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Abstract: Gross primary production (GPP) determines the amounts of carbon and energy that
enter terrestrial ecosystems. However, the tremendous uncertainty of the GPP still hinders the
reliability of GPP estimates and therefore understanding of the global carbon cycle. In this study,
using observations from global eddy covariance (EC) flux towers, we appraised the performance
of 24 widely used GPP models and the quality of major spatial data layers that drive the models.
Results show that global GPP products generated by the 24 models varied greatly in means (from
92.7 to 178.9 Pg C yr−1) and trends (from −0.25 to 0.84 Pg C yr−1). Model structure differences (i.e.,
light use efficiency models, machine learning models, and process-based biophysical models) are
an important aspect contributing to the large uncertainty. In addition, various biases in currently
available spatial datasets have found (e.g., only 57% of the observed variation in photosynthetically
active radiation at the flux tower locations was explained by the spatial dataset), which not only
affect GPP simulation but more importantly hinder the simulation and understanding of the earth
system. Moving forward, research into the efficacy of model structures and precision of input data
may be more important for global GPP estimation.

Keywords: gross primary production; eddy covariance; constraint model precision; remote sensing
products biases

1. Introduction

Terrestrial gross primary production (GPP) or the total photosynthetic uptake of
carbon by plants plays a critical role in maintaining the global carbon balance between
the biosphere and atmosphere. However, the estimation of terrestrial GPP by existing
models remains highly uncertain, with global estimates ranging widely between 92.7
to 168.7 Pg C yr−1 [1–3]. This large uncertainty poses a serious obstacle to quantifying
and understanding the global carbon cycle [4]. It is broadly agreed that, to reduce the
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uncertainty of GPP estimation and advance carbon cycle science, it is crucial to consider:
(1) The impacts of model structure, (2) the determination of parameter values, and (3) the
quality of data feeding in GPP models [5,6].

Model structure is considered one of the most important factors that affect model
performance [7,8]. Yet, large structural differences can be observed among GPP models.
For example, the fraction of photosynthetic active radiation (FPAR), an important param-
eter in the light use efficiency (LUE) models, has been treated in disparate ways, either
approximated by the enhanced vegetation index (EVI) in the vegetation photosynthesis
model (VPM) [9], as a linear function of normalized difference vegetation index (NDVI) in
the eddy covariance-light use efficiency (EC-LUE) model [10], or as a nonlinear function
of leaf area index (LAI) according to Beer’s Law, among others [11]. A similar situation
exists for representing temperature stress (TS), water stress (WS), and their interactions
among models. The moderate resolution imaging spectroradiometer (MODIS) model and
the VPM model adopt a multiplicative structure to represent the collective influences of WS
and TS on GPP [7,12]. The EC-LUE model, on the other hand, considers that the Liebig’s
law is ecologically more reasonable in representing the effects of WS and TS [9].

The estimation of model parameters often affect the simulation accuracy of the model,
thus rigorous model parameterization and calibration should be adopted in GPP mod-
eling [13]. Variation in the values of the same biophysical parameters among different
models is a major concern in GPP estimation. For example, the maximum light use
efficiency (LUE(max)), a parameter used in LUE-based GPP models, represents the max-
imum efficiency of unit vegetation converting energy to photosynthates and therefore
should be relatively stable [14]. However, it has taken many different values in LUE-
based GPP models. In the MODIS model, LUE(max) values are biome-specific, varying
from 0.604 to 1.259 g C MJ−1 (Running et al., 2006), and similar approaches can be found
in other models [15]. The EC-LUE model, on the other hand, takes a constant value at
LUE(max) = 2.25 g C MJ−1, that was derived from many flux tower observations, and the
authors later advocated the use of different constant LUE(max) values for C3 and C4
plants [16]. However, another study has suggested that a fixed LUE(max) value would lead
to increased GPP uncertainty [17]. An analysis of the parameters of the diagnostic carbon
flux model (DCFM) showed that cross-site estimation improved the representativeness and
robustness of parameter estimates [18]. Studies considering a wider number of flux towers
are thus necessary for a more reliable tuning of GPP model parameters.

Regional to global simulations inevitably employ spatiotemporal data for initialization
or as driving forces [19]. How spatial data products affect GPP simulation has rarely been
assessed because users of the data products tend to take a leap of faith by assuming
the quality of data has met the accuracy requirement and limited findings regarding the
importance of data quality have been ignored frequently. For example, it was found that
the widely used average of eight-days MODIS satellite FPAR data was unable to effectively
reflect the reality [20]. Other studies have revealed that MODIS satellite FPAR products are
systematically lower than ground-measured FPAR observations in winter and spring [21].
Clouds seriously affect satellite observations in humid regions such as the Amazon [22].
Even when applying a cloud correction by the CFMask algorithm [23] only 70% of PAR
can be satisfactorily simulated [24]. Failure to reproduce the driving data of the models
faithfully would affect the simulation and accuracy of GPP.

To address the three issues mentioned above and improve the estimation accuracy of
GPP at a global scale, we comprehensively appraised the structure and performance of
existing LUE models against GPP estimates from 151 eddy covariance (EC) flux towers
worldwide, and assessed the impacts of using currently available data products on the
estimates of global GPP using newly developed LUE models. The specific objectives were
to: (1) Compare existing models and address model structure deficiency, if necessary, (2)
find the optimal parameter values using GPP observed at the EC towers, (3) develop a new
model to taking advantage of remote sensing (RS) data as directly as possible, reducing
errors of intermediate data products and algorithms, (4) evaluate errors of spatial RS data
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and their impacts on GPP estimation, and (5) generate a new GPP model and subsequent
global product, after correcting biases in spatial data layers.

2. Materials and Methods

In this study, using observations from global EC flux towers, we appraised 8 common
satellite-data-based GPP models and the quality of major spatial data layers that drive
the models. In order to utilize remote sensing data as directly as possible and minimize
error propagation, 2 new GPP models were developed and compared with the 8 common
satellite-data-based GPP models. Finally, 24 existing global GPP products, including the
global GPP product generated from the new model that showed better performance, were
compared and analyzed for similarity and differences.

2.1. Description of Existing GPP Models Used in this Study and the New Models

A total of 8 common satellite-data-based GPP models and 22 global GPP products
were included in this study. The 8 existing models were the eddy covariance-light use
efficiency (EC-LUE) model [9], the vegetation-indices (VI) model [25], the temperature-
greenness (TG) model [26], the vegetation photosynthesis model (VPM) [11], the carbon
fixation model (CFIX) model [27], the greenness-radiation (GR) model [28], the alpine
vegetation (AVM) model [29], and the moderate resolution imaging spectroradiometer
(MODIS) model [30]. At the site scale, we reproduced the 8 common satellite-data-based
GPP models and compared them with the two new models in this study.

The two new models were adaptations of the EC-LUE model, which included correc-
tions for cloudiness and CO2 concentration, with two derivations for determining water
stress: One from the evaporative fraction (i.e., the LUE-EF model) and another from the nor-
malized difference water index (NDWI) (i.e., the LUE-NDWI model), as described below.

2.2. Description of the LUE-EF Model

This model was developed mainly based on the principles of the EC-LUE model [9].
Specifically, the regulation of water on GPP is represented by the evaporative fraction (EF),
taking advantage of the newly available EF products [31]. In addition, two new modifiers
of GPP were added to the original EC-LUE model. The first modifier considers the impact
of cloudiness on GPP. The other modifier addresses the fertilization effect of increased CO2
concentration in the atmosphere.

The LUE-EF model can be expressed as follows:

GPP = PAR × FPAR × FCI × FCO2 × LUE(MAX) × min(TS, WS) (1)

where PAR is incident photosynthetic active radiation (MJ/m2) over a period of time; FPAR
is the fraction of PAR absorbed by the vegetation; FCI is the regulation of cloudiness on GPP;
FCO2 is the regulation scalar of atmospheric CO2 concentration; LUE(MAX) is the maximum
light use efficiency; and TS and WS are regulation scalars respectively for temperature and
water stress on GPP, from which the minimum value is taken, following the Leibig law [9],
and the expression of Ts is the same as that of EC-LUE model. The determination of model
parameters was done as:

1. FPAR is in practice approximated by EVI [11], since photosynthetically active vegeta-
tion is estimated as a ratio α of EVI, set to be α = 1:

FPAREVI = α × EVI; (2)

2. Most previous models underestimates of GPP on cloudy days mainly because photo-
synthesis can be increased by diffuse radiation under cloudy conditions [6,32]. The
regulating effect of cloud cover on GPP was expressed by a cloudiness index (CI)
as follow:

FCI = a × CI + b (3)
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where CI is the ratio of PAR to potential PAR (PPAR) [6], and PPAR is PAR that
reaches the upper atmosphere. Using the FLUXNET2015 dataset, the coefficients were
determined to be a (= 2.9) and b (= 1.2);

3. For calculating the influence of atmospheric CO2 on GPP, we employed the algorithm
in the Frankfurt Biosphere Model (FBM):

FCO2 = f (CO2, T) =
CCL − ∆(T)

CCL + 2∆(T)
(4)

where CCL is the internal CO2 concentration of leaves, and it assumed to be 70% of
atmospheric CO2 concentration [33]. ∆(T) is the CO2 compensation point for gross
photosynthesis and photorespiration at temperature T (◦C) [34]:

∆(T) = 40.6e
(9.46×(T−25))

(T+273.2) ; (5)

4. The regulation scalar of water on GPP, WS, was expressed as the evaporative fraction
(EF) of the total sensible and latent heat [9]:

WS = EF =
LE

LE + H
(6)

where LE is latent heat flux (W m−2), and H is sensible heat flux (W m−2).

2.3. Description of the LUE-NDWI Model

The LUE-NDWI model can be expressed as follows:

GPP = PAR × FPAR × FCI × FCO2 × LUE(MAX) × min(TS, WS_NDWI). (7)

It can be seen that the only difference between LUE-EF and LUE-NDWI is the expres-
sion for water stress. The NDWI, strongly related to vegetation water content [35,36], can
be a very good proxy for vegetation water stress. In addition, NDWI data can be obtained
through satellite observation directly and the EF obtained by calculating sensible heat and
latent heat, cannot be directly observed. After examining measurements from many flux
towers, we found that the following nonlinear function can be used to represent WS, the
regulation scalar of water stress on GPP, using NDWI:

WS_NDWI = a ∗ (−NDWI + 0.5)b + c. (8)

Using the ‘nls’ method of parameter optimization adjustment, the coefficients were
determined to be a (= 0.35), b (= 2.14), and c (= 0.086). The WS_NDWI values vary between
0 and 1, with values beyond the bounds set to 0 or 1, respectively. The use of WS_NDWI can
be very convenient for applications from local to global scales as the NDWI fields can be
directly derived from satellite observations.

2.4. Data for Evaluation of Models and Spatial Data Products

For an evaluation of models and remotely sensed data products, we used eddy
covariance (EC) flux tower data from the FLUXNET2015 dataset (https://fluxnet.fluxdata.
org) [37]. Our study included data from 151 EC tower sites that belonged to the following
12 terrestrial biomes: Croplands (CRO), closed Shrublands (CSH), deciduous broadleaf
forest (DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen
needleleaf forest (ENF), grasslands (GRA), mixed forests (MF), open shrublands (OSH),
savannas (SAV), permanent wetlands (WET), and woody savannas (WSA). We used two
criteria to filter the data, following [6]: (1) If more than 20% of the data in a given year was
missing, the whole year was discarded, and (2) after this first step of processing, EC-tower
sites with records for less than two years were completely discarded. EC-towers details are
in Table A1.

https://fluxnet.fluxdata.org
https://fluxnet.fluxdata.org
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To simulate global GPP, the following spatial data products were used: (1) Meteoro-
logical data fields—radiation, air temperature, latent heat flux, and sensible heat flux—
derived from the second Modern-Era Retrospective analysis for Research and Applications
(MERRA-2), (2) MODIS satellite products including enhanced vegetation index (EVI) and
normalized difference wetness index (NDWI), and (3) global atmospheric CO2 concen-
tration product from the Earth System Research Laboratory Global Monitoring Division
(https://www.esrl.noaa.gov/gmd/dv/site/).

2.5. Evaluation of Spatial Data Products and Model Performance

In this study, data from FLUXNET eddy covariance flux tower sites were retained for
analysis after data quality control. Half of the EC-towers were used for model calibration
and the other half for validation. Values of model parameters were estimated using the
Gauss–Newton algorithm for nonlinear optimization as implemented in the ’nls’ function
in the R language (package ‘stats’ v3.6.1) [38]. The model uncertainty at the site scale
was assessed using correlation coefficient (r), normalized root-mean-square error (RMSE),
and standard deviation (SD) of predicted and observed values, displayed by the Taylor
diagrams. In addition, the ability to capture temporal changes of GPP is essential for GPP
models. The double mass curve (cumulative GPP predicted by model versus cumulative
GPP observed at EC-towers) computed per site can reflect the ability of models to simulate
the temporal changes of GPP, and the percentage bias (PB) of each site was counted [39].

It is critical that spatial data fields used to drive these models should represent the
site-level conditions with high accuracy when these models are applied to estimate GPP at
regional to global scales. In this study, the accuracy of spatial data products were evaluated
against measurements collected at the flux tower sites. Specifically, orthogonal regressions
were performed, comparing each of the spatial data products against their corresponding
site-level measurements [40]. Their 1:1 correspondence and biases was assessed by a
hypothesis tests (α = 0.05) of the regression coefficients, with null hypothesis being slope
= 1 and intercept = 0 [41]. Orthogonal regression can take into account the errors of both
the independent and dependent variables at the same time [42]. These analyses were
conducted using the ‘scipy.stats’ and ‘odr’ packages in Python (v3) [43]. When generating
global GPP products, the spatial data layers (i.e., uncorrected datasets) of driving variables
were corrected according to the correction coefficients obtained at the site scale through
orthogonal regression. The correction coefficients were the slope and intercept of linear
regression between variable values measured at the flux towers and their equivalent from
the spatial datasets.

Finally, we evaluated a total of 24 global GPP products: Two from this study (LUE-
NDWI with uncorrected and corrected spatial datasets, respectively), and 22 products from
TRENDY (http://dgvm.ceh.ac.uk/) [44] and other studies [3]. Specifically, the 22 global
GPP products were EC-LUE, revised EC-LUE [6], MODIS [25], MOD17 C6 [45], PR [46],
VPM [11], FLUXCOM-ANN, FLUXCOM-MARS, and FLUXCOM-RF from FLUXCOM [47],
SVR [48], BESS [49], BEPS [50], and 10 TRENDY products. The performance of the LUE-EF
model was not evaluated at a global scale because of the difficulty in estimating the water
stress in the LUE-EF model (i.e., the evaporative fraction of net solar radiation), which
cannot be readily derived from satellite observations. We analyzed the similarity and
differences of the GPP products in magnitude, spatial patterns, and temporal trends.

3. Results
3.1. Comparison of Model Performance at the Site Scale

Globally among all the 10 models evaluated, the LUE-EF model had the highest corre-
lation coefficient of r = 0.86, followed by the LUE-NDWI model with r = 0.82 (Figure 1a).
The LUE-EF model had the smallest normalized RMSE (0.50), indicating that the difference
between the LUE-EF model and EC-tower GPP was the smallest among all models. The
LUE-NDWI model had the second smallest normalized RMSE (0.52). The normalized
RMSE for the other models was larger than the two new models. Model LUE-EF simulated

https://www.esrl.noaa.gov/gmd/dv/site/
http://dgvm.ceh.ac.uk/
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the amplitude of the variations close to the data amplitude of EC-towers (SD ratio = 0.93).
When grouped by latitudinal zone (Figure 1b–e) the improvements of the new models
were more apparent for tropical and northern temperate zones. In the temperate zones,
the distribution of models in the Taylor diagram was relatively concentrated, whereas in
the tropical and boreal areas there were larger differences among models. When grouped
by biome (Figure A1), the new LUE-EF model showed advantages of fit in simulating
daily GPP for most biomes, both in terms of correlation coefficients and RMSE. For ex-
ample, correlation coefficients were highest for LUE-EF in deciduous broadleaved and
evergreen needleleaf forests, wetlands, and grasslands (DBF, ENF, WET, and GRA), with
LUE-NDWI being the second highest in the latter three of those. It is important to note that
these biomes also have the largest number of EC-towers. It is relevant to note that many
biomes are underrepresented in the current EC-tower network, such as closed shrublands
or deciduous needle-leaved forests (CSH and DNF), each represented by only one and two
EC-towers. The Taylor diagram shows that the models in CSH, DNF, and SAV are more
dispersed, which means that model performances in these biomes vary greatly.

Figure 1. The Taylor diagram showing (a) the performance of all models, data from eddy covariance (EC) towers were used.;
(b–e) the performance of all models in different latitudinal geographical zones (tropics:−23.5◦ –23.5◦, temperate:−23.5◦

−(−66.5◦) and (23.5◦−66.5◦), boreal and tundra: 66.5◦–90◦), where N and S represent the Northern and Southern hemi-
spheres, respectively. The upper right corner of subplot "n" is number of EC-towers.

The distribution of double mass curves (Figure 2) show that those of the LUE-EF were
the most concentrated around the 1:1 correspondence line among the 10 models compared,
which indicates its greater ability to simulate the patterns in temporal variability of GPP.
Figure 2 also shows the distributions of relative bias in ratio (PB–percentage biases), which
ranged ± 0.4 for all models, indicating that the models had a large heterogeneity (i.e.,
the PB of each EC-tower is quite different) in simulating the temporal change of GPP
across sites. The biases were however narrower for the LUE-EF and LUE-NDWI models,
respectively, containing 120 and 110 of the EC-towers within ± 0.2 in their PB, the largest
number of EC-towers amongst all models. In contrast, the number of sites with PB ± 0.2
did not exceed 100 sites for each of the other models. This indicates that the two new
models had a stronger ability to capture the spatial (smaller dispersion of the double mass
curves) and temporal (smaller deviation of the double mass curve from the 1:1 reference
line) changes of GPP.
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Figure 2. Comparison of cumulative gross primary production (GPP) estimates from the flux towers and the models. The
color lines represent the GPP value of cumulative comparison between the EC-tower and model for each site. The red dashed
line is the 1:1 reference to the differences of modeled GPP and EC-tower. Inset histogram shows the frequency distribution
of the percentage biases (PB) at the flux towers. The two shaded plots (panels i and j) are two new models devel-oped in
this study. (a) EC-LUE (eddy covariance-light use efficiency model), (b) VPM (vegetation photosynthesis model), (c) CFIX
(carbon fixation model), (d) MODIS (moderate resolution imaging spectroradiometer model), (e) GR (green-ness-radiation
model), (f) VI (vegetation-indices model), (g) TG (temperature-greenness model), (h) AVM (alpine vegetation model), (i)
LUE-EF (light use efficiency-evaporative fraction model), (j) LUE-NDWI (light use efficiency-normalized difference water
index model).

3.2. Biases in Remote Sensing Data Products and Consequences on Global GPP Estimation

First, various biases were found when the spatial datasets that feed the models for
global GPP simulations were evaluated at the site scale (Figures 3 and A2). For example,
the spatial PAR dataset only explained 57% of the observed PAR variation at the EC-towers,
and the slope and intercept were 1.2 and 0.57, respectively, indicating that the PAR data
fields overestimated PAR as a whole and slightly underestimated PAR at the low value.
The determination coefficients of the global datasets of CO2, LE, and H at the EC-towers
were less than 20% (R2 < 0.2), and only temperature data was efficient in representing
site-scale variation (R2 = 0.89).

Second, the biases in the spatial datasets had a significant impact on GPP simulations
was found through orthogonal regression. Before correcting these biases, the simulated
GPP by the LUE-EF and LUE-NDWI models explained only 49% and 61% of the EC-tower
GPP variation, and the slopes of the linear regression between simulated and tower-
estimated GPP were 1.54 and 1.31, respectively, and the corresponding intercepts were
−2.09 and –1.23. These results indicate that both models overestimated GPP as a whole,
but underestimated low GPP values (Figure 3b,f). After correcting the biases in the spatial
datasets, the R2 of LUE-EF and LUE-NDWI models improved to 0.80 and 0.79, with the
slopes closer to 1 (1.20 and 1.18 values, respectively) and the intercepts closer to 0 (−0.59
and −0.91, respectively) (Figure 3c,g). The results also indicated that the LUE-NDWI model
was less sensitive to the biases in the spatial data fields than the LUE-EF model, as shown
by the smaller differences in R2 before and after data correction. This can probably be
attributed to the fact that the LUE-NDWI relies on NDWI, a factor that can be derived
directly from remote sensing data and thereby less prone to error propagation than the
LUE-EF model.
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Figure 3. Comparison of (a) spatial PAR (photosynthetic active radiation) and site PAR, (b) tower GPP and LUE-EF GPP
(uncorrected spatial data), (c) tower GPP and LUE-EF GPP (corrected spatial data), (d) LUE-EF GPP with uncorrected
and LUE-EF GPP corrected spatial data, (e) spatial EVI (500 m resolution) and spatial EVI (10 km resolution), (f) tower
GPP and LUE-NDWI GPP (uncorrected spatial data), (g) tower GPP and LUE-NDWI GPP (corrected spatial data), and (h)
LUE-NDWI GPP with uncorrected and LUE-NDWI GPP corrected spatial data. All comparisons are based on site scale.
Corrected spatial data were generated from the uncorrected ones after correcting their biases using orthogonality regression
(see Section 2.5).

At a global scale, the biases in spatial data inputs had a great impact on the simulated
GPP even for the less sensitive model LUE-NDWI. Figure 4a shows the global average
annual GPP distribution from 2000 to 2018, simulated by the LUE-NDWI model using
corrected input data layers. The spatial pattern of GPP agrees well with previous studies.
However, the impact of data biases on the spatial pattern of simulated GPP was obvious
and not uniform across space (Figure 4b). The area overestimated is much larger than the
underestimated area when the data biases were not attended, and the area fractions with
GPP biases at (−50%)–(−30%), (−30%)–(−10%), 10–30%, and 30–50%, were 8%, 19%, 27%,
31%, and 15%, respectively. After data correction, the area of GPP serious reduction occurs
in the mountain systems of the Tibetan plateau in Asia, northern Africa, and South America
region. Growth trends of GPP were observed in Australia, northwest North America, and
Siberia. The global annual average GPP estimated by the LUE-NDWI, after input data
correction, was about 125.6Pg C yr−1. Without data correction, the LUE-NDWI model
would overestimate global GPP by 18% (Figure 5a,b). The corresponding global growth
rate of GPP decreased from 0.34 to 0.17 Pg C yr−1 after input data correction (Figure 5c).
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Figure 4. Consequences of biased input data on LUE-NDWI GPP at a global scale. (a) The mean annual GPP from 2000 to
2018 after data correction (reference Section 2.5). (b) The difference of mean annual GPP from 2000 to 2018, GPPuncorrected—
GPPcorrected. Symbols indicate various levels of difference: ‘–’: −50%–(−30%), ‘-’: −30%–(−10%), ‘±’: −10%–10%, ‘+’:
10–30%, ‘++’: 30–50%. The inset bar chart shows the global distribution of the difference proportions.

Figure 5. (a) Comparison of annual global GPP estimates from various models. The number after each model’s name in
parentheses is the model’s number of years in the interquartile range (IQR) of all global GPP products, indicated by the
shaded region. LUE-NDWI (data corrected) and LUE-NDWI1(i.e., LUE-NDWI with spatial data uncorrected) are GPP
estimated by LUE-NDWI with corrected and uncorrected input data, respectively. (b) Boxplot of annual GPP values during
the study period for each model. (c) Trends of annual GPP (Pg C yr−1) by model. Symbols of LUE models are in black,
machine learning models in green, and biophysical models in blue.

3.3. Comparison of 24 Global GPP Products

A comparison of 24 global GPP products is shown in Figure 5a. Large differences can
be seen from these models with long-term GPP averages varying from 92.7 to
178.9 Pg C yr−1, with more GPP estimates concentrated in the range of 120−130 Pg C yr−1

(Figure 5a,b). The number of times that a model’s GPP stays within the interquartile range
(IQR) of all 24 GPP products throughout the years can be used as an indicator of model
performance. Result showed that the annual GPP values simulated by the following mod-
els stayed within their annual IQRs every year: Revised_ECLUE, VPM, SVR, LPJ_GUESS,
and LUE-NDWI (after correcting input data biases), suggesting a better performance in
simulating GPP. Although not in the category above, FLUXCOM RF, BESS, CABLE POP,
and CLASS CTEM models have more than 10 years in IQR. It is worth noting that the GPP
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from the LUE-NDWI model, after data correction, was the closest to the median GPP value
of the 24 global models.

The interannual variabilities simulated by these models were also quite different
(Figure 5b). The interannual variabilities of LUE and biophysical models were generally
higher than the machine learning models as shown by their standard deviation or std:
ECLUE (std = 2.96 Pg C yr−1), BEPS (std = 3.51 Pg C yr−1), JSBACH (std = 2.97 Pg C yr−1),
JULES (std = 3.06 Pg C yr−1), LPJ-GUESS (std = 2.66 Pg C yr−1), ORCHIDEE
(std = 2.91 Pg C yr−1), FLUXCOM_ANN (std = 0.53 Pg C yr−1), FLUXCOM_RF
(std = 0.38 Pg C yr−1), and FLUXCOM_MARS (std = 0.23 Pg C yr−1). The standard devia-
tion of LUE-NDWI (after correcting input data biases) model was 1.83 Pg C yr−1, close to
the mean standard (1.68 Pg C yr−1) of all the models within the IQR range.

The trends of GPP simulated by the 24 models also varied greatly from −0.25 to
0.84 Pg C yr−1 (Figure 5c). The trends of the machine learning models were smaller than
those of other models. Most models showed positive trends, only the revised-ECLUE and
CLASS-CTEM models showed downward trends, and some models demonstrated no sig-
nificant trends (i.e., MODIS, FLUXCOM_ANN, FLUXCOM_MARS, and FLUXCOM_RF).

4. Discussion
4.1. Adequacy of Model Structure in Representing Processes

The understanding of the processes involved in GPP is fundamental to building a
reliable GPP model. For example, we found that a failed incorporation of the effect of
clouds on GPP in some existing models significantly underestimated GPP in areas with
frequent cloudy cover (Figure A1). Under clear sky conditions, the upper canopy leaves
are close to light saturation, while the lower canopy leaves are shaded and have limited
light [51]. In contrast, under cloudy conditions, a higher proportion of the light in the
form of diffuse radiation can reach the lower parts of the canopy, thus increasing the total
photosynthetic use of PAR by vegetation [31]. Some studies indicated that a 1% increase in
diffuse radiation induces a 0.94% increase in GPP [27,28]. In addition, many studies have
shown that CO2 fertilization has a significant effect on vegetation production, a dominant
factor contributing to the 31% increase in global GPP since 1990 [52,53]. Nevertheless,
many LUE models have not explicitly accounted for the effect of increasing atmospheric
CO2 concentration [6,31]. In our study, after incorporating the impacts of both cloud cover
and CO2, the performance of the LUE-EF and LUE-NDWI models improved compared
with the original EC-LUE model: R2 improved from 0.61 to 0.68 for LUE-NDWI and from
0.61 to 0.74 for LUE-EF, respectively.

Water availability is an important factor that affects GPP [13]. In this study, we adopted
two alternative structural expressions to represent the impact of water stress on GPP. First,
the evaporative fraction (EF) of total energy, closely related to the Bowen ratio, was used
in the LUE-EF model. The relevance of LUE-EF is grounded in the fact that less energy
used for ecosystem evaporation (i.e., smaller evaporative fraction) implies a stronger wa-
ter limitation [33], which has largely been verified using flux tower measurements [54].
Nevertheless, the application of the LUE-EF model is hindered by the derivation of EF
that required multiple steps and input data layers and is therefore prone to error propa-
gation [55]. In order to get a direct measure of water stress and therefore minimize error
propagation, from satellite observations we replaced the EF using NDWI in the LUE-NDWI
model, based on the evidence that NDWI is closely related to the plant water content and
thus a good proxy for plant water stress [56]. The direct use of NDWI in the LUE-NDWI
model makes it ideal for mapping GPP on regional to global scales.

4.2. Input Data Biases and Possible Impacts on GPP Simulations

Evaluating the quality of input data and understanding the impact of data biases on
GPP simulation are prerequisites for improving GPP simulation accuracy. In this study, we
found that the data from the spatial data fields at the EC-tower sites had various systematic
deviations that seriously affected GPP estimates. For example, the spatial data fields of
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PAR explained only 57% of the PAR variation observed at the EC-tower sites. Reasons for
the data biases are mainly rooted in the influence of sensor errors and atmospheric factors
(e.g., cloud and snow) [50,57,58]. In addition, attempts unifying data from different spatial
and temporal resolutions also bring biases as we found that data at different resolutions
sometimes had poor correlations. The reason for the existence of resolution mismatch
(i.e., spatial product data pixels cannot be unified in temporal or spatial scale) is mainly
caused by mixed pixels and/or different time scales (e.g., daily, eight-day, or monthly
data), compared to the spatio-temporal resolution that applies to ground conditions [51,59].
In general, spatial data biases are an important cause of the uncertainty of GPP simulation,
which is an important reason for the large differences in GPP estimated among existing
GPP models [60,61].

A comparison of existing global GPP products shows a huge variation from 92.7 to
178.9 Pg C yr−1, which is not only affected by input data biases, but also by the model
structure [13,62]. One should realize that input data biases affect the model outputs
differently, depending on the model structure. In our study, it was found that the LUE-EF
model is more susceptible to data errors, while the LUE-NDWI model is less affected by
data biases (Figure 3d). The sensitivities of the GPP models to data deviations should be
systematically investigated in future research as the sensitivities have not been effectively
evaluated and compared.

4.3. Improving GPP Simulation Capability: The Ways Forward

A reduction in model complexity and error accumulation should be a major consid-
eration in improving GPP estimation. For example, the evaporative fraction parameter
of the LUE-EF model involves more steps than the direct use of NDWI from satellite in
the LUE-NDWI model, and consequently the risk of the error accumulation increases.
The direct observation and continuous recording of NDWI as a remote sensing product
is one of the main advantages of the LUE-NDWI model, which minimizes the risk of
error propagation of the LUE-NDWI model at a regional to global scale. Therefore, the
LUE-NDWI model is more practical and attractive in spatially-explicit simulations of GPP.
In summary, the simple forms of GPP models and widely and readily available inputs, as
compared with more complex global models, make them more practical for applications
over large areas and better suited for attribution and uncertainty analysis [53,63].

Vastly different GPP products, as shown by the means, trends, and interannual vari-
abilities of GPP, generated by the 24 models suggest our current ability in simulating global
GPP is not encouraging (Figure 5a). For nearly 40 years of commitment to the global
simulation of GPP, there does not seem to have a clear direction of improvement in GPP
estimation as shown by the vast differences among GPP models in simulating global GPP.
GPP model development is not explicitly directed, despite the constant emergence of new
models. Our research indicates that both the structures of the models and input data are
error prone. Therefore, it is necessary to optimize model structures as well as sufficient
validation and calibration of the input data to improve GPP simulation.

5. Conclusions

In this study, we first developed two new GPP models, driven by convenient remote
sensing data and climate variables, with an emphasis on the representations of GPP
responses to cloud, CO2, and water stress. Then, the performances of the new models
along with other commonly used GPP models were appraised using GPP estimates from
global eddy covariance (EC) flux towers. The quality of major spatial data layers that drive
the models at the global scale was also evaluated at the EC-towers.

Two new models (LUE-EF and LUE-NDWI) showed advantages in simulating daily
GPP for most biomes. Meanwhile, they had a stronger ability in capturing the spatial and
temporal changes of GPP and the improvements of the new models were more apparent
for tropical and northern temperate zones. Then, a new global GPP product was generated
using the LUE-NDWI model. The LUE-EF model was not applied on a global scale because
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of the difficulty in estimating the water stress in the LUE-EF model (i.e., the evaporative
fraction of net solar radiation), which cannot be readily derived from satellite observations.

Various biases were found in the spatial datasets that feed the models, affecting the
simulation of GPP from site to global scales. Addressing these biases is a high priority
for earth system science. In addition, large differences were found from 24 global models
with long-term GPP averages varying from 92.7 to 178.9 Pg C yr−1. The newly developed
LUE-NDWI model (after correcting input data biases) produced a global mean annual
GPP that is very close to the mean level of all the models within the inter-quantile range
of GPP from all 24 models. Moving forward, a reduction in model complexity and error
accumulation, validation, and calibration of the input data fields are key processes of
improving GPP simulation.

The newly developed new remote sensing-based GPP model had excellent perfor-
mance and could be used to estimate GPP across a range of scales. Improving the quality
of input data fields should be a major research component in reducing the uncertainty in
GPP simulations on regional to global scales. The existent biases of spatial data not only
affect GPP simulation but more importantly hinder the simulation and understanding of
the earth system. Effective correction of spatial data is critical for reducing the uncertainty
in GPP simulations and research on improving data quality should be encouraged. In this
regard, our research cautions using currently available spatial data for relevant research.
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Appendix A

Existing models have estimation bias for GPP under different cloud cover conditions,
and cloud cover index can adjust this phenomenon (Figure A3). Under mostly cloudy
conditions, it can be found that the overall distribution of PB in all models is biased
to the negative side, which indicates that the model underestimates GPP under mostly
cloudy conditions. Under partly cloudy conditions, the existing models PB is more evenly
distributed around the unbiased line, yet systematically giving lower values of GPP than
on clear days. Some models are more affected than others by this cloudiness-induced
bias, with VPM, VI, and GR models being those most affected by GPP underestimation on
cloudy days, whereas other models had less overall deviation. In order to improve model
performances, the cloudiness correction factor (Equation (3)) dependent on cloud cover
index (CI) was added and compared with the original model. We found that the cloudiness
factor clearly improved GPP prediction for most models, except for GR, MODIS, and AVM
models, which showed no obvious improvements. For example, the original MODIS model

https://figshare.com/s/2462e5dc7cc3203a044c
https://figshare.com/s/2462e5dc7cc3203a044c
https://www.esrl.noaa.gov/
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underestimates GPP under partly cloudy and mostly cloudy conditions, with no obvious
deviation under sunny conditions. However, after adding CI, GPP underestimates appear
under all three cloud cover conditions.

Comparing the fitting performance of the models at different scales can reflect the
ability of the model to reflect spatio-temporal changes (Table 2). As expected, the R2 of
the model was larger on the coarser spatio-temporal scales. On one hand, for the same
time scale, the R2 of the biome scale was higher than that of the site scale. Similarly, for a
same spatial scale, the R2 were increasingly larger from the daily, yearly, and to the scale of
many years. This indicates that the model captures the spatial and temporal variation of
GPP, but the capture capability is different. In addition to the biome_years scale, the R2

of the LUE-NDWI model was 0.94 less than VPM model, and the R2 of the LUE-EF and
LUE-NDWI models were higher than that of other models. It can be seen that two new
modes had advantages in capturing spatial and temporal changes. Second, on the scale of
site_year, the slope of LUE-EF and LUE-NDWI models was 1 and extremely significant
(p_value < 0.01), R2 was also higher, 0.85 and 0.75 (p_value < 0.05), indicating that the
LUE-EF and LUE-NDWI models explained 85% and 75%, respectively, of the EC-tower
GPP. In addition, the slope of LUE-NDWI model in site_years was also 1 (p_value < 0.01),
indicating that the model had the optimal simulation effect on these scales, that is, the
applicability of the model was the most reliable.

Table A1. Eddy covariance (EC) sites information used for research, including site id (ID), site name
(SITE), latitude and longitude (LAT, LON), and biome type (BIO). The asterisk is used to verify
the model.

ID SITE LAT LON BIO

1 BE-Lon 50.5516 4.7461 CRO *
2 DE-Seh 50.8706 6.4497 CRO
3 FI-Jok 60.8986 23.5135 CRO
4 IT-CA2 42.3772 12.026 CRO *
5 US-CRT 41.6285 −83.347 CRO *
6 US-Lin 36.3566 −119.84 CRO
7 US-Tw3 38.1159 −121.65 CRO
8 US-Twt 38.1087 −121.65 CRO *
9 US-ARM 36.6058 −97.489 CRO *

10 US-Ne2 41.1649 −96.47 CRO
11 US-Ne3 41.1797 −96.44 CRO
12 DE-Kli 50.8931 13.5224 CRO
13 FR-Gri 48.8442 1.9519 CRO *
14 US-Ne1 41.1651 −96.477 CRO *
15 IT-Noe 40.6062 8.1512 CSH
16 US-KS2 28.6086 −80.672 CSH *
17 CA-Oas 53.6289 −106.2 DBF
18 CA-TPD 42.6353 −80.558 DBF
19 DE-Hai 51.0792 10.453 DBF *
20 DK-Sor 55.4859 11.6446 DBF *
21 FR-Fon 48.4764 2.7801 DBF
22 IT-CA1 42.3804 12.0266 DBF *
23 IT-CA3 42.38 12.0222 DBF
24 IT-Col 41.8494 13.5881 DBF
25 IT-Isp 45.8126 8.6336 DBF *
26 IT-Ro1 42.4081 11.93 DBF
27 IT-Ro2 42.3903 11.9209 DBF
28 PA-SPn 9.3181 −79.635 DBF *
29 US-Ha1 42.5378 −72.172 DBF *
30 US-MMS 39.3232 −86.413 DBF *
31 US-Oho 41.5545 −83.844 DBF
32 US-UMB 45.5598 −84.714 DBF *
33 US-UMd 45.5625 −84.698 DBF
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Table A1. Cont.

ID SITE LAT LON BIO

34 US-WCr 45.8059 −90.08 DBF
35 ZM-Mon −15.438 23.2528 DBF *
36 RU-SkP 62.255 129.168 DNF
37 AU-Cum −33.615 150.724 EBF *
38 AU-Tum −35.657 148.152 EBF
39 AU-Wac −37.426 145.188 EBF *
40 AU-Whr −36.673 145.029 EBF *
41 AU-Wom −37.422 144.094 EBF
42 BR-Sa1 −2.8567 −54.959 EBF
43 BR-Sa3 −3.018 −54.971 EBF *
44 FR-Pue 43.7413 3.5957 EBF *
45 GF-Guy 5.2788 −52.925 EBF
46 IT-Cp2 41.7043 12.3573 EBF
47 IT-Cpz 41.7053 12.3761 EBF
48 MY-PSO 2.973 102.306 EBF
49 AU-ASM −22.283 133.249 ENF *
50 CA-NS1 55.8792 −98.484 ENF
51 CA-NS2 55.9058 −98.525 ENF
52 CA-NS3 55.9117 −98.382 ENF *
53 CA-NS4 55.9144 −98.381 ENF
54 CA-NS5 55.8631 −98.485 ENF
55 CA-Obs 53.9872 −105.12 ENF *
56 CA-Qfo 49.6925 −74.342 ENF
57 CA-SF1 54.485 −105.82 ENF
58 CA-SF2 54.2539 −105.88 ENF *
59 CA-TP1 42.6609 −80.56 ENF
60 CA-TP2 42.7744 −80.459 ENF *
61 CA-TP3 42.7068 −80.348 ENF
62 CA-TP4 42.7102 −80.357 ENF *
63 CH-Dav 46.8153 9.8559 ENF *
64 CZ-BK1 49.5021 18.5369 ENF
65 DE-Lkb 49.0996 13.3047 ENF *
66 FI-Let 60.6418 23.9595 ENF
67 FR-LBr 44.7171 −0.7693 ENF *
68 IT-La2 45.9542 11.2853 ENF
69 IT-Ren 46.5869 11.4337 ENF *
70 IT-SR2 43.732 10.291 ENF *
71 RU-Fyo 56.4615 32.9221 ENF
72 US-Blo 38.8953 −120.63 ENF
73 US-GBT 41.3658 −106.24 ENF *
74 US-GLE 41.3665 −106.24 ENF *
75 US-Me2 44.4523 −121.56 ENF
76 US-Me3 44.3154 −121.61 ENF
77 US-Me5 44.4372 −121.57 ENF *
78 US-Me6 44.3233 −121.61 ENF
79 US-NR1 40.0329 −105.55 ENF *
80 US-Prr 65.1237 −147.49 ENF *
81 US-Wi4 46.7393 −91.166 ENF
82 US-Wi9 46.6188 −91.081 ENF *
83 AT-Neu 47.1167 11.3175 GRA *
84 AU-DaP −14.063 131.318 GRA *
85 AU-Emr −23.859 148.475 GRA *
86 AU-Rig −36.65 145.576 GRA
87 CH-Cha 47.2102 8.4104 GRA *
88 CH-Fru 47.1158 8.5378 GRA
89 CH-Oe1 47.2858 7.7319 GRA
90 CN-Cng 44.5934 123.509 GRA *
91 CN-Dan 30.4978 91.0664 GRA *
92 CN-Du2 42.0467 116.284 GRA
93 CN-HaM 37.37 101.18 GRA
94 CZ-BK2 49.4944 18.5429 GRA *



Remote Sens. 2021, 13, 168 15 of 20

Table A1. Cont.

ID SITE LAT LON BIO

95 DE-Gri 50.95 13.5126 GRA
96 DK-Eng 55.6905 12.1918 GRA *
97 DK-ZaH 74.4733 −20.55 GRA
98 IT-Tor 45.8444 7.5781 GRA
99 PA-SPs 9.3138 −79.631 GRA *

100 RU-Ha1 54.7252 90.0022 GRA *
101 RU-Tks 71.5943 128.888 GRA
102 US-AR1 36.4267 −99.42 GRA
103 US-AR2 36.6358 −99.598 GRA *
104 US-ARb 35.5497 −98.04 GRA
105 US-ARc 35.5465 −98.04 GRA *
106 US-Cop 38.09 −109.39 GRA
107 US-Goo 34.2547 −89.874 GRA
108 US-IB2 41.8406 −88.241 GRA *
109 US-SRG 31.7894 −110.83 GRA *
110 US-Var 38.4133 −120.95 GRA
111 US-Wkg 31.7365 −109.94 GRA *
112 BE-Bra 51.3076 4.5198 MF
113 BE-Vie 50.305 5.9981 MF *
114 CA-Gro 48.2167 −82.156 MF
115 CN-Cha 42.4025 128.096 MF *
116 US-Syv 46.242 −89.348 MF
117 CA-NS6 55.9167 −98.964 OSH *
118 CA-NS7 56.6358 −99.948 OSH *
119 CA-SF3 54.0916 −106.01 OSH
120 ES-Amo 36.8336 −2.2523 OSH
121 ES-LgS 37.0979 −2.9658 OSH *
122 US-SRC 31.9083 −110.84 OSH *
123 US-Whs 31.7438 −110.05 OSH
124 AU-Dry −15.259 132.371 SAV
125 AU-GWW −30.191 120.654 SAV *
126 CG-Tch −4.2892 11.6564 SAV *
127 SD-Dem 13.2829 30.4783 SAV
128 SN-Dhr 15.4028 −15.432 SAV *
129 ZA-Kru −25.02 31.4969 SAV *
130 AU-Fog −12.545 131.307 WET
131 CN-Ha2 37.6086 101.327 WET *
132 CZ-wet 49.0247 14.7704 WET
133 DE-Akm 53.8662 13.6834 WET
134 DE-SfN 47.8064 11.3275 WET *
135 DE-Spw 51.8923 14.0337 WET
136 DE-Zrk 53.8759 12.889 WET
137 DK-NuF 64.1308 −51.386 WET *
138 DK-ZaF 74.4814 −20.555 WET
139 FI-Lom 67.9972 24.2092 WET *
140 SE-St1 68.3542 19.0503 WET
141 US-Atq 70.4696 −157.41 WET *
142 US-Ivo 68.4865 −155.75 WET *
143 US-Los 46.0827 −89.979 WET
144 US-Myb 38.0498 −121.77 WET
145 US-Tw1 38.1074 −121.65 WET *
146 US-WPT 41.4646 −82.996 WET
147 AU-Gin −31.376 115.714 WSA
148 AU-How −12.494 131.152 WSA *
149 AU-RDF −14.564 132.478 WSA
150 US-SRM 31.8214 −110.87 WSA *
151 US-Ton 38.4316 −120.97 WSA *

* 12 terrestrial biomes: Croplands (CRO), closed Shrublands (CSH), deciduous broadleaf forest (DBF), decid-
uous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grasslands
(GRA), mixed forests (MF), open shrublands (OSH), savannas (SAV), permanent wetlands (WET), and woody
savannas (WSA).
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Table 2. The comparison between model GPP and EC-tower GPP at different scales (site scale, biome scale).

Slope Intercept R2 Slope Intercept R2 Slope Intercept R2

site_daily site_year site_years

EC-LUE 0.76 ** 0.25 ** 0.61 0.83 * 0.87 * 0.74 0.95 * 0.79 * 0.81
VPM 0.8 ** −0.18 ** 0.60 0.93 * −0.27 ** 0.71 0.98 ** −0.67 * 0.81
CFIX 0.71 0.77 0.48 0.77 0.53 0.69 0.84 0.17 0.79

MODIS 0.69 * 0.83 * 0.57 0.76 * 0.58 0.78 0.82 0.23 0.82
GR 0.73 0.89 0.54 0.81 * 0.55 0.73 0.89 0.18 0.82
VI 0.77 * 0.25 ** 0.53 0.76 0.32 0.72 0.8 * 0.13 * 0.85
TG 0.73 * 0.58 * 0.48 0.87 ** −0.01 ** 0.73 0.96 −0.39 0.8

AVM 0.75 0.44 0.46 0.87 * −0.03 ** 0.72 0.94 * −0.38 * 0.79
LUE-NDWI 0.79 ** 0.94 * 0.68 1 ** 0.3 ** 0.75 1 ** 0.38 * 0.82

LUE-EF 0.82 ** 0.84 * 0.74 1 ** 0.32 ** 0.85 1.06 ** 0.06 ** 0.97

biome_daily biome_year biome_years

EC-LUE 0.84 ** −0.05 ** 0.73 0.84 * −0.07 * 0.83 0.97 ** 0.72 * 0.94
VPM 0.86 ** −0.58 * 0.77 0.96 ** −0.68 * 0.77 1.03 * −0.87 * 0.96
CFIX 0.76 * 0.45 * 0.76 0.79 * 0.45 * 0.76 0.83 * 0.2 * 0.92

MODIS 0.75 * 0.49 * 0.75 0.79 * 0.49 * 0.75 0.82 * 0.23 ** 0.91
GR 0.79 * 0.57 * 0.81 0.79 * 0.58 * 0.81 0.87 * 0.27 ** 0.89
VI 0.82 0.03 0.8 0.88 0.33 0.8 0.79 0.17 0.87
TG 0.82 ** 0.19 ** 0.78 0.88 * 0.29 ** 0.78 0.93 ** −0.15 ** 0.89

AVM 0.85 * 0.06 * 0.79 0.9 * 0.26 ** 0.79 0.91 * −0.14 * 0.84
LUE-NDWI 0.98 ** 0.38 ** 0.76 1.04 ** 0.11 ** 0.84 1.09 ** 0.1 ** 0.94

LUE-EF 0.96 * 0.49 * 0.84 1.03 * 0.15 ** 0.88 1.08 ** 0.02 ** 0.97

* represent that the slope and 1:1 line is significant within the 95% confidence interval, and ** is significant within the 99% confidence interval.
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The color dots represent the models in the corresponding legend. The Taylor diagram is a polar graph 
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deviation. The grey arcs represent the RMSE normalized by standard deviation for each model. The 

n is the number of EC-towers. Where (a) − (i) contains 12 terrestrial biomes: CRO (croplands), CSH 

(closed Shrublands), DBF (deciduous broadleaf forest), DNF (deciduous needleleaf forest), EBF 

(evergreen broadleaf forest), ENF (evergreen needleleaf forest), GRA (grasslands), MF (mixed forests), 

OSH (open shrublands), SAV (savannas), WET (permanent wetlands), WSA (woody savannas). 

 

Figure 2. The comparison of remote sensing products data and ground EC-towers at site scale. The 

red dotted line is the 1:1 dotted line. Where (a) is CO2 (ppm), (b) is T (℃), (c) is LE (w/m2), (d) is H 

(w/m2), and (e) is NDWI. It's worth noting that the NDWI data is based on a spatial NDWI (500m 

resolution) and spatial NDWI (10km resolution) of different spatial resolutions. 

Figure A1. The Taylor diagram showing the overall performance of all models under different biomes. The color dots
represent the models in the corresponding legend. The Taylor diagram is a polar graph in which the cosine of the angle
between the X-axis is the correlation coefficient between the GPP of the model and EC−tower. The radial direction is the
ratio of model to EC−tower GPP standard deviation. The grey arcs represent the RMSE normalized by standard deviation
for each model. The n is the number of EC-towers. Where (a–i) contains 12 terrestrial biomes: CRO (croplands), CSH
(closed Shrublands), DBF (deciduous broadleaf forest), DNF (deciduous needleleaf forest), EBF (evergreen broadleaf forest),
ENF (evergreen needleleaf forest), GRA (grasslands), MF (mixed forests), OSH (open shrublands), SAV (savannas), WET
(permanent wetlands), WSA (woody savannas).
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the 1:1 dotted line. Where (a) is CO2 (ppm), (b) is T (◦C), (c) is LE (w/m2), (d) is H (w/m2), and (e) is NDWI. It’s worth
noting that the NDWI data is based on a spatial NDWI (500 m resolution) and spatial NDWI (10 km resolution) of different
spatial resolutions.
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boxplots are the deviation statistics percentage bias (PB, %) of the existing models’ GPP predictions 

compared with the EC−tower GPP for each site under different cloud cover conditions. The dark part 

(ci) is the change after multiplying the result of each model by the cloud cover factor (F_CI), according 

to Eq. 3. adding the cloud cover index (CI). The red dotted line denotes the line where PB = is equal 

to 0, i.e. unbiased, and colored vertical line in boxplots are the means. Where (a) is EC-LUE (eddy 

covariance-light use efficiency model), (b) is CFIX (carbon fixation model), (c) is TG (temperature-

greenness model), (d) is VPM (vegetation photosynthesis model), (e) is VI (vegetation-indices model), 

(f) is GR (green-ness-radiation model), (g) is MODIS (moderate resolution imaging spectroradiometer 

model), and (h) is AVM (alpine vegetation model). 

 

Figure A3. The deviation of the models under different cloud cover conditions. The light-colored part boxplots are the
deviation statistics percentage bias (PB, %) of the existing models’ GPP predictions compared with the EC−tower GPP for
each site under different cloud cover conditions. The dark part (ci) is the change after multiplying the result of each model
by the cloud cover factor (F_CI), according to Equation (3). adding the cloud cover index (CI). The red dotted line denotes
the line where PB = is equal to 0, i.e., unbiased, and colored vertical line in boxplots are the means. Where (a) is EC-LUE
(eddy covariance-light use efficiency model), (b) is CFIX (carbon fixation model), (c) is TG (temperature-greenness model),
(d) is VPM (vegetation photosynthesis model), (e) is VI (vegetation-indices model), (f) is GR (green-ness-radiation model),
(g) is MODIS (moderate resolution imaging spectroradiometer model), and (h) is AVM (alpine vegetation model).
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