mean 0.12 1.06 1.29 2.97

Table 5.11: A table showing the highest out-of-sample annualised returns (%) for different

period lengths and numbers of look-back periods. "R-Mean" calculates the mean of each

row and "C-Mean" calculates the mean of each column. Currency pair: USD/JPY.
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120 240 360 480

1 [43, 64] [43, 54] [30, 58] [50, 57]

2 [46, 61] [44, 57] [45, 54] [50, 51]

3 [46, 58] [47, 57] [50, 54] [50, 53]

4 [45, 59] [47, 55] [47, 53] [50, 54]

5 [46, 59] [50, 57] [50, 53] [50, 54]

6 [46, 59] [48, 57] [50, 54] [50, 54]

7 [47, 58] [46, 57] [47, 55] [50, 55]

8 [30, 59] [49, 57] [50, 55] [49, 51]

9 [46, 60] [47, 57] [47, 54] [50, 55]

10 [42, 60] [47, 57] [50, 53] [50, 51]

Mean-Diff 16 9.7 7.7 3.6

Table 5.12: A table showing the best (in terms of annualised return) in-sample trading

rules with 10 iterative runs for different period lengths and numbers of look-back periods.

Mean-Diff is calculated as the mean of the differences between the High RSI and the

Low RSI of each column. Currency pair: USD/CHF.
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120 240 360 480 R-Mean

1 1.61 0.97 0.00 3.04 1.41

2 1.92 0.39 0.69 6.04 2.26

3 1.49 1.28 4.16 4.23 2.79

4 0.05 0.30 0.88 4.07 1.32

5 0.96 3.24 3.10 3.14 2.61

6 0.56 0.66 3.42 4.56 2.30

7 1.78 0.13 1.81 3.35 1.77

8 0.00 2.21 3.01 3.84 2.27

9 0.64 1.50 1.13 3.38 1.66

10 0.19 0.73 4.51 4.53 2.49

C-Mean 0.92 1.14 2.27 4.02

Table 5.13: A table showing the highest in-sample annualised returns (%) for different

period lengths and numbers of look-back periods. "R-Mean" calculates the mean of each

row and "C-Mean" calculates the mean of each column. Currency pair: USD/CHF
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120 240 360 480 R-Mean

1 -1.37 -0.73 0.00 -2.47 -1.14

2 -1.71 0.00 0.43 -4.86 -1.53

3 -0.73 -0.61 -4.26 -2.65 -2.06

4 0.07 0.10 -0.05 -2.54 -0.60

5 -0.53 -2.40 -2.56 -2.79 -2.07

6 -0.36 -0.59 -2.99 -3.10 -1.76

7 -2.00 0.07 -0.78 -3.37 -1.52

8 0.00 -1.89 -3.38 -4.53 -2.45

9 -0.58 -0.42 0.29 -1.95 -0.67

10 0.00 -0.19 -3.80 -5.21 -2.30

C-Mean -0.72 -0.67 -1.71 -3.35

Table 5.14: A table showing the highest out-of-sample annualised returns (%) for different

period lengths and numbers of look-back periods. "R-Mean" calculates the mean of each

row and "C-Mean" calculates the mean of each column. Currency pair: USD/CHF.
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Tables 5.4, 5.7, 5.10 and 5.13 display the annualised returns (%) generated from the

best RSI rules for the training set. Tables 5.5, 5.8, 5.11 and 5.14 show the annualised

returns (%) generated from the best RSI strategies for the test set. The mean annualised

return for each look-back size (mean of each row) and the mean annualised return for

each sub-period length (mean of each column) are calculated. These means are only

presented to serve as an indicator of how a given specification (a particular length or

size) generally performs for a given currency pair. However, these mean values are not

of great practical significance because in trading practice only the best model with the

specification (different combinations of settings) and trading rule that generate highest

return will be focused on.

The performances of both the training and test sets of each currency pair show in general

the forecastability of the currency pair during the underlying period. Meanwhile, the

difference in the training and test set performances indicates how much price movement

patterns change from the training period to the test period.

From Tables 5.4, 5.7, 5.10 and 5.13, the USD/CHF and USD/JPY pairs generate lower

annualised returns than the other two pairs (GBP/USD and EUR/USD), especially during

the test period. The USD/CHF pair generates the lowest returns. Given the results of

the gaps in values of the Low and High RSI of different pairs, the poor performance of

the USD/CHF pair is associated with a large gap in its Low and High RSI values. For

GBP/USD and EUR/USD which are more trend-following pairs (indicated by a small

gap in values of the Low and High RSI) from the above results, the mean annualised

return is higher overall across different lengths of forecasting periods. The above results

show a negative relationship between the gap in values (of Low and High RSI) and

profitability. According to Subsection 5.5.2, gaps in values (of Low and High RSI) are

closely related to price patterns, i.e. large gaps in values (of Low and High RSI) usually

accompany mean-reversion patterns and small gaps in values (of Low and High RSI)
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usually accompany trend-following patterns. Therefore, this answers one of the research

questions of how does market status being mean-reversion or trend-following affect

market forecastability/profitability. Markets which exhibit more trend-following patterns

have higher forecastability/profitability than markets which exhibit more mean-reversion

patterns.

Therefore, it is essential for an investor to be able to forecast whether the next period of

interest will be trend-following or not. This links with the contribution of the novel usage

of RSI as a measure of patterns (the extent of the market status being trend-following or

mean-reversion) and forecasting RSI with the help of a forecasting model, e.g. LSTM in

this chapter.
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5.5.5 A comparison with the widely adopted MA and RSI rules

The two widely used trading rules MA and RSI differ from the proposed LSTM-RSI

in the sense that the LSTM-RSI algorithm is a forecasting-trading algorithm while the

MA and RSI do not have a forecasting model associated with them.121 In this section,

comparisons will be made on these two types of trading rules to trade the four currency

pairs.

One difference needs to be made clear between the term RSI as in LSTM-RSI and the RSI

as in the RSI strategy. The LSTM-RSI uses LSTM to forecast RSI values as a measure

of price patterns while the RSI strategy is a trading strategy based on over-bought and

over-sold patterns identified by RSI values. So essentially the proposed LSTM-RSI

differs from the traditional RSI strategy by the use of LSTM to forecast RSI values.

Therefore, benchmark comparisons are made between LSTM-RSI and other strategies

without LSTM, e.g. MA and RSI.

Tables 5.15 - 5.18 display the best performance from the MA and RSI rules, along

with the best performance from the LSTM-RSI algorithm. For the MA rule, the best

setting represents the number of data points used to calculate the MA that generates the

highest annualised return for the training set. The RSI setting consists of an array of

three numbers including the number of data points used to calculate RSI, the Lower and

Higher RSI values as triggers of buy/sell order placement. The setting for the LSTM-

RSI algorithm contains four numbers including the number of look-back periods, the

length of each sub-period, the Lower and Higher RSI values as triggers of buy/sell order

placement.

For the MA and RSI rules, the training set is used to configure the best setting and then

the best setting is applied to the test set. For the LSTM model, the training set is used

121Refer to Subsection 5.1.2 for more details of the MA and RSI trading rules.
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not only to find the best setting of the trading rule, but also to estimate parameters for the

LSTM model.

This makes the performance of MA and RSI fixed results, i.e. once the setting is fixed, the

trading performance of any given period is determined. Similarly, the trading component

of the LSTM-RSI is also fixed once the trading rule is determined. However, because the

LSTM-RSI algorithm has a forecasting model implemented, the trading performance

is also highly dependent on the accuracy of the forecasting model. Therefore, there is

always a potential to improve LSTM-RSI’s performance, i.e. by adjusting the complexity

of the LSTM or varying the parameter values.

The forecastability of the LSTM model is highly dependent upon the training process,

whose efficiency is determined by the power of hardware equipment (computer CPU,

GPU and memory size).122 Therefore, readers should be aware that it is not the main

focus of this chapter to obtain a model with extremely high forecastability and achieve

significant returns. Instead, it is of interest in this chapter to introduce a new forecasting

model - trading rule combination to explore the potential of such approaches in practice.

From Tables 5.15 - 5.18, it can be seen that, in general, the LSTM-RSI approach is able

to give more stable performances than the MA and RSI trading rules. The phrase "more

stable" is interpreted in two aspects. First, the LSTM-RSI suffers from less extreme

losses than both MA and RSI, e.g. RSI suffers from an out-of-sample loss of 6.29% for

EUR/USD and MA suffers from an out-of-sample loss of 12.26% for USD/CHF. Second,

LSTM-RSI generally benefits from smaller annual transaction costs than MA and RSI.

This is because the LSTM-RSI strategy controls (with a fixed forecasting horizon) the

number of trades per year within a limit. However, with MA and RSI, there is no such

limit, i.e. under the trading rule a trade is always placed whenever the criteria is met.

In this way, a large number of trades which generate very small profits are frequently

122A supercomputer can train a model within seconds that a normal desktop would need months to train.
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placed while after deducting transaction cost these trades will become profitless or even

bring losses.
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GBP/USD MA RSI LSTM-RSI

Best setting 4320 [120, 45, 55] [7, 240, 50, 50]

Training return (%) 2.10 3.34 7.93

Training return after transaction cost (%) 1.64 3.13 7.82

Test return (%) 2.88 7.43 0.94

Test return after transaction cost (%) 2.66 7.20 0.87

Table 5.15: A table showing the highest in-sample and out-of-sample annualised returns

(%) for the MA and RSI trading rules compared with the LSTM-RSI trading algorithm

for the GBP/USD pair. For the MA rule, the best setting represents the number of data

points used to calculate the MA that generates the highest annualised return for the

training set. For the RSI rule, the best setting consists of an array of three numbers

including the number of data points used to calculate RSI, the Lower and Higher RSI

values as triggers for buy/sell order placement. For the LSTM-RSI algorithm, the best

setting contains an array of four numbers including the number of look-back periods, the

length of each sub-period, the Lower and Higher RSI values as triggers for buy/sell order

placement.
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EUR/USD MA RSI LSTM-RSI

Best setting 1080 [240, 50, 50] [5, 120, 50, 50]

Training return (%) 5.57 5.90 7.04

Training return after transaction cost (%) 4.80 4.28 6.68

Test return (%) -3.28 -4.40 0.60

Test return after transaction cost (%) -4.46 -6.29 0.23

Table 5.16: A table showing the highest in-sample and out-of-sample annualised returns

(%) for the MA and RSI trading rules compared with the LSTM-RSI trading algorithm

for the EUR/USD pair. For the MA rule, the best setting represents the number of data

points used to calculate the MA that generates the highest annualised return for the

training set. For the RSI rule, the best setting consists of an array of three numbers

including the number of data points used to calculate RSI, the Lower and Higher RSI

values as triggers for buy/sell order placement. For the LSTM-RSI algorithm, the best

setting contains an array of four numbers including the number of look-back periods, the

length of each sub-period, the Lower and Higher RSI values as triggers for buy/sell order

placement.
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USD/JPY MA RSI LSTM-RSI

Best setting 360 [120, 35, 55] [3, 120, 50, 52]

Training return (%) 0.89 3.75 3.71

Training return after transaction cost (%) -0.94 1.89 3.60

Test return (%) 0.17 -0.21 -1.37

Test return after transaction cost (%) -1.63 -1.64 -1.52

Table 5.17: A table showing the highest in-sample and out-of-sample annualised returns

(%) for the MA and RSI trading rules compared with the LSTM-RSI trading algorithm

for the USD/JPY pair. For the MA rule, the best setting represents the number of data

points used to calculate the MA that generates the highest annualised return for the

training set. For the RSI rule, the best setting consists of an array of three numbers

including the number of data points used to calculate RSI, the Lower and Higher RSI

values as triggers for buy/sell order placement. For the LSTM-RSI algorithm, the best

setting contains an array of four numbers including the number of look-back periods, the

length of each sub-period, the Lower and Higher RSI values as triggers for buy/sell order

placement.
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USD/CHF MA RSI LSTM-RSI

Best setting 840 [600, 45, 50] [2, 480, 50, 51]

Training return (%) 3.01 5.77 6.04

Training return after transaction cost (%) 1.72 3.85 5.96

Test return (%) -10.49 2.81 -4.86

Test return after transaction cost (%) -12.26 -1.77 -4.93

Table 5.18: A table showing the highest in-sample and out-of-sample annualised returns

(%) for the MA and RSI trading rules compared with the LSTM-RSI trading algorithm

for the USD/CHF pair. For the MA rule, the best setting represents the number of data

points used to calculate the MA that generates the highest annualised return for the

training set. For the RSI rule, the best setting consists of an array of three numbers

including the number of data points used to calculate RSI, the Lower and Higher RSI

values as triggers for buy/sell order placement. For the LSTM-RSI algorithm, the best

setting contains an array of four numbers including the number of look-back periods, the

length of each sub-period, the Lower and Higher RSI values as triggers for buy/sell order

placement.
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5.5.6 Implications for EMH

In this chapter, the Jensen (1978) version of the EMH is tested,123 i.e. utilising significant

out-of-sample abnormal returns as a challenge to the EMH. In terms of the three forms

of EMH as defined in Subsection 2.1.2, it is the weak form EMH that is tested. This is

because information used for forecasting FX rates only includes historical FX rates and

technical indicators which can be directly derived from historical FX rates.

Based on the results from Tables 5.15 - 5.18, it can be seen that although LSTM-RSI gives

more stable performance than the benchmark MA and RSI. However, no currency pair

generates significant out-of-sample profits after transaction cost is considered. Therefore,

there is not enough evidence to challenge the weak form EMH for the four markets where

the currencies are based.

A noteworthy fact is that across the four markets, the Swiss market once again (as in

Chapter 3 and 4) shows most (weak form) efficiency because it is most difficult to

generate abnormal returns (across all three trading strategies) in the Swiss FX market.

123For more details of the Jensen (1978) version of the EMH, refer to Subsection 2.1.2.
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5.6 Conclusion

In this chapter, a price movement pattern-focused approach is proposed. Traditionally,

the RSI indicator is used in the RSI trading rule in which the indicator value identifies

overbought/oversold status of the current market. This chapter adopts the novel use of

RSI as a trend indicator for past, present and future sub-periods. A forecasting-trading

algorithm is built to forecast future price patterns and make trading decisions based on

the forecast values.

With the fast development in multi-core GPU, there has been a greater tendency to apply

ANN models to forecast financial asset prices, see Roondiwala et al. (2017), Baek and

Young (2018), and Rundo (2019). However, in terms of technical trading, the number of

research papers that apply ANN models for technical trading is limited.

This chapter utilises a LSTM model to forecast future price movement patterns (measured

by the RSI indicator) and make trading decisions based on the forecast RSI values. A

wide range of parameter specifications (number of look-back periods and length of

sub-periods) are tested for four currency pairs on the LSTM model. The target is to

explore the trend-following and mean-reversion patterns under different time horizons

and for different FX pairs.

This methodology differs from the traditional RSI strategy mainly in the extra fore-

casting power provided by the LSTM model. More specifically, the traditional RSI

strategy makes decisions on past over-bought or over-sold status suggested by RSI values.

However, the LSTM-RSI model, firstly uses RSI for a different purpose (price pattern

measuring) and secondly, has more forecasting power of future price patterns, as well

as more flexibility (from a large number of adjustable parameters in the LSTM model),

with the use of the LSTM. RSI and MA (as two of the most widely adopted technical

trading strategies) without LSTM are used as benchmark strategies.
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The proposed LSTM-RSI algorithm provides more stable trading performance than the

benchmark MA and RSI rules (without LSTM) during the given period. It is observed

that mean-reversion patterns happen more frequently in shorter time horizons (shorter

than 2 weeks) and trend-following patterns are more prevalent in longer time horizons

(2-4 weeks). Among the four currency pairs, USD/CHF is the most difficult to forecast.

This is consistent with the conclusions from Chapters 3 and 4. In terms of forecasting

horizon, GBP/USD and USD/CHF generate more profits with longer-horizon strategies

and USD/JPY is more profitable with short-term strategies. The research results from

Olson (2004) suggest that profits gained from trend-following strategy have diminished

from 1971 to 2000. However, with empirical evidence in all of the four currency pairs

from 1999 to 2019, this chapter shows that potential profit still exists in certain times and

the profit level goes up as the extent of trend-following patterns increases. Therefore,

trend-following strategies may continue to be profitable and worth further research.

In terms of the long-term overall performance of all strategies for the four pairs, none

of the strategies generate significant profits (especially out-of-sample) for all currencies.

This empirical evidence supports the weak-form EMH.124

The main research results of this chapter has potential practical usefulness to trading

practitioners, government research departments, as well as academic researchers in

understanding the significance of price movement patterns in forecasting/trading in the

FX market and encouraging more efforts in developing other types of forecasting models

to improve the technical trading process.

The main target of this chapter is not to develop a highly profitable trading algorithm but

explore the not-so-widely adopted approach of forecasting-trading algorithms. However,

this does not mean the proposed algorithm cannot be further improved to increase

forecastability hence profitability. In fact, although there is some empirical evidence of

124For more details on the EMH refer back to Subsection 2.1.2.
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performance convergence for the trained model, it is not possible to prove it is a global

convergence rather than a local convergence. Therefore, given enough computation

power (i.e. with high-end supercomputers), there is still a possibility that a significant

improvement can be made on the LSTM model.

As Daniel and Moskowitz (2016) have suggested, despite persistent returns, momentum

(trend-following) strategies suffer from significant losses in certain periods. This points

to a further research direction of focusing on a shorter period of time in which one or

more critical events happens, i.e. the 2008 global financial crisis, the Swiss National

Bank’s decision to drop the CHF/EUR limit of 1.2 in 2015, the UK EU-membership

referendum in 2016. By researching in this direction, improved understanding will be

formed on price movement patterns under extreme conditions so that not only will it help

control risk but also suggest more significantly profitable trading opportunities.
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6 Conclusions

6.1 Contributions to knowledge

Since the breakdown of the Bretton Woods system in 1971, the FX market has attracted

increased attention from both financial practitioners and academic researchers, see

Zhang and Hu (1998), Wang et al. (2001), Monfared and Enke (2014), Bai and Koong

(2018), and Mollick and Sakaki (2019). The topics of volatility and return forecasting

(including price movement pattern) remain central in terms of their significance from

both speculation and hedging perspectives.

This thesis approaches the FX market from three directions: volatility forecasting, return

forecasting and price movement pattern forecasting (as a special case of return fore-

casting). Several major (and minor) currency pairs are studied, at different frequencies

- monthly, daily and hourly. Chapter 3, a methodology-focused chapter, develops a

parameter estimation algorithm for a model that aims at forecasting FX volatility and

some implications for the weak form EMH are drawn from the volatility forecasting

results. In Chapter 4 and 5, both fundamental and technical analysis techniques are

used, in order to explore profitability levels due to macro- and micro-structures of the FX

market and test the semi-strong and weak forms of the EMH.

6.1.1 A review of Chapter 3

Donaldson and Kamstra (1997), Lu et al. (2016), and Kristjanpoller and Minutolo

(2018) utilise GARCH-ANN models to forecast FX volatility. According to Hansen et al.

(2010), the Genetic Algorithm (GA) gives improved performance over gradient-based

algorithms (such as BFGS). Xu (2017) and Ding et al. (2019) focus on developing

parameter estimation algorithms for gradient-based algorithms in the modelling and

forecasting processes. Chapter 3 builds an algorithm that improves the performance of a
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non-gradient-based algorithm (GA).

Chapter 3 aims at solving the local-optimum problem in the parameter estimation process

for models with especially complex likelihood functions. The target model for estimation

is GARCH-ANN, a model with linear and non-linear components which may increase

the possibility of trapping into a local optimum in the estimation process.

The proposed Recursive Simulation Genetic Algorithm (RSGA) algorithm applies the

concept of repetitive - recursive computation to a GA to estimate the GARCH-ANN

models, which are implemented for forecasting daily volatility of GBP/USD, EUR/USD,

USD/JPY, USD/CHF, USD/RUB and USD/ZAR. The six currency pairs selected include

major FX pairs with relatively lower volatility such as USD/JPY and EUR/USD, medium

level of volatility such as GBP/USD and USD/CHF and minor FX pairs with higher

volatility such as USD/RUB and USD/ZAR.

The RSGA has made significant improvements in forecasting the volatility of all six

currency pairs, in terms of MAE and RMSE. An average of over 70% improvement is

made for the six pairs. Despite its medium-sized volatility level over the underlying

period, the USD/CHF pair generates the highest overall errors (for both the benchmark

algorithm and RSGA) among all pairs, making it the most difficult pair for volatility

forecasting. Higher percentage improvement is achieved for higher-volatility pairs

(USD/RUB and USD/ZAR). This empirical evidence shows that the proposed RSGA

algorithm is able to significantly improve the parameter estimation results for modelling

both lower-volatility and higher-volatility currency pairs.

The empirical results also provide some implications for the EMH. First, the emerging

markets (Russia and South Africa) are less efficient than the developed markets (UK,

Eurozone, Japan and Switzerland). This is consistent with the nature of these two

types of markets. It also agrees with the empirical evidence from Hsu et al. (2016)
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(see Subsection 4.1.2 and Section 4.6) where significantly less profits are obtained in

developed markets than in emerging markets, suggesting the more efficient nature of

developed markets. Second, based on the high extent of consistency of performance for

in-sample and out-of-sample datasets and the high difficulty in forecasting the USD/CHF

pair, the Swiss market demonstrates the most (weak form) efficiency out of the six

markets in this chapter.

6.1.2 A review of Chapter 4

Huang et al. (2004), Erdogan and Goksu (2014), Bakhach et al. (2016), and Galeshchuk

and Mukherjee (2017) apply ANN models with relatively small sizes (3-10 neurons per

layer) in FX return forecasting. Chapter 4 extends the number of neurons per layer up to

over 4000 to check whether the seemingly over-fitted models would improve forecasting

performance. With the implementation of high-efficiency GPU, the computation time is

controlled within an acceptable range.

Chapter 4 focuses on return forecasting on a monthly basis for four currency pairs

(GBP/USD, EUR/USD, USD/JPY, USD/CHF) with a large ANN model. 42 input

variables including historical FX rates and macroeconomic indicators are used. Due

to limitations of computation power, previous researchers commonly use 5-20 neurons

for the hidden layer. With the help of the fast developing GPU and highly-efficient

training libraries (Keras), this chapter is able to implement a wide range (from 2 to 4096

increasing in power of 2) of the number of neurons in the hidden layer to build ANNs

with various sizes.

By comparing performance of different ANN sizes, this chapter finds that as the number

of neurons in the hidden layer increases up to 256 (a size that has been rarely worked

with in previous similar research papers), both in-sample and out-of-sample profits start

to increase. There is a sign that after the number of neurons reaches a certain amount
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(dependent on the currency pair125), profits start to decline. However, due to the limitation

in computation power (maximum number of neurons for the GPU in use is 4096), it is not

clear whether this performance decline is permanent or temporary, i.e. if it is temporary,

then after the number of neurons is increased beyond a certain level (somewhere over

4096), performance will start to rise again. Based on the fact that previous researchers

with ANN models of much smaller sizes also obtained the "best" result for the number

of neurons they finally decide to used after comparing with other numbers (within their

computation limit), it is shown by empirical evidence in this chapter that their (e.g.

results in previous research papers with small ANNs) result is unlikely to be the best.

Likewise there is also no obvious reason to believe that the "best" result in this chapter

is actually the best, i.e. the performance decline after the number of neurons reaches a

certain amount is permanent.

Historically, it has been a consensus that the number of parameters should be limited as

to reduce overfitting, i.e. too many parameters might over-interpret the data pattern and

make people falsely believe their model is working well by generating nearly perfect

in-sample results. When applied to an out-of-sample dataset, i.e. the model has never

seen and learned in the training process, the overfitted model usually gives poor results,

see Panchal et al. (2011), and Bilbao and Bilbao (2017).

In contrast to the previous literature on overfitting, the findings of this chapter point

to a different direction of thinking about the overfitting problem. It is undeniably true

that there are cases where the forecasting datasets have so simple patterns (i.e. linear,

polynomial) that using too many parameters will increase the risk of overfitting. However,

for almost all financial datasets (FX being one of the most complicated), the data patterns

may never be deemed as simple as any hypothetical examples. Therefore, a further

expansion of the number of parameters is suggested even if overfitting has already been

125For example, for GBPUSD, the optimum number of neurons is 1024.
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observed. In Chapter 4, with the inclusion of drop-out layers, models with significantly

larger neuron sizes do not suffer from the overfitting problem. This is verified by the

good performance of the validation set (a small portion of the training set). A separate

portion of the training set is used to avoid the use of the test set in the model selection

process, which would cause the problem of "utilising the future data to forecast past

data". Refer to Larsen et al. (1996), Bylander and Tate (2006), Guresen et al. (2011),

Alvarez and Salzmann (2016), Lever et al. (2016), and Xu and Goodacre (2018) for

justification of the use of a validation set for overfitting detection and model selection.

As a benchmark model, logistic regression is implemented with the same number of input

variables as the large MLPNN. The large MLPNN outperforms logistic regression in

terms of both accuracy rate and profit for all four currency pairs. This confirms that even

with the same number of input variables the MLPNN model has more adaptive power to

model with datasets of various levels of pattern complexity than fixed size models such

as logistic regression.

From the finance perspective, although the four currency pairs all generate positive

profits, USD/CHF has the lowest accuracy rate as well as lowest profit level. This is

consistent with the conclusion of the volatility forecasting task in Chapter 3. The relative

success of the USD/JPY pair is partially due to its higher profit achieved by adopting the

buy-and-hold strategy. This is because the buy-and-hold strategy is more profitable when

the FX rate is trend following and less profitable when the FX rate is mean reverting. The

effect of price movement patterns indicated by being trend-following or mean-reversion

on profitability is further discussed in Chapter 5.

The implications of the results on the EMH in this chapter are summarised below. First,

there is evidence to challenge the semi-strong EMH for all four markets where the

currencies are based. Second, overall the difference in the extent of inefficiency in the

four markets is not significantly large. Third, the Swiss market exhibits relatively less
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inefficiency than the other three markets.

6.1.3 A review of Chapter 5

Lui and Mole (1998), Oberlechner (2001), Coakley et al. (2016), and Hsu et al. (2016)

discuss the application of technical analysis in the FX market. Yao and Tan (2000),

Sang and Pierro (2018) utilise ANN models to improve technical trading. Gil-alana

(2000), Serban (2010), and Lubnau and Todorova (2015) study the trend-following

and mean-reversion patterns in trading practices. To the author’s best knowledge, this

thesis (Chapter 5) is the first to use an ANN model to forecast trend-following and

mean-reversion patterns. The following paragraph explains the reason for studying these

patterns.

The trend-following and mean-reversion patterns are valued highly by financial practi-

tioners (e.g. FX traders) but have not been thoroughly studied by academic researchers.

One difficulty is that the two states of patterns (trend-following and mean-reversion) are

not categorical but numerical, i.e. for any period of interest, there is an extent of being

trend-following or mean-reversion for FX rates, instead of just being in one state or the

other. Therefore being able to measure the extent of trend-following or mean-reversion

is essential in pattern forecasting.

This thesis (Chapter 5) utilises the Relative Strength Indicator (RSI) as a measure of the

extent of being trend-following or mean-reversion. To the best knowledge of the author,

this is the first attempt of the methodology in this area. Despite the fact that RSI has been

used and researched extensively in both the financial and academic world, it has been

mainly used as an indicator to suggest over-bought and over-sold status. By using RSI

as an indicator to measure the extent of being trend-following or mean-reversion, this

chapter then uses the Long Short Term Memory (LSTM) model to forecast future RSI

values and make trading decisions based on the forecast RSI values.
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Higher frequency hourly FX rates of four currency pairs (GBP/USD, EUR/USD, USD/JPY,

USD/CHF) are used for forecasting. By comparing performance of two most widely-

used technical trading rules Moving Average (MA) and RSI126, the proposed LSTM-RSI

strategy is able to give more stable trading performances than MA and RSI. While

MA and RSI may generate satisfactory profits in certain times or for certain currency

pairs, they give poor performance at other times or for other currency pairs. Overall,

while LSTM-RSI increases performance stability, none of the three strategies is able to

consistently generate profits across currency pairs throughout time.

One noteworthy fact is that the USD/CHF pair once again generates the lowest profits (or

even losses) among the four currency pairs. Although the economic or structural reasons

for the under-performance of the USD/CHF is beyond the researching scope of this thesis,

these empirical findings suggest that even with relatively more sophisticated models

and trading strategies, the performances of these models and strategies are still highly

dependent upon the price pattern and nature of each specific currency pair. Therefore

for financial practitioners such as FX traders, on top of a mature trading rule/strategy,

choosing the most appropriate currency pair to trade is equivalently crucial towards

successful trading performances.

As is discussed above, the out-of-sample profits for none of the four pairs are significant.

This helps demonstrate that there is no evidence that any of the four markets is inefficient

(in the sense of weak-form EMH). Moreover, the especially poor performance of the

USD/CHF pair once again confirms the Swiss market as one of the most efficient markets

in the world.127

126Here the term RSI refers to a trading rule based on the RSI indicator.

127Evidence in Chapters 3-5 supports that the Swiss market is the most (weak and semi-strong form)

efficient among even the three highest developed markets. Therefore it would be fair to conclude that, after

including less developed markets, the Swiss market is still one of the most efficient of all markets.
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6.2 Limitations of the thesis

One limitation of the research methodologies of this thesis, which is also the limitation of

most model-based methodologies, arises from the use of fixed forecasting horizons. For

example, in the training stage, the model learns from a fixed number of input variables

(lasting the same length of time) and forecasts a fixed length of time in the future. This

problem is intrinsic with any model-based forecasting methodology because the model’s

structure needs to be pre-defined and fixed (although the parameter values may subject to

changes in the training process). There is a problem of fixed-horizon forecasting because

the success of fixed-horizon forecasting is highly dependent on assumption that the target

dataset has a fixed length of periodical patterns, which is seldom the case for financial

time series.

Another limitation arises from the low number of split training and test sets. In this thesis,

due to the limit in the number of data points, the datasets are split into a training set and

a test set. If the number of training and test sets increases, the number of data points in

each set would be too small. The following example illustrates the problem as a result of

using only one training and test set.

If a model needs to first determine the number of days GBP/USD typically fluctuates

before it breaks out the range and make an upward or downward trend, and then make

trading decisions based on whether the fluctuation period has ended. In the training

process, the model learns from the whole period of the training set and determine the

"most appropriate" number of fluctuation days based on a cost function. However, the

problem is that for financial datasets like FX, the patterns are constantly changing and

therefore taking a single value to represent the overall situation for the whole period may

cause problems when patterns of the test set are changing and the overall pattern for the

test set is significantly different from that of the training set.
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6.3 Future research directions

One potential approach to partially solve the problem arising from adopting fixed-length

horizons is to use varied-length models, see Ouyang and Ying (2018). With varied-length

models, both the length of the data used to forecast the future and the length of the future

data to be forecast can vary within a certain range of their nearest past forecasting settings.

This will increase the flexibility of the model in terms of its capability of self-adapting

changes in market conditions throughout time. However, the word "partially" is used in

the first sentence because even with varied-length models, the varied lengths may only

change in one (or more) pre-defined ways designed by the model builder. It is highly

unlikely that the pre-defined variation specifications of varied-length models will cover

even a small proportion of the total variation specifications of the market over a longer

period.

To solve the problem caused by having only one training and one test set, it would be

reasonable to split the datasets in to multiple pairs of training and test sets. Models

are trained and updated on a rolling basis to promptly adapt to the changes in financial

markets. This approach requires significantly large datasets for each training and test to

have enough data points, i.e. very high frequency (5-min, 1-min, or even tick) FX data.

In this thesis, the information used to forecast future FX volatility, return or pattern

comes from the financial (e.g. past FX rates and patterns) and economic (e.g. GDP,

interest rates, inflation rates) aspects. However, because the trading of FX is essentially

a game of humans, human behaviour is another crucial aspect not to be neglected.

Therefore, another direction of future research is to include opinion-based information

in the forecasting model, see Iwantoro and Koesrindartoto (2015), and Semiromi et al.

(2020). In addition to the above factors, political factors (such as election and policy

uncertainties) also play a crucial role in affecting market volatility, see Goodell et al.

(2020).
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The models implemented in this thesis are also related to the some of the further research

directions. For example, LSTM (as in Chapter 5) can be used to read, summarise and

learn from different opinions (i.e. whether a currency is going to appreciate or depreciate

against another currency in the next few days) on social media following recent big news.

Large ANN models (as in Chapter 4) can be used to forecast future FX movements based

on the information learned from the LSTM, together with macro-economic indicators

and past FX rates as in Chapter 4. The GARCH-ANN model (as in Chapter 3) can be

used for identifying trading opportunities (periods with higher volatility), forecasting the

effect of political uncertainties on market volatility, and managing risks.

In conclusion, this thesis focuses on improving forecasting performance for FX volatility,

return and price patterns. The implemented algorithms and models may also facilitate

further research directions as described above.
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7 Appendix

Chapter 3

GBP EUR JPY

a0 -2.18e-02 (4.42e-03) -6.28e-04 (4.87e-03) -1.63e-03 (9.91e-04)

a1 -2.28e-02 (3.08e-03) -2.37e-01 (2.55e-01) -1.67e-01 (-1.39e-01)

α 2.36e-03 (8.49e-04) 2.58e-03 (7.79e-04) 2.19e-03 (1.65e-03)

β -2.04e-01 (-3.40e-01) -2.29e-01 (-3.65e-01) -9.97e-02 (-1.62e-01)

γ 4.49e-02 (3.05e-01) 3.46e-02 (2.34e-01) -3.20e-02 (2.82e-01)

ξ -1.83e-03 (-5.51e-04) -7.75e-04 (-6.33e-04) -1.87e-03 (-1.54e-03)

Table 7.1: Appendix: Chapter 3 - GARCH-ANN estimated coefficients with RSGA (in

brackets) and one randomly selected GA out of 100 rounds of GA for log-returns of GBP,

EUR and JPY. 1 Jan 2008 to 31 Dec 2017 (daily). All currencies are against USD.

CHF RUB ZAR

a0 9.07e-03 (-3.87e-03) -1.45e-02 (-4.05e-04) 1.71e-02 (-2.85e-03)

a1 6.16e-02 (-2.05e-01) -7.68e-02 (1.51e-01) 4.34e-02 (-3.02e-01)

α 6.40e-03 (2.07e-03) 3.49e-03 (2.62e-04) 3.26e-03 (2.73e-04)

β -2.18e-01 (-4.26e-01) -1.31e-01 (-2.35e-01) -2.05e-01 (2.51e-01)

γ 9.06e-02 (1.36e-01) 2.15e-02 (5.51e-02) 1.78e-01 (3.09e-01)

ξ -5.52e-03 (-1.64e-03) -3.54e-03 (-1.29e-04) -3.13e-03 (-3.06e-04)

Table 7.2: Appendix: Chapter 3 - GARCH-ANN estimated coefficients with RSGA (in

brackets) and one randomly selected GA out of 100 rounds of GA for log-returns of CHF,

RUB and ZAR. 1 Jan 2008 to 31 Dec 2017 (daily). All currencies are against USD.
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Chapter 4

A list of the Datastream ID’s and their brief description for the variables selected:

USDOLLR - GBPUSD close prices

ECURRS$ - EURUSD close prices

JAPAYE$ - USDJPY close prices

SWISSF$ - USDCHF close prices

DJINDUS - Dow Jones Industrials

NASCOMP - NASDAQ Composite

S&PCOMP - S&P 500 Composite

FTSE100 - FTSE 100 Composite

JPIBO3M - Japan Interbank 3 months offshore

SWIBK3M- Swiss Interbank 3 months offshore

BBGBP3M - IBA GBP Interbank 3 months

BBUSD3M - IBA USD Interbank 3 months

BBJPY3M - IBA JPY Interbank 3 months

BBEUR3M - IBA EUR Interbank 3 months

BBCHF3M - IBA CHF Interbank 3 months

SP5LVIN - S&P 500 Low Volatility

CBOEVIX - CBOE SPX Volatility VIX

MSWDMVL - MSCI World Minimum Volatility

MSURMVE - MSCI Europe Minimum Volatility

FTSEGL$ - FTSE Global 100

CRUDOIL - Crude Oil Prices

GOLDBLN - Gold Bullion LBM

GSCITOT - S&P Commodities (GSCI)

DJUBSTR - Bloomberg Commodity Index

UKPRATE. - Bank of England Base Rate
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USPRATE. - Federal Funds Target Rate

EMIBOR3. - Euro Interbank offered Rate 3 months

UKGBOND. - UK Gross Redemption Yield on 20-Year Gilts

USGBOND. - US Treasury Yield Adjusted to Constant Maturity 20-Year

USGBILL3 - US Treasury Bill Rate 3 months

EMGBOND. - Euro Government Bond Yield 10-Year

JPGBOND. - Japan Interest-Bearing Government Bonds 10-Year

SWGBOND. - Swiss Confederation Bond Yield 10-Year

USCONPRCE - US CPI

UKCONPRCF - UK CPI

EMCPHARMF - Eurozone HICP

JPCONPRCF - Japan CPI

SWCONPRCF - Swiss CPI

UKEXPGDSA - UK Exports

UKIMPGDSA - UK Imports

USEXPGDSB - US Exports

USIMPGDSB - US Imports

JPEXPGDSA - Japan Exports

JPIMPGDSA - Japan Imports

SWEXPGDSA - Swiss Exports

SWIMPGDSA - Swiss Imports
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Chapter 4: Type of data of the explanatory variables

(1) Index: Dow Jones, Nasdaq, S&P 500, FTSE 100, S&P 500 Low Volatility, World

Minimum Volatility, Europe Minimum Volatility, FTSE Global 100, S&P Commodity

Total Return, Bloomberg Commodity Total Return, US CPI, UK CPI, Euro HICP, Japan

CPI, Swiss CPI.

(2) Percentage: Japan Interbank Offshore, Swiss Interbank, GBP Interbank, USD Inter-

bank, JPY Interbank, EUR Interbank, CHF Interbank, CBOE Volatility, Bank of England

Base Rate, US Federal Target Rate, Euro Interbank Offered Rate, UK Gross Redemption

Yield, US Treasury Yield, US Treasury Bill Rate, Euro Government Bond Yield, Japan

Government Bond Yield, Swiss Confederation Bond Yield.

(3) Price (in USD): Crude Oil, Gold Bullion.

(4) Others: all Exports and Imports are values in local currency. (Japan - Billions JPY,

UK - Millions GBP, US - Millions USD, Swiss - Millions CHF )
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Max Min Mean Median SD

Dow Jones 26651.21 6763.29 13222.80 11350.40 4395.22

Nasdaq 8109.54 1213.72 3201.29 2575.11 1601.29

S&P 500 2924.59 700.82 1494.43 1331.33 498.91

FTSE 100 7701.77 3625.83 5841.62 5957.82 970.23

Japan Interbank offshore 0.88 0.05 0.27 0.18 0.23

Swiss Interbank 3.51 -1.53 0.64 0.23 1.25

GBP Interbank 6.74 0.28 2.88 3.12 2.28

USD Interbank 6.87 0.22 2.22 1.34 2.06

JPY Interbank 1.02 -0.12 0.22 0.13 0.26

EUR Interbank 5.29 -0.39 1.84 2.06 1.74

CHF Interbank 3.57 -0.86 0.74 0.28 1.25

S&P 500 Low Volatility 8126.19 1949.57 4164.22 3632.20 1607.60

CBOE Volatility 68.51 9.45 19.93 17.93 8.23

World Minimum Volatility 2295.25 819.03 1346.09 1220.74 381.07

Europe Minimum Volatility 1820.05 755.26 1273.49 1187.15 296.70

FTSE Global 100 1816.62 586.57 1067.51 1030.78 267.87

Crude Oil 141.06 12.14 60.07 58.41 28.05

Gold Bullion 1826.35 254.00 876.90 914.98 473.45

S&P Commodity Total Return 10636.48 1888.23 4351.78 4250.95 1631.55

Bloomberg Commodity TR 468.63 108.59 236.66 247.78 70.65

Bank of England Base Rate 6.00 0.25 2.64 1.75 2.23

US Federal Target Rate 6.50 0.25 1.99 1.25 1.99

Euro Interbank Offered Rate 5.11 -0.33 1.85 2.04 1.72

UK Gross Redemption Yield 5.18 1.27 3.80 4.32 1.09

Table 7.3: Appendix: Chapter 4 - Summary statistics of the explanatory variables.
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Max Min Mean Median SD

US Treasury Yield 6.86 1.82 4.17 4.39 1.27

US Treasury Bill Rate 6.37 -0.01 1.78 1.05 1.92

Euro Government Bond Yield 5.70 0.61 3.47 3.91 1.39

Japan Government Bond Yield 2.02 -0.23 1.05 1.25 0.59

Swiss Confederation Bond Yield 4.19 -0.54 1.83 2.15 1.32

US CPI 252.79 164.70 210.90 214.76 25.82

UK CPI 107.14 71.37 87.17 85.80 11.39

Euro HICP 104.68 73.76 90.33 91.70 9.21

Japan CPI 102.00 95.70 98.12 97.50 1.57

Swiss CPI 103.56 91.92 99.27 100.43 3.12

UK Exports 36739.93 11766.75 21474.85 20759.19 5425.55

UK Imports 46498.74 14919.16 29241.58 29780.69 8156.43

US Exports 143464.00 55522.00 98042.14 98905.50 29362.09

US Imports 217875.00 77781.00 153178.89 161428.00 39948.69

Japan Exports 7681.69 3450.56 5504.20 5521.85 1039.76

Japan Imports 8047.03 2662.08 5214.83 5441.69 1356.82

Swiss Exports 35715.38 8392.20 17867.78 16724.21 5866.06

Swiss Imports 30665.08 7894.72 16482.65 15245.39 4883.06

Table 7.4: Appendix: Chapter 4 - Continued - Summary statistics of the explanatory

variables.
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Run number Accuracy (%) Annualised return (%) Time (seconds)

1 57.50 2.75 9.53

2 57.50 2.75 16.58

3 60.00 4.43 23.75

4 57.50 2.75 31.36

5 60.00 4.43 39.20

6 58.75 4.02 46.75

7 60.00 4.41 55.06

8 60.00 4.62 62.89

9 62.50 5.27 70.80

10 61.25 5.70 79.03

11 61.25 4.91 87.55

12 57.50 2.75 95.83

13 57.50 2.75 104.22

14 57.50 2.75 112.97

15 46.25 -0.30 121.73

16 58.75 4.62 130.55

17 60.00 5.59 139.78

18 58.75 4.02 149.02

19 56.25 3.30 158.23

20 57.50 2.75 167.73

Table 7.5: Appendix: Chapter 4 - Table of the GBP/USD test set prediction performances

from 100 runs of a 1024-neuron MLPNN.
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Run number Accuracy (%) Annualised return (%) Time (seconds)

21 57.50 2.75 177.39

22 58.75 4.02 186.95

23 55.00 5.41 196.61

24 57.50 2.75 206.39

25 56.25 4.56 217.16

26 43.75 -2.34 227.64

27 57.50 4.53 237.88

28 57.50 2.75 248.48

29 61.25 5.68 259.13

30 42.50 -3.38 269.69

31 57.50 3.28 280.41

32 57.50 2.60 292.34

33 57.50 3.98 303.41

34 57.50 2.75 314.66

35 57.50 4.18 326.03

36 58.75 6.01 337.38

37 57.50 4.31 348.84

38 43.75 -1.63 361.02

39 57.50 2.75 372.92

40 60.00 4.77 384.78

Table 7.6: Appendix: Chapter 4 - Continued - Table of the GBP/USD test set prediction

performances from 100 runs of a 1024-neuron MLPNN.
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Run number Accuracy (%) Annualised return (%) Time (seconds)

41 56.25 3.75 396.72

42 57.50 2.75 408.84

43 57.50 2.75 421.41

44 61.25 6.49 434.31

45 56.25 4.56 446.91

46 58.75 4.02 459.80

47 60.00 4.43 472.66

48 57.50 2.75 485.61

49 57.50 2.75 498.67

50 60.00 5.02 512.14

51 53.75 3.55 525.61

52 58.75 4.34 539.41

53 42.50 -3.38 552.98

54 57.50 3.98 566.91

55 56.25 4.22 581.13

56 58.75 4.29 595.25

57 57.50 2.75 609.86

58 57.50 2.75 624.06

59 60.00 4.55 638.47

60 57.50 4.53 653.69

Table 7.7: Appendix: Chapter 4 - Continued - Table of the GBP/USD test set prediction

performances from 100 runs of a 1024-neuron MLPNN.
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Run number Accuracy (%) Annualised return (%) Time (seconds)

61 55.00 5.70 668.91

62 57.50 2.66 683.66

63 57.50 2.75 698.72

64 58.75 4.12 714.06

65 61.25 6.02 729.27

66 57.50 2.75 744.58

67 57.50 2.75 760.50

68 57.50 2.98 776.72

69 62.50 5.09 793.11

70 57.50 2.75 809.42

71 60.00 4.32 826.72

72 57.50 2.75 842.95

73 57.50 2.75 859.42

74 57.50 3.61 876.20

75 53.75 4.38 893.14

76 60.00 5.46 910.39

77 57.50 2.75 928.11

78 57.50 2.75 945.23

79 58.75 4.62 962.78

80 58.75 4.02 980.34

Table 7.8: Appendix: Chapter 4 - Continued - Table of the GBP/USD test set prediction

performances from 100 runs of a 1024-neuron MLPNN.
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Run number Accuracy (%) Annualised return (%) Time (seconds)

81 55.00 3.93 998.13

82 62.50 6.15 1016.00

83 58.75 5.08 1033.89

84 57.50 2.75 1051.88

85 57.50 4.91 1069.97

86 58.75 4.74 1088.89

87 58.75 4.02 1107.52

88 57.50 2.75 1126.31

89 57.50 4.13 1145.66

90 58.75 4.30 1164.58

91 57.50 3.89 1184.73

92 60.00 4.43 1204.08

93 57.50 4.53 1223.66

94 60.00 4.10 1243.27

95 45.00 -1.85 1263.03

96 62.50 5.73 1283.16

97 61.25 6.67 1303.52

98 58.75 4.68 1324.20

99 57.50 2.75 1344.92

100 58.75 5.31 1365.83

Table 7.9: Appendix: Chapter 4 - Continued - Table of the GBP/USD test set prediction

performances from 100 runs of a 1024-neuron MLPNN.
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Run number CPU time (s) GPU time (s) GPU speed-up (%)

1 10.81 9.53 13.43

2 20.98 16.58 26.54

3 30.89 23.75 30.06

4 41.15 31.36 31.22

5 51.87 39.20 32.32

6 62.12 46.75 32.88

7 72.57 55.06 31.80

8 83.25 62.89 32.37

9 94.07 70.80 32.87

10 104.78 79.03 32.58

11 115.56 87.55 31.99

12 126.92 95.83 32.44

13 137.93 104.22 32.35

14 149.56 112.97 32.39

15 160.84 121.73 32.13

16 172.45 130.55 32.09

17 183.97 139.78 31.61

18 195.61 149.02 31.26

19 207.73 158.23 31.28

20 219.95 167.73 31.13

Table 7.10: Appendix: Chapter 4 - A table showing the CPU computation time against the

GPU computation time and the GPU speed-up for 100 runs. Currency pair is GBP/USD.
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Run number CPU time (s) GPU time (s) GPU speed-up (%)

21 232.01 177.39 30.79

22 244.53 186.95 30.80

23 256.84 196.61 30.63

24 269.72 206.39 30.68

25 282.28 217.16 29.99

26 295.11 227.64 29.64

27 307.98 237.88 29.47

28 321.36 248.48 29.33

29 335.06 259.13 29.30

30 348.29 269.69 29.14

31 361.65 280.41 28.97

32 375.36 292.34 28.40

33 389.40 303.41 28.34

34 403.25 314.66 28.15

35 417.07 326.03 27.92

36 431.17 337.38 27.80

37 447.51 348.84 28.29

38 462.06 361.02 27.99

39 476.81 372.92 27.86

40 491.40 384.78 27.71

Table 7.11: Appendix: Chapter 4 - Continued - A table showing the CPU computation

time against the GPU computation time and the GPU speed-up for 100 runs. Currency

pair is GBP/USD.
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Run number CPU time (s) GPU time (s) GPU speed-up (%)

41 506.51 396.72 27.67

42 522.17 408.84 27.72

43 537.14 421.41 27.46

44 552.34 434.31 27.18

45 567.53 446.91 26.99

46 582.86 459.80 26.76

47 598.26 472.66 26.57

48 614.06 485.61 26.45

49 630.04 498.67 26.34

50 646.04 512.14 26.15

51 662.15 525.61 25.98

52 678.47 539.41 25.78

53 694.61 552.98 25.61

54 711.07 566.91 25.43

55 728.00 581.13 25.27

56 744.76 595.25 25.12

57 761.53 609.86 24.87

58 779.04 624.06 24.83

59 796.14 638.47 24.69

60 813.51 653.69 24.45

Table 7.12: Appendix: Chapter 4 - Continued - A table showing the CPU computation

time against the GPU computation time and the GPU speed-up for 100 runs. Currency

pair is GBP/USD.
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Run number CPU time (s) GPU time (s) GPU speed-up (%)

61 830.93 668.91 24.22

62 848.50 683.66 24.11

63 867.50 698.72 24.16

64 886.43 714.06 24.14

65 904.43 729.27 24.02

66 922.40 744.58 23.88

67 940.78 760.50 23.71

68 959.76 776.72 23.57

69 978.37 793.11 23.36

70 997.43 809.42 23.23

71 1016.36 826.72 22.94

72 1035.93 842.95 22.89

73 1054.93 859.42 22.75

74 1074.79 876.20 22.66

75 1094.06 893.14 22.50

76 1113.62 910.39 22.32

77 1133.43 928.11 22.12

78 1153.45 945.23 22.03

79 1173.50 962.78 21.89

80 1193.84 980.34 21.78

Table 7.13: Appendix: Chapter 4 - Continued - A table showing the CPU computation

time against the GPU computation time and the GPU speed-up for 100 runs. Currency

pair is GBP/USD.
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Run number CPU time (s) GPU time (s) GPU speed-up (%)

81 1215.07 998.13 21.73

82 1236.25 1016.00 21.68

83 1257.01 1033.89 21.58

84 1278.28 1051.88 21.52

85 1299.42 1069.97 21.44

86 1320.86 1088.89 21.30

87 1342.39 1107.52 21.21

88 1364.15 1126.31 21.12

89 1386.54 1145.66 21.03

90 1408.68 1164.58 20.96

91 1430.86 1184.73 20.78

92 1453.20 1204.08 20.69

93 1475.67 1223.66 20.59

94 1498.36 1243.27 20.52

95 1521.15 1263.03 20.44

96 1544.53 1283.16 20.37

97 1567.79 1303.52 20.27

98 1591.64 1324.20 20.20

99 1615.67 1344.92 20.13

100 1639.73 1365.83 20.05

Mean 711.46 576.24 23.47

Table 7.14: Appendix: Chapter 4 - Continued - A table showing the CPU computation

time against the GPU computation time and the GPU speed-up for 100 runs. Currency

pair is GBP/USD.
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N A (%) SDA P (%) SDP T10 (s) RA RP

2 49.25 0.0778 -0.0100 0.0014 8.59 6.3302 -0.0726

4 50.38 0.0596 -0.2200 0.0347 10.85 8.4534 -0.0634

8 50.62 0.0470 1.1700 0.1047 10.98 10.7683 0.1118

16 50.25 0.0935 2.6200 0.1934 11.78 5.3767 0.1355

32 49.75 0.0485 2.4300 0.1900 13.62 10.2648 0.1279

64 51.88 0.0391 1.9900 0.1455 15.52 13.2789 0.1368

128 48.88 0.0386 3.0200 0.2089 15.92 12.6572 0.1446

256 55.75 0.0184 3.5700 0.2215 17.43 30.3618 0.1612

512 52.45 0.0237 3.1400 0.2059 19.75 22.1670 0.1525

1024 53.15 0.0301 2.7900 0.2085 21.55 17.6521 0.1338

2048 51.02 0.0361 2.8200 0.2090 23.35 14.1307 0.1349

4096 52.33 0.0342 2.7000 0.2116 26.62 15.2804 0.1276

Table 7.15: Appendix: Chapter 4 - A table displaying performance evaluation metrics

on the test set for different number of neurons with 10 runs, where N is the number

of neurons, A represents the mean accuracy rate from the 10 runs for a given number

of neurons, SDA denotes the standard deviation of accuracy, P denotes Annualised

return, SDP denotes the standard deviation of annualised return, T10 denotes the average

computation time in seconds per run out of the 10 runs, RA denotes the ratio of accuracy

to its standard deviation and RP denotes the ratio of annualised return to its standard

deviation. The underlying currency pair is EUR/USD.
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N A (%) SDA P (%) SDP T10 (s) RA RP

2 50.88 0.0675 0.3400 0.0937 9.62 7.5413 0.0363

4 51.00 0.0802 -0.4100 0.0326 10.79 6.3627 -0.1259

8 53.75 0.0402 -1.9300 0.1961 12.01 13.3656 -0.0984

16 53.25 0.0822 2.8800 0.1535 12.72 6.4757 0.1876

32 46.12 0.0370 3.5200 0.2423 13.21 12.4508 0.1453

64 50.12 0.0323 2.2000 0.1354 13.93 15.5240 0.1625

128 52.12 0.0340 2.5300 0.1626 15.21 15.3429 0.1556

256 55.75 0.0294 2.2100 0.1143 16.57 18.9834 0.1933

512 58.55 0.0187 4.3200 0.2163 18.18 31.3284 0.1997

1024 56.12 0.0341 3.2700 0.2012 20.22 16.4387 0.1625

2048 53.87 0.0290 3.5900 0.2276 22.88 18.5823 0.1577

4096 51.25 0.0231 3.4800 0.2269 26.37 22.2198 0.1534

Table 7.16: Appendix: Chapter 4 - A table displaying performance evaluation metrics

on the test set for different number of neurons with 10 runs, where N is the number

of neurons, A represents the mean accuracy rate from the 10 runs for a given number

of neurons, SDA denotes the standard deviation of accuracy, P denotes Annualised

return, SDP denotes the standard deviation of annualised return, T10 denotes the average

computation time in seconds per run out of the 10 runs, RA denotes the ratio of accuracy

to its standard deviation and RP denotes the ratio of annualised return to its standard

deviation. The underlying currency pair is USD/JPY.
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N A (%) SDA P (%) SDP T10 (s) RA RP

2 49.88 0.0777 -0.0042 0.0820 8.60 6.4197 -0.0512

4 50.75 0.0812 -0.0031 0.0681 10.84 6.2467 -0.0455

8 50.25 0.0533 -0.0015 0.0210 10.98 9.4214 -0.0713

16 51.25 0.0617 0.0076 0.2420 11.78 8.3120 0.0314

32 50.75 0.0503 0.0129 0.1491 13.62 10.0812 0.0865

64 51.25 0.0385 0.0216 0.2111 15.50 13.3109 0.1023

28 52.75 0.0266 0.0299 0.2038 15.93 19.8271 0.1467

256 50.12 0.0313 0.0271 0.1804 17.44 16.0289 0.1502

512 51.25 0.0363 0.0226 0.1768 19.76 14.1292 0.1278

1024 50.50 0.0355 0.0189 0.1921 21.57 14.2318 0.0984

2048 51.75 0.0420 0.0163 0.1641 23.37 12.3127 0.0993

4096 51.88 0.0341 0.0141 0.1452 26.62 15.2103 0.0971

Table 7.17: Appendix: Chapter 4 - A table displaying performance evaluation metrics

on the test set for different number of neurons with 10 runs, where N is the number

of neurons, A represents the mean accuracy rate from the 10 runs for a given number

of neurons, SDA denotes the standard deviation of accuracy, P denotes Annualised

return, SDP denotes the standard deviation of annualised return, T10 denotes the average

computation time in seconds per run out of the 10 runs, RA denotes the ratio of accuracy

to its standard deviation and RP denotes the ratio of annualised return to its standard

deviation. The underlying currency pair is USD/CHF.
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Estimate SE z value p value

Intercept -0.3601 0.2520 -1.43 0.1531

GBP -1.4011 1.9471 -0.72 0.4718

EUR 4.5003 3.0942 1.45 0.1458

JPY -0.4963 1.1447 -0.43 0.6646

CHF 4.8494 3.2986 1.47 0.1415

DowJones -0.3070 2.3336 -0.13 0.8953

Nasdaq -1.2761 1.6305 -0.78 0.4338

SP500 2.1673 5.0181 0.43 0.6658

FTSE100 1.9967 2.9216 0.68 0.4943

JapanInterbankoffshore -5.2053 3.2579 -1.60 0.1101

SwissInterbank 8.0408 5.2630 1.53 0.1266

GBPInterbank 0.0413 4.5069 0.01 0.9927

USDInterbank -4.0739 4.8058 -0.85 0.3966

JPYInterbank 5.8031 3.7018 1.57 0.1170

EURInterbank 4.9349 5.4199 0.91 0.3625

CHFInterbank -8.8017 5.8826 -1.50 0.1346

SP500LowVolatility -3.0824 3.7101 -0.83 0.4061

CBOEVolatility -1.6148 1.0336 -1.56 0.1182

WorldMinimumVolatility -6.1272 4.6750 -1.31 0.1900

EuropeMinimumVolatility 5.9057 4.7488 1.24 0.2136

Table 7.18: Appendix: Chapter 4 - Estimated coefficients of the logistic regression model.

Underlying currency pair is GBP/USD.
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Estimate SE z value p value

FTSEGlobal100 -3.5889 3.9231 -0.91 0.3603

CrudeOil -4.6242 2.9510 -1.57 0.1171

GoldBullion -2.0886 3.8842 -0.54 0.5908

SPCommodityTotalReturn 2.3434 3.4852 0.67 0.5013

BloombergCommodityTR -1.6597 3.3458 -0.50 0.6199

BankofEnglandBaseRate 3.2327 4.7912 0.67 0.4999

USFederalTargetRate 1.2073 5.1403 0.23 0.8143

EuroInterbankOfferedRate -7.1028 6.0639 -1.17 0.2415

UKGrossRedemptionYield -0.2483 0.8887 -0.28 0.7799

USTreasuryYield 1.5292 2.0176 0.76 0.4485

USTreasuryBillRate 1.8509 3.8626 0.48 0.6318

EuroGovernmentBondYield 0.2912 1.1144 0.26 0.7939

JapanGovernmentBondYield -1.1082 0.6726 -1.65 0.0994

SwissConfederationBondYield 2.3095 1.7522 1.32 0.1875

USCPI 4.9593 8.0109 0.62 0.5359

UKCPI 7.5490 9.1025 0.83 0.4069

EuroHICP 3.0397 9.7089 0.31 0.7542

JapanCPI 0.8760 1.0938 0.80 0.4232

SwissCPI -6.5274 3.4281 -1.90 0.0569

Table 7.19: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is GBP/USD.
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Estimate SE z value p value

UKExports -0.9345 1.0623 -0.88 0.3790

UKImports 0.7229 1.9251 0.38 0.7073

USExports 2.1992 4.3632 0.50 0.6142

USImports 4.3059 3.8523 1.12 0.2637

JapanExports 1.0556 0.8850 1.19 0.2330

JapanImports -2.4425 1.5242 -1.60 0.1090

SwissExports 2.4917 1.3741 1.81 0.0698

SwissImports -1.4962 1.0944 -1.37 0.1716

Table 7.20: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is GBP/USD.
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Estimate SE z value p value

Intercept 0.1422 0.2074 0.69 0.4927

GBP -1.3459 1.8399 -0.73 0.4645

EUR 0.1462 2.7721 0.05 0.9579

JPY -1.2278 1.1271 -1.09 0.2760

CHF 3.0638 2.9116 1.05 0.2927

DowJones 0.2129 2.2972 0.09 0.9261

Nasdaq -4.0299 1.7548 -2.30 0.0216

SP500 5.8985 5.2102 1.13 0.2576

FTSE100 -2.3930 2.6834 -0.89 0.3725

JapanInterbankoffshore 2.0799 2.6595 0.78 0.4342

SwissInterbank 1.5806 3.7515 0.42 0.6735

GBPInterbank -1.0719 3.7557 -0.29 0.7753

USDInterbank 0.9468 3.1726 0.30 0.7654

JPYInterbank -1.3919 3.1162 -0.45 0.6551

EURInterbank 5.3716 4.6215 1.16 0.2451

CHFInterbank -4.3502 4.3422 -1.00 0.3164

SP500LowVolatility -7.6346 3.6727 -2.08 0.0376

CBOEVolatility -1.0610 0.8598 -1.23 0.2172

WorldMinimumVolatility -1.9383 4.5856 -0.42 0.6725

EuropeMinimumVolatility 6.8630 4.4194 1.55 0.1204

Table 7.21: Appendix: Chapter 4 - Estimated coefficients of the logistic regression model.

Underlying currency pair is EUR/USD.
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Estimate SE z value p value

FTSEGlobal100 -2.2303 3.9553 -0.56 0.5728

CrudeOil 0.5414 2.6853 0.20 0.8402

GoldBullion -0.7370 3.2281 -0.23 0.8194

SPCommodityTotalReturn -4.0918 3.1887 -1.28 0.1994

BloombergCommodityTR 3.2827 3.2220 1.02 0.3083

BankofEnglandBaseRate 7.3591 4.0438 1.82 0.0688

USFederalTargetRate -0.7483 4.1235 -0.18 0.8560

EuroInterbankOfferedRate -8.1471 5.1560 -1.58 0.1141

UKGrossRedemptionYield -0.6692 0.9130 -0.73 0.4636

USTreasuryYield -0.1934 1.8452 -0.10 0.9165

USTreasuryBillRate -1.8993 3.1550 -0.60 0.5472

EuroGovernmentBondYield 1.3791 1.0878 1.27 0.2049

JapanGovernmentBondYield -1.0532 0.6348 -1.66 0.0971

SwissConfederationBondYield 1.8672 1.6353 1.14 0.2535

USCPI 5.1334 7.1829 0.71 0.4748

UKCPI 3.9129 9.4859 0.41 0.6800

EuroHICP -0.7237 9.4157 -0.08 0.9387

JapanCPI 1.8198 1.0709 1.70 0.0893

SwissCPI -1.4875 3.1050 -0.48 0.6319

Table 7.22: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is EUR/USD.
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Estimate SE z value p value

UKExports 0.2281 1.0573 0.22 0.8292

UKImports 0.7798 1.8573 0.42 0.6746

USExports -3.3375 4.0979 -0.81 0.4154

USImports 8.2087 3.9245 2.09 0.0365

JapanExports 0.6685 0.7519 0.89 0.3739

JapanImports -2.9781 1.5084 -1.97 0.0483

SwissExports -0.6073 1.2458 -0.49 0.6259

SwissImports 0.2959 0.9653 0.31 0.7592

Table 7.23: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is EUR/USD.
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Estimate SE z value p value

Intercept -0.1101 0.2011 -0.55 0.5839

GBP 1.7834 1.7692 1.01 0.3134

EUR -1.8971 2.6989 -0.70 0.4821

JPY -1.7248 1.1179 -1.54 0.1229

CHF -2.7842 2.8017 -0.99 0.3203

DowJones -5.2004 2.4846 -2.09 0.0363

Nasdaq -3.6445 2.0239 -1.80 0.0717

SP500 11.6276 5.4535 2.13 0.0330

FTSE100 2.5558 2.6838 0.95 0.3409

JapanInterbankoffshore 2.5315 2.5611 0.99 0.3229

SwissInterbank 3.1903 3.8157 0.84 0.4031

GBPInterbank -3.0133 3.8252 -0.79 0.4308

USDInterbank -3.6318 3.8107 -0.95 0.3406

JPYInterbank -2.2930 3.0476 -0.75 0.4518

EURInterbank 2.9061 4.5927 0.63 0.5269

CHFInterbank -4.6351 4.4483 -1.04 0.2974

SP500LowVolatility -3.3989 3.3982 -1.00 0.3172

CBOEVolatility 0.5419 0.7810 0.69 0.4878

WorldMinimumVolatility 1.1561 4.2987 0.27 0.7880

EuropeMinimumVolatility -1.1996 4.2752 -0.28 0.7790

Table 7.24: Appendix: Chapter 4 - Estimated coefficients of the logistic regression model.

Underlying currency pair is USD/JPY.
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Estimate SE z value p value

FTSEGlobal100 -3.1075 3.7417 -0.83 0.4062

CrudeOil -2.0478 2.6991 -0.76 0.4480

GoldBullion 3.4541 3.0276 1.14 0.2539

SPCommodityTotalReturn 3.8449 3.2986 1.17 0.2438

BloombergCommodityTR -4.3412 3.1448 -1.38 0.1675

BankofEnglandBaseRate 1.0306 4.0433 0.25 0.7988

USFederalTargetRate -5.0556 4.3662 -1.16 0.2469

EuroInterbankOfferedRate 0.4161 5.1338 0.08 0.9354

UKGrossRedemptionYield 1.7569 0.9152 1.92 0.0549

USTreasuryYield -1.5068 1.8227 -0.83 0.4084

USTreasuryBillRate 8.4660 3.4861 2.43 0.0152

EuroGovernmentBondYield -0.5094 1.0375 -0.49 0.6234

JapanGovernmentBondYield -0.9810 0.5965 -1.64 0.1001

SwissConfederationBondYield 1.9359 1.5896 1.22 0.2233

USCPI 5.1138 7.3564 0.70 0.4870

UKCPI -2.3116 8.6415 -0.27 0.7891

EuroHICP 6.1600 8.6535 0.71 0.4766

JapanCPI -0.0688 0.9757 -0.07 0.9438

SwissCPI -1.9718 2.9831 -0.66 0.5086

Table 7.25: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is USD/JPY.
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Estimate SE z value p value

UKExports 0.8984 0.9135 0.98 0.3253

UKImports -1.3515 1.6248 -0.83 0.4055

USExports -4.5442 3.9760 -1.14 0.2531

USImports -1.7676 3.5148 -0.50 0.6150

JapanExports 0.8623 0.7629 1.13 0.2583

JapanImports 0.5361 1.4047 0.38 0.7027

SwissExports -0.3424 1.2231 -0.28 0.7795

SwissImports 1.0367 0.9953 1.04 0.2976

Table 7.26: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is USD/JPY.
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Estimate SE z value p value

Intercept 0.0671 0.2357 0.28 0.7759

GBP 0.3747 2.1903 0.17 0.8642

EUR -6.8978 3.4694 -1.99 0.0468

JPY 0.4457 1.3055 0.34 0.7328

CHF -14.5361 4.1379 -3.51 0.0004

DowJones -2.0451 2.5486 -0.80 0.4223

Nasdaq 5.2226 1.9064 2.74 0.0062

SP500 -0.8977 6.1033 -0.15 0.8831

FTSE100 -0.4017 3.1787 -0.13 0.8994

JapanInterbankoffshore 2.0097 3.0894 0.65 0.5154

SwissInterbank 8.6532 4.5695 1.89 0.0583

GBPInterbank 1.1494 4.7210 0.24 0.8077

USDInterbank 1.6026 4.4573 0.36 0.7192

JPYInterbank -3.7833 3.5748 -1.06 0.2899

EURInterbank -3.0485 5.2313 -0.58 0.5601

CHFInterbank -6.1354 5.0550 -1.21 0.2248

SP500LowVolatility 10.2636 4.2546 2.41 0.0159

CBOEVolatility 2.4019 1.1250 2.13 0.0328

WorldMinimumVolatility 9.9977 5.7615 1.74 0.0827

EuropeMinimumVolatility -12.9533 5.3959 -2.40 0.0164

Table 7.27: Appendix: Chapter 4 - Estimated coefficients of the logistic regression model.

Underlying currency pair is USD/CHF.
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Estimate SE z value p value

FTSEGlobal100 -0.3865 4.4802 -0.09 0.9312

CrudeOil -1.7895 3.0924 -0.58 0.5628

GoldBullion 6.4349 4.2306 1.52 0.1283

SPCommodityTotalReturn 3.8132 3.6142 1.06 0.2914

BloombergCommodityTR -3.9049 3.7188 -1.05 0.2937

BankofEnglandBaseRate -11.0641 4.8413 -2.29 0.0223

USFederalTargetRate -1.0666 5.2168 -0.20 0.8380

EuroInterbankOfferedRate 8.8859 5.8877 1.51 0.1312

UKGrossRedemptionYield 1.1519 1.0652 1.08 0.2795

USTreasuryYield 2.0425 2.2673 0.90 0.3677

USTreasuryBillRate 3.7325 3.3184 1.12 0.2607

EuroGovernmentBondYield -3.2976 1.2672 -2.60 0.0093

JapanGovernmentBondYield 0.2966 0.6793 0.44 0.6624

SwissConfederationBondYield -0.0337 1.8830 -0.02 0.9857

USCPI 11.1917 8.6136 1.30 0.1938

UKCPI -23.5105 10.9588 -2.15 0.0319

EuroHICP -7.9534 11.2797 -0.71 0.4807

JapanCPI -0.4142 1.1691 -0.35 0.7231

SwissCPI 10.4579 3.9448 2.65 0.0080

Table 7.28: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is USD/CHF.
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Estimate SE z value p value

UKExports -0.7068 1.1967 -0.59 0.5548

UKImports -2.6555 2.2690 -1.17 0.2419

USExports 4.5833 4.6010 1.00 0.3192

USImports -13.5702 4.7943 -2.83 0.0046

JapanExports 0.3719 0.9045 0.41 0.6810

JapanImports 3.3014 1.7561 1.88 0.0601

SwissExports 1.2067 1.5227 0.79 0.4281

SwissImports -1.4560 1.1690 -1.25 0.2129

Table 7.29: Appendix: Chapter 4 - Continued - Estimated coefficients of the logistic

regression model. Underlying currency pair is USD/CHF.
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