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 2 

NEW FINDINGS 1 

 2 

What is the central question of this study? 3 

Primarily to determine the effect of hypoxia on microvascular function, and secondarily 4 

whether superior cardiorespiratory fitness is protective against hypoxia-induced 5 

impairment in vascular function. 6 

 7 

What is the main finding and its importance? 8 

Hypoxia reduced endothelium-dependent microvascular function, but not endothelium-9 

independent microvascular function. The extent of impairment was two-fold higher in 10 

the microcirculation compared to the large blood vessels. This study suggests 11 

individuals with superior cardiorespiratory fitness may preserve microvascular function 12 

in hypoxia. These findings highlight the sensitivity of the microvascular circulation to 13 

hypoxia.  14 



 3 

ABSTRACT 1 

Hypoxia is associated with diminished bioavailability of the endothelium-derived 2 

vasodilator, nitric oxide (NO). Diminished NO bioavailability can have deleterious 3 

effects on endothelial function. The endothelium is a heterogeneous organ; therefore, a 4 

comprehensive assessment of endothelial function is critical to understand the 5 

significance of hypoxia-induced endothelial dysfunction. We hypothesized that acute 6 

hypoxia would have deleterious effect on microvascular and large vessel endothelial 7 

function. Twenty-nine healthy adults (age: 24 (4) years) completed normoxic and 8 

hypoxic [inspired O2 fraction (FiO2) = 0.209] trials in this double-blinded, 9 

counterbalanced crossover study. After 30 min, we assessed laser Doppler imaging-10 

determined perfusion response to iontophoresis of acetylcholine (ACh) as a measure of 11 

endothelium-dependent microvascular function, and iontophoresis of sodium 12 

nitroprusside (SNP) as a measure of endothelium-independent microvascular function. 13 

After 60 min, we assessed brachial flow-mediated dilatation (FMD) as a measure of 14 

large vessel endothelial function. Thirty minutes of hypoxia reduced endothelium-15 

dependent microvascular function determined by perfusion response to ACh (x̃∆ = -16 

109%, {IQR: 542.7}, P < 0.05), but not endothelium-independent determined by 17 

perfusion response to SNP (x̃∆ 69%, {IQR: 453.7}, P = 0.6). In addition, 60 min of 18 

hypoxia reduced allometrically-scaled FMD compared to normoxia (x̅∆-1.19 [-1.80, -19 

0.58] %, P < 0.001). The decrease in microvascular endothelial function was associated 20 

with cardiorespiratory fitness (r = 0.45, P = 0.02). In conclusion, acute exposure to 21 

normobaric hypoxia significantly reduced endothelium-dependent vasodilatory capacity 22 

in small and large vessels. Collectively, these findings highlight the sensitivity of the 23 

microvascular circulation to hypoxic insult, particularly in those with poor 24 

cardiorespiratory fitness.  25 

 26 

INTRODUCTION 27 

Hypoxia can cause disturbances to vascular homeostasis (Tymko et al., 2019), and is 28 

believed to be implicated in numerous stages of atherosclerosis development and 29 

progression, including endothelial dysfunction (Gautier-Veyret et al., 2013; Bickler et 30 

al., 2017; Marsboom & Rehman, 2018). A healthy endothelium maintains homeostasis 31 

by regulating vascular tone, coagulation and inflammation. Chronic and acute hypoxic 32 
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exposure has been shown to trigger endothelial damage and vascular inflammation 1 

(Tarbell et al., 2020), increasing an individual’s risk of vascular injury that can lead to 2 

adverse outcomes, such as cardiovascular disease (Lee et al., 2019). Moreover, the 3 

progressive nature of cardiovascular disease is also proposed to exacerbate vascular 4 

hypoxia (Gupta & Zahid Ashraf, 2018), resulting in a reciprocal cycle. The endothelium 5 

plays a pivotal role in this cycle, and thus it is important to understand the deleterious 6 

effects of hypoxia on endothelial function.  7 

 8 

Nitric oxide (NO) is recognised as an endothelium-derived vasodilator that plays a 9 

central role in maintaining vascular homeostasis (Sandoo et al., 2010). The production 10 

of NO is limited during hypoxia due to the prevalence of oxidative stress. 11 

Overexpression of hypoxia-induced reactive oxygen species (ROS) is proposed to 12 

upregulate the scavenging of NO (Griendling et al., 2000; Frey et al., 2009) and 13 

downregulate the expression of endothelial nitric oxide synthase (eNOS) (Thompson & 14 

Dong, 2005; Janaszak-Jasiecka et al., 2018). A reduction in the expression of NO can 15 

result in an imbalance between endothelium-derived vasoactive factors, contributing 16 

towards the development of endothelial dysfunction (Tymko et al., 2019). 17 

 18 

Flow-mediated dilatation (FMD) is a well-established technique that uses reactive 19 

hyperaemia to assess the endothelial NO vasodilatory system in large blood vessels 20 

(Green et al., 2014).  Previous research has shown that FMD responses decrease by as 21 

much as 45% during acute hypobaric hypoxia exposure (Bailey et al., 2013; Lewis et 22 

al., 2014, 2017). However, the authors also reported a decrease in endothelium-23 

independent vasodilation, suggesting that impaired endothelial function did not fully 24 

account for the reduction in vasodilatory capacity. To better understand the underlying 25 

reason for these vascular impairments, it is important to also examine the microvascular 26 

responses to hypoxia, as evidence suggests that microvascular dysfunction precedes 27 

large vessel dysfunction (Krentz et al., 2009). Peripheral microvascular endothelial 28 

dysfunction is an indicator of systemic endothelial dysfunction and atherosclerotic risk, 29 

and is considered a major cause of cardiovascular mortality (Anderson et al., 1995; 30 

Widlansky et al., 2003; Liew et al., 2011). Furthermore, the microcirculation comprises 31 

a much larger surface area of the circulatory system which leads to greater ROS 32 
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production, therefore the risk of injury is significantly elevated in the microcirculation 1 

(Stokes & Granger, 2005). Iontophoretic application of acetylcholine (ACh) on human 2 

skin increases microvascular endothelium-dependent vasodilation (Furchgott et al., 3 

1987) and laser Doppler imaging (LDI) with simultaneous iontophoresis of ACh can be 4 

used to assess changes in cutaneous perfusion in response to the delivery of ACh. 5 

 6 

Not only is it crucial to identify stimuli that may trigger the development or progression 7 

of impaired endothelial function, it is also important to understand how humans may be 8 

able to protect the endothelium against damage. Over the years, it has been established 9 

that lifestyle modifications including diets high in green leafy vegetables and increasing 10 

physical activity can prevent and reverse endothelial dysfunction (DeSouza et al., 2000; 11 

Beck et al., 2013; d’El-Rei et al., 2016). However, despite the strong evidence to 12 

suggest that hypoxia can have a deleterious effect on endothelial function, there has yet 13 

to be a study that examines how these effects might be mitigated. As exercise 14 

intervention studies have already been shown to cause improvements in endothelial 15 

function (Beck et al., 2013); prospective studies should consider examining the 16 

relationship between the fitness status and endothelial responses to hypoxia. 17 

Collectively, these studies might be able to highlight the importance of physical activity 18 

and fitness for individuals who have a higher risk of hypoxia-induced impairment in 19 

endothelial function. 20 

 21 

To understand the systemic effect of hypoxia on the endothelium, it is important to 22 

assess endothelial function in different vasculatures (microvasculature and large 23 

vessels). The present double-blind, counterbalanced crossover study sought to 24 

determine the effect of hypoxia on microvascular and large vessel function. Our aims 25 

were to i) replicate the previous FMD findings reported by Lewis et al. (2017), and to 26 

assess and compare the effects of acute hypoxia on ii) endothelium-dependent 27 

microvascular function determined by perfusion response to iontophoresis of ACh, iii) 28 

endothelium-independent microvascular function determined by perfusion response to 29 

iontophoresis of sodium nitroprusside (SNP). Furthermore, we aimed to assess the 30 

relationship between cardiorespiratory fitness and the changes in endothelial function. 31 

We hypothesised that a degree of endothelial impairment was present in both 32 
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microvasculature and large vessels, but cardiorespiratory fitness would partly protect 1 

against the magnitude of the decline. However, as the risk of injury is increased for 2 

microvascular endothelial cells, we hypothesised that the magnitude of the decrease in 3 

function would be greater in the microcirculation. 4 

 5 

METHODS 6 

 7 

Ethical Approval 8 

All participants were briefed on the nature and the purpose of the investigation before 9 

written consent was taken along with a short demographic questionnaire to ensure that 10 

they satisfied the study criteria. Ethical approval was granted by the Ethics Committee 11 

of the School of Sport, Health, and Exercise Sciences at Bangor University (Ethics ID: 12 

P19-16/17) and the study was performed in accordance with the guidelines of the WMA 13 

Declaration of Helsinki (2013), except for registration in a database. 14 

 15 

Participants 16 

Twenty-nine healthy adults (17 men) were recruited into the study (age: 24 (4) years). 17 

Participants had not travelled to altitude (≥ 1500 m) in the preceding six months, and 18 

had no medical contraindications to maximal exercise testing. Female participants were 19 

studied during the early follicular phase of their cycle, or the placebo phase of oral 20 

contraceptives.  21 

 22 

Study design 23 

The study followed a double-blind, repeated-measures, counterbalanced crossover 24 

design. Participants completed three separate laboratory visitations. During the first 25 

visit, individuals completed baseline health and fitness assessments, including a carotid 26 

intima-media thickness (cIMT) assessment and a maximal exercise test. Participants 27 

then completed normoxia [inspired O2 fraction (FiO2) = 0.209] and poikilocapnic 28 

hypoxia (FiO2 = 0.120) experimental trials, separated by at least five days. Experimental 29 

trials consisted of 2 h exposure in a temperature (normoxia 24.7 (1.7)°C; hypoxia 24.4 30 
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(1.5)°C) and humidity (normoxia 42.6 (7.9)%; hypoxia 43.0 (5.7)%)-controlled 1 

environmental chamber (Hypoxico Inc.; NY). Ambient O2 in the chamber was recorded 2 

at 30 min intervals throughout (normoxia 20.8 (0.1)%; hypoxia 12.2 (0.1)%). Both 3 

participants and researchers were blinded to condition (FiO2) as a separate researcher 4 

was responsible for setting and recording the FiO2 in the environmental chamber and all 5 

panels were covered during testing. Participants were randomly allocated to conditions 6 

in a counterbalanced order, using a computer-generated randomized list (Urbaniak & 7 

Plous, 2013). In experimental trials, participants rested supine for 20 min before manual 8 

BP, heart rate and blood saturation were recorded. These vital signs were measured 9 

every 30 min for the duration of the experimental trial. Whilst remaining in a supine 10 

position, vascular function of the small and large blood vessels was assessed after 30 11 

and 60 min, respectively (separated by a minimum of 15 min). All participants 12 

abstained from strenuous exercise for 24 h before every study visit and procedure, 13 

abstained from food and caffeine 2 h before baseline procedures and overnight before 14 

experimental procedures. An overview of the protocol is depicted in Figure 1. 15 

 16 

Baseline Procedures 17 

Carotid intima-media thickness 18 

Assessment of advanced but subclinical atherosclerosis was completed using cIMT. The 19 

right and left carotid arteries were imaged 1–2 cm proximal to the carotid bulb (Stein et 20 

al., 2008), using a high-resolution ultrasound machine (Acuson X300, Siemens 21 

Healthcare GmbH; Erlangen: Germany) attached to a high frequency linear array 22 

transducer. Participants lay supine with a 45° tilt of the neck to align the carotid artery 23 

for scanning. Images were acquired at end-diastole, determined by the ECG R-peak. 24 

Three images were acquired for each side (left and right), with the cIMT measured in 25 

each and averaged across the three images for each side, and across both sides. Images 26 

were analysed to obtain cIMT measurements sing a semi-automated computerised 27 

offline analysis system; Artery Measurement System (AMS) (Wendelhag et al., 1991).  28 

All images were acquired and analysed by GMKR (the between-day reliability of this 29 

technique is equal to coefficient of variation of 4.1%). Increased atherosclerotic risk was 30 

defined as having cIMT measurements greater than 1.0 mm in accordance with Simon 31 

et al.(2002). 32 
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 1 

Maximal exercise test 2 

To determine cardiorespiratory fitness levels (VO2max), participants completed a running 3 

test to exhaustion on a motorized treadmill (H-P-Cosmos, Sports & Medical GmbH; 4 

Nussdorf-Traunstein: Germany) with simultaneous online gas analysis (Cortex 5 

Metalyzer, Biophysik GmbH; Leipzig: Germany). 6 

 7 

The test protocol was designed so that participants reached maximum between 10–15 8 

min regardless of fitness level, using a similar method to da Silva and colleagues 9 

(2012). VO2max was estimated using the Matthews equation (1999), and work rates were 10 

calculated using the ACSM metabolic equations for treadmill running. The test protocol 11 

began with an 8 min warm up at 50% estimated maximum and subsequent 2 min rest, 12 

followed by a ramped increase in work rate from 50% estimated maximum to 100% 13 

estimate maximum over 10 min, with the ramp of the slope continuing until exhaustion 14 

to obtain VO2peak. After a 10 min rest, participants completed a validation stage at 110% 15 

of the work rate at exhaustion to obtain VO2max. VO2max was identified on the criterion 16 

the validation VO2 had a greater than 3% negative discrepancy of the modelled 110% 17 

VO2peak (Poole & Jones, 2017). All participants successfully met this criterion. Heart 18 

rate and Rating of Perceived Exertion (RPE assessed by the Borg CR100) (Borg & 19 

Borg, 2001) was recorded each minute of the test. 20 

 21 

Experimental Procedures 22 

Microvascular function: Laser Doppler Imaging (LDI) 23 

Both endothelium-dependent (ACh) and endothelium-independent (SNP) microvascular 24 

function were assessed in normoxia and hypoxia after 30 min using laser Doppler 25 

imaging (LDI, moorLDI2, Moor Instruments, Devon, UK) with iontophoresis. All LDI 26 

assessments were completed under temperature-controlled conditions (25 (2) °C) and 27 

measured according to previously established methodology (Sandoo & Kitas, 2015). 28 

Simultaneous delivery of ACh (Miochol, Bausch & Lomb Inc. Berlin, Germany) and 29 

SNP (Rottapharm S.L., Barcelona, Spain) was performed using an iontophoresis 30 

controller (MIC2, Moor Instruments, Devon, UK) to assess endothelium-dependent and 31 

endothelium-independent cutaneous perfusion, respectively. Perfusion changes in 32 
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response to the delivery of both vasoactive drugs were assessed on the participant’s 1 

volar aspect of the right forearm. The full protocol used for this study has been 2 

described in detail previously (Sandoo & Kitas, 2015). In summary, a baseline scan was 3 

performed before a series of ten scans with an iontophoresis charge of 30µA to 4 

administer 2.5ml of 1% ACh and 1% SNP. The iontophoresis current was administered 5 

continuously throughout the ten scans. ACh and SNP drugs were diluted with 0.9% 6 

saline and delivered simultaneously into the skin via anode (ACh) and cathode (SNP) 7 

internal electrode Perspex chambers (⌀22mm) (ION 6, Moor Instruments, Devon, UK). 8 

The scans were performed simultaneously with the iontophoresis protocol. Following 9 

ten scans with iontophoresis, two further recovery scans were performed without the 10 

delivery of the vasoactive drugs. 11 

 12 

The exposure-time-response protocol took 15–20 min and all scans were performed in 13 

natural lighting conditions, with most of the ambient lighting restricted. Additionally, 14 

the settings of the laser Doppler imager (moorLDI2-IR, Moor Instruments, Axminster, 15 

Devon, UK) were kept consistent for all scans and acetate sheets labelled with 16 

anatomical markers were used to ensure the delivery site was consistent across trials. 17 

Measurements of perfusion were conducted offline using the moorLDI Review V6.1 18 

software. Perfusion values were quantified for ACh and SNP calculating the median for 19 

each region of interest (Jadhav et al., 2007). Results are presented as the percentage 20 

change in perfusion from the baseline scan collected immediately before the drug 21 

infusion, and was calculated as follows; ((Peak perfusion [AU] – Baseline perfusion 22 

[AU]) ÷ Baseline perfusion [AU]) × 100 = Change in perfusion [%AU]. 23 

 24 

Large vessel endothelial function: Flow-mediated Dilatation (FMD) 25 

Large vessel endothelial function was assessed using FMD under temperature-26 

controlled conditions (25 (2) °C) in normoxia and hypoxia after 60 min. The FMD 27 

procedure was performed as previously described in detail (Sandoo & Kitas, 2015). 28 

Briefly, a 2 min baseline ultrasound scan of the brachial artery was followed by 5 min 29 

of occlusion, achieved by inflating a blood pressure cuff placed around the wrist to 30 

suprasystolic pressures (220mmHg). After 5 min, the cuff was deflated rapidly to 31 
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induce reactive hyperaemia. To capture maximal dilation, a 3 min scan was performed 1 

following cuff deflation. 2 

 3 

A Siemens Acuson X300 Ultrasound scanner was used with a multifrequency linear-4 

array vascular probe set at 7.3MHz (Acuson X300, Siemens Healthcare GmbH; 5 

Erlangen: Germany) to perform the FMD procedure. B-mode images were captured at 6 

15 frames per second to record a 120 s baseline and a 210 s clip following 5 min of 7 

occlusion. To capture the initial reactive hyperaemic response to cuff deflation, the 8 

recording was initiated 30 s before cuff release; therefore, only 180 s was used for the 9 

analysis. Images were analysed offline using an automated edge detection software 10 

(Brachial Analyser, Medical Imaging Applications, USA). The Brachial Analyser 11 

software is capable to detect the peak of the R-wave; therefore, this inbuilt feature was 12 

used to include only the images at the peak of the R-wave. The recommended image 13 

quality standard was set at a confidence threshold ≥70%. From the frames which were 14 

accepted the change in diameter from baseline to the peak was calculated as follows; 15 

((Peak diameter [cm] – Baseline diameter [cm]) ÷ Baseline diameter (cm)) × 100 = 16 

FMD%. To account for the differences in baseline diameter, all the data was 17 

allometrically scaled as per the Atkinson and Batterham guideline (Atkinson & 18 

Batterham, 2013). The coefficient of variation for the sonographer (DTJ) is 8.5%, as 19 

previously reported (Jones et al., 2019). 20 

 21 

Statistical Analyses 22 

The assumption of normality was examined with the Shapiro-Wilk test. For primary 23 

analysis (to determine the effect of hypoxia on vascular function), paired t-tests were 24 

applied on normally distributed data and Wilcoxon signed rank test was used for non-25 

parametric data. P values < 0.05 were considered to indicate statistical significance. 26 

Also, effect sizes for paired t-tests (by Cohen’s d) are presented as the mean difference 27 

divided by the pooled SD between both normoxic and hypoxic time points and can be 28 

interpreted as small (> 0.2), medium (> 0.5), and large (> 0.8). Alternatively, effect 29 

sizes for Wilcoxon signed rank test (by Rosenthal’s r) are presented as the Z scores 30 
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divided by the square root of the sample size between both normoxic and hypoxic time 1 

points and can be interpreted as small (> 0.2), medium (> 0.3), and large (> 0.5). 2 

 3 

A-priori sample size estimation for the primary analysis indicated that 10 participants 4 

were needed to produce an 80% chance of obtaining statistical significance at the 0.05 5 

level for a 2-tailed design, based on a minimum important difference of 3.1 %, a 6 

standard deviation of the difference of 1.7 %, and an estimated average correlation of 7 

0.5 (data from Lewis et al. (2017)). Results for all normally distributed data are 8 

presented as mean differences (∆x̅) with 95% confidence intervals [95% CI]. The results 9 

of non-parametric analysis are presented as the median differences (x̃∆) and 10 

interquartile range (IQR). Due to poor image quality, three participants’ scans were 11 

removed from the FMD analysis, and three different participants’ scans were removed 12 

from the microvascular analysis. The removal of this data was performed before 13 

statistical analysis. 14 

 15 

The effect of hypoxia on FMD was determined by a paired t-test comparing normoxia 16 

and hypoxia in the first instance. Additionally, the allometric scaling approach was used 17 

to adjust for baseline diameter in the calculation of FMD (Atkinson & Batterham, 18 

2013). Briefly, baseline diameters and peak diameters were logarithmically transformed, 19 

and then a linear mixed model with repeated measures was performed in SPSS, where 20 

the baseline diameter was used as a covariate. Covariate adjusted means for diameter 21 

change were obtained from this SPSS model and then back-transformed. 22 

 23 

To determine the relationships between the decrease in endothelial function with 24 

cardiorespiratory fitness (VO2max), Pearson’s correlations were used for parametric data 25 

and Spearmen’s correlations for non-parametric data. For all correlational analyses, the 26 

strength of a relationship was determined by the correlation coefficient value, and P 27 

values < 0.05 were considered to indicate statistical significance.   28 

 29 

RESULTS 30 

 31 

Vascular Demographic: Carotid intima-media thickness (cIMT) 32 
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Baseline cIMT measurements were recorded to screen for any subclinical signs of 1 

atherosclerosis. For measurements of the right common carotid artery, the mean value 2 

was reported to be 0.46mm (SD = 0.07), and the left common carotid artery was 3 

measured to be 0.45mm (SD = 0.07) (Table 1). Carotid intima-media thickness 4 

measurements of <1.0mm are considered to be normal (Simon et al., 2002). 5 

 6 

Physiological Responses to 30 and 60-min Hypoxia 7 

Resting physiological responses were recorded at 30 and 60 min during the trial. 8 

Hypoxia decreased SpO2 compared to normoxia after 30 min (x̅∆−19 [−20, −17] %) and 9 

60 min (x̅∆−18 [−20, −15] %; P < 0.001) exposure. Hypoxia significantly increased 10 

heart rate compared to normoxia after 30 min exposure (x̅∆12 [8, 6] beats/min; P < 11 

0.001) and remained elevated after 60 min (x̅∆11 [6, 16] beats/min; P < 0.001). 12 

Hypoxia increased mean arterial blood pressure compared to normoxia after 30 min 13 

(x̅∆4 [1, 7] mmHg; P = 0.02), but had no effect on mean arterial blood pressure after 60 14 

min (x̅∆0 [−4, 4] mmHg; P = 1.0). 15 

 16 

Effect of Hypoxia on Microvascular Function  17 

Compared to normoxia, hypoxia did not affect baseline perfusion after 30 min in either 18 

chamber (ACh chamber x̃∆ = 0.3, {IQR: 14.0}, P = 0.13; SNP chamber x̃∆ = 0.0, {IQR: 19 

10.8}, P = 0.80; Table 2). As expected, perfusion values increased in response to the 20 

iontophoresis of ACh and SNP during both trials. Compared to normoxia, endothelium-21 

dependent (ACh) microvascular function was reduced after 30 min of exposure for 22 

19/26 (73%) participants (x̃∆ = -109%, {IQR: 542.7}; P = 0.05) (Figure 2). Compared 23 

to normoxia, hypoxia did not affect endothelium-independent (SNP) microvascular 24 

function after 30 min of exposure, and 11/26 (42%) participants had lower responses 25 

during hypoxic trial (x̃∆ 69%, {IQR: 453.7}; P = 0.6). 26 

 27 

Effect of Hypoxia on Flow-mediated Dilatation 28 

In comparison to normoxia, hypoxia significantly increased baseline brachial diameter 29 

by 2.9% after 60 min (x̅∆0.11 [0.03, 0.19] mm; P = 0.01). As baseline diameters were 30 

different between conditions, FMD results are presented as unscaled and allometrically 31 
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scaled responses (Figure 3). Compared to normoxia, hypoxia significantly reduced 1 

unscaled FMD responses in 22/26 (85%) participants after 60 min (x̅∆-1.19 [-1.80, -2 

0.58] %; P < 0.001).  Compared to normoxia, hypoxia significantly reduced 3 

allometrically scaled FMD responses in 22/26 (85%) participants after 60 min (x̅∆-4 

1.21%; P < 0.001; relative −18.2%). Compared to normoxia, hypoxia had no effect on 5 

FMD time to peak (x̅∆ -5.0 [-36.7, 26.8] s; P = 0.75). 6 

 7 

The association between cardiorespiratory fitness and endothelial function 8 

Cardiorespiratory fitness was not associated with endothelium-dependent (ACh) 9 

microvascular function (% change in perfusion) (r = -0.47; P = 0.07, Figure 4A), 10 

endothelium-independent (SNP) microvascular function (% change in perfusion) (r = 11 

0.04; P = 0.86), or large vessel endothelial function (%FMD) (r = 0.06; P = 0.76, Figure 12 

4B) in normoxia. Cardiorespiratory fitness was correlated with the magnitude of the 13 

hypoxia-induced decrease in endothelium-dependent microvascular function (r = 0.45; P 14 

= 0.02, Figure 4C). In contrast, cardiorespiratory fitness was not correlated with the 15 

magnitude of the decrease in endothelium-independent microvascular function (r = 0.1; 16 

P = 0.35) or large vessel endothelial function (r = -0.09; P = 0.68, Figure 4D). 17 

 18 

DISCUSSION 19 

 20 

The principal findings of this study are that 30 min of hypoxia reduced endothelium-21 

dependent microvascular function (43% reduction in perfusion response to ACh), but 22 

did not affect endothelium-independent microvascular function (no change in perfusion 23 

response to SNP). Moreover, 60 min hypoxia reduced endothelium-dependent large 24 

vessel vasodilatation (18% reduction in FMD). Notably, the extent of the decrease was 25 

approximately two-fold higher in the microcirculation compared to the large vessels. 26 

Additionally, we are the first to demonstrate individuals with greater cardiorespiratory 27 

fitness preserve microvascular endothelial function during hypoxic exposure. 28 

 29 

The present study is the first to our knowledge to examine the effect of hypoxia on 30 

microvascular and large vessel endothelial function in the same study. The difference in 31 
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the magnitude of the decrease between the different vessel sizes suggests that hypoxia 1 

may activate specific mechanisms, which effect endothelial function differently. 2 

Assessed separately, microvascular and large vessel function have been reported to 3 

decrease following acute hypoxia (Lewis et al., 2014, 2017; Treml et al., 2018). 4 

However, some studies have also reported increased vascular reactivity following 5 

hypoxic exposure (Lawley et al., 2014). Differences in vascular stimulation methods 6 

and the length and type of hypoxic exposure make it difficult to compare these 7 

published findings. Therefore, when investigating the effects of acute hypoxia on 8 

endothelial function, it is important to consider assessing endothelial function in both 9 

small and large vessels for a comprehensive understanding of the underlying 10 

mechanisms. Furthermore, vascular assessments are highly sensitive and one should 11 

always acknowledge the potential influence of biological, environmental and 12 

methodological factors on inter-individual variability, which have been listed elsewhere 13 

(Bircher et al., 1994; Charakida et al., 2013). Despite the observed individual 14 

differences in the present study, we aimed to regulate most factors that can result in 15 

large inter-individual variability, including, physical exercise, caffeine, and the 16 

menstrual cycle. Additionally, we controlled for the observed individual differences by 17 

scaling our data correctly (Atkinson et al., 2013) and performing appropriate analyses. 18 

 19 

Using isocapnic hypoxia, Lewis et al. concluded that normobaric hypoxia-induced 20 

FMD reductions were more pronounced after 30 min of severe hypoxia (PETO2 50 21 

mmHg) compared to mild hypoxia (PETO2 75 mmHg) (Lewis et al., 2017). This finding 22 

suggests that hypoxaemia severity is associated with impaired endothelial function. 23 

However, the small range of SpO2 that were recorded during hypoxia in the present 24 

study (range = 70–86%, SD = 5%) suggests that the hypoxic stimulus was relatively 25 

homogenous across participants, with most participants at a similar PETO2 of ~42 26 

mmHg. Thus, the minimal range makes it difficult to evaluate the relationship between 27 

hypoxaemia severity and decreased in vascular function. Nonetheless, our results do 28 

suggest that hypoxia has a greater deleterious effect on microvascular endothelial 29 

function than that of the large vessels, suggesting that the microvasculature endothelium 30 

may be more sensitive to hypoxia than larger blood vessels, highlighting the importance 31 
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of assessing both microvascular and large vessel endothelial function in hypoxia 1 

studies.  2 

 3 

Most of the literature implies that hypoxia-induced decrease in endothelial function is 4 

linked to NO deficiency (Ten & Pinsky, 2002; Bonetti et al., 2003). The synthesis of 5 

NO is an oxygen-dependent reaction, and therefore lower oxygen availability would 6 

imply a reduction in NO synthesis. In animal and human in vitro models, chronic 7 

hypoxia (> 24 h) has been proposed to downregulate the expression of eNOS, thus, 8 

blocking the synthesis of NO (Thompson & Dong, 2005; Janaszak-Jasiecka et al., 9 

2018). However, Prieto et al. suggested that acute hypoxic exposure (< 24 h) does not 10 

decrease eNOS protein expression, but rather, eNOS’ capacity to produce NO is 11 

affected (Prieto et al., 2011). L-arginine oxidation via eNOS is the primary source of 12 

NO in endothelial cells, but other enzymes including arginase-I and arginase-II also 13 

compete for the same substrate. Krotova et al. reported that the activation of hypoxia-14 

inducible factor 1 (HIF-1) elevates the expression and activity of arginase-II in the 15 

human lung microvasculature, thus limiting the bioavailability of NO (Krotova et al., 16 

2010). To our knowledge, this finding has not been replicated in large blood vessels. 17 

Thus, the upregulation of arginase-II in the microvasculature could explain the more 18 

pronounced decrease in endothelial function in the microvasculature that we observed.  19 

 20 

Hypoxia stimulates the activation and expression of HIF-1 and other transcriptional 21 

complex, which prompts metabolic changes within endothelial cells of small and large 22 

blood vessels. The changes in endothelial metabolism have been associated with 23 

nicotinamide adenine dinucleotide phosphate (NADH) oxidase-dependent increases in 24 

ROS, primarily, superoxide (Griendling et al., 2000; Frey et al., 2009). When an ample 25 

amount of superoxide is synthesised, it reacts rapidly with NO to produce peroxynitrite 26 

and thereby prevents NO’s vasodilatory effect on vascular smooth muscle cells 27 

(Gryglewski et al., 1986). In addition to the changes in endothelial metabolism, the 28 

interaction between HIF-1 and endothelial cells evokes proinflammatory reactions 29 

(Michiels et al., 2000). The prevalence of adhesion molecules are proposed to be higher 30 

in microvascular endothelial cells compared to large vessel endothelial cells (Swerlick 31 

& Lawley, 1993). The overexpression of adhesion molecules makes the 32 
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microvasculature more susceptible to the infiltration of inflammatory molecules 1 

(Mendes et al., 2018), which can activate endothelial cells and diminish NO 2 

bioavailability. Finally, acute hypoxia directly increases sympathetic outflow and in 3 

turn, attenuates NO-dependent vasodilation (Weisbrod et al., 2001). Sympathetic 4 

excitation does not only stimulate vasoconstriction, but also increases retrograde shear 5 

rate, thus limiting FMD response (Dyson et al., 2006; Padilla et al., 2010). In summary, 6 

the available evidence suggests that acute hypoxia diminishes NO bioavailability by 7 

reducing eNOS activity, upregulating ROS and inflammation, and increasing 8 

sympathetic activity, and thus directly impairs the endothelial NO vasodilatory system. 9 

Further research is warranted to investigate the relative contribution of the 10 

aforementioned mechanisms of endothelial dysfunction between different vessel sizes. 11 

 12 

Cardiorespiratory fitness is positively associated with cardiovascular health (Kaminsky 13 

et al., 2019). Exercise interventions have been reported to significantly improve 14 

endothelial function (DeSouza et al., 2000; Beck et al., 2013) and prevent and restore 15 

age-related endothelial decline (DeSouza et al., 2000). Moreover, exercise-induced 16 

improvements in endothelial function have been directly associated with increases in 17 

NO bioavailability (Beck et al., 2013). However, independent of training interventions, 18 

resting FMD responses are not associated with fitness status in young adults. In the 19 

present study, while cardiorespiratory fitness was not associated with microvascular or 20 

large vessel endothelial function, the hypoxia-induced decrease in microvascular 21 

function was negatively correlated with cardiorespiratory fitness. Those with superior 22 

cardiorespiratory fitness had the smallest hypoxia-induced reduction in microvascular 23 

function. This moderate relationship is consistent with the interpretation that 24 

cardiorespiratory fitness may provide some protection against hypoxia-induced decrease 25 

in microvascular function. In contrast, we did not observe a similar relationship between 26 

cardiorespiratory fitness and FMD decline, possibly because the microvasculature is 27 

more sensitive to hypoxia-induced impairments. However, we acknowledge the 28 

limitations of a small sample size and a correlational analysis. Thus, our finding should 29 

not be considered conclusive evidence. Rather, this finding highlights the potential 30 

importance of physical fitness for microvascular function in hypoxia, which warrants 31 

future research in populations that suffer long-term hypoxia and vascular dysfunction.  32 
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 1 

Limitations 2 

The laser Doppler imaging technique used in this study does not allow for continuous 3 

measurement, limiting the temporal resolution of the microvasculature’s response to 4 

ACh and SNP. However, the technique does provide data from a larger area compared 5 

to some alternatives such as laser Doppler flowmetry, making it less sensitive to 6 

movement artefacts (Low et al., 2020). A second limitation relating to the LDI 7 

procedure is that we did not obtain beat-by-beat blood pressure during the LDI 8 

measurement period. As such, we do not present our data as cutaneous vascular 9 

conductance, and therefore cannot be sure differences in flux are due to changes in 10 

vasomotor function, rather than changes in perfusion pressure (Roustit & Cracowski, 11 

2013). Finally, the current applied during iontophoresis can elicit a vasodilation 12 

response independent of a drug response. We did not estimate the contribution of 13 

current effects, for example by conducting a separate LDI procedure administering only 14 

the vehicle (saline) using the same current and duration. However, though it is not 15 

possible to differentiate between current and drug-induced vasodilation, this has 16 

minimal consequence for our primary finding, since the same current and drug doses 17 

were used in both normoxia and hypoxia. Additionally, both drugs were dissolved in 18 

0.9% saline to reduce the electrically induced iontophoretic artefacts (Ferrell et al., 19 

2002). 20 

 21 

In addition to using baseline diameter for covariate-adjusted means, some researchers 22 

propose that FMD data should also be normalised for variation in the shear rate (Pyke & 23 

Tschakovsky, 2005, 2007). For the present study, shear rate was not recorded. However, 24 

Atkinson et al. suggested that normalising one variable (i.e. baseline diameter), by 25 

another variable (i.e. shear rate), is not good practice when analysing FMD data 26 

(Atkinson et al., 2013). Furthermore, Atkinson et al. implied that scaling FMD to 27 

baseline diameter differences should outweigh the variation in shear rate.  28 

 29 
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CONCLUSION 1 

To conclude, acute exposure to normobaric hypoxia reduced endothelium-dependent 2 

vascular function, in small and large vessels. The decline in microvascular endothelial 3 

function was approximately twice as large as that observed in the large blood vessel, 4 

demonstrating the sensitivity of the microvascular endothelium to hypoxia. 5 

Furthermore, our data suggests that superior cardiorespiratory fitness may be protective 6 

against the hypoxia-induced reduction in microvascular endothelial function, but this 7 

warrants further investigation. Collectively, these findings highlight the sensitivity of 8 

the microvascular circulation to hypoxic insult, particularly in those with poor 9 

cardiorespiratory fitness. 10 

 11 
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Tables 1 

 2 

 Minimum Maximum Mean SD 

Age (years) 20 39 24 4 

Height (cm) 160 193 176 9 

Body Mass (kg) 49 115 74 13 

MAP (mmHg) 73 103 91 7 

Haemoglobin (mmol/L) 7.45 10.43 9.06 0.68 

Total Cholesterol (mmol/L) 2.88 5.65 4.05 0.82 

LDL (mmol/L) 0.84 4.28 2.35 0.80 

HDL (mmol/L) 0.98 2.49 1.67 0.43 

Physical Activity (0-7)1 0 7 6 2 

VO2max (ml/min/kg) 35 79 50 10 

Right CCA IMT (mm) 0.36 0.71 0.46 0.07 

Left CCA IMT (mm) 0.35 0.58 0.45 0.07 

Mean CCA IMT (mm) 0.37 0.56 0.46 0.06 

 3 

Table 1. Participant Characteristics. Abbreviations: MAP, Mean Arterial Blood 4 

Pressure; LDL, Low-Density Lipoproteins; HDL, High-Density Lipoproteins; CCA, 5 

common carotid artery; IMT, intima-media thickness; SD, Standard Deviation; VO2max, 6 

maximal aerobic capacity. 1Physical activity was measured using an instrument 7 

commonly used in VO2max prediction models (Jackson et al., 1990; Matthews et al., 8 

1999). 9 
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 1 

 Normoxia Hypoxia 
P 

Mean SD Median Mean SD Median 

SBP (mmHg) 111 9 - 112 9 - 0.51 

DBP (mmHg) 65 8 - 68 8 - 0.18 

MAP (mmHg) 80 8 - 84 8 - 0.02* 

Heart Rate (bpm) 61 10 - 73 12 - <0.001*** 

SpO2 (%) 98 1 - 79 5 - <0.001*** 

Baseline flux (AU)        

 ACh chamber - - 43 - - 49 0.13 

 SNP chamber - - 38 - - 43 0.80 

 2 

Table 2. Physiological data at 30 min before LDI and FMD assessments. 3 

Abbreviations: SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; MAP, 4 

Mean Arterial Blood Pressure; SpO2, peripheral oxygen saturation; ACh, acetylcholine; 5 

SNP, sodium nitroprusside; SD, Standard Deviation. * P < 0.05, ** P < 0.01, *** P < 6 

0.001.  7 
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FIGURES 1 

 2 

Figure 1. Overview of study protocol. Baseline characteristics were collected for all 3 

participants during visit 1. Participants then completed normoxia and poikilocapnic 4 

hypoxia experimental trials separated by at least five days. During each experimental 5 

trial vital signs were assessed every 30 min, LDI at 30 min and FMD at 60 min. cIMT, 6 

carotid intima-media thickness; FiO2, fraction of inspired oxygen; FMD, flow-mediated 7 

dilatation; LDI, laser Doppler imaging; VS, vital signs (blood pressure, heart rate, and 8 

blood saturation). 9 
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 1 

Figure 2. The effect of normoxia and hypoxia on microvascular function. 2 

Date presented as median as well as individual responses (n = 26). (A) Microvascular 3 

response to acetylcholine (ACh) was significantly impaired during hypoxia. (B) 4 

Microvascular response to sodium nitroprusside (SNP) remained unchanged. Effects 5 

sizes (ES; by Cohen’s d) can be interpreted as small (>0.2), medium (>0.5), large 6 

(>0.8). ACh, acetylcholine; SNP, sodium nitroprusside. 7 

  8 



 28 

 1 

Figure 3. The effect of normoxia and hypoxia on flow-mediated dilatation. 2 

Uncorrected data (A; paired t-test; presented as mean as well as individual responses) 3 

and allometrically scaled data for differences in baseline diameter (B; linear mix model; 4 

presented as mean (SD). Flow-mediated dilatation (FMD) response were significantly 5 

lower during hypoxia (n = 26).  Effects sizes (ES; by Cohen’s d) can be interpreted as 6 

small (>0.2), medium (>0.5), large (>0.8). FMD, flow-mediated dilatation. 7 

  8 
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 1 

Figure 4. The association between cardiorespiratory fitness and endothelial 2 

function. During normoxia, cardiorespiratory fitness was not associated with (A) 3 

microvascular endothelial function (r = -0.47; P = 0.07) or (B) large vessel endothelial 4 

function (r = 0.06; P = 0.76). Higher cardiorespiratory fitness was associated with the 5 

decline between normoxia and hypoxia in (C) microvascular endothelial function (r = 6 

0.45; P = 0.02), but was (D) not with large vessel endothelial function (r = -0.09; P = 7 

0.68). Cardiorespiratory data is presented as the VO2max score as a population 8 

percentage, according to the American College of Sports Medicine guidelines 9 

(American College of Sports Medicine, 2013). ACh, acetylcholine; FMD, flow-10 

mediated dilatation. 11 
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