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ABSTRACT
This paper provides a systematic state of the art review on tracking the fine scale movements of
fish with the use of autonomous maritime robotics. Knowledge of migration patterns and the
localisation of specific species of fish at a given time is vital to many aspects of conservation.
This paper reviews these technologies and provides insight into what systems are being used
and why. The review results show that a larger amount of complex systems that use a deep
learning techniques are used over more simplistic approaches to the design. Most results found in
the study involve Autonomous Underwater Vehicles, which generally require the most complex
array of sensors. The results also provide insight into future research such as methods involving
swarm intelligence, which has seen an increase in use in recent years. This synthesis of current
and future research will be helpful to research teams working to create an autonomous vehicle
with intentions to track, navigate or survey.

1. Introduction
Determining the patterns of fish migration and the causes of their migration is critical to scientific studies both

for the ecology of any given environment, but also in the development of management plans for conservation or sus-
tainable exploitation (Anras and Lagardère, 2004). Tracking the distance and time of fish movement is fundamental
to understanding why fish have certain behaviours (Hilborn and Walters, 2013). This allows researchers to accurately
simulate the predicted reactions of the fish to changes that are made within their environment.

Knowledge of migration patterns, the localisation of specific species at specific times of the year, is vital to the
creation and conservation of sustainable fisheries. Due to the seemingly profitable nature of overfishing, it has increas-
ingly become a large threat to the world’s oceans and societies that rely on certain fish for their food. WWF (World
Wide Fund for Nature) considers overfishing to be one of the world’s greatest threats (Morgan, 2020). It is within
the interest, both ecologically and commercially, to gain further knowledge of migratory patterns in order to achieve a
higher level of sustainability.

Determining reactions to environmental changes in a variety of species, both migratory and native, will allow for
the development of offshore structures, which is a leading motivation for the development of fish tracking. Renewable
energy sites must be built with ecology in mind, in order to ensure a sustainable environment.

With the rise of both the demand and need for tidal and wind power in the UK and around the world, the majority
of these power generators are developed offshore (Hammons, 2011). This includes both offshore wind farms for the
development of wind power and for tidal power stations (Manley, 2008). Developments such as these can have huge
ecological effects on the wildlife in the area (Manley, 2008). Therefore, it is important to carry out an appropriate
study on how the given wildlife would react to such a change in the environment.

Developments in technology have allowed for more in-depth tracking methods to be achieved. Traditionally, catch
and release style fishing was used alongside acoustic tags to estimate migration and population statistics. Advance-
ments in new technologies propose a far more detailed set of results. Fish can now be tracked dynamically with a
constant flow of location and speed information. Dynamic or active tracking is defined by the real-time knowledge of

⋆This document is the results of the research project funded by SEACAMS2, KESS II and HR Wallingford.
∗Corresponding author
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Table 1
Keywords used in the literature search strategy, combining vehicle types with tracking types.

Vehicle Types
“AUV” OR “USV” OR “ASV” OR

“Sensor Network” OR “Drone”

AND

Tracking types “Dynamic Tracking” OR “Fish Tracking”

the location of the object you are tracking. This is the opposite of passive/static tracking. Passive tracking is unable to
locate an object in real-time; instead, the data is stored for later use. Dynamic tracking allows for constant surveillance
and therefore mission details can be updated constantly, which is useful for making active decisions.

This paper studies the documented uses of technology to dynamically track the fine-scale movements of different
species of fish. By dynamically tracking the fish, theoretically, maps could be drawn using almost exact estimations
regarding the whereabouts of fish at a given time. This level of specificity gives a much more detailed view of fish
movements and therefore will be far more viable as evidence when studying the reactive behaviour of different species
when their environment is modified.

There are several methods of dynamically tracking fish with the use of maritime robotics. These include the
implementation of autonomous, semi-autonomous and manual systems. Manual methods require constant human
interaction to evaluate information, make decisions based on that information, and then carry out those decisions. In
contrast, fully autonomous systems require no human interaction and have Artificial Intelligence that can use real-time
data to make intelligent and reactive decisions.

This paper is structured as follows. It reviews the literature regarding dynamic tracking to generate a better under-
standing of each category using a systematic method called PRISMA (Moher, Liberati, Tetzlaff, Altman and Group,
2009). The PRISMA system was chosen to help provide a methodological approach to a wide-ranging field. PRISMA
uses a checklist system to help keep results concise and relevant. The paper then presents why each category was
chosen and which is the most efficient and effective at their given tasks. This state of the art review researches the
development of this technology in order to provide a better insight into the possible future designs for these systems.
1.1. Study Selection Process

The study selection process is applied according to the PRISMA guidelines (Moher et al., 2009). PRISMA stands
for ‘Preferred reporting items for systematic reviews and meta-analyses’. It is a thorough process for a systematic
review of the search, review and analysis the relevance of studies. The process consists of a four-phase flow diagram,
with a 27 item checklist. PRISMA’s aim is to improve the reporting of systematic reviews and meta-analysis.

The first step involves a computerised search of key terms and record the number of results from the searching of
multiple databases. This is the identification stage of the process. The key terms, seen in Table 1, used for this study
involve the vehicles found in fish tracking, in combination with fish tracking itself, along with any form of dynamic
tracking.

The next stage is the screening stage. The records are manually screened for duplicates and split into how many
records are correct and how many will be excluded from the process. This is important due to the use of multiple
database sources.

Once this is complete, the eligibility stage begins. The full-texts are manually accessed for their eligibility and
relevance to the study and split into two categories, those that match the criteria and those that are excluded from the
study, and the reasons for this. This leaves us with the numbers of studies included in the qualitative synthesis ready
for meta-analysis.

The inclusion criteria decided for this study were:
• the article is written in English;
• the article is published in the last 15 years;
• the article concerns a method of tracking;
• the article concerns a marine vehicle or a marine autonomous platform;
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• the study includes the method of localizing the tracked target.
The exclusion criteria decided for this study were:

• reviews;
• books;
• conference proceedings.

1.2. Study Selection Results

Figure 1: PRISMA flowchart. This shows the results from the literature search.

A simplified breakdown of the results of the PRISMA search can be seen in Figure 1. 1470 articles were initially
identified with the search strategies in the ‘Identification’ process, the specific databases the results were found can also
be seen here. These publications were then reduced to 217 during the ‘Screening’ process. With additional articles
found through other sources, 231 publications were then screened for eligibility via full-text studies on the inclusion
and exclusion criteria. Finally, 45 papers were selected and analysed for this review after the selection process. This
leaves 186 not included, and the reasons for this can be seen in the lower right of Figure 1. See Appendix Table 3 for
the full results of the PRISMA search.
Nash et al.: Preprint submitted to Elsevier Page 3 of 20
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1.3. Breakdown of Included Studies Summary
Table 3 and Table 4 in the Appendix shows a summary of the full-text studies, and a simplified analysis of each

paper. Table 3 shows the results of the PRISMA search and the specific search terms used for every result. It gives
both the total results and then, after the screening process, the relevant results.

Table 4 shows the final full breakdown of the PRISMA search. It displays the meta-data found under each heading.
The headings were chosen as the most topics of value to those seeking information into what platforms are used for
using robotics to track marine life. Basic information such as reference and date of publishing is included, while more
in-depth information is also found. The ‘Purpose’ column gives information as to the objectives of each study and
gives insight into the nature of the paper. What type of vehicle or vehicles used is found under the ‘Platform’ heading
and states if the study uses multiple vehicles. The ‘Sensors’ and ‘Type of System’ headings describe their relative
information, though depending on the study this information is sometimes not applicable. This could be because the
study gravitates more into oceanography investigations as opposed to vehicle design for example. This study includes
papers from many areas of research, from Artificial Intelligence to Fish behaviours as long as it meets the criteria, and
this can result in the missing information in these headings. Finally the year of publication is also displayed.

2. Platforms
The vehicles most relevant to this study include ‘AUVs’, ‘ASVs’, ‘Drones’ and ‘Multi-Vehicle’ platforms (the

various acronyms used here are defined in each section below). This is because of the autonomous development
for robotics platforms. Other platform types have also been included (‘ROV’s, ‘USV’s, Manual and ‘UUVs’) for
several reasons. Firstly, so a better understanding of the state of the art of sensory information can be gained, but also
because the terms ROV/UUV are often synonymous with AUV. AUVs in a militaristic setting are often referred to as
ROVs/UUVs and thus it is important to include these terms on an individual basis if the research is relevant. Figure 2
shows the distribution of the platforms found in the final PRISMA results.

Figure 2: PRISMA bar chart. This shows the quantity of relevant papers for each vehicle type from the literature search.

2.1. Autonomous Underwater Vehicles
The most common platform of choice for developing state of the art autonomous robotics platforms for the use of

fish tracking, based on this study, is the Autonomous Underwater Vehicle (AUV). AUVs are an emerging technology
that is being used to collect physical, chemical, and biological information in the marine environment (Eiler, Grothues,
Nash et al.: Preprint submitted to Elsevier Page 4 of 20
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Dobarro and Masuda, 2013). The vast majority of AUVs discovered in this study implement a torpedo-like design
with rear motors for propulsion. However, there are also a few unusual cases such as a study completed by Bi, Niu,
Cai, Zhang and Zhang (2014) where the vehicle design is biomimetic, that inherits its features from marine life with,
for example, pectoral fins.

As an underwater platform, the system must overcome the physical properties of water in terms of waterproofing,
movement and communication. Most also employ a system of GPS, Gyroscopes, Accelerometers, Magnetometer
Inertial Measurement Units (IMUs) for help with localization and movement. An accelerometer measures proper
acceleration, a gyroscope measures angular velocity, a magnetometer measures magnetic field, and an IMU uses a
combination of these three. Systems such as these that are based on the accelerometer or IMUmeasurements normally
consist of several sensor nodes, and can measure kinematic parameters such as orientation, position, velocity, which is
particularly difficult in underwater environments. Design of platforms requires an analysis of range, duration, and in
the case of underwater vehicles, depth. Battery technologies are constantly evolving, and vehicle power requirements
drastically effect these capabilities. Clark, Forney, Manii, Shinzaki, Gage, Farris, Lowe and Moline (2013) found that
their AUV platform was able to complete short duration missions, although longer duration missions were difficult.
They acknowledged that researchers must address the issue of the limited battery life of AUVs in order to achieve
better mission duration, as well as ensuring maximum efficiency by minimizing the sensor configuration profile of the
additional sensors added to the platform to reduce drag. The study by Cadena and Ponguillo (2016) shows how design
is largely reflective of mission requirements. The technology found in this study has a relatively low range (5km), but
as depth is the main concern, has depth capabilities of 600m.

As for communication issues, various studies employ different techniques in an attempt to negate these difficulties.
The decision is based on two choices; to attempt to communicate through the water, which comes with its own host
of challenges; employ periodic surfacing techniques which require additional autonomous behaviours; or not com-
municating with the vehicle at all throughout the mission. Studies such as Xydes, Moline, Lowe, Farrugia and Clark
(2013) have chosen to communicate through the water. The technique commonly found in these studies to actualise
this employs acoustic communications. The vehicle is fitted with acoustic receivers which receive vehicle data from
home-base through acoustic pings that are sent at a specified frequency. Another method of communication is through
periodic surfacing. Periodic surfacing behaviours are implemented in order to keep communicating with and com-
manding the vehicle (Pinto, Faria, Fortuna, Martins, Sousa, Queiroz, Py and Rajan, 2013) in an attempt to circumvent
the issues found through underwater communication. Far more in-depth communication can be made with the use of
GPS, WiFi and Iridium, for example.

There is also the choice to not communicate with the vehicle at all once the vehicle has been deployed. This has the
benefit of not having the additional levels of complexity related with periodic surfacing or having additional acoustic
communications. However, it does require a large amount of confidence in the autonomous behaviours of the vehicle,
as human interaction will not be possible after launch. The study by Lesire, Infantes, Gateau and Barbier (2016), is
one such example where the focus is on long-term autonomous missions, with high degrees of autonomy that require
no human interaction.

Several systems have been developed using AUVs to track fish, in order to gain an insight into movements and
behaviours. Examples include the tracking of Leopard Sharks (Triakis semifasciata) (Clark et al., 2013). The study
found that the AUV was comparable in efficiency at repeatedly locating the sharks and tracking them with an AUV
employing a telemetry based system, when compared to a manually controlled surface system. However, there are
some studies such as the work completed by Eiler et al. (2013), where the vehicle was either on par or surpassed the
standard vehicle. The surface vehicle was considerably more difficult at detecting tagged fish, especially when there
were greater numbers present in the area. The study found that the detection rates and number of tracking successes
were significantly greater for the AUV, although this was less definitive in shallow waters (<20 m). This was found for
both reference tags, one being a stationary transmitter at known locations and depth, and the other being free-ranging
animals located at deeper depths. This study also found the success of the AUV is based on a number of factors which
includes the AUV running far more quietly and operating below the thermocline and halocline. However, it also suffers
far less noise interference when tracking from the sea surface, as this causes signal degradation. Eiler et al. (2013)
also found that an AUV can remove the human bias, as humans tend to focus on areas where they have found a partial
track, instead of surveying all areas in an unbiased fashion.

Nash et al.: Preprint submitted to Elsevier Page 5 of 20
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2.2. Sensor Networks
Sensor networks (SN), both wireless and otherwise, are also used as a tool for autonomous tracking and are the

second most common platform found in this study. A sensor network consists of spatially distributed sensors, which
can be fully autonomous, in order to monitor physical or environmental conditions.

Arrays created using Acoustic Hydrophones can implement passive acoustic systems (Eiler, Evans and Schreck,
2015). These arrays create a specific area within a two-dimensional space that tracks fish movements within the given
space. In general, arrays employ a wide variety of implementation techniques, that involve active sonar tracking, GPS
tags, and animal-borne telemetry. These systems scale in cost, and can be a cost effective method for small scale
deployments, such as in an estuary or river (Tokekar, Bhadauria, Studenski and Isler, 2010). Larger deployments
that have a wider tracking areas can have a much larger cost. The addition of implementing a vocalization detection
system allow for the tracking of animals that produce ultrasonic clicks. Although dolphins and Harbour porpoises are
commonly tracked using vocalization, this method of tracking is extremely specific to these species. Another issue is
that the predetermined location for the array is limited in scale and the tracking of migratory fish will be challenging.

Sensor networks can be both static and (in more recent studies) mobile. In the context of fish tracking, fixed
sensor networks are deployed to a specific location, such as in the work completed by Xinya al. (Li, Deng, Martinez,
Fu, Titzler, Hughes, Weiland, Brown, Trumbo, Ahmann and Renholds, 2015). Using an acoustic telemetry system,
they were able to investigate the spatial distribution of migrating juvenile salmon in open-water conditions between two
dams. This study was also able to implement 3D tracking up to a horizontal distance of 50m upstream and downstream.
Algorithms and prototype vehicles have been developed for tracking longer distances. This can be done using mobile
wireless sensor networks (MWSN) with the use of Fish Actuating Devices (FADs). This creates an array that can
relocate to gather new data from a different area. An example of this is the study by Brehmer, Sancho, Trygonis,
Itano, Dalen, Fuchs, Faraj and Taquet (2019), where FADs, along with both optical and acoustic sensors, were able to
monitor fish diversity and abundance in specific ecosystems.
2.3. Unmanned Surface Vehicles

Unmanned Surface Vehicles (USVs) are an emerging technology used to track the fine-scale movements of fish.
Generally, USVs are either controlled remotely by humans in real-time or are semi-autonomous (Liu, Zhang, Yu and
Yuan, 2016). This is due to challenges such as reliable guidance navigation and control. However, fully autonomous
surface vehicles are also being developed that attempt to minimise these issues and rely less on human interaction.
These are known as Autonomous Surface Vehicles (ASVs) although some papers still refer to ASVs as USVs when
the focus of the paper is more application oriented.

Both USVs and ASVs are a main area of interest for scientific, military and commercial developments for many
reasons. Firstly, this type of platform has the advantage of being a low-cost solution (Raber and Schill, 2019). They
are much cheaper than other platforms, which makes them more appealing to smaller research teams, or for multiple
vehicle missions. They are also far easier to communicate with than their underwater alternatives, which make them
even more advantageous in multi-vehicle deployment. Range and power consumption of vehicles is a concern for all
vehicle types. However an advantage to using a surface vehicle is access to renewable energy sources. A study by
Mousazadeh, Hamid, Elham, Farshid, Ali, Yousef and Ashkan (2017) shows the use of self-propulsion through wind
energy and solar panels to power the vehicle-control electronics and sensor payload. They found through testing that
the vehicle was capable of long-range (> 5000 km) and long-duration (>500 days).

ASVs also are used to support other autonomous systems. ASVs can be used to track Autonomous Underwater
Vehicles (AUVs). Due to the physicality of water, establishing communication to an AUV is difficult. ASVs can
be used to support missions and communicate with the vehicle, by tracking the trajectory of an AUV using acoustic
signals (Daxiong, Shenzhen, Rong, Ruiwen, Hongyu and Yang, 2013).

Pinto et al. (2013) also used a multi-vehicle setup. This was with the addition of an unmanned aerial vehicle to
relay communications back to homebase. An ASV was used in order to establish a connection between a surfacing
AUV and relayed information to the aerial vehicle. Their results found that the on-board control and communications
infrastructure was flexible. This was in reference to their Wifi and Iridium network systems for communication, and
deployment of their control software.

The US Navy initiated its UUV work well before it focused on USVs. However, the recent release of the Navy’s
USV “Master Plan” indicated that they wished to expand their research in the USV area (O’Rourke, 2020). The reason
for this was that the USV’s position allows them to relay radio frequency transmissions in air and acoustic transmissions
underwater and acts as a middleman between both air and underwater vehicles. Thus they are absolutely essential to a
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future networked battleground. In recent years, demonstrations have been conducted using USVs to support moving
long baseline navigation of UUVs (Curcio, Leonard, Vaganay, Patrikalakis, Bahr, Battle, Schmidt and Grund, 2005).
Long baseline is a type of acoustic positioning system used to track underwater vehicles and divers (Milne, 1983).
Further evolution of USVs as network nodes in naval applications is likely.

There are also a number of challenges that come with fish tracking using this type of platform. Firstly, sensors such
as optical cameras can be greatly affected by the relative instability of a surface vehicle (Liu et al., 2016). These types
of sensors are described in many of the studies, but for different reasons. For example, work completed by Steccanella,
Bloisi, Castellini and Farinelli (2020), used cameras in an attempt to achieve accurate waterline prediction by studying
the reflections, illumination changes, andwaves detected by the optical sensors. They also used the cameras for obstacle
detection and by extension, obstacle avoidance. Their solution for the instability challenges that derive from surface
vehicles was to use a sample of images to base decisions on. Their results showed a high level of accuracy, as opposed
to results with single images. There is also a challenge when using acoustic tags and acoustic receivers on the vehicle.
The surface of the water can have a refracting effect on the acoustic signal, which can make it difficult to localize the
signal (Lv, Zhang, Jin and Liu, 2016).
2.4. Multi-Vehicle Deployment

More recently, many research teams are opting for multi-vehicle deployments over single-vehicle missions. Opting
for multiple vehicles focused on a single task has many benefits over using a single platform. These benefits range from
increasedmission distances, larger tracking capabilities, more accurate tracking information and negate communication
difficulties found when communicating through water. Multi-vehicle deployment can mean using multiple different
platforms, for example an ASV and a AUV combined to gain the benefits of both, or multiple AUVs in order to increase
sensor capabilities or gain more accurate sensory data.

Studies such as Pinto et al. (2013) use both an AUV and an Unmanned Aerial Vehicle (UAV). The researchers
tracked Sunfish (Mola mola), who are good carriers of sensors, although they travel large distances. The feasibility of
such long distance tracks, where the fish position and the areas surrounding the fish are all mapped, was only possible
using a multi-vehicle approach. The UAV was tasked with mapping large areas of ocean surface that surrounds the
tracked fish, while the AUV was focused on tracking the specific water column. This study also showed how the use
of a multi-vehicle deployment can aid in communications, as communication with underwater vehicles is notoriously
difficult as mentioned previously. The UAV served as a communications relay between home-base and the multiple
vehicles. This technique is found in multiple studies such as the publication by O’Rourke (2020), where the US Navy
used ASVs as a communication relay between above surface vehicles or command stations, and AUVs or submarines.

Alternatively, there are other uses to multi-vehicle deployments, for increasing tracking capabilities. More sensors
in more locations results in higher level of accuracy when tracking. Therefore developments have been made to create
‘swarm’ behaviours, where multiple platforms communicate with each other, and collaboratively achieve a common
goal. The use of swarm intelligence is an emerging technology with only recent publications according to the PRISMA
review. Swarm is a collective-behaviour of a self-organised system. This type of AI can be used with multi-vehicle
deployments for more efficient and/or effective missions. The vehicles operate on a network, communicating with each
other to achieve a common goal. This is useful for a number of operations, such as surveying large areas. It also has
the additional benefit of having a much larger amount of sensors, which is multiplied by the amount of vehicles used.
This increase in sensors produces for far more detailed tracking data. Zolich, Johansen, Alfredsen, Kuttenkeuler and
Erstorp (2017) provides an example of swarm behaviours used in a fish tracking setting. The design is to use formation
control algorithms in order to move the vehicles in synchronization while sharing data on the radio-tagged fish.

Low-cost platforms are often used in combination with swarm intelligence. As multiple vehicles are required, it can
be too expensive for research teams to use a large amount of high-cost platforms. Basic USVs are more often selected
over more expensive counterparts such as AUVs. In fact, out of four of the review results describing swarm techniques,
three of them deployed low-cost USVs. An example of a swarm intelligence platform is the research completed by Lin,
Hsiung, Piersall, White, Lowe and Clark (2017). Here, swarm behaviours have been developed for multiple functions.
Firstly, the AUVs use a leader/follower multi-platform control system in order to follow collision free paths to the
tracked fish. Once the vehicles reach the target, the AUVs initiate a circumnavigation state, where the vehicles loiter
around the fish. This, among with other updates to their system such as state estimation upgrades and additional full
inertial measurement units, were found to be quite successful. Decreases, such as in mean position estimation error
of 25–75% were achieved, tag orientation estimation errors dropped from 80◦ to 30◦, the sensitivity of mean position
error with respect to distance to the tag was reduced by a factor of 50, resulting in a significant improvement. Finally,
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the sensitivity of mean position error with respect to acoustic signal reception frequency to the tag was improved 25
times.

3. Sensors
The sensors embedded on a vehicle are chosen based on the original goal for the vehicle. For example, if the

goal is for a vehicle to use optical data and object recognition to track specific fish, optical sensors will be used. This
systematic review has discovered that a wide range of sensors have been used, although mention of specific details of
these sensors are often neglected in the literature. For example, IMUs and GPS devices are almost universally used in
all mobile maritime robotics, as they are required for the most basic operations. Consequently, these devices are often
not mentioned, despite them being used. This is also due to them being used by the systems navigation and mission
control, and not the focus of the paper. Subsequently they have been excluded from discussion in this section.

Figure 3: Distribution of sensor types as found in the PRISMA results.

The distribution is relatively similar between the two most commonly used sensors, as seen in Figure 3. With
the exception of the aforementioned exclusions, the most commonly used sensors for autonomous marine vehicles are
acoustic sensors, with 15 publications and optical sensors with 14 publications. This is interesting as the two different
sensors use entirely different methodology for tracking. Nine publications in the PRISMA results shared no details
regarding sensors. Sonar was used in four papers in total, equalling 9% of the total results. Both Lidar and ‘Other’
sensors were used in two papers each. ‘Other’ sensors refer to selected special cases that are sensors that are extremely
specific to the study focus. For example, a paper used chemical sensor for tracking chemical plumes (Marques, Ribeiro,
Pinto, Sousa and Martins, 2015). As these are case-specific, they will not be expanded on here.
3.1. Acoustic Hydrophone Sensors

The typical method of tracking fish using hydrophone receivers include tagging individual fish with acoustic trans-
mitters. These acoustic signals are detected andmeasured by the hydrophone receivers. Often in general fish population
and habitat monitoring studies, the use of static location acoustic receivers are used to passively track targets that move
through a static array. In recent studies, low-cost in-stream antenna systems for tracking passive integrated transponder
(PIT)-tagged fish in small streams are also used. In the case of marine autonomous vehicles, the receivers are often
used for more than that. The receivers are still fixed, but to specific locations on the vehicle, as opposed to static
locations geographically. Multiple hydrophones are used in the majority of cases in order to gain far more data during
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a track than the passive arrays. These platforms go beyond simply detecting and monitoring models, but also gain
more information regarding 3D positions of the target and increased accuracy of position estimates using time delays
between each receiver (Lin, Kastein, Peterson, White, Lowe and Clark, 2014).

Acoustic hydrophones, in the vast majority of cases, are paired in practice with acoustic transmitters. Often referred
to as ‘tags’, acoustic transmitters emit a signal between 30kHz and 200kHz. Together the transmitter and receiver make
the acoustic telemetry tracking system. The emitted signal is identifiable and unique, and pings at a fixed or varied
interval (Xydes et al., 2013). The requirement of a tag is a drawback of this type of system that is not found in other
tracking types. The target of the track must be acquired prior to the mission, in order for the tag to be inserted. This
has the flaw that targets cannot be dynamically changed during the mission, and missions often require permits and
training to surgically insert the acoustic tags. The size of the target also defines the size of the tag required for the
mission, large tags cannot be inserted into small fish. This then has effects on range for the acoustic ping and also the
battery life of the transmitter.

The raw acoustic positionmeasurements are then processed by on-board systems in order to provide state-estimation.
This can be done using many different types of fish localization algorithms. A few examples of these use linear inter-
polation that predicts the fish position based on only the last two position movements (Lin et al., 2014). For tracking
in a 3-D environment, it is required that at least 4 hydrophones are used for non-linear localisation equations. Parti-
cle filters, on the other hand, use a distribution of state estimates to represent the current belief of the target’s state
(Xydes et al., 2013). The particle filter is designed to first predict the particle state estimate forward in time, and then
to correct the model based on new measurements. This is a probabilistic approach and is discussed further in section
4.3. The last example is the behaviour based localization algorithm (Xydes et al., 2013), which is similar to particle
filter algorithms. The algorithm first propagates the state of the target, and then updates the data using a Bayes filter
to correct the prediction. The approach of Clark et al. (2013) is another example of the use of Particle filters, using
state estimators to produce both real-time estimation of a Leopard Shark’s (Triakis semifasciata) 2D planar poition and
velocity, as well as navigational control to follow the tracked target. Their experiments found that the state estimator’s
error margins were comparable to that of a long-distance manually-tracked system, with the example of a manually
controlled boat with boat-based tracking systems.
3.2. Image Sensors

For a vehicle to be a fully versatile and dynamic autonomous system, it must have strong simultaneous localization
and mapping (SLAM) computation. The system must have a strong awareness of its immediate surroundings and
process this information constantly, in order to avoid any obstacles. LiDAR and Sonar have strong sensory capabilities
in this area, however, they can be very expensive and require powerful processing units. Research teams often opt
for more low-cost solutions, and this is where optical sensors are appropriate. Recent developments have been made
to increase the resolution for these types of sensors, making them far more feasible for this type of research (Raoult,
Tosetto, Harvey, Nelson, Reed, Parikh, Chan, Smith andWilliamson, 2020). The data from these cameras are processed
both in real-time and post-completion of the mission, depending on the mission goal. They are used both in underwater
and surface vehicles and have a variety of processing methods.

The choice of optical sensor is highly dependant on both the environment in which the missions are being con-
ducted, and the type of AI used in the design of the system. A review of the software used in these platforms can be
found in the Computational & Artificial Intelligence Techniques section below. However, for context in its simplest
form, image processing is used to extract information from images and video. This is the reason the environment is
important to the type of optical sensor used on the system. For example, one study found in the review opted for ultra
low light monochrome cameras, as they were more applicable to low visibility environments (Richards, Smith, Ault,
DiNardo, Kobayashi, Domokos, Anderson, Taylor, Misa and Giuseffi, 2016). Cameras such as monochrome cameras
can make certain processing tasks easier to implement, for example, object recognition. This study, along with others
such as the work completed by Guo, Pan, Shi, Guo, He and Tang (2017), make use of colour restoration and image
enhancement algorithms such as Retinex and MSRCR to alleviate issues caused by light scattering and absorption.
The studies found that the system was capable of detecting and tracking various targets precisely, with low-power con-
sumption and high real-time performance. The study by Guo et al. (2017) also found that the Video or image cameras
also differ to a large extent in practical use. Generally, studies that use video cameras extract the information post-
mission using batch processing. This is because video is generally difficult to manage in real-time systems and often
takes significantly more processing power to analyse. Image optical sensors, on the other hand, are more often found
in real-time systems. This is for many reasons. Images are far easier and less expensive computationally to both take,
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Table 2
Discussed software found in PRISMA results and their availability and type of technology.

Name of Technology Availability Type of Technology
Computer Vision N/A Computer Science Technique
Deep Learning N/A Computer Science Technique
Reactive Behaviours N/A Computer Science Technique
Swarm Behaviours N/A Computer Science Technique
DUNE (Ferreira, Costa, Py, Pinto, Silva, Nimmo-Smith, Johansen, Sousa and Rajan, 2019) Open Source C++ Robotics Framework
Ocean Server (Lin et al., 2014) Proprietary Mission Navigation Software
Lotek (Clark et al., 2013) Proprietary Acoustic Positioning Software
Seebyte Neptune (Haworth, Evans, Mcmanamon and McNally, 2016) Proprietary Real-time Sensory Processing
ROS (Quigley, Conley, Gerkey, Faust, Foote, Leibs, Wheeler and Ng, 2009) Open Source Robotics Middleware
MOOS-IvP (Benjamin, Schmidt, Newman and Leonard, 2010) Open Source Robotics Middleware
MORSE (Echeverria, Lassabe, Degroote and Lemaignan, 2011) Open Source Robotics Simulation

store and modify/process. Many of the benefits of video can be reproduced by taking multiple images in succession,
but at a user-defined rate, giving more control, while keeping all the benefits of both video and image optical sensors.
This helps to trade-off how often information is updated versus how much computation is used.

One of the largest drawbacks of using optical underwater imaging is because these images can contain scatter and
noise, especially when capturing “far away” images. This is only exacerbated when light is low, so deep sea exploration
is very difficult using these techniques.This is where other technologies such as Sonar or LiDAR is chosen instead.
3.3. Sonar & LiDAR

Another sensor that utilises acoustics for underwater localisation and mapping is Sonar, which uses sound propaga-
tion in underwater environments to achieve this. Traditionally sonar types such as ultra-short, short and long baseline
sonar are used for localization, mapping and navigation. Though these acoustic positioning systems are found in both
Sonar and acoustic hydrophone systems, this review only found reference of these systems in Sonar platforms. Lu,
Uemura, Wang, Zhu, Huang and Kim (2018) proposed using a Gabor filter post-scene capture to enhance sonar image
contrast. This is combined with the Kalman filter for tracking, a technique also found in the acoustic tracking systems.
Real-time tracking systems use algorithms such as that proposed by Lee, Kim, Kim, Myung and Choi (2012) to re-
store colour images to detect objects. Sonar and LiDAR are similar in their design to map surroundings. Sonar relies
on sound to detect objects, whereas LiDAR uses light. The system of using basic filters on LiDAR data has multiple
real-world situational problems and can be computationally expensive. For this reason, studies found in this systematic
review discovered methods to overcome these issues. Lu et al. (2018) for example developed the system YOLO, which
stands for “You Only Look Once” to enhance images and recognize marine organisms to track different species (Lu
et al., 2018).

LiDAR was only found to be used in localization, mapping and range finding (Mousazadeh et al., 2017). For this
reason, they are rarely mentioned in this paper, as the focus is not on the SLAM capabilities of the vehicle.

4. Computational & Artificial Intelligence Techniques
There is a wide range of computational and Artificial Intelligence techniques used for designing systems for track-

ing. As mentioned previously, these techniques are very dependant on the sensors the platform uses. The focus of the
research influences both the AI techniques and sensors heavily, as each methodology has its own benefits and draw-
backs. The PRISMA search resulted in many different approaches to the AI solution. Some publications mention
high-level techniques such as deep learning algorithms and computer vision. For example, some publications discuss
these far more in-depth and even go further to discuss the systems used to achieve these techniques. Whereas some do
not discuss the technologies used in any capacity. For this reason, Table 2. shows the different technologies that are
discussed in the research.
4.1. Computer Vision & Deep Learning

Computer vision is a field of Computer Science that deals with gaining knowledge from optical data such as images
or videos. This can be used for many different applications and is a broad discipline that many technologies are founded
upon. One important Artificial Intelligence technique often used in synergy with computer vision is deep learning.

Deep learning is a subset of machine learning, an Artificial Intelligence technique that optimises performance
automatically through experience from previously acquired datasets. Deep learning was inspired by the processing and
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communication nodes present in biological systems such as the human brain. In a deep learning context, these nodes
form an artificial neural network. The word “deep” refers to these networks comprising more multiple layers. From
raw input, it uses these multiple layers to extract high-level properties. This can be very effective at image processing,
taking raw data input, identifying edges as a low-level layer, and progressing into object recognition in higher-level
layers. In terms of maritime robotics, these algorithms can prove extremely effective at object recognition, when
combined with data input from sensors such as optical cameras. An example of how effective they can be is provided
by Sun, Shi, Liu, Dong, Plant, Wang and Zhou (2018a) where the use of convolutional neural networks have been
implemented to extract features from low-contrast, low-resolution underwater videos, a main flaw in image sensors.
This research aims to use these techniques to overcome the challenges caused by these low quality videos and also
provide a larger training dataset to circumvent future issues with small size underwater training data.

Deep learning refers to a large variety of techniques, including many variations of convolutional neural networks
(CNNs) and techniques. Islam, Fulton and Sattar (2019) describes the use of the most commonly used algorthms found
in the fish detection field. One of themost commonly used algorithms found by this review is the aforementionedYOLO
algorithm, which corresponds to “You Only Look Once". YOLO utilizes a single convolutional network and aims to
prioritize speed and recognition, over a more detailed computationally expensive approach. Lu et al. (2018) describes
how this type of system can be used for marine robotics. Using a dataset of approximately 1.3 million labelled images
and 32 thousand hours of underwater video, a database was created and categorized objects in the data such as shrimp,
squid, crab, sharks, sea urchin, manganese, and sand. Several preprocessing layers were applied to the data in order
to produce a more easily identifiable image. Many systems of this type use convolutional neural networks in order to
detect and identify marine life in imagery, either optical or sonar-based. However, this is not the only type of neural
network used on these platforms, and object classification is not the only use of deep learning. Obstacle avoidance is
one other application for these techniques in marine robotics.

Another commonly used fish detection algorithm is SSDs or Single Shot Detectors. SSDs is similar to YOLO as it
performs object localization and classification in a single pass of the network. This uses the same regression technique
as YOLO. When used in conjunction with Mobilenet V2, Islam et al. (2019) found that the additional convolutional
layers at the end of the base network provides SSD with an advantage of improved performance over YOLO.

Lin, Wang, Yuan, Yu and Li (2019) used recurrent convolutional neural networks (R-CNNs) to achieve obstacle
avoidance. Obstacle avoidance is often a requirement for underwater and surface vehicles, given their autonomous
nature and their deployment environments. Recurrent neural networks have proven to give state-of-the-art performance
on many tasks of this type including sequence labelling and prediction. In this particular study, with the use of a UUV
obstacle avoidance dataset, offline training was used as the learning type for the neural network. R-CNNswere found by
Islam et al. (2019) to have much greater detection performances compared to the other methods; however the run-times
were often the slowest.
4.2. Reactive Systems

Reactive Artificial Intelligence as its name suggests is purely reactive in its decision-making process (Georgeff and
Lansky, 1987). This means it cannot use previous experiences to inform new decisions. This design can be seen as
more simplistic and therefore easier to implement than other types of AI involving limited memory, which uses past
experiences to influence future choices. Reactive systems are, however, a perfectly viable solution to many autonomy
challenges. In terms of marine robotics, a reactive approach can be applied to many of the tasks found in the area. With
a large distribution of sensor types on these vehicles, there is a large amount of information being available to react
to. One such example of a reactive system is the work published by Tokekar et al. (2010) which used data from radio
receivers. Here localization algorithms are used to estimate the position of the craft. The vehicle localises itself within
the given environment and reacts to this information to determine how to proceed in its navigational tasks. If the GPS
data shows the vehicle is veering off-course, the system can correct itself using this data. From this, the system reacts
by creating waypoints to navigate towards.

In tracking, a reactive system can be very effective. This is for several reasons. Firstly, the system is generally far
less computationally expensive than limited memory systems. This is beneficial to microcontrollers, that you often
find in autonomous marine vehicles, which do not have large amounts of processing power. Reactive systems are
also an easy solution to implement in many cases. For example in tracking, if hydrophone data can be processed
into a localized target, the vehicle can react to this by navigating towards the acoustic signal, effectively following the
tracked target see by Xydes et al. (2013) for example. A system such as this is often easier to implement than using
large (already acquired) datasets to train machine learning models.

Nash et al.: Preprint submitted to Elsevier Page 11 of 20



Tracking with Maritime Robotics

4.3. Probabilistic Approach to Tracking
Many platforms found in this study use Bayesian inference (a probabilistic approach) to solve a wide variety of

issues found when developing marine robots. One of these issues, a main component of acoustically tracking targets is
localisation. Research completed by Xydes et al. (2013) aims to improve localisation accuracy and temporal resolution
for tracking acoustically tagged fish using a probabilistic approach. The results showed that when compared with
interpolating raw acoustic positioning methods, their method of using a Bayes Filter and a Particle Filter showed a
decrease in error in location predictions.

Filters such as the Bayes Filter are not only used for localising tracked targets, but also self-localisation. Simulta-
neous localisation and mapping (SLAM) is a commonly used method in robotics for navigation and mapping. SLAM
refers to the mapping of an unknown environment, and simultaneously localising an agent within that environment.
Probabilistic approaches such as particle filters, extended Kalman filters and Covariance intersection are common in
SLAM techniques. An example of this can be found in the work done by Blanco, González and Fernández-Madrigal
(2008), which compares the use of non-probabilistic batch optimisations against modern probabilistic techniques. The
process employs Bayesian estimation which is based on the Rao-Blackwellized Particle Filter and an extended Kalman
Filter. The work concluded that the Bayesian solution was a more desirable solution than batch processing, reasoning
that the consistently updated information from new observations was a desirable trait.
4.4. Proprietary Systems

Another category of systems found in the PRISMA results is proprietary software, such as SeeByte’s Neptune
or Lotek’s positioning systems. These vary from fully deployable vehicles with preinstalled software for running
waypoint missions, hydro-acoustic positioning systems that are sold in combination with state-estimation systems, or
a combination of the two, with reactive Artificial Intelligence such as Neptune.
4.5. Open-Source Solutions

The final type of systems are those that are built using open-source middleware solutions, often open-source
robotics middleware frameworks. These frameworks such as ROS (Quigley et al., 2009) and MOOS-IvP (Benjamin
et al., 2010) are essentially a collection of libraries which help design and implement robotics platforms. Open source
means the libraries are often developed in a collaborative manner, and therefore can be quite large in size and appli-
cable to a variety of applications. These tools allow users to build their own systems independently, and therefore are
sometimes neglected in the literature. The frameworks themselves vary in scope. Some like Robotics Operating Sys-
tem (ROS), for example, aim to provide libraries to any type of Robotics platform, whereas MOOS-IvP is specifically
designed with marine autonomy in mind.

5. Challenges & Future developments
This paper performed a systematic state-of-the-art review of publications concerning autonomous maritime track-

ing systems over the last 15 years. There is a clear emergence in the field with regards to multi-vehicle deployments.
Papers that use this method of deployment are only found in recent publications within the past four years. The low-
cost accessibility of multiple simplistic USVs and more detailed sensory results is ideal for small research teams. This
is countered by the increased cost and greater complexity of deploying multiple vehicles, for which there is, as of now,
a smaller amount of research. Another reason for this could be that swarm-based autonomy is more difficult to achieve
than waypoint or reactive based systems. As more developments in this area make the technology more available, we
would expect research to continue and become a more prominent topic, especially in fish tracking and environment
surveying.

In addition to this, the use of multiple vehicle deployments with multiple vehicle types is also an area of growing
interest. As stated by the US Navy, this provides communication infrastructure where previously communication was
difficult to achieve. Using a network of underwater and surface vehicles that are able to communicate, you can also
include other vehicles types such as Unmanned Aerial Vehicles to support missions that require aerial data.

As the price of LiDAR reduces over time, we would expect a further increase in the use of LiDAR systems over
optical sensor systems. Price is currently the main advantage of optical sensors in this setting, as visual prompts are
not required as they are with other autonomous vehicles such as driverless cars. With LiDAR giving far quicker and
more accurate 3D results, it seems evident that the trend of LiDAR being favoured will continue.
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Table 4
The final results of the PRISMA search. This figure shows the purpose of each publication, and what vehicle types, system
types and sensors each paper mentions.
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Table 4 continued from previous page
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