Improving quantification of bivalve larvae in mixed plankton samples using qPCR: A case study on Mytilus edulis

Alexander, Jenna; Malham, Shelagh; Smyth, David; Webb, Julie; Fidler, David; Bayford, Philippa; McDonald, James; Le Vay, Lewis

Aquaculture

DOI: 10.1016/j.aquaculture.2020.736003

Published: 15/02/2021

Peer reviewed version

Cyswllt i'r cyhoeddiad / Link to publication

Dyfniad o’r fersiwn a gyhoeddwyd / Citation for published version (APA):

Hawliau Cyffredinol / General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Improving quantification of bivalve larvae in mixed plankton samples using qPCR: A case study on Mytilus edulis

Jenna L Alexandera, Shelagh K Malhama, David Smytha, Julie Webba, David Fidlerb, Philippa Bayforda, James McDonaldb, Lewis Le Vaya

aCentre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Anglesey, LL59 5AB, UK
bSchool of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK

* Corresponding author at: Centre of Applied Marine Sciences, School of Ocean Sciences, Bangor University, Anglesey, LL59 5AB, UK
E-mail address: j.lalexander@bangor.ac.uk

Abstract

Problems sourcing spat from naturally occurring seed beds for relay has been the main underlying limiting factor in mussel aquaculture over recent years. Attempts to address this issue require a better understanding of mussel larval patterns during the initial planktonic phase prior to settlement. A crucial step in progressing the detection and prediction of larval travel is the accurate identification of mussel larvae within environmental samples in conjunction with hydrodynamic patterns. This requires unambiguous, high throughput methods for the discrimination between larvae of morphologically-similar bivalve species. Presently methodologies require direct microscopic observation with accuracy based on taxonomic skills, techniques which are impractical for large-scale larval movement studies. Species-specific polymerase chain-reaction (PCR) presents a powerful alternative method for species detection. In addition, the technique allows for the collection of quantitative real-time PCR data which can be used for inter sample comparisons of relative larval abundance.

In this study Blue mussel Mytilus edulis D-stage larvae were used to compare and optimise DNA extraction methods and to examine the quantitative potential of species-specific qPCR targeting the polyphenolic adhesive protein involved in byssal thread production. Molecular data were used to create a predictive model which could be employed to determine larval numbers from real-time data. Assays were then used to estimate M. edulis abundance in vertical tow plankton samples collected from a trial aquaculture site off the North Wales coast.

This method offers a more effective means of temporal and spatial larval pattern analysis which will improve the tracking and predictive capabilities of seed supply hydrodynamic models used for dispersal and population connectivity predictions.

Keywords

Mytilus edulis, QPCR, DNA extraction, Larval settlement, Seed supply modelling
1. Introduction

The majority of the global production of marine bivalve molluscs for human consumption is provided by cultured stocks (Wijsman et al., 2019). Shellfish production has increased rapidly in Asia, yet there has been limited growth in Europe in recent decades, with a decrease in output from the mussel aquaculture sector being the primary contributor to a gradual decrease in productivity (Hambrey & Evans, 2016). While growth potential within the sector is considered strong, it is heavily constrained by the availability of wild juvenile mussels known as seed or spat which derive from settlement of planktonic larvae. Spat settlement is highly variable, both temporally and spatially, with first phase settled beds quickly lost through predation or storm events (Kamermans & Capelle, 2018; Dankers & Zuidema, 1995; Nehls & Thiel, 1993). Variations in spat abundance and location are determined by planktonic larval dispersal and settlement processes which vary seasonally and locally but are poorly understood (Stirling et al., 2018; Knights et al., 2006; Dobretsov & Miron, 2001).

The use of hydrodynamic larval particle tracking models combined with in-situ time series larval identification data has proved unreliable in predicting first phase settlement sites of *M. edulis* (Stirling et al., 2018). A main impediment to studies of larval ecology and distribution is the lack of unambiguous methods for the discrimination of bivalve species larvae with similar morphological characteristics. Established methods of larval identification involve direct microscopic observation, however these are insufficient for large scale studies of larval movement, and are limited by cost, time, and researcher experience (Bott et al., 2010). Whilst identifying larvae to class level (Bivalvia) is simple, resolution to lower levels (family, genera, or species) requires extensive taxonomic experience in marine bivalve larvae and therefore has great potential for human error which is confounded by phenotypic plasticity.

More recent bivalve larval identification techniques can produce specific level identification in mid to late stage larvae via analysis of hinge structure using scanning electron microscopy or optical compound microscopes equipped with high-intensity reflected light sources (Lutz et al., 2018). However, this involves time-consuming disarticulation and mounting of valves which limits use for *in-situ* field studies. Advanced techniques such as Raman spectroscopy (Thompson et al., 2015) and the use of polarized light to identify colour patterns from larval shells (Goodwin et al., 2018) offer an alternative but suffers from a lack of specificity and low taxonomic determinations which requires sorting or isolation of individual larvae. Newer alternative methods based on molecular or immunological techniques offer more accurate and precise identification. Detection using
directed antibodies and fluorescently labelled DNA probes have been used successfully to identify plankton larvae to family, genus or in some cases species level (Perez et al., 2009; Abalde et al., 2003; Paugam et al., 2003; Paugam et al., 2000; Demers et al., 1993). However, their use in field studies has been rare with both methods having limitations which can slow down sample processing and can result in erroneous false positive or negative identification (Heaney et al., 2011).

PCR-based techniques have become increasingly popular as an identification tool for aquatic species, providing accurate and specific detection via the use of targeted oligonucleotide primers (Dysthe et al., 2018; Sterling et al., 2018; Ludwig et al., 2014; Sanchez et al., 2014; Bott & Giblot-Ducray, 2011(a); McBeath et al., 2006). Researchers have attempted to use PCR to quantify larvae on an individual basis, performing extraction and analysis individually using single larvae (Sawada et al., 2008; Larsen et al., 2007). However, larvae contain small amounts of tissue and correspondingly low levels of DNA (Lasota et al., 2013) with the result that these assays often have a high failure rate (Christian et al., 2007) particularly with ethanol- or chemically fixed samples (Goodwin et al., 2018). The potential risk of skewed results due to larval selection bias is also a concern and as the whole larvae is often used in a single PCR this eliminates the possibility of testing for multiple species (Larsen et al., 2005; Hosoi et al., 2004; Hare et al., 2000).

Environmental DNA (eDNA) studies, which analyse air, soil or water samples for the presence of intracellular or extracellular target DNA, have been used to non-invasively detect a range of species (Prié et al., 2020; Mychek-Londer et al., 2019; Günther et al., 2018; Klymus et al., 2017 or see Ruppert et al., 2019 for review). This offers a number of benefits over traditional sampling methods, particularly when target species are less abundant or at challenging survey locations and when a number of species are to be sampled from the same location (Dysthe et al., 2018; Furlan et al., 2016; Rees et al., 2014(b)). These studies typically use metabarcoding to identify multiple species within a sample, which requires post-amplification processing and an adequate reference database (Cowart et al., 2015) or DNA-barcoding using species-specific markers can be used to target short fragments of mitochondrial DNA (mtDNA) (Stirling et al., 2018; Rees et al., 2014(b)). Yet the failure rate of this technique when applied to molluscs can be unsatisfactorily high, up to 43.6% in some cases (Cahill et al., 2018; Barco et al., 2016). Unresolved criticisms of this technique concern both experimental design and analytical methodology (e.g. primer bias (Couton et al., 2019), primer mismatch (Cahill et al., 2018), inadequately ‘populated’ barcode reference libraries (Rosenberg, 2014), bacterial infection biasing mtDNA variation (Kaya & Ciplak, 2018), anthropogenic artefacts during reference library
development (Weigand et al., 2019). High genetic variability and the mixing of genetic lineages within a species, along with hybridisation and introgression events may also confuse taxonomic boundaries and hamper accurate taxonomic identifications (Trivedi et al., 2016; Sun et al., 2016). Hybridization, introgression and heteroplasmy of mtDNA are known to occur in Mytilus mussels where species boundaries overlap (Barco et al., 2016; Kijewski et al., 2006; Rawson & Hilbish. 1998), a consequence of backcrossing with one or both parental taxa and of the peculiar mtDNA inheritance systems observed in these and other bivalves (Schizas. 2012; Breton et al., 2007; Theologidis et al., 2008). Marine mussels of the order Mytiloida exhibit an inheritance mechanism known as doubly uniparental inheritance (DUI) (Zbawicka et al., 2007; Breton et al., 2007; Theologidis et al., 2008). The implications for this are the possibility of concurrently amplifying M and F DNA when targeting mitochondrial gene regions during PCR, which depends on sequence divergence between M and F types; average sequence divergence in the 3 Mytilus species is ~8.3% but levels can be >20% (Śmietanka et al., 2016; Schizas, 2012). Both DUI and non-DUI heteroplasmy have been observed in crossings between blue mussels (Kijewski et al. 2006), and this along with other issues inherent in DNA barcoding/metabarcoding, some of which are mentioned above, can have significant implications for accurate taxonomic classification and ultimate barcoding success (Larraín et al. 2019).

Of particular concern is the uncertain ability of metabarcoding to produce quantitative results, with many studies maintaining that read numbers do not accurately represent the proportions of each species (Piñol et al., 2019; Klymus et al., 2017; Sun et al., 2015). Real-time PCR using targeted primers presents a powerful alternative method to detect species within environmental samples, simultaneously identifying and quantifying target DNA and allowing relative sample comparisons (Peñarrubia et al., 2016). A number of studies have examined the potential of qPCR to detect and potentially quantify eggs and larvae from marine and freshwater species (Odero et al., 2018; Sanchez et al., 2014; Jensen et al., 2012; Pan et al., 2008), including M. edulis. Dias et al, (2009) estimated mussel larval numbers from plankton samples gathered in Loch Etive using nuclear primers developed by Inoue et al, (1995), giving an upper limit for predicted larvae based on a standard curve established using a single stage (D larvae). In this study we aimed to further develop this technique in order to provide more accurate measures of larval abundance in plankton samples, using blue mussel M. edulis D-stage larvae obtained from single species culture to compare and optimise DNA extraction methods for larval samples. Spawned larvae were also used to create a model which predicts approximate mussel larval numbers from real-time data, allowing a range of reported values which more accurately mirrors the expected variation resulting from biological (variations in larval size and/ or molecular copies,
nonhomogeneous distribution of template DNA in sample), sample preparation (liquid retention and adhesion
of target molecules to pipette tips, etc.) and assay (intra- and inter-plate variation, improper background
subtraction) variation. This method was used to analyse the bivalve content of vertical –tow plankton samples
collected from the site of a trial mussel longline system in North Wales.

In order to address the industry concerns of diminishing mussel seed beds effective tracking of larval supply is
essential and hence the development of a high throughput tool for rapid identification and quantification of
M. edulis larvae within mixed plankton samples is a priority. The eventual methodology should be high
throughput, cost effective and robust enough to be applied to field samples which can be highly variable in
terms of organic and inorganic content as well as the condition of preservation.

2. Methods

2.1. Comparison of DNA extraction methods for generating larval standard curves in qPCR

Thirty adult *M. edulis* were gathered from the Menai Strait, Anglesey, to generate standards for
qPCR and as positive control DNA. Specimens were dissected and approximately 30 mg of adductor or
mantle tissue were extracted using a modified DNEasy Powersoil kit (Qiagen) protocol, where the 10 minute
vortex step to homogenise tissues was replaced with a 2 x 30 s bead beating steps at 5.5 m/s in a benchtop
homogeniser (Precellys 24 (Bertin Instruments)). *M. edulis* larvae were obtained from single species
experimental culture and fixed in 99.5% ETOH. D-stage larvae were counted under a light microscope and
manually transferred using a pipette to 1.5ml tubes containing 70% ETOH. Tubes containing 1, 10, or
100 larvae were collected in triplicate and standard enumeration and volumetric determination were used to
generate batches of approximately 1000 larvae.

Prior to extraction, 1, 10, 100, or 1000 larvae were filtered on to 0.45 µm cellulose nitrate (C-N) filter papers
using a vacuum filter rig before being cut in to strips to improve chemical digestion. Genomic DNA was
extracted using the protocols described below.

2.1.1. Adapted DNEasy Powersoil Kit (Qiagen)

Extraction was performed according to the DNEasy Powersoil kit protocol, with modifications (see A.1 in
Supplementary material, Appendix A). DNA was eluted in to 70ul 0.1 µM TE buffer.
To test the effect of homogenisation time on extraction efficacy, three methods were tested: samples were
homogenised using a benchtop homogeniser for two cycles of 20, 40, or 60 s.

2.1.2. Adapted E.Z.N.A Mollusk kit (Omega Biotek)

Extraction was performed according to the E.Z.N.A Mollusk DNA extraction kit with modifications (see A.2 in
Supplementary material, Appendix A). DNA was eluted in to 70 µl 0.1 µM TE buffer.

To test the effect of incubation time on extraction efficacy, samples were incubated for 90, 180, or 270
minutes.

2.1.3. Cetyltrimethylammonium bromine (CTAB) buffer extraction

DNA was extracted based on a method used by Balasingham, et al. (2018) using cetyl-
trimethylammonium bromide (CTAB) extraction buffer (see A.3 in Supplementary material, Appendix A). DNA
was resuspended in 70 µl 10 µM TE buffer and 0.5 µl RNase A.

2.1.4. QPCR analysis of DNA extraction efficiency

DNA yields were quantified using a Qubit 3.0 fluorometer and Quant-IT™ dsDNA high sensitivity reagents for
a direct comparison of extraction efficacy. qPCR was carried out in a QuantStudioTM Flex 6 Real-Time PCR
PCR reactions consisted of 10 µl 1x Kapa SYBR FAST Low ROX mix, 0.2 µM of each primer, 2 µl of DNA
template, and molecular grade H2O in a total reaction volume of 20 µl. Cycling conditions were set to 95 °C for
2 minutes, followed by 40 cycles of 95 °C for 3 s, 60 °C for 20 s, and 72 °C for 20 s. Standard curves were
constructed using serial dilutions of target amplicons (1/10 fold dilutions from 1 x 10^7-1 x 10^1 molecules/ µl),
and negative (no template) and positive controls were included in the form of PCR-g H20 and M. edulis gDNA
replacing DNA template, respectively. Samples were run in triplicate. Threshold values were set during the
exponential phase of the reaction, allowing cycle threshold (Ct) values to be determined for each sample.

2.2. Quantitative PCR development

2.2.1. Specificity, efficiency and precision of M. edulis qPCR assay
To determine the specificity of the primer set used, the sequences were tested *in silico* against the NCBI database using Primer-BLAST (https://blast.ncbi.nlm.nih.gov) and tested for specificity and cross-reactivity through PCR with DNA from other bivalve species of commercial interest which potentially occur in the area (*Cerastoderma edule, Pecten maximus, Aquipecten opercularis, Ensis siliqua, Crassostrea gigas, Ostrea chilensis*). To ensure non-occurrence of cross-reaction was not due to absence of amplifiable DNA, end-point PCR was carried out on all bivalve DNA using ‘universal’ invertebrate primer pair LCO1490 and HC02198 developed by Folmar, et al. (1994) targeting a 710-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI). Samples were composed of 1 x MyTaq Redmix (Bioline), 0.4 µM of each primer, 2 µl of DNA template, and molecular grade H₂O for a total reaction volume of 25 µl. Cycling conditions were set to 95 °C for 3 minutes, followed by 30 cycles of 95 °C for 20 s, 45 °C for 20 s, and 70 °C for 30 s.

The efficiency of the PCR reaction was assessed using triplicate ten-fold serial dilutions (1 x 10⁻⁷ - 1 x 10⁻¹ molecules/ µl) of target amplicons generated from DNA extracted from adult *M. edulis* tissue. Assay precision was analysed by calculating the intra-assay coefficient of variation (COV) for Ct values generated from triplicate serial dilutions (STDS 1-3).

2.2. PCR-inhibition from extracted samples

To test the inhibiting effects of planktonic matter which may affect overall accuracy and sensitivity of the qPCR assay we spiked DNA extracted from 20ml plankton and water samples containing 100 *M. edulis* larvae with 1 ng of control DNA from a pure culture of the bacterial species, *Gibbsiella quercinecans* (Brady, et al. 2010). The potential for inhibiting compounds resulting from the extraction process itself was examined by including extracts from negative controls of distilled water. All samples were processed with the E.Z.N.A Mollusk extraction kit with a 180 minute incubation step, and DNA extracts were spiked with *G. quercinecans* DNA. Subsequently, a Taqman MGB-based assay targeting *G. quercinecans* was employed to detect inhibition. Reactions consisted of 1 x Sensifast mix (Bioline), 0.4 µM of each primer, 0.1 µM of probe, 1 µl of DNA template, and molecular grade H₂O for a total reaction volume of 20 µl. All qPCR assays were carried out in a QuantStudioTM Flex 6 Real-Time PCR System (Applied Biosystems, USA); the initial denaturation was 95 °C for 2 minutes, followed by 40 cycles of 95 °C for 10 s and 60 °C for 40 s. Standards were run in triplicate in 1/10 fold dilutions from 3 x 10⁸ - 3 x 10³ molecules/ µl. Negative controls were included by replacing DNA template with 1 µl molecular-grade H₂O.
Reactions were initially run with unspiked sample extracts to ensure no unwanted cross-amplification occurred which could affect results (data not included).

2. 2. 3. Quantitative potential of qPCR for predicting M. edulis larval abundance

D-stage larvae were isolated to 1.5 ml tubes containing 70% ETOH. Tubes containing 1 - 1000 larvae were collected in triplicate and filtered through 0.45 µm cellulose nitrate filter papers prior to genomic DNA extraction using E.Z.N.A Mollusk extraction kit with 180 minute incubation step. Quantitative PCR was carried out under the conditions listed in Section 2.1.4, with each sample being run in triplicate. Template DNA quantity was calculated by plotting Ct values to standard curves obtained from serial dilutions of target amplicons (1/10 fold dilutions from 1×10^7-1×10^1 molecules/µl) and negative and positive controls were included in the form of PCR-g H$_2$O and M. edulis gDNA.

Actual extracted larval numbers and predicted values for number of larvae per PCR reaction are given in Table 1.

<table>
<thead>
<tr>
<th>Extracted no. M. edulis larvae</th>
<th>1000</th>
<th>200</th>
<th>100</th>
<th>60</th>
<th>40</th>
<th>30</th>
<th>20</th>
<th>10</th>
<th>8</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predicted no. larval/PCR reaction</td>
<td>22.22</td>
<td>4.44</td>
<td>2.22</td>
<td>1.33</td>
<td>0.89</td>
<td>0.67</td>
<td>0.44</td>
<td>0.22</td>
<td>0.18</td>
<td>0.13</td>
<td>0.11</td>
<td>0.09</td>
<td>0.04</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The specificity of the reactions was examined by the generation of melt curves after amplification. At low template concentration, non-specific amplification can cause florescence to reach detectable levels. In order to avoid false positive results, samples which had no visible melt curve corresponding with the target amplicon, had reported molecular copies of <100 and were deemed to have no target molecules were given a value of 0. The reported numbers of gene copies were log (x+1) -transformed prior to statistical analyses, in order to improve the normality of the data and the homogeneity of variance. A singular effects LMM (generalised linear mixed effects model) with a Gamma error distribution was fitted for molecular copies and Ct values, where copies or Ct values are explained by the log10 of larval number per PCR reaction, with random factor of sample accounting for single samples contributing separate measurements (done using glmer function from the lme4 package for R (version 3.5.3) (Bates, et al. 2014).

2. 3. Plankton trials
Plankton samples were collected from a trial aquaculture site operated by Bangor University and Deepdock Ltd off the North Wales coast (53°18'60.7"N 3°59'39.2"W), using 100 µm mesh plankton net with ballast weight deployed vertically from approximately 1-2 m above the sea bed and fixed following the protocol recommended by Black and Dodson (2003). Five subsamples were used to record the number of individual larvae belonging to the class Bivalvia and bivalve density (larvae m⁻³) was calculated by multiplying the average number of larvae by the total volume of the entire plankton sample, divided by the volume (m³) of seawater sampled. From each sample, 20ml was passed through a 0.45 µm C-N filter; one half of the filter was stored at -80 °C and the second half was cut in to strips and used for DNA extraction using the modified E.Z.N.A mollusc extraction method with 180 minute incubation. Samples were analysed by the qPCR assay for *M. edulis* detailed in Section 2.1.4. and template DNA quantity was calculated by plotting Ct values to standard curves obtained from serial dilutions of target amplicons (1/10 fold dilutions from 1 x 10⁷-1 x 10¹ molecules/ µl). The model generated in Section 2.2.3. was used to generate mean and upper and lower prediction values for number of larvae per sample, which were converted to larvae/ m⁻³ for direct comparison with observed larval numbers. Efficiency and precision values were also generated for the reaction.

3. Results

3.1. Comparison of DNA extraction methods for generating larval standard curves in qPCR

A comparison of extraction from 1, 10, 100, or 1000 larvae showed that the extraction kit and method used has a significant effect on DNA yield (F (4, 51) = 2.715, p = .04) (Figure 1) and therefore subsequent qPCR detection sensitivity. Extraction using the Balasingham CTAB method resulted in the lowest DNA yields overall and was the least promising method for further experimentation. Both the E.Z.N.A and Powersoil kits yielded sufficient DNA overall but incubation or homogenisation time had a clear effect on yield: too much (270m or 2 x 60s cycles) or too little ((90m or 2 x 20s cycles) of each resulted in reduced DNA recovery. Ultimately the E.Z.N.A kit extracted DNA of ample quantity after 90 and 180m incubation periods and was less variable in efficiency than the Powersoil kit even under optimal conditions (2 x 40s homogenisation cycles).
Quantitative PCR was performed on extracted DNA and C_t values were plotted on a standard curve obtained from serial dilutions of template DNA. From these standard curves, we aimed to determine the linearity (on a log scale) of the qPCR on samples extracted using each method and possible detection limits for the assay (Figure 2). DNA extracted from 1–1000 larvae using the E.Z.N.A extraction method with 180m incubation step fitted to the standard curve with narrowest confidence interval and greatest differentiation between larval values. This interaction between extraction method and larvae number was significantly different between methods ($F (12, 80) = 5.93, p < 0.001$). Based on these results and DNA extraction yield, we determined this method had the greatest potential for optimal qPCR assay sensitivity and accuracy, and was therefore used in any further experimentation.
3.2.1. Specificity, efficiency and precision of M. edulis qPCR assay

Primer sequences tested in silico against the NCBI database aligned only to members of the Mytilus edulis complex. When tested for cross-reactivity with a number of bivalve species found at our sample site, cross-reaction occurred with Crassostrea gigas and to a lesser extent Cerastoderma edule. All other species showed negligible amplification. Cycle threshold (Ct) values obtained from C. edule gDNA were sufficiently high (35.12 ± 0.64) and reported copies low (average 109.2 molecules) that the number of larvae in a sample would have to be substantial to have any significant effect on amplification. Higher detectable fluorescent signals were detected from C. gigas gDNA, where the reported molecular copies were 3804.1 ± 3600.5, the equivalent of approximately 51 larvae; in comparison, M. edulis gDNA yielded the equivalent amount of template as 430 larvae, indicating much higher affinity binding of primers to the intended Mytilus template.

Whilst the potential level of amplification due to cross-reactivity with C. gigas larvae is comparatively low and unlikely to significantly skew results, it could result in false positives or exaggerations of mussel larval abundance in areas where naturally-spawning populations of both species occur.

For series there was a high correlation between cycle number and dilution factor, R² 0.99 and slope values of -3.49, close to the theoretical value of – 3.32, indicating an efficiency of 93.32 %. Based on Ct values and
coefficient of variation (CV), the mean ±S.D. intra-assay reproducibility of triplicate intra-assay serial dilution tests (STD 1-3) was 0.82 ± 0.59 %, values considered acceptable (<5%) for validating assay precision.

3. 2. 2. PCR-inhibition from extracted samples

Prior analysis using Gibbsiella quercinecans primer sets on un-spiked extracts showed negligible amplification from samples, therefore results were not affected by sample contamination. No significant inhibition of PCR was observed in spiked samples compared to controls (F (3,50) = 1.207, p = .317) regardless of sample type (Figure 3), indicating the E.Z.N.A extraction kit efficacy in removing potential inhibitors, or the ability of the qPCR reagent mix to successfully overcome inhibitors, or a combination of both. Assay inhibition from samples extracted using this method is likely to be low even from mixed plankton samples and from relatively high numbers of larvae (≤ 100). As a consequence DNA from environmental samples will not need to be diluted which could reduce assay sensitivity.

![Simple Boxplot of Ct by Sample Type](image)

Fig 3. Ct values ± SE obtained for DNA samples extracted from distilled water without larvae (H20 only) and containing 100 M. edulis larvae (H20 + 100 larvae), and plankton samples containing 100 larvae (Plankton + 100 larvae) spiked with G. quercinecans gDNA as compared with spiked control (H20 control). Outliers (>3 x interquartile (IQ) range) are marked with a circle (O) on the boxplot.

3. 2. 3. Quantitative potential of qPCR for predicting M. edulis larval abundance

pg. 12
Spawned *M. edulis* larvae were used to examine the quantitative potential of qPCR, where data generated from differing concentrations of larvae were used to generate a model which predicts larval numbers from real-time data (Figure 4). Number of larvae with random factor of sample can be used as a predictor of molecular copies (LMM: $t = 15.46$, $p < 0.001$), with the model line of best fit which predicts 7.34×10^1 copies/larvae SE $\pm 4.75 \times 10^1$. Reaction efficiency was less than optimal ((76-76.95 %) during this reaction however high R^2 values of 0.99 and CV values demonstrated high intra- and inter-assay precision, where the mean \pm S.D. between three runs (Plate 1 - 3) with standard dilutions was $1.78 \pm 0.6 \%$. A distinctive melt curve representing the amplicon of interest was used to diagnose the presence of target DNA when occurring in all 3 replicate values for a given samples, reducing the potential for contamination effecting false positives. Reliable limit of detection was 0.04 larvae, correspondent to 2 larvae per extract, where all samples satisfied criteria for detection. Samples with an input of 0.02 larvae satisfied these criteria in 50 % of samples, therefore extracts with a single larva can be expected to be identified in half of samples. To confirm positive results obtained from single larvae, DNA was sequenced and returned 100 % match with the reference sequence from GenBank and the sequences generated from adult *M. edulis* gDNA. In low-template samples (0.02 - 0.09 larvae) additional peaks were detected and attributed to primer-primer interactions.
3.3. Plankton trials

The results obtained from plankton sample analysis by visual identification and real-time PCR are in Figure 5. The standard curve efficiency for the assay was 101.9%.

Bivalve larvae were visually detected throughout the sampling period. Visual counts and qPCR estimates of abundance followed a similar pattern (Figure 5) with typically lower magnitude peaks for *M. edulis*. Significantly more larvae were detected in samples gathered in 2018, both via assessment of visual counts and qPCR abundance estimates. Peak abundance values for 2018 were 8,956 SD ± 1,997 and 3,653 – 4,713 nm–3 (no. larvae/m³) for bivalve (via visual counts) and *M. edulis* larvae (via qPCR abundance estimates), respectively, compared to 3,712 SD ± 2,353 nm–3 and 1,808 – 2,364 nm–3 in 2017.

Similar abundance patterns were observed during 2017 and 2018, with peaks in June and during the Summer-Autumn period. An initial increase in larvae identified visually in April 2017 (2,762 SD ± 1,353 nm–3) did not correspond to an increase in *M. edulis* larvae detected by qPCR, suggesting the majority of larvae in the water column during this time could be assigned to other non-*Mytilus* bivalve taxa. Abundance of *M. edulis* during Summer-Autumn 2017 was lower than expected (considering observed trend correlation and the high abundance of bivalve larvae during this period); no molecular data was available from August to mid-September so potentially peak abundance was missed. The mean density of visually detected bivalve larvae per m³ of seawater was lowest in samples taken from November to March (<766 nm-3). No *M. edulis* larvae were detected by qPCR during this period. QPCR specificity was confirmed with melt curve analysis and the sequencing of a random selection of positive samples which returned 100% positive matches with the reference sequence from GenBank and sequences generated from adult *M. edulis* gDNA.
Species level identification of bivalve larvae within planktonic samples can be particularly challenging as a high degree of taxonomic proficiency is required, even when skilled an average visual classification can exceed 90 minutes (Vadopalas et al., 2006). A lack of expertise within this discipline often leads to significant bottlenecks in large-scale plankton species assessments. This can impact on research capabilities within such studies as budgets are substantially impacted due to the length of time required to process samples (Paugam et al., 2000). Subsequently, researchers have explored a number of alternative methodologies to address the taxonomic issues which have arisen in large-scale environmental plankton surveys (Lorenzo et al., 2005). A number of these are readily available and operationally superior to the recognised standard of visually keyed microscope identifications (Le Goff-Vitry et al., 2007). Presently, plankton studies which incorporate standard PCR analysis and post-PCR processing as a species verification tool are approximately seven times faster than conventional microscopic protocols (Boeger et al., 2007).

Fig 5. Observed (visually counted) larvae belonging to Class Bivalvia and predicted (estimated by qPCR abundance) *M. edulis* larvae in vertical-tow environmental plankton samples taken over a 2 year period. Error bars for observed larvae represent standard deviations over five replicate subsamples. Error bars for predicted larvae represent larval numbers calculated from 95% prediction intervals generated using a singular effects LMM (generalised linear mixed effects model) with a Gamma error distribution fitted for molecular copies.
Here we present a real-time PCR assay capable of identifying and quantifying *M. edulis* larvae within unsorted mixed field samples. The methodology does not require the time-consuming preparation of reagents, antibodies, or hybridomas and negates the need to manually quantify larvae (Johnson et al., 2015; Heaney et al., 2011; Perez et al., 2009). The procedure can be applied directly thereby substantially reducing the time allocated to sample handling. After DNA extraction standard processing time was <2 hr. Inhibition was negligible, even in high density (>100) larvae samples, demonstrating the efficacy of our chosen DNA extraction method in removing inhibitors and/or the ability of utilised SYBR reagents to overcome inhibition of primer-template binding and Taq Polymerase activity (Keele et al., 2014). Furthermore, extracts could be used undiluted, increasing the probability of detection in samples with low target species (Xia et al., 2018). The use of molecular tools in identifying invertebrate larvae has previously proved successful in the detection of *Corbicula* clams (Ludwig et al., 2014), the Golden mussel (*Limnoperna fortunei*) and Quagga mussel (*Dreissena bugensis*) (Peñarrubia, et al. 2016; Boeger et al., 2007; Pie et al., 2006). The absolute or semi-quantification of larval values within mixed environmental samples using real-time PCR is still in its infancy. However, results have been promising using the technique, with strong correlations between real and predicted numbers for the larvae of crab, barnacle, sea lice, abalone and oyster samples (Sanchez et al., 2014; Endo et al., 2010; Pan et al., 2008; Mcbeath et al., 2006; Vadopalas et al., 2006). Dias et al., (2009) developed an assay which specifically targeted nuclear DNA to quantify *M. edulis* larvae, but emphasised that values were an approximation and unlikely to be entirely accurate. By providing a ‘most probable value’ for larval numbers and including the range of variation and uncertainty expected from field sampling, from the DNA extraction and from the amplification method we aimed to improve the statistical degree of confidence regarding larval abundance. However, if the use of targeted DNA is to be employed with confidence in the determination of species-specific larval density loads then an increase in precision is required. A high specificity and sensitivity can be achieved through qPCR and the use of species-specific primers in conjunction with real-time technology. Muniesa et al., (2014) demonstrated that under optimal conditions the technique can detect single-fold changes within a gene copy number. Pan et al., (2008) demonstrated its efficiency as a working tool while examining artificially modified plankton samples by detecting single *Liocarcinus sp.* and copepodid larvae within mixed community samples. In the present study the assay demonstrated a 100% limit of detection (LoD) of 0.04 larvae/ reaction on laboratory samples, the equivalent of 2 whole larvae per sample. The assay
proved sensitive enough to detect solitary *M. edulis* larvae within pooled unsorted field samples. However, the research findings suggest that when larval numbers are anticipated to be low for example outside known spawning seasons *in-situ* sample replication should be increased if false negatives are to be minimised (Ficetola et al., 2015). Rees et al., (2014(b)) suggests three replicates as sufficient for improving the likelihood of detection while also decreasing the number of biological variables such as distribution and patchiness (Taylor et al., 2019) and the findings of this study would concur.

Field samples are considerably more complex in terms of organic content and at lower larval numbers the risk of false negative results due to the ‘masking’ effect of primer-dimer or amplification of DNA from non-target species increases (Xia et al., 2018). Therefore, samples which had no visible melt curve corresponding with the target amplicon and reported molecular copies of <100 were deemed to have no target molecules and were given a value of 0 copies/ larvae. This allowed the detection of a single larvae within the DNA extracts and thereby confirmed the improved sensitivity of the method. However, non-specific amplification observed within low-density larval samples may have artificially inflated abundance values. Further investigative studies to quantify this inflation are required and could be carried out using spiking experiments on artificial predetermined plankton samples.

An important consideration when undertaking assessments using DNA analysis is that the total amount of mitochondrial (Mt) and nuclear DNA can vary during ontogeny (Peñarrubia et al., 2016). As larvae progress through the life cycle these variations continue and as larval size increases there will be an effect on amplification and quantification success (Wood et al., 2003). This study used primers targeting a nuclear genome region to increase the likelihood of accurate larval quantification. This is because a known number of copies (two) are found per cell; in contrast numbers of Mt DNA molecules can vary among tissue types during the cell cycle and in response to stress (Cole, 2016), compounding quantification errors.

Nevertheless larval age, or more specifically size may have an effect on amplification and quantification success (Wood et al., 2003). Whilst there is some evidence to suggest that late stage larvae are too closely associated with the sea bed to be successfully sampled (Knights, Crowe, & Burnell, 2006) and therefore have little to no effect on ‘skewing’ qPCR results in environmental samples, a study of the effect of larval size on quantification would be pertinent. The results of such a study could be used to further refine and improve the predictive capabilities of the model.
The primers selected for this study offer an added advantage of being able to detect alleles belonging to all members within the Mytilus edulis complex; M. edulis, M. galloprovincialis and M. trossulus (Inoue et al., 1995). The nuclear Me15/16 DNA marker follows a Mendelian inheritance pattern and is the most commonly used for routine identification of Mytilus mussels due its robustness and reliability (Larrain et al., 2019). Whilst single locus genotyping using this marker has limited potential for analysing patterns of hybridisation or genome introgression (Wilson et al., 2018; Beaumont et al., 2008) and can underestimate levels of hybridisation in populations (Larrain et al., 2019; Kijewski et al., 2011), it can be used to identify size-specific gene fragments unique to each of the Mytilus species (Wilson et al., 2018; Kijewski et al., 2006). The detection of more than one of these alleles in a population is evidence of hybridisation and may prompt a more comprehensive study of population structure utilising multilocus approaches (Larrain et al., 2019), single nucleotide polymorphism (SNP) genotyping (Wenne et al., 2020; Wilson et al., 2018; Zbawicka et al., 2012) or polymorphic microsatellite analysis (Lallias et al., 2009).

Allele-detection using the Me151/16 marker may be successful in characterising single larvae, however analysis of mixed environmental samples containing more than one Mytilus species would be considerably more complex (Wood et al., 2003). Some level of clarification is possible and was outlined by Dias et al., (2008) when probes based on the Me15/16 marker were applied to screen for M. edulis, M. galloprovincialis and M. trossulus alleles. Another simple cost-effective method for verification of sequence variation was also achieved by Pryor and Wittwer, (2006) through the screening of melt curves.

While real-time PCR can be useful in specificity analysis of taxon when compared to other identification methods, the level of accuracy will be reliant on the existence of an adequate taxonomically referenced database, which is unrealistic (Weigand et al., 2019). During this present research an alignment of primers against a reference database indicated high specificity for Mytilus spp, yet cross-amplification was observed with C. gigas and to a lesser extent C. edule. In the event that numbers of C. edule larvae in a sample were sufficiently abundant to cause detectable amplification, the inflation of larval predictions would be so low as to be insignificant. In contrast, the potential level of amplification due to cross-reactivity with C. gigas larvae was comparatively low and therefore unlikely to significantly skew results but may result in false positives or exaggerations of mussel larval abundance. In areas where naturally spawning C. gigas and M. edulis overlap this is a factor worth considering as a more specific assay or the design of a probe-based assay may be needed. Crassostrea gigas has considerably expanded its range following introductions into Europe in the
1960s, forming naturalised populations. Only sparse patchy aggregations of *C. gigas* occur in the Menai Strait (Robins et al., 2020) with population structure indicating only intermittent settlement, suggesting limited release of larvae. Furthermore, hydrodynamic modelling indicates limited dispersal potential of larvae from the source populations in the Menai Strait to the location plankton samples were taken in the present study (Robins et al., 2020). Nonetheless, further investigation will be needed to confirm whether cross-reaction is occurring and the effect of this on *M. edulis* abundance estimates.

A probe-based assay approach was attempted during this research however significant amplification of *C. gigas* gDNA was still evident indicating a previously unrecognised homologous region in the species. This was surprising, as the gene region selected was responsible for the generation of polyphenolic proteins involved in biological adhesion, specifically byssal thread production specific to *Mytilus sp.* (Inoue et al., 1995). Mussel adhesive proteins differ from cement proteins from other species (e.g. oysters, barnacles) due to the presence of ‘repetitive amino acid motifs characterized by a high polyphenolic content, high levels of the modified amino acid 3, 4-DOPA, and hydroxylations to specific amino acids’ (Rees et al., 2019; Silverman & Roberto, 2007). However, adhesion in pediveliger oyster larvae prior to metamorphosis is distinctly different from adult attachment. Secretion of byssal-like filaments by pediveliger larvae was observed before permanent adhesion during final settlement in *C. gigas* (Foulon et al., 2018). Foulon et al., (2019) have suggested that similar byssal secretion strategies could be used by pediveliger oyster larvae and adult mussels. An example being; Tyrosinase and peroxidase-like proteins in *C. gigas* presented similarities of 47.95% (*E*-value: 6.5×10^{-75}) and 44.8% similarity (*E*-value: 2.6×10^{-57}) to byssal protein sequences from *Mytilus coruscus* (Foulon et al., 2019). This unanticipated finding warrants a considerable amount of further research as the restoration of marine bivalve ecosystems is a priority within many marine environmental management programmes (Smyth et al., 2017). The settlement and attachment process is a critical phase in bivalve live cycles and a more in-depth understanding of the chemical mechanisms involved would greatly benefit the success of many costly restoration projects.

5. Conclusions

Molecular technologies such as real-time PCR offer the potential for sensitive species-specific identifications in conjunction with reduced analysis time. The work presented here demonstrates the possibilities molecular methods offer when compared to conventional techniques employed for larval quantification.
Our method allowed us to accurately identify relative peaks in larval abundance from time series or spatial plankton surveys; predicted *M. edulis* larval numbers mirrored those observed using conventional methods and seasonal cycles of larval abundance were consistent with known spawning patterns of *M. edulis* in the Irish Sea and other temperate waters (Philippart et al., 2012). This method is high throughput and rapid; the research time saved could lessen the bottleneck in time and costs incurred in lengthy taxonomic identifications. The implementation and development of the techniques discussed will undoubtedly improve the efficiency of field studies which focus on the temporal and spatial patterns of spawning and larval transport. For example, the procedure has the potential to inform or validate particle tracking models which have now become an integral tool in molluscan fishery assessments (Robins et al., 2013; Robins, et al., 2017). In practical applications, results can be returned within 24 hours of receiving a sample. Used alongside larval dispersal model outputs, the methodology presented here facilitate real time monitoring to inform aquaculture operations of the optimal times and locations for spat collector deployment.

Declaration of Competing Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study was supported by the Shellfish Centre RD&I operation (Grant Agreement No. c81364), part-funded by the EU’s West Wales and the Valleys European Regional Development Fund (ERDF) Operational Programme through the Welsh Government; and the Irish Sea Portal Pilot, ISPP (Grant Agreement No. 80940) Project, part-funded by the European Regional Development Fund (ERDF) through the Ireland Wales INTERREG Programme.

Appendix A. Supplementary data

A full description of experimental extraction protocols for *M. edulis* larvae

References

Schizas, N.V. (2012). Misconceptions regarding nuclear mitochondrial pseudogenes (Numts) may obscure detection of mitochondrial evolutionary novelties. Aquatic Biology. 17, 91-96. 10.3354/ab00478

