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Abstract 15 

Upwelling has profound effects on nearshore tropical ecosystems, but our ability to study these patterns and 16 

processes is dependent on quantifying upwelling dynamics in a repeatable and rigorous manner. Previous 17 

methods often lack the ability to identify individual cold pulse events within temperature timeseries data or 18 

require several user-defined parameters, and therefore previous hydrographic knowledge of the study site. 19 

When unavailable, parameters are chosen arbitrarily or from previous studies potentially conducted under 20 

different environmental contexts. Previous methods also require the user to manually separate upwelling-21 

induced cold pulse events from those caused by other physical mechanisms like surface downwelling. Here, 22 

we present a novel method that uses a temperature stratification index (TSI) to detect upwelling-induced 23 

cold-water intrusions in tropical waters. We define a cold pulse as a continuous period having an abnormally 24 

low temperature stratification index (TSI), with this criterion based on a climatological threshold of the 25 

temperature profile at the study site calculated from the National Centers for Environmental Prediction’s 26 

(NCEP) Global Ocean Data Assimilation System (GODAS) reanalysis product. Our TSI method is 27 

therefore automatically tuned for the study site in question, removing biases associated with user-defined 28 

input parameters. The method also automatically determines the directional origin of the cold-water mass to 29 

isolate upwelling-induced cooling and can achieve overall cold pulse detection rates 10-14.2 % higher than 30 

previous methods. Our new TSI method can easily be adapted to detect a range of physical processes in 31 

shallow waters, including intrusion of water masses through upwelling, downwelling, and horizontal 32 

advection.   33 

34 
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Introduction 35 

Temperature variations in the ocean can occur over various temporal scales. For example, they occur over 36 

years due to circulation changes (McPhaden et al. 2006), over months due to seasonal differences in surface 37 

layer warming (Rao and Sivakumar 2000), and at daily to sub-daily frequencies due to temporary changes in 38 

the physical properties of the water column and the diurnal solar cycle (Safaie et al. 2018). These latter short-39 

term intrusions of cold water can affect a range of ecosystem patterns and processes. On tropical coral reefs, 40 

for example, short-duration upwelling events can redistribute larvae, plankton and nutrients throughout the 41 

water column (Pineda 1991; Leichter et al. 1996; Sevadjian et al. 2012), creating spatial disparities in 42 

resource supply that affect the growth rates of reef organisms (Leichter and Genovese 2006), their patterns of 43 

abundance (Aston et al. 2019), and their feeding ecology (Roder et al. 2010; Pacherres et al. 2013; Williams 44 

et al. 2018; Radice et al. 2019). Upwelling can also create temporary thermal refugia during abnormally high 45 

ocean temperature conditions (Reid et al. 2019; Wyatt et al. 2020) that can buffer the ecological impacts of 46 

mass coral bleaching and mortality (Wall et al. 2012; Schmidt et al. 2016; Safaie et al. 2018; Randall et al. 47 

2020). Given these strong links between high-frequency temperature variations and the ecology of shallow-48 

water tropical communities, we require a replicable method to quantify short-term cooling events. 49 

 Previous methods to quantify in situ cooling associated with upwelling from temperature time-series 50 

data consist of integrating all temperature values below a daily threshold, such as the daily mean (Leichter 51 

and Genovese 2006) or mode (most found temperature value in a day, e.g., Wall et al. (2012); Schmidt et al. 52 

(2016)). The resulting metric of degree cooling days is then simply a sum of all cooling times across the 53 

entire temperature time-series. A second method used by Wyatt et al. (2020) quantified cooling associated 54 

specifically with internal wave activity. Internal waves are sub-surface gravity waves that break and dissipate 55 

energy at depth and by doing so, drive deep cooler water up into the warmer shallows (Alford et al. 2015; 56 

Woodson 2018). By filtering the temperature time-series to retain all variability associated with frequencies 57 
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between the local inertial frequency and the time-series sampling rate, Wyatt et al. (2020) identified cooling 58 

assumed to be linked to internal wave-induced upwelling. The aim of this method was not to quantify 59 

upwelling dynamics per se, but to quantify the overall temperature reprieve internal wave-induced upwelling 60 

affords shallow water reefs during thermal stress events. However, the methods developed by Leichter and 61 

Genovese (2006) and Wyatt et al. (2020) have some limitations. Firstly, they give a summed value of high 62 

frequency temperature cooling across an entire time-series, but do not allow for the identification and timing 63 

of individual cold pulse events. Secondly, they do not identify the directional origin of the cold-water mass. 64 

Wyatt et al. (2020) assumed that all high frequency temperature drops occurred as a result of deep-water 65 

internal waves. This is not always the case when cold surface water sinks down through the water column as 66 

a result of a thermally driven gravity current following cold, possibly nocturnal, atmospheric conditions 67 

(Monismith et al. 2006; Williams et al. 2018). 68 

An automated method to identify individual cold pulses in temperature time-series data was first 69 

presented by Sevadjian et al. (2012) and, to date, has been the most widely adopted in tropical coral reef 70 

research (Gove et al. 2015; Williams et al. 2018; Aston et al. 2019; Comfort et al. 2019). The original 71 

method defines a cold pulse as whenever the temporal temperature gradient drops below a defined threshold 72 

(Sevadjian et al. 2012). If the temperature gradient stays below this threshold and the final temperature drop 73 

is greater than a specified value, a cold pulse is recorded. The event ends when the temperature recovers to a 74 

given fraction of its overall drop. There have been adaptations of the Sevadjian et al. (2012) method, 75 

including only identifying cold pulses with durations less than 13 hours to focus on cooling events associated 76 

with semi-diurnal tidal and supertidal frequencies (Gove et al. 2015; Williams et al. 2018), and those with a 77 

defined temperature drop occurring over a defined amount of time; the gradient did then not have to be 78 

maintained (Comfort et al. 2019). In Williams et al. (2018) and Comfort et al. (2019), the routine was 79 

applied to subsurface temperature recorders in a depth array at the same location. If the cold pulse was 80 
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recorded in an upslope direction (i.e., recorded first in the deepest logger and then sequentially up into the 81 

shallows), it was attributed to upwelling induced by internal waves. However, if the reverse was seen and the 82 

cooling occurred first in the shallows and transitioned across the loggers in a downslope direction, the 83 

cooling was attributed to surface downwelling (Williams et al. 2018).  84 

Here we will refer to the Sevadjian et al. (2012) method and its adaptations as the Constant Gradient 85 

Threshold (CGT) method, because the temperature gradient threshold for defining a cold pulse remains the 86 

same throughout the time-series. CGT methods are defined by four parameters: a gradient threshold, a 87 

minimum temperature drop, the overall temperature drop fraction that has to recover to mark the pulse end, 88 

and a maximum pulse duration. These parameters must be defined a priori, meaning cold pulse detection 89 

ultimately depends on these somewhat arbitrary parameter choices. For example, a cold pulse can be easily 90 

missed if it shows a final temperature drop smaller than the defined minimum temperature drop. The CGT 91 

methods also do not automatically detect the directional origin of each cooling event and these must be 92 

manually identified from the temperature records, making it a labour-intensive process for isolating 93 

upwelling-induced cooling. It would therefore be beneficial to have a standardised way of defining the 94 

parameters based on the geographic location and time of the study, and an automated way to isolate and 95 

quantify cooling events related to upwelling. Here we present a new method that achieves this when applied 96 

to in situ temperature time-series data collected across depths in shallow tropical waters, like those around 97 

tropical coral reefs. 98 

Materials and procedures 99 

Data 100 

For method development, we used two temperature records from two locations in the Pacific Ocean. The 101 

first spanned one year from April 17th 2015 to April 17th 2016 at three depths (6, 14, and 26 m) at a single 102 
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location on the north outer reef slope (reef habitat facing the open ocean) of Palmyra Atoll in the central 103 

Pacific (5°53’49’’N, 162°04’41’’W) (Fig. 1a). The second record spanned one month from March 17th to 104 

April 16th 2014 at three depths (6, 14 and 25 m) on the north outer reef slope of Wake Atoll in the north-105 

western Pacific (19°18’58’’N, 166°37’38’’E) (Fig. 1b). The spatial configurations of the sensors and their 106 

relative distances apart on the reef were similar at both locations (Fig. 2a-b). For both records, measurements 107 

were taken using Sea-Bird Electronics© sub-surface temperature recorders (SBE 56) attached to the reef 108 

floor and sampling every 5 min with an accuracy of 0.002 °C. The data used were collected by the 109 

Ecosystem Sciences Division of the National Oceanic and Atmospheric Administration (NOAA) Pacific 110 

Island Fisheries Sciences Center’s (PIFSC) Pacific Reef and Monitoring Program (RAMP). In the top 50 m, 111 

the temperature at Palmyra, closer to the Equator, is more than 1°C warmer than at Wake but the 112 

temperature decreases faster at Palmyra, typical of a shallower upper mixed layer depth (Fig. 2c). These 113 

slightly contrasting tropical water environments allow for a more robust assessment of our new method. 114 

Method 115 

In warm tropical marine waters, near-surface stratification variability can be linked to several processes 116 

including the presence of a cool and dense internal tidal bore (Leichter et al. 2006, Reid et al. 2019). An 117 

internal tidal bore is a gravity current formed by a breaking internal wave. The bore strength proxy, used in 118 

Walter et al. (2014) and based on a stratification index (Simpson and Pingree 1978), indicates the magnitude 119 

of an internal bore. The proxy is calculated as the difference between the potential energy of the water 120 

column if it was fully mixed and the potential energy of the observed water column divided by the height of 121 

the water column. Physically, the bore strength proxy represents the energy required, per meter of depth, to 122 

fully mix the whole water column. Cold water intrusion, or cold pulses, in a warm tropical environment 123 

should therefore be detectable using a temperature proxy similar to the bore strength proxy. 124 
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In the following equations, depth averaged quantities are overlined (  ̅). The bore strength proxy for a 125 

water column at a time t, ϕ(t), is defined as (Walter et al. 2014): 126 

ϕ(t) = −
g

H
∫(𝜌(z, t) − �̅�(𝑡))zdz

H

0

 (1) 

 127 

where g = 9.81 m s−2 is the gravitational acceleration, H the water column height, 𝜌(z, t) the 128 

instantaneous density at a depth z and time t, and ρ̅(t) is the mean profile density. To detect cold-water 129 

intrusion in a water column, we adapt Eq. (1) to give a Temperature Stratification Index (TSI), ϕT, defined 130 

as: 131 

ϕT(t) =
1

H
∫(T(z, t) − T̅(t))zdz

𝐻

0

 (2) 

Note Eqs. (1) and (2) are analogous and different only by a constant multiplier (ϕ ∝ ϕT) if the density in 132 

Eq. (1) is primarily a function of temperature (𝜌 ∝ −T), which is reasonable for shallow reef environments 133 

with few freshwater sources. In Eq. (2), T(z, t) is the temperature time-series of the vertical temperature 134 

structure and T̅(t) is the depth-averaged temperature time-series. If the temperature data are discrete over n 135 

equally spaced depth levels, z1, z2, . . . zn,  Eq. (2) can be written, using a midpoint Riemann sum, as: 136 

ϕT(t) =
1

n
∑(T(zi, t) − T̅(t))zi

n

i=1

=  (T(z, t) − T̅(t))z̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (3) 

In the following, Eq. (3) is used for almost equally spaced data. 137 

The TSI is negative in a water column where the temperature is decreasing with depth. For a water 138 

column with a quasi-homogeneous temperature distribution, the TSI is close to zero. The TSI decreases as 139 

the temperature becomes more stratified as a result of cold-water intrusion at the bottom of the water column 140 
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and the strength of the intrusion is quantified by the magnitude of the TSI. However, if the TSI is applied to a 141 

strictly vertical array of depths (e.g., sensors attached to a mooring), both upwelling and downwelling cold 142 

pulses will either only affect the deepest logger or several loggers simultaneously. The best way to 143 

incorporate the direction of cold pulses would therefore be to use an array of bed-mounted loggers going up-144 

slope. The TSI would then be applied to the vertical projection of the bed-mounted array (Fig. 3) (note that 145 

the horizontal distance between loggers is not considered in the TSI computation as it is designed to compare 146 

the current vertical stratification to its background value). 147 

 In summary, our novel TSI method detects and quantifies upwelling-induced cold pulses in a warm, 148 

weakly stratified environment from an up-slope array of temperature time-series data (Fig. 4). The step-by-149 

step process is as follows and we provide detailed descriptions of the methods behind each step below: 150 

STEP 1 – Detecting potential cold pulses: for each time step, we compute the temperature stratification 151 

index (TSI) for the water column and extract potential cold pulses as being periods where the TSI remains 152 

below a location-specific threshold.  153 

STEP 2 – Capturing the full extent of cold pulses detected: potential pulses detected only encapsulate the 154 

part of the pulses with the strongest stratification. We therefore expand the boundaries of those potential 155 

pulses to capture their whole extent.  156 

STEP 3 – Filtering out potential cold pulses linked to surface heating: heating of the surface layer may 157 

also induce temperature stratification of the water column that can show up as a potential pulse. We therefore 158 

filter potential pulses linked to heating at the shallowest logger using a custom-made heating filter.  159 

STEP 4 – Separating series of cold pulses: In the eventuality of several successive pulses detected, the 160 

event is broken down into individual pulses. Potential pulses remaining at that stage are considered true 161 

upwelling-induced cold pulses.  162 
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Detailed description of the method steps   163 

Step 1: detecting potential cold pulses 164 

An upwelling-induced cold pulse should first cause a sharp temperature drop at the deepest logger in the 165 

array before propagating up the reef slope to shallower depths. The lag between the temperature drops at 166 

different depths causes a noticeable temperature stratification captured by a negative TSI. A potential 167 

upwelling-induced cold pulse is defined as a continuous period of TSI below a certain threshold. To 168 

compute a locally relevant TSI threshold, we use in-depth monthly temperature data from the National 169 

Center for Environmental Prediction Global Ocean Data Assimilation System reanalysis product 170 

(NCEP/GODAS; Behringer and Xue (2004)), available from 171 

https://psl.noaa.gov/data/gridded/data.godas.html. GODAS temperature data are monthly means covering 172 

the whole globe from 1980 to 2020, with a spatial resolution of 0.333° latitude × 1° longitude, across 40 173 

depth levels in 10-m increments from 5 to 225 m depth. From the GODAS data, our routine computes the 174 

location-specific climatological mean and standard deviation of the TSI. It first extracts the temperature time-175 

series from the GODAS data at the closest data point to our location (for our test dataset: 5°50’N - 176 

162°30’W, 47 km away from our location). Then, the extracted data is interpolated to the depths of the 177 

subsurface temperature recorders and the TSI time-series is computed for our temperature time-series. The 178 

routine then uses the TSI time-series to compute a 40-year climatological mean TSI and standard deviation 179 

and defines an abnormally low TSI as a TSI lower than the climatological mean minus one standard 180 

deviation. The temperature climatology extracted from GODAS does not deviate much from the local 1-181 

year mean temperature computed from the sensors (Fig. 2c). The TSI threshold, θ, is therefore defined as:  182 

θ = ϕT−GODAS
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − σ(ϕT−GODAS)  (4) 

https://psl.noaa.gov/data/gridded/data.godas.html
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In Eq. (4), ϕT−GODAS
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the 40-year climatological mean TSI and σ(ϕT−GODAS) the 40-year climatological 183 

standard deviation. Using the threshold θ in Eq. (4), a list of the start and end times of potential cold pulses 184 

within the temperature time-series data can be computed.  185 

Step 2: Capturing the full extent of cold pulses detected 186 

The potential cold pulses detected only represent the part of the pulses where the TSI magnitude is the 187 

strongest. To capture the full extent of the pulses, our routine defines new boundaries in time for each 188 

potential pulse. For the new pulse start time, it first computes the last time step before the start of the potential 189 

pulse meeting one of three criteria (the TSI is increasing, the TSI is positive, or the deepest logger 190 

temperature is not the minimum temperature in the water column). The new start is then defined as the time 191 

step right after the one previously computed. Similarly, for the new end time step, it computes the first time-192 

step after the end of the potential pulse meeting one of two other criteria (the TSI is positive or the deepest 193 

temperature logger is the maximum temperature in the water column). The new end is then defined as the 194 

time step before the one previously computed. If potential pulses overlap, they are merged into a single 195 

potential cold pulse. 196 

Step 3: Filtering out potential cold pulses linked to surface heating 197 

Because the TSI is based on temperature differences between temperature loggers in a vertical depth array, a 198 

potential cold pulse may be recorded due to the water column surface heating instead of the bottom of the 199 

water column cooling. Our routine therefore applies a heating filter to all potential pulses to remove those 200 

that are not linked to cooling at the deepest logger. This is done for each potential pulse by computing the 201 

temperature difference between the start of the pulse and the time with the minimum TSI (i.e., the maximum 202 

TSI magnitude) for each depth. A pulse is authenticated under two conditions. First, the bottom temperature 203 

needs to be decreasing between the start of the potential pulse and the time of the minimum TSI. Second, the 204 
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magnitude of the temperature difference needs to be greater for the bottom logger than for all the other 205 

loggers. If one of these conditions is not met, the potential pulse is discarded. 206 

Step 4: Separating successive cold pulses 207 

After the heating filter is applied, a detected pulse might in some cases be a series of successive individual 208 

cold pulses in close succession. To identify and separate these, our algorithm applies the following recursive 209 

routine, which we call the S-routine. 210 

Initialisation: The pre-pulse temperature is defined as the temperature at the first time-step of the detected 211 

potential pulse (Fig. 5a and 4f). 212 

IF the temperature of the potential pulse remains below the pre-pulse temperature for the whole duration of 213 

the event (Fig. 5f) 214 

• We categorise the potential pulse as an individual event (Fig. 5g) and the S-routine ends. 215 

ELSE (Fig. 4b) 216 

• The potential pulse is split in two parts (Fig. 5c).  217 

• The routine identifies the start of the pulse to when the temperature goes back to the pre-218 

pulse temperature as an individual cold pulse event (Fig. 5d).  219 

• The routine then defines the start a new potential pulse within the residual time-series. 220 

The new potential pulse starts when the bottom logger temperature decreases (Fig. 5e).  221 

IF no such time is found 222 

• The potential pulse is discounted and the S-routine ends 223 

ELSE 224 
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• The S-routine is applied to the new potential pulse (Fig. 5f). 225 

Assessment 226 

To assess the performance of our temperature stratification index (TSI) against the previous constant 227 

gradient threshold (CGT) methods (Sevadjian et al. 2012; Gove et al. 2015), we built two test datasets by 228 

manually identifying cold pulses occurring at 26 m depth in our Palmyra and Wake time-series data. We 229 

then analysed the original unprocessed time-series data using both the TSI and CGT methods and compared 230 

the results to the test data. We defined a True Positive (TP) as a time step corresponding to the presence of a 231 

pulse that was correctly identified by the TSI and CGT methods. Similarly, we defined a True Negative 232 

(TN) as a time step corresponding to the absence of a pulse that were correctly identified. In contrast, a False 233 

Positive (FP) was defined as a time step incorrectly identified as a pulse, and a False Negative (FN) as a time 234 

step where the presence of a pulse failed to be detected. From there, we defined the precision, recall and F1 235 

score of each method, with the latter classically used for the assessment of anomaly detection algorithms 236 

(Anneken et al. 2015; Ji et al. 2019; Li et al. 2020), as in Eqs (5-7). 237 

Recall =  
TP

TP + FN
 (5) 

Precision =  
TP

TP +  FP
 (6) 

F1 score =  2
Precision × Recall

Precision + Recall
 (7) 

Higher recall equates to a higher number of true positives, while higher precision equates to fewer false 238 

positives. The F1 score is affected by both false negatives (as in recall) and false positives (as in precision). 239 

We consider both errors to matter equally in the process of detecting cold pulses, therefore we used the F1 240 

score as a proxy to rank the various detection methods against each other.  241 
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Our TSI method requires at least two temperature loggers to be used in an up-slope configuration in 242 

order to compute the stratification in temperature across the loggers. To quantify upwelling at a certain 243 

depth, the TSI computed as in Eq. (3) may be affected by the number of loggers used and their spatial 244 

configuration. To test for an effect of the number of loggers and their depth spacing on the TSI values, we 245 

assessed the performance of our method in three different ways: first using all three loggers at 6, 14, and 26 246 

m depth (called TSI(3) for TSI with three levels), then using the 6 m and the 26 m loggers (called TSI(2,20) 247 

for TSI with two levels, 20 meters apart), and finally using the 14 m and 26 m loggers (called TSI(2,10) for 248 

TSI with two levels, 10 meters apart). At Palmyra Atoll, the TSI method achieved an average 92.6% 249 

precision, 71.6% recall, and a F1 score of 80.6% (Table 1). Precision was consistent across the TSI methods 250 

and varied from 91.5% to 93.1%. Recall varied more, ranging from 65.7% to 75.7%. The best F1 score 251 

across our three spatial configurations was the TSI(2, 20) (82.9%) and was closely followed by the TSI(3) 252 

(82.1%) (Fig. 6a, Table 1). At Wake Atoll, the TSI reached an average precision of 70.4%, recall of 66.3% 253 

and a F1 score of 68.3%. The best F1 score across our three spatial configurations was the TSI(3) (70.3%) 254 

and was closely followed by the TSI(2,10) (70.2%) (Table 2). 255 

 The CGT methods detect cold pulses based on the temporal temperature gradient: if the gradient 256 

exceeds a defined threshold (G, in °C min-1), a potential pulse is recorded. If this potential pulse induces a 257 

temperature drop greater than a given minimum temperature drop (D, in °C), the potential pulse is 258 

considered to be a true cold pulse. The pulse event is considered over when the temperature has recovered to 259 

a defined fraction (F, no unit) of the induced temperature drop. If the pulse is longer than a given maximum 260 

duration (d, in hours), it is discarded. A given CGT method is thus defined by four parameters and will be 261 

referred as CGT (G, D, F, and d). We first assessed the performance of the CGT methods used in Sevadjian 262 

et al. (2012) and Gove et al. (2015) corresponding to CGT (G:0.06, D:0.3, F:0.5, d: +∞) and CGT 263 

(G:0.00125, D:0.3, F:0.5, d:13), respectively. To compute the range in precision, recall and F1 scores and 264 
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thus the performance extent of the CGT methods, we varied all four parameters across reasonable ranges. G 265 

logarithmically varied from 0.0008 °C min-1 (minimum detectable gradient using our loggers and sampling 266 

frequency) to 0.8 °C min-1 (near the maximum gradient found in the Palmyra time-series: 0.89 °C min-1) 267 

among 13 values, D varied from 0 °C to 1.5 °C every 0.1 °C, F varied from 0 to 0.9 every 0.1, and d varied 268 

across three typical values (13 h, 24 h and 48 h).  269 

At Palmyra, the CGT methods examined showed a wide range in precision (0 % to 100 %) and 270 

recall (0 to 97.2 %) (Fig. 6a).  The highest F1 score of all CGT methods tested was 72.9 %, obtained by the 271 

CGT (G:0.0008, D:0.1, F:0.9, d:24), corresponding to the lowest G, highest F and filtering pulses below 272 

0.1°C (Table 1). The highest F1 score of our TSI method applied to the test data was 82.9 % and varied 273 

between 4.1-10.0 % higher than the best F1 scores achieved by the previously published CGT methods, 274 

regardless of the CGT method parameter settings (Fig. 6a). Similarly at Wake, the CGT methods spanned a 275 

wide range of precision (0 to 82.1 %), recall (0 to 96.6 %) and F1
 score (0 to 56.0 %). The Sevadjian et al. 276 

(2012) method reached an F1 score of 38.8 % while the Gove et al. (2015) method did not detect any pulses 277 

in the time series. The best F1 score was obtained by the CGT (G:0.0025, D:0.1, F:0.6, d:13) (Table 2). As 278 

with the Palmyra test data, the TSI performed better than the best CGT method for all three TSI setups with 279 

F1 scores 12.3-14.3 % higher than the best CGT. 280 

Discussion 281 

Gradients in upwelling can have profound effects on the biology and ecology of shallow-water tropical 282 

marine communities (Leichter and Genovese 2006; Williams et al. 2018; Aston et al. 2019; Radice et al. 283 

2019; Randall et al. 2020), yet we lack a locally parameterized automated method to quantify the dynamics 284 

of such events from in situ temperature timeseries data. Here we developed a novel method, the Temperature 285 

Stratification Index (TSI), that is parameterized based on the local temperature stratification of the water 286 
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column to quantify sub-surface cooling events in stratified waters like those found around tropical coral reef 287 

islands. Based on in situ temperature timeseries data collected from bed-mounted loggers in an up-slope 288 

configuration, our method improves on previously published methods by: 1) detecting individual cold pulse 289 

events to allow the computation of summary metrics, 2) removing the need for user-defined input 290 

parameters, 3) automatically determining the directional origin of the cold-water mass to isolate cooling as a 291 

result of upwelling, and 4) increasing the detection accuracy (F1 score) by up to 10-14% over previously 292 

published methods.  293 

 Previously published methods quantify integrated cooling across in situ temperature time series data 294 

(Leichter and Genovese 2006; Wall et al. 2012; Wyatt et al. 2020), but do not identify individual cooling 295 

events, preventing the calculation of summary metrics of cold pulse temporal dynamics. In contrast and like 296 

previously published constant gradient threshold (CGT) methods (Sevadjian et al. 2012; Gove et al. 2015), 297 

our TSI method detects individual cold pulse events, allowing metrics such as mean pulse duration, mean 298 

maximum temperature drop, and mean pulse frequency to be calculated over different temporal windows. 299 

Depending on the question at hand, these metrics could be critical. For example, around both continental and 300 

oceanic shallow-water tropical coral reefs, cold pulses as a result of deep-water upwelling are associated with 301 

increased nutrient supply to the shallows (Leichter et al. 2003; Aston et al. 2019). Cold pulses with a mean 302 

short duration could favour macroalgae that are able to capitalise on increased nutrient concentrations in the 303 

surrounding waters more rapidly than reef-building corals (Fujita 1985; Raven and Taylor 2003; Ladah et al. 304 

2012; den Haan et al. 2016). In contrast, reef-building corals may benefit where cold pulses occur more 305 

frequently or have a longer mean duration. In the central Pacific, the percentage cover of reef-building corals 306 

around Jarvis Island peaked where more frequent deep-water cold pulses occurred (Aston et al. 2019), and 307 

mean duration of cold pulses associated with night time lagoonal flushing correlated more strongly with 308 

coral trophic responses than the total cooling time of these events around Palmyra Atoll (Williams et al. 309 
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2018). These ecological responses to specific cold pulse dynamics would be missed by purely quantifying 310 

the summed total amount of cooling over time. 311 

 A cold pulse identification method that requires a priori defined input parameters runs the risk of the 312 

user making arbitrary choices or them taking parameter values from previous studies conducted under 313 

different environmental contexts. The CGT method used by Sevadjian et al. (2012) and Gove et al. (2015) 314 

requires four input parameters to be defined by the user, but our TSI method does not require any pre-315 

defined input parameters to identify individual cooling events within a temperature timeseries. Our method 316 

defines a ‘cold pulse’ in a geographically context-specific manner based on an already existing dataset (in 317 

this case GODAS), which means the operator is not required to have extensive knowledge of the 318 

hydrographic properties of the study site. We define a cold pulse as a continuous period of abnormally low 319 

TSI, with this criterion based on a climatological threshold of the temperature profile at the study site 320 

calculated from the NCEP-GODAS reanalysis product (Behringer and Xue 2004). The TSI cold pulse 321 

detection threshold is therefore automatically tuned for the study site in question, removing biases associated 322 

with user-defined input parameter choices. We used the GODAS product because of its continuous 40-year 323 

record and global extent, but other similar gridded products could be used to obtain the long-term 324 

climatology. We advise against the use of in situ local temperature records, however, as this would 325 

incorporate any effect of seasonal or regular upwelling into the climatology, meaning only the most extreme 326 

cold pulses would then be detected by our routine. 327 

In tropical shallow waters, cold pulses can occur in temperature timeseries data as a result of surface 328 

downwelling in addition to deep-water upwelling (Williams et al. 2018). Despite both mechanisms creating 329 

short-term drops in sub-surface temperature, the cold-water masses driving the cooling response have 330 

fundamentally different origins and may therefore have different effects on shallow-water tropical 331 

organisms. Previously, the only way to separate cooling as a result of these different physical mechanisms 332 
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was the labour-intensive process of manually inspecting each cold pulse identified by the CGT algorithm 333 

(Gove et al. 2015; Williams et al. 2018). The TSI method improves on this by automatically separating 334 

upwelling from downwelling-induced cooling events by investigating the sign of the temperature gradient 335 

along the reef slope. Upwelling-induced cold pulses result in a negative TSI, whereas cold pulses as a result 336 

of downwelling result in a positive TSI and are automatically discarded.  337 

As well as solving the core limitations of previously published methods that quantify upwelling-338 

induced cold pulses, our TSI method shows a substantially increased detection accuracy. Around the shallow 339 

tropical waters of Palmyra and Wake Atolls, our TSI method (and its variations tested in terms of number 340 

and depth spacing of loggers) achieved an F1 score 4.1-14.2% better than the best CGT methods, even with 341 

the CGT parameters optimised for the test datasets (Table 1-2, Fig. 6). There does not seem to be a 342 

significant difference in performance between the various TSI setups tested. However, the TSI(2) can be 343 

assumed to be better than the TSI(3) as it shows similar results with fewer loggers and therefore reduces 344 

equipment cost and labour of logger installation and retrieval. 345 

If two loggers are available, we would advise users to choose the TSI method over any CGT 346 

method. Of course, the loggers are required to be of sufficient quality for either method. We advise users to 347 

utilise loggers with a high accuracy and a response time to changes in temperature that is far shorter than the 348 

duration of the pulses the operator wishes to detect. The depth and relative distance of loggers should also be 349 

chosen with care when using our TSI method as results could be affected by the local stratification. For 350 

example, if two loggers are too far apart or one is too deep, only one logger might reside in the upper mixed 351 

layer. In this case, the background stratification will be high and only the strongest upwelling-induced cold-352 

pulse events may be detected. Similar underestimates are likely to be obtained in a region subject to constant 353 

intense upwelling, for example on the west coast of Jarvis Island that experiences high upwelling intensity 354 

and frequency induced by the Equatorial Undercurrent (Gove et al. 2006; Aston et al. 2019). The use of 355 
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GODAS data in this case, however, should limit the effects of localised intense upwelling in computing the 356 

background temperature stratification.  357 

Users should also consider the risk of placing the loggers too shallow or too close together on the 358 

reef slope. In shallow waters the daily temperature cycle in the atmosphere could bias the results, as pulses 359 

producing a smaller temperature difference than the one induced by the warm surface temperature are likely 360 

to be discarded during our heating filter processing step. If the two loggers are too close to each other, the 361 

temperature drop caused by a cold pulse might occur at both loggers simultaneously, suppressing the 362 

temperature gradient required for a pulse to be detected. The absolute distance between the loggers should be 363 

at least of the order of magnitude of the cold pulse propagation celerity multiplied by the sampling 364 

frequency. For example, the order of magnitude of the celerity of shoaling internal bores (inducing upwelled 365 

cold-pulses) is about 10 cm.s-1 (McSweeny et al. 2019). At a sampling frequency of 300 s (5 min), loggers 366 

should be at least 30 m apart to be sure to detect the propagation of such internal bores. As it is likely that 367 

most pulses do not travel the shortest path between two loggers, a slightly lower value would be acceptable. 368 

In our case, the shallow loggers (15 and 5 m deep) were 24 m and 76 m away, respectively from the deep 369 

logger (25m deep) at Palmyra Atoll and 22 m and 66 m away, respectively from the deep logger at Wake 370 

Atoll. With all this in mind, we would advise future users who want to detect cold pulses at a depth d to 371 

follow these summary recommendations (note that the depth of detection d corresponds to the depth of the 372 

deepest logger): 1) a shallower logger should be used along with the logger at depth d, both mounted to the 373 

substrate, 2) both loggers should sit in the upper mixed layer and thus above the thermocline for the duration 374 

of the study, 3) the shallow logger should not be too close to the surface to limit the effects of air temperature 375 

on the underlying water mass, and 4) the shallow logger should be at a distance in meters of about a tenth of 376 

the sampling rate in seconds to create a sufficiently large space to detect cold pulse propagation. The current 377 

work tested these methods using temperature data only. However, in locations where water density is mainly 378 
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driven by salinity changes, like in the Red Sea, the same methods outlined here could be applied to changes 379 

in density stratification (as in Eq. 1) if both salinity and temperature data were available. 380 

In summary, upwelling has several effects on shallow-water tropical communities, but our ability to 381 

study these patterns and processes is dependent on our ability to quantify upwelling dynamics in a repeatable 382 

and rigorous manner. Importantly, our novel TSI method presented here improves on previously published 383 

methods by automatically identifying individual cooling events within a temperature timeseries without the 384 

need for user-defined input parameters. This means our method is easily applied to novel situations to 385 

quantify the dynamics of upwelling-induced cooling where previous hydrographic knowledge of the study 386 

site is lacking.  387 

  388 
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Tables 495 

Table 1. Precision, recall and F1 scores of our Temperature Stratification Index method (TSI) and previously 496 

published Constant Gradient Threshold methods (CGT) tested on in situ temperature timeseries data from 497 

Palmyra Atoll, central Pacific. Values in bold represent the best scores reached by either the TSI or CGT 498 

method within each method iteration tested.  499 

 500 

Method  Precision (%) Recall (%) F1 score (%) 

TSI(3) 93.1 73.4 82.1 

TSI(2,20) 91.5 75.7 82.9 

TSI(2,10) 93.1 65.7 77.0 

Mean TSI 92.6 71.6 80.6 

Best CGT3 for precision: 

CGT(G:0.025, D:0.9, F:0.3, d:24) 

100 20.1 33.5 

Best CGT for recall: 

CGT(G:0.0008, D:0, F:0, d:48) 

42.0 97.2 58.6 

Best CGT for F1 score: 

CGT(G:0.0008, D:0.1, F:0.9, d:24) 

73.8 72.1 72.9 

Sevadjian et al. (2012): 

CGT(G:0.06, D:0.3, F:0.5, d(+inf)) 

99.5 18.1 30.6 

Gove et al. (2015): 

CGT(G:0.00125, D:0.3, F:0.5, d:13) 

88.9 52.2 65.8 
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Table 2. Precision, recall and F1 scores of our Temperature Stratification Index method (TSI) and previously 501 

published Constant Gradient Threshold methods (CGT) tested on in situ temperature timeseries data from 502 

Wake Atoll, north-western Pacific. Values in bold represent the best scores reached by either the TSI or CGT 503 

method within each method iteration tested. Note the Gove et al. (2015) CGT method did not detect any pulse, 504 

hence the recall and precision both equalling zero. 505 

Method  Precision (%) Recall (%) F1 score (%) 

TSI(3) 70.6 70.0 70.3 

TSI(2,20) 65.0 63.5 64.2 

TSI(2,10) 75.7 65.5 70.2 

Mean TSI 70.4 66.3 68.3 

Best CGT for precision: 

CGT(G:0.025, D:0.0, F:0.9, d:13) 

82.1 9.3 16.7 

Best CGT for recall: 

CGT(G:0.0008, D:0, F:0.5, d:48) 

17.2 96.6 29.3 

Best CGT for F1 score: 

CGT(G:0.0025, D:0.1, F:0.6, d:13) 

46.4 70.7 56.0 

Sevadjian et al. (2012): 

CGT(G:0.06, D:0.3, F:0.5, d(+inf)) 

41.8 36.1 38.8 

Gove et al. (2015): 

CGT(G:0.00125, D:0.3, F:0.5, d:13) 

0.0 0.0 Not definable 

 506 
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Figures 507 

 508 

Figure 1. (a) Bathymetry of Palmyra Atoll and our study site (red circle) on the north outer reef slope. (b) 509 

Bathymetry of Wake Atoll and our study site (purple circle) and the location of Palmyra and Wake in the 510 

Pacific Ocean. Bathymetry data from Palmyra are derived from multibeam bathymetry surveys collected by 511 

NOAA’s Pacific Islands Benthic Habitat Mapping Center (up to 25 m) and IKONOS satellite data (shallower 512 

than 25 m), available at http://www.soest.hawaii.edu/pibhmc/cms/data-by-location/pacific-remote-island-513 

area/. Bathymetry data from Wake are also derived from multibeam bathymetry surveys collected by 514 

NOAA’s Pacific Islands Benthic Habitat Mapping Center combined with satellite imagery and the General 515 

Bathymetry Chart of the Ocean (GEBCO, https://www.gebco.net/) product. Solid lines represent the 0 m, 500 516 

m, 1000 m and 1500 m bathymetry contour lines.  517 

 518 

http://www.soest.hawaii.edu/pibhmc/cms/data-by-location/pacific-remote-island-area/
http://www.soest.hawaii.edu/pibhmc/cms/data-by-location/pacific-remote-island-area/
https://www.gebco.net/
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 519 

Figure 2. Spatial configuration and relative positioning of the temperature loggers producing the test dataset 520 

at Palmyra and Wake Atolls (a, b). (c) The 40-year temperature climatology from the Global Ocean Data 521 

Assimilation System (GODAS) reanalysis product and its interpolation between depths (dashed lines), along 522 

with one year mean temperature of in situ data at Palmyra and Wake. 523 

  524 
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 525 

Figure 3. Schematic representation of how cold pulses affect the Temperature Stratification Index (TSI) 526 

computed from two temperature loggers in an up-slope configuration. The TSI is computed on the virtual 527 

vertical array, which is the vertical projection of the actual logger locations on the seabed. (a) No pulse: the 528 

TSI is almost null. (b) Upwelled cold pulse situation; the TSI computed is negative. (b) Downwelled cold 529 

pulse: the TSI computed is positive.  530 
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 531 

Figure 4. Our automated detection of upwelling-induced cold pulses within subsurface temperature time-532 

series data in shallow tropical environments using a temperature stratification index (TSI). The figure shows 533 

the step-by-step algorithm in three cases. CASE 1 (b, e, h, k) displays a potential pulse detected linked to 534 

heating in the surface layer and discarded by the algorithm. CASE 2 (c, f, i, l, n, p-s) displays a potential pulse 535 

detected containing a series of four successive cold pulses. CASE 3 (d, g, j, m, o, t) displays a potential pulse 536 

detected containing only one cold pulse. a-d. Input temperature data from the northern reef slope at Palmyra 537 

Atoll at 6 m (light blue) and 26 m depth (dark blue). e-g. STEP 1: the TSI (thick solid red line) is computed 538 

from the input temperature data and potential pulses are defined as continuous periods of TSI lower than the 539 

location-specific threshold (thick dotted line). Hashed areas show where no potential pulse has been detected. 540 

h-j. STEP 2: boundaries of potential pulses detected are expanded to capture the full extent of the pulses. The 541 
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figure shows the temperature data of the full potential pulses detected between the hashed areas. k-m. STEP 542 

3: potential pulse linked to heating of the surface layer are discarded by the heating filter. The filter computes 543 

ΔT for each depth, defined as the difference between the pre-pulse temperature and the temperature of the 544 

minimum TSI. A pulse is discarded if ΔT at the deepest logger is positive (the bottom layer is warming) or if 545 

ΔT at the deepest logger does not have the biggest magnitude (shallower layer experienced more temperature 546 

changes during the potential pulse). Computed ΔT for 6 m and 26 m depth are displayed. The ΔT with the 547 

biggest magnitudes are in bold. Potential pulse in CASE 1 is discarded, while potential pulses in CASE 2 and 548 

CASE 3 are validated. n-o. STEP 4: when potential pulses detected and validated by the heating filter contain 549 

several successive pulses, they are broken down into individual pulses. p-t. Individual cold pulse events 550 

detected by the algorithm.  551 
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 552 

Figure 5. Detailed schematic of our S-routine applied to a hypothetical series of cold pulses. Solid lines 553 

represent temperature data over time. Horizontal dotted lines are the pre-pulse temperature for each step of the 554 

routine. The potential pulse detected is split into two individual time-series after two iterations of the S-routine.  555 
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 556 

Figure 6. Temperature stratification index (TSI) and constant gradient threshold (CGT) methods plotted on a 557 

precision-recall plane for our study site at Palmyra Atoll (a) and Wake Atoll (b). Curved lines represent the F1 558 

score values, increasing from the bottom left corner to the top right corner. All CGT methods are represented 559 

by the filled light blue areas and represent a mix of two previously published methods (Sevadjian et al. 2012 560 

and Gove et al. 2015) and variations on these that we computed by varying their four user-defined parameters 561 

across a reasonable range (see ‘Assessment’ section for details).  562 
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