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Abstract: Solar-induced chlorophyll fluorescence (SIF) is increasingly known as an effective proxy 26 

for plant photosynthesis and therefore has great potential in monitoring gross primary production 27 

(GPP). However, the relationship between SIF and GPP remains highly uncertain across space and 28 

time. Here, we analyzed the SIF (reconstructed, SIFc)-GPP relationships and their spatiotemporal 29 

variability, using GPP estimates from FLUXNET2015 and two spatiotemporally contiguous SIFc 30 

datasets (CSIF and GOSIF). Results showed that SIFc had significant positive correlations with GPP 31 

at the spatiotemporal scales investigated (p<0.001). The generally linear SIFc-GPP relationships 32 

were substantially affected by spatial and temporal scales and SIFc datasets. GPP/SIFc slope of the 33 

evergreen needleleaf forest (ENF) biome was significantly higher than those of several other biomes 34 

(p<0.05), while the other 11 biomes showed no significant differences in GPP/SIFc slope between 35 

each other (p>0.05). We therefor propose a two-slope scheme to differentiate ENF from non-ENF 36 

biome and synopsize spatiotemporal variability of GPP/SIFc slope. The relative biases were 7.14% 37 

and 11.06% in the estimated cumulative GPP across all EC towers, respectively, for GOSIF and CSIF 38 

using two-slope scheme. The significantly higher GPP/SIFc slopes of the ENF biome in the two- 39 

slope scheme are intriguing and deserve further study. In addition, there was still considerable dis- 40 

persion in the comparisons of CSIF/GOSIF and GPP at both site and biome levels, calling for dis- 41 

criminatory analysis backed by higher spatial resolution to systematically address issues related to 42 

landscape heterogeneity and mismatch between SIFc pixel and the footprints of flux towers and 43 

their impacts on the SIF and GPP relationship. 44 

 45 
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1. Introduction 49 

GPP is the largest flux in the global carbon cycle [1], yet accurate estimation of GPP 50 

at regional and global scales is still a major challenge [2]. Solar-induced chlorophyll fluo- 51 

rescence (SIF) has recently emerged as process that can be detected using Earth observa- 52 

tion technologies, thus having potential to radically improve terrestrial GPP estimation [3, 53 

4]. SIF is the energy emitted directly from the core of photosynthetic machinery during 54 

the return photosystem II from excited to non-excited states nanoseconds after light ab- 55 

sorption with the wavelength range from 600 to 800 nm [5, 6]. Light energy absorbed by 56 

the leaf chlorophyll molecules has three different pathways: photochemistry, non-photo- 57 

chemical quenching (NPQ, i.e., heat dissipation), and a small fraction re-emitted as SIF 58 

[6]. SIF is highly correlated with photosynthesis when NPQ dominates at high light levels 59 

[6], and it shows stronger capability in general in characterizing the temporal and spatial 60 

dynamics of photosynthesis or gross primary productivity in terrestrial ecosystems than 61 

traditional vegetation indices (e.g. NDVI and EVI) [7] as it is directly related to actual 62 

photosynthetic rate [8]. 63 

Constructing a direct relationship between satellite-derived SIF and eddy covariance 64 

(EC) flux tower based GPP is crucial for using SIF to estimate GPP at large scales [2], but 65 

has been hindered by the spatial and temporal coverage of SIF datasets [9]. Current SIF 66 

products are derived from Greenhouse Gases Observing Satellite (GOSAT) [10], SCanning 67 

Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) [11], 68 

Global Ozone Monitoring Instrument (GOME) [12] and Global Ozone Monitoring Mission 69 

Experiment-2 (GOME-2) [13], Orbiting Carbon Observatory-2 (OCO-2) [14], TanSat [15] 70 

and TROPOspheric Monitoring Instrument (TROPOMI) [16]. Among these products, SIF 71 

retrieved from OCO-2 showed the smallest footprints (1.30 × 2.25 km) and slightly higher 72 

signal-to-noise ratios than others, and provided new opportunities to directly link satel- 73 

lite-derived SIF to flux tower GPP at the ecosystem scale [17]. Many studies have reported 74 

the relationship between SIF derived from various satellite missions with GPP derived 75 

from EC flux tower [18] and gridded Moderate-resolution Imaging Spectroradiometer 76 

(MODIS) products [19] at different spatiotemporal scales. 77 

The relationship between SIF measurements obtained with remote passive tech- 78 

niques (i.e., remote sensing SIF signal (OCO-2 SIF)) and photosynthesis (i.e., GPP) is not 79 

well understood [20] due to large uncertainties when establishing the relationship be- 80 

tween SIF and EC flux tower GPP across different ecosystems [21]. Wood, Griffis [22] 81 

found a linear SIF-GPP relationship that is sensitive to crop type (corn vs. soybean) and 82 

invariant across spatiotemporal scales in the Corn Belt. This study only investigated two 83 

types of crops in a small part of the United States, therefore it is not a systematic study of 84 

the SIF-GPP relationship and more studies should be conducted regarding of the differ- 85 

ences of C3 and C4 crops [21]. It was found that the strength of this linear relationship in 86 

temperate forest was scale-dependent, and its linearity was stronger at the midday time 87 

scale [23]. Similar results have been found across several vegetated biomes, especially for 88 

OCO-2 SIF at 757nm [21, 24]. Li, Xiao [21] reported a nearly universal linear SIF-GPP re- 89 

lationship between OCO-2 SIF and EC-GPP from a total of 64 sites across eight major bi- 90 

omes. Recently, Wang, Chen [25] improved the SIF-GPP relationship using photochemical 91 

reflectance index. However, some studies based on GOSAT and GOME-2 analysis indi- 92 

cated that the SIF-GPP relationship varied across biomes [19]. Indeed, Sun, Frankenberg 93 

[26] found the linear SIF-GPP relationship diverges somewhat across 10 biomes at the 94 

global scale. The main reasons for the uncertainty in the SIF-GPP relationship across sites 95 

and biomes are spatiotemporal mismatches and data uncertainties among the SIF and 96 

GPP products, which can be traced back into at least three major issues. First, the spatial 97 

mismatch of EC flux tower sites and OCO-2 orbit is the general limitations of satellite SIF 98 

application [5]. Second, the temporal inconsistent between the short lifetime of OCO-2 SIF 99 

(available from 6th September 2014 to present) and GPP estimated from EC flux towers 100 

(i.e., FLUXNET data is only updated to 2015 (FLUXNET2015)) is not relevant for the de- 101 

velopment or validation of the SIF-GPP relationship [2]. Third, uncertainties in estimating 102 
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GPP from EC towers [27] and SIF sampling instrument and retrieval methodologies [21]. 103 

Thus, the amount (spatial and temporal coverage) of data available from the satellite SIF 104 

at present is insufficient to support comprehensive analysis the SIF-GPP relationship [28]. 105 

Therefore, more studies tackling with these issues are required to truly address the com- 106 

plexities and drivers of variability in the SIF-GPP relationships across biomes. 107 

Several global spatially contiguous SIF datasets (hereafter referred to as SIFc) devel- 108 

oped recently can contribute to address the above issues. Zhang, Joiner [29] generated 109 

global spatially contiguous SIF dataset (hereafter referred to as CSIF, i.e., clear-sky instan- 110 

taneous and all-sky daily average) at moderate spatiotemporal resolutions (0.05° and 4- 111 

day) by training a neural network with surface reflectance from MODIS and OCO-2 SIF 112 

soundings. Yu, Wen [30] developed another spatially contiguous global SIF product (here- 113 

after referred to as GCSIF) at 0.05° and 16-day resolutions using machine learning with 114 

time-and-biome-specific model. Li and Xiao [31] further developed a global OCO-2 SIF 115 

dataset (GOSIF) with a similar spatiotemporal resolutions (0.05° and 8-day) based on dis- 116 

crete OCO-2 SIF soundings, EVI and land cover type data from MODIS, and meteorolog- 117 

ical reanalysis data from Modern-Era Retrospective analysis for Research and Applica- 118 

tions (MERRA-2) [32]. And Duveiller, Filipponi [33] presented a new SIF dataset (hereafter 119 

referred to as GOMESIF) based on GOME-2 satellite observations with an enhanced spa- 120 

tial resolution covering the period 2007–2018. In general, differences exist among SIFc 121 

products due to different reconstruction methods in this study (see Supplementary Ma- 122 

terial), and there is an urgent need to recognize and, if possible, reconcile the differences 123 

of SIFc datasets and understand their potential impacts on GPP estimation. 124 

To improve the quantification of terrestrial photosynthesis at various spatial and 125 

temporal scales using the recently available remotely sensed spatially contiguous SIFc da- 126 

tasets, further efforts should focus on the application of expanded SIFc datasets to test the 127 

robustness of the SIF-GPP relationship across all vegetated biomes [2]. Here, we use two 128 

global spatially contiguous SIFc datasets (CSIF [29] and GOSIF [31]), coupled with GPP 129 

obtained by EC flux tower from the worldwide network FLUXNET2015 [34], to address 130 

the following objectives: (1) to explore the commonality and differences of the SIFc–GPP 131 

relationship across 12 vegetated IGBP biomes; (2) to examine the variability of SIFc-GPP 132 

relationships over a range of spatial and temporal scales; (3) to elucidate the application 133 

prospects and limitations of existing spatially contiguous SIFc datasets. 134 

2. Materials and Methods 135 

2.1. Datasets 136 

Two available spatially contiguous SIFc datasets (unit in W m-2 μm-1 sr-1) based on 137 

OCO-2 SIF (V8r) at 757nm were used in this study. First, the CSIF dataset, generated by 138 

Zhang, Joiner [29], has two global spatially contiguous SIFc data layers at moderate spa- 139 

tiotemporal resolutions (0.05° spatial resolution, and 4-day temporal resolution, obtained 140 

upon request from the author Zhang Yao): one from instantaneous measurements ob- 141 

tained on clear-sky conditions (2000–2017) and the other from daily averages including 142 

all-sky conditions (2000–2016) (referred to as CSIFall-daily). They are generated based on 143 

the SIF retrievals from OCO-2, interpolated by artificial neural networks (ANN) to a grid 144 

using the surface reflectance from MODIS aboard the Terra and Aqua satellites [29]. The 145 

ANN with one layer and five neurons exhibited the highest model performance with a 146 

good performance in validation (R2 = 0.79, RMSE = 0.18 W m-2 μm-1 sr-1). The errors of CSIF 147 

in 9 of 14 biomes to OCO-2 SIF were less than 10%, and most of them were lower than 5% 148 

[29]. To better match with the GPP data, the all-sky daily average CSIF dataset (CSIFall- 149 

daily) was used (referred to as CSIF), which exhibited strong spatial, seasonal, and inter- 150 

annual dynamics that were consistent with daily SIF from OCO-2 and GOME-2 [29].  151 

Second, we employed the global ‘OCO-2’ SIF dataset (referred to as GOSIF) (0.05° 152 

spatial resolution, 8-day temporal resolution, freely available at http://globalecol- 153 

ogy.unh.edu) [31]. The dataset was based on a data-driven model developed based on 154 

http://globalecology.unh.edu/
http://globalecology.unh.edu/
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discrete OCO-2 SIF data, EVI and land cover data from MODIS, and meteorological rea- 155 

nalysis data. Similar to CSIF, the GOSIF dataset has extended the start date of data record 156 

of OCO-2 SIF to March 2000 and at daily time scale. The dataset also performed fairly well 157 

in SIF validation (R2 = 0.79, RMSE = 0.07 W m−2 µm−1 sr−1). These two reconstructed SIF 158 

products (i.e., CSIF and GOSIF) offer opportunities to examine the synergy between sat- 159 

ellite SIF and photosynthesis at consistent spatial scales globally [29, 31, 35].  160 

GPP data was extracted from the global network FLUXNET2015 161 

(http://fluxnet.fluxdata.org//data/fluxnet2015-dataset/), which contains terrestrial ecosys- 162 

tem carbon flux data from 212 EC flux towers worldwide [34]. Considering small differ- 163 

ences between different GPP partitioning methods [36] (Table A1 and Figs A1 and A2), 164 

daily average GPP estimates (GPP_M, unit in g C m-2 d-1) were calculated as the mean of 165 

GPP estimates from both daytime respiration (GPP_D) and nighttime respiration 166 

(GPP_N) [37] and used to analyze the SIFc-GPP relationship globally. Four sites (i.e., IT- 167 

SRo, NO-Blv, US-LWW and US-Me4 sites) were removed due to the limited data and large 168 

landscape heterogeneity in the SIFc pixel, after visually examining the landscape compo- 169 

sition of all flux tower footprints and associated SIFc pixels using Google Earth images. 170 

Consequently, 208 EC flux tower sites distributed across 12 vegetated biomes were used, 171 

which was different from some previous researches [21, 29] (Fig. 1, Table A2). In addition, 172 

all the daily data used for analysis were extracted at 8-day time interval (i.e., CSIF from 4- 173 

day to 8-day, GOSIF 8-day and GPP from 1-day to 8-day). 174 

 175 
Figure 1. The spatial distribution of all the 212 eddy-covariance (EC) flux tower sites from the 176 

FLUXNET 2015 Tier 1 dataset, depicted by black triangles. Biomes in the legend are from a static 177 
land cover map (MCD12C1 Land Cover Type 1: IGBP global vegetation classification scheme for 178 
2007) referred to Friedl, McIver [38]. 179 

2.2. SIFc-GPP relationship analysis 180 

All analyses were performed using programming environments in R language ver- 181 

sion 3.6.1 [39]. All significance tests were performed with an alpha of 0.05 by default un- 182 

less specified otherwise. All mean values presented in the paper were accompanied by 183 

corresponding Standard Error (SE) values unless otherwise stated. This study covered 12 184 

vegetated biomes according to IGBP [40, 41] classification: croplands (CRO), closed shrub- 185 

lands (CSH), deciduous broadleaf forests (DBF), deciduous needleleaf forests (DNF), ev- 186 

ergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), 187 

mixed Forests (MF), open shrublands (OSH), savannas (SAV), permanent wetlands 188 

(WET), and woody savannas (WSA) (see Table A3 for more details). 189 

First, the correlation and differences between the SIFc and GPP dataset have been 190 

analyzed. Specifically, the differences between two SIFc datasets (CSIF and GOSIF) and 191 

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/
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the differences between two GPP datasets (GPP_D and GPP_N) were tested based on 192 

daily (8-day temporal resolution based on GPP data; all the daily GPP/SIF data were ex- 193 

tracted at 8-day interval) data using confidence interval (CI) approach. Second, the rela- 194 

tionships between two reconstructed SIFc products and GPP_M were investigated across 195 

six combinations of temporal scales (i.e., daily: mean of half-hour GPP data for each day, 196 

yearly: mean of daily GPP and SIF for each year, and multi-year: mean of the whole ob- 197 

servation period) and spatial scales (i.e., site and biome), using major axis regression [42] 198 

to account for data uncertainties in both x and y in the analysis of SIFc-GPP relationship. 199 

In the analysis of the SIFc-GPP relationship, we forced trend lines to pass through the 200 

origin by setting intercept to zero based on the logic that zero SIF would suggest zero 201 

photosynthesis or GPP approximately [2]. Whether significant differences existed among 202 

biomes in the SIFc-GPP conversion coefficients at site-year and site-multi-year scales were 203 

evaluated using wilcox.test() in ggsignif package. Third, the SIFc-GPP relationships at six 204 

spatial (site and biome) and temporal (daily, yearly and multi-year) scales were analyzed 205 

to examine the change of the SIFc-GPP relationship with scales. 206 

Abovementioned analyses led to the conclusion that it is necessary to synopsize the 207 

inter-biome variability of GPP/SIFc slopes using a two-slope scheme. To develop the two- 208 

slope scheme, we first reclassified all sites into ENF and Non-ENF biomes, and then ana- 209 

lyzed and compared the site-scale GPP/SIFc slopes within the ENF and Non-ENF groups. 210 

The mean and standard error (SE) were calculated from site-scale GPP/SIFc slopes within 211 

the ENF and Non-ENF biomes, respectively, to represent the two GPP/SIFc slopes and 212 

their uncertainty of the two-slope scheme. Similarly, the adequacy of using median and 213 

median absolute deviation (MAD) of site-scale GPP/SIFc slopes within the ENF and Non- 214 

ENF biomes to represent the two-slope scheme was also investigated. The two-sided Stu- 215 

dents t-test, the t.test(two.sided) function in R, was applied to test the difference between 216 

ENF and Non-ENF groups. The performance of two-slope scheme was measured with 217 

correlation coefficient (r), standard deviation (SD), root mean square error (RMSE), and 218 

percentage bias (PB) between flux GPP and SIFc_GPP. 219 

3. Results 220 

3.1. Correlation between SIFc and GPP 221 

SIFc (both CSIF and GOSIF) showed significant positive correlations with GPP 222 

(GPP_D, GPP_N, and GPP_M) worldwide across all the 12 biome types and available 223 

years (from 2001 to 2014) (Fig. 2). Among biomes, the highest GPP-SIFc correlation was 224 

manifested in DBF, and the lowest was in EBF (Fig. 2A). The correlations between GOSIF 225 

and GPP (i.e., GPP_D, GPP_N, and GPP_M) were higher than those from CSIF in general. 226 

However, the r values for GOSIF-GPP were lower than those for CSIF for OSH and SAV 227 

biomes (Fig. 2A). Strong positive correlations were also observed between SIFc and GPP 228 

across all 14 years (r > 0.71, p < 0.001; Fig. 2B). Among all the SIFc-GPP correlation coeffi- 229 

cients, those of SIFc-GPP_M were the highest: concentrated at 0.76 ± 0.01 and 0.77 ± 0.00 230 

for CSIF and GOSIF, respectively, across 14 years (Fig. 2B). 231 

 232 
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Figure 2. Pearson correlation coefficients (r value) between SIFc (CSIF and GOSIF) and GPP 233 
from two partitioning methods (GPP_D and GPP_N) and the mean of them (GPP_M) across (A) all 234 
12 biomes (daily data at specific biome of all the years) and (B) all 14 years (daily data from whole 235 
year) (p < 0.001). Biomes are: croplands (CRO), closed shrublands (CSH), deciduous broadleaf forest 236 
(DBF), deciduous needleleaf forest (DNF), evergreen broadleaf forest (EBF), evergreen needleleaf 237 
forest (ENF), grasslands (GRA), mixed forests (MF), open shrublands (OSH), savannas (SAV), per- 238 
manent wetlands (WET) and woody savannas (WSA). Years are from 2001 to 2014. 239 

3.2. SIFc-GPP relationship across sites, biomes, and years 240 

Fig. 3 showed the distributions of GPP/SIFc slopes in individual biomes at site-multi- 241 

year (A and B) and site-year (C and D) levels. GPP/SIFc slopes varied greatly across sites 242 

and biomes. The CSIF-GPP relationships at the site-multi-year scale (Fig. 3A) indicated 243 

that CSH had the largest inter-site variability with the biggest interquartile ranges (the 244 

height of the boxes). In addition, there were significant differences in GPP/CSIF slopes 245 

between ENF and several other biomes (i.e., DBF, EBF, GRA and OSH) (p < 0.001), and no 246 

significant difference was found among all other biome pairs (p > 0.05). Although the 247 

GOSIF-GPP relationships at the site-multi-year scale (Fig. 3B) look similar to the GOSIF- 248 

GPP relationships (Fig. 3A), there were substantial differences. First, the GOSIF-GPP in- 249 

ter-site variabilities were smaller than those of GOSIF-GPP in most biomes. Second, with 250 

less inter-site variability, the GOSIF-GPP data showed that the number of biomes signifi- 251 

cantly different from ENF was one more than the CSIF-GPP data (ENF vs. MF) and the 252 

significance level (p value) generally increased as well. In addition to these differences, it 253 

is important to notice that there was still no significant difference between any non-ENF 254 

biome pairs according to GOSIF-GPP (p > 0.05), consistent with CSIF-GPP. The SIFc-GPP 255 

relationships at the site-year scale (Fig. 3C and D), as expected, showed larger variability 256 

than those at the site-multi-year scale. ENF biome showed significant differences with all 257 

other biomes (p < 0.001), except for CSH biome with GPP/CSIF slopes (p > 0.05) (Fig. 3C 258 

and D). However, there were no significant differences of SIFc-GPP relationship between 259 

OSH and DNF biome with other biomes at site-multi-year scale (p > 0.05), although the 260 

slopes from OSH and DNF are lower than others (Figs. 3A, B and 6). 261 

 262 
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Figure 3. Boxplots and comparison of GPP/SIFc slopes between 12 biomes that similar with 263 
figure 1. (A, B) site-multi-year slopes (basis of slopes calculated for whole time); (C, D) site-year 264 
slopes (basis of slopes calculated for each year). Each boxplot represents the distribution of GPP/SIFc 265 
slopes in corresponding biome. The top and bottom of the boxes represent 75 and 25 percentiles 266 
(i.e., Q3 and Q1), respectively; the solid line in the box is median value of the box; the whole box is 267 
the interquartile range (IQR = Q3 – Q1); the top and bottom whiskers represent the maximum and 268 
minimum values (i.e., Q3 – 1.5 * IQR, Q1 – 1.5 * IQR), respectively; the data outside of the maximum 269 
and minimum are shown as points beyond the whiskers. Site-year and site-multi-year slopes were 270 
derived from daily SIFc-GPP data obtained in a year and in the whole observation period for each 271 
site, respectively, using major axis regression. Black star points indicate that the difference of mean 272 
GPP/SIFc slopes between two connected biomes is significant (***: p < 0.001; **: 0.001< p < 0.01; *: 273 
0.01 < p < 0.05). 274 

 275 
Temporal variability of site-level GPP/CSIF slopes remained relative stable for most 276 

biomes except for a few biomes with very limited number of flux towers (i.e., CSH, OSH, 277 

SAV, and WET) (Fig. 4). Medians of slopes were more similar than means in different 278 

variants. The interannual variability of forest biomes were in general the smallest, fol- 279 

lowed by grassland and cropland. It is interesting to see that the interannual variability of 280 

forest, grassland and cropland biomes remained relatively stable, not affected by the in- 281 

crease of number of flux towers over time in general. In contrast, other biomes showed 282 

different as the number of sites were small and the number of towers in normal operation 283 

fluctuated across years, which led to large interannual variability in the slopes within each 284 

of these biomes. 285 

 286 
Figure 4. Interannual variability of the slopes between CSIF and GPP across 12 biomes. 12 287 

biomes are similar with Fig. 1. The explanation of the boxplot symbols is given in Fig. 3. The solid 288 
line and dash line across each boxplot are median value and mean value for the whole boxplot 289 
(biome), respectively. The number of flux tower sites for each year is shown on top of the x axis. 290 

 291 
Compared with GPP/CSIF slopes, the temporal variabilities of GPP/GOSIF slopes 292 

were smaller for most biomes (Fig. 5). The reduction of variability was most in those bi- 293 

omes that showed large interannual variabilities in GPP/CSIF slopes (i.e., CSH, OSH and 294 
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SAV). The site-variability of wetland (WET) biome expanded greatly from 2009 to 2011 295 

compared with surrounding years and those of GPP/CSIF, and the variability of the grass- 296 

land (GRA) biome also increased in 2002 and 2003. The enlarged variabilities were prob- 297 

ably caused by underestimated GOSIF at a few flux sites in these two biomes in the given 298 

years as the median slope was higher than the median and lower than the mean from all 299 

years (Fig. 5). 300 

 301 
Figure 5. Interannual variability of the slopes between GOSIF and GPP across 12 biomes. The 302 

explanation of the boxplot symbols is given in Fig. 4. 303 
 304 
Averaged all SIFc and GPP together by biome and ignoring the inter-site differences, 305 

strong linear relationships between GPP and SIFc were found consistently across 12 bi- 306 

omes (Fig. 6) and 14 years (Fig. 7). Although SIFc-GPP relationship varied among sites 307 

(see Fig. 3), the SIFc-GPP relationships at the biome scale were strongly linear (p < 0.001) 308 

for both CSIF and GOSIF. However, the large dispersion of the data points also suggests 309 

the large temporal (across years) and spatial (across sites) variability (see Figs. 3, 4 and 5). 310 

For example, the diverging relationship found in CSH was caused by the low CSIF values 311 

at IT.Noe site (Figs. A3 and 6). 312 

The linear SIFc-GPP relationships were SIFc dataset dependent (Figs. 6 and 7). The 313 

GPP/CSIF slopes were generally higher than GPP/GOSIF slopes for all biomes except DNF 314 

(Fig. 6). Similar differences existed between GPP/CSIF slopes and GPP/GOSIF slopes for 315 

all 14 years (Fig. 7). The GPP/CSIF slopes ranged from 34.86 (R2 = 0.82, p < 0.001) to 39.29 316 

(R2 = 0.79, p < 0.001) across 14 years with a mean value of 37.64 ± 0.32, and the value of R2 317 

ranged from 0.77 to 0.83. In contrast, the GPP/GOSIF slopes ranged from 30.65 (R2 = 0.81, 318 

p < 0.001) to 35.19 (R2 = 0.82, p < 0.001) with a mean value of 33.14 ± 0.32, and the value of 319 

R2 ranged from 0.78 to 0.83. It should be noticed that there were significant differences 320 

between CSIF and GOSIF products across all 12 biomes except CSH (Figs. A4, A7) as well 321 

as across all 14 years (Fig. A5). 322 
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 323 
Figure 6. Scatter plots and linear regression of GPP and SIFc (CSIF and GOSIF) for 12 individ- 324 

ual biomes at daily scale (p < 0.001). The statistical measures for linear regression listed in the top 325 
left corner corresponding to different color. All the linear regressions were forced to through origin. 326 
12 biomes are the similar with Fig. 2. 327 

 328 

 329 
Figure 7. Scatter plots and linear regression of GPP and SIFc (CSIF and GOSIF) for all 12-biome 330 

types year by year at daily scale (p < 0.001). The statistical measures for linear regression listed in 331 
the top left corner corresponding to different color. All the linear regressions were forced to through 332 
origin. Years range from 2001 to 2014, and the last figure means all the matched daily SIFc-GPP data. 333 

3.3. Variation of the linear SIFc-GPP relationship across spatiotemporal scales 334 

The robustness of linear SIFc-GPP relationship increased with spatiotemporal upscal- 335 

ing generally (i.e., site-daily, site-yearly, site-multi-year, biome-daily, biome-yearly and 336 

biome-multi-year scale) (Fig. 8). From site to biome level, the R2 values increased while 337 

slopes of the linear SIFc-GPP relationship significantly decreased regardless of time scale. 338 

For example, at daily scale, the R2 value of CSIF-GPP relationship increased from 0.80 to 339 



Remote Sens. 2021, 13, x FOR PEER REVIEW 10 of 18 
 

 

0.96 from site to biome level, and the corresponding slope decreased from 37.70 to 32.60. 340 

Similar changes of R2 values and slopes of linear CSIF- GPP relationship can also be found 341 

at yearly and multi-year time scales (Fig. 8). 342 

 343 
Figure 8. Scatter plots and linear regression of SIFc (both CSIF and GOSIF) and GPP for all 344 

biomes across six spatiotemporal scales (p < 0.001). The statistical measures for linear regression 345 
listed in the top left corner corresponding to different color. All the linear regressions were forced 346 
to through origin. The solid lines represent the fitted major axis regression models for different SIFc- 347 
GPP combinations: CSIF- GPP (blue) and GOSIF- GPP (red). (A) site-daily; (B) site-yearly; (C) site- 348 
multi-year; (D) biome-daily; (E) biome-yearly and (F) biome-multi-year. 349 

 350 
The change of R2 values and slopes of linear SIFc-GPP relationship with time scale 351 

varied with spatial scale. For example, at site level, the R2 values of linear CSIF-GPP rela- 352 

tionship increased from daily (slope = 37.70, R2 = 0.80) to yearly (slope = 34.73, R2 = 0.88) 353 

scale, but did not increase to multi-year (slope = 32.98, R2 = 0.88) scale (Fig. 8). Similarly, 354 

the R2 values and slopes of linear CSIF-GPP relationship had little changes with the tem- 355 

poral scale at biome level (daily: slope = 32.60, R2 = 0.96; yearly: slope = 32.28, R2 = 0.96; 356 

multi-year: slope = 31.89, R2 = 0.98) (Fig. 8). 357 

4. Discussion 358 

4.1. Dataset dependence of the SIFc-GPP relationship 359 

The linear SIFc-GPP relationship forcing to pass original point developed from GPP 360 

and two contiguous SIFc datasets is SIFc dataset dependent (Fig. 2). This SIFc dependency 361 

can be explained by the fact that GOSIF is generally higher in value than CSIF across bi- 362 

omes and years (Figs. A3 and A4), which can be traced back to their reconstruction meth- 363 

ods and the uncertainty of the SIFc products. GOSIF, generated from discrete OCO-2 SIF 364 

soundings, EVI and land cover type data from MODIS and meteorological reanalysis data, 365 

had a RMSE of only 0.07 W m−2 µm−1 sr−1 [31]. In contrast, CSIF, generated using a machine 366 

learning approach (trained by discrete OCO-2 SIF soundings and MODIS surface reflec- 367 

tance), had a RMSE of 0.18 W m-2 μm-1 sr-1 [29], more than doubled that of GOSIF. The 368 

stronger SIFc-GPP relationship derived from GOSIF than that from CSIF was consistent 369 

with previous studies [31]. Zhang, Joiner [29] found the R2 value of linear relationship 370 

between GPP derived from 40 EC flux towers and CSIF ranges from 0.01 to 0.93 with a 371 

median value of 0.64. And Li and Xiao [31] reported a higher linear relationship between 372 

GOSIF and flux GPP (R2 = 0.73, p < 0.001) based on GPP from 91 EC flux towers. However, 373 

GOSIF did not always performed better than CSIF as shown in some years and some 374 

places (Figs. 4 and 5), which might be influenced by the meteorological conditions input. 375 

On the other hand, as the differences existing between both SIFc datasets should include 376 
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variability ranges, systematical bias between different SIFc datasets would lead to differ- 377 

ent offsets for the linear relationship. Hence, further efforts in improving SIFc-GPP rela- 378 

tionship must reconcile differences from different SIFc datasets and further understand 379 

their implications [29-31]. 380 

4.2. Variability of the SIFc-GPP relationship  381 

Our results show that the linear SIFc-GPP relationship is significantly affected by the 382 

spatial and temporal scales (Fig. 8). SIFc-GPP shows the strongest linear relationship at 383 

the coarsest scales (i.e., biome-multi-year). The R2 value of the linear SIFc-GPP relationship 384 

increased with spatial upscaling from site to biome at all temporal scales (i.e., daily, year 385 

and multi-year). In contrast, the R2 value did not necessarily increase with temporal up- 386 

scaling at different spatial scales (i.e., site and biome). This suggests that SIFc (both CSIF 387 

and GOSIF) is not effective in capturing temporal variabilities of GPP, particularly the 388 

inter-annual variability. Overall, the reconstructed SIFc performs well in tracking long- 389 

term biome-wide GPP (Fig. 8F), consistent with other studies [9]. The reduced ability of 390 

SIFc in capturing the short-term changes of GPP might largely attributed to the errors in 391 

SIFc and GPP products, as well as the footprint mismatch between SIFc and GPP, espe- 392 

cially at finer resolutions and during the reconstruction period (from 2001 to 2014) [29, 393 

31].  394 

It should be noticed that, despite moderate to strong R2 values, there was considera- 395 

ble dispersion in the comparisons of CSIF/GOSIF and GPP at both site and biome levels 396 

(Figs. 3 and A6). The scattered distribution might be caused by SIFc and flux_GPP data 397 

quality as well as the non-universality of the linear GPP-SIFc relationship [43, 44], partic- 398 

ularly at CRO and DBF biomes (Figs. A3 and A6). For example, SIFc-GPP points scattered 399 

around the linear regression lines widely at the DE.Geb site (CRO biome) (Fig. A6) while 400 

the aggregated annual change of flux_GPP synchronized well with those of SIFc in addi- 401 

tion to many scattered points caused by interannual variability (Fig. A5), suggesting in- 402 

terannual variability of cropping practices (e.g., rotation of crops, fallow, and fertilization) 403 

may contribute substantially to the pronounced scattering of points around the regression 404 

lines in Fig. A6. On the other hand, there were clearly two clusters at the IT.Noe site (CSH 405 

biome), which signifies major difference between CSIF and GOSIF there. Apparently, fu- 406 

ture efforts are required to investigate the variability in the SIF-GPP relationship system- 407 

atically to answer a suite of important questions: where/when does a linear SIF-GPP rela- 408 

tionship break down? Where/when does it change in slope and why?  409 

Li, Xiao [21] has reported that C4-dominated grasslands and crops, albeit only two 410 

C4 sites, had a significantly higher slope than C3-dominated grasslands and crops (29.42 411 

vs. 20.98, p < 0.001). and Wood, Griffis [22] found a linear SIF-GPP relationship that is 412 

sensitive to crop type (corn vs. soybean) as well. However, our results suggested that there 413 

was no significant difference (p > 0.05) in the slopes between C4 (n = 3) and C3 (n = 8) crops 414 

at site-multi-year scale, respectively, for CSIF (C4 vs. C3: 42.71 ± 1.33 (mean ± SE) vs.38.87 415 

± 5.38) and for GOSIF (C4 vs.C3: 38.70 ± 3.48 vs.40.32 ± 6.11). The difference between our 416 

study and Li, Xiao [21] may be due to the limited number of C4 crop sites and the different 417 

approaches used for analysis. We compared the difference in the means of the slopes from 418 

individual C3 and C4 sites while Li, Xiao [21] compared the difference in the overall slopes 419 

of the C3 and C4 crops after pooling SIF and GPP data from all C3 and C4 sites. Appar- 420 

ently, further research is needed to understand the differences in the SIF-GPP relation- 421 

ships for C3/C4 plants with more C4 sites. 422 

The number of EC flux towers is not balanced among the biomes, and some biomes 423 

only include one or a few sites. This leads to large uncertainties in the linear GPP/SIFc 424 

slopes in some biomes (e.g., CSH, OSH and WET). For example, the GPP/CSIF slopes of 425 

OSH and DNF were lower than other biomes; there are clearly two clusters of data cap- 426 

tured within CSH (Fig. 3). The main reason may be the limited GPP data at OSH (72 site- 427 

year) and DNF (3 site-year) biomes. Thus, increasing the number of EC flux towers, 428 
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particularly in some underrepresented biomes (e.g., OSH and DNF), is necessary to make 429 

our global analysis more representative and robust to support GPP modeling using SIF.  430 

4.3 A generic two-slope scheme SIFc-GPP relationship 431 

Our study found that at site-multi-year scale there was no significant difference be- 432 

tween any biome pairs in GPP/SIFc slopes except a few pairs between ENF and others 433 

(Fig. 3). Specifically, GPP/SIFc slopes in ENF biome were significantly higher than those 434 

in four biomes (DBF, EBF, GRA and OSH) according to CSIF or five biomes (DBF, EBF, 435 

GRA, OSH and MF) according to GOSIF, and the slopes between any other non-ENF bi- 436 

ome pairs were not significantly different. To summarize these findings, we therefore pro- 437 

pose a two-slope scheme to differentiate ENF from non-ENF and synopsize the GPP/SIFc 438 

slope variability across all biomes and years. It should be noted that the two-slope scheme 439 

is SIFc dataset specific (Table 1), resulted from the systematic differences between these 440 

two SIFc datasets. 441 

 442 
Table 1. Two-slope scheme of linear SIFc-GPP relationship based on GPP/SIFc slopes at site-multi-year scale. The SIFc dataset 443 

dependent scheme, divides all sites into two groups: ENF and non-ENF (11 biomes) according to the significance of the GPP/SIFc 444 
slopes (see Fig. 3). All slopes are represented as mean ± SE or median (MAD). N is the number of sites included in the specific biome. 445 

Biome N 
CSIF 

mean 

GOSIF 

mean 

CSIF 

median 

GOSIF 

median 

CRO 20 39.94±3.39 39.14±3.45 37.95(15.45) 34.68(13.99) 

CSH 3 46.51±23.86 27.70±2.54 26.19(10.25) 30.09(0.44) 

DBF 26 38.25±4.79 40.96±10.88 33.87(6.27) 30.75(7.90) 

DNF 1 24.15 26.59 24.15 26.59 

EBF 15 34.49±2.91 30.15±2.76 34.30(9.85) 30.48(5.88) 

GRA 37 36.20±2.86 35.15±3.23 32.31(14.43) 30.38(7.91) 

MF 9 42.36±7.60 35.83±8.91 37.18(4.2) 28.05(4.24) 

OSH 14 30.69±4.47 28.64±3.99 28.05(13.57) 25.54(15.12) 

SAV 8 56.90±17.40 42.49±7.77 38.63(14.04) 34.21(15.87) 

WET 21 41.23±5.25 61.66±16.05 38.44(22.35) 33.89(22.00) 

WSA 6 33.36±4.31 31.04±2.83 29.77(5.78) 29.04(5.52) 

ENF 48 42.75±2.04 40.36±2.28 43.21(13.39) 38.61(10.65) 

Non_ENF 160 38.41±1.74 39.09±3.02 34.36(11.66) 30.39(9.65) 

 446 

To sift the statistics (mean or median slope) building the two-slope scheme, we com- 447 

pared the SIFc-derived GPP with flux tower GPP. It can be seen that the two-slope scheme 448 

derived from median values (median PB were 7.14% and 11.06% for GOSIF and CSIF, 449 

respectively) outperformed the one from the mean values (median PB were 31.65% and 450 

20.67% for GOSIF and CSIF, respectively) in estimating GPP across all EC towers (Figs. 9, 451 

A8 and A9), probably the median-based scheme effectively avoided the impacts of slope 452 

outliers. We thus used the median values of slopes to develop the two-slope scheme in 453 

this study. The median slopes for the GPP/CSIF were 43.21 (13.39) and 34.36 (11.66) with 454 

corresponding mean ± SE as 42.75 ± 2.04 and 38.41 ± 1.74, respectively for ENF and other 455 

biomes (Table 1), resulting in the following two-slope scheme for converting CSIF into 456 

GPP: 457 

GPP = {
43.21 × SIF,    ENF  biome    
34.36 × SIF,    other biomes

                       (1) 458 

The median slopes for the GPP/GOSIF were 38.61 (10.65) and 30.39 (9.65) with corre- 459 

sponding mean ± SE as 40.36 ± 2.28 and 39.09 ± 3.02, respectively for ENF and other bi- 460 

omes, and the corresponding two-slope scheme was: 461 

GPP = {
38.61 × SIF,      ENF biome    
30.39 × SIF,     other biomes

                       (2) 462 
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 463 
Figure 9. Comparison of the cumulative Flux_GPP and SIFc_GPP across 12 biomes. Median-based 464 
two-slope scheme (A) and Mean-based two-slope scheme (B). The two two-slope schemes are listed 465 
in table 1. The dash line is the 1:1 line. Blue and red lines are the fitted linear regression lines of 466 
cumulative CSIF_GPP and GOSIF_GPP with Flux_GPP, respectively, and their associated PB values 467 
are provided as well. To avoid the impacts of large unbalance in the number of GPP values across 468 
biomes on accumulative GPP, 10,000 daily Flux_GPP and SIFc_GPP value pairs were sampled with 469 
replacement for each biome for this comparison. 470 
 471 

The two-slope scheme provides a very convenient and effective tool for converting 472 

SIFc to GPP and monitoring GPP dynamics in time and space as it is almost land cover 473 

independent (only the distribution of ENF needs to be identified). The significantly higher 474 

slopes for ENF biome in the two-slope scheme are intriguing and deserve further study. 475 

This phenomenon is in line with the observations reported by Gamon, Huemmrich [45] 476 

and Zhang, Joiner [29] who pointed out that the lower SIF (therefore higher GPP/SIFc 477 

slope) for ENF is mainly caused by a stronger canopy reabsorption and/or scattering of 478 

SIF for needle leaf forest, and the core mechanism is the high dependency between SIF 479 

and APAR, chlorophyll content [46] and photosynthetic light-use efficiency [47]. How- 480 

ever, it is still a great challenge to measure (in field), observe (from satellite) and model 481 

(based mechanism) photosynthesis in boreal forests, especially at ENF biome [47, 48]. 482 

More in-depth research is still needed to expand our understanding of the effects of needle 483 

leaf clumping index [49]), leaf chlorophyll content [50], and chlorophyll/carotenoid index 484 

[45] on plant photosynthesis (especially for SIF as an agents) from canopy to global scale 485 

[9]. 486 

The coefficients for the two SIF data sets are different from each other (Equations 1 487 

and 2). It can be explained by the fact that GOSIF is generally higher in value than CSIF 488 

across biomes and years (Figs. A4 and A5), which can be traced back to their reconstruc- 489 

tion methods and the uncertainty of the SIFc products. GOSIF, generated from discrete 490 

OCO-2 SIF soundings, EVI and land cover type data from MODIS and meteorological 491 

reanalysis data, had a RMSE of only 0.07 W m−2 µm−1 sr−1 [31]. In contrast, CSIF, generated 492 

using a machine learning approach (trained by discrete OCO-2 SIF soundings and MODIS 493 

surface reflectance), had a RMSE of 0.18 W m-2 μm-1 sr-1 [29], more than doubled that of 494 

GOSIF. 495 
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Previous studies have highlighted that the linear SIF-GPP relationship is either bi- 496 

ome-dependent [22, 26] or ecosystem-specific (e.g., Sun, C. Frankenberg [2]). To our 497 

knowledge, none of them has really examined the discriminatory power of their datasets 498 

on the observed differences of SIF-GPP relationship across ecosystems or biomes. In other 499 

words, previous studies often studied the uniqueness of the SIF-GPP relationships, and 500 

none addressed their commonality or the discriminatory power of their datasets across 501 

biomes. Our two-slope scheme represents a major step forward in this direction. In addi- 502 

tion, it provides a practicable method for estimating GPP from SIFc with a greatly reduced 503 

need on land cover specificity, which should benefit the reduction of GPP uncertainty 504 

from land cover classification. This general scheme may have reconciled the differences 505 

among previous studies that were either restricted to small regions [51], few flux towers 506 

and/or biomes [21], or with low spatiotemporal resolutions [28]. 507 

4.4. Potential caveats and uncertainties 508 

Landscape heterogeneity and inconsistency between the flux-tower footprint and 509 

SIFc pixel should have contributed to the uncertainty of our results. We acknowledge that 510 

the landscape heterogeneity at the EC flux towers is an important obstacle to analyzing 511 

SIF-GPP relationship. Although we have visually checked landscape conditions around 512 

all EC-flux tower sites using Google Earth images, and removed four flux towers from our 513 

analysis. A more robust approach to address the issue would be using a footprint model 514 

to obtain the footprints of all the sites. Our manual examination approach resulted in 208 515 

sites, which was different from that of Zhang, Joiner [29] who selected only 40 sites using 516 

an automated NDVI-based approach. Our results therefore might have higher uncertain- 517 

ties than Zhang, Joiner [29] but at the same time encompassed more spatial variability of 518 

sites globally which might enhance the robustness of our results. The latter is demon- 519 

strated by the good performance of the median-based two-slope scheme at many flux- 520 

tower sites and biomes (Fig. 9). Retrospectively, our two-slope scheme suggests that the 521 

impact of landscape heterogeneity and inconsistency between the flux tower footprint and 522 

SIFc pixel might not as severe as we previously thought.  523 

In addition, for CRO and GRA biomes, the site selection is in particularly very im- 524 

portant as the flux towers at these biomes are of a height of 2-6 meters and the footprint 525 

area is like a lot when visualized with the SIFc pixel. On top of that the GPP from these 526 

sites very much depend on the crop and management practice (e.g., rotation of crops, fal- 527 

low, grazing, and fertilization), which can change in every few hundred meters thereby 528 

making the satellite-ground comparison challenging. 529 

Moreover, whether the regression method used in this study works well also intro- 530 

duced uncertainty. Just from the mathematical view, one of the fundamental problems of 531 

forcing the intercept to zero is getting much higher R2 (Fig. 8), which will lead to a large 532 

portion of bias in results interpretating, especially at daily scale [2]. While at the point of 533 

vegetation physiology, the zero-intercept logic provides a unique perspective for the SIFc- 534 

GPP relationship analysis. Xiao, Li [52] reported that low daily SIF/GPP measurements 535 

are not available in some areas/biomes, such as EBF. In such occasions, the application of 536 

our zero-intercept logic makes more sense, which may have greater predictability under 537 

unseen conditions (e.g., low SIF/GPP). As this study focused on the comparison of 538 

GPP/SIFc slopes across different biomes, we finally applied the zero-intercept method ra- 539 

ther than the free intercept. Nevertheless, some free intercept regression model would 540 

provide more information about the SIFc-GPP relationship. 541 

5. Conclusions 542 

Our work is a global analysis investigating the relationship between SIFc and GPP at 543 

various spatial and temporal scales, which expands previous research on this topic par- 544 

ticularly in the following two areas. First, we used all GPP data in the FLUXNET2015 col- 545 

lection and two global SIFc products for the analysis, provided the most comprehensive 546 
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coverage so far (208 flux towers and the longest study period from 2001 to 2014) to explore 547 

SIFc-GPP relationship. Second, we used Major Axis regression to account for uncertainties 548 

in both SIFc and GPP estimates in the analysis of SIFc-GPP relationship which produced 549 

higher GPP/SIFc slopes than OLS. Our research expands several pioneering works which 550 

have reported the relationship between OCO-2 SIF and tower GPP at individual sites and 551 

few biomes. We propose a two-slope scheme to differentiate ENF from non-ENF biome 552 

and synopsize the GPP/SIFc slope variability across biomes and years. The relative biases 553 

were 7.14% and 11.06% in the estimated cumulative GPP across all EC towers, respec- 554 

tively, for GOSIF and CSIF using the two-slope scheme. Nevertheless, our results sug- 555 

gested some major issues related to SIFc-GPP relationship including dataset dependency 556 

of the SIFc-GPP relationship, variability of the SIFc-GPP relationship across spatial and 557 

temporal scales, and a two-slope scheme that was distilled from SIFc-GPP relationships 558 

across biomes. We thus call for more research in these issues mentioned above, and of- 559 

fered a few thoughts on caveats, uncertainty of our research, and future research direc- 560 

tions to provide clues for further research. 561 
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