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ABSTRACT 54 

 55 

Remote sensors, onboard orbital platforms, aircraft, or unmanned aerial vehicles (UAVs) have 56 

emerged as a promising technology to enhance our understanding of changes in ecosystem 57 

composition, structure, and function of forests, offering multi-scale monitoring of forest 58 

restoration. UAV systems can generate high-resolution images that provide accurate 59 

information on forest ecosystems to aid decision-making in restoration projects. However, 60 

UAV technological advances have outpaced practical application; thus, we explored combining 61 

UAV-borne lidar and hyperspectral data to evaluate the diversity and structure of restoration 62 

plantings. We developed novel analytical approaches to assess twelve 13-year-old restoration 63 

plots experimentally established with 20, 60 or 120 native tree species in the Brazilian Atlantic 64 

Forest. We assessed (1) the congruence and complementarity of lidar and hyperspectral-65 

derived variables, (2) their ability to distinguish tree richness levels and (3) their ability to 66 

predict aboveground biomass (AGB). We analyzed three structural attributes derived from lidar 67 

data—canopy height, leaf area index (LAI), and understory LAI—and eighteen variables 68 

derived from hyperspectral data—15 vegetation indices (VIs), two components of the 69 

minimum noise fraction (related to spectral composition) and the spectral angle (related to 70 

spectral variability). We found that VIs were positively correlated with LAI for low LAI values, 71 

but stabilized for LAI greater than 2 m²/m². LAI and structural VIs increased with increasing 72 

species richness, and hyperspectral variability was significantly related to species richness. 73 

While lidar-derived canopy height better predicted AGB than hyperspectral-derived VIs, it was 74 

the fusion of UAV-borne hyperspectral and lidar data that allowed effective co-monitoring of 75 

both forest structural attributes and tree diversity in restoration plantings. Furthermore, 76 

considering lidar and hyperspectral data together more broadly supported the expectations of 77 

biodiversity theory, showing that diversity enhanced biomass capture and canopy functional 78 

attributes in restoration. The use of UAV-borne remote sensors can play an essential role during 79 
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the UN Decade of Ecosystem Restoration, which requires detailed forest monitoring on an 80 

unprecedented scale. 81 

 82 

Keywords: forest landscape restoration, tropical forests, drones, lidar remote sensing, 83 

hyperspectral remote sensing, leaf area density, vegetation indices  84 
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1.  INTRODUCTION 85 

 86 

An ambitious restoration agenda has been set to increase forest cover in deforested and 87 

degraded landscapes, to improve their multifunctionality and capacity to provide essential 88 

ecosystem services, such as maintaining biodiversity, water supply and carbon storage 89 

(Erbaugh & Oldekop 2018). Forest monitoring will play a crucial role to track the success of 90 

these goals and also support adaptive management (Brancalion & Holl 2020; Fagan et al. 2020), 91 

given the widespread failures in ecosystem restoration and the unprecedented scale of 92 

restoration pledges (Versluijs et al. 2019; Chagas et al. 2020). Currently, there is a pressing 93 

need to develop social collaborative and effective technologies for monitoring ecosystem 94 

recovery over large areas (hundreds to millions of hectares) using multiple key ecological 95 

indicators (Guariguata & Evans 2020; Höhl et al. 2020). Remote sensors onboard orbital 96 

platforms, aircraft, or unmanned aerial vehicles (UAVs) have emerged as promising 97 

technologies to upscale forest restoration monitoring. Particularly, UAV systems can generate 98 

high-resolution images that provide accurate information on forest stands with or without the 99 

need for ground-based data (e.g., calibration or validation) to estimate important forest 100 

attributes such as the number of trees, aboveground biomass, or canopy openness (Almeida et 101 

al. 2020a, Kotivuori et al. 2020; Ferreira et al. 2020). 102 

Accurate methods to estimate forest attributes to support decision-making are required 103 

for the effective remote monitoring of forests undergoing restoration (Almeida et al. 2019a). 104 

For example, forest cover, biomass stock and tree species diversity vary along forest 105 

successional sequences and are commonly employed to monitor forest restoration (Wortley et 106 

al. 2013). To this aim, multispectral sensors have proven useful, offering estimates of these 107 

critical variables. However, a high leaf area index (LAI) saturates most vegetation indices (VIs) 108 

derived from remote sensing (Turner et al. 1999). This saturation complicates their use to 109 

monitor structural attributes (such as aboveground biomass - AGB) in high-LAI tropical 110 
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forests, which account for a large portion of global restoration commitments (Timothy et al. 111 

2016, Crouzeilles et al. 2019). On the other hand, the light detection and ranging (lidar) sensor 112 

has been hailed as a promising technology for retrieving forest canopy structural attributes, 113 

regardless of canopy leaf area density. Lidar enables the estimation of canopy structural 114 

attributes with high precision and accuracy, such as vegetation density in the understory, LAI, 115 

tree height, the identification and measurement of forest gaps, and AGB (Almeida et al. 2019b, 116 

da Costa et al. 2020, Valbuena et al. 2020, Dalagnol et al. 2021). On the other hand, lidar 117 

technology is of limited use for assessing tree species diversity, for which hyperspectral has 118 

shown greater potential (Asner & Martin 2009).  119 

Assessing the different facets of forest diversity, such as tree richness, functional 120 

diversity, and composition, is one of the most important but challenging modern remote sensing 121 

tasks (Asner et al. 2015). With lidar, one approach is to use canopy structural attributes as 122 

predictive variables for indirectly estimating tree species diversity (Hernández-Stefanoni et al. 123 

2014, Ali et al. 2019, De Cáceres et al. 2019, Adhikari et al. 2020). Notably, a more species-124 

rich forest is expected to have a more heterogeneous and complex canopy structure (Zellweger 125 

et al. 2019, Mensah et al. 2020). Secondary forests with higher biomass are expected to have 126 

reached a later stage of succession, supporting more tree species (Gamfeldt et al. 2013, Lasky 127 

et al. 2014, Finegan et al. 2015, Poorter et al. 2015). However, structure–richness relationships 128 

are not ubiquitous and depend on a wide range of factors, such as forest type, management, use 129 

and disturbance history. Consequently, the lidar approach has so far demonstrated a limited 130 

ability for local scale prediction of species richness, especially in hyper-diverse tropical biomes 131 

(Marselis et al. 2020, Almeida et al. 2019a, Valbuena et al. 2020). 132 

Hyperspectral imaging (HSI) has a significant potential for estimating or measuring 133 

taxonomical and functional diversity of highly diverse tropical forests (Feret & Asner 2014; 134 

Vaglio Laurin et al. 2016; Durán et al. 2019). HSI measures reflected radiation from the forest 135 
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canopy over hundreds of narrow spectral bands (or channels) within the visible- to short-wave 136 

infrared wavelength range (VSWIR, 400-2500 nm). The rationale for using hyperspectral 137 

sensors to discriminate species-richness is that each species (or group of species) has specific 138 

combinations of spectral features. These include absorption by specific chemical constituents 139 

of leaves and non-photosynthetic elements and scattering driven by vegetation structure at 140 

different scales, such as leaf anatomy, leaf area index, leaf angle distribution function (Ferreira 141 

et al. 2016). However, this combination of spectral traits does not necessarily result in a unique 142 

species-specific spectral identity (and thus perfect discrimination among species), as significant 143 

intraspecific variability in spectral traits was evidenced (Amaral et al. 2018; Camarretta et al. 144 

2020). For example, a single species’ spectral characteristics can vary widely depending on 145 

environmental variables (e.g., water availability) or species and community attributes (e.g., leaf 146 

amount and leaf age) (Yan et al. 2018; Ferreira et al. 2019; Gonçalves et al. 2020). Another 147 

rationale is that the spectral heterogeneity is related to tree species diversity and composition 148 

(Rocchini et al. 2010; Féret and Asner, 2014; Asner et al. 2017; Laliberté et al. 2020). HSI also 149 

enables linking canopy reflectance to biophysical and chemical properties using various 150 

approaches, including narrow-band vegetation indices, which are designed to be used as 151 

proxies for both structural (e.g., vegetation density) and physiological (e.g., leaf chemical 152 

composition and water stress) properties (Zhao et al. 2018).  153 

Using HSI data to study species diversity or the retrieval of canopy chemical properties 154 

is still challenging, particularly in tropical ecosystems due to their high biodiversity and 155 

structural complexity (Féret and Asner 2013). HSI data acquisition with airborne surveys is 156 

usually costly, planning intensive, and may be operationally prohibitive in places with poor 157 

infrastructure and resources, such as in some tropical forest regions. Conversely, restoration 158 

practitioners face the challenges of monitoring tree diversity in tropical forest regions 159 

(Crouzeilles et al. 2019), given the difficulty of properly identifying hundreds of tree species 160 
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and the reduced accessibility of restoration areas for forest inventories (Keil et al. 2019). As 161 

restoration programs are usually composed of several small to mid-size polygons scattered 162 

across large and heterogeneous areas, airborne surveys are less viable. 163 

Recent technological developments have allowed for manufacturing UAV-compatible 164 

HSI sensors, a promising approach to mainstreaming the common use of HSI in tropical forest 165 

restoration monitoring. UAVs are a technological frontier of remote sensing data acquisition 166 

and may constitute an alternative to high-cost airborne hyperspectral and lidar campaigns. The 167 

use of UAV-borne remote sensors, both lidar and HSI, nonetheless presents pros and cons. The 168 

main advantage is the higher spatial resolution. Point cloud density from airborne lidar usually 169 

ranges between 0.4 and 30 points per m² (ppm²), whereas UAV lidar acquisitions can reach 170 

100-1000 ppm² (d’Oliveira et al. 2020; Prata et al. 2020). The high point density increases the 171 

accuracy of estimating structural parameters, such as vertical profiles of leaf area density 172 

(Almeida et al. 2019c). It can even allow the individualization of trees and measurement of 173 

stem volume in open-canopy forests such as eucalyptus plantations (Corte et al. 2020) and 174 

temperate forests (Krůček et al. 2020). For UAV-HSI, the centimetric resolution of the pixels 175 

allows a better characterization of target objects, detecting vegetation-free patches, removing 176 

background contribution, and capturing the spectral variability within and among crowns. 177 

Conversely, flight instability of the UAV, changing view and illumination geometry and 178 

changing sky conditions make the use of these images challenging. HSI reflectance retrievals 179 

from UAVs require a matched incident radiance HSI sensor and non-trivial pre-processing 180 

steps, including corrections for bidirectional reflectance distribution function (BRDF) and 181 

atmospheric effects (Jia et al. 2020). 182 

To date, few investigations have assessed the potential of UAV-lidar-HSI systems in 183 

tropical forest monitoring. Sankey et al. (2017) and Lin et al. (2019) used UAV-lidar-HSI 184 

systems to monitor semi-arid and pine forests, respectively. Here, we explored the fusion of 185 
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UAV-borne lidar and hyperspectral data to remotely access the structure and diversity of 186 

restored tropical forests. We developed a novel analytical approach for a mixed-species, 13-187 

year-old restoration plantation experimentally established with 20, 60, and 120 native tree 188 

species in the Brazilian Atlantic Forest. Specifically, we assessed (1) the congruence of lidar 189 

and hyperspectral variables, (2) their usefulness to distinguish tree species richness levels, and 190 

(3) their ability to predict aboveground biomass. Our work goes well beyond traditional 191 

measurements based on sampling plots, providing high-accuracy and precision information for 192 

upscaling field variables to satellite-based hyperspectral and lidar observations, representing 193 

an effective strategy for large-scale forest restoration monitoring during the United Nations 194 

Decade on Ecosystem Restoration (2021-2030). 195 

 196 

 197 

2.  METHODS 198 

 199 

2.1.  Experimental site and field data 200 

 201 

We used an experimental mixed-species restoration plantation with three diversity 202 

levels to explore the potential and limitations of fusing UAV-borne lidar and hyperspectral data 203 

to assess structure and diversity. The experimental plots were established in May 2006 in 204 

Anhembi-SP, southeastern Brazil, in a completely randomized design with 20, 60, and 120 205 

native tree species (hereafter sp.), each with four replicates, in 45 x 48 m plots. The area was 206 

previously covered by pastures, with no regeneration of native tree species. Tree seedlings were 207 

randomly planted with 3 x 1.5 m spacing and ensuring a homogeneous density across species. 208 

The species pool present in the treatments with the lowest richness was contained in the 209 

treatments with higher richness, i.e., species of the treatment of 20 species are contained in the 210 

treatment of 60 species, which are also contained in the treatment of 120 species. Extensive 211 

information on the study site and experiment is provided by Duarte et al. (2021). Due to the 212 

low coverage of HSI in one plot, the treatment of 120 species had only three replicates for the 213 
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analysis using HSI data. Forest inventory field data were collected in November 2019, when 214 

the plantation was 13.5 years old. At this time, 58 and 114 species had survived in the 60- and 215 

120 species treatments, respectively.  For all living stems, we identified the tree species in this 216 

inventory, measured diameter 30 cm above the ground and measured total height. We used the 217 

allometric equation developed by Ferez et al. (2015) for a neighboring restoration plantation to 218 

estimate aboveground woody biomass of each individual (equation 1). Wood densities were 219 

obtained for all tree species based on wood discs (cross-sections from the stem) sampled in 220 

destructive plots established, using three individuals per species (see Ferez, 2012 for more 221 

details). 222 

 223 

                                (1) 224 

 225 

Where: AGBw = Aboveground woody biomass (Mg/ha); SA: sectional area of the stem (m²); 226 

Ht: total height (m); ρ = wood density (g/cm3). 227 

 228 

 229 
Figure 1 - Study area and plot designs. Left) site location; upper right) sample design and lidar 230 

point cloud example of one plot; bottom right) hyperspectral image colored by a false RGB 231 

composition using the first components from the minimum noise fraction transformation.  232 
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 233 

2.2. UAV-borne lidar and hyperspectral data 234 

 235 

Data were collected using the GatorEye Unmanned Flying Laboratory, consisting of a 236 

hardware system with custom algorithm workflows incorporating lidar, hyperspectral, thermal, 237 

and visual (RGB) sensors. The hardware and processing workflows are described in detail in 238 

the GatorEye overview manuscript (Broadbent et al. 2021) available at www.gatoreye.org. The 239 

data is also available under the section “2019 Brazil Sao Paulo State August/082819”.  240 

The system uses a DJI Matrice 600 Pro hexacopter platform, with mission planning 241 

conducted using Universal Ground Control Station (UGCS) software. GNSS base station data 242 

are collected within 3 km of data collection areas, then post-processed online via the Trimble 243 

CenterPoint RTX platform, providing typically < 2cm 3D uncertainty within a 2-hour 244 

collection period (and < 0.25 cm within 4+ hour collections). The computational sensor core is 245 

based on a Phoenix Ultra Scout, a Novatel STIM 300 IMU tactical grade and differential GNSS 246 

system. Integrated into this is a (a) Velodyne VLP-32c Ultra Puck LiDAR sensor, (b) Nano 247 

VNIR Hyperspectral Headwall sensor (640 pixels x 270 spectral bands in a 100-hertz line scan 248 

approach), (c) high-resolution RGB camera, (d) radiometric thermal camera, and (e) time-249 

synchronized downwelling hyperspectral Ocean Optics Flame (upward viewing spectrometer, 250 

400-1025nm wavelength range, and 1.70 nm spectral resolution) (Figure S1). See Broadbent 251 

et al. (2021) for more details. 252 

The Velodyne Ultra Puck sensor features 32 individuals 905 nm lasers, situated to 253 

provide a 360° horizontal (cross-track) and 40° vertical (along-track) field of view. The Ultra 254 

Puck fires 600,000 times per second, recording for each pulse the strongest and the last (dual) 255 

return, for a theoretical points/sec of 1,200,000 at a range of up to 200 meters. The Headwall 256 

Photonics Nano VNIR 270 spectral band lab-calibrated radiance hyperspectral sensor acquires 257 

1400 spectral bands from 400-1000 nm every 0.5 seconds and allows conversion of radiance 258 

http://www.gatoreye.org/
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to reflectance by ratioing with the spectral bands most similar in wavelength from the upward-259 

facing Ocean Optics Flame sensor (Broadbent et al. 2021). 260 

The GatorEye overflew the experimental area 27-30 Aug of 2019 at approximately 261 

solar noon at an aboveground mean altitude of 100 meters. The local solar zenith angle was 32 262 

degrees at solar noon (based on the date 28 Aug 2019, lat, long = -22.75, -48.11). Four flight 263 

lines were acquired to cover the majority of plots. The speed was 12-14 m/s, resulting in a 264 

forward pitch of approximately 12 degrees during flight. Acquisitions were performed under 265 

clear sky conditions with no atmospheric haze. The specific lidar and hyperspectral GatorEye 266 

deliverables used in this study were: (a) the Canopy Height Model (CHM), (b) the cleaned lidar 267 

point cloud, and (c) the ‘reflectance-calibrated hyperspectral shade-filtered orthomosaic’ (e.g., 268 

HSI image). 269 

Lidar flight lines were processed to standard products using the GatorEye Multi-scalar 270 

Post-Processing workflow -- using the software Lastools (Isenburg, 2020) and “lidR” R 271 

package (Roussel & Auty, 2019). This procedure automatically merges flight lines, classifies 272 

ground points and removes noise -- to generate the cleaned point clouds and the rasters DTM 273 

(digital terrain model), DSM (digital surface model) and CHM. More details are given in 274 

Almeida et al. (2019b and 2020). The point density of the final lidar point cloud was 360±137 275 

(mean ± SD) ppm², of which 80.4% were first returns.  276 

Hyperspectral data were processed in three steps. (1) The non-orthorectified time-277 

synchronized lab-calibrated radiance data from the downward-facing boresighted Nano 278 

hyperspectral camera was projected onto the DSM from the lens using a ray-tracing algorithm. 279 

(2) The radiance bands were then converted to reflectance using the also time-synchronized 280 

and lab-calibrated upward-facing Flame hyperspectral irradiance sensor. (3) The shade was 281 

removed through a separate process where solar geometry was calculated and then applied, 282 

through a ray tracing algorithm (Broadbent et al. 2021), to map portions of the DSM to be 283 
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either in full sunlight or in the shade at the moment of data acquisition. Shaded pixels were 284 

masked in the final hyperspectral reflectance orthomosaic. Hyperspectral images are 285 

orthorectified onto the lidar derived digital surface models using a custom ray tracing workflow 286 

(Broadbent et al. 2021). The spatial resolution of the final HSI image was 0.20 m. We 287 

performed additional filtering on the hyperspectral data using a 0.20 m moving window filter 288 

across the CHM to remove pixels with a height below four meters. This filtering enabled us to 289 

restrict the spectral data to vegetation targets when estimating tree species compositional values 290 

versus being dominated by the ground level exposed soil spectra which greatly differ from 291 

vegetation. 292 

The bidirectional reflectance distribution function (BRDF) describes the variations in 293 

reflectance or radiance intensity measured by a sensor as a function of (1) the angle of 294 

separation of two vectors - view and illumination - and of (2) forward-scatter (viewing toward 295 

the sun) and backscatter (sun behind the viewer). In remotely sensed imagery, BRDF 296 

significantly impacts the retrieval of biophysical surface properties (Wanner et al. 1995). We 297 

corrected the HSI orthomosaic for BRDF effects using a kernel-driven approach. More details 298 

can be found in the Supplementary Material. 299 

 300 

 301 

2.3.  Data processing and analysis 302 

 303 

Post-deliverables data processing was performed in the R environment (R Core Team 304 

2020). Three structural attributes were derived from lidar data: canopy height, leaf area index 305 

- LAI, and leaf area index in the understory - LAI.under. (Table 1). At the plot level, we 306 

calculated the mean canopy height and its heterogeneity (standard deviation). The canopy 307 

height was obtained directly from the CHM (0.20 m resolution). To calculate canopy height, 308 

the cloud pulse density was not filtered to a standard density, ensuring the highest accuracy. 309 

Nonetheless, Silva et al. (2017) have shown that the accuracy of canopy height estimate in 310 
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Amazon forests stabilizes when pulse density reaches 4 ppm². The LAI (1m resolution) was 311 

calculated from the leaf area density (LAD) estimated using the lad.voxels function from the 312 

“leafR” package (Almeida et al. 2019d). The LAI is the sum of the entire LAD vertical profile, 313 

and the LAI understory is the sum of the LAD vertical profile between 1-5 meters in height. 314 

To improve the accuracy of the LAD estimates and remove lidar pulse density bias, the 315 

normalized lidar cloud was filtered to first returns only and then homogenized to 30 ppm² 316 

before the LAD calculation. Almeida et al. (2019c) found that higher pulse densities result in 317 

higher LAI estimates in tropical forests. While this bias is small when pulse densities exceed 318 

20 ppm², for all LAI and LAD estimates we elected to standardize to 30 ppm² using a 319 

homogenizing filter. The method used to estimate the LAD uses the MacArthur-Horn equation 320 

(MacArthur and Horn 1969) and is based on the Beer-Lambert law, i.e., the attenuation of the 321 

energy transmission rate (lidar pulses) between the canopy vertical strata. See Almeida et al. 322 

(2019c) for more details. 323 

A total of 18 variables derived from HSI data were calculated (Table 1): 15 vegetation 324 

indices (VIs), the first two components of the minimum noise fraction (MNF) transformation 325 

(related to spectral composition), and the spectral angle (related to spectral variability). VIs 326 

were divided into four categories: (i) Structural, (ii) Chlorophyll, (iii) Anthocyanin / 327 

Carotenoid, and (iv) Physiology. MNF is a linear transformation of the original HSI data that 328 

applies two cascaded PCA and maximizes the signal/noise ratio (Green et al. 1988). We 329 

performed MNF using ENVI software version 5.3.  330 

To assess if species diversity is related to canopy spectral diversity, we computed the 331 

spectral angle between all pairwise combinations of the pixels of each treatment. The spectral 332 

angle (θ) is a suitable measure of the spectral variability (Richer et al. 2016; Ferreira et al. 333 

2018), and was computed as follows, according to Price (1994): 334 

 335 

 336 
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(2) 

 337 

where θ is the spectral angle, measured in radians, between the spectral reflectance of the pixel 338 

X and the pixel Y in the spectral interval λa to λb , i.e., 400 to 1000 nm. The spectral angle was 339 

computed with sunlit foliated canopy pixels that were selected using NDVI >0.8 and canopy 340 

height >4m. We used sunlit foliated canopy pixels to avoid the influence of non-photosynthetic 341 

canopy elements (e.g., branches) in the quantification of spectral diversity. Non-photosynthetic 342 

vegetation causes variations in the spectral amplitude, that is, brightness differences that may 343 

increase the spectral variability even if the spectral shapes were the same.  344 

 345 

Table 1.  Variables and their respective descriptions and references. “ρ” indicates reflectance 346 

of a hyperspectral band, followed by its wavelength center in nanometers. 347 
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 348 
  349 

We used Spearman’s correlation diagram to assess the relationship between the VIs 350 

(HSI-derived) and the canopy structural variables (lidar-derived). This analysis was performed 351 

at the pixel level (0.20 m resolution). The variables AGB (field-derived) and spectral angle 352 

(HSI-derived) were evaluated at the plot level. For comparing the spectral angle, only the 353 

highest spectral angles of each plot (percentile 90%) were considered. This ensures that the test 354 

assesses the most significant differences within the plots. To determine the relationship of the 355 

variables with the tree species richness levels (treatments), we performed ANOVA and post-356 

hoc Tukey tests (plot-level analysis). For these analyses, we considered the variables’ mean 357 

value and standard deviation within the plots, and the latter was used to describe the 358 
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heterogeneity of each variable within plots. Finally, the predictive power of AGB from lidar 359 

and HSI variables was evaluated using simple and multiple ordinary least square regressions. 360 

To identify and eliminate outliers, we used t tests based on studentized residuals implemented 361 

using the function outlier.test in R package “car” (Fox & Weisberg, 2019). The assessment of 362 

model accuracy was performed by a leave-one-out cross-validation (LOOCV) procedure 363 

(Almeida et al. 2020a). The relationship between the observed and predicted (via LOOCV) 364 

values were evaluated by testing their 1:1 correspondence under the null hypothesis that their 365 

regression intercept and slope were 0 and 1, respectively (Valbuena et al. 2017).  366 

 367 

 368 

3.  RESULTS 369 

 370 

3.1. Variables derived from lidar and HSI  371 

 372 

Lidar-derived LAI was significantly correlated with almost all HSI-derived variables at 373 

the pixel level (Fig. 2). The structural VIs (HSI-derived) had the highest correlations with LAI 374 

(r >0.50, p-values <0.05). In general, structural VIs increased between LAI values ranging from 375 

0 to 2, but then saturated (Fig. 3). The canopy height attribute CH (lidar-derived) was 376 

significantly correlated with seven HSI-derived variables (Fig. 2), with EVI being the VI 377 

variable with the highest correlation (r = 0.22, p-value = 0.006). The EVI and the other 378 

structural VIs all showed a positive correlation with CH for values ranging from 5 to 15 m, but 379 

they stabilized or decreased for CH values within 15-20 m (Fig. 3). The lidar-derived 380 

understory LAI (LAI.under) showed no significant correlation with any of the HSI-derived 381 

variables. 382 

 383 

  384 
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 385 
Figure 2 - Spearman’s correlation diagram among the lidar- and hyperspectral-derived 386 

variables. The correlation values are ranked using a color gradient from -1 to 1, where 0 means 387 

no correlation, -1 a strong negative correlation (red color), and one a strong positive correlation 388 

(blue color). The p-value significance levels are “*” 0.05, “**” 0.01, and “***” 0.001. 389 

Acronyms of variables are described in Table 1. 390 

 391 

 392 

 393 
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 394 
Figure 3 - Standardized hyperspectral-derived structural vegetation indices (Vegetation 395 

Atmospherically Resistant Index - VARI, Simple Ratio - SR, Normalized Difference 396 

Vegetation Index - NDVI, and Enhanced Vegetation Index - EVI) as a function of lidar-derived 397 

leaf area index (LAI) (left) and lidar-derived canopy height (CH) (right). Lines are the 398 

smoothed mean of the observations (pixels of 0.20 m resolution). 399 

 400 

 401 

3.2. Distinguishing tree species richness levels 402 

 403 

The 20 sp. treatment had lower field-derived AGB (mean ± SE, 69.5 ± 10.4 Mg/ha) 404 

than the 60 sp. treatment (94.3 ± 9.8 Mg/ha), whereas the 120 sp. treatment had intermediate 405 

(88.7 ± 15.6 Mg/ha) AGB and did not differ statistically from the other two treatments (Table 406 

2). However, when changing the significance level to 0.1 (instead of 0.05), the two treatments 407 

with the highest species richness (60 and 120 sp.) showed higher AGB than the treatment with 408 

the lowest species richness (20 sp.). 409 

The CH (lidar-derived) was higher in the two species-richer treatments (60 and 120 sp.) 410 

(Table 2). However, the CH heterogeneity did not significantly differ between richness levels 411 

(Table S1, p-value = 0.59). The richest treatment had the highest LAI value, and when 412 

considering the significance level at 0.1, a significant increase in LAI was verified with the 413 

increase in species richness class. The LAI heterogeneity was higher in the two richest 414 

treatments (Table S1, p-value < 0.001). LAI.under showed no difference among richness levels 415 

(Table 2 and Fig. 5). The vertical distribution of the LAD was mono-modal, with a higher 416 
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concentration of vegetation in the middle layer of the canopy for all three treatments (Figure 417 

4). 418 

For the HSI-derived VIs, the structural VIs (VARI, SR, NDVI, and EVI) increased with 419 

increasing richness (Table 2), and in some of them (VARI and NDVI), the heterogeneity was 420 

lower in the 120 sp. treatment (Table S1, p-values <0.05). For the VIs related to chlorophyll 421 

concentration, SIPI decreased with increasing richness (SIPI is inversely proportional to 422 

chlorophyll concentration), while CI.rededge and CI.green increased with increasing species 423 

richness. The CARI VI showed no significant difference among richness treatments. For the 424 

VIs related to the anthocyanin concentration, the mARI has no significant difference, although 425 

its heterogeneity was greater in the richest treatment. ACI was lower in the lowest richness 426 

treatment. The VI related to carotenoid concentration, CRI, was higher in the richest treatment 427 

(with a significant gradual increase at the 0.1 significance level). 428 

For the physiological VIs, RVSI decreased with the increase in richness, while the REP 429 

showed a directly proportional relationship with the increase in richness. WBI presented no 430 

significant difference, and PRI did not show a clear relationship with richness levels. The 431 

composition variable MNF.1 increased its mean and heterogeneity proportionally with richness 432 

(Table 2 and Table S1). The MNF.2 did not show any significant difference between 433 

treatments. Spectral variation increases with increasing richness (Fig. 5). The spectral angle, a 434 

proxy for the spectral diversity, showed a significant difference with richness levels only when 435 

the significance of 0.1 was considered (p-value = 0.09). 436 

 437 

 438 

Table 2 - Statistical analysis (mean ± SE; ANOVA post hoc Tukey) of field, lidar, and 439 

hyperspectral (HSI) variables by plot comparing diversity level treatments (20, 60, and 120 440 

sp.). Lidar and hyperspectral variables were summarized by the mean of the pixels (0.20 m 441 

resolution). The significant variables were colored green ranging from the lowest (light green) 442 

to the highest (dark green) values. 443 

  444 
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 445 

 446 
 447 

 448 

 449 

 450 

 451 
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 452 
Figure 4 - Mean leaf area density (LAD) profiles (left) and cumulative leaf area (LAI) (right) 453 

for the three tree diversity level treatments (20, 60, and 120 sp.). Lines are the plots’ mean, and 454 

the dashed polygons represent the standard error amplitude. 455 

 456 

 457 

 458 
Figure 5 - Mean (left) and standard deviation (SD) (right) of reflectance for the three tree 459 

richness level treatments (20, 60, and 120 sp.). 460 

 461 
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 462 

 463 

3.3. Predicting aboveground biomass 464 

 465 

The AGB were significantly correlated (p < 0.001) with one lidar-derived variable (CH, 466 

r2 = 0.81), and three HIS-derived VIs (RVSI, r2 = 0.78; EVI, r2 = 0.76; and CARI, r2 = 0.77) 467 

(Figure S2). However, after eliminating an outlier observation, the best AGB predictors were 468 

CH (r2 = 0.82, RMSE = 7.62, relative RMSE = 9.0%), followed by the RVSI (r2 = 0.75, RMSE 469 

= 8.98, relative RMSE = 10.1%) (Figure 6). Multiple regression models did not provide 470 

significant improvements. 471 

 472 

 473 
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Figure 6 - Aboveground biomass of plots as a function of (A) lidar-derived canopy height 474 

(CH); and (C) hyperspectral-derived RVSI. The “*” purple point is an outlier plot not included 475 

in these regressions. Numbers in parentheses are the standard errors for each coefficient. (B) 476 

and (D) are Leave-one-out cross-validations (LOOCV) of aboveground biomass as a function 477 

of CH and RVSI, respectively. The dashed line represents a 1:1 correspondence, and the solid 478 

line is the linear regression fit between observed and leave-one-out predicted values (obsi = α 479 

+ β·predi). The values of α and β showed no significant difference from 0 and 1, respectively, 480 

in both cases. Point color represents the treatments of 20, 60, and 120 species (green, blue and 481 

purple, respectively).   482 

 483 

 484 

4. DISCUSSION 485 

 486 

Our UAV-lidar-HSI system showed a strong potential to assess canopy structure, AGB, 487 

and tree diversity in tropical forest restoration plots, combining lidar and the VIs derived from 488 

HSI. It also helped reveal a suite of canopy differences related to forest structure and ecosystem 489 

function over an experimental biodiversity gradient. This included both bulk properties like 490 

height and LAI (from lidar) and physiologically-linked community traits such as EVI 491 

‘greeness’ (from hyperspectral), consistent with theories about the advantages of higher 492 

biodiversity in restoration. To our knowledge, this is the first study to use both lidar and HSI 493 

onboard a UAV to monitor tropical forest restoration (but see Vaglio Laurin et al. 2014 for a 494 

pioneer attempt in a mature tropical forest). 495 

 496 

4.1. Variables derived from lidar and HSI  497 

 498 

Almost all HSI variables were significantly correlated with the LAI. In general, VIs 499 

including information from the NIR domain (750-850 nm, a spectral region characterized by 500 

multiple scattering of foliar tissues) show sensitivity to LAI. However, the VIs tend to saturate 501 

for LAI values higher than 2. Only mARI and PRI (which do not use NIR information) did not 502 

correlate with LAI. VARI and CRI do not have NIR bands in their equation but nonetheless 503 

showed a saturating correlation with LAI. These VIs are related to the photosynthetically active 504 

leaf area, with VARI using the ratios between the green (~ 550 nm) and red (~ 650 nm) bands 505 

and the CRI using two different green bands (~ 500nm) (Gitelson et al. 2002 and 2007). VARI 506 
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has been proposed as a substitute for NDVI to measure canopy structure using ordinary RGB 507 

images (Fuentes-Peailillo et al. 2018; Gitelson et al. 2002). Among the structural VIs, EVI is 508 

known to have lesser degree of saturation with increasing LAI due to its higher sensitivity to 509 

NIR reflectance (non-saturated) than red reflectance, making it more responsive to canopy 510 

structural variations than indices such as NDVI (e.g. Huete et al. 2002). However, in our study 511 

EVI showed saturation at LAI=2.0. Our analysis was conducted on an unprecedented fine 512 

spatial scale, allowing a better understanding of the relationship between the LAI and the VIs 513 

derived from high-spatial-resolution optical sensors, without the confounding effects of leaf 514 

age or sub-pixel shade fraction. Nevertheless, relationships (including VIs saturation) may be 515 

dependent on season and spatial resolution, an important question for future UAV-based high-516 

resolution analysis that must be answered to connect UAV observations to those from coarser 517 

grain airborne and orbital sensors. We also note that the lidar-derived LAI represents a proxy 518 

for the actual LAI (Almeida et al. 2019c) and includes surface area contributions from other 519 

canopy components such as branches. 520 

As expected, no HSI-derived variable was correlated to the understory LAI since HSI 521 

data are limited to the canopy surface, as is usual for optical sensors. On the other hand, lidar 522 

can record understory vegetation, providing information for forest restoration monitoring. The 523 

understory LAI showed potential to distinguish forest succession stages and forest types 524 

(Almeida et al. 2019a and 2020). Almeida et al. (2020), using a UAV-lidar system, showed 525 

that forest age was negatively correlated with understory LAI. 526 

Some structural VIs were less spatially heterogeneous in the plots with higher LAI 527 

values (and higher richness levels). The saturation effect, in those cases, decreased their spatial 528 

heterogeneity, limiting the effectiveness of methods based on the spatial variation of VIs for 529 

estimating tree species diversity or the separation of forest types. VIs are limited in 530 

distinguishing between secondary and primary growth forests. However, using multiangular, 531 
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off-nadir viewing hyperspectral data can improve forest successional stage discrimination 532 

(Galvão et al. 2009; Garcia Millan and Sanchez-Azofeifa 2018). Combining temporal VIs 533 

analyses of land cover (vegetation or exposed soil) allows the determination of cover classes 534 

such as forest regeneration (including forest age) or short-term agricultural crop (Silva Junior 535 

et al. 2020).  536 

The restoration plantations that we studied have a more homogenous canopy structure 537 

when compared with sites under natural regeneration, likely related to the even-aged cohort 538 

that comprises the canopy layer. We expect heterogeneity to increase with time through stand 539 

development competitive thinning dynamics, enhanced potentially by the years-to-decades that 540 

some slow-growing tropical trees require to express their unique structural characteristics and 541 

profile in the canopy. We believe that the ability of lidar technology to differentiate tree 542 

diversity levels may improve along with the structural development of forest stands. 543 

Conversely, the HSI spatial patterns were relevant proxies for distinguishing tree diversity 544 

levels even in 13-year-old restoration, highlighting the potential of this technology to monitor 545 

broad-scale restoration programs. 546 

 547 

4.2. Distinguishing tree species richness levels 548 

 549 

Several lidar-derived variables were more sensitive to differences in diversity than 550 

AGB. While we detected differences in AGB only between the treatments with 20 and 60 sp., 551 

LAI differed among all three diversity treatments and increased with each increasing species 552 

richness level. For the same study site, Duarte et al. (2021) found that AGB saturated from 60 553 

sp. to 120 sp. while LAI and light interception (both derived from LAI-2200C equipment) were 554 

positively correlated to diversity even at very high richness levels. However, both our and 555 

Duarte et al. study evaluated only stem AGB and did not consider branches and leaves. Our 556 

results also showed that canopy height was positively associated with species richness. 557 

Previous studies have shown that enhanced light interception and LAI in diverse tropical forests 558 
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result from enhanced complementarity among crowns in canopy space, promoted by a high 559 

diversity of crown shapes and heights among species and neighborhood-driven plasticity in 560 

crowns (Guillemot et al. 2020, Duarte et al. 2021, Williams et al. 2017). We showed that the 561 

diversity effects on stand structure and AGB were efficiently captured by lidar-derived 562 

variables, which open promising perspectives for the large-scale monitoring of hyper-diverse 563 

tropical forest functioning. Canopy height heterogeneity and the LAI under the canopy did not 564 

significantly vary among treatments, which may be explained by the forest's low maturity and 565 

structural homogeneity. Increasing diversity and associated LAI in the upper canopy do not 566 

appear to impact understory LAI. A potential explanation for this surprising result is that light 567 

use efficiency increases with diversity—an expectation of higher crown type diversity—such 568 

that understory light availability changes little over this diversity gradient. 569 

Structural VIs were positively associated with species richness. The capacity of VIs to 570 

discriminate among richness levels can be explained by the relatively low LAI compared with 571 

natural regeneration and mature forests (Almeida et al. 2019a). However, increasing LAI may 572 

result in saturation of the structural VIs and reduced ability to differentiate among richness 573 

levels. In general, the VIs that showed a significant difference among the treatments also 574 

showed an association with the canopy structure (i.e., significant correlation with LAI). It is 575 

important to note that many of the biochemical VIs were developed from laboratory 576 

spectrometers characterized by a higher signal-to-noise ratio (Meneses et al. 2019). The aerial 577 

collection of hyperspectral images (e.g. from drones) is subject to interference from the 578 

conditions of acquisition (atmospheric properties, geometry of acquisition) and canopy 579 

structure. However, some studies have shown promising results from VIs for tropical tree 580 

species classification (Ferreira et al. 2016). 581 

One of the most interesting results concerning HSI data was that spectral diversity 582 

appeared to increase with richness treatments. The spectral angle was significantly different 583 
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across categorical classes of species richness at p < 0.1 (Tukey test) and at p < 0.05 when 584 

species richness was treated as a continuous predictor in a simple linear regression (Table S2). 585 

The hyperspectral composition variable (MNF.1) differed among treatments in both mean and 586 

variance, and the spectral response showed higher variability in treatments with greater 587 

diversity (Fig. 5). By computing the spectral angle among the treatments, we showed that the 588 

spectral variability increased with diversity, which broadly agrees with the spectral variation 589 

hypothesis (Palmer et al. 2002). This hypothesis states that the spectral heterogeneity is induced 590 

by variations in habitat and has been used to assess forest canopy diversity with hyperspectral 591 

data (Féret and Asner, 2014). Our results suggested that tree diversity itself impacts spectral 592 

heterogeneity.  593 

 594 

 595 

4.3. Predicting aboveground biomass 596 

 597 

Some lidar and HSI variables demonstrated a remarkable capacity to estimate AGB 598 

accurately. This prediction represents a well-known potential of lidar structural data but is a 599 

less-universal finding for HSI variables. While VIs are known to saturate at high biomass and 600 

LAI values, the low plot-level density of vegetation (LAI ~ 2) in our study maintained VIs in 601 

an unsaturated range, where there is a strong correlation with AGB. This non-saturated stage 602 

behavior was also found in another study focusing on young, low diversity plantations 603 

established in a temperate forest ecosystem (Williams et al. 2021). The RVSI (Red-edge 604 

Vegetation Stress Index) was the most accurate predictor for biomass, which can be explained 605 

by the high positive correlation between the red-edge region (680–750 nm), the chlorophyll 606 

content, and the canopy LAI (Fillela & Penuelas, 1994). The increase in the chlorophyll content 607 

tends to move the red-edge position to longer wavelengths, while the increase in LAI increases 608 

the difference between NIR and red reflectance. As the RVSI uses bands near the end of the 609 
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red edge (>730 nm), it may be sensitive to AGB variations induced by LAI and chlorophyll 610 

content.  611 

The AGB predictions performed by the structural attribute derived from lidar (canopy 612 

height) did better than that of HSI-derived VIs. Lidar sensors have been shown to be the best 613 

tool for AGB estimates, especially in dense tropical rainforests (Wulder et al. 2012). Adding 614 

more variables to the model (multiple regression models) did not improve the prediction, 615 

probably due to the low structural complexity and low age of the vegetation. In a previous 616 

study performed in the same region but based on a greater number of forest types and more 617 

structurally complex forests, the addition of more variables improved AGB models (Almeida 618 

et al. 2019a). The utility of fusing lidar and hyperspectral data for AGB prediction per se 619 

remains an unresolved problem in the literature. Some studies have shown slight improvement 620 

with the addition of hyperspectral metrics in the AGB estimation models when they already 621 

have included lidar metrics (e.g. Clark et al. 2011; Fassnacht et al. 2014), while others have 622 

found better performance mixing lidar and HSI variables (e.g. de Almeida et al. 2019; Vaglio 623 

Laurin et al. 2014). 624 

The use of lidar data as an intermediary layer between field and spectral satellite data 625 

(“upscaling” technique) is critical to generate large samples of AGB with high accuracy and 626 

thus generate more robust maps using satellite images for more extensive areas. Csillik et al. 627 

(2019) combined lidar and high-resolution satellite images to generate a biomass map for the 628 

entire country of Peru. New orbital lidar sensors are expected to generate more accurate maps 629 

of tropical forest AGB and stand structure attributes. One of them is the “Global Ecosystem 630 

Dynamics Investigation” (GEDI) orbital lidar sensor; however, its information is not spatially 631 

continuous and has much lower precision and accuracy compared with lidar sensors onboard 632 

aircraft and UAVs (Dubayah et al. 2020). 633 

 634 

4.4. Monitoring tropical forest restoration 635 
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  636 

Given the high cost of field inventories, restoration programs have often used an 637 

insufficient number of plots, which have ultimately compromised the reliability of restoration 638 

field assessments (Viani et al. 2018). Upscaling restoration monitoring requires more than the 639 

replication over space of traditional forest inventory approaches because of the costs and scales 640 

involved (Brancalion et al. 2017). At the other extreme, satellite images and novel analytical 641 

approaches are still incapable of measuring restoration quality (Rosa et al. 2021). A successful 642 

monitoring program must consider the gap between detailed and costly information from field 643 

plots and the million hectares of information generated by satellites with low capacity to detect 644 

restoration success.  645 

We believe that the novel UAV-borne lidar and hyperspectral system described here 646 

can fill this technological gap, offering data streams that can be connected with plot-based 647 

monitoring and broad-scale remote sensing alike to improve upscaling and forest restoration 648 

monitoring. Particularly by blending lidar and HSI data, it is possible to assess biomass 649 

structural, functional, and diversity linked restoration outcomes simultaneously, a great 650 

advantage over methods based solely on either lidar or HSI. Further, it may represent a 651 

revolution in tracking restoration success globally. The development of new remote sensing 652 

approaches and their application to a restoration context would help expand our capacity to 653 

assess restoration over unprecedented spatial and temporal scales (White et al. 2019). Lidar-654 

HSI upscaling has recently become possible due to the new generation of orbital sensors. In 655 

addition to the abovementioned spaceborne GEDI lidar mission, the DESIS (Krutz et al., 2019) 656 

and PRISMA (Vangi et al., 2019) hyperspectral sensors provide data with fine sampling using 657 

narrow bands (lower than 10 nm) and 30 m of spatial resolution. Together GEDI and DESIS 658 

or PRISMA data can provide unprecedented results on the structure and diversity of forest 659 

restoration at broader spatial scales. UAV-lidar-HSI systems are still relatively expensive and 660 
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potentially unaffordable by some decision-making organizations such as governments, NGOs, 661 

small landowners, and companies.  662 

In addition to acquisition costs, a high level of technical knowledge is required to 663 

operate drone-based systems and process and analyze the data. Thus, their use is still 664 

constrained to a minority of research groups. In tropical countries, particularly, the use of these 665 

systems is considerably limited due to high import tariffs and a lack of local technical 666 

assistance. However, these initial constraints are precisely the same faced by other 667 

technological innovations of the past, which are now broadly present in modern societies 668 

worldwide. Despite the constraints, efficient and relatively inexpensive UAV-lidar systems 669 

have been developed (Hu et al. 2021), which may facilitate their broader use in diverse sectors, 670 

particularly in forest restoration. Institutions in tropical countries should encourage the 671 

development of these technologies through investing in research, eliminating import taxes, 672 

encouraging open hardware development (Tsanni 2020) and facilitating the arrival of 673 

specialized companies.   674 

There are many benefits that UAV-lidar-HSI systems bring to forest restoration 675 

monitoring, including the potential to monitor small areas with very high accuracy, reduced 676 

field sampling effort (Papa et al. 2020), and the increase of remote sampling for upscaling and 677 

generation of global models. Standardized monitoring protocols would help to evaluate 678 

restoration strategies’ efficacy and compare results across projects to learn from the past and 679 

inform future restoration efforts (Viani et al. 2017). The unprecedented scale of global forest 680 

restoration targets will need to be accompanied by the evolution of restoration monitoring 681 

approaches and delivering, at much-reduced costs and higher spatial and temporal scales, 682 

critical information for tracking restoration success and guiding adaptive management. This 683 

constitutes an enormous scientific and technological challenge that has just started to be 684 

addressed by a joint effort of restoration, policymakers, and remote sensing experts. The 685 

http://sciwheel.com/work/bibliography/10657043
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positive results obtained by the UAV-lidar-HSI system described here are very encouraging 686 

and may hopefully foster the ongoing development and application of remote sensing 687 

innovations in ecosystem restoration. 688 
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