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Abstract 

The water and sewage industry has fundamental links to all aspects of sustainability, being 

responsible for delivering potable water and treating wastewater, a social necessity, which 

requires significant amounts of energy, physical infrastructure, and financial investment. By 

utilising benchmarking and performance analysis, companies can identify and prioritise areas 

for improvement and learn from best practices.  

This research embraces and expands on these themes over four main results chapters. 

Chapter 3 evaluates the economic and emission performance of UK and Irish water 

companies and identifies the key factors that affect their performance using a double-

bootstrapped data envelopment analysis approach. That chapter found the companies could 

reduce economic and environmental inputs by 19.4% and 15.8% and provides an elementary 

framework to assess the influence of rurality on operational efficiency, applying it across a set 

of English and Welsh water companies. Chapter 4 again uses double-bootstrapped data 

envelopment analysis but evaluates the energy and economic efficiency of water (only), and 

water and sewerage, utilities in England and Wales, along with appraising the role of some 

rarely assessed explanatory factors. For example, results suggested that the proportion of 

water passing through the largest 50% of treatment works exhibited a significant negative 

effect on economic efficiency and average pumping head height had a significant negative 

effect for energy efficiency. Moreover, Chapter 4 determines the extent to which proxies may 

influence efficiency rankings and their determinant variables. Chapter 5 uses several sets of 

variables within the scope of the Hick-Moorsteen Productivity Index to examine the best 

approach for a comprehensive sustainability evaluation. Additionally, it investigates 

productivity change on a sample of UK water companies and disaggregates results for 

individual companies allowing an investigation of areas for improvement, indicating that the 

sample improved by 1.8% between 2014-18. Chapter 6 uses 350 companies from 42 countries 

to explore the energy intensity and reasons for varying performance of wastewater treatment 

on an international scale, using the most up-to-date data available and an effluent quality 

control to align performance. The global average electricity consumption for wastewater 

treatment was 0.89 kWh/m3 however, EU companies had the highest average energy intensity 

at 1.18 kWh/m3. Furthermore, Chapter 6 assesses the carbon impacts of energy intensities 

across regions and evaluates areas for improvement in international benchmarking practices. 

Collectively, the research presented in this thesis can be of use to water industry operators, 

regulators, benchmarking organisations, and academics by providing new insight into water-

energy efficiency within the water sector, and by developing improved methodologies for 

efficiency benchmarking.     
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1. Introduction 1 

1.1. Study context and justification  2 

The concept of the water-energy nexus is integral to move towards global environmental 3 

sustainability. It encompasses and highlights the intrinsic relationship that water and energy 4 

have, that being water is needed for each stage of energy production and energy is 5 

fundamental in the provision and treatment of water (IEA, 2016). Until just a decade or two 6 

ago, the water-energy nexus was discussed predominantly in relation to hydroelectricity 7 

generation; however, in recent years, there has been focus on water in the context of energy-8 

consumption, rather than just production (Cabrera et al., 2010). Having this definition and 9 

approach towards achieving sustainability means that both water and energy will both be 10 

considered more holistically together. It will also allow innovative solutions to be sought that 11 

span various dimensions of sustainability, a logical step for this inherently interdimensional 12 

concept. 13 

The more exhaustive view of the water-energy nexus (Figure 1.1) has highlighted the 14 

importance of the significant amounts of energy that are used to extract, pump and treat supply 15 

water and wastewater. In the UK for example, the water industry produced 2.9 Megatonnes of 16 

CO2 in 2020 due to energy usage (DiscoverWater, 2021; Northern Ireland Water, 2021; 17 

Scottish Water, 2021), which is approximately 0.83% of national emissions (calculated with 18 

data from the Department for Business, Energy, and Industrial Strategy, 2020). The US 19 

Environment Protection Agency (EPA, 2018) estimated that 2% of total energy use within the 20 

US is a result of drinking water treatment plants (DWTPs) and wastewater treatment plants 21 

(WWTPs), whilst within individual municipalities they are some of the largest energy 22 

consumers, typically accounting for 30–40% of municipality energy consumption. The global 23 

perspective is even more striking, with the United Nations stating that approximately, 8% of 24 

global primary energy supply is used to deliver and treat water (UN Water, 2014; UNESCO, 25 

2014). In addition to the energetic costs, there are significant economic and social effects 26 

associated with water supply and treatment. Hundreds of billions of dollars are spent each 27 
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year globally, with more expected in the near future to raise the reliability of supply and 28 

sanitation standards (Sedlak, 2014; Cazcarro, 2016).  29 

 30 

Figure 1.1. A summary schematic of the water-energy nexus from Fayiah et al. (2020).  31 
 32 

The importance of the water sector is further highlighted with the role it has in the United 33 

Nations (2021) 17 Sustainable Development Goals (SDGs), where it thematically touches on 34 

several separate goals. The responsibilities and effects of water companies relative to the 35 

research presented in this thesis are mostly embedded within SDG 6 (clean water and 36 

sanitation for all), which comments on improving water affordability, equity, quality, pollution, 37 

and co-operation. In addition to SDG 6, SDGs 7 (access to affordable, reliable, sustainable, 38 

and modern energy for all), 11 (make cities inclusive, safe, resilient, and sustainable), and 13 39 

(take urgent action to combat climate change and its impacts), are all impacted by the water 40 

sector. These overarching SDGs have manifested in many countries having explicit targets 41 

for example, the UK has a legally binding 2050 target of net zero operational emissions, and 42 

the UK water sector has committed to achieving this by 2030, which is expected to reduce 43 

greenhouse gas (GHG) emissions by 10 million tonnes (Water UK, 2021). Furthermore, the 44 

UK water industry has a focus on investing in capital projects in the upcoming years to drive 45 

future growth due to the need to increase the infrastructural resilience and increase 46 

intergenerational fairness (Wallace, 2021).  47 
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For the water sector to improve economically, socially, and environmentally, whilst working 48 

towards the UN, national, and regulatory targets, improving efficiency is integral. The England 49 

and Wales water regulator, Office of Water Services (OFWAT), has been pushing for this for 50 

decades and it is still at the forefront of their objectives, albeit largely based around economic 51 

efficiency and productivity (OFWAT, 2020a). To achieve sustainability and the various targets 52 

laid out, an understanding of performance is required. Water companies though, whether they 53 

are only supplying water or also treating wastewater, are highly complex systems with many 54 

inputs and outputs, which are made more difficult to analyse under the scope of their many 55 

deliverables to stakeholders (Figure 1.2) including, shareholders, regulators, and the public 56 

they serve. This is particularly problematic with the conflicting interests of various 57 

stakeholders, e.g., that of the investors, wanting maximum yield returns on investment, 58 

environmental groups who want more investment in infrastructure to increase resilience and 59 

protect the natural environmental, and customers who want the best service for the lowest 60 

cost. To fully understand the operation of these systems, benchmarking leading to holistic 61 

efficiency assessment can be valuable tools; different methods to conduct this have been 62 

developed and tested to varying degrees of success, which are further discussed in the 63 

literature review. This thesis offers varying paths to analysing performance through a variety 64 

of methods, groups of indicators, and samples.  65 

 66 

Figure 1.2. A summary of the water industry stakeholders (United Utilities, 2021).  67 
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1.2. Research aims and objectives 68 

The overarching aim of this thesis is to holistically analyse the efficiency of water companies 69 

to recommend routes to improvement and ultimately, reduce resource use. To achieve this, 70 

the thesis will address the following research objectives: 71 

i. To evaluate the most appropriate methods to conduct multiple input and 72 

output analyses of water companies; 73 

ii. To analyse the environmental, social, and economic efficiency of UK water 74 

companies;  75 

iii. To assess the role of explanatory factors on water company economic and 76 

environmental efficiency; 77 

iv. To review the most appropriate indicators to be used in performance 78 

assessment; 79 

v. To conduct an international wastewater energy benchmarking exercise.  80 

1.3. Thesis structure 81 

This thesis consists of eight chapters. The first (current) chapter provides context and 82 

justification to the research, gives a brief introduction of the effects and responsibilities of the 83 

water sector, and outlines the overarching aim and objectives. Chapter 2 provides a literature 84 

review of the themes appropriate to this thesis, covering a summary of performance analysis 85 

and benchmarking, relevant methods, and background to the UK water sector. More specific 86 

literature reviews and methodologies are present within each results chapter (3, 4, 5, 6). 87 

Chapter 3 explores the economic and environmental (carbon in this instance) efficiency of UK 88 

and Ireland water companies with a one-year snapshot. Furthermore, it analyses the influence 89 

of several explanatory factors, with a particular focus on rurality. Chapter 4 investigates 90 

economic and energy efficiency of water only companies (WoCs) and water and sewage 91 

companies (WaSCs). Additionally, this chapter assesses explanatory factors, some of which 92 

are unique, along with common proxy indicators to test their accuracy. Chapters 3 and 4 utilise 93 

a variation of a methodology (date envelopment analysis) that has been rarely applied to water 94 
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companies and builds upon previous work. Chapter 5 uses an alternative method to analyse 95 

efficiency over a 6-year period with eight separate sets of indicators and appraises the best 96 

set for a sustainability assessment. Chapter 6 conducts international energy efficiency 97 

benchmarking on wastewater treatment and investigates the effect of company size and the 98 

level of treatment. Chapter 7 provides an overall discussion of the findings from the results 99 

chapters and examines them within the context of the existing literature. It also discusses the 100 

outputs of the research and how they can assist the water sector, regulators and analysts. 101 

Finally, Chapter 8 addresses how the aims outlined in Chapter 1 have been met and 102 

recommends concepts and improvements for future research. This is rounded off with an 103 

overall conclusion, featuring the novel study elements and implications of the research.  104 

2.  Literature Review 105 

2.1. Benchmarking background 106 

Benchmarking is the process of measuring performance against a standard, which can be 107 

either absolute or relative to other similar companies and systems (Wiedmann et al., 2009). 108 

These comparisons can be internal within the same organisation or external for an industry-109 

wide assessment. It should be emphasised that benchmarking is a continuous exercise of 110 

data collection and analysis, which can establish the difference between potential and current 111 

performance level. Used in this manner, benchmarking can be a key efficiency tool (Zhu, 112 

2014). It offers many positives such as assessing performance objectively, exposing areas 113 

where improvement is needed, and identifying other companies who are performing better 114 

and therefore demonstrating potential adoption strategies (Ecorys, 2012). Additionally, 115 

benchmarking, by extension, is about sharing information and building stronger links with the 116 

different stakeholders of an industry (or beyond). By following this, the fundamental positives 117 

of searching for the best practices in a defined industry can be achieved, and everyone can 118 

benefit from it. The Global Benchmarking Network (2021) summarise the direct and indirect 119 

benefits of benchmarking. Direct benefits include the company is analysed, comparisons are 120 

made, best practices and performance deficits are identified, and alternative solutions are 121 

evaluated. Whereas the indirect benefits are promoting an understanding of company 122 
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processes, questioning objectives of the company, verifying strategy, strengthening 123 

competitive position, and initiating the process of continuous improvement.  124 

There are two overarching types of benchmarking that are used: metric and process. Metric 125 

benchmarking is the quantitative measurement of performance over time against other similar 126 

systems or companies. This method enables information on performance gaps to be gathered 127 

and goals to be defined (Hervani et al., 2005). Metric benchmarking does not usually supply 128 

a detailed understanding of the variables that may explain differences in the benchmarking 129 

results such as physical characteristics, geography, weather, and number of customers, which 130 

are known to influence water companies (Berg, 2013). This is why some academics like 131 

Kingdom (1998) emphasise the need to use metric benchmarking sparingly especially when 132 

assessing water networks as the operating environment significantly influences the 133 

performance of indicators. Comparatively, process benchmarking essentially uses data from 134 

the metric benchmarking showing where the performance gaps are and identifies specific 135 

processes that are to be improved via a detailed step-by-step analysis of sub-processes 136 

(Lambert, 2008). This targeted assessment of sub-process performance as well as a review 137 

of best practice in external examples identifies at what level or efficiency the process should 138 

be operating. Lastly, an implementation plan is undertaken and executed to adapt the 139 

processes to a standard revealed by the ‘best practise’ external company, which is often in 140 

direct and open relationships with other companies (Berg, 2013). Parena et al. (2002) clearly 141 

summarise the differences between the two types of benchmarking by explaining that metric 142 

benchmarking identifies the areas of under-performance and where changes need to occur 143 

within the whole company or system, whereas process benchmarking is used as the medium 144 

to drive this change. Despite metric and process benchmarking being accepted as valid 145 

concepts by many of those who carry out benchmarking, the International Water Association 146 

(IWA) Specialist Group on Benchmarking actually recommends abandoning the use of these 147 

terms (Cabrera Jr et al., 2011). They suggest that ‘performance assessment’ and 148 

‘performance improvement’ should be seen as the major components of benchmarking 149 
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instead, which would ensure a focus on a holistic approach where systems are fully 150 

understood and enhanced.  151 

The benefits are so widely understood that benchmarking is common practice in many 152 

industries and sectors now as a tool to optimise their resources and achieve ambitious goals 153 

(Castro and Frazzon, 2017). The availability and analysis of “Big data”, referring to data sets 154 

with more varied and complex structures, which are used to reveal hidden patterns and secret 155 

correlations (Sagiroglu and Sinanc, 2013), is part of this benchmarking uptake, since the ability 156 

to capture and process information has increased, whilst the cost of doing so has reduced, 157 

meaning technologies that make benchmarking more precise, detailed and affective are now 158 

more widely available (Taylor and Schroeder, 2015). Berg (2013) emphasises the importance 159 

of data within the water industry, commenting that if managers do not have enough data for 160 

benchmarking and comparison against other companies, one must question what they are 161 

actually managing. He further states that if regulators cannot determine historical trends, the 162 

current baseline, and relative performance among companies, it is, as an Indian regulator said, 163 

like writing “orders that are just pretty poetry”.  164 

There are many water utility benchmarking organisations currently in operation that attempt to 165 

collect more data and improve performance comparisons both within and between countries. 166 

A few notable national level benchmarking examples are within England and Wales via Office 167 

of Water Services (OFWAT), Portugal by Entidade Reguladora dos Serviços de Águas e 168 

Resíduos (ERSAR), Denmark by Danish Water and Wastewater Association (DANVA), the 169 

US through American Water Works Association (AWWA), and New Zealand by Water New 170 

Zealand. In addition, there are many cross-boundary benchmarking institutions too such as 171 

the EU Benchmarking Co-operation, South East Asia Water Utility Network (SEAWUN), 172 

Regulación de Agua y Saneamiento en las Américas (ADERASA), Pacific water and wastes 173 

association (PWWA), International Benchmarking Network (IBNET), and AquaRating by the 174 

IWA and Inter-American Development Bank (IDB). To affectively compare and find best 175 

practices within the water industry, it is important to have a framework that ensures 176 
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comparison of “apples with apples”. This is a big challenge when benchmarking is already 177 

practiced by different organisations and there is a desire to compare them which is why 178 

initiatives that aim to set worldwide standards are valuable (Danilenko et al., 2014). The 179 

various institutions mentioned above conduct important data collection and dissemination in 180 

their respective regions however, many only essentially represent a preliminary performance 181 

assessment. They enable metric benchmarking, which gives a good overview, but there is a 182 

lack of detailed accounting for explanatory factors and paths to better performance, which 183 

would be unveiled by process benchmarking and more detailed analytical techniques.  184 

To collect the correct data to conduct sophisticated efficiency performance analysis 185 

techniques, key performance indicators (KPIs) are used. There are many definitions for KPIs 186 

but generally, they are defined as a quantifiable measure used to evaluate the performance 187 

of a certain aspect of a system or organisation (Gunasekaran and Kobu, 2007). To analyse a 188 

system holistically, a good set of these indicators needs to be used that not only measure the 189 

integral elements, but also do it in such a way that properly represents performance in relation 190 

to the rest of the system (Franceschini et al., 2007). There are many in current use today to 191 

measure water utilities that cover financial, environmental and social aspects of companies 192 

(Alegre et al., 2017). For example, in 2017, the KPI institute published a report on international 193 

water utility benchmarking, which included 178 KPIs within five clusters based on: customers, 194 

operations, environment, human capital, and corporate governance. A key global body who 195 

specialises on performance assessment and benchmarking indicators is the IWA, have also 196 

documented a KPI list of over 170 (Alegre et al., 2017). They also have many publications on 197 

assessing water utilities such as ‘Water Utility Benchmarking’ (Berg, 2013), ‘Process 198 

Benchmarking in the Water’ (Parena et al., 2002), and ‘AquaRating: An International Standard 199 

for Assessing Water and Wastewater services’ (Krause et al., 2015), to name just a few. 200 

Having sufficient indicators to cover enough important data in a suitable methodological 201 

framework, whilst being refined enough to not dilute the quality of outcomes, is integral for 202 
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future benchmarking and affective results. This is where academia has attempted to contribute 203 

to benchmarking and performance analysis through varied and extensive research. 204 

2.2. Water benchmarking in academia  205 

Several scholars have produced extensive literature reviews on performance analysis of the 206 

water and sewage sector (Abbott and Cohen, 2009; Walter et al., 2009; Berg and Marques, 207 

2011; Carvalho et al., 2012; Worthington, 2014; Cetrulo et al., 2019), with Goh and See 208 

(2021) being the latest. They reviewed 142 scientific articles and highlighted the research 209 

hotspots (Figure 2.1), and one of the most frequently featured concepts is Data Envelopment 210 

Analysis (DEA). DEA is a non-parametric programming method used to evaluate the efficiency 211 

of homogenous decision-making units (DMUs) (Charnes et al., 1978), which within the subject 212 

matter, are water utilities. Examples of the use of DEA include Berg and Lin (2011), and 213 

Lannier and Porcher (2013), who use DEA and stochastic frontier analysis (SFA) to analyse 214 

performance across Peruvian and French water utilities, respectively. The mathematical 215 

framework and methodology of DEA has been advanced in recent years. For example, 216 

Pointon and Matthews (2016) ascertained optimum resource allocation by introducing 217 

intertemporal effects of capital into a dynamic DEA model. Likewise, Deng et al. (2016) and 218 

Kamarudin et al. (2015) used the DEA-directional distance function and slack-based measure, 219 

respectively, to analyse undesirable and unexpected outputs. Moreover, Gidion et al. (2019) 220 

used a network DEA model, a first with water companies as the subject matter.  221 
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 222 

Figure 2.1. A summary of water utility benchmarking within academic literature between 2000-2019 from Goh and 223 
See (2021).  224 

The advantages and disadvantages of DEA are discussed more thoroughly within Chapters 3 225 

and 4, so are not investigated extensively here to avoid repetition. Generally though, DEA is 226 

favoured within the water benchmarking literature for two reasons. Foremost, the method 227 

allows the integration of multiple input and output combinations to the scalar measure of 228 

relative efficiency in the production frontier. Additionally, DEA does not require a priori 229 

assumptions about the functional form of their production or cost, whereas SFA, another 230 

popular choice, does (Cooper et al., 2011). The main limitation is that it is sensitive to outliers 231 

because of the lack of statistical inferences, which can lead to biased estimations (Yang et al., 232 

2014). To overcome this drawback, non-parametric partial frontier methods can be used, 233 

which are derived from the concept of defining the production process by a probabilistic 234 

formulation, initially proposed by Cazals et al. (2002). These methodologies are part of the 235 

order-α and order-m methods, and do not envelop all the sample data to estimate the 236 

production frontier, thus becoming less sensitive to extreme data. Carvalho and Marques 237 

(2014) used this partial frontier approach to analyse scope and scale economies in the 238 
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Portuguese water sector. Another approach to overcome the biases that can arise using DEA 239 

are bootstrap algorithms (Simar and Wilson, 2007). They have been sparsely applied to the 240 

water sector (See, 2015; Molinos-Senante et al., 2018a; Villegas et al., 2019), which is one of 241 

the ways Chapters 3 and 4 add value to the literature. More details on the specifics of the 242 

methodology can be found in those chapters.  243 

The condition of research on water utility performance has clearly developed over the past 244 

few decades. However, Goh and See (2021) found that almost all the studies they reviewed 245 

had benchmarked the performance of water and sewage services within a single country, 246 

which is concurrent with other literature reviews of water sector benchmarking (Abbott and 247 

Cohen, 2009; Worthington, 2014). One of the few articles that have investigated cross-248 

boundary performance is De Witte and Marques (2010a) who investigated drinking water 249 

company performance across Netherlands, England and Wales, Australia, Portugal, and 250 

Belgium, and found that benchmarking incentive schemes have a significant positive impact 251 

on efficiency. Other examples include Ferro et al. (2011) who focussed on Latina America and 252 

See (2015) who assessed a sample of 40 public water utilities across Southeast Asia. Berg 253 

and Marques (2011) and Cetrulo et al. (2019) highlight a further gap in the literature, based 254 

around the limited quantity of research incorporating quality indicators in developing countries. 255 

Chapter 6 addresses the lack of cross-border water sector benchmarking and specifically 256 

focusses on wastewater treatment quality as both a control of the core sample and a part of 257 

the analysis.  258 

It is apparent that there are various gaps and inconclusive topics still present, as outlined 259 

above, despite the ever-increasing number of publications, which was calculated to be 4.94% 260 

per year during 2000-2019 in a sample of 142 (Goh and See, 2021). Another gap appears to 261 

be the study of GHG emissions from the water sector across regions (Goh and See, 2021). 262 

This is important information as it could inform targeted approaches to reduce emissions and 263 

increase their accuracy. Chapter 6 includes this within part of its study, finding that the balance 264 

between wastewater treatment quality and GHG emissions is crucial, particularly in countries 265 
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with carbon intense electricity grids. As well as the gaps emphasised, the nature of 266 

benchmarking, as noted in Section 2.1, is an iterative and constant process, meaning there is 267 

value in producing up-to-date analyses on performance. This ensures companies are always 268 

improving, regulation can be fair and accurate, and future research can build upon it. These 269 

aspects are particularly relevant as Goh and See (2021) comment that performance analysis 270 

research across the water and sewage industry is still immature.  271 

2.3. The UK water sector 272 

The UK water industry was highly fragmented in the 20th century, exemplified by the fact that 273 

in 1945, there were more than 1,000 organisations involved in supplying water and over 1,400 274 

concerned with sewage disposal (OFWAT, 2020a). The focus was to consolidate local 275 

authority undertakings and extend services to rural communities. The Water Resources Act 276 

1963 was later introduced and acknowledged the importance of a co-ordinated approach to 277 

water resource planning, introducing an administration system for abstraction permits. In the 278 

late 1960s and early 1970s water resource planning problems continued though, which along 279 

with forecasts of higher future demand, caused a restructuring of the industry, culminating in 280 

the Water Act 1973. The act created ten regional water authorities, each covering a river basin 281 

responsible for water supply, quality and sanitation in the region. The Act required the 282 

authorities to operate on a cost recovery basis, with capital raised by borrowing from central 283 

government and revenue from services, leading to central government setting performance 284 

aims. This was the beginning of efficiency measurement within the water industry, with a focus 285 

on the financial aspects of the industry, specifically production and cost (Ofwat, 2006).  286 

The period that followed was marked by insufficient expenditure and investment on key capital 287 

maintenance due to rigid fiscal controls from central government, stemming from debt 288 

inherited by the water authorities and general economic instability (Hutton, 2020). This caused 289 

problems, particularly evident in the 1980s under the conditions of the more stringent 290 

European legislation and elevated environmental awareness of the public (Environment 291 

Agency, 2019). The government’s response culminated in the Water Act 1983, which reduced 292 
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local government decision making and gave scope to access private capital markets. Despite 293 

the change, a significant number of pollution incidents continued as capital investment was 294 

still lacking (OFWAT, 2006). As other public services became privatised and the water sector 295 

continued to be under-invested due to regional water authorities having an inability to borrow 296 

from central government, the government concluded that privatisation was the optimal 297 

outcome, fulfilling the Conservative government’s desire to privatise the water industry 298 

following privatising proposals in 1984 and 1986 (Lobina and Hall, 2001). The UK water 299 

industry was privatised in 1989 and the assets of the ten regional water authorities were all 300 

transferred into limited companies. To ensure sufficient investment to appease increasingly 301 

strict European environment legislation on river, bathing, coastal, and drinking water quality, 302 

and confront the existing backlog in infrastructure maintenance, the government wrote off £5 303 

billion of the industry’s debt and gave a further £1.6 billion (Robson and Howsam, 2006). 304 

Further capital was raised by floating the companies on the London Stock Exchange and via 305 

the provision of capital tax allowances. To safeguard the interests of the environment and 306 

customers, the roles of regulation and provision were divided into three separate independent 307 

bodies: the Drinking Water Inspectorate, the National Rivers Authority (now the Environment 308 

Agency), and the Office of Water Services (OFWAT) (OFWAT, 2020a).  309 

The water sector in England and Wales  is currently made up of 25 private companies, split 310 

up into 11 WaSCs, 9 WoCs, and 6 local water companies delivering a mixture of services 311 

(Figure 2.2), while Scottish Water and Northern Ireland Water provide the delivery of high-312 

quality drinking water and collect and treat wastewater in the rest of the UK. To ensure levels 313 

of service and quality remain high and to maintain efficiency within a monopolised environment 314 

with little competition, the regulatory framework for the sector is diverse and extensive. The 315 

overall water and sewage policy framework, covering standards setting, drafting legislation, 316 

and creating special permits, is undertaken by the Department for Environment, Food and 317 

Rural Affairs in England, and national governments in the rest of the UK (OFWAT, 2020a). 318 

The environmental regulators in England, Scotland, and Northern Ireland are the national 319 
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Environment Agencies, whereas Natural Resources Wales fulfils that role in Wales. The 320 

function of the environmental regulators is to ensure that the natural resources utilised by 321 

water companies are sustainably maintained, enhanced, and used, now and in the future, 322 

which amongst other actions, includes reducing flood risk, promoting sustainable 323 

development, and securing environmental and social benefits (Natural Resources Wales, 324 

2021). Further assistance and practical advice on safeguarding nature is provided by Natural 325 

England, who have a particular focus on promoting natural benefits for society. To make sure 326 

drinking water quality is safe and meets water quality standards, the Drinking Water 327 

Inspectorate and Drinking Water Regulator for Scotland regulate companies by frequently 328 

inspecting individual companies and checking the water quality tests that water companies 329 

carry out (Water UK, 2017). The customers have a specific body representing them too, in the 330 

form of the Consumer Council for Water (2021), who monitor customer satisfaction and 331 

investigate complaints that have not been satisfactorily resolved. 332 
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  333 

Figure 2.2. Territorial map of water companies in England and Wales (OFWAT, 2021).  334 
 335 

One of the most important regulators is the economic regulator OFWAT, who along with the 336 

Water Industry Commission for Scotland, and Utility Regulator in Northern Ireland, promote 337 

competition, ensure companies can carry out their functions now and in the future, whilst also 338 

promoting efficiency (Council for Science and Technology, 2009). In an environment without 339 

market competition, the regulator has a vital role to control prices, protect customer interests, 340 

and ensure adequate investment, which is why evaluating efficiency on water companies and 341 
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essentially ensuring regulation is working affectively is so important. One of the tools they use 342 

is to set price limits, achieved via price reviews conducted every five years, the latest one 343 

being PR19 (OFWAT, 2020b). The reviews take place by each company submitting a business 344 

plan for the following five years, which is then assessed by the economic regulator. OFWAT’s 345 

regulatory mechanism of the price-cap is then applied, which is RPI + k, RPI being the retail 346 

price index and k being the adjustment element, referring to the performance, efficiency, and 347 

service of the companies. OFWAT (2020) declare that collectively, this framework of regulation 348 

has enabled UK water companies to invest more than £130 billion to maintain and improve 349 

services and assets. However, Yearwood (2018) claims that this investment has not all been 350 

for assets. The 40% increase in water bills since 1991 was supposed to be due to these high 351 

capital investments required, but Yearwood (2018) shows that it is a result of high interest 352 

payments on £47 billion of debt, accrued from £50 billion paid in dividends to shareholders. 353 

The companies could have funded their operations and investments from customer bills alone, 354 

without taking on debt. Part of the ‘k’ element and the performance assessment by OFWAT 355 

and other regulatory bodies is conducted through benchmarking, which is essential in the 356 

monopoly environment of water utilities, where firms do not compete against each other and 357 

consumers cannot leave. This is mostly achieved using normalised KPIs, however, for 358 

complex systems with numerous goals and multiple inputs and outputs, more sophisticated 359 

approaches are often required. Being able to advance these benchmarking techniques clearly 360 

has value in improving regulation, and therefore benefiting consumers, in addition to water 361 

managers, policy makers, and academia.  362 

2.4. Summary  363 

The literature reviewed in Section 2 emphasises various potential knowledge gaps to be filled 364 

and areas where advancements can be made. Foremost, methodologies to accurately capture 365 

the complex systems of water companies are increasingly important and sought after. There 366 

are many methodologies that have been tested and the most popular is data envelopment 367 

analysis however, it does have limitations. Iterations to this popular method have been 368 
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developed and it is highly valuable to test them in order to add to the evidence base for future 369 

application. Progressing methodologies is beneficial to the water sector and the wider 370 

community of benchmarking and performance analysis. In addition, it is clear that 371 

benchmarking is an iterative process that requires constant application for the tool to have 372 

maximum effectiveness. By continuing this process without overlapping too much with other 373 

studies, real value can be contributed both now and in the future through up-to-date data 374 

collection and the efficiency results themselves. A further aspect of water utility benchmarking 375 

which can enhanced is the key performance indicator use to represent sustainability, which 376 

manifests within key goals now in many countries and specifically in the UK water sector. 377 

Frequently social and environmental indicators are lacking from analyses however, their 378 

importance is highlighted in regulation and company outputs. By filling these literature gaps 379 

and advancing the knowledge base, assistance can be provided to benchmarking and 380 

performance analysis towards it becoming a mature research field, which can enable decision-381 

making to be more informed, whether that is by regulators, water managers, policy makers, or 382 

academics, ultimately benefiting everyone including the planet and customers.   383 

 384 
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Abstract 417 

For water companies, benchmarking their performance relative to other companies can be an 418 

effective way to identify the scope for efficiency gains to be made through infrastructure 419 

investment and operational improvements. However, a key limitation to benchmarking is the 420 

confounding effect of exogenous factors, which may not be factored in to benchmarking 421 

methodologies. The purpose of this study was to provide an unbiased comparison of efficiency 422 

across a sample of water and sewage companies, accounting for important exogenous 423 

factors. Bias-corrected economic and environmental efficiency estimates with explanatory 424 

factors were evaluated for a sample of 13 water and sewage companies in the UK and Ireland, 425 

using a double-bootstrap data envelopment analysis (DEA) approach. Bias correction for 426 

economic and environmental efficiency changed the rankings of nine and eight companies, 427 

respectively. On average, companies could reduce economic inputs by 19% and carbon 428 
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outputs by 16% if they performed at the efficiency frontier. Variables explaining efficiency 429 

were: source of water, leakage rate, per capita consumption and population density. 430 

Population density showed statistical significance with both economic (p-value 0.002) and 431 

environmental (p-value 0.001) efficiency. Consequently, a rurality factor was defined for each 432 

company’s operational area, which was then regressed against normalised water company 433 

performance data. More rural water companies spend more per property (R2 of 0.633), in part 434 

reflecting a larger number of smaller sewage treatment works serving rural populations (R2 of 435 

0.823). These findings provide new insight into methods for benchmarking, and factors 436 

affecting, water company efficiency, pertinent for both regulators and water companies.  437 

 438 

Key words: Data Envelopment Analysis, Double-Bootstrap, Water Utilities, Performance 439 

Analysis, Explanatory Factors, Urbanity 440 
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3.1. Introduction 459 

The water and sewage industry has fundamental links to all aspects of sustainability, those 460 

being economic, social and environmental considerations. This is through the sector being 461 

responsible for delivering potable water, a social necessity, which requires significant amounts 462 

of energy, physical infrastructure (treatment plants and pipes) and financial inputs to purify, 463 

distribute, and treat before and after usage to protect receiving waters and uphold sanitary 464 

standards (Olsson, 2015; Saleh and Gupta, 2016). Increasing economic and environmental 465 

efficiency reduces the consumption of resources and could enable a more reliable service, in 466 

line with industry, consumer and societal interests. Benchmarking is regarded as a valuable 467 

tool for increasing efficiency because it can be used to evaluate the comparative performance 468 

of companies, underpinning effective regulation. Examples where benchmarking is used by 469 

regulators arise in many different countries, such as England and Wales via Office of Water 470 

Services (OFWAT), Portugal by Entidade Reguladora dos Serviços de Águas e Resíduos 471 

(ERSAR) and Latin America via Regulación de Agua y Saneamiento en las Américas 472 

(ADERASA) (Berg, 2013), to name just a few. Even where regulators do not employ 473 

benchmarking, companies are taking it up themselves to help them perform competitively 474 

against sector leaders and to enable innovation collaborations for best practices. This is 475 

evidenced by voluntary subscriptions to organisations such as the EU Benchmarking Co-476 

operation, South East Asia Water Utility Network (SEAWUN), and the International 477 

Benchmarking Network (IBNET), which compare key indicators from water utilities across 478 

international boundaries (Asian Development Bank, 2018; IBNET, 2018).  479 

Benchmarking is also a topic of interest in academia. Frequent attempts have been made to 480 

refine and optimise benchmarking methodologies for the water sector as well as to validate 481 

new techniques (Daraio and Simar, 2006; Berg, 2013) and provide evidence on factors that 482 

influence efficiency (De Witte and Marques, 2010b; Lannier and Porcher, 2013; Marques et 483 

al., 2014). The most popular type of method for conducting benchmarking in the literature is 484 

production frontier analysis (Berg, 2013). A production frontier can be calculated with 485 
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parametric methods (Kumbhakar and Lovell, 2004) or non-parametric methods such as data 486 

envelopment analysis (DEA), which is the most popular of the production frontier methods 487 

(Song et al., 2012). The reason for the popularity of DEA is that is has three fundamental 488 

characteristics, which make it beneficial for assessing water and sewerage companies 489 

(WaSCs). 1) It integrates multiple inputs and outputs for each unit, providing a multi-criteria 490 

analysis; 2) weightings applied to aggregate inputs and outputs are generated endogenously; 491 

and 3) it does not require a priori assumptions about the functional relationship between the 492 

inputs and outputs (Berg, 2013).  493 

Despite the advantages that DEA offers, it has a crucial limitation in that it is a deterministic 494 

method, meaning statistical inferences cannot be drawn from conventional DEA efficiency 495 

scores (Simar and Wilson, 2007). This is of particular relevance for WaSCs, since DEA does 496 

not allow the use of regression analysis to evaluate the explanatory factors. Cazals et al. 497 

(2002) proposed a method to overcome this limitation, referred to as ‘order-m’, which is a 498 

partial frontier method that uses a portion of the original population sample to estimate the 499 

efficiency scores. Despite the advantages of the ‘order-m’ method in terms of enabling 500 

statistical evaluation of efficiency scores, it has drawbacks (Daraio and Simar, 2007). The 501 

limitations are specifically related to the selection of ‘m’, that is the sample taken from the 502 

original larger sample – the representativeness of this sample greatly affects the efficiency 503 

scores (Da Cruz and Marques, 2014). 504 

An alternative approach is Simar and Wilson’s (2007) double-bootstrap procedure, which 505 

allows for hypothesis-testing and statistical inferences in the DEA method, thus enabling the 506 

exploration of determinants of efficiency, whilst also bias-correcting the efficiency scores 507 

yielded from the DEA model (Yang and Zhang, 2018). As Gomez et al. (2017) note, the 508 

advantages of the bootstrap method have led to its application in an array of different areas, 509 

such as banking (Tziogkidis et al., 2018) and educational institutions (Andersson et al., 2017), 510 

as well as water companies (De Witte and Marques, 2010c; Ananda, 2014). However, the 511 

double-bootstrap DEA method has not been used extensively on water and sewage 512 
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companies previously, with only one study (Molinos-Senante et al., 2018a) to the best of our 513 

knowledge having done so.  514 

Many research papers have assessed explanatory factors for the reasons behind the 515 

performance of their analysed water utilities and networks, with Conti (2005) highlighting the 516 

“role played by environmental variables in ‘shaping’ both the technology and the efficiency 517 

levels of the water utility industry”. Examples include, but are not limited to ownership, size, 518 

technology use, energy consumption, source of water, year of construction, peak factor, and 519 

particularly relevant to this study population density (Abbott and Cohen, 2009; Guerrini et al., 520 

2011; Molinos-Senante, et al., 2014a; Molinos-Senante and Guzmán, 2018; Peda, et al., 521 

2013; Renzetti and Dupont, 2009). 522 

Despite there being a diverse range of exogenous factors evaluated in performance 523 

assessments of water utilities, “rurality” is a potentially pertinent differentiating factor that is 524 

rarely explored. De Witte and Marques (2010a) documented just eight academic studies prior 525 

to their 2010 publication that included customer or population density (a proxy for rurality), as 526 

an explanatory factor. Aside from those eight, there have been very few following this. A few 527 

notable studies are Carvalho and Marques (2011), Lannier and Porcher (2013), and Marques 528 

et al. (2014). Since population density is only a crude partial indicator if used to assess the 529 

influence of rurality/urbanity, a different approach is needed. There is, however, very little 530 

literature available discussing methodologies for assessing or clustering the catchments for 531 

water authorities, especially in terms of rural/urban split. Perhaps most relevant work with 532 

regard to quantifying geographic situation is Neunteufel (2017), where the use of urban 533 

classifications to aid management decisions is used. This study highlighted how leakage rate 534 

should be perceived differently in terms of acceptable performance when considering the age 535 

of piping. The analysis was conducted via a clustering exercise, with prescribed boundaries 536 

to classify between rural, urban and metropolitan (described as “Urbanity” cluster). 537 

The reason rurality is of interest is that without accounting for it in efficiency analysis and 538 

benchmarking, it limits avenues for improvement and it may appear that companies which 539 
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operate more rurally than others are performing poorly. This has relevance for all performance 540 

across water only companies (WoCs) and WaSCs operating at varying scales of urbanity 541 

furthermore, it may be relevant to regulators when evaluating whether companies are doing 542 

enough to be efficient.  543 

There were three objectives to this study, which are discussed in order throughout the 544 

upcoming sections. Firstly, bias-corrected comparison of economic and environmental 545 

efficiency scores across UK and Irish WaSCs. Secondly, identification of key factors that may 546 

affect bias-corrected efficiency scores. Thirdly, development of a framework to assess the 547 

influence of rurality on operational efficiency across a set of English and Welsh WoCs and 548 

WaSCs. Collectively, these objectives provide novel insight for the water services industry and 549 

contribute to the academic literature on benchmarking by displaying alternative 550 

methodologies, contributing bias-corrected results and analysis of factors affecting economic 551 

and environmental efficiency across the UK and Ireland.  552 

 553 

3.2. Methodology 554 

3.2.1. Efficiency estimate 555 

To estimate the economic and carbon efficiency of UK and Irish water and sewage companies 556 

as well as the factors affecting their efficiencies, Simar and Wilson’s (2007) double-bootstrap 557 

DEA model with a truncated bootstrapped regression was used. This approach enabled bias-558 

corrected efficiencies to be obtained, and facilitated an assessment of the variables that 559 

influence these efficiencies. The wider advantages of this method have already been 560 

mentioned above.  561 

3.2.1.1. Sample and data description for efficiency estimate 562 

The sample for the economic efficiency analysis consisted of 13 WaSCs in the UK and Ireland, 563 

whilst the environmental carbon analysis consisted of 12 WaSCs in the UK alone. The 564 

reported efficiency parameters were for the period April 2014 to April 2015. When applying a 565 
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DEA model, the sample should be as homogenous as possible; companies in this sample 566 

were all of similar size and conduct comparable operations. The source of the data was largely 567 

from Water UK (2015), a national organisation that represents and works with WaSCs 568 

throughout the UK, collating key UK water utility data from annual company reports. For data 569 

points that were missing from the Water UK set, alternative sources were accessed and are 570 

outlined as follows. Wastewater treatment volumes were largely sourced from 2017/18 data 571 

sets due to poor data availability for 2014/15; inter-annual variance in wastewater treatment 572 

volume is not significant (only 0.4% average year on year variance expected in the next 8 573 

years according to the PR19 OFWAT data tables, data not shown). The wastewater data 574 

source for UK companies was OFWAT and their PR19 data tables (OFWAT, 2018a). For Irish 575 

Water, it was their business plan document (Irish Water, 2015a) which provided the majority 576 

of their data except operational expenditure (OPEX) which came from a 2015 financial 577 

statements document (Irish Water, 2015b) and wastewater compliance information, which 578 

came from a wastewater treatment report by the Irish Environmental Protection Agency 579 

(2016). For Scottish Water, water delivered, and per capita consumption data were recovered 580 

from a report from the Water Industry Commission for Scotland (2015), whilst their OPEX data 581 

were sourced from one of their own asset reports (Scottish Water, 2015). OPEX data were 582 

also acquired for Northern Ireland Water through an annual report (Northern Ireland Water, 583 

2015). Finally, the percentage of abstracted water coming from surface water for all UK 584 

companies was obtained via direct correspondence with the British Geological Survey (M 585 

Ascott 2018, personal communication, 19 September).  586 

The number of units (WaSCs) available for analysis in the DEA models was small relative to 587 

most studies on water utilities, and for a DEA model to avoid relative efficiency discrimination 588 

problems; the sample needs to meet a minimum size threshold. To determine a size 589 

thresholds that avoids discrimination problems, ‘Cooper’s rule’ was used here, which states 590 

the number of units to be analysed must be ≥ max{𝑚 𝑥 𝑠; 3(𝑚 + 𝑠)} where 𝑚 is the number of 591 

inputs and 𝑠 is the number of outputs used in the model (Cooper et al., 2007). Since the 592 
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samples used in this paper were 13 and 12, and both the economic and environmental 593 

assessments use two inputs and one output, ‘Cooper’s rule’ was met. Furthermore, Molinos-594 

Senante et al. (2018a) comments that utilising DEA with a bootstrap procedure ensured more 595 

accurate efficiency scores with a limited sample size.  596 

The selection of representative inputs and outputs is imperative for a DEA model to produce 597 

valid results. The two inputs used in the economic model were OPEX and capital expenditure 598 

(CAPEX) as these accurately represent the key aspects of financial operations within a water 599 

company. OPEX in this study was made up of both wholesale and retail expenditure and 600 

excludes exceptional items, depreciation and amortisation. CAPEX was used under the 601 

assumption that the companies in the sample contribute enough for it to be sufficient to 602 

maintain and renew the distribution network long-term. Since Ireland’s currency is Euros, Irish 603 

Water’s OPEX and CAPEX figures had to be converted to GBP for the analysis using the 604 

2011-2015 average exchange rate of 0.814 (Statista, 2018). The two inputs used in the 605 

environmental model are operational greenhouse gas (carbon dioxide equivalent) emissions 606 

and kilometres of water mains and sewage piping, which represents embedded emissions 607 

within capital assets. The length of sewage and delivery network provide a suitable proxy for 608 

embedded carbon emissions within a company given the dominance of this infrastructure in 609 

terms of material inputs. Greenhouse gas emissions, to the authors’ knowledge, has not been 610 

assessed with the DEA method within the water utility literature. However; many studies have 611 

used length of piping as a proxy to represent financial capital (Mbuvi et al., 2012; Ananda, 612 

2014; See, 2015; Molinos-Senante et al., 2018a) and fixed assets have been used to estimate 613 

carbon in other DEA literature (Zhu, 2018).  614 

One output was used for both the environmental and economic efficiency analyses. This 615 

output is a combined volume of both water delivered and wastewater treated and combines 616 

the two key determinants of resource use within water utilities, reflecting the most common 617 

outputs used in the DEA water utility literature (De Witte and Marques, 2010b, Guerrini et al., 618 

2013). The water delivered volumes were estimated from subtracting leakage rates away from 619 
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distribution input, which is the amount of water entering the distribution system at the point of 620 

production. The wastewater treated volumes encompass all water treated at treatment plants, 621 

not just effluent from businesses and homes.  622 

A fundamental driver of resource use within WaSCs is the quality of water they produce and 623 

the wastewater they dispose of (Plappally and Lienhard, 2012; Maziotis et al., 2015). With this 624 

in mind, companies should not be penalised in terms of efficiency assessment for producing 625 

higher quality outputs than others; therefore, this study follows Saal et al. (2007) and Molinos-626 

Senante et al. (2015b) and adjusts the two indicators used to calculate net output according 627 

to available water quality parameters. Water delivered was corrected by the quality of the 628 

water (𝑦1) and wastewater treated was adjusted based on wastewater discharge permit 629 

compliance (𝑦2). A more accurate representation on quality could be achieved by 630 

understanding the raw water quality being treated for drinking water and knowing the quantity 631 

of pollutants (e.g., kg of BOD) removed however, in the absence of this data, the quality of 632 

drinking water (relative to UK legislative standards) and discharge permit compliance were 633 

used. The quality indicators are reported as percentages, with 100% meaning that all legal 634 

requirements are met. For this study, they are converted to decimals and are used as 635 

multipliers for the original output data, defined thus:  636 

𝑦1 = 𝑊𝐷 × 𝐷𝑊𝑄          (3.1) 637 

𝑦2 = 𝑊𝑊𝑇 × 𝐷𝑃𝐶          (3.2) 638 

Where 𝑦1 is the quality-adjusted water delivered; 𝑊𝐷 is the volume of drinking water delivered 639 

to customers; 𝐷𝑊𝑄 is drinking water quality; 𝑦2 is the quality-adjusted wastewater volume 640 

treated; 𝑊𝑊𝑇 is the wastewater treated volume; 𝐷𝑃𝐶 is discharge permit compliance, an 641 

appropriate wastewater discharge quality proxy. The resulting figures for the indicators 𝑦1 and 642 

𝑦2 then made up the solo output of both the environmental and economic DEA analysis.  643 

In an attempt to decipher the reasons behind companies performing the way that they do, 644 

population density, percentage of abstracted water being from surface water, leakage and 645 
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consumption per capita were used as the determinant variables to evaluate. These were 646 

selected as the most likely determinants of efficiency available from the aforementioned data 647 

sources, based on results of previous studies summarised above (De Witte and Marques, 648 

2010a; Carvalho and Marques, 2011; Marques et al., 2014; Molinos-Senante et al., 2018a). 649 

The variables used for analysing the determinants of efficiency along with the inputs, outputs 650 

and quality variables used to determine the efficiency scores are summarised in Table 3.1.  651 

Table 3.1. Data sample description for use in DEA analyses, representing water supply and wastewater treatment. 652 

 653 

3.2.1.2. Standard DEA model 654 

The DEA method was originally produced by Farrell (1957) and later developed by Charnes 655 

et al. (1978), and has since been frequently used to assess a vast array of water utilities (Berg, 656 

2013). It is a non-parametric technique that employs linear programming to facilitate the 657 

creation of the efficient production frontier. The frontier develops the relative efficiency of the 658 

sample of decision-making units (DMUs), which in this case are the UK and Ireland water 659 

utilities, by comparing their inputs and outputs in relation one and other within the sample 660 

(Charnes et al., 1978). The technical efficiency of each DMU is then gauged by evaluating 661 

how far it is away from the frontier.  662 

  
Average SD Minimum Maximum 

Inputs Operational expenditure (million£) 400 207 165 824 
 

Capital expenditure (million£) 447 328 156 1322 
 Operational GHG emissions (KtCO2e) 365 186 

 
148 

 
824 

 
 Length of mains and sewage pipes (km) 82,460 39,081 

 
30,961 

 
139,880 

 
Outputs Water delivered & wastewater treated 

(ML/ day) 2556 1587 739 6338 
Quality 
Variables 

Drinking water quality (%) 99.9 0.1 99.5 100 

 
Discharge permit compliance (%) 97.2 4.7 83 99.9 

Explanatory 
Variables 

Consumption per capita (l/h/d) (excluding 
leakage) 

139 16 115 181 

 
Population density (Population/km2) 67 17 42 106 

 
Leakage (%) 24 9 12 49 

 Surface water (%) 72 27 12 100 



28 
 

The model of the DEA method can orientate towards either inputs or outputs. Generally, water 663 

and sewage companies do not have much control over the quantity of their outputs, those 664 

largely being determined by demand for drinking water and sewage treatment. They do 665 

however have a large influence over their inputs, with a goal to reduce the resources going 666 

into them as much as possible, whilst still producing those outputs at the same standard; 667 

therefore, this study employed an input-orientated model. This is in line with similar literature 668 

that analyses water utilities with DEA methods (De Witte and Marques, 2010a; Berg, 2013). 669 

Furthermore, the model was based on varying returns to scale (VRS), which allows for scale 670 

effects. This is a reasonable assumption to make since the WaSCs being assessed are of 671 

various sizes and are likely to produce differing level of outputs with same level of inputs, 672 

which again, is concurrent with the majority of the literature (Berg and Marques, 2011; Peda 673 

et al., 2013; Guerrini et al., 2015; See, 2015).  674 

Given 𝑗 = 1, 2…, 𝑁 units, each one using a vector of M inputs 𝑥j = (𝑥1𝑗, 𝑥2𝑗, …, 𝑥𝑀𝑗) to produce 675 

a vector of S outputs 𝑦𝑗 = (𝑦1𝑗, 𝑦2𝑗, …, 𝑦𝑆𝑗), the input-orientated DEA model is described as 676 

follows:  677 

𝑀𝑖𝑛 𝜃𝑗 678 

𝑠.𝑡. 679 

∑𝑗=1  
𝑁  λj 𝑥ij ≤ θ𝑥𝑖0    1 ≤ 𝑖 ≤ M 680 

∑𝑗=1  
𝑁  λ𝑗 𝑦𝑟𝑗 ≥ 𝑦𝑟0                           1 ≤ 𝑟 ≤ S     (3.3) 681 

λ𝑗 ≥ 0    1 ≤ 𝑗 ≤ 𝑁 682 

 683 

𝜃𝑗 is a scalar whose value signifies the efficiency of the evaluated unit (WaSC), which is 684 

efficient when 𝜃𝑗 = 1 and inefficient when 𝜃𝑗 > 1. This subscribes to Shephard efficiency, as 685 

opposed to Farrell efficiency that has inefficient units as < 1; by following this variation, it 686 

removes the need to convert the efficiencies for the next methodology section. M is the number 687 

of inputs used, S is the number of outputs generated, N is the number of units assessed and 688 
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λ𝑗 is a set of intensity variables that symbolise the weighting of each analysed unit 𝑗 within the 689 

formation of the frontier.  690 

3.2.1.3. Double-bootstrap DEA method 691 

The literature on DEA shows Tobit regression as the most popular method to analyse the 692 

effects of explanatory variables on technical efficiency. It is a two-stage approach and works 693 

by regressing the sample of explanatory variables against the technical efficiency scores, 694 

originally acquired through a DEA model (Hoff, 2007). There are, however, limitations to this 695 

method, an example being: the DEA efficiency scores are found to be serially correlated, which 696 

causes results to be biased, then explanatory variables are caused to have errors due to being 697 

derived from those efficiency estimates (Simar and Wilson, 2007). 698 

In order to estimate the technical efficiency of a sample with DEA but without bias, whilst also 699 

assessing the influence of explanatory variables, Simar and Wilson (2007) introduced a 700 

double-bootstrap model. This method operates by simulating the sample distribution by 701 

mimicking the data-generation process (Simões et al., 2010); in this study, 2,000 bootstrap 702 

samples were generated. The DEA efficiency scores are then re-estimated with the new 703 

generated data. The difference between the original scores and the estimated frontier from 704 

the double-bootstrap method shows the amount of bias that would have potentially skewed 705 

results using other methods.  706 

Simar and Wilson’s (2007) double-bootstrap method is summarised in the proceeding steps: 707 

1) apply the standard DEA method to estimate Shepherd’s efficiency score for the WaSCs; 2) 708 

conduct a truncated normal regression with maximum likelihood method, regressing the 709 

estimated efficiency scores that are greater than one against the explanatory factors; 3) obtain 710 

bootstrap samples from the truncated normal distribution of the efficiency estimates; 4) using 711 

the bootstrap results, calculate the bias-corrected efficiency scores; 5) re-estimate the 712 

marginal effects of the explanatory factors with the bias-corrected efficiency scores in the 713 

second-stage regression; 6) apply a second bootstrap based on the empirical distribution on 714 

the second-stage bias-corrected regression; 7) for each explanatory factor attain 95% 715 
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confidence intervals. The full computational procedure referred to as algorithm 2 in Simar and 716 

Wilson (2007) is encapsulated below: 717 

1. Estimate the DEA input-efficiency scores 𝜃𝑗 for all of the water and sewage companies 718 

in the sample by use of equation 3.3.  719 

2. Carry out a truncated maximum likelihood estimation to regress 𝜃 against a set of 720 

explanatory variables 𝑧𝑗, 𝜃𝑗 = 𝑧𝑗β + 휀𝑗, and provide an estimate �̂� of the coefficient vector 721 

𝛽 and estimate 𝜎휀̂ of 𝜎휀, the standard deviation of the residual errors 휀𝑗.  722 

3. For each company 𝑗 (𝑗 = 1, …, 𝑁) repeat the following steps (3.1-3.4) B1 times to obtain 723 

a set of B1 bootstrap estimates ( 𝜃𝑗𝑏 )̂ for b = 1, …, B1.    724 

3.1. Generate the residual error 휀𝑗 from the normal distribution 𝑁 (0, σε
2̂). 725 

3.2. Compute 𝜃𝑗
∗ = 𝑧𝑗�̂� + 휀𝑗.  726 

3.3. Generate a pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) where 𝑥𝑗
∗ = 𝑥𝑗 and 𝑦𝑗

∗ = 𝑦𝑗( 
θ𝑗

θ𝑗
∗).  727 

3.4. Using the pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) and equation 3.1, estimate pseudo efficiency 728 

estimates 𝜃𝑗
∗̂.  729 

4. Calculate the bias-corrected estimator 𝜃�̂� for each water and sewage company 𝑗 (𝑗 =730 

1, … , 𝑁) using the bootstrap estimator or the bias 𝑏�̂� where 𝜃�̂� = 𝜃𝑗 − 𝑏�̂� and 𝑏�̂� = 731 

(
1

𝐵1
  ∑ 𝜃𝑗𝑏

∗̂𝐵1
𝑏=1 ) - 𝜃𝑗. 732 

5. Use the truncated maximum likelihood estimation to regress 𝜃�̂� on the explanatory 733 

variables 𝑧𝑗 and provide an estimate 𝛽∗̂ for 𝛽 and an estimate 𝜎 ∗̂ for 𝜎휀.  734 

6. Repeat the following three steps (6.1-6.3) 𝐵2 times to obtain a set of 𝐵2 pairs of 735 

bootstrap estimates (𝛽𝑗
∗∗̂ ),  (σ𝑗

∗∗̂) for 𝑏 = 1, … , 𝐵2. 736 

6.1. Generate the residual error 휀𝑗 from the normal distribution 𝑁 (0,  σ∗2̂) 737 

6.2. Calculate 𝜃𝑗
∗∗̂ = 𝑧𝑗𝛽∗̂ + 휀𝑗.  738 

6.3. Use truncated maximum likelihood estimation to regress 𝜃𝑗
∗∗̂ on the explanatory 739 

variables 𝑧𝑗 and provide as estimate 𝛽∗∗̂
 for 𝛽 and an estimate σ∗∗̂ for σε. 740 
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7. Construct the estimated (1 − 𝛼)%  confidence interval of the 𝑛-th element, 𝛽𝑛 of the 741 

vector 𝛽, that is [𝐿𝑜𝑤𝑒𝑟𝑎𝑛, 𝑈𝑝𝑝𝑒𝑟𝑎𝑛] = [𝛽𝑛
∗̂ + 𝑎�̂� , 𝛽𝑛

∗̂ −  𝑏�̂�] with  742 

𝑃𝑟𝑜𝑏 (−𝑏�̂� ≤ 𝛽𝑛
∗∗̂ − 𝛽𝑛

∗̂ ≤ 𝑎�̂�)  ≈ 1 − 𝑎 743 

For solving the model, the statistical computing software ‘R’ with the package ‘rDEA’ 744 

developed by Simm and Besstremyannaya (2016) was used.  745 

3.2.2.  Analysing operational and rurality correlations 746 

3.2.2.1. Water utility data description 747 

So that water companies can benchmark themselves against each other in the UK, historic 748 

information about their operations, investment and performance is collated and shared. In the 749 

interests of transparency, this information is published by Water UK, in the same format in 750 

which it was submitted by companies at the end of the 2014/15 financial year and as reported 751 

to OFWAT. The data shared by Water UK in 2015 is the sole source for the information utilised 752 

in the rurality analysis. This information has not necessarily been through the assurance 753 

procedures and tests that would normally be applied to regulatory performance reporting data. 754 

Including a mixture of WaSCs and WoCs within the sample could undermine the analysis due 755 

to their different operations and sizes. This issue is negated in the DEA analyses part of the 756 

study as just WaSCs were assessed. In order to minimise the impact of mixed operations and 757 

size in this part of the study, the data were normalised. Where data were reported as financial 758 

spend and total operation information by each water company, they were normalised against 759 

numbers of properties connected for that service. i.e. dividing total operation information and 760 

financial spend by the number of properties connected for water and/or sewage services as 761 

appropriate. Other already normalised data were left as originally provided. A refined version 762 

of this data is displayed below in Table 3.2 to provide a visual example; a full set of the data 763 

is available in supplementary information.  764 

 765 
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Table 3.2. Refined indicator summary table used in rurality correlation analysis (M = million, S = sewage, GWP = 766 
Global Warming Potential, STWs = Sewage Treatment Works, 105a sewers = private lines that have become 767 
owned by water companies, size bands 1-3 = smallest group of treatment works). 768 

Indicator Metric Average Standard 
deviation 

Minimum Maximum 

Total company spend £/property connected for 
sewage and water 

206 79 90 373 

Number of STWs number/M property served S 353 240 61 905 

Length of sewers (km) m/properties connected S 14 1.4 11 17 

Length of 105A sewers (km) m/properties connected S 10 2 7 14 

Load treated by all STWs  kg BOD5/day/M properties 135 
 

44 60 
 

177 
 

Load treated by STWs in size 
bands 1-3 

kg BOD5/day/M properties 6,335 
 

4,737 
 

1,062 
 

15,459 

Total Company GWP kgCO2e/property connected 
for water and sewage 

155  47  117  273 

 769 

3.2.2.2. Rurality factor assessment 770 

Water company operating area boundaries are not made publicly available by regulating 771 

bodies such as the Environment Agency, Natural Resources Wales or Drinking Water 772 

Inspectorate, due to complex licencing issues. Water companies may provide geospatial data 773 

(i.e., their supply boundary polygons) or maps outlining their operations at their discretion. 774 

Using published data sources (both geospatial and mapped outputs) combined with data 775 

provided in response to direct requests, the potable and wastewater operational area 776 

boundaries were georeferenced and digitised (where required) using ESRI ArcGIS 10.4 and 777 

assembled into an England and Wales coverage. 778 

The Rural/Urban Classification is an official statistic used to distinguish rural and urban areas. 779 

The classification defines areas as rural if they are outside settlements with more than 10,000 780 

resident population. The classification is then further divided via sparsity into whether the area 781 

is a small town, village, hamlet or conurbation of various extents (Office of National Statistics, 782 

2013).  783 
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Geospatial data representing the 2011 Census Middle Layer Super Output Area (MLSOA) 784 

boundary polygons were obtained (in ESRI shapefile format) from the Office of National 785 

Statistics. The corresponding Rural–Urban Classification (RUC) identifiers for Small Area 786 

Geographies data were subsequently obtained in tabular form and joined using common 787 

attributes (the MLSOA identifier codes).  788 

The water company operational area datasets for potable and wastewater treatment were 789 

separately geoprocessed using intersection with the RUC MLSOA polygons. The resulting 790 

intersected dataset related each water company supply area to its constituent rural and urban 791 

area polygons (Figure 3.1). The area measures for each of the resulting polygons were re-792 

calculated to account for any splitting and resizing of individual entities resulting from the 793 

geoprocessing, and then aggregated to their individual classes nested within each water 794 

company area using a summary statistical process. The percentages of the constituent 795 

classes were then calculated (Table 3.3). 796 
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 797 

Figure 3.1. Catchment areas water supply companies in the England and Wales, showing the distribution of rural-798 
urban classifications within them. 799 
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Table 3.3. The percentage of water and sewage supply areas of WaSCs and WoCs that fall into the primary 812 
classification of “rural”. 813 

Water company 

Water supply area: 
MLOSA rural-urban 

Index (% Rural) 

Sewage supply area: 
MLOSA rural-urban  

Index (% Rural) 

Total area 
classed as 
rural (%) 

South West Water 91.5 91.7 91.6 

Wessex Water 87.4 80.8 84.1 

Welsh Water 86.9 86.2 86.6 

Anglian Water 86.2 84 85.1 

Essex & Suffolk Water 85.5  85.5 

Cambridge Water 84.4  84.4 

Northumbrian Water 81.3 81.2 81.3 

Yorkshire Water 76.8 74.8 75.8 

Severn Trent Water 75.6 75.2 75.4 

Thames Water 71.8 60.6 66.6 

United Utilities 69.2 69.3 69.3 

South Eastern Water 69  69 

Southern Water 68.7 71.8 70.3 

Bristol Water 68  68 

Bournemouth Water 64.2  64.2 

Affinity Water 57.8  57.8 

Portsmouth Water 55.1  55.1 

South Staffordshire Water 49.1  49.1 

Sutton & East Surrey Water 47.4  47.4 

Essex Water 44.5  44.5 

Dee Valley Water 32.2  32.2 
 814 

3.2.2.3. Correlation methodological process  815 

In order to evaluate if and how rurality affects water utility operations and therefore efficiency, 816 

regression analysis was undertaken. This was completed by calculating the R2 value of the 817 

correlation between an operational parameter and the rurality percentage of the companies 818 

within the sample. The slope and intercept of the linier trendlines were also calculated to 819 

provide an average baseline from which to benchmark the performance of the utility 820 

companies assessed.  821 

3.3. Results and Discussion 822 

3.3.1. Economic efficiency estimate  823 

The input-orientated Shepherd distance function that is subscribed to here regards efficiency 824 

scores higher than one as inefficient compared to the frontier, which are those operating at or 825 

closest to one. The initial DEA model, referred to in Figure 3.2 as ‘non-bias corrected scores’, 826 
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estimated that seven of the 13 (53.8%) WaSCs are on the efficiency frontier and all have an 827 

efficiency estimate of one. This means that according this model, those seven companies 828 

cannot reduce their CAPEX and OPEX inputs, whilst also maintaining their water delivered 829 

and wastewater treated output levels. The mean efficiency was 1.140 with a standard 830 

deviation of 0.295. The implication is that an average WaSC can decrease their inputs by 831 

12.3% (1-1/1.140) and still produce their outputs to the same standard, if they are to perform 832 

at the same level as the frontier or ‘benchmark’. For a more detailed view of the specific 833 

efficiency scores, the rank changes, and the confidence intervals, see Supplementary 834 

Information.  835 

 836 

Figure 3.2. Rankings based on biased standard DEA model and bias-corrected DEA estimates generated with 837 
2,000 bootstrap iterations for the economic performance of 13 UK and Irish water and sewage companies. 838 

 839 

The bias for all WaSCs were zero or negative values, with mean average of bias being -0.116. 840 

This means the bias correction largely indicates that the sample are less efficient after bias-841 

correction than in the original DEA model. This is concurrent with other studies (Ananda, 2014; 842 

See, 2015; Gomez et al., 2017; Molinos-Senante et al., 2018a) and the application of the 843 

technique (Simar and Wilson, 2007).  844 

The mean average of the efficiency scores of the sample once bias was removed was 1.256. 845 

These analyses were repeated three times to prove validity and had an average difference of 846 

0.22% (range -0.98%-1.29% between the repeats). This result indicated that on average if the 847 
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water companies could perform at the benchmark level they could reduce their financial inputs 848 

by 19.4%, whilst still maintaining the same levels of service outputs. The range of the sample 849 

was large, with the most inefficient DMU having an efficiency score of 2.175, whilst the 12th 850 

most efficient company had a score of 1.431. This result displays that most of the companies 851 

were close to each other in terms of efficiency, which was expected as the UK has quite a 852 

mature water sector that has undergone benchmarking and regulation for decades. The result 853 

also shows that one company was significantly lagging behind its peers and could likely benefit 854 

from the sharing of best practise.  855 

The average bias was -0.116 as noted above, which is a small efficiency correction overall, 856 

but it did have a significant impact on the rank of some WaSCs. For instance, DMU 1 climbed 857 

from rank eight to three. However, large bias corrections did not necessarily mean large 858 

changes in rank; for example, DMU 12 had the largest correction of -0.315, only moving it 859 

down from seven to 11. Collectively, nine of the 13 water utilities within the sample exhibited 860 

a rank change.  861 

3.3.2. Determinants of economic efficiency  862 

The key advantage of using the double-bootstrap methodology is that it enables a review of 863 

the determinants of the WaSC efficiency scores by applying a bootstrap truncated regression 864 

model. The explanatory factors assessed in this study were consumption per capita, 865 

percentage surface water, leakage and population density; their relationship with efficiency is 866 

displayed in Table 3.4. The bias-corrected coefficients with the method used in this study 867 

impact the efficiency of the water utilities negatively if the value is positive and have a positive 868 

effect on efficiency scores if the coefficient is negative. A p-value ≤ 0.05 displays that the 869 

explanatory variable is significant at the 95% significance level, essentially meaning the 870 

variable influences the efficiency estimates of the WaSCs.  871 

 872 
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 Table 3.4. Results of bootstrap truncated regression for economic efficiency analysis. 873 

Note: *Statistically significant at the 1%, 5% and 10% levels. 874 

Percentage surface water abstracted had a significant positive relationship with efficiency (p-875 

value 0.002). This result was unexpected and goes against what is found elsewhere in the 876 

literature. Carvalho and Marques (2011) observe mixed results, with a negative influence from 877 

surface water being observed when it makes up 70-80% and over 95% of a company’s total 878 

abstraction, but a positive influence between 80-95% and no influence at all below 70%. Whilst 879 

recent studies that utilise a similar methodology to the one used in this study have found 880 

insignificant relationships with surface water (Marques et al., 2014; See, 2015; Molinos-881 

Senante et al., 2018a), the expected results were that if a relationship was shown, it would be 882 

negative, such as that in Byrnes et al. (2010). The literature suggests that surface water 883 

requires purification of the water via chemical treatments that are more expensive than those 884 

used in groundwater treatment (Aubert and Reynaud, 2005; Shih et al., 2006). These costs 885 

are expected to be higher in surface water despite groundwater typically requiring pumping 886 

up to the surface, largely as a result of groundwater treatment mostly only being required for 887 

hardness and salinity (United States Geological Survey, 2016) and partially because some 888 

groundwater sources are from naturally occurring high pressure aquifers that flow to the 889 

surface without the need for pumping. It could be the case for UK and Irish companies the 890 

surface water they abstract is of a reasonably good quality and thus does not require much 891 

treatment and costs are lower. 892 

The variable consumption per capita negatively influences the efficiency of the WaSCs to a 893 

non-significant level. Generally, the literature shows mixed results (Ananda, 2014; De Witte 894 

and Marques, 2010b; Marques et al., 2014). There is an argument that per capita consumption 895 

Explanatory variable Bias-corrected 

coefficients 

Standard 

error 

Low High P-Value 

Consumption per capita 0.003 0.004 -0.006 0.010 0.527 

Population density -0.018 0.006 -0.032 -0.009 0.002* 

Leakage 0.029 0.008 0.014 0.044 0.000* 

Surface water % -0.008 0.003 -0.014 -0.004 0.001* 
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can affect efficiency scores positively due to links with economies of density (Byrnes et al., 896 

2010; Carvalho et al., 2012). The indication is that once a distribution pipe network is set up, 897 

the amount of water actually running through it has minimal costs. The negative relationship 898 

found in this study may show that companies increase their efficiency via cost reductions as 899 

opposed to increasing the sale of water as noted by De Witte and Marques (2010a), however, 900 

the relationship found in this research is weak so any conclusions drawn from it are speculative 901 

(p-value 0.52).  902 

As Table 3.4 illustrates, leakage is significantly negatively associated with efficiency. Logically, 903 

an increase in leakage should result in lower efficiencies since companies would have to 904 

extract, treat and pump more water to meet a specific demand. This result is concurrent with 905 

the overall trend in the literature (Corton and Berg, 2009; See, 2015; Molinos-Senante, 2018a). 906 

Despite this, leakage and its equivalent indicator, non-revenue water, are not always 907 

conclusive towards causing negative effects on efficiency. Marques et al. (2014) for example, 908 

concludes that leakage shows no influence on efficiency. Furthermore, Ananda (2014) and 909 

De Witte and Marques (2010a) show there is a relationship between increased leakage and 910 

increased efficiency.  911 

Population density showed a significantly positive relationship with the WaSC efficiency 912 

scores. This result is consistent with the overwhelming theme of results from other empirical 913 

studies from various countries (Abbott et al., 2012; Guerrini et al., 2013; Marques et al., 2014; 914 

Ananda, 2014; See, 2015; Molinos-Senante et al., 2018a). The relationship between 915 

population density and efficiency is thought to be related to economy of densities (Byrnes et 916 

al., 2010; García-Sánchez, 2006). Essentially this means there is less network to install and 917 

maintain per population of customers, meaning fewer resource inputs per service output and 918 

therefore higher efficiency. Though these results concur with much of the literature, some 919 

studies still show up no significant relationship (Marques et al., 2014). Population density has 920 

particular relevance in this sample of UK and Ireland WaSCs. The water utilities compared 921 

operate in areas with a range of population densities, from 42 to 106 people/km2, meaning 922 
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certain companies have natural advantages or disadvantages in relation to each other. This 923 

should be taken into account when it comes to regulation and benchmarking to ensure fairer 924 

evaluations of performance. The un-level efficiency playing field created by population density 925 

has considerable implications for water company competitiveness and long-term viability, and 926 

is one of the key reasons that rurality/urbanity have been further investigated in this study 927 

(Section 3.3.5). 928 

3.3.3. Environmental efficiency estimate 929 

The results from the standard DEA model referred to in Figure 3.3 under ‘non-bias corrected 930 

score’, estimated that five of the 12 (41.6%) WaSCs are on the efficiency frontier and have an 931 

efficiency estimate of one. The mean efficiency was 1.096 with a standard deviation of 0.159. 932 

The average WaSC can decrease their carbon inputs by 8.8% (1-1/1.096) and still theoretically 933 

produce their water delivery and wastewater treatment outputs to the same standard, if they 934 

are to perform at the same level as their peers who operate at the frontier. As with Section 935 

3.3.1, more information on efficiency scores is available in supplementary information.  936 

 937 

Figure 3.3. Rankings based on biased standard DEA model and bias-corrected DEA estimates generated with 938 
2,000 bootstrap iterations for the environmental performance of 12 UK water and sewage companies. 939 

 940 
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The bias for all WaSCs were negative values, with -0.122 being the mean average of bias. As 941 

referred to in Section 3.3.1, the double-bootstrap DEA results were expected to display a drop 942 

in efficiency within the sample. Similar to the economic efficiency analysis above, the average 943 

bias was small but again it did affect how the companies were ranked. Eight out of 12 DMUs 944 

within this sample experienced a ranking change and in total, there was 15 ranking place 945 

movements even in this small sample.   946 

The average environmental efficiency score once bias was removed was 1.219; this analysis 947 

was repeated three times and displayed an average difference of 0.22% (range -0.98%-1.29% 948 

between the repeats). The average corrected efficiency score means on average if the WaSCs 949 

could perform at the frontier, they could reduce their carbon inputs by 15.8%, whilst still 950 

maintaining the same levels of outputs. There were no significant outliers in efficiency 951 

however, the range from 1.026-1.765 combined with the clustering of the top four performing 952 

companies (1.026-1.082), indicated that a handful of companies are leading the way in terms 953 

of carbon efficiency, and could be exemplars for various best practice techniques.   954 

3.3.4. Determinants of environmental efficiency estimate 955 

The explanatory factors assessed in the carbon efficiency analysis were the same as those 956 

evaluated for economic efficiency, consumption per capita, percentage surface water, leakage 957 

and population density. As noted in Section 3.3.2, the bias-corrected coefficients for the 958 

explanatory variables (displayed in Table 3.5) are deemed to positively affect efficiency if their 959 

values are negative and adversely affect efficiency if their values are positive.  960 

Table 3.5. Results of bootstrap truncated regression for environmental efficiency analysis. 961 

Explanatory variable Bias-corrected 

coefficients  

Standard 

error 

Low High P-Value 

Consumption per capita 0.013 0.005 0.005 0.024 0.008* 

Population density -0.018 0.005 -0.030 -0.009 0.001* 

Leakage 0.003 0.014 -0.024 0.031 0.867 

Surface water % -0.006 0.003 -0.012 -0.002 0.013* 

 Note: *Statistically significant at the 1%, 5% and 10% levels.  962 
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Consumption per capita was shown to significantly negatively influence carbon efficiency. This 963 

result matches the direction of effect on efficiency that was found in the economic analysis. 964 

The belief is that the more water each person consumes, the more treatment and energy is 965 

required, which are key sources of carbon. This relationship, like that in the economic analysis, 966 

is subject to economies of density, therefore it was not expected to necessarily show 967 

significance.  968 

The percentage of surface water abstracted shows the same result as for the economic 969 

analysis, positively affecting efficiency to a significant degree. This is likely to be a result of 970 

lower electricity demand compared to groundwater pumping. Similar to the economic 971 

efficiency, the increased treatment usually reported for surface water may not be the case in 972 

the UK and Ireland, therefore there is a concurrent saving in carbon costs.   973 

Population density, like surface water percentage, matched the results from the economic 974 

analysis. This was expected due to economies of density yielding naturally more efficient use 975 

of resources, as discussed in Section 3.3.2. More pumping is required if populations are 976 

spread over a large area, as well as more infrastructure such as piping and treatment works 977 

to support those populations, which have large amounts of embodied carbon within them.  978 

The result for leakage however diverged between environmental and economic efficiency 979 

analyses, with a non-significant relationship shown for environmental efficiency. The 980 

anticipated result was that as leakage went up, so would carbon due to more pumping and 981 

therefore more energy being required. A possible cause of this result may be that capital 982 

projects into lowering leakage rates may have been carbon intensive, therefore the 983 

relationship over a one-year snapshot is not truly representative and companies who have not 984 

invested and thus have lower carbon emissions but higher leakage rates, appear to be 985 

performing better.  986 

 987 

 988 
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3.3.5. The role of rurality 989 

3.3.5.1. Correlation results 990 

Regression analysis was conducted on England and Wales water utilities, with a split of 10 991 

WaSCs and 11 WoCs. The R2 values closer to one indicate a stronger relationship between 992 

rurality and the displayed parameter. Table 3.6 displays the top regressions from the analysis; 993 

the total analysis results are available in supplementary information. The table displays the R2 994 

results, slope and intercept related to the parameter’s relationship with rurality. The 995 

parameters contain data from varying areas including: economic costs, scale information, 996 

environmental performance and emissions, which are all normalised by properties connected.  997 

To make it easier to identify where a linear correlation is more likely, Table 3.6 has been sorted 998 

in terms of R2 values.  999 

Table 3.6. Rurality relationship with economic cost, global warming potential, scale information, and 1000 
environmental performance data divided by property connected for that service (M = million, S = Sewage, W = 1001 
Water, GWP = Global Warming Potential, STWs = Sewage Treatment Works, size bands 1-3 = smallest group of 1002 
treatment works). 1003 

Indicator Unit R2 Slope Intercept 

Number of sewage treatment works number/M property served S 0.823 24.008 -1508.887 

Total load treated by STWs in size 

bands 1-3 

kg BOD5/day/M properties 0.792 -5.139 533.304 

Total company spend £/property connected for S&W 0.633 4.035 -69.813 

Properties flooded in the year other causes/M properties 0.544 -5.139 533.304 

GWP of sewage treatment kgCO2e /property connected for sewage 0.508 0.880 -21.657 

Total company GWP kgCO2e /property connected for water 

and sewage 

0.485 3.890 -150.956 

Spend on sewage treatment £/property connected for S 0.471 1.632 -42.806 

Sewage sub-total GWP kgCO2e /property connected for sewage 0.466 2.048 -68.807 

GWP of sewage collection kgCO2e /property connected for sewage 0.460 1.041 -46.813 

Water sub-total GWP kgCO2e /property connected for water 0.427 1.450 -17.841 

Employee total number/M properties connected W+S 0.407 8.620 717.109 

 1004 

The highest R2 value from the economic data is for total company spend per property 1005 

connected (0.633), indicating that as rurality percentage increases, so does the spending of 1006 



44 
 

the water companies. This direction of relationship is concurrent with the population density 1007 

results from Section 3.3.2, although the strengths vary. This highlights how population density 1008 

is a reasonable ‘crude’ indicator to use to gauge rurality/urbanity but other methods such as 1009 

the one used here, may be more accurate.  1010 

Concerning scale information and assets one of the most striking correlations found in this 1011 

study was that of rurality against number of sewage treatment works (STWs) with an R2 of 1012 

0.823 for a linear trendline and 0.963 for an exponential one (shown in Figure 3.4). This was 1013 

reflected in the largest correlated indicator within the environmental performance information, 1014 

which is total load treated by STWs in size bands 1-3 (0.792), signifying that a large number 1015 

of smaller size treatment plants are distributed across more rural areas. According to these 1016 

results, dispersed small treatment works are the key driver behind rurality causing economic 1017 

inefficiencies across water companies. This makes sense, as economies of scale are well 1018 

documented for wastewater treatment in terms of infrastructure, maintenance, energy and 1019 

chemical costs (Libralato et al., 2012). The correlations described above go some way in 1020 

explaining the correlations found with economic factors against the percentage rural index, 1021 

such as marginal correlations in spend on sewage treatment (0.471). Future research could 1022 

evaluate solutions to this, for example, assessing whether it is more financially viable within 1023 

certain areas to use more extensive piping and pumping networks to move the sewage to 1024 

larger treatment plants. 1025 
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  1026 
Figure 3.4. The correlation between percentage of catchment being rural and the number of sewage treatment 1027 
works normalised by million properties served for sewage, with an exponential trendline. 1028 

 1029 

A more minor potential impact that rurality induces on companies appeared to be an increase 1030 

in the number of employees (R2 0.407). The number of employees may actually be at least 1031 

partially a result of the increased number of sewage treatment works too; further emphasizing 1032 

the impact of rurality appears to be largely resulting from dispersed wastewater treatment.  1033 

The R2 results for emissions that display relationships were carbon equivalent of sewage 1034 

treatment (0.508), total company carbon equivalent (0.485), sewage sub-total carbon 1035 

equivalent (0.466), carbon equivalent of sewage collection (0.460) and water sub-total carbon 1036 

equivalent (0.427). These trends concur with the economic regressions to a lesser extent, 1037 

which further shows how rurality leads to inefficiencies, particularly within sewage operations. 1038 

This effect of rurality on efficiency matches that of Gibson’s (2017) who presented the effect 1039 

of remoteness, measured in “travel time to significant city”, and correlated this with a “water 1040 

service provider performance index”. Their research stated, “remoteness from a commercial 1041 

centre clearly has a significant impact on performance”.  1042 

Our results emphasise the important exogenous influence of rurality on water company 1043 

efficiency, which needs to be taken into consideration when benchmarking. Doing so would 1044 

y = 0.612e0.0792x

R² = 0.974

0

100

200

300

400

500

600

700

800

900

1,000

0 10 20 30 40 50 60 70 80 90 100

N
u

m
m

b
er

 o
f 

se
w

ag
e 

tr
ea

tm
en

t 
w

o
rk

s 
(n

u
m

b
er

/M
 p

ro
p

er
y 

se
rv

ed
)

Rurality %



46 
 

enable companies to more accurately ascertain their scope for improvement, and to identify 1045 

priority aspects to drive this improvement (e.g. by clarifying best practice). NGOs could use 1046 

these techniques to more reliably evaluate best and worst performers within the sector, whilst 1047 

regulators could define more rigorous performance targets for urban water companies and 1048 

adjust targets for rural companies to account for exogenous factors.  1049 

3.3.5.2. Methodology appraisal 1050 

In terms of methodology, the framework presented here provides a powerful tool to benchmark 1051 

among companies where exogenous factors may influence spend or performance. Our 1052 

approach may be preferential to methods that use clustering of similar company attributes 1053 

where a decision has to be made whether to include borderline data in one or another cluster, 1054 

this method instead provides a “sliding scale” to make individual benchmark cases. 1055 

The same methodology was also applied to the operating catchments of one water authority, 1056 

and similar trends where found, although with fewer data points. That exercise highlighted 1057 

another use for the method within companies, in aiding a more holistic approach to regional 1058 

budgeting or how operational areas are drawn, especially concerning sewage treatment and 1059 

collection. 1060 

The influence of topography was also studied within one operation catchment by means of the 1061 

Melton Ruggedness Number and a 3D Analyst 2D area; however, no notable correlation was 1062 

found for that study. However, the influence of topography on water company efficiency may 1063 

merit further investigation.  1064 

3.4. Conclusions 1065 

The aims of this paper were to utilise a double-bootstrap Data Envelopment Analysis (DEA) 1066 

method to compare unbiased environmental and economic efficiency across water 1067 

companies, and to explore factors influencing these efficiencies, including the specific role of 1068 

rurality. There are four main conclusions to draw from this work. Firstly, the results show that 1069 

the average company could reduce their economic inputs by 19.4% and carbon emissions by 1070 
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15.8% by stepping up to the efficiency frontier. Thus, we demonstrate that there is 1071 

considerable scope for improvement in economic and environmental efficiency across water 1072 

companies if they adopt the practises of the top performers. Secondly, bias-correction of DEA 1073 

results using the double-bootstrap method changed performance rankings for nine companies 1074 

in the economic evaluation and eight companies in the environmental evaluation. We propose 1075 

that such bias correction is vital to undertake accurate benchmarking across water companies. 1076 

Thirdly, the study identified important factors influencing efficiency. Surface water sourcing 1077 

was significantly positively associated with economic and environmental efficiency (p-values 1078 

0.001, 0.013) as was population density (p-values 0.002, 0.001). These exogenous factors 1079 

are beyond the control of water companies, and thus need to be corrected for when 1080 

benchmarking. Water consumption per capita displayed a negative association with 1081 

environmental efficiency (p-value 0.008); whilst leakage rate showed a negative effect on 1082 

economic efficiency (p-value (0.000). These factors are at least somewhat within the control 1083 

of water companies, and should be prioritised to improve efficiency. The fourth conclusion of 1084 

this study is that the degree of catchment rurality significantly influences the efficiency of water 1085 

service companies. More rural catchments are associated with higher water company total 1086 

spend and higher greenhouse gas emissions per property connected is (R2 of 0.633 and 1087 

0.485). Operational data correlations suggest that this is a consequence of a greater number 1088 

of smaller decentralised sewage treatment works in more rural areas (R2 of 0.823 for number 1089 

of treatment works, R2 of 0.792 for small treatment works). It is clear that exogenous factors 1090 

such as rurality play a significant role in determining the apparent efficiency of water service 1091 

company operations, and thus benchmarking should be adjusted to reflect this non-level 1092 

playing field. Future research and development supporting more efficient water services 1093 

should focus on how to mitigate the resource burdens associated with larger numbers of 1094 

smaller sewage treatment plants in rural areas.  1095 

 1096 

 1097 
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Abstract 1113 
 1114 

Water companies consume up to 8% of global energy demand, at billions of dollars’ cost. 1115 

Benchmarking of performance between utilities can facilitate improvements in efficiency; 1116 

however, inconsistencies in benchmarking practices may obscure pathways to improvement. 1117 

The aspiration was to conduct an unbiased efficiency comparison within a sample of 17 water 1118 

only companies and water and sewerage companies in England and Wales, accounting for 1119 

exogenous factors, whilst evaluating the accuracy of common proxies. Proxies were tested, 1120 

and bias-corrected energy and economic efficiency scores with explanatory factors were 1121 

analysed using a double-bootstrap data envelopment method. Bias correction altered the 1122 

rankings of two companies for energy efficiency only. Results imply that on average, 1123 

companies could reduce energy inputs by 91.7%, and economic inputs by 92.3%, which was 1124 

symptomatic of the companies specialising in drinking water supply considerably out-1125 

performing combined water and sewerage companies. As exogenous influences were likely 1126 

to be a factor in the disparity between the companies, five indicators were evaluated. The 1127 

results varied but of note were average pumping head height, which displayed a significant 1128 

https://doi.org/10.1016/j.jenvman.2020.110810
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negative effect for energy efficiency, and proportion of water passing through the largest four 1129 

treatment works, that exhibited a significant negative effect on economic efficiency. Within 1130 

proxy performance, population served for drinking water was an adequate replacement for 1131 

volume of water produced, with results matching the core variable apart from two companies 1132 

changing rank in the economic analysis. Conversely, length of water mains performed poorly 1133 

when replacing capital expenditure, implying companies were on average 12.6% more 1134 

efficient, resulting in ten companies changing their rank and causing explanatory variables to 1135 

contradict direction of influence and significance. The findings contribute new insights for 1136 

benchmarking, including how different types of water companies perform under bias-1137 

correcting methods, the degree to which factors affect efficiency and how appropriate some 1138 

proxies are.  1139 

Key words: Performance Evaluation; Water Companies; Data Envelopment Analysis; Double-1140 

Bootstrap; Proxies; Explanatory Factors  1141 

 1142 
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4.1. Introduction 1153 

The water industry is a significant user of energy resources; with water companies spending 1154 

billions of dollars per annum to ensure a high standard of cleanliness, whilst also protecting 1155 

the environment through treatment of wastewater (Sedlak, 2014). Significant energy and 1156 

economic costs are incurred by pumping, mixing and purification for contaminants such as 1157 

heavy metals and inorganic salts (Yang et al., 2019). Other resources consumed for the 1158 

treatment of water include a variety of chemicals including algicides, chlorine, sodium 1159 

hydroxide, and aluminium sulphate for a plethora of applications such as reducing algal 1160 

blooms, disinfection, balancing pH, and coagulation-flocculation (Saleh, 2017). Moreover, 1161 

contamination of drinking water sources with nutrients, in particular phosphorous and nitrogen, 1162 

combined with regulatory requirements around acceptable concentrations is leading to 1163 

increasing energy and economic costs for treatment. Biological nutrient removal and chemical 1164 

precipitation are typically used to remove these elements; however, alternative lower-cost and 1165 

effective methods are being investigated (Kuriqi, 2014; Saleh and Gupta, 2016; Li et al., 2019). 1166 

The US Environmental Protection Agency (EPA, 2018) reported that for many municipal 1167 

governments, drinking water and wastewater plants are often their largest energy consumers, 1168 

typically accounting for 30-40% of municipality energy consumption. The EPA estimated that 1169 

2% of total energy use within the US is actually a result of drinking and wastewater systems. 1170 

The US is not a particular area of high consumption either; 3% of all UK energy use is 1171 

expended on drinking and wastewater systems (Fletcher, 2018). In fact, it is likely that these 1172 

countries have low energy consumption from their water utilities relative to the rest of the world 1173 

(Olsson, 2015). The United Nations stated that approximately 8% of global primary energy 1174 

supply is used to deliver and treat water (UN Water, 2014; UNESCO, 2014). As well as the 1175 

economic cost associated with such energy demand, it is responsible for considerable 1176 

emissions of greenhouse gases (GHG), with the US and UK emitting 40 and 5 million tonnes 1177 

CO2 per year through the water sector, respectively (McNabola et al., 2014; EPA, 2018). The 1178 
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imperative to reduce energy consumption and GHG emissions is a major driver for water 1179 

companies to increase their efficiency (DEFRA, 2016).  1180 

Increasing energy efficiency would benefit companies’ bottom line (profitability) and the 1181 

climate, and enable a more reliable service, assuming that saved resources would at least 1182 

partially be spent elsewhere such as on replacing leaky pipes or upgrading water treatment 1183 

facilities. Benchmarking is viewed as a key mechanism to achieve improvements in efficiency 1184 

by analysing performance, comparing results and identifying areas for improvement, and 1185 

ultimately facilitating sharing of best practice (Alegre et al., 2017). One of the most common 1186 

methods in academic literature utilised to benchmark is production frontier analysis (Berg, 1187 

2013). A frontier can be computed with parametric methods like stochastic frontier analysis or 1188 

non-parametric methods such as data envelopment analysis (DEA). DEA has three essential 1189 

components that make it advantageous when evaluating water utilities. Firstly, the approach 1190 

enables integration of numerous inputs and outputs for each company, providing a multi-1191 

criteria analysis. Secondly, weightings assigned to aggregate inputs and outputs are produced 1192 

endogenously. Thirdly, DEA does not need a priori inferences regarding the functional 1193 

exchange between the inputs and outputs (Cooper et al., 2011).  1194 

To decipher variables that influence efficiency in water utilities, there are four key 1195 

methodologies available for use in the second stage of analysis using DEA (Molinos-Senante 1196 

and Guzmán, 2018). One method is to group the decision-making units (DMUs), which are 1197 

water utility companies in this research, according to the explanatory variables and apply non-1198 

parametric statistical tests to verify if there are differences in the distribution of efficiency 1199 

scores among groups of DMUs (Molinos-Senante et al., 2014a). This can be undertaken via 1200 

several hypothesis tests such as analysis of variance, Kolmogorov-Smirnov distribution test 1201 

or the Mann-Whitney test. This method however, does not allow isolation of the influence of 1202 

the explanatory variables on the efficiency scores and therefore means causality cannot be 1203 

determined (Molinos-Senante et al., 2018a). Secondly, a common approach is to conduct a 1204 

regression analysis of the efficiency scores from the first stage results against the explanatory 1205 
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variables being investigated, the typical approach being the use of a Tobit regression analysis 1206 

(Guerrini et al., 2013; Guerrini et al., 2015). However, conventional inference methods used 1207 

in the second stage of the DEA method are based on efficiency values that are serially 1208 

correlated; therefore, any inferences based on them may not be reliable (Daraio and Simar, 1209 

2007). The process is regarded to have shortcomings, with Simar and Wilson (2007) and 1210 

Bǎdin et al. (2014) proving that if the variables used in the original efficiency model are 1211 

regressed against explanatory factors, then the second-stage estimates are inconsistent and 1212 

biased. Due to these biases, the third main second-stage method ‘order-m’ was developed by 1213 

Cazals et al. (2002). Order-m is a partial frontier method that uses just a portion of the sample 1214 

to determine the efficiency scores, and enables the inclusion of evaluating exogenous 1215 

variables (Carvalho and Marques, 2011). The limitation to this method is in its uniqueness, by 1216 

only taking a fraction of the original sample, it has issues around sample size requirements 1217 

and the representativeness of the reduced ‘m’ sample from the original sample, which may 1218 

greatly affect the efficiency scores (Da Cruz and Marques, 2014). The fourth method is a 1219 

double-bootstrap procedure from Simar and Wilson (2007) that allows statistical inferences 1220 

and hypothesis testing in DEA models, therefore facilitating the assessment of potential 1221 

influencer variables on efficiency, whilst further contributing bias-correcting of the efficiency 1222 

results generated from the original DEA computation (Yang and Zhang, 2018). This fourth 1223 

second-stage approach is utilised in this research to overcome the limitations of the other 1224 

methods outlined above, whilst delivering reliable results for benchmarking water companies 1225 

and evaluating the factors that may influence their efficiency. 1226 

When conducting performance analysis, variable choices are vital for fair and validated results. 1227 

However, the first choice variables are not always available, and in international benchmarking 1228 

studies, issues around valuation and exchange rates need to be negated; therefore, proxies 1229 

are often used to represent the first choice variables (de Witte and Marques, 2010a). Though 1230 

proxies can offer a useful alternative path to conducting benchmarking, it is not known how 1231 

accurate some of them are in replacing the first-choice variables. This study therefore 1232 

assesses the accuracy of two common proxies: population served for the service under review 1233 
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(Molinos-Senante et al., 2015a; Molinos-Senante and Farías, 2018), which in this instance is 1234 

drinking water, and water mains pipe network length (de Witte and Marques, 2010a; Mbuvi et 1235 

al., 2012; Ananda, 2014). These proxies replace the first-choice variables volume of water 1236 

produced and capital expenditure, respectively.  1237 

Like many countries, England and Wales are serviced by a mixture of water only companies 1238 

(WoCs) and water and sewage companies (WaSCs), which often prove difficult to analyse 1239 

collectively due to their differing operations, although attempts have been made (Molinos-1240 

Senante et al., 2015b). An effective assessment of these companies together could enhance 1241 

opportunities for sharing of best practices across a more diverse sample, leading to more 1242 

improvements in economic and energy efficiency. This paper therefore uses a sample of 1243 

WoCs and WaSCs, but only focusses on the water production side of the companies. 1244 

This study had three objectives. Firstly, to evaluate the naïve and bias-corrected energy and 1245 

economic efficiency scores of all water utilities in England and Wales. Secondly, to appraise 1246 

the role of an array of explanatory variables on the efficiency scores. Lastly, to assess the 1247 

extent to which proxies may influence efficiency rankings and their influencing variables. 1248 

These objectives collectively contribute valuable insights for academia and the water industry 1249 

by attempting to fill gaps in the literature. Bias-corrected efficiency evaluation has not 1250 

previously been undertaken across WaSCs and WoCs, and could offer unique insight into how 1251 

WaSCs and WoCs compare in terms of efficiency. Furthermore, research of rare explanatory 1252 

factors influencing energy and economic efficiency may contribute new knowledge to existing 1253 

theories on how specific factors affect efficiency. Finally, the analysis of how proxy variables 1254 

can influence efficiency and explanatory factor results could provide a new evidence base on 1255 

the reliability of alternative metrics to analyse efficiency.  1256 

 1257 

4.2. Methodology 1258 

To estimate the energy and economic efficiencies of WaSCs and WoCs in England and Wales, 1259 

in addition to the elements influencing their efficiencies, the DEA double-bootstrap method 1260 

incorporating a truncated regression was employed. The process allowed bias-corrected 1261 
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efficiencies to be ascertained and enabled evaluation of the indicators that affect these 1262 

efficiencies. Broader benefits of the approach have been outlined in the previous section.  1263 

 1264 

4.2.1. Original DEA model  1265 

DEA was initially created by Farrell (1957), then subsequently advanced by Charnes et al. 1266 

(1978). It is a non-parametric procedure that applies linear programming to construct an 1267 

efficient production frontier. The frontier establishes the comparative efficiency of the sample 1268 

of units, by comparing their input and output relationships, relative to others in the sample 1269 

(Charnes et al., 1978). Technical efficiency for the DMUs is then ascertained by appraising 1270 

their distances from the frontier.  1271 

The DEA model can be input or output-orientated. Water utilities lack dominant control of their 1272 

fundamental service output, that being volume of water delivered in this study. However, they 1273 

do have more control over inputs; accordingly, this paper applied an input-orientated design. 1274 

The variation of the DEA model used here was established on varying returns to scale, 1275 

allowing for scale effects. This assumption was considered credible as the sample of water 1276 

utilities vary in size and are therefore prone to producing different levels of outputs with similar 1277 

levels of inputs. This judgement is supported by the majority of literature utilising similar 1278 

methods within the water sector (Peda et al., 2013; See, 2015).  1279 

Given 𝑗 = 1, 2…, 𝑁 units, each applying a vector of M inputs 𝑥j = (𝑥1𝑗, 𝑥2𝑗, …, 𝑥𝑀𝑗) to generate 1280 

a vector of S outputs 𝑦𝑗 = (𝑦1𝑗, 𝑦2𝑗, …, 𝑦𝑆𝑗), the input-orientated DEA model is expressed as:  1281 

𝑀𝑖𝑛 𝜃𝑗 1282 

𝑠.𝑡. 1283 

∑𝑗=1  
𝑁  λj 𝑥ij ≤ θ𝑥𝑖0    1 ≤ 𝑖 ≤ M 1284 

∑𝑗=1  
𝑁  λ𝑗 𝑦𝑟𝑗 ≥ 𝑦𝑟0                           1 ≤ 𝑟 ≤ S     (4.1) 1285 

λ𝑗 ≥ 0    1 ≤ 𝑗 ≤ 𝑁 1286 

 1287 
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𝜃𝑗 is a scalar, which indicates the efficiency of the evaluated unit via the given value, which is 1288 

deemed efficient when 𝜃𝑗 = 1 and inefficient when 𝜃𝑗 > 1. M is the quantity of inputs, S is the 1289 

quantity of outputs generated, N is the quantity of water companies analysed and λ𝑗 is a 1290 

collection of intensity variables that represent the weighting of each unit 𝑗 within the 1291 

composition of the frontier.  1292 

4.2.2. Double-bootstrap DEA method 1293 

The issue that arises with some second-stage DEA methods (discussed further in the 1294 

Introduction) such as Tobit regression is that they can be inaccurate due to the nature of the 1295 

standard DEA model. Since the efficiency scores are serially correlated when calculating this 1296 

model, the efficiency estimates can be biased, and any inferences made about explanatory 1297 

factors can be incorrect (Hoff, 2007; Simar and Wilson, 2007).  1298 

To calculate efficiency utilising DEA, but removing errors and potential biases, whilst enabling 1299 

an analysis of the effect of explanatory factors, Simar and Wilson (2007) developed a double-1300 

bootstrap methodology. The model functions by simulating the distribution of the sample by 1301 

mimicking the data-generation process (Chernick and LaBudde, 2011); the research in this 1302 

paper generated 2,000 bootstrap samples. The efficiency results then are re-calculated using 1303 

the new generated data, the divergence between the original values and the more robust 1304 

values from the double-bootstrap approach reveals the extent of bias that could have distorted 1305 

the results when using other methods. The full computational operation is defined beneath: 1306 

8. Estimate the DEA input-efficiency scores 𝜃𝑗 for all water utilities in the sample using 1307 

equation 4.1.  1308 

9. Perform a truncated maximum likelihood estimation to regress 𝜃 against a group of 1309 

explanatory variables 𝑧𝑗, 𝜃𝑗 = 𝑧𝑗β + 휀𝑗, and produce an estimate �̂� of the coefficient 1310 

vector 𝛽 and estimate 𝜎휀̂ of 𝜎휀, the standard deviation of the residual errors 휀𝑗.  1311 

10. For each utility 𝑗 (𝑗 = 1, …, 𝑁) repeat the succeeding steps (3.1-3.4) B1 times to acquire 1312 

a set of B1 bootstrap estimates ( 𝜃𝑗𝑏 )̂ for b = 1, …, B1.    1313 

10.1. Generate the residual error 휀𝑗 from the normal distribution 𝑁 (0, σε
2̂). 1314 
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10.2. Compute 𝜃𝑗
∗ = 𝑧𝑗�̂� + 휀𝑗.  1315 

10.3. Generate a pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) where 𝑥𝑗
∗ = 𝑥𝑗 and 𝑦𝑗

∗ = 𝑦𝑗( 
θ𝑗

θ𝑗
∗).  1316 

10.4. Using the pseudo set (𝑥𝑗
∗, 𝑦𝑗

∗) and equation 4.1, estimate pseudo efficiency 1317 

estimates 𝜃𝑗
∗̂.  1318 

11. Compute the bias-corrected estimator 𝜃�̂� for each unit 𝑗 (𝑗 = 1, … , 𝑁) using the 1319 

bootstrap estimator or the bias 𝑏�̂� where 𝜃�̂� = 𝜃𝑗 − 𝑏�̂� and 𝑏�̂� = (
1

𝐵1
  ∑ 𝜃𝑗𝑏

∗̂𝐵1
𝑏=1 ) - 𝜃𝑗. 1320 

12. Use the truncated maximum likelihood estimation to regress 𝜃�̂� on the explanatory 1321 

variables 𝑧𝑗 and provide an estimate 𝛽∗̂ for 𝛽 and an estimate 𝜎 ∗̂ for 𝜎휀.  1322 

13. Repeat the succeeding three steps (6.1-6.3) 𝐵2 times to obtain a set of 𝐵2 pairs of 1323 

bootstrap estimates (𝛽𝑗
∗∗̂ ),  (σ𝑗

∗∗̂) for 𝑏 = 1, … , 𝐵2. 1324 

13.1. Generate the residual error 휀𝑗 from the normal distribution 𝑁 (0,  σ∗2̂) 1325 

13.2. Calculate 𝜃𝑗
∗∗̂ = 𝑧𝑗𝛽∗̂ + 휀𝑗.  1326 

13.3. Use truncated maximum likelihood estimation to regress 𝜃𝑗
∗∗̂ on the explanatory 1327 

variables 𝑧𝑗 and provide as estimate 𝛽∗∗̂
 for 𝛽 and an estimate σ∗∗̂ for σε. 1328 

14. Construct the estimated (1 − 𝛼)%  confidence interval of the 𝑛-th element, 𝛽𝑛 of the 1329 

vector 𝛽, that is [𝐿𝑜𝑤𝑒𝑟𝑎𝑛, 𝑈𝑝𝑝𝑒𝑟𝑎𝑛] = [𝛽𝑛
∗̂ + 𝑎�̂� , 𝛽𝑛

∗̂ −  𝑏�̂�] with  1330 

𝑃𝑟𝑜𝑏 (−𝑏�̂� ≤ 𝛽𝑛
∗∗̂ − 𝛽𝑛

∗̂ ≤ 𝑎�̂�)  ≈ 1 − 𝑎 1331 

The model was solved using ‘R’, a statistical computing software with the package ‘rDEA’ 1332 

created by Simm and Besstremyannaya (2016). 1333 

4.2.3. Data description 1334 

The same sample of companies was used for both the energy and economic analyses, 1335 

comprising a mix of ten WaSCs and seven WoCs from England and Wales. All data was for 1336 

the year 2017-18 and was acquired through the ‘PR19’ data tables that must be submitted 1337 

alongside business reports to the regional regulator, OFWAT (2020). Despite being secondary 1338 

data, the quality was deemed sufficient due to the audits and controls implemented by the 1339 
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individual companies along with OFWAT. Thus, it is assumed that key data needed to run the 1340 

model has been validated. The source files separated water production and wastewater 1341 

operations, therefore enabling a fair comparison of just the water production side of all 1342 

companies, whereas evaluation of the data via less granular sources may have led to errors. 1343 

The resolution of the data is based on an entire year of operation, unless stated otherwise due 1344 

to model requirements or the nature of specific indicators.   1345 

When utilising DEA, the sample size is required to satisfy a minimum size threshold in order 1346 

to bypass relative efficiency discrimination problems. As the size of the sample was small in 1347 

this study, ‘Cooper’s rule’ was used in an attempt to avoid discrimination problems. ‘Cooper’s 1348 

rule’ specifies the quantity of units must be ≥ max{𝑚 𝑥 𝑠; 3(𝑚 + 𝑠)} where 𝑚 represents inputs 1349 

and 𝑠 represents outputs (Cooper et al., 2007). The energy model used one input and one 1350 

output, whilst the economic model used two inputs and one output; therefore, the minimum 1351 

threshold was met. Moreover, a bootstrap approach within the DEA framework enables 1352 

rigorous efficiency results despite a limited sample size (Molinos-Senante et al., 2018a). 1353 

Nonetheless, it should be noted that the constrained sample size could exaggerate results at 1354 

either end of the efficiency spectrum. If the sample was large enough to enable more variables 1355 

within one model, instead of requiring two separate models, results could differ. However, this 1356 

limitation is difficult to overcome, given the limited number of water utilities in the UK.    1357 

The array of variables is critical for a DEA model to generate credible outcomes (Zhu, 2014). 1358 

The energy model consisted of the sole input of energy consumed, which was the total amount 1359 

of energy consumed in the year by water supply operations measured in kWh. The economic 1360 

model encompassed operational expenditure (OPEX) and capital expenditure (CAPEX) as 1361 

inputs; both models had volume of water produced as the only output. These variables were 1362 

chosen because they represent the essential resources required for a water utility to function 1363 

and the core operations and services that they provide. Furthermore, the indicators are 1364 

concurrent with the literature (Peda et al., 2013; Mardani et al., 2017; Molinos-Senante and 1365 

Farías, 2018). Although the variables cover the essential activities of water companies, it 1366 
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should be noted that the approach is not as holistic as alternative methods of performance 1367 

evaluation such as life cycle analysis or emergy accounting (Arden et al., 2019), which would 1368 

cover many different aspects of the water supply process in a narrower scope. OPEX and 1369 

CAPEX data contained spending on third party services, and included wholesale and retail 1370 

aspects of the companies. Using CAPEX over a single year has the potential misrepresent 1371 

usual spending, therefore projected year-on-year capital expenditure change over the next 1372 

four years was averaged for all companies, displaying an anticipated -5.43% average change. 1373 

This was deemed an acceptable level of variation to validate the use of CAPEX over the 1374 

2017/18 year. Furthermore, CAPEX was used assuming that the utilities contribute enough 1375 

capital to renew and maintain the distribution network long-term. As many studies have used 1376 

proxies to replace key inputs and outputs, this paper reviewed how accurate the use of two 1377 

common proxies are. The proxies were population served for drinking water and length of 1378 

water mains, which replaced the output volume of drinking water produced and the input of 1379 

CAPEX, respectively.  1380 

An elemental contributor of resource use for water companies is the quality of water they 1381 

supply (Plappally and Lienhard, 2012). Utilities within efficiency analyses should not be 1382 

penalised for contributing superior quality outputs than others; accordingly, this paper follows 1383 

Saal et al., (2007) and Walker et al., (2019), and modifies the output variable that is used for 1384 

both the energy and economic assessments according to water quality. The volume of water 1385 

produced was amended by the quality of that water (𝑦1) as reported by the companies to the 1386 

regulators Environment Agency and OFWAT. The indicator for water quality was reported as 1387 

a percentage, with 100% expressing that all obligations are met; this was then converted to 1388 

decimals and employed as a multiplier for the original output variable:  1389 

𝑦1 = 𝑊𝑃 × 𝐷𝑊𝑄         (2) 1390 

The volume of water produced is represented by 𝑊𝑃 and 𝐷𝑊𝑄 is drinking water quality. The 1391 

resulting figure once adjusted then constituted the single output for the energy and economic 1392 

DEA analyses. 1393 
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In order to deduce reasons for the efficiency results and performances of companies, five 1394 

explanatory variables were chosen for evaluation. The variables were leakage; consumption 1395 

per capita; number of abstraction sources; average pumping head height (across raw water 1396 

abstraction, treatment and transport); and proportion of water passing through treatment 1397 

plants sizes 5-8, which are the largest treatment plants (total scale is measured from 1-8, 1398 

OFWAT, 2019). These variables were chosen because they are deemed to affect efficiency, 1399 

and in some cases, have not been studied before – e.g., proportion of water passing through 1400 

the largest treatment plants and average pumping head height. Treatment plants are viewed 1401 

to operate at economies of scale (Molinos-Senante and Sala-Garrido, 2017) but testing the 1402 

limits to this within the context of other variables has seldom been done. Pumping head height 1403 

is interesting to investigate, as a larger head would naturally cost more money to operate 1404 

(Berg, 2013), however, the significance on cost and energy relative to the efficiency of a 1405 

company is unknown. All the variables used in this research including inputs, outputs, proxies, 1406 

explanatory variables and quality variables are summarised in Table 4.1.  1407 

Table 4.1. Summary of the 2017/18 data used in the DEA analyses displayed to three significant figures where 1408 
possible. Data from the PR19 company reports available via OFWAT (2020).  1409 

 1410 

4.3. Results and Discussion 1411 
4.3.1. Energy efficiency results  1412 

The results from the input-orientated distance function utilised in this study means scores of 1 1413 

are the most efficient, and those companies are operating at the frontier. Conversely, the more 1414 

  Average SD Minimum Maximum 

Inputs Energy (kWh) 212,706 151,759 24,084 558,178 

 Operational expenditure (million£) 211 173 22 639 

 Capital expenditure (million£) 148 127 8 512 

Output Volume of water produced (Ml/day) 726 569 52 2,169 

Proxies Length of water mains (km) 12,016 13,711 2,627 46,540 

 Population with water service  3,460,133 2,714,840 218,918 10,012,827 
Explanatory 
variables Leakage (Ml/day) 190 179 14 695 

 Consumption per capita (l/h/day) 144 8 129 159 

 Number of abstraction sources  102 67 9 235 

 

Proportion of water passing through 
treatment works sizes 5-8 (%) 74 18 32 98 

 Average pumping head height (m.hd) 34 8 17 46 
Quality 
variable Water quality compliance (%) 99.96 <0.001 99.93 99.98 



60 
 

scores increase above 1, the further those companies are away from the frontier and thus the 1415 

less efficient they are. The standard DEA model (equation 4.1) results represented as ‘non-1416 

bias corrected scores’ in Figure 4.1 estimated three of the 17 companies to be operating at 1417 

the efficiency frontier with estimates of 1. The implication of this is that those companies 1418 

cannot reduce their energy consumption any further, whilst also maintaining their drinking 1419 

water delivery levels. The mean efficiency of the whole sample was 8.258 with a standard 1420 

deviation of 6.462. Efficiency scores are based on all other aspects being equal, which is 1421 

where exploring exogenous variables becomes important. A comprehensive display of the 1422 

precise efficiency estimates, the rankings, and the confidence intervals for all the following 1423 

sections are available in Supplementary Information. 1424 

  1425 

Figure 4.1. Rankings established from the original DEA model and bias-corrected DEA results produced with 2000 1426 
bootstrap iterations for the energy performance across 17 water companies in England and Wales. WoCs are 1427 
featured as triangles and WaSCs are displayed as circles. 1428 

 1429 

Utilising the double-bootstrap method estimates that the whole sample was less efficient than 1430 

the standard DEA model indicated (Figure. 4.1), which is an expected occurrence with this 1431 

method. The average bias taken out of the sample with the double-bootstrap method was -1432 

3.746, with a minimum value of -0.286 and maximum value of -12.8. Interestingly, although 1433 

the bias taken out of the sample was large, it only changed the rank of two companies, 1434 
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swapping ranks 13 and 14 around. This result is rare and contrasts with other research (e.g., 1435 

Ananda, 2014; Gómez et al., 2017; Molinos-Senante et al., 2018a; Molinos-Senante and Sala-1436 

Garrido, 2019; Walker et al., 2019) where their biases resulted in many rank changes. An 1437 

explanation for this result could be that the sample is not large and does not lend itself to many 1438 

rank changes naturally. Perhaps more importantly, the fact that there were broad efficiency 1439 

distances between many companies within the sample meant that even large biases taken 1440 

out did not affect ranking.  1441 

Since bootstrapping generates data from the original sample, there are slight variances in the 1442 

estimates that are generated; therefore, three repeat tests were conducted to ensure that any 1443 

variances were not large enough to make the study invalid and the following sections will 1444 

comment on the variance of the results. Three repeats was chosen as this was enough to 1445 

provide validity to results and could capture any significant variances. For energy bias-1446 

corrected results, the average difference in the results was 0.56%, with a range of -1.11%-1447 

1.56%. The bias-corrected efficiency scores had a mean average of 12.005, with a standard 1448 

deviation of 9.996. This implies that the average water company in England and Wales could 1449 

decrease inputs by 91.7% and maintain the same output standards of water delivery, if they 1450 

were to perform at the same level as the best performers. The non-bias corrected scores 1451 

indicated an average potential theoretical reduction of 87.8% (1-1/8.26), marginally lower in 1452 

contrast to the bias-corrected average. The large average potential reduction is symptomatic 1453 

of having a large spread in efficiency estimates using the DEA method, where some 1454 

companies were perceived to be significantly less efficient than others, highlighted by the 1455 

range of the sample being 1.286-35.568. 1456 

The reason for the large range of efficiency estimates appears to have been due to the sample 1457 

including WaSCs and WoCs. Figure 4.2 shows that the top five performing companies are 1458 

WoCs and only three WaSCs are amongst the WoCs altogether. Within the top ten performers, 1459 

the efficiency estimates are relatively close (1.286-9.202) compared to the following seven 1460 

companies (13.465-35.568), showing that there are clear efficiency disparities between 1461 
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companies that only deliver drinking water compared to the companies that deliver water and 1462 

treat wastewater. This was a surprising result, since the study only focussed on the drinking 1463 

water aspects of the businesses. One explanation could be that some companies are hindered 1464 

by exogenous variables. A further potential explanation is that the WoCs only have the drinking 1465 

water elements to focus on and thus have optimised their operations in this field, whereas the 1466 

WaSCs also have the wastewater treatment components to provide, therefore optimisations 1467 

such as replacement of inefficient pumps or leakage reduction measures are not prioritised. A 1468 

further explanation could be that for WaSCs, there was inadequate separation of water 1469 

treatment and water supply data. Following the results, further checks were conducted to 1470 

ensure information was extracted correctly from the data sources; however, the sources could 1471 

have incorrect data separation.   1472 

When conducting the energy efficiency analysis, population served for water consumption 1473 

showed to be an appropriate proxy for volume of water produced. Figure 4.2 shows that the 1474 

ranks of all the companies remained the same when the proxy was in use. The only impact 1475 

the proxy variable had on energy efficiency analysis of the companies was that 14 of them 1476 

displayed a reduction in their efficiency score, exhibiting an average of 0.172 reduction, 1477 

equivalent to 1.01% compared to the results from the original variable of volume of water 1478 

produced.  1479 
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 1480 
Figure 4.2. The bias-corrected (2000 bootstrap iterations) energy efficiency scores and ranking with the primary 1481 
set of variables, and a volume of water produced proxy (population served for drinking water). WoCs are featured 1482 
as triangles and WaSCs are displayed as circles. 1483 

4.3.2.  Role of explanatory factors on energy efficiency 1484 

An essential element of the double-bootstrap approach is the ability to appraise explanatory 1485 

factors that may affect efficiency by employing a bootstrap truncated regression model. The 1486 

explanatory factors analysed in this research were leakage, per capita consumption, number 1487 

of sources, proportion of water through size 5-8 water treatment plants and average pumping 1488 

head height; their influence on efficiency is presented in Table 4.2. A negative impact on 1489 

efficiency is recognised if the bias-corrected coefficient value is positive and vice versa, and 1490 

an asterisk is marked next to the coefficients to highlight significance to the 5% level. The 1491 

variance average in the repeat tests for the bias-corrected coefficients was 1.03%, with a 1492 

range of -2.03%-1.91%.  1493 
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Table 4.2. Results of bootstrap truncated regression (bias-corrected) with 2000 iterations for energy efficiency 1498 
assessment using the first-choice variables and volume of water produced proxy: population served for water 1499 
production.  1500 
 

Primary energy set Energy WP replaced 

Explanatory factor Coefficient Low High Coefficient Low High 

Leakage (Ml/day) 0.045* 0.031 0.059 0.046* 0.032 0.060 

Number of sources 0.053* 0.008 0.097 0.053* 0.011 0.097 

Average pumping head height 
(m.hd) 

0.423* 0.136 0.736 0.426* 0.136 0.729 

Proportion of water through 
size 5-8 treatment plants (%) 

0.142 -0.033 0.323 0.140 -0.029 0.318 

Per capita consumption (l/h/d) -0.134 -0.391 0.116 -0.144 -0.410 0.111 

Note: *Statistically significant at the 5% level.  1501 

 1502 

Leakage had a significant negative effect on energy efficiency, as to be expected since the 1503 

more water that is lost, the more water needs abstracting, treating and delivering, which all 1504 

require energy. Energy efficiency studies on water utilities that evaluate explanatory factors 1505 

are rare. Walker et al. (2019) evaluated the environmental efficiency of water utilities in terms 1506 

of carbon intensity, and found no significant link with leakage, although they did incorporate 1507 

embodied carbon as well as operational carbon over just a one-year period, therefore one 1508 

single significant capital project may have skewed the data depending on method of 1509 

amortisation.   1510 

The variable consumption per capita had a positive relationship with energy efficiency to a 1511 

non-significant extent. Although greater consumption overall would increase energy 1512 

consumption due the requirements to pump and treat a larger volume, there are links to 1513 

economies of customer density too, which can distort results (Byrnes et al., 2010). When 1514 

a pipe network is established, the volume of water actually flowing through it has nominal 1515 

energy consumption and economic costs. In this instance, the insignificant relationship means 1516 

inferences on reasoning are just speculative.  1517 

Results in Table 4.2 indicate that, as the number of sources increases, energy efficiency 1518 

reduces. Although diversifying abstraction sources can be a positive attribute for companies 1519 

to make their supply more resilient, it appears as though this is at the expense of a significantly 1520 
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increased energy consumption owing to more pumping being required through a larger 1521 

network of piping. For benchmarking and regulation, this is a relationship to be aware of; 1522 

however, water managers do not have much control over this factor, which is often determined 1523 

by the magnitude of locally available supplies; therefore, any penalties on companies 1524 

performing poorly on this metric need to carefully consider this context.  1525 

The proportion of water passing through the largest four sizes of treatment works was 1526 

surprisingly associated with inefficiency, albeit insignificantly. The anticipated result was that 1527 

economies of scale at the treatment level (Molinos-Senante and Sala-Garrido, 2017) would 1528 

mean the more water being treated at larger treatment works, the more efficient energy use 1529 

would be. An explanation of this could be that any economies of scale that are experienced 1530 

are offset by the increase in the distribution of water to centralised treatment plants as Kim 1531 

and Clark (1988) found, along with the increased leakages that occur over larger pipe network 1532 

(<0.001 p-value using Pearson’s r for relationship between leakage rates and network length 1533 

found). Furthermore, scale economies are seen to be lost in treatment plants once they attain 1534 

a certain size (Hernández-Chover et al., 2018), therefore this would weaken any relationship 1535 

in the data.  1536 

Average pumping head height showed a significant influence on energy inefficiency, meaning 1537 

as the pumping head increases, so efficiency declines. This was anticipated, as pumping is a 1538 

major consumer of energy for water utilities and the head is a pivotal facet of this consumption 1539 

(Filion et al., 2004; Díaz et al., 2011). Water practitioners have no influence over pumping 1540 

heads once infrastructure is in place, but this result does display how important it is for 1541 

engineers and designers to minimise the head height when developing any part of the network 1542 

to ensure long-term energy sustainability. 1543 

The population supplied with water also served as a useful proxy for the volume of drinking 1544 

water produced in terms of evaluating the explanatory factors. The right half of Table 4.2 1545 

shows that the direction of the efficiency effect remained the same, as did the variables that 1546 

showed significance. 1547 
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4.3.3. Economic efficiency results  1548 

The non-bias corrected scores for economic efficiency results (Figure 4.3) indicated that three 1549 

of the 17 utilities are on the efficiency frontier, with a score of 1. The mean efficiency of these 1550 

non-bias corrected estimates across the 17 companies was 9.321 with a standard deviation 1551 

of 8.294, suggesting that an average UK water company can reduce their OPEX and CAPEX 1552 

inputs by 89% and still produce their water production output to the same level.  1553 

 1554 

Figure 4.3. Rankings established from the original DEA model and bias-corrected DEA estimates produced with 1555 
2000 bootstrap iterations for the economic performance of 17 England and Wales water companies. WoCs are 1556 
featured as triangles and WaSCs are displayed as circles. 1557 

 1558 

The bias taken out of the economic results ranged from -0.286 to -12.821, and averaged at -1559 

3.618. Despite the considerable bias taken out of the sample, it did not affect the rankings of 1560 

the companies. This result contradicts other research (Ananda, 2014; See, 2015; Gómez et 1561 

al., 2017; Molinos-Senante and Sala-Garrido, 2019) where their biases altered the rankings 1562 

of most of the sample. A potential justification for this is similar to that in the energy results in 1563 

that the sizable efficiency spans between utilities proceeded to absorb biases taken off 1564 

efficiency scores.  1565 

The bias-corrected efficiency results had a mean average of 12.94, with a standard deviation 1566 

of 11.773. The variance in the three repeat tests was averaged at 0.78% with a range of -1567 
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1.47%-2.01%. The average corrected efficiency scores indicated that an average water utility 1568 

could scale down their collective OPEX and CAPEX by 92.3%, whilst producing the same 1569 

amount of drinking water. This is particularly large compared to the Walker et al. (2019) study 1570 

on UK and Irish water and sewerage utilities, where they calculated that the average utility 1571 

could decrease their economic inputs by 19.4%. A possible reason for this was alluded to in 1572 

Section 4.3.1, that having such a large theoretical drop in inputs is likely a result of the very 1573 

considerable range in efficiency scores (1.286-42.467) brought about seemingly by the 1574 

mixture of WaSC and WoCs in the sample. Figure 4.3 shows that all WoCs were ranked higher 1575 

than the WaSC for economic efficiency, despite the data encompassing just the water 1576 

production side of operations for all companies. An explanation explained earlier in Section 1577 

4.3.1 is that WaSCs may find it more difficult to disseminate and effectively utilise resources 1578 

due to the extra operational strain of wastewater treatment compared to WoCs. Moreover, an 1579 

array of exogenous can influence the efficiency results and cause the disparity between 1580 

companies (main exogenous factor evaluation in Sections 4.3.2 and 4.3.4). For example, a 1581 

justification appears to be linked to size; the bias-corrected coefficients were naively tested for 1582 

correlation using Pearson’s r against population with water service as an indicator to represent 1583 

the size of the water utilities, and a positive correlation with a p-value value of <0.001 was 1584 

found. This suggests that the larger companies are, the less efficient they are at producing 1585 

water at lower costs. Since generally WoCs are smaller than WaSCs, with seven of the 1586 

smallest eleven companies in this sample being WoCs (see Supplementary Information for 1587 

breakdown), it appears size could at least partially explain the reason behind WoCs 1588 

outperforming WaSCs. It is not clear why size has this correlation; population density was also 1589 

correlated against coefficient values to test a reason behind the size result and this showed to 1590 

have no impact (p-value of 0.153). It is possible that larger-scale operations are harder to 1591 

manage efficiently, with the larger network, more abstraction and more sources of abstraction 1592 

making companies more inefficient. The disparity of efficiency between WaSCs and WoCs is 1593 

an area where future research could investigate; perhaps analysing factors such as 1594 

precipitation, types of abstraction sources, topography and governance structures.    1595 
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The proxies analysed for the economic analysis were km of water mains replacing CAPEX 1596 

and population served for drinking water, which replaced volume of water produced. The latter 1597 

appeared to be a satisfactory proxy, with only two companies (this ranks 11 and 12) 1598 

exchanging places (Figure 4.4). If the sample were larger and closer in terms of efficiency 1599 

range, then perhaps there would have been more ranking changes. The CAPEX proxy 1600 

resulted in ten companies changing their rank compared to the original primary set of 1601 

indicators, with 11 ranks moved (Figure 4.5). A further effect of the CAPEX proxy was the 1602 

increased efficiency of the sample, implying companies were on average 12.63% more 1603 

efficient. Some companies exhibited particularly large increases in efficiency, for example, 1604 

ranks 16 and 17 went from 31.222 and 42.467 to 24.661 and 17.059 respectively. As more 1605 

than half of the sample changed rank and some utilities experiencing such large changes, 1606 

using the length of mains network does not appear be an apt proxy for CAPEX.  1607 

  1608 

Figure 4.4. The double-bootstrap (2000 iterations) bias-corrected economic efficiency results with the primary set 1609 
of economic variables, and a volume of water produced proxy (population served for drinking water). WoCs are 1610 
featured as triangles and WaSCs are displayed as circles.  1611 
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 1612 

Figure 4.5. The double-bootstrap (2000 iterations) bias-corrected economic efficiency results with the primary set of 1613 
economic variables, and a capital expenditure (CAPEX) proxy (kilometres of water mains network). WoCs are 1614 
featured as triangles and WaSCs are displayed as circles.   1615 

 1616 

4.3.4. Role of explanatory factors on economic efficiency 1617 
 1618 

The explanatory factors analysed in the economic assessment matched those analysed for 1619 

energy efficiency; leakage, per capita consumption, number of sources, proportion of water 1620 

through size 5-8 water treatment plants and average pumping head height. As mentioned in 1621 

Section 4.3.2, the bias-corrected coefficients for the explanatory variables (Table 4.3) are 1622 

regarded to adversely affect efficiency when their figures are of a positive value and positively 1623 

influence efficiency if their figures are negative. The average variance in the three repeat tests 1624 

was 1.08% (range of -2.47%-0.79%).  1625 
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Table 4.3. Results of bootstrap truncated regression (bias-corrected) with 2000 iterations for economic efficiency 1630 
analysis using the first-choice variables, volume of water produced proxy: population served for water production, 1631 
and CAPEX proxy: kilometres of water mains network.  1632 
 

Primary economic set Economic CAPEX replaced Economic WP replaced 

Explanatory factor Coefficient Low High Coefficient Low High Coefficient Low High 

Leakage (Ml/day) 0.054* 0.041 0.067 0.016 -0.003 0.036 0.046* 0.037 0.056 

Number of sources 0.053* 0.017 0.093 0.079* 0.025 0.140 0.041* 0.013 0.072 

Proportion of water via size 
5-8 treatment plants (%)  

0.158* 0.005 0.325 0.238* 0.016 0.532 0.125* 0.010 0.251 

Average pumping head 
height (m.hd)  

0.205 -0.058 0.470 -0.013 -0.396 0.396 0.177 -0.023 0.389 

Per capita consumption 
(l/h/d) 

-0.121 -0.343 0.103 -0.358* -0.763 -0.001 -0.076 -0.249 0.095 

Note: *Statistically significant at the 5% level.  1633 

The variable leakage mirrored the energy analysis and had a significant negative influence on 1634 

economic efficiency. This result is concurrent with the majority of similar studies (Berg, 2013; 1635 

See, 2015); however, this is not always the case. Some research shows the negative affect 1636 

on efficiency to a non-significant extent (Marques et al., 2014). Moreover, there are articles 1637 

that demonstrate the opposite relationship, with leakage appearing to cause efficiency (de 1638 

Witte and Marques, 2010a; Ananda, 2014) albeit, to a non-significant degree. The leakage 1639 

result in our research is a particularly interesting result for the UK since water companies 1640 

operate under the ‘sustainable economic level of leakage’, where they are required by the 1641 

regulator OFWAT (2019) to fix leaks, as long as the cost of doing so is less than the cost of 1642 

not fixing the leak. The suggestion is therefore that leakage is less likely to be at such a rate 1643 

that it significantly negatively affects economic efficiency however, due to other factors 1644 

obscuring the time when replacement of pipes should occur, this may not be the case.  1645 

Consumption per capita displayed a positive relationship to a non-significant level, therefore 1646 

also matching the energy explanatory factor results. As examined in Section 4.3.2, the 1647 

contradiction in the expected result is likely to be from the links to economies of customer 1648 

density that can relieve increased consumption per capita from having such a strong influence 1649 

(Byrnes et al., 2010; Carvalho et al., 2012). The volume customers consume is not directly 1650 

controllable by water managers, however, there have been awareness campaigns and water 1651 

efficiency information and technology available to customers from companies to reduce user 1652 

consumption that have had some affect. Manouseli et al. (2019) evaluated the effectiveness 1653 
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of the water efficiency initiatives rolled out by water companies in England, and found that 1654 

households that participated in the programme reduced their consumption by approximately 1655 

15%. Perversely, water conservation is bad for companies in terms of short-term profits, 1656 

although it does provide benefits to wider society. The companies will however benefit in 1657 

longer-term sustainability as water is expected to become scarcer in the UK due to climate 1658 

change (Arnell and Delaney, 2006; Wade et al., 2013) and reduced consumption can reduce 1659 

the frequency for requiring new infrastructure.   1660 

The number of abstraction sources was significantly associated with negative economic 1661 

efficiency, again following the energy results. This was anticipated, as more materials are 1662 

required such as pumps, piping and associated infrastructure to utilise more sources, thus 1663 

increasing costs. This result shows that when increasing resilience of the water supply by 1664 

increasing the number of sources, there is a trade-off, where efficiency lowers. Many 1665 

companies may not have a choice of how many abstraction sources they utilise, furthermore 1666 

the perfect balance of resilience and efficiency a company’s number of sources is not yet 1667 

known. Therefore, as noted in Section 4.3.2, any regulators conducting fines or punishments 1668 

on companies for poor efficiency should consider such results.  1669 

The most unexpected result for variables that influence economic efficiency was the proportion 1670 

of water treated by size 5-8 (the largest) treatment plants. Table 4.3 indicates a significant 1671 

negative influence on economic efficiency, deviating from the energy explanatory factor 1672 

analysis. The economies of scale present at larger treatment plants was expected to result in 1673 

a positive relationship with efficiency. Reasons for this are similar to those outlined for the role 1674 

this variable had in energy efficiency (Section 4.3.2); greater pumping, maintenance and 1675 

leakage costs from extended pipe networks and loss of scale economies at particular sizes 1676 

(Hernández-Chover et al., 2018), despite treatment plants being positively associated to 1677 

economies of scale (Molinos-Senante and Sala-Garrido, 2017). For companies to take 1678 

advantage of economies of scale in treatment plants to improve their economic and energy 1679 

efficiency then, there is a need for better understanding of the multiple factors influencing 1680 
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efficiency across different sizes of plant, considering associated consequences for distribution 1681 

effects.  1682 

The pumping head average was regarded to have a non-significant negative effect on 1683 

economic efficiency, diverging from the energy results, which showed the same effect on 1684 

efficiency, but with significance. Despite the higher energy demands that larger pumping 1685 

heads create, the non-significant result indicates that energy costs are not the dominant factor 1686 

in economic efficiency, which is supported by power (including climate change levy and carbon 1687 

reduction commitments) representing an average of 10.8% of total OPEX for this sample.  1688 

Table 4.3 presents how the simple proxy of population supplied with water adequately 1689 

replaced the volume of water produced, since the significance and direction of influence of 1690 

explanatory factors on efficiency were the same. The satisfactory performance of the volume 1691 

of drinking water proxy was expected to an extent, since the water produced is for the proxy 1692 

of population served for drinking water. The proxy would theoretically match the original 1693 

variable perfectly were it not for erroneous factors such as leakage and per capita 1694 

consumption, which for this sample ranged from 15.8%-32% and 129-159 (l/h/d), respectively, 1695 

which appeared to be not enough to skew the appropriateness of the proxy. The CAPEX proxy 1696 

of water mains network length, however, was less successful. It only directly matched two of 1697 

the variables: number of sources and proportion of water through size 5-8 water treatment 1698 

plants, for both direction of influence and significance. The proxy did match the direction of 1699 

influence of the true CAPEX variable for leakage and per capita consumption however, 1700 

significance of relationship was lost. Finally, for average pumping head height, the proxy 1701 

misinterpreted the direction of efficiency affect, the result suggesting that larger pumping 1702 

heads actually resulted in higher economic efficiencies.   1703 

4.4. Conclusions 1704 

The goals of this research were to implement a double-bootstrap DEA method to compare 1705 

unbiased energy and economic efficiency between a mixture of water only companies and 1706 

water and sewerage companies, to evaluate the effect of explanatory factors, and to analyse 1707 
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the accuracy of two common proxies. Results support four main conclusions. Firstly, that the 1708 

average company could decrease their energy inputs by 91.7% and their economic inputs by 1709 

92.3%, if they were to perform at the efficiency frontier (in the absence of significant 1710 

exogenous influences). Thus, we establish that there is substantial scope to improve energy 1711 

and economic efficiency for water utilities in England and Wales, if the practices of best 1712 

performers were widely adopted. There was a large variance in the potential reductions of 1713 

inputs, which appeared to reflect the second main conclusion – that WoCs generally 1714 

performed much more efficiently than WaSCs. All seven WoCs outperformed WaSCs in the 1715 

economic analysis they were amongst the top nine performers in the energy analysis. 1716 

Improper separation and reporting of operational data from companies into their reports may 1717 

have been a reason for this, however exogenous factors likely played the major role. Size 1718 

appeared to be a key determinant, displaying a positive relationship with efficiency and p-1719 

value of <0.001 when correlated with efficiency scores, but further research is recommended 1720 

to investigate the complex influence of size. Thirdly, the paper determined factors that 1721 

influence efficiency. Of the potential explanatory variables analysed, leakage and number of 1722 

abstraction sources were concurrent in their negative effect and significance across both the 1723 

energy and economic assessments. Average pumping head height displayed a significant 1724 

negative affect for energy, whereas the variable proportion of water passing through the 1725 

largest four treatment works was deemed to have a significant negative effect on economic 1726 

efficiency. These exogenous factors therefore need to be corrected for in future benchmarking 1727 

activities and have the potential to inform water companies about factors to prioritise in order 1728 

to improve efficiency. The final conclusion was that the proxy population served for drinking 1729 

water can adequately replace the volume of water produced as an input variable in efficiency 1730 

benchmarking when leakage and per capita consumption are fairly uniform across the sample, 1731 

since companies stayed at the same rank and explanatory factors displayed the same 1732 

significance. Conversely, length of water mains performed poorly when replacing CAPEX as 1733 

an economic input, implying companies were on average 12.6% more efficient, resulting in 10 1734 

companies changing their rank compared to the original variable and causing some 1735 
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explanatory variables to differ in direction of influence and significance. Further research is 1736 

recommended on the energy and economic efficiency of WoCs and WaSCs, considering a 1737 

wide range of exogenous variables and careful selection of (proxy) indicators. 1738 
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Abstract 1774 

The provision of fundamental services by water and sewage companies (WaSCs) requires 1775 

substantial energy and material inputs. A sustainability assessment of these companies 1776 

requires a holistic evaluation of both performance and efficiency. The Hicks-Moorsteen 1777 

productivity index was applied to 12 WaSCs in the United Kingdom (UK) over a 6-year period 1778 

to benchmark their sustainability, based on eight approaches using different input and output 1779 

variables for efficiency assessment. The choice of variables had a major influence on the 1780 

ranking and perceived operational efficiency among WaSCs. Capital expenditure (utilised as 1781 

part of total expenditure) for example, is an important input for tracking company operations 1782 

however, potential associated efficiency benefits can lag investment, leading to apparent poor 1783 

short-term performance following capital expenditure. Furthermore, water supplied and 1784 

wastewater treated was deemed an unconstructive output from a sustainability perspective 1785 

since it contradicts efforts to improve sustainability through reduced leakage and consumption 1786 

per capita. Customer satisfaction and water quality measures are potential suitable 1787 

https://doi.org/10.1016/j.jenvman.2021.112317
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alternatives. Despite these limitations, total expenditure and water supplied and wastewater 1788 

treated were used alongside customer satisfaction and self-generated renewable energy for 1789 

a holistic sustainability assessment within a small sample. They indicated the UK water sector 1790 

has improved in productivity by 1.8% on average for 2014-18 and still had room for 1791 

improvement, as a technical decline was evident for both the best and worst performers. 1792 

Collectively the sample’s production frontier was unchanged but on average companies 1793 

moved 2.1% closer to it, and further decomposition of productivity revealed this was due to 1794 

improvements in economies of scale and scope. Careful selection of appropriate input and 1795 

output variables for efficiency benchmarking across water companies is critical to align with 1796 

sustainability objectives and to target future investment and regulation within the water sector. 1797 

 1798 

Keywords: Performance Evaluation; Water Companies; Total Factor Productivity; Data 1799 

Envelopment Analysis; Sustainability assessment; Hicks-Moorsteen productivity index 1800 

 1801 

 1802 

 1803 

 1804 

 1805 

 1806 

 1807 

 1808 

 1809 

 1810 

 1811 

 1812 

 1813 

 1814 

 1815 

 1816 



77 
 

5.1. Introduction 1817 

A reliable and efficient supply of safe, treated water is fundamental to a prosperous society 1818 

(Martínez-Santos, 2017) however, not all water networks are sustainable under current 1819 

climate change projections (Zischg et al., 2017). When one measures the efficiency and 1820 

sustainability of water systems they should consider a broad range of variables, including 1821 

economic, social (e.g., sanitation) and environmental (e.g., carbon emission) impacts. 1822 

Performance evaluation and benchmarking of water companies is vital to promote efficiency 1823 

and protect the interest of customers (Zope et al., 2019). The number of studies on water 1824 

company performance analysis has increased in recent years (Lombardi et al., 2019), and 1825 

while this has covered many different locations and times, and applied numerous different 1826 

methodologies, a more integrated assessment that includes environmental sustainability of 1827 

water utilities is relatively rare compared to more focussed studies (de Witte and Marques, 1828 

2012; Cetrulo et al., 2019; Goh and See, 2021).  1829 

The majority of benchmarking and performance analysis of the water sector focuses on 1830 

economic efficiency, as outlined by Abbot and Cohen (2009), Worthington (2014) and 1831 

Lombardi et al. (2019). Amongst the financial indicators in these studies, labour and 1832 

infrastructure often feature. Research with a focus on other factors are limited, except for a 1833 

few notable works. Energy consumption is one of the most popular non-financial indicators 1834 

utilised (although often used as a cost), as can be seen in the de Witte and Marques (2010a) 1835 

and Krampe (2013) studies, which encompass water supply companies and treatment plants, 1836 

respectively. More alternative assessments of efficiency include Tsargarakis (2018), who 1837 

evaluated water company complaints against operational expenditure; Ananda and Pawsey 1838 

(2019), where they analysed customer service and network reliability; and Haziq et al. (2019) 1839 

that determined the satisfaction levels of customers against services provided. Although such 1840 

studies have use on their own, a combination of the diversified subject matter outlined above 1841 

for water companies within one sustainability assessment would offer unique insight, since 1842 

only a handful of studies have taken this approach previously (e.g., Gill and Nema, 2016; 1843 
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Molinos-Senante et al., 2016a; Murungi and Blokland, 2016; Villarreal and Lartigue, 2017, 1844 

Pérez et al., 2019). Even within these studies, some split up their analyses into separate 1845 

models, and still do not include energy within any of their approaches (Gill and Nema, 2016; 1846 

Murungi and Blokland, 2016; Villarreal and Lartigue, 2017) however, prioritising service 1847 

reliability, water quality, and customer satisfaction in their samples of developing countries is 1848 

valuable. A holistic view would be particularly poignant considering the significant impact that 1849 

water companies have on society. For example, the United Kingdom (UK) water industry 1850 

employs 58,500 people, has an annual turnover of £11 billion (Energy and Utility Skills, 2020), 1851 

and consumes 3% of national electricity (Majid et al., 2020). Furthermore, the array of 1852 

approaches to analysing efficiency creates questions around the pitfalls and positives of the 1853 

diverging variables. Selecting the appropriate variables is vital for a valid study as Villegas et 1854 

al. (2019) and Molinos-Senante and Maziotis (2020a) displayed in their studies of England 1855 

and Wales. Therefore, understanding how the choice of variables relate to the study objective 1856 

is imperative in order to draw meaningful conclusions.  1857 

Measuring efficiency can be an important aspect of complying with sustainability targets, which 1858 

are often based on the aggregate impact of all consumption, such as fossil energy, resource 1859 

use, and greenhouse gas emissions (Bonilla et al., 2018). Input-orientated efficiency is 1860 

determined by assessing the levels of outputs relative to the levels of inputs, with the goal 1861 

being to produce the most outputs with the fewest inputs. Naturally, efficiency results are 1862 

affected by the choice of inputs and outputs used in the assessment. To investigate how to 1863 

better evaluate the efficiency of water companies in a sustainability sense, an evaluation of 1864 

the effects of using different variables that cover social, environmental and economic factors 1865 

was undertaken. To conduct this, Total Factor Productivity (TFP) was used. In the context of 1866 

this study, when benchmarking the efficiency of water and sewerage companies (WaSCs), 1867 

productivity and efficiency are slightly different concepts. Productivity comprises of evaluating 1868 

performance change over time, thus integrating a temporal element to sustainability analysis 1869 

(Le et al., 2019). Goh and See (2021) reviewed 142 journal articles regarding water utility 1870 
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benchmarking between 2000-2019 and noted TFP was only used as a keyword in seven 1871 

studies, whilst productivity growth appeared 12 times.  1872 

There is an array of indices that have been developed to compute TFP and have been utilised 1873 

to evaluate water companies. They can be grouped into parametric and non-parametric 1874 

methods, the former assuming a predefined technology function. The non-parametric 1875 

approach can further be classified into frontier and non-frontier methods. One of the most 1876 

common non-frontier methodologies is the Törnqvist productivity index (Berhera and Sharma, 1877 

2020; Oulmane et al., 2020), which measures the ratio of all the outputs, weighted by the 1878 

corresponding revenues, to all the inputs, that are weighted by cost, in quantities by using the 1879 

firms within the sample to be evaluated themselves (Simoes and Marques 2012). Many non-1880 

parametric frontier methods are used to compute TFP and have been applied to the water 1881 

industry, such as the Färe-Primont productivity index (Molinos-Senante et al., 2017a), 1882 

Malmquist Productivity Index (MPI) (Molinos-Sennante et al., 2017b), Luenberger Productivity 1883 

Index (LPI) (Sala-Garrido et al., 2018), Malmquist-Luenberger productivity indicator (Ananda, 1884 

2018; Sala-Garrido et al., 2019), and the Hicks-Moorsteen Productivity Index (HMPI) (Molinos-1885 

Senante et al., 2016b). The essential advantage of these non-parametric frontier methods 1886 

over parametric methods is that they do not require a priori assumptions about the functional 1887 

relationship between the variables, which can cause specification and estimation problems 1888 

(Murillo-Zamorano and Vega-Cervera, 2001).  1889 

The MPI, which was introduced by Caves et al. (1982), is the most commonly applied method 1890 

to analyse changes in TFP. The reason for its popularity is that it can be computed without 1891 

price data and can be broken down into measures of technical and efficiency changes (Shao 1892 

and Lin, 2016). Despite the numerous positives of MPI, it does have some decisive limitations. 1893 

O’Donnell (2014) comments that some of the distance functions within the index may be 1894 

undefined and infeasibility problems might then ensue (Kerstens and Van De Woestyne, 1895 

2014). As an outcome, the results from MPI may not accurately express TFP change from 1896 

scale effects. Moreover, MPI requires a choice of input or output orientation (Molinos-Senante 1897 
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et al., 2020), and is deemed inappropriate when the sample operates under variable returns 1898 

to scale (VRS), as Grifell-Tatje and Lovell (1995) and O’Donnell (2008) demonstrated. VRS 1899 

refers to a change in inputs that is not directly proportional to a change in outputs (Färe and 1900 

Primont, 1995). MPI is thus not applicable to many situations.  1901 

The limitations that MPI encompasses are largely overcome by the HMPI. Defined as a ratio 1902 

of the Malmquist input and output indices, while using the Shephard input and output distance 1903 

functions, respectively (Bjurek, 1998), the HMPI does not require price data and satisfies all 1904 

other index conditions, including multiplicative completeness and transitivity tests (O’Donnell, 1905 

2012). The HMPI thus functions within a simultaneous input and output orientation, and can 1906 

be computed under both constant returns to scale (CRS) and VRS technologies, giving it a 1907 

distinct advantage over similar TFP methods like MPI. Furthermore, HMPI makes no 1908 

assumptions on behavioural aims such as maximising profit, or market settings like regulation 1909 

and competition (Dhillon and Vachharajani, 2018). Briec and Kersten (2011) highlighted 1910 

further advantages of HMPI, commenting that under strong input and output disposability, the 1911 

determinateness axiom is satisfied so that infeasibility problems are avoided. Meaning that 1912 

the index is well defined even when one or more of its arguments becomes zero or infinity. A 1913 

feature of HMPI that makes it preferable to other TFP approaches is one it shares with MPI, 1914 

which is that it can be decomposed into TFP change elements. These components are i) 1915 

technical change, which measures movements in the production frontier, and ii) efficiency 1916 

change, that measures unit movement relative to the frontier. Efficiency change can be further 1917 

broken down into technical efficiency, mix efficiency, residual mix efficiency, scale efficiency, 1918 

and residual scale efficiency, which collectively analyse movements around the frontier to 1919 

capture economies of scale and scope (Laurenceson and O'Donnell, 2014). Such 1920 

decomposition can be useful from the perspective of policy and regulation, with the effect of 1921 

controls on WaSCs being identifiable through TFP decomposition analysis, enabling better 1922 

decision-making (Wen et al., 2018).  1923 
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Although the HMPI has many positive attributes, it has thus far had limited use in applied 1924 

research, particularly within the water sector, with just Molinos-Senante et al. (2016b) using it 1925 

to study wastewater treatment plants. Meanwhile, TFP has been assessed in the water sector 1926 

with other methods. For example, Guerrini et al. (2018), Molinos-Senante et al. (2014b), 1927 

Molinos-Senante et al. (2019), Sala-Garrido et al. (2018) all utilise the Luenberger or 1928 

Luenberger-Hicks-Moorsteen to analyse areas of the water sector from water companies 1929 

directly to treatment plants. Even within other sectors such as banks, agriculture, 1930 

manufacturing, energy and ports, the use of HMPI has not been common, as Medal-Bartual 1931 

et al. (2016) and Mohammadian and Rezaee (2020) document.  1932 

The aims of this paper were three-fold. Firstly, to analyse the applicability of assorted HMPI 1933 

variable configurations, then to assess how differing approaches affect results and identify the 1934 

best variable approach for a comprehensive sustainability evaluation. Secondly, to investigate 1935 

the productivity change on a sample of UK WaSCs over a six-year period using the variable 1936 

configuration for sustainability analysis found in the first aim. Finally, to disaggregate results 1937 

for individual companies and enable an investigation of areas in which they can improve – 1938 

informed by TFP constituents. This study contributes to the current body of literature by 1939 

utilising a method not widely applied in the water sector to assess the optimal routes to 1940 

measure efficiency in a holistic sustainability context. Additionally, it provides an insight to TFP 1941 

change and potential avenues for improvement for UK WaSCs and the sector as a whole. The 1942 

findings and methods are of use to water company decision-makers and regulators, allowing 1943 

identification of areas of improvement, effectiveness of their operations and potential 1944 

collaborators for sharing of best practice. 1945 

5.2. Methodology 1946 
5.2.1. The Hicks-Moorsteen Productivity Index 1947 

The Hicks-Moorsteen Productivity Index is defined as a ratio of aggregate output quantity over 1948 

aggregate input quantity index (Bjurek et al., 1998). A major advantage of HMPI over other 1949 

productivity methods is that a choice between input or output orientation is not required since 1950 

the approach conducts a simultaneous orientation of input and output. This is due to the 1951 
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combination of output and input quantity indices using the Shephard output and input distance 1952 

functions (O’Donnell, 2011). 1953 

Under the assumption of each WaSC using a vector of M inputs 𝑥 (𝑥1, 𝑥2, …, 𝑥𝑀) to produce 1954 

a vector of S outputs 𝑦 = (𝑦1, 𝑦2, …, 𝑦𝑆), the output and input distance functions are defined 1955 

thus (Shephard, 1953):  1956 

𝐷𝑡
𝑜 (𝑥, 𝑦) =

𝑚𝑖𝑛
𝛿

 {𝛿 > 0 ∶ (𝑥,
𝑦

𝛿⁄ )휀𝑇𝑡}       (5.1) 1957 

𝐷𝑡
𝑖 (𝑥, 𝑦) =

𝑚𝑖𝑛
𝜌

 {𝜌 > 0 ∶ (𝑥
𝜌,⁄ 𝑦)휀𝑇𝑡}       (5.2) 1958 

Where 𝑇𝑡 denotes production possibilities set at period-𝑡. 𝐷𝑡
𝑜 (𝑥, 𝑦) symbolises the output 1959 

distance function and evaluates the inverse of the largest radial expansion of the output vector, 1960 

which is achievable, given the input vector. Conversely, 𝐷𝑡
𝑖 (𝑥, 𝑦) denotes the input distance 1961 

function and evaluates the largest radial contraction of the input vector attainable while fixing 1962 

the output vector (Epure et al., 2011). 1963 

For a base period 𝑡, Bjurek et al. (1998) defined HMPI as:  1964 

𝐻𝑀𝑃𝐼𝑇 (𝑡)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡) =
[𝐷𝑇(𝑡)

𝑜 (𝑥𝑡,𝑦𝑡) 𝐷𝑇(𝑡)
𝑜⁄ (𝑥𝑡,𝑦𝑡+1)]

[𝐷𝑇(𝑡)
𝑖 (𝑥𝑡,𝑦𝑡) 𝐷𝑇(𝑡)

𝑖⁄ (𝑥𝑡+1,𝑦𝑡)] 
       (5.3) 1965 

For a base period 𝑡 + 1, HMPI is defined as: 1966 

𝐻𝑀𝑃𝐼𝑇 (𝑡+1)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡) =
[𝐷𝑇(𝑡+1)

𝑜 (𝑥𝑡+1,𝑦𝑡) 𝐷𝑇(𝑡+1)
𝑜⁄ (𝑥𝑡+1,𝑦𝑡+1)]

[𝐷𝑇(𝑡+1)
𝑖 (𝑥𝑡,𝑦𝑡+1) 𝐷𝑇(𝑡+1)

𝑖⁄ (𝑥𝑡+1,𝑦𝑡+1)] 
      (5.4) 1967 

A geometric mean of the HMPI for base period 𝑡 and 𝑡 + 1 yields: 1968 

𝐻𝑀𝑃𝐼𝑇(𝑡),   𝑇(𝑡+1) (𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡, 𝑦𝑡) =  1969 

[𝐻𝑀𝑃𝐼𝑇(𝑡)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡)  ×  [𝐻𝑀𝑃𝐼𝑇(𝑡+1)(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡 , 𝑦𝑡)]1/2   (5.5) 1970 

An asset of HMPI is its classification into technical potential (TECH) and relative efficiency 1971 

(TFPE) change, along with breakdown of TFPE into various components. TECH indicates a 1972 

shift in the efficiency production frontier, advancements of which illustrate expansion in 1973 
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production possibilities (Fare and Grosskopf, 1996). TFPE measures the movement of units 1974 

(WaSCs) away or towards production frontier and is regarded as a catching up index (Maziotis 1975 

et al., 2015). The indication being that TFPE involves the capacity of WaSCs to be managed 1976 

with the best operational and corporate practices. TFP then, is the product of TECH and TFPE 1977 

(O’Donnell, 2011): 1978 

𝑇𝐹𝑃𝑖𝑡 =  𝑇𝐸𝐶𝐻𝑖𝑡  ×  𝑇𝐹𝑃𝐸𝑖𝑡        (5.6) 1979 

O’Donnell (2008) devised the breakdown of TFPE into its drivers, using two production 1980 

frontiers as references. The first, mix-restricted production frontier has the output or input sets 1981 

held fixed. The second is the unrestricted production frontier, which has variable output and 1982 

input sets. Established on these two frontiers, whilst under an input-orientation, the sub-indices 1983 

for TFPE are defined by O’Donnell (2014) in Table 5.1. 1984 

 1985 

 1986 

 1987 

 1988 

 1989 

 1990 

 1991 

 1992 

 1993 

 1994 

 1995 

 1996 

 1997 

 1998 

 1999 

 2000 

 2001 
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Table 5.1. Descriptions and explanations to the sub-indices of total factor productivity efficiency change, adapted 2002 
from the works of O’Donnell (2008) and O’Donnell (2014). 2003 

TFPE sub-

indices 

Description 

Input-oriented 

Technical 

Efficiency (ITE) 

Measures the difference between the observed and maximum TFP possible, while keeping 

the input mix, output mix and output level fixed. This concept is exhibited in Figure 5.1, where 

the curve passing through points B and D is the frontier of a mix‐restricted production 

possibilities set. The production possibilities set is mix‐restricted in the sense that it only 

contains input and output aggregate vectors that can be written as scalar multiples of the 

input and output vectors at point A. ITE is thus a measure of the difference in TFP at points 

A and B: ITE0  = tan a /tan b. 

Input-oriented 

Scale 

Efficiency (ISE) 

Assesses the difference between TFP at a technically efficient point and maximum TFP 

possible while holding the input and output mixes fixed but allowing the amounts to 

change. This measure of efficiency is represented in Figure 5.1 as a movement from point B 

to point D: ISE0 = tan b /tan d. 

Residual Mix 

Efficiency 

(RME) 

Evaluates the contrast between TFP on a mix-restricted frontier point and maximum TFP 

possible when input and output mixes (and levels) can vary. This is illustrated in Figure 5.1 

as a movement from point D to point E: RME0 = tan d /tan e. The curve passing through E is 

the frontier of an unrestricted production possibilities set (unrestricted meaning there are no 

restrictions on input or output mix). The term “mix” refers to the movement from point D to E, 

where a movement from an optimal point on a mix‐restricted frontier to an optimal point on a 

mix‐unrestricted frontier occurs, therefore the difference in TFP is essentially a mix‐

effect. The term “residual” is used here because i) this movement may also involve a scale 

change ii) when comparing TFP at point A with TFP at the point of maximum productivity 

(point E), RME is the component that remains after accounting for pure technical and scale 

efficiency effects. 

Input-oriented 

Mix Efficiency 

(IME) 

Analyses the distance between TFP at a technically efficient point on the mix-restricted 

frontier and the maximum TFP possible, while the output level is fixed. This measure of 

efficiency is depicted in Figure 5.1 as a movement from point B to U: IME0 = tan b /tan u.    

Residual Input-

oriented Scale 

Efficiency 

(RISE) 

Determines the difference between TFP at a technically and mix-efficient point and TFP at 

the point of maximised productivity. The term “scale” is used to reflect the fact that any 

movement around an unrestricted production frontier is a movement from one mix‐efficient 

point to another, so any improvement in TFP is essentially a scale effect.  The term “residual” 

is also used since even though all the points on the unrestricted frontier are mix‐efficient, 

they could still have different input and output mixes.  Therefore, what is essentially a 

measure of scale efficiency may contain a residual mix effect. Residual is further appropriate 

as term here because when decomposing the difference between TFP at the observed point 

A and TFP at the point of maximum productivity E, the residual scale efficiency is the 

component that remains after accounting for pure technical and pure mix efficiency effects. 

RISE is exhibited in Figure 5.1 as a movement from point B to U: RISE0 = tan u / tan e.   

 2004 

The TFPE is represented in Figure 5.1 as a movement all the way from point A to point E, 2005 

measured as the difference between observed TFP and maximum TFP. The relationship with 2006 

its components are simplified here: 2007 

𝑇𝐹𝑃𝐸𝑖𝑡 =  𝐼𝑇𝐸𝑖𝑡  ×  𝐼𝑀𝐸𝑖𝑡  ×  𝑅𝐼𝑆𝐸𝑖𝑡               (5.7) 2008 

𝑇𝐹𝑃𝐸𝑖𝑡 =  𝐼𝑇𝐸𝑖𝑡  ×  𝐼𝑆𝐸𝑖𝑡  × 𝑅𝑀𝐸𝑖𝑡               (5.8) 2009 
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A HMPI >1 indicates an increase in TFP, <1 illustrates a decline in TFP, a result of exactly 1 2010 

demonstrates there was no change in TFP.  2011 

 2012 
Figure 5.1. An input-oriented decomposition of TFPE sourced from O’Donnell (2014). Q represents outputs, X 2013 
depicts inputs, A is observed TFP point, E is maximum productivity, D is the optimal point on a mix-restricted 2014 
frontier, B portrays the technically efficient point on the mix-restricted frontier, and U illustrates the maximum TFP 2015 
possible when output levels are fixed. Further details are within Table 5.1.  2016 

 2017 

To compute output and input distance functions, and therefore HMPI, there are two 2018 

approaches, parametric and non-parametric methods. Of the parametric methods, stochastic 2019 

frontier analysis (SFA) is the most widely used. The advantage of SFA is that it explains 2020 

random statistical noise and can account for the effects of errors in the data (Parmeter and 2021 

Zelenyuk, 2019). The limitation is that parametric techniques require strong assumptions of 2022 

the functional form (Moutinho et al., 2020). Conversely, non-parametric methods such as data 2023 

envelopment analysis (DEA) use mathematical programming and thus do not need 2024 

specification of the functional frontier (Silva et al., 2017). This is the main advantage over SFA 2025 

and outweighs DEA’s limitations of assuming there are no atypical data observations, making 2026 

it vulnerable to outliers and errors (Cooper et al., 2006). Due to the advantages DEA offers, 2027 
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and following O’Donnell (2011), Medal-Bartual et al. (2016), and Molinos-Senante et al. 2028 

(2016), this study utilises DEA to compute HMPI. The input and output distance functions were 2029 

computed in ‘R’, a statistical computing software with the package ‘productivity’ created by 2030 

Dakpo et al. (2018). 2031 

5.2.2. Data description 2032 

The sample consisted of 12 WaSCs from across the UK, with annual data over the period 2033 

2013-2018. To justly represent the key operations of WaSCs, the choice of inputs and outputs 2034 

is pivotal. To investigate the various approaches to analysing efficiency, different 2035 

configurations of inputs and outputs were evaluated and the justifications for their use are 2036 

outlined in Section 5.3.1. The inputs used were operational expenditure (OPEX) and total 2037 

expenditure (TOTEX), whereas the diversified outputs were water supplied and wastewater 2038 

treated (combined), self-generated renewable energy, leakage reduction, consumption per 2039 

capita reduction, and customer satisfaction, which is measured by a service incentive 2040 

mechanism (SIM) score out of 100, deployed by OFWAT. Leakage reduction and consumption 2041 

per capita reduction were converted to non-negatives to allow the computation to proceed 2042 

without errors; this was completed by bringing the largest negative up to a value of one, then 2043 

adding the difference from the negative value to one, to all other values. All of the data was 2044 

acquired from company annual reports and is summarised in Table 5.2. 2045 

The size of the sample, when using DEA, is required to satisfy a minimum size threshold to 2046 

bypass relative efficiency discrimination issues. ‘Cooper’s rule’ is used to gauge this size 2047 

threshold, and specifies the quantity of units must be ≥ max{𝑚 𝑥 𝑠; 3(𝑚 + 𝑠)} where 𝑚 2048 

represents inputs and 𝑠 represents outputs (Cooper et al., 2007). The maximum inputs and 2049 

outputs used in any variable configuration in this study comprised of one input and three 2050 

outputs, therefore Cooper’s rule was followed. Furthermore, one of the advantages of DEA is 2051 

regarded to be its appropriateness with smaller sample sizes (Arjomandi et al., 2015). 2052 

 2053 

 2054 
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Table 5.2. Summary statistics for the six-year period (2013-2018) analysed for UK WaSCs.   2055 

 2056 

5.3. Results and Discussion  2057 
5.3.1. An enquiry into efficiency analysis 2058 

Evaluating the efficiency of water companies can take many forms, with hundreds of indicators 2059 

available to choose from (Berg, 2013). However, in TFP analysis with frontier techniques like 2060 

DEA and SFA, a limited core number of variables are often chosen, since including the 2061 

majority of possible variables is not feasible (Worthington, 2014). Variations of core indicators 2062 

are evaluated and their appropriateness is discussed relative to capturing the key operations 2063 

and responsibilities of water companies in relation to wider sustainability objectives. This was 2064 

conducted through eight repeats of the HMPI model, each with different configurations of 2065 

variables, enabling the exploration of the importance of variable selection when assessing 2066 

productivity. The breakdown of each individual model repeat, including all constituents of 2067 

efficiency and individual company efficiency scores for each year are available in the 2068 

Supplementary Information. 2069 

The most common variable approach to efficiency analysis of water companies in the literature 2070 

comprises of including OPEX and capital expenditure (CAPEX) as inputs, and the volume of 2071 

water supplied and wastewater treated as outputs, whether that is within a single year analysis 2072 

or a multi-year evaluation within productivity (Zschille and Walter, 2014; Maiotis et al., 2015; 2073 

See, 2015). This configuration of inputs and outputs therefore made up the first model run (T-2074 

W in Table 5.3), displaying an average increase in TFP of 0.86%, solely as a result of efficiency 2075 

increase. This slight increase was anticipated as the mature UK market continues to optimise 2076 

total spending, as supported by Portela et al. (2011) who showed significant productivity 2077 

  Average SD Minimum Maximum 

Inputs Total expenditure (million£) 863 506 288 2,724 

 Operational expenditure (million£) 504 320 143 1,214 

Outputs Water supplied and wastewater treated (Ml/day) 2,613 1,763 725 7,102 

 Self-generated renewable energy (GWh) 98 89 2 387 

 Customer satisfaction (SIM score) 82 5 68 90 

 Leakage reduction (Ml/day) 54 12 1 89 

 Consumption per capita reduction (l/h/day)  11 4 1 22 



88 
 

improvements between 1994-2005 using a meta-Malmquist index, before it dropped off until 2078 

2007. Molinos-Senante and Maziotis (2020b) published a similar result using a normalised 2079 

quadratic function, illustrating that the sector increased its productivity annually by 6.1% within 2080 

1993-2016. The TFP increase however did contradict further TFP studies of the UK with 2081 

similar indicators to T-W. Molinos-Senante et al. (2017a) used the Färe-Primont Productivity 2082 

Index and concluded productivity declined by 7.2% during 2001-2008, whilst Molinos-Senante 2083 

et al. (2014b) showed the productivity of the UK water industry from 2001 to 2008 reduced by 2084 

11.5% and 12.9% when using the LPI and MPI, respectively. The disparity between studies is 2085 

likely due to differing sample years, methodologies, and the sample itself, since some studies 2086 

included the whole of the UK and others just England and Wales, some studies also contained 2087 

water only companies and WaSCs, whilst others just WaSCs. Although this change in sample 2088 

size is not large, it can be significant when the original sample size is small as is the case 2089 

within the UK (Zhang and Bartels, 1998). The drawback to the T-W variable configuration is 2090 

that it does not capture other elements that a water company provides and for which it is 2091 

responsible. 2092 

Table 5.3. Summarised TFP, TFPE and TECH* change of various variable configurations for UK water and 2093 
sewage companies for 2014-18. Average changes are based on the mean percentage changes for all years and 2094 
for all companies. 2095 

Model Inputs Outputs 
dTFP 

average 

dTECH 

average 

dTFPE 

average 

T-W TOTEX Water supplied and wastewater treated +0.86% -0.39% +1.37% 

T-WRC TOTEX 
Water supplied and wastewater treated, renewable 

energy generation, customer satisfaction 
+1.82% -0.01% +2.06% 

T-RC TOTEX Renewable energy generation, customer satisfaction +2.35% -1.24% +3.91% 

T-LC TOTEX Leakage reduction, consumption per capita reduction +4.86% +0.29% +5.14% 

O-W OPEX Water supplied and wastewater treated -3.15% -3.85% +0.79% 

O-WRC OPEX 
Water supplied and wastewater treated, renewable 

energy generation, customer satisfaction 
-1.15% -2.43% +2.06% 

O-RC OPEX Renewable energy generation, customer satisfaction -0.90% -2.78% +2.85% 

O-LC OPEX Leakage reduction, consumption per capita reduction +1.22% -2.41% +5.58% 

*TFP is total factor productivity; TECH is technical change; TFPE is efficiency change 

 2096 

Customer satisfaction and self-generated renewable energy were identified as key indicators 2097 

to incorporate into the analysis, which along with the T-W variables (Table 5.3), make up T-2098 
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WRC. Customer satisfaction was selected as it is the ultimate measure of success for a utility 2099 

provider and, representing social aspects of sustainability, is a fundamental parameter for 2100 

companies to prosper and avert regulatory sanctions. The more environmentally focussed 2101 

self-generated renewable energy was chosen since water companies are a major consumer 2102 

of energy, as noted in Section 5.1. Therefore, reducing their impact on the national grid supply 2103 

and the associated greenhouse gas emissions is a responsibility that is incorporated into the 2104 

second variable configuration. T-WRC resulted in a larger TFP increase of 1.82% between 2105 

2014 and 2018, compared to T-W, again due to the increases in TFPE. The progress relative 2106 

to T-W was expected since customer satisfaction and self-generated renewable energy 2107 

consistently increased throughout the sample period by 1.24% and 28% on average year-on-2108 

year, respectively. Although T-WRC does cover more operational outputs for water 2109 

companies, it has a limitation in the form of the main service output indicator: water supplied 2110 

and wastewater treated. Water companies have been tasked to reduce leakage in their supply 2111 

network by 15% by 2025, and 50% by 2040 (EFRA, 2018) to help future-proof themselves 2112 

against climate change, which could reduce the availability of abstraction water (Dallison et 2113 

al., 2020; Gov.UK, 2020a), and to better manage water resources. Companies take active 2114 

measures to do this by investing in leakage reduction and conducting education campaigns to 2115 

reduce consumption; e.g., Manouseli et al. (2019) showed active users within such schemes 2116 

reduced their consumption by approximately 15%. Therefore, having water produced and 2117 

wastewater treated as outputs in a TFP model may mask efficiency by treating higher water 2118 

consumption, and lower investment in consumption (leak) reduction, as efficient. This would 2119 

inaccurately portray companies that have invested in leakage reduction and public campaigns 2120 

to consume less water as being less efficient.  2121 

Thus, to avoid this potential distortion, the T-RC model consisted of renewable energy self-2122 

generation and customer satisfaction as the outputs, whilst keeping TOTEX as the input. This 2123 

displayed a TFP increase of 2.35% between 2014 and 2018, with an increase of 3.91% for 2124 

TFPE. To explore more areas that companies are prioritising and attempting to improve upon, 2125 
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T-LC has leakage reduction and consumption per capita reduction as outputs. Typically, 2126 

consumption per capita is not considered an output within evaluations of water companies 2127 

however, since it has been shown that companies can influence it, it is included here. This 2128 

variable configuration resulted in the largest average TFP increase between 2014 and 2018 2129 

of 4.86%, which, along with showing how companies have improved more holistically, also 2130 

exemplifies how efficiency analysis with water supplied and wastewater treated as an output 2131 

could distort results with respect to sustainable business objectives. Collectively, models T-2132 

RC and T-LC demonstrate how much WaSCs in the UK have improved non-economic aspects 2133 

of sustainability between 2013/14-2018/19. 2134 

The first four models were all calculated with TOTEX as an input, however, CAPEX being a 2135 

part of this input had the potential to skew results as the benefits of capital investments are 2136 

often not shown immediately (Abbott and Cohen, 2009). Model configurations O-W, O-WRC, 2137 

O-RC and O-.LC therefore were all repeats of the first four variable configurations, but 2138 

contained just OPEX as their inputs. As Table 5.3 illustrates, the OPEX versions of the models 2139 

all resulted in the companies being less efficient compared to the TOTEX versions with O-W, 2140 

O-WRC and O-RC actually presenting negative results, indicating that the sample has 2141 

declined in efficiency. One possibility for these results is that CAPEX is more efficient than 2142 

OPEX for companies within the sample and subsequently masked its inefficiency within 2143 

TOTEX, however, reductions in CAPEX whilst also improving significantly in self-generated 2144 

renewable production and leakage reduction seems unlikely. An alternative possibility is that 2145 

CAPEX from the time preceding the sample period into the base year was higher to pay for 2146 

infrastructure represented in outputs in these models such as leakage reduction, renewable 2147 

energy production and customer satisfaction to a lesser extent. From then, a fall in CAPEX 2148 

could have followed, so within TOTEX as an input, it was low compared to the now increasing 2149 

outputs brought about by prior spending. If this is the case, then incorporating CAPEX 2150 

essentially creates efficiency lags that must be accounted for, or at least acknowledged, when 2151 

drawing conclusions from results. To evade this potential efficiency lag, studies with a sample 2152 



91 
 

over a longer period could adopt a five-year rolling average, since shorter periods could 2153 

generate perverse incentives to cut investments in the short term if the efficiency lag is not 2154 

considered in the research outputs. Some studies opt to include length of water mains as a 2155 

proxy to represent capital (De Witte and Marques, 2010a; Ananda, 2014; Molinos-Senante et 2156 

al., 2018a), which negates the issue raised here however, that comes with its own issues of 2157 

accuracy when acting as a proxy as demonstrated by Walker et al. (2020). Whilst these results 2158 

have been attempted to be explained by the role of CAPEX, there are the direct ramifications 2159 

of OPEX too. Inflation rate increased at an average of 1.7% per year over the sample period 2160 

(Office for National Statistics, 2020a) and the energy price index also raised by an average of 2161 

3.19% per year for electricity and 8.44% for gas (Gov. UK, 2020b). Furthermore, the water 2162 

retail price index increased by an average of 2.44% during the same period (Office for National 2163 

Statistics, 2020b). These statistics combined likely had at least a small impact on the relatively 2164 

lower productivity compared to TOTEX and further highlights the advantages of companies 2165 

producing their own renewable energy.  2166 

The assorted inputs and outputs for the model variable configurations yielded changes in 2167 

perceived productivity for the whole water sector. As Table 5.4 shows, company-level TFP 2168 

also fluctuated. There was a disparity between the first four that used TOTEX as the input and 2169 

the last four models that used OPEX as the input, which was seen in the overall sector trends 2170 

in Table 5.3, too. For example, companies 7 and 8 were ranked 2nd and 1st in the majority of 2171 

the TOTEX models, but dropped to below average and alternate between 4th and 5th in the 2172 

OPEX models, respectively. Furthermore, company 12 went from generally below average 2173 

rankings in the TOTEX models, with exception of model T-LC where it ranked 2nd, to ranking 2174 

1st in the latter four models. Company 9 appears to have fallen behind when the more 2175 

sustainability-orientated indicators were introduced. It ranked 4th in T-W however, dropped to 2176 

10th-12th in models T-WRC, T-RC and T-LC when indicators such as self-generated renewable 2177 

energy, customer satisfaction, leakage reduction and consumption per capita reduction were 2178 

implemented. This trend was then replicated in the OPEX models, although to a lesser extent. 2179 
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Company 5 performed poorly throughout whether that was using OPEX or TOTEX as the 2180 

input, suggesting that they have neglected all aspects of sustainability relative to the other 2181 

companies and have held back the TFP progress for the whole sample. These results 2182 

collectively show how choosing the correct variables to represent a specific desired objective 2183 

is critical and how small variations in variable selection or definition could significantly skew 2184 

benchmarking attempts. A larger sample would have enabled more indicators to be evaluated, 2185 

giving a more holistic representation of sustainability however, with the limited indicators 2186 

allowed by the sample, key sustainable parameters are included in this study.   2187 

Table 5.4. Ranking 12 WaSCs for the eight model variable configurations, based on the TFP scores. 2188 

Company 
Total Factor Productivity (TFP) Rankings 

T-W T-WRC T-RC T-LC O-W O-WRC O-RC O-LC 

1 8th  7th  8th  5th  11th  11th  11th  5th  

2 12th  11th  10th  8th  6th  7th  8th  2nd  

3 9th  5th  3rd  6th  8th  8th  3rd  6th  

4 3rd  3rd  5th  4th  10th  10th  10th  3rd  

5 11th  12th  11th  10th  12th  12th  12th  12th  

6 6th  6th  6th  11th  7th  2nd  2nd  11th  

7 2nd  2nd  2nd  3rd  9th  9th  7th  8th  

8 1st  1st  1st  1st  4th  5th  5th  4th  

9 4th  10th  12th  12th  2nd  4th  9th  10th  

10 5th  4th  4th  7th  3rd  3rd  4th  7th  

11 10th  9th 9th  9th  5th  6th  6th  9th  

12 7th  8th  7th  2nd  1st  1st  1st  1st  

 2189 

5.3.2. Water market efficiency over time  2190 

The model variable configuration to analyse the TFP change of UK WaSCs in the following 2191 

sections was model T-WRC in Table 5.3. T-WRC was selected because it included key 2192 

indicators that cover all aspects of sustainability. TOTEX was incorporated as it was deemed 2193 

that CAPEX should be represented because ultimately, it is an important component of 2194 

company spending that can be associated with significant (lagged) technical efficiency and 2195 

sustainability improvements. Furthermore, the UK water sector now actively reports under 2196 

TOTEX, with the regulator OFWAT (2018b) commenting that the switch to TOTEX has 2197 

removed a regulatory barrier, enabling additional efficiencies and innovation. Any potential 2198 

time lags in efficiency results are a limitation of the research in the upcoming sections but will 2199 
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be appreciated within the enquiry of the results. Water supplied and wastewater treated was 2200 

chosen as it is the main service output of water companies, representing their whole reason 2201 

for operating, therefore analysing efficiency without it cannot be considered holistic 2202 

sustainability or otherwise.  2203 

Despite the limitations to some of the indicators discussed in Section 5.3.1, they are the most 2204 

appropriate grouping considering the data available and sample size; furthermore, the results 2205 

still give a good indication of how companies are performing within a more comprehensive 2206 

sustainability efficiency assessment. Productivity change was deemed to increase when TFP 2207 

and constituent scores were >1 and to decrease when estimates were <1. 2208 

The average TFP change was positive with a value of 1.018 over the sample period as shown 2209 

in Table 5.5, which indicates an average increase in productivity of 1.8%, however, this was 2210 

the consequence of 2015/16 having a large TFP estimate compared to other years of 1.23 2211 

(23%). The increase was large enough for the overall average productivity change to be 2212 

positive, despite all other years displaying a decline in TFP. This was unexpected as 2015 2213 

was the beginning of the five-year cycle consisting of asset management plan 6, which was to 2214 

be a period of increased investment (OFWAT, 2014), however, the year displayed a TOTEX 2215 

decline of 13.17% compared to the previous year, whereas increased spending followed in 2216 

the next four years. It is likely that the TOTEX decline in 2015 was a major driver of the 2217 

increased efficiency, although self-generated renewables increased by 20.62%, whilst 2218 

customer satisfaction improved by 1.02% and water supplied and wastewater treated declined 2219 

by 1.95%. The limitation of confining productivity results to yearly values as opposed to 2220 

extended blocks of time is exemplified here, but is applied in this research and many other 2221 

pieces of work due to the limited temporal sample range. A larger increase in TFP was 2222 

anticipated due to the inclusion of self-generated renewable energy as an output, since this 2223 

increased dramatically in the sample period (28% average year-on-year). It is possible that 2224 

the renewable energy increase masked some other inefficiency, which appears to be the case 2225 

when examining model T-W within Table 5.3. This mix of variables displayed a TFP average 2226 
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increase of 0.86%, whilst containing TOTEX as the input and water supplied and wastewater 2227 

treated as the output. This was approximately 1% lower compared to the more holistic model 2228 

variable configuration used in this section, indicating customer satisfaction and self-generated 2229 

renewable energy production attributed to increased TFP. Another reason the increase was 2230 

not as large as anticipated appeared to be a result of TOTEX increasing nearly as much as 2231 

their outputs during the sample period, with an average year-on-year increase of 3.01%. 2232 

These combined with the limitations in using water supplied and wastewater treated as an 2233 

output discussed in Section 5.3.1 likely limited larger TFP increases. Ultimately, there was a 2234 

positive average TFP change and this should be viewed favourably, especially when 2235 

companies are improving renewable energy generation and customer service, in addition to 2236 

the core operations of providing high standards of drinking water and treating wastewater 2237 

responsibly. 2238 

Table 5.5. Summarised TFP change and its components* for UK water and sewage companies.  2239 

Year dTFP dTECH dTFPE dITE dISE dRISE dRME 

2014/15 0.996 0.995 1.002 1.091 0.935 0.925 0.993 

2015/16 1.230 1.057 1.176 0.987 1.036 1.194 1.158 

2016/17 0.952 0.945 1.006 0.936 1.053 1.088 1.031 

2017/18 0.945 0.958 0.987 1.026 1.004 0.968 0.965 

2018/19 0.969 1.044 0.931 0.990 1.007 0.941 0.935 

Average 1.018 1.000 1.021 1.006 1.007 1.023 1.017 
*TFP is total factor productivity; TECH is technical change; TFPE is efficiency change; ITE is input-oriented technical 
efficiency; ISE is input-oriented scale efficiency; RISE is residual input-oriented scale efficiency; RME is residual mix 
efficiency. 

 2240 

The main driver of the TFP positive change was TFPE, which averaged at 2.1%, whilst TECH 2241 

remained at an unchanging 1. The indication being that from 2014-18, the production frontier 2242 

remained at the same level, however, companies on average have moved 2.1% closer to the 2243 

frontier. This was again largely due to 2015/16, which displayed an increase in TFPE of 17.6%, 2244 

outweighing the decreases in the last two years of 1.3% and 6.9%, illustrated in Figure 5.2. 2245 

The findings suggest that capital investment remained steady relative to increased outputs 2246 

during the sample years, whereas management of infrastructure and resources improved 2247 

marginally. Therefore, to improve TFP, WaSCs must invest more in impactful capital projects 2248 

compared to their 9.15% year-on-year average reduction, if they are to improve the outputs 2249 
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used in the mode further; these solutions could be updated technologies at treatment plants, 2250 

renewable energy installations, and extra customer-facing staff capacity. The extra capital 2251 

enterprises may then allow the expert personnel that increased TFPE to propel efficiency on 2252 

even more. Since the CAPEX decline at least partially drives positive efficiency here, it is 2253 

possible that in future years there could be a negative legacy effect, where future efficiency 2254 

evaluations show a decline because of their higher spending relative to the period covered in 2255 

this study. 2256 

An advantage of the HMPI is that TFPE can be split up into component parts. A WaSC is 2257 

deemed efficient if it has an ITE score of one as this indicates the company is on the efficient 2258 

production frontier, less than one and it is under the frontier and inefficient. A company with 2259 

an ITE score equal to one, whilst displaying a RISE of less than one, remains on the efficient 2260 

production frontier however, it is considered relatively unproductive. Table 5.5 displays that 2261 

ITE increased marginally by 0.6% on average, while RISE increased by 2.3%, showing both 2262 

technical efficiency and scale efficiency components positively contributed to TFPE. Further 2263 

constituents of TFPE namely, ISE and RME both on average increased by 0.7% and 1.7%. 2264 

The scale efficiencies imply the UK water sector is moving closer to its technically optimal 2265 

scale in regards to output. In 2015/16, the largest TFP and TFPE changes of +23.0% and 2266 

+17.6% occurred, respectively, had a negative ITE score of 1.3%. Despite this, large 2267 

productivity gains in RISE and RME of 19.4% and 15.0% ensured the year had such a large 2268 

TFP increase. Collectively, these results suggest that economies of scale and scope 2269 

contributed positively to the TFPE result, allowing WaSCs to move to closer the efficiency 2270 

frontier by improving in diversified outputs and optimising treatment plant sizes relative 2271 

distribution area.  2272 

 2273 
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  2274 

Figure 5.2. The change in total factor productivity (TFP), TFP efficiency change (TFPE) and TFP technical change 2275 
(TECH) for all UK water and sewage companies as a collective for 2014-2018.  2276 

 2277 

5.3.3. Company-level efficiency over time 2278 

Figure 5.3 displays that exactly half of the sample exhibited a positive TFP value, furthermore 2279 

the TFP standard deviation was 0.043 (Table 5.6), indicating that the sample was relatively 2280 

homogenous. This was expected to an extent since the UK has a mature water market, having 2281 

been consolidated after the Second World War then eventually privatised in 1989 and 2282 

regulated strictly ever since (OFWAT, 2020c). The largest TFP gains were from company 8, 2283 

which had increased productivity by 10.9%. 2284 

 2285 

0.9

1.0

1.1

1.2

1.3

2014 2015 2016 2017 2018

H
M

P
I  

Sc
o

re

Year

dTFP

dTFPE

dTech



97 
 

2286 
Figure 5.3. The change in total factor productivity (TFP), TFP efficiency change (TFPE) and TFP technical change 2287 
(TECH) for all individual UK water and sewage companies for 2014-2018.  2288 

 2289 

Table 5.6 shows that the increase was due to a large increase in TFPE of 13.8%, suggesting 2290 

that the management of existing resources during this period significantly improved, although 2291 

this is likely also due to capital projects from before the sample period coming online. 2292 

Conversely, company 5 had the largest average decline in TFP during 2014-18 of -3.1%, 2293 

struggling slightly more through optimising capital investment than through the management 2294 

of resources. Companies 5 and 8 did have an almost identical average TECH decline, showing 2295 

effective capital investment of the most improved company was as poor as the worst 2296 

performing company. This conveys that company 8 can still considerably improve, despite 2297 

being the top performer. It should be noted that not all companies necessarily operate in equal 2298 

conditions, with exogenous factors such as rurality, water source and population density, to 2299 

just name a few factors, all affecting their efficiencies (Walker et al., 2019). Although each 2300 

company will have slightly different operational and corporate conditions, this exemplifies 2301 

where communication and sharing of best practices can dramatically improve productivity. 2302 

The current limitation to this is that the UK sector is privatised, and many efficiency gains are 2303 

made through ‘commercially sensitive’ means.  2304 

The operational conditions within the UK are fairly uniform however, even minor variances in 2305 

certain factors can affect renewable energy feasibility for companies, influencing their financial 2306 
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and energy payback times (Murphy and McDonnell, 2017). For example, wind speed averages 2307 

and peaks are much higher in coastal areas and the north of the UK, ranging from an average 2308 

5-13 m/s in 1981-2010, whereas inland and in the south largely averages at 1.5-2.6 m/s (Met 2309 

Office, 2020). A further example is in solar irradiance; Burnett et al. (2014) converted gridded 2310 

sunshine duration to solar irradiance in order to map it for the UK within 1961-1990, which 2311 

showed the south for average annual irradiance ranged from 90.9 to 126 Wm-2, whilst the 2312 

north had a range of 71.8-107.1. Additionally, topographical gradients vary throughout the 2313 

whole of the UK (Topographic map, 2020), significantly altering the dynamics and viability of 2314 

recovering energy from hydropower (McNabola et al., 2014). The one major renewable energy 2315 

source that is uniform for all the companies in the sample is the production of biogas from 2316 

wastewater, although the quantities will differ depending on populations, and transport 2317 

distance (and associated costs) to centralised plants will vary with population densities (cities 2318 

vs. rural, etc.). A further major barrier to renewable energy projects is land cost, which has 2319 

disparities within the UK, generally being cheaper in the north and the south (Hall and Tewdwr-2320 

Jones, 2019). Collectively, this means generating renewable energy within the UK is not equal 2321 

for each water company; therefore, future efficiency studies could enhance their analysis by 2322 

considering this, perhaps integrating a ‘percentage of possible renewable energy utilised’ 2323 

based on natural resources and economic thresholds.  2324 

 2325 

 2326 

 2327 

 2328 

 2329 

 2330 

 2331 
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Table 5.6. Average TFP change and its components* for UK water and sewage companies 2014-18.  2332 

Company dTFP dTECH dTFPE dITE dISE dRISE dRME 

1 0.998 0.979 1.022 1.012 1.019 1.045 1.038 

2 0.971 0.976 0.996 0.978 1.004 1.029 1.023 

3 1.023 1.042 0.979 1.000 1.000 0.979 0.979 

4 1.047 1.042 1.004 1.000 1.000 1.004 1.004 

5 0.969 0.978 0.993 0.956 0.995 1.037 1.047 

6 1.016 1.019 1.011 1.000 1.000 1.011 1.010 

7 1.085 1.032 1.036 1.000 1.033 1.036 1.003 

8 1.109 0.980 1.138 1.080 1.027 1.077 1.046 

9 0.977 1.018 0.963 0.997 0.999 0.966 0.967 

10 1.036 0.977 1.068 1.033 1.005 1.025 1.017 

11 0.990 0.979 1.013 0.994 0.998 1.029 1.028 

12 0.997 0.977 1.024 1.025 1.005 1.041 1.037 

Average 1.018 1.000 1.021 1.006 1.007 1.023 1.017 

SD 0.043 0.027 0.044 0.029 0.012 0.029 0.024 

*TFP is total factor productivity; TECH is technical change; TFPE is efficiency change; ITE is 
input-oriented technical efficiency; ISE is input-oriented scale efficiency; RISE is residual input-
oriented scale efficiency; RME is residual mix efficiency. 

 2333 

Technical change improved for five out of twelve WaSCs, with companies 3 and 4 leading with 2334 

the way, improving by 4.2% each. This means that these companies have advanced regarding 2335 

their technological condition, a probable result from long-term strategic planning and capital 2336 

investment. However, when assessing the TOTEX year-on-year average, it was evident for 2337 

these WaSCs that their change in spending was modest and comparable to their peers, 2338 

increasing by 2.53% and 4.72%, respectively. This shows the difficulty in analysing the 2339 

efficiency of capital expenditure as discussed in Section 5.3.1. It should, however, be noted 2340 

that the efficiency is in relevance to the outputs, and so it is probable that their capital spending 2341 

was more optimised than other companies in the sample. Concerning efficiency change, eight 2342 

out of twelve companies progressed their operational systems and procedures, with company 2343 

8 improving by 13.8%, the most of all the WaSCs.   2344 

The components of efficiency change, which are displayed in Table 5.6, can offer even more 2345 

of an insight into productivity. As the previous section noted, an ITE score of 1 indicates the 2346 

WaSC is on the production frontier, whilst a score of less than 1 for RISE categorises the 2347 

WaSC as relatively unproductive. Eight companies (66%) displayed an ITE score of 1 or higher 2348 
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and therefore positively shifted the efficiency production frontier or remained on it. Although 2349 

these improvements were observed, company 3 still reduced in TFPE due to it remaining 2350 

relatively unproductive, as indicated by the decline in RISE. Only two companies, 3 and 9 did 2351 

not match the overall positive trend for RISE and RME, whilst just companies 5, 9 and 11 2352 

presented negative results for ISE. This indicates that the majority of UK WaSCs had positive 2353 

economies of scale and scope with TFP largely being driven by improved operational practices 2354 

of existing infrastructure and resources. Although collectively the progress of TFP, TFPE and 2355 

its constituents were small, continuing to improve in an already largely efficient sector is 2356 

positive, especially within a framework evaluating more holistic sustainability outputs. 2357 

Individual analysis at this scope further highlights how sharing best practice between the 2358 

companies featured on different ends of the various components of TFP results could be 2359 

advantageous, with lessons being relevant for companies outside of the region, too. 2360 

5.4. Conclusions 2361 

The objectives of this research were to utilise the Hicks-Moorsteen Productivity Index as a 2362 

framework to evaluate the efficiency (as temporally applied TFP) of water service companies 2363 

in the UK between 2013 and 2018, exploring the influence of input and output indicator 2364 

selection on the representation of critical sustainability outcomes. In addition to more 2365 

traditional indicators such as TOTEX and Water supplied and wastewater treated, the 2366 

following indicators of sustainable performance were used: self-generated renewable energy, 2367 

customer satisfaction, leakage reduction, and per capita consumption reduction, which were 2368 

interchangeably utilised within eight model variable approaches. The study showed novelty by 2369 

applying and comparing a mix of indicators across the sustainability spectrum, particularly 2370 

poignant within the computation of the seldom-used HMPI on a UK sample of water 2371 

companies. The choice of variables had a major influence on the ranking and perceived 2372 

operational efficiency among WaSCs. CAPEX (used as part of TOTEX) for example, is an 2373 

important input for tracking company operations however; possible associated efficiency 2374 

benefits can lag investment, leading to apparent poor short-term performance following capital 2375 
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spending. A solution is to benchmark over longer periods where possible, implementing a 5-2376 

year rolling average or similar. Furthermore, water supplied and wastewater treated was 2377 

deemed an unconstructive output from a sustainability perspective since it contradicts efforts 2378 

to improve sustainability through reduced leakage and consumption per capita. Alternatives 2379 

should be assessed in future research; possible options are Customer satisfaction and water 2380 

quality measures. Despite these limitations, TOTEX and water supplied and wastewater 2381 

treated were used alongside customer satisfaction and self-generated renewable energy for 2382 

a holistic sustainability assessment that captures decisive company activities within a small 2383 

sample. They indicated the UK water sector has improved in productivity by 1.8% on average 2384 

for 2014-18 and still had room for improvement, as a technical decline was evident for both 2385 

the best and worst performers. Collectively the sample’s production frontier was unchanged 2386 

but on average companies moved 2.1% closer to it, and further decomposition of productivity 2387 

revealed this was due to improvements in economies of scale and scope with residual input-2388 

oriented scale efficiency and residual mix efficiency expressing increases of 2.3% and 1.7%, 2389 

respectively. Careful selection of appropriate input and output variables, integrated within an 2390 

appropriate productivity framework, is critical to align with sustainability objectives and to 2391 

target future investment and regulation within the water sector. The largest limitation within 2392 

this study was the small sample size, which restrained the quantity of indicators that could be 2393 

used however, core sustainability indicators were still included and future studies can build 2394 

upon this, particularly within the framework of the HMPI as was successfully applied here. 2395 

Collectively, these outcomes can contribute to implications on policy, regulation, water 2396 

management, and future research through displaying a process to assess the optimal routes 2397 

to measure efficiency in a holistic sustainability context, enabling identification of areas of 2398 

improvement, effectiveness of their operations, and potential collaborators for sharing of best 2399 

practice.  2400 

 2401 

 2402 

 2403 
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 2416 

Abstract 2417 

The collection, treatment and disposal of wastewater is estimated to consume more than 2% 2418 

of the world’s electrical energy, whilst consumption and wastewater treatment plants 2419 

(WWTPs) can account for over 20% of electrical consumption within some municipalities. To 2420 

investigate areas to improve wastewater treatment, international benchmarking on energy 2421 

(electrical) intensity was conducted with the indicator kWh/m3 and a quality control of 2422 

secondary treatment or better for ≥95% of treated volume. The core sample included 321 2423 

companies from 31 countries, however, to analyse regional differences, 11 countries from an 2424 

external sample made up of various studies of WWTPs was also used in places. The sample 2425 

displayed a weak-negative size effect with energy intensity, although Kruskal-Wallace 2426 

analyses showed there was a significant difference between the size of groups (p-value of 2427 

0.015), suggesting that as companies get larger; they consume less electricity per cubic metre 2428 

of wastewater treated. This relationship was not completely linear, as mid to large companies 2429 

(10,001-100,000 customers) had the largest average consumption of 0.99 kWh/m3. In the 2430 

regional analysis, EU states had the largest average kWh/m3 with 1.18, which appeared a 2431 

result of the higher wastewater effluent standards of the region. This was supported by 2432 

Denmark being the second largest average consuming country (1.35 kWh/m3), since it has 2433 
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some of strictest effluent standards in the world. Along with direct energy intensity, the 2434 

associated greenhouse gas (GHG) emissions were calculated. Poland had the highest carbon 2435 

footprint (0.91 kgCO2e/m3) arising from an energy intensity of 0.89 kWh/m3; conversely, a 2436 

clean electricity grid can affectively mitigate wastewater treatment inefficiencies, exemplified 2437 

by Norway who emit just 0.013 kgCO2e per cubic meter treated,despite consuming 0.60 2438 

kWh/m3. Finally, limitations to available data and the analysis were highlighted from which, it 2439 

is advised that influent vs. effluent and net energy, as opposed to gross, data be used in future 2440 

analyses. The large international sample size, energy data with a quality control, GHG 2441 

analysis, and specific benchmarking recommendations give this study a novelty which could 2442 

be of use to water industry operators, benchmarking organisations, and regulators. 2443 

 2444 

Key words: Wastewater benchmarking; global wastewater energy efficiency; performance 2445 

analysis, wastewater quality; benchmarking deficiencies  2446 
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6.1. Introduction 2472 

The collection, treatment and disposal of wastewater is a significant consumer of energy, with 2473 

estimates suggesting that more than 2% of the world’s electrical energy is used for water 2474 

supply and wastewater treatment (Plappally & Lienhard 2012; Olsson 2015). The EU (2017) 2475 

state that energy requirements in wastewater treatment plants (WWTPs) account for more 2476 

than 1% of consumption in Europe, whilst Means (2004) and Kenway et al. (2019) report that 2477 

the water network including consumers and WWTPs can consume over 20% of electrical 2478 

consumption within municipalities. Reducing the energy consumption of wastewater 2479 

management is integral to efficient resource use within a circular economy and to reduce 2480 

greenhouse gas (GHG) emissions. This task is more difficult considering WWTP electricity 2481 

demand within developed countries is expected to increase by over 20% in the next 15 years 2482 

as controls on wastewater become more stringent (Wang et al., 2012; Hao et al., 2015); with 2483 

the same trend expected in developing countries as wastewater quality becomes a greater 2484 

priority (Lopes et al., 2020). The importance of improving the sustainability of wastewater 2485 

treatment is highlighted by its inclusion in the United Nations Sustainability Development Goal 2486 

6 (2021a) that seeks to secure safe drinking water and sanitation, focussing on the sustainable 2487 

management of wastewater, water resources and ecosystems.  2488 

Electric power consumption accounts for approximately 90% of the total energy consumption 2489 

of WWTPs (Mizuta and Shimada, 2010; Singh et al., 2012). The energy used at each stage of 2490 

treatment depends on the technologies utilised and the sizes of the plants. Preliminary and 2491 

primary treatment are estimated to consume between 5-25%, secondary treatment 45-80%, 2492 

tertiary 10-40%, and sludge 4-14% (Longo et al., 2016; Smith and Liu, 2017; Soares et al., 2493 

2017). Longo et al. (2016) detailed the electricity consumption of the different stages of 2494 

wastewater using data from 21 academic sources (included in the Supplementary 2495 

Information), which spanned 1-93 case studies per source and covered all sizes of WWTP. 2496 

Pre-treatment includes the pumping of wastewater, screening, and grit removal and grinding. 2497 

During this stage, pumping is the only significant energy consumer, at 0.002-0.042 kWh/m3, 2498 
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depending on the structure and location of the sewer system. Primary treatment involves 2499 

separating circular settling tanks with mechanical scrapers, using very little electricity (4.3∙10-2500 

5 - 7.1∙10-5 kWh/m3). The secondary treatment stage is responsible for a significant proportion 2501 

of the total electrical consumption, whist the aeration system is the process that consumes 2502 

most electricity (0.18 and 0.8 kWh/m3), accounting for 45%-75% of total plant energy 2503 

consumption (Longo et al., 2016; Gandiglio et al., 2017). Longo et al. (2016) comments further 2504 

that between 8.4∙10-3 and 0.012 kWh/m3 is used by mechanical scrapers in gravity settling to 2505 

separate sludge. Secondary sludge recirculation requires more pumping, consuming an 2506 

additional 0.047 to 0.01 kWh/m3, whilst mixing for anoxic reactors ranges between 0.053 and 2507 

0.12 kWh/m3. Tertiary treatment further increases electricity consumption, the degree to which 2508 

depends on the technology. Tertiary filtration consumes from 7.4∙10-3 to 2.7∙10-3 kWh/m3, UV 2509 

disinfection uses between 0.045 - 0.11 kWh/m3, and mechanical utilisation for the dosage of 2510 

chemicals (e.g., chlorinated reagents, aluminium or iron salts) expends 9.0∙10-3 - 0.015 2511 

kWh/m3. Finally, the processing of sludge throughout different stages can represent 2512 

considerable energy consumption, for example, aerobic sludge stabilisation, which is the most 2513 

consuming procedure within sludge treatment, can use between 0.024 – 0.53 kWh/m3.  2514 

Efficiency improvements at plant and company level could reduce the energy demand of 2515 

wastewater treatment. Various methods could enhance overall system intensity, including 2516 

process-energy reduction and energy recovery from waste, which can be conducted to such 2517 

an extent that WWTPs can become energy neutral or even energy positive (Maktabifard et al., 2518 

2018). An effective way to improve efficiency is the use of control engineering techniques 2519 

(Vrecko et al., 2011). To reduce the complexity of application, costliness and difficulty of 2520 

access of these techniques, studies such as Nopens et al. (2010), Luca et al. (2015), and 2521 

Santin et al. (2015) have implemented benchmarking models for the design and testing of 2522 

control strategies. As approaches become more holistic in terms of sustainability, WWTP 2523 

performance can improve further, as Barbu et al. (2017) noted in their study when analysing 2524 

the effect of common control actions on performance with indicators covering economics, 2525 
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effluent quality and GHG emissions. Process optimisation techniques such as installing smart 2526 

meters and control systems for optimal aeration and pumping conditions have also proved 2527 

affective techniques, with the Electric Power Research Institute estimating that 10-20% of 2528 

energy savings can be achieved this way (Copeland and Carter, 2017). Approximately 50% 2529 

of the total energy consumption of a WWTP can be provided by biogas from anaerobic 2530 

digestion (Hao et al., 2015), with sludge pre-treatments enhancing the biomethane yield 2531 

further. There is also research on improving the conversion of biogas into electricity by altering 2532 

fuel cells and optimising thermal conditions (Gandiglio et al., 2017). Microbial fuel cells present 2533 

potential for direct biological conversion of WWTP organic matter into electricity, however, 2534 

without significant improvements they cannot compete with anaerobic biological conversion 2535 

(McCarty et al., 2011). Furthermore, re-using the nitrogen and phosphorus from WWTPs for 2536 

crop fertilisation can offset the considerable energy consumption of producing synthetic 2537 

fertilisers (Danuta, 2018).  2538 

A valuable tool for improving wastewater energy intensity amongst water companies is 2539 

benchmarking. By utilising key performance indicators, it is possible to find the optimal 2540 

performers and evaluate companies against similar entities or standardised values (Krampe 2541 

2013; Torregrossa et al., 2016). By doing this, companies can identify and prioritise areas for 2542 

improvement and learn from best practices (Walker et al., 2019; Walker et al., 2021). Vaccari 2543 

et al. (2018) evaluated energy consumption within Italian WWTPs and documented that 2544 

energy benchmarks had not been extensively investigated. They highlighted only the USA 2545 

(WEF 2009; WERF 2011; Wang et al., 2016), Australia (Krampe 2013; de Haas et al., 2015), 2546 

Japan (Mizuta and Shimada, 2010; Hosomi, 2016), Austria (Lindtner et al., 2008; Haslinger et 2547 

al., 2016), Germany (Wang et al., 2016), Sweden (Lingsten et al. 2011), Denmark, Norway 2548 

and Finland (Gustavsson & Tumlin, 2013) as the areas where energy benchmarks had been 2549 

previously studied. In addition to these studies though, there has been alternative research 2550 

into energy consumption of wastewater in various countries. They include Portugal (Vieira et 2551 

al., 2019), Finland (Gurung et al., 2018), Mexico (Valek et al., 2017), Brazil (SNIS, 2014), India 2552 
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(Soares et al., 2017), Singapore (Hernández-Sancho et al., 2011), South Korea (Chae and 2553 

Kang, 2013), China, and South Africa (Wang et al., 2016).  2554 

Most of these studies, although offering value, have limited sample sizes and offer little insight 2555 

into performance across countries or regions effectively. There are international benchmarking 2556 

organisations such as the International Benchmarking Network for Water and Sanitation 2557 

Utilities (IBNET), European Benchmarking Co-operation (EBC), Water Utility Partnership for 2558 

Capacity Building in Africa (WUP), South East Asian Water Utilities Network (SEAWUN), 2559 

which collate and provide an expanse of valuable information. However, energy metrics and 2560 

samples are often limited and dated, particularly for wastewater, reducing the extent of 2561 

research outputs.  2562 

This study undertakes international benchmarking and evaluates the energy intensity of 2563 

wastewater treatment at company level. The advantage of international benchmarking is that 2564 

it allows representation and evaluation of performance with the largest sample possible. 2565 

Furthermore, an international sample enables a view into possible reasons behind 2566 

performance, which is particularly relevant for assessing the future path of countries 2567 

attempting to alter their wastewater treatment standards and methods. However, despite the 2568 

advantages of opening up benchmarking to an international scale, some limitations must be 2569 

navigated. The expanded sample size and variety can lead to un-equal comparisons, 2570 

particularly regarding effluent quality standards and the amount of pollution being removed 2571 

(Berg, 2013).  2572 

This study had several objectives. Foremost, to explore the energy intensity of wastewater 2573 

treatment on an international scale with the most up-to-date data available and an effluent 2574 

quality control to ensure credible comparison. Secondly, to investigate reasons for varying 2575 

performance, contexts including regional, legislative, and size differences. Thirdly, to assess 2576 

the carbon impacts of energy intensity relative to each region. Finally, to evaluate areas for 2577 

improvement in international benchmarking practices. The international scope of the study 2578 

helped address many of the knowledge gaps highlighted earlier, and the work can be of use 2579 
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to water industry, benchmarking organisations, energy efficiency analysts, and regulators, by 2580 

giving recent results of wastewater energy intensity and associated carbon from many 2581 

countries across the world, along with explicit suggestions on improving future data collection, 2582 

reporting and analysis.   2583 

6.2. Methodology 2584 
6.2.1. Data description  2585 

The core indicator used was kWh/m3 of wastewater treated, kWh being gross electricity 2586 

consumed. Since the level of wastewater treatment impacts on energy consumption (see 2587 

Section 6.1), a control on water quality was deemed necessary. There were limited 2588 

possibilities with available data however; wastewater receiving secondary treatment or better 2589 

at volumes of 95% and above was incorporated. The main source of data was the International 2590 

Benchmarking Network for Water and Sanitation Utilities (IBNET, 2021) database, this was 2591 

supplemented by company reports and other national benchmarking schemes, which 2592 

collectively covered Greece, Italy, Spain, Sweden, Canada, United States, UK, Australia, New 2593 

Zealand, Denmark and Netherlands. The sample years were 2014-18 however, only one year 2594 

of data was required within that range for a company to be used in the study to maximise the 2595 

sample size. It is possible that by using one entry within the five-year range, an abnormal year 2596 

of heavy rainfall and increased wastewater treatment could be used; however, the indicator 2597 

kWh/m3 should negate this. Companies with multiple data points throughout those years had 2598 

their values averaged.  Extra data from the IBNET database was utilised to conduct part of 2599 

the analysis comparing energy intensity of primary only treatment (>95% of total volume 2600 

treated) and the core sample data. This extra primary treatment data had 29 companies from 2601 

nine countries, the comparison with core sample was undertaken with only the same nine 2602 

countries for the fairest results.  2603 

External data to this from journal articles were used in Section 6.3.3 to enable a better 2604 

understanding of regional differences, covering Portugal, Germany, Finland, Brazil, Mexico, 2605 

India, South Korea, China, Japan, Singapore, and South Africa. This external data did not 2606 

have the same treatment quality controls that the core data had and was based largely on 2607 
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samples of WWTPs, not companies, and therefore was not incorporated into the core sample. 2608 

Summary statistics for the sample are available in Table 6.1, with a full data table and data 2609 

sources available in the Supplementary Information.  2610 

Table 6.1. Summary data for the core, external and primary treatment samples. 2611 

Sample Indicator Countries Companies Average Min Max SD 

Core sample kWh/m3 31 321 0.89 0.04 3.11 0.49 

External sample kWh/m3 11 N/A* 0.40 0.08 1.15 0.25 

Primary treatment only kWh/m3 9 29 0.36 0.01 1.25 0.29 

*External sample made up of myriad data including WWTPs and tertiary average data from other studies. 2612 

 2613 

6.2.2. Data Analysis 2614 
6.2.2.1. Spearman’s rank correlation coefficient  2615 

To assess the relationship between a) the size of companies and their energy intensity, and 2616 

b) the percentage of tertiary treatment received in each country and energy intensity, in 2617 

Section 6.3.1, Spearman’s rank correlation coefficient (𝑟ₛ) was utilised. This non-parametric 2618 

approach was chosen due to the sample being non-normally distributed and has the 2619 

advantage of being relatively insensitive to outliers. 𝑟ₛ is calculated according to the following 2620 

equation: 2621 

𝑟ₛ = 1 −  
6∑𝑑²

𝑛(𝑛2−1)
   (6.1) 2622 

 2623 

where 𝑑 is the difference between ranks for each variable data pair and 𝑛 is the number of 2624 

data pairs. When 𝑟ₛ = 1 the data pairs have a perfect positive correlation (𝑑 = 0) and when 𝑟ₛ 2625 

= -1, the pairs have a perfect negative correlation.  2626 

6.2.2.2. Kruskal-Wallis test 2627 

To test if there was a significant energy intensity difference between the size groups in Section 2628 

6.3.1, a Kruskal-Wallis 𝐻 test was used. This non-parametric approach was chosen, as there 2629 

was not a particular distribution of the energy intensity data. The 𝐻 statistic is calculated with: 2630 
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𝐻 = [
12

𝑛(𝑛+1)
∑

𝑇𝑗
2

𝑛𝑗

𝑐
𝑗=1 ] − 3(𝑛 + 1)   (6.2) 2631 

where 𝑛 is the sum of sample sizes for all groups, 𝑐 is the number of groups, 𝑇𝑗 is the sum of 2632 

the ranks in the 𝑗𝑡ℎ sample, and 𝑛𝑗 is the size of the 𝑗𝑡ℎ sample. To decipher whether the 2633 

medians of the groups are differing, the 𝐻 value is compared to the critical chi-square value 2634 

at an alpha level of 0.05 in this instance (degrees of freedom = 3). If the critical chi-square 2635 

value is < the 𝐻 statistic, there is significant difference between the groups, whereas if the chi-2636 

square value is ≥𝐻, there is not enough evidence to suggest that the medians are unequal.  2637 

6.3. Results and Discussion 2638 
6.3.1. Size and energy intensity  2639 

Typically, the expectation is that larger WWTPs and companies are more efficient due to 2640 

economies of scale (Molinos-Senante et al., 2018b). However, this is not always the case. At 2641 

certain scales, diseconomies can occur, and within rural environments where treatment plants 2642 

cover large areas, water conveyance can affect energy and financial efficiency (Saal et al., 2643 

2013; Walker et al., 2020).  2644 

The international sample utilised here is displayed in Figure 6.1, with each company and their 2645 

energy intensity being plotted against their size, measured in population served. The range of 2646 

data (0.04 to 3.11 kWh/m3 and 500-15,000,000 in population served) meant that outliers and 2647 

non-normal distribution could affect inferences from analysis. To negate this, Spearman’s rank 2648 

was utilised, and size categorisation was undertaken to group similar sized companies 2649 

together, results of which are in Table 6.2 with their associated mean average electricity 2650 

intensity. 2651 
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 2652 

Figure 6.1. Electrical intensity of 321 companies plotted against their size (measured in population served).  2653 

 2654 

The whole sample has a rs value of -0.108, suggesting, as companies get larger, they consume 2655 

less electricity per cubic metre of wastewater treated; however, it is not a strong relationship 2656 

and displayed a non-significant p-value. A Kruskal-Wallace test revealed there was a 2657 

significant difference between the four applicable groups (p-value of 0.015); implying size does 2658 

influence energy intensity. Furthermore, the group of companies serving over 1,000,000 2659 

people had a slightly lower average kWh/m3 compared to the rest of the sample, with the rs 2660 

value showing a weak negative relationship to a significant degree (p-value of 0.024), 2661 

supporting inferences that larger companies have slightly lower energy intensity. This appears 2662 

to be a non-lineal relationship since the highest average energy intensity is from the 10,001-2663 

100,000 group, which with the 100,001-1,000,000 group show very weak positive 2664 

relationships, whilst the smallest applicable category of 1001-10,000 shows a very weak 2665 

negative result. These results indicate that the extreme companies on the size spectrum are 2666 

not necessarily handicapped in their pursuit for efficiency, and therefore should actively seek 2667 

to learn from the top performers, regardless of their size. 2668 
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Table 6.2. The company size categories based on population served, their average electricity consumption, 2670 
Spearman’s rank correlation coefficient, and associated p-value.  2671 

Size category  n Average 
kWh/m3 

Spearman’s rank 
correlation 

coefficient 𝑟ₛ 

P-value 

0-1000 1 1.30 N/A N/A 

1001-10,000 21 0.86 -0.07315 0.753 

10,001-100,000 141 0.99 0.05516 0.516 

100,001-1,000,000 118 0.82 0.01702 0.855 

1,000,001+ 40 0.78 -0.35685 0.024 

All 321 0.89 -0.10778 0.054 

 2672 

It is possible that economies of scale for wastewater treatment companies are only present at 2673 

the very large size (>1,000,000) as Table 6.2 hints towards, which could be the case in reality; 2674 

alternatively, there may be other influencing factors not captured within the available data. For 2675 

example, the economies of scale relationship could be strong between WWTPs, which is 2676 

impaired when evaluating the overview of companies and here we only have size of 2677 

companies that does not necessarily represent the size of their treatment plants. Another 2678 

factor often heavily linked with energy intensity is the level of treatment the wastewater 2679 

receives (as discussed in Section 6.1), which is at least partially dependent on regulatory 2680 

standards that differ from region to region. The data used ensured that at least 95% of the 2681 

wastewater from each company received at least secondary treatment. This was an important 2682 

effluent quality control as data collected, available in the Supplementary Information, showed 2683 

companies that treated ≥95% wastewater to only a primary level only consumed 0.36 kWh/m3 2684 

compared to 0.76 kWh/m3 for companies that treated ≥95% wastewater to at least a secondary 2685 

level in the same countries. Even within secondary wastewater treatment though, there can 2686 

be variances with the technologies utilised and therefore differing levels of energy 2687 

consumption; for example, aeration can be conducted with turbines, diffusers and in some 2688 

cases, not at all (Guerrini et al., 2017). Having a quality control in the data was important 2689 

however, without more granular data on how much of that wastewater was treated to a tertiary 2690 

extent; relationships within the results could be misrepresented. As Figure 6.2 shows, 2691 

secondary treatment or better actually represents mostly tertiary treatment in many EU 2692 
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member states. Spearman’s rank correlation coefficient was conducted with the tertiary 2693 

treatment percentage data from Figure 6.2 and the matching countries in the energy intensity 2694 

sample collected. The relationship was positive but non-significant for all valid data (rs 0.36, 2695 

p-value 0.2) and when using countries in the energy data sample that had over 15% of 2696 

population (rs 0.49, p-value 0.33). Although the results showed tertiary treatment did not cause 2697 

significant increases in energy consumption, more tertiary treatment will clearly increase 2698 

energy consumption as the technologies in Section 6.1 showed. This increase, even if not 2699 

statistically significant, can obscure results when data is only available as secondary treatment 2700 

or better.  2701 

 2702 

Figure 6.2. The proportion of urban wastewater collected and the level of treatment applied as a percentage of 2703 
the population in 2017 for EU states (European Environment Agency, 2020). 2704 

 2705 

6.3.2. Regional differences 2706 

To assess regional variances and further investigate the effect of wastewater effluent quality 2707 

standards on energy consumption, grouping of companies was completed based on their 2708 

legislation and United Nations (2021b) Sustainable Development Goal regional groupings. A 2709 

selection of countries and their summarised wastewater parameters is presented in Table 6.3, 2710 

however; a more detailed version is available in the Supplementary Information. The EU Urban 2711 

Wastewater Treatment Directive regulates the level of treatment by implementing required 2712 
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removal efficiencies for pollutants within the wastewater that is discharged into water bodies 2713 

to protect aquatic ecosystems. Non-EU states are often characterised by differing approaches 2714 

to establishing the legal regulations regarding wastewater discharge into surface waters 2715 

(Preisner et al., 2020). In countries that were formerly part of the Soviet Union, a materially 2716 

different method is in place, which is based on the assumption that the level of wastewater 2717 

treatment must ensure the normative water quality in the control cross-sections of individual 2718 

water bodies (Neverova-Dziopak, 2018). This means the maximum allowable load discharged 2719 

from each WWTP is defined based on the category of the receiving water, its specific 2720 

characteristics, and the construction of the wastewater outlet. These different approaches 2721 

exemplify the difficulty in directly comparing regions, however, the major effluent maximum 2722 

standards give a reasonable guide, albeit whilst mindful of distinct contexts.  2723 

Table 6.3. Summarised wastewater effluent standards for a selection of the total sample, a fuller version is within 2724 
the Supplementary Information.  2725 

Region WWTP category COD 

(mg/l) 

BOD5 

(mg/l) 

Total N 

(mg/l) 

Total P 

(mg/l) 

TSS 

(mg/l) 

EU <2000 PE 125 25 n/na n/n 35 

 2000-10,000 PE 125 25 n/n n/n 35 

 10,000-100,000 PE 125 25 15 2 35 

 >100,000 PE 125 25 10 1 35 

HELCOM 300-2000 PE n/n 25 35 2 35 

 2000-10,000 PE 125 15 30 1 35 

 10,000-100,000 125 15 15 0.5 35 

 >100,000 PE 125 15 10 0.5 35 

Denmark General 75 10 8 0.4 20 

Moldova General 125 25 15 2 35 

Australia 

(Tasmania) 

Fresh n/n 15 15 3 n/n 

 Marine n/n 20 15 5 n/n 

Australia 

(Queensland) 

Surface n/n 30 15 6 45 

Nigeria Varied 60-90 30-50 10 2 25 

India General 250 30 10 5 50-100 

Fiji General n/n 40 25 5 60 
an/n not normalized parameter 2726 

Table 6.4 shows that the EU companies had the largest average energy intensity at 1.18 2727 

kWh/m3, whilst all other regions averaged much lower, ranging between 0.58-0.64 kWh/m3, 2728 

apart from Russia and the former states of the Soviet Union who averaged 0.82 kWh/m3. The 2729 
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EU UWWTD directive is widely appreciated to have some of the strictest effluent standards in 2730 

the world (Morris et al., 2017), so it was anticipated for those countries to have a higher energy 2731 

intensity due to higher levels of treatment requiring more energy (Capodaglio and Olsson, 2732 

2020). Despite this, it is still a little surprising that it is so high compared to others, considering 2733 

many EU countries utilise some of the most efficient treatment techniques and technologies 2734 

(United Nations, 2017; Preisner et al., 2020), such as those discussed in Section 6.1. It is 2735 

expected then, that as regions with lower effluent standards improve to similar levels of 2736 

advanced economies, their energy consumption will increase too.  2737 

Table 6.4. Regional data description displaying average energy consumption.  2738 

 2739 

In addition to compliance with relevant wastewater effluent legislation, there are alternative 2740 

possibilities for the variance between the regions. For example, some countries may require 2741 

different technologies relative to their environmental circumstances, such as areas with water 2742 

demand higher than consistent supply. An effective solution is to re-use wastewater for non-2743 

potable requirements, as is the case in many countries throughout the globe including China 2744 

who had the most wastewater reuse by volume (14.8 million m3/day), and Qatar which has the 2745 

most reuse per capita (170,323 m3/day per million capita) (Jimenez and Asano, 2008). Though 2746 

necessary, the processes for reusing wastewater are often energy intense compared to typical 2747 

wastewater treatment. Ozonation, a common wastewater reuse treatment, consumes 2748 

approximately 0.27 kWh/m3 (Meneses et al., 2010), however, often a collection of treatment 2749 

technologies is utilised and can add significant energy consumption on top of the baseline, 2750 

exemplified by San Diego and Los Angeles utilities who consumed an extra 0.93 kWh/m3 and 2751 

0.49 kWh/m3, respectively (National Research Council, 2012). This can be even more 2752 

 
EU 

UWWTD 
Transition to 

UWWTD 
Russia & former 

Soviet Union 
states 

Developed 
Oceania 

Developing 
Oceania 

Central & 
South America 

North 
America 

Sub-
Saharan 

Africa 

No. 
Countries 

12 3 5 2 5 1 2 1 

No. 
Companies 

112 31 126 43 5 1 2 1 

Average 
kWh/m3 

1.18 0.62 0.82 0.65 0.64 0.64 0.57 
 

0.58 

S.D  0.43 0.58 0.41 0.42 0.40 N/A 0.05 N/A 
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substantial as water scarcity increases, for example, in Australia, energy use for enhanced 2753 

effluent is projected to grow between 130% and 200% by 2030 (Capodaglio and Olsson, 2754 

2020).  2755 

Data that are more detailed would clearly enable higher quality inferences from the analysis, 2756 

which is epitomised in what having influent and effluent quality could facilitate. It would permit 2757 

accurate pollutant removal efficiencies to be assessed; currently without this data, some 2758 

regions are perhaps being misrepresented. For example, it is probable that countries adhering 2759 

to the EU UWWTD are removing more pollutants on average than those countries transitioning 2760 

to the Directive (Sanfey and Milatovic, 2018), which would at least partially explain the energy 2761 

consumption deficit (0.56). The lack of influent and effluent data can be paramount if the 2762 

sampling has captured areas within a region that treat significant volumes of industrial 2763 

wastewater. The removal of metals from industrial wastewater can be energy intensive with 2764 

techniques such as chemical precipitation, ion exchange, and electrochemical removal, 2765 

although there are less utilised technologies with lower energy consumption like polymer-2766 

supported ultrafiltration and complexation–filtration as Barakat (2011) discusses in detail. 2767 

Guerrini et al. (2017) showed in their study of 127 Tuscan WWTPs that a 1% increase of 2768 

inflows from industry will decrease energy efficiency by 28%. If the sample has areas that treat 2769 

high volumes of industrial effluent, then they would have performed poorly in this analysis.  2770 

The regional and global perspective could look very different depending on the data available. 2771 

For example, the average energy intensity for the whole sample in this study was 0.89 kWh/m3, 2772 

within the wide range of global average estimates reported by Wakeel et al. (2016) of 0.38-2773 

1.12 kWh/m3 based on different studies. The disparity between these results is likely due to 2774 

differences in the context of various data. Some may be temporally divergent or have 2775 

representativeness issues where a few WWTPs may represent a company, a few companies may 2776 

represent a country, and a few countries may represent a whole region. Table 6.4 for example, 2777 

shows how Central and South America, North America, and Sub-Saharan Africa have very few 2778 

countries within them and those countries only have one company representing them, although 2779 
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this is possible when a quality control (≥ secondary treatment for ≥ 95% of volume) reduces sample 2780 

size. Having representativeness issues is not ideal; however, the practice is carried out by 2781 

international benchmarking organisations such as the EU Benchmarking Co-operation (2020), 2782 

when more data is unavailable. In addition, there may be biases in reporting where companies 2783 

who may already be performing well or actively trying to improve are more likely to actively share 2784 

their wastewater energy data, whereas poorer performers may not disclose the data or just not 2785 

have the means to collect it thus, undermining benchmarking efforts. Although there are potential 2786 

issues around the sampling parameters, data representativeness, and potential reporting 2787 

biases, the results presented here are the best current indication of reality, which is discussed 2788 

further in Section 6.3.5.  2789 

6.3.3. Country-level analysis 2790 

To further evaluate possible influences of energy intensity and the practicality of the data, the 2791 

scope was narrowed to country-level analysis. The global coverage of the dataset was patchy 2792 

despite extensive efforts to collect wide-ranging data, therefore some partially mismatching 2793 

data in terms of company-level and known WWTP-level data was used from other studies to 2794 

further inspect differences in electrical intensity between countries (Figure 6.3). 2795 

Figure 6.3. Energy intensity (kWh/m3) and associated greenhouse gas emissions (kgCO2e/m3) for all countries in 2796 
the core sample, supplemented by external WWTP data, represented by striped columns (42 countries in total). 2797 
The colours represent regional separation.  2798 
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The lowest energy intensity was observed in Brazil (0.24 kWh/m3), India (0.24 kWh/m3), South 2800 

Korea (0.24 kWh/m3), South Africa (0.24 kWh/m3), and China (0.3 kWh/m3). All five of these 2801 

countries were from the external data, which were collated through individual studies on 2802 

WWTPs; therefore, it is probable the countries are not being fully expressed due to limited 2803 

sample size, as discussed in the previous section. There is also the major influencing factor 2804 

of the disparity of wastewater effluent quality within the sample as examined above; especially 2805 

considering the external data could not be filtered by secondary treatment or better as the 2806 

main sample was. These five countries with the lowest energy intensities have some of the 2807 

lowest wastewater quality requirements in the sample as Table 6.3, the Supplementary 2808 

Information, Choi et al. (2015), Edokpayi et al. (2017), Never and Stepping (2018), and Wang 2809 

and Gong (2018) document. This means these countries are more likely to perform the best 2810 

out of the 42 countries because they are using less energy intensive, but less effective, 2811 

processes. It should be noted though that these countries have large disparities of wastewater 2812 

services, treatment and compliance, and some cities within these countries have established 2813 

wastewater infrastructure capable of high levels of treatment.  2814 

The counties with the highest specific energy requirements for wastewater treatment were 2815 

Samoa 1.4 (kWh/m3), Denmark 1.35 (kWh/m3), Mexico 1.15 (kWh/m3), Belgium 1.14 2816 

(kWh/m3), and Netherlands 1.06 (kWh/m3). These countries contrast to the lower energy 2817 

consuming performers as this group has mixed wastewater legislation and standards, as 2818 

opposed to having standards from one end of the spectrum. The three European countries 2819 

show that it is not only higher levels of wastewater treatment with stricter legislation causing 2820 

perceived inefficiency, it highlights another issue with the data, which is that it is based on 2821 

gross, as opposed to net, consumption. This issue is exemplified by Denmark who not only 2822 

have among the most stringent legal regulations regarding wastewater discharges in the EU 2823 

after reducing their allowable pollution more than the UWWTD (Valero et al., 2018), but heavily 2824 

utilise energy recovery technologies in WWTPs (Grando et al., 2017). The Danish water 2825 

benchmarking 2019 report (DANVA, 2019) showed six companies actively producing energy 2826 
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via their wastewater treatment at various rates; however, their gross consumption classifies 2827 

them as energy sinks. The most extreme instance was Kalundbord who had 4.27 kWh/m3 2828 

gross energy consumption but produced 7.9 kWh/m3 in net energy. By only using gross energy 2829 

data instead of net, it fails to capture the energy produces by wastewater, which can be 2830 

substantial. The pure energy intensity of operations is still captured however, under a wider 2831 

sustainability view; the data does not function adequately.  2832 

The energy intensity variations within regions and between countries came as a slight surprise, 2833 

for countries using the UWWTD and within the developing Oceania, they ranged between 2834 

0.27-1.35 kWh/m3 (SD 0.29) and 0.61-1.40 kWh/m3 (SD 0.40), respectively. A possible 2835 

explanation is that whilst countries may share effluent standards, they have differing 2836 

compliance rates. This is supported by the 10th report on the implementation of the UWWTD 2837 

(European Commission, 2020), which shows that 95% of wastewater in the EU is collected 2838 

and 88% is biologically treated. The wastewater quality control indicators in this study only 2839 

covers the degree of treatment as a percentage, not specific compliance. Furthermore, the 2840 

same legislation can be managed differently in different countries. For example, Preisner et 2841 

al. (2020) comments that fifteen EU member states including Belgium, Denmark, Netherlands, 2842 

Poland, Sweden, Finland have identified all their surface water bodies in their territory as 2843 

sensitive areas, whereas thirteen countries containing Croatia, Germany, Italy, Spain, 2844 

Portugal, and United Kingdom considered only selected water areas as sensitive (Zaragüeta 2845 

and Acebes, 2017). The varied identification of water bodies as sensitive and non-sensitive 2846 

impacts the level at which wastewater needs to be treated and therefore, affects the energy 2847 

required to treat it.  2848 

The importance of energy efficient wastewater treatment is even greater when considering the 2849 

carbon intensity of fuel mixes powering electricity grids. As Wang et al. (2016) commented, 2850 

there is a general lack of understanding regarding electricity consumption and carbon 2851 

emissions between countries on the international scale. To evaluate GHG emissions from 2852 

wastewater energy consumption, country conversion factors from the EcoInvent v3.7 2853 
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database (method: CML 2001 superseded, GWP 100a) were used and multiplied with the 2854 

electricity intensity indicator (kWh/m3 * kgCO2e/kWh = kgCO2e/m3). Figure 6.3 displays the 2855 

kgCO2e/m3 for all 42 countries in the extended sample, showing Poland, Macedonia, Serbia, 2856 

Bosnia, Kazakhstan, India, South Africa, and Australia all produce more than one kg of 2857 

CO2e/kWh, meaning their GHG contribution is particularly substantial relative to the kWh/m3 2858 

figures. This becomes particularly problematic in countries with already high-energy intensity 2859 

for treating wastewater, as is the case with Poland who consume 0.89 kWh/m3 and have the 2860 

highest carbon footprint intensity with 0.91 kgCO2e/m3. Conversely, a clean electricity grid can 2861 

affectively mitigate wastewater treatment inefficiencies, exemplified by Norway who emit just 2862 

0.013 kgCO2e per cubic meter, despite consuming 0.60 kWh/m3, followed by Sweden and 2863 

New Zealand, emitting 0.02 and 0.07 kgCO2e/m3 whilst consuming 0.52 and 0.61 kWh/m3, 2864 

respectively. Sustainability in the context of GHG emissions from wastewater treatment then, 2865 

depends on influent and effluent water quality, treatment technologies, effluent quality 2866 

standards and compliance with those standards, and electricity fuel mix.  2867 

6.3.4. Learning from limitations  2868 

Results presented in this study offer the best view of the state of international wastewater 2869 

energy intensity with current available data; however, as the sections above have discussed, 2870 

there are avenues to improving future analysis. Foremost, there is a need for more data; this 2871 

sample included 31 countries and 321 companies in the core sample, before expanding it to 2872 

42 countries with more sporadic WWTP data from individual studies. Chini and Stillwell (2017) 2873 

also call for more availability and transparency in water utility data in their study of the United 2874 

States water sector, highlighting that the only means of acquiring data is through open record 2875 

requests of individual utilities. Even following data requests from over 200 utilities, only 61% 2876 

responded. Sato et al. (2013) further emphasise the need for global, regional and country level 2877 

data, illustrating that only 55 countries have data available on wastewater production, 2878 

treatment and reuse, with 57 countries having no information available at all. Whilst the study 2879 

is somewhat dated now, clearly these themes are still valid. A lack of data not only makes it 2880 
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difficult to affectively evaluate energy intensity and conduct benchmarking, it also causes 2881 

problems of representativeness. With only limited companies reporting their data, it can lead 2882 

to biases within the sample. For example, perhaps only the best performers who already 2883 

partake in benchmarking and external analyses make their data publicly available (Denrell, 2884 

2005). In combination with general limited coverage within areas, a lack of representation 2885 

causes analyses to miss the full picture, therefore reducing the quality of recommendations 2886 

and real-world improvements. 2887 

The need for more detailed and granular data alongside additional data is paramount for 2888 

enhanced assessments of wastewater treatment in the future. A subject at the core of the 2889 

results in this study is the difference between net and gross energy consumption in reporting. 2890 

Net energy consumption would enable more meaningful sustainability outcomes as energy 2891 

production and strain on the electricity grid are encompassed, which are integral elements for 2892 

modern WWTPs. Additionally, compliance rates with wastewater effluent standards would 2893 

enhance the accuracy of analysis, as currently regions with similar standards are grouped 2894 

together, although in reality their compliance rates may differ greatly. These extra and more 2895 

detailed data would also enable the inclusion of explanatory factor analysis to improve 2896 

understanding of how exogenous influences can be managed to enhance efficiency. 2897 

Currently, the data conditions of scarcity and factors already influencing results as the ones 2898 

mentioned above would mean explanatory factor analysis would not offer value. Finally, this 2899 

study used wastewater treated at least to secondary treatment level or better, but more detail 2900 

on which level of treatment has been used and what volume that was applied to would enable 2901 

a better understanding of the current state of wastewater treatment in many regions. For the 2902 

best understanding of treatment levels, having key pollutant removal data or influent vs effluent 2903 

data would be required. An alternative unified metric to kWh/m3 that incorporates energy and 2904 

a quality aspect would be best for optimum intensity benchmarking. An example is energy per 2905 

unit of organic load removed (kWh/CODremoved), which is a simple performance indicator that 2906 

conveys meaningful information. This has been used in other studies (Patziger, 2017) and 2907 
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offers real value however, it is not uniformly applied. Christoforidou et al. (2020) exemplified 2908 

how useful this metric can be in their energy benchmarking of WWTPs in Greece, particularly 2909 

in combination with other energy key performance indicators that cover volume treated 2910 

(kWh/m3) and population equivalent (kWh/PE). An increasing number of studies are 2911 

implementing and recommending a quality parameter to be included in WWTP analysis as 2912 

Clos et al. (2020) notes. This is a positive development however, the highest levels of 2913 

treatment where pathogens are being removed using energy intensive methods, e.g., 2914 

disinfection via UV, chlorination, and ozone treatment (Chuang et al., 2019), are still not 2915 

captured in these indicators. Using multiple quality indicators or the development of a 2916 

framework covering all key technologies and pollutants may be the best solution for future 2917 

analyses. Although there is more demand for quality indicators to be ubiquitous in measuring 2918 

and reporting, and there are differing approaches in including quality within energy efficiency 2919 

assessments, it is important that utilities, regulators, and academics unify their metrics, to ease 2920 

comparisons, analysis, and ultimately, facilitate learning and improvement. 2921 

6.4. Conclusions 2922 

The objectives of this study were to investigate the international energy intensity of wastewater 2923 

treatment, explore variances in performance, evaluate the carbon impact of the energy 2924 

consumption, and assess how to improve international benchmarking practices. The global 2925 

average electricity consumption for wastewater treatment was 0.89 kWh/m3. Larger 2926 

companies serving over 1 million customers display slightly lower specific consumption, of 2927 

0.78 kWh/m3. When viewing regional groupings, EU companies had the highest average 2928 

energy intensity at 1.18 kWh/m3, with three EU countries standing out: the Netherlands (1.06 2929 

kWh/m3), Belgium (1.14 kWh/m3), and Denmark (1.35 kWh/m3). Countries with the lowest 2930 

energy intensity varied from Brazil, though India and South Korea to South Africa (averaging 2931 

0.24 kWh/m3). This appeared to be a symptom of the energy data being gross consumption 2932 

and there being a disparity between wastewater quality standards, since energy production at 2933 

WWTPs was not captured and the lowest energy consumers had some of the worst standards, 2934 
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and vice versa. The influence of energy consumption on GHG emissions was diverse owing 2935 

to interaction with widely differing emissions intensities of grid electricity; Poland had the 2936 

highest carbon footprint with 0.91 kgCO2e/m3, whilst Norway emitted just 0.013 kgCO2e per 2937 

cubic meter of, despite consuming 0.60 kWh/m3, showing the importance of energy intensity 2938 

on particular infrastructures. Although this study provided some valuable quantifiable results, 2939 

the conclusions stemming from the limitations of carrying out the benchmarking exercise are 2940 

just as crucial. There is a lack of quantity, quality and granularity in existing global wastewater 2941 

data, making it difficult to fully analyse the impact and potential paths to improve of wastewater 2942 

treatment. A lack of data generally leads to a lack of representativeness of certain regions, 2943 

skewing comparisons with limited sample sizes. The two changes that would have the most 2944 

significant impact for future analyses are to have influent vs. effluent quality and net energy 2945 

consumption data, which would increase the accuracy of studies, circumnavigating varying 2946 

legislative effluent standards and compliance rates. The large international sample size, 2947 

energy data with a quality control, GHG analysis, and specific benchmarking 2948 

recommendations provide novel results which could be of use to water industry operators, 2949 

benchmarking organisations, energy efficiency analysts, and regulators.  2950 
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7. Collective discussion 2971 

This thesis covers two major aspects of scientific research, 1) pushing the boundaries of 2972 

existing knowledge 2) re-testing some aspects of existing research with similar methods and 2973 

indicators to validate and add weight to existing knowledge. The nature of modern academia 2974 

means that people are judged on number of citations and their publications in journals with 2975 

higher impact factors, which is a fair metric when others do not exist. However, this means 2976 

academics are driven to produce on-trend and thematic research, sometimes leaving a limited 2977 

number of publications to represent the authority and acceptance on knowledge in certain 2978 

fields (Fong and White, 2017; Oliver and Cairney, 2019). Fortunately, in the performance 2979 

analysis niche of which this thesis sits, there was opportunity to address both aforementioned 2980 

aspects of scientific research simultaneously throughout the thesis, with a focus on delivering 2981 

multitudinous value.  2982 

The research papers synthesised here have individually and collectively contributed to 2983 

academic literature and provided outputs that can assist the water sector, regulators and 2984 

analysts. An integral element of performance analysis and benchmarking is that it is a 2985 

continuous process, which enables practitioners to recognise changes in efficiency and 2986 

performance relative to others (Ettorchi-Tardy et al., 2012). Foremost, this is what the research 2987 

offers through years of data collection and analysis – an up-to-date set of varied results, that 2988 

can inform decision-making now and in the future. For example, Chapter 6 collected and 2989 

examined wastewater electricity consumption data for 350 companies from 42 countries, 2990 

delivering an up-to-date account of the global status and a useful resource for future analysts 2991 

and studies. Furthermore, Chapter 5 found that the UK water sector improved in productivity 2992 

by 1.8% between 2014-18 when evaluating social, environmental and economic factors 2993 

however, Chapter 3 discovered economic and environmental inputs could reduce by 19.4% 2994 

and 15.8%, respectively, and still deliver the same level of water supply and treatment. 2995 

Potential reductions were perceived to be significantly higher in Chapter 4, although this was 2996 

symptomatic of having a large spread in efficiency estimates using the DEA method, where 2997 
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some companies were perceived to be significantly less efficient than others. Chapters 3, 4, 2998 

and 5 show that despite the improvements made in the UK water sector, there are still areas 2999 

for improvement and these studies offer a starting point to investigate them. This was 3000 

particularly evident in Chapter 5, where a breakdown of technical and efficiency change 3001 

occurred using the HMPI, indicating that the majority of UK WaSCs had economies of scale 3002 

and scope with productivity largely being driven by improved operational practices of existing 3003 

infrastructure and resources. 3004 

An especially interesting finding was that the water companies throughout the data chapters 3005 

had mixed performance ranges. In Chapters 3 and 5, they were relatively homogenous in their 3006 

performance, but in Chapters 5 and 6 there was a significant efficiency range, meaning there 3007 

were some companies severely lagging behind others. The results differed between chapters 3008 

due to the differing methodologies, indicator choices, and samples. However, each chapter 3009 

did highlight that the sharing of best practice and informed investment would be beneficial to 3010 

the water sector. In theory, sharing of best practice should be one of the rare positives of the 3011 

unique monopolised environment that the water industry operates in, since a water company 3012 

being more efficient should not significantly negatively affect other companies since customers 3013 

cannot switch and those companies are not competing against each other.  3014 

Water companies are always driving (and being driven) to improve efficiency, demonstrated 3015 

by the UK industry-wide targets of reducing leakage by 16% by 2025 and a further reduction 3016 

to half of the current levels by 2050 (Water UK, 2020), and the commitment to achieve net 3017 

zero operational GHG emissions by 2030 (Water UK, 2021). The latest data (2019/20) 3018 

signifies that these targets are slowly becoming a reality as there have been active efficiency 3019 

improvements in many areas within the past year, with leakage being reduced by 7%, average 3020 

supply interruptions down one minute to 12 minutes, and consumption per capita down one 3021 

litre per person per day to 142 litres (DiscoverWater, 2021). To understand progress towards 3022 

targets, and past them towards full optimisation, alternative more complex methodologies can 3023 

offer part of the solution, where company efficiency can be investigated in-depth by including 3024 
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many different important indicators together (Singh et al., 2009; Vilanova et al., 2015). This is 3025 

where performance analysis and benchmarking academics have played a significant role, and 3026 

where the research in this thesis can contribute.  3027 

The methodologies used in Chapters 3, 4, and 5 have had limited application to the water 3028 

sector in academia, as noted in the corresponding chapters, and even fewer applications in 3029 

industry (Maziotis et al., 2021). Chapter 5 used the HMPI methodology to evaluate efficiency 3030 

over six years, which has benefits of being able to compute multiple inputs and outputs and 3031 

decompose results into technical and efficiency change, that can indicate whether 3032 

performance is being driven by capital investment or operations management. Furthermore, it 3033 

has advantages over other similar complex multi-input and output efficiency frameworks in 3034 

that it satisfies all other index conditions, including multiplicative completeness and transitivity 3035 

tests (O'Donnell, 2012), functions within a simultaneous input and output orientation, and can 3036 

be computed under both CRS and VRS. Chapter 5 was able to demonstrate the positives of 3037 

the HMPI for potential use in the water sector, similar to Chapters 3 and 4, which utilised a 3038 

double-bootstrapped DEA approach. This approach attempted to correct some of the 3039 

statistical biases that can occur when using DEA but kept the positives of the method such as 3040 

providing a multi-criteria analysis, being able to generate weightings of the inputs and outputs 3041 

endogenously, and not requiring a priori assumptions regarding the functional relationship 3042 

between variables. These chapters showed that the standard DEA model is somewhat flawed, 3043 

possibly explaining why, following application in their 1994 price review, OFWAT no longer 3044 

rely on it (Nourali et al., 2014). In addition, Chapters 3 and 4 also presented a good variant of 3045 

DEA in the double-bootstrap method that can contribute to academia and the water sector, 3046 

with a notable positive of allowing analyses to investigate the effect of explanatory variables 3047 

too.  3048 

Exploring explanatory factors is vital to understand reasons behind performance results. This 3049 

can allow more informed and accurate regulation, and when the factors are at least partially 3050 

within the control on the company, enable targeted efficiency improvements. Chapters 3, 4, 3051 
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and 6 all covered explanatory factors in some capacity. Chapters 3 and 4 for example, 3052 

analysed the effect of leakage, consumption per capita, population density, rurality, surface 3053 

water abstraction percentage, number of abstraction sources, average pumping head height, 3054 

and the proportion of water passing through the largest 50% of treatment works on economic 3055 

and environmental performance. Whereas Chapter 6 analysed the role of size, region, and 3056 

wastewater effluent quality in the context of treatment energy intensity. A selection of these 3057 

factors were relatively novel to academic analyses similar to those conducted here, including 3058 

number of abstraction sources, average pumping head height, the proportion of water passing 3059 

through the largest 50% of treatment works, and the rurality framework. The results from these 3060 

variables provided new knowledge in how they may specifically affect performance. The other 3061 

variables are widely viewed as likely influential and therefore have been frequently included 3062 

in previous studies on the water sector (Vilanova et al., 2015; Alegre et al., 2017). The benefit 3063 

to still including them in the studies within this thesis and future studies is that they provide 3064 

validation, or challenge, previous studies and existing analyses, and can validate applied 3065 

methods which are somewhat novel to this area of academia. Collectively then, the reviewed 3066 

explanatory factors enable water companies to change certain aspects to improve efficiency 3067 

with factors that they at least partially control (e.g. leakage, proportion of water passing 3068 

through the largest 50% of treatment works), have more confidence in potential new analytical 3069 

methodologies, and can inform regulators to more fairly adjust targets and administer controls 3070 

by understanding performance in the context of variables not directly affected by water 3071 

company management (e.g. rurality, surface water abstraction percentage).  3072 

The thesis has filled various research gaps in the literature and supplemented external 3073 

research with validation of numerous methodologies and approaches. However, some of the 3074 

most valuable outputs may be through accentuating important topics pertinent for future 3075 

research and water management. For example, the uniqueness of the water sector is not a 3076 

perfect fit for many econometric and efficiency analyses. Water companies, unlike many 3077 

conventional companies, do not want to maximise their service or product outputs (i.e., water 3078 
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supplied and wastewater treated), since controlling peak flow, managing water resources, and 3079 

conducting sustainable abstraction are highly valued alongside volume sales (Arfanuzzaman 3080 

and Rahman, 2017). Measuring efficiency based on the lowest financial or energetic inputs 3081 

for the most service outputs is therefore problematic, especially when companies pay towards 3082 

reducing water produced via leakage fixes and education schemes to reduce consumption 3083 

(Horne, 2020), as this skews the typical efficiency outlook. This was a theme mostly 3084 

highlighted within Chapter 5 but was a culmination from Chapters 3 and 4. An alternative to 3085 

the typical input-output approach was to change the indicators in the assessment, which 3086 

opened the opportunity for more social and environmental indicators as Chapter 5 showed. 3087 

The difficulty with changing the indicators is finding suitable substitutes that still represent the 3088 

core company services and operations, which is why the application of efficiency in terms of 3089 

minimal input to maximum output for water companies is still a decent representation of 3090 

performance, but clearly the flaws require future research to either acknowledge the problem 3091 

or conduct alternative analyses.  3092 

Efficiency measured as minimising inputs and maximising outputs is a fair and accurate way 3093 

to represent performance most of the time. However, in addition to the problem outlined above, 3094 

there is more of a fundamental issue with viewing performance in this way, especially when 3095 

utilising economic inputs, as most studies do (Berg and Marques, 2011; Worthington, 2014; 3096 

Goh and See, 2021). By companies being rewarded either through high rankings, 3097 

compensation or minimised fines, when they are essentially chasing the bottom line of 3098 

spending for maximised outputs, it can lead to an increasingly antiquated network or poorly 3099 

paid staff, which can perpetuate social inequality or isolate companies from the best available 3100 

employees that may hold the key to innovative practices for their company and the wider water 3101 

utility community. This highlights the requirement for good management, an array of affective 3102 

regulation, and extra appropriate variables within efficiency analyses. The thesis addresses 3103 

this potential issue by incorporating an evaluation of the best indicator choices throughout all 3104 

results chapters. Chapter 3 uses operational CO2e and the proxy of length of mains and 3105 
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sewage pipes to represent embedded CO2e as environmental inputs, alongside OPEX and 3106 

CAPEX. Chapter 4 tests common proxies and has energy as an input with OPEX and CAPEX, 3107 

then Chapter 5 uses eight different indicator configurations to compute a productivity model in 3108 

attempt to find the best combination and show how using alternatives can affect results. 3109 

Finally, Chapter 6 has the quality of wastewater effluent at the core of the study, ensuring that 3110 

quality alongside energy consumption is advocated. Following that, there is a discussion 3111 

around the best means for enhanced future studies with better indicator use, for example, 3112 

using influent vs. effluent data to fully understand pollutant removal and using net instead of 3113 

gross energy consumption in some instances to understand the impact of wastewater 3114 

treatment holistically. Although advancements were made in these chapters, there is still more 3115 

to be done in academia to try and optimise KPI choice with often limited data.  3116 

The results chapters throughout the thesis are all connected through their common goals of 3117 

measuring and evaluating performance with aspirations to improve that process. The differing 3118 

aspects of the chapters that have offered diverse value are contrasting sample years and size, 3119 

KPI usage, type of water company, and methodologies. Although each chapter’s value and 3120 

outputs were unique, they did have similar overall lessons. Insights such as the benchmarking 3121 

and performance analyses benefitting from more data, data transparency and granularity, and 3122 

collaboration between academia and the water industry were recurrent throughout and are not 3123 

necessarily totally unique (Abbott and Cohen, 2009; Carvalho et al., 2012; Sato et al., 2013; 3124 

Chini and Stillwell, 2017; Cetrulo et al., 2019) but are important nonetheless and are in parts, 3125 

more specific and informed within this thesis.  3126 
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8. Conclusions 3132 

The goals of this thesis were to analyse the efficiency of UK water and sewage companies, 3133 

efficiency of wastewater companies internationally, effect of explanatory factors, best methods 3134 

for multi-input and output analyses, and to review the most appropriate indicators to be used 3135 

in benchmarking. The research has achieved these objectives and has produced some stark 3136 

conclusions. Results show that the UK water sector improved in productivity by 1.8% in total 3137 

between 2014-18 when evaluating the best indicators to represent sustainability and real-3138 

world processes that occur at water companies. However, a different study discovered 3139 

economic and environmental inputs could be reduced by 19.4% and 15.8%, respectively, 3140 

whilst still delivering the same level of water supply and treatment. Wider research examining 3141 

wastewater electricity consumption for 350 companies from 42 countries suggested there was 3142 

vast room for improvement in particular regions too. Global average electricity consumption 3143 

for wastewater treatment was 0.89 kWh/m3 however, EU companies had the highest average 3144 

energy intensity at 1.18 kWh/m3. This appeared to be a symptom of the energy data being 3145 

gross consumption and there being a disparity between wastewater quality standards since 3146 

energy production at wastewater treatment plants was not captured and the lowest energy 3147 

consumers had some of the worst standards and vice versa. In terms of the role of explanatory 3148 

factors, many variables were evaluated and of note were population density and rurality, which 3149 

proposed economic and environmental efficiency increases in denser areas due to fewer 3150 

treatment plants being required. Moreover, the proportion of water passing through the largest 3151 

50% of treatment works exhibited a significant negative effect on economic efficiency and 3152 

average pumping head height, which displayed a significant negative effect for energy 3153 

efficiency. Finally, the thesis identified that data envelopment analysis, one of the most popular 3154 

methods in the benchmarking academic literature, has limitations. However, adaptations, such 3155 

as the double-bootstrap data envelopment analysis, show promise to overcome the negatives, 3156 

whilst the Hicks-Moorsteen productivity index navigated restraints of similar methods such as 3157 

order-m and Malmquist productivity index.   3158 
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By fulfilling the objectives of the thesis, it is possible to deliver recommendations for future 3159 

research. It is evident that as more data driven goals are being sought by companies, 3160 

methodologies need to support that. A few econometric methods were utilised in the thesis 3161 

however, more testing with various methodologies and iterations of existing approaches would 3162 

be advantageous to enable the most reliable results. In addition to expanding methodological 3163 

possibilities, a focus on data is integral for future research and benchmarking to deliver the 3164 

most affect results. Specifically, an increase in the quantity, granularity and transparency of 3165 

data would advance studies and ultimately decision-making. The collection of studies 3166 

presented in this thesis highlight the need for better data, for example influent and effluent 3167 

data at varying scopes within water companies could form the base of many studies to build 3168 

from as this would give optimum accuracy of the core operations. As more data becomes 3169 

available, a focus on implementing more indicators in efficiency studies is also imperative to 3170 

fully represent sustainability and ensure the uniqueness of water companies is accounted for 3171 

where higher levels of outputs (i.e., water supplied and wastewater treated) is not necessarily 3172 

a positive.  3173 

The knowledge gaps addressed, and novelty displayed throughout the thesis can have 3174 

implications for performance and benchmarking analysts, water managers, and regulators. 3175 

This could be through learning from the use of rarely applied econometric methods to the 3176 

water sector, and unique indicator applications both in the core model approaches and 3177 

explanatory factors. Lastly, there is value in the wide-spread data collection and analysis that 3178 

delivered an up-to-date account of UK water sector and international wastewater efficiency. 3179 

Collectively, the work can inform decisions made within the water sector and gives a platform 3180 

for analysts and academics to build upon both now and in the future.  3181 
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Appendix 1: Supplementary Information to Chapter 3 4119 

1a. Full DEA efficiency tables  4120 

Economic 4121 

 
 

       

Economic analysis 

DMU 
 Non-bias 

corrected 
efficiency 

Original 
rankings 

Bias-
corrected 
efficiency 

Bias-
corrected 
ranking 

Bias 
Lower 
bound 

Upper 
bound 

8  1 1 1.012 1 -0.012 0.989 1.023 

9  1 2 1.04 2 -0.04 1.002 1.077 

1  1.002 8 1.041 3 -0.04 0.99 1.08 

11  1 3 1.062 4 -0.062 0.97 1.12 

5  1 4 1.096 5 -0.096 0.996 1.181 

4  1.074 9 1.099 6 -0.025 1.041 1.122 

6  1.098 10 1.191 7 -0.094 1.101 1.277 

7  1 5 1.276 8 -0.276 1.21 1.369 

13  1.232 11 1.281 9 -0.049 1.22 1.325 

10  1 6 1.307 10 -0.307 1.26 1.357 

12  1 7 1.315 11 -0.315 1.27 1.393 

3  1.361 12 1.431 12 -0.07 1.362 1.49 

2  2.048 13 2.175 13 -0.127 2.067 2.237 

Average  1.14   1.256   -0.116 1.19 1.312 

SD  0.295   0.306   0.109 0.295 0.314 

         
        

        

Environmental analysis 

DMU 
 Non-bias 

corrected 
efficiency 

Original 
rankings 

Bias-
corrected 
efficiency 

Bias-
corrected 
ranking 

Bias 
Lower 
bound 

Upper 
bound 
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7  1 1 1.026 1 -0.026 0.96 1.05 

8  1 2 1.04 2 -0.04 0.964 1.08 

3  1 3 1.079 3 -0.079 0.981 1.155 

1  1.034 6 1.082 4 -0.048 1.025 1.125 

4  1.105 7 1.14 5 -0.036 1.072 1.173 

10  1.119 8 1.158 6 -0.039 1.115 1.187 

6  1 4 1.321 7 -0.321 1.243 1.419 

9  1 5 1.332 8 -0.332 1.269 1.396 

5  1.2 9 1.416 9 -0.216 1.346 1.499 

12  1.505 11 1.594 10 -0.089 1.498 1.672 

2  1.596 12 1.681 11 -0.085 1.609 1.75 

11  1.366 10 1.765 12 -0.399 1.669 1.879 

Average  1.096   1.219   -0.122 1.147 1.275 

SD  0.159   0.189   0.121 0.184 0.207 

1b. All regression results  4122 

Indicator Unit R2 Slope Intercept 

Number of sewage 
treatment works 

number/M property served S 0.823 24.008 -1508.89 

Total load treated by STWs 
in size bands 1-3 

kg BOD5/day/M properties 0.792 -5.139 533.304 

Total company spend £/property connected for S&W 0.633 4.035 -69.813 

Properties flooded in the 
year 

other causes/M properties 0.544 -5.139 533.304 

GWP of sewage treatment kgCO2e /property connected for 
sewage 

0.508 0.88 -21.657 

Total company GWP kgCO2e /property connected for 
water and sewage 

0.485 3.89 -150.956 

Spend on sewage 
treatment 

£/property connected for S 0.471 1.632 -42.806 

Sewage sub-total GWP kgCO2e /property connected for 
sewage 

0.466 2.048 -68.807 

GWP of sewage collection kgCO2e /property connected for 
sewage 

0.46 1.041 -46.813 

Water sub-total GWP kgCO2e /property connected for 
water 

0.427 1.45 -17.841 

Employee total number/M properties connected 
W+S 

0.407 8.62 717.109 

 4123 

Indicator Unit R2 Slope Intercept 

Number of sewage 
treatment works 

number/M property served S 0.823 24.008 -1508.89 

Employee total number/M properties connected 
W+S 

0.407 8.62 717.109 

Total length of section 
105A sewers (km, 0 dp) 

M/properties connected S 0.269 0.112 1.52 

Total length of sewers (km, 
0 dp) 

M/properties connected S 0.147 0.059 8.88 

Total number of service 
reservoirs 

number/M properties served W 0.147 2.854 3.811 

Total length of water mains 
(km, 0 dp) 

M/properties connected W 0.062 0.081 9.358 
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Distribution  input Ml/d/M properties served W 0.061 -1.048 632.199 

Total number of water 
treatment works 

number/M properties served W 0.009 0.228 37.277 

     

Indicator Unit R2 Slope Intercept 

Total load treated by STWs 
in size bands 1-3 

kg BOD5/day/M properties 0.792 439.597 -27875.7 

Properties flooded in the 
year 

other causes/M properties 0.544 -5.139 533.304 

 Total number of S105A 
sewer blockages 

number/M properties 0.386 164.312 -5665.25 

Total number of rising main 
failures 

number/M properties 0.334 18.807 -1327.36 

Proportion of DI derived 
from impounding reservoirs 

% 0.308 0.008 -0.312 

Total number of gravity 
sewer collapses 

number/M properties 0.261 3.288 -155.62 

Total number of S105A 
gravity sewer collapses 

number/M properties 0.226 5.294 -269.243 

Mains bursts number/thousand properties 0.219 0.031 -0.002 

Properties below reference 
level at end of year 

number/thousand properties 0.195 0.002 -0.055 

Total load treated by all 
STWs 

kg BOD5/day/M properties 0.165 1.847 -8.545 

Total number of sewer 
blockages 

number/M properties 0.127 85.29 -2263.74 

Source types and pumping 
- total number of sources 

number/thousand properties 0.107 0.001 -0.015 

Properties flooded in the 
year 

other causes - S105A/M 
properties 

0.097 -1.682 232.661 

Total length of mains 
renewed 

number/thousand properties 0.047 -0.001 0.09 

Proportion of DI derived 
from river abstractions 

% 0.04 -0.003 0.604 

Properties flooded in the 
year 

overloaded sewers - S105A/M 
properties 

0.022 0.073 -3.028 

Source types and pumping 
- average pumping head 

meters 0.005 0.145 121.293 

Unplanned interruptions - 
more than 6 hours 

number/thousand properties 0.001 0.043 9.517 

Properties flooded in the 
year 

overloaded sewers/M properties 0 0.021 34.161 

Unplanned interruptions - 
more than 24 hours 

number/thousand properties 0 -0.001 3.122 

Unplanned interruptions - 
more than 12 hours 

number/thousand properties 0 0.001 4.939 

     

Indicator Unit R2 Slope Intercept 

GWP of sewage treatment kgCO2e /property connected for 
sewage 

0.508 0.88 -21.657 

Total company GWP kgCO2e /property connected for 
water and sewage 

0.485 3.89 -150.956 

Sewage sub-total GWP kgCO2e /property connected for 
sewage 

0.466 2.048 -68.807 

GWP of sewage collection kgCO2e /property connected for 
sewage 

0.46 1.041 -46.813 
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Water sub-total GWP kgCO2e /property connected for 
water 

0.427 1.45 -17.841 

GWP of water resources kgCO2e /property connected for 
water 

0.362 0.295 -9.123 

GWP of water treatment kgCO2e /property connected for 
water 

0.251 0.867 -42.252 

GWP of raw water 
distribution 

kgCO2e /property connected for 
water 

0.202 0.254 -12.121 

GWP of sludge treatment kgCO2e /property connected for 
sewage 

0.029 0.129 -0.819 

GWP of sludge disposal kgCO2e/property connected for 
sewage 

0.015 -0.002 0.482 

GWP of treated distribution kgCO2e/property connected for 
water 

0.006 0.139 38.126 

 4124 

 4125 

 4126 

Appendix 2: Supplementary information to Chapter 4 4127 

2a. Full DEA efficiency tables 4128 

Economic  4129 

DMU Non-
Corrected 

Non-
corrected 
ranks 

Bias-
Corrected 

Lower 
Bound 

Upper 
Bound 

Correcte
d ranks 

Bias 

14 1 1 1.285884 0.9796326 1.559158 1 -0.285884 

13 1 2 1.523942 1.2535973 1.922438 2 -0.523942 

11 1 3 1.873278 1.8349385 1.936331 3 -0.873278 

15 1.599592 4 2.091618 1.7312727 2.454727 4 -0.492026 

12 2.863947 5 3.761672 3.1345373 4.381939 5 -0.897725 

17 3.589454 6 4.807255 4.0631957 5.57477 6 -1.217801 

16 4.701992 7 6.259 5.2616529 7.275161 7 -1.557008 

9 4.946775 8 6.545249 5.4782927 7.525034 8 -1.598474 

6 5.678458 9 7.585141 6.3907295 8.779481 9 -1.906683 

5 7.549739 10 10.063008 8.463406 11.706397 10 -2.513269 

3 11.740985 11 16.219508 13.8586028 19.225166 11 -4.478523 

1 11.954651 12 16.257079 13.8312175 19.059837 12 -4.302428 

10 13.452771 13 18.515168 15.7321789 21.889963 13 -5.062397 

2 14.694056 14 20.326007 17.3465921 24.11464 14 -5.631951 

8 20.803997 15 29.170425 24.7235521 34.927064 15 -8.366428 

4 22.242509 16 31.222113 26.3700218 37.411472 16 -8.979604 

7 29.645859 17 42.467019 35.7452551 51.569211 17 -12.82116 

Average 9.32145794
1 

 
12.9396097
6 

10.9528632
6 

15.37134053 
 

-3.618151824 

SD 8.29391763
9 

 
11.7725227
4 

9.94725379
8 

14.2366528 
 

3.489153004 

 4130 

Energy  4131 

DMU Non-
Corrected 

Non-
corrected 
ranks 

bias-
corrected 

Lower 
Bound 

Upper 
Bound 

Corrected 
ranks 

Bias 
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14 1 1 1.286328 0.974914 1.552927 1 -0.28633 

13 1 2 1.698021 1.554067 2.075919 2 -0.69802 

11 1 3 1.835283 1.772028 2.010979 3 -0.83528 

15 2.536182 4 3.267774 2.481617 3.935222 4 -0.73159 

12 3.577397 5 4.685286 3.633626 5.605421 5 -1.10789 

9 3.93109 6 5.168833 4.028337 6.181357 6 -1.23774 

17 5.308747 7 7.051366 5.563718 8.446039 7 -1.74262 

6 6.126873 8 8.342424 6.773443 9.998258 8 -2.21555 

16 6.655122 9 9.009752 7.268139 10.80136 9 -2.35463 

5 6.776251 10 9.201705 7.448491 11.0296 10 -2.42545 

3 9.284371 11 13.46487 11.54483 16.03588 11 -4.1805 

1 9.798978 12 13.75809 11.51317 16.4516 12 -3.95911 

10 12.33366 14 17.91019 15.37028 21.33586 13 -5.57653 

8 12.11606 13 18.1498 15.82768 21.7374 14 -6.03374 

2 14.79384 15 21.40545 18.32279 25.4982 15 -6.6116 

4 21.38579 16 32.27774 28.21388 38.69273 16 -10.892 

7 22.76828 17 35.56793 31.56924 42.84031 17 -12.7997 

Average 8.258391 
 

12.005 10.22707 14.36641 
 

-3.746 

SD 6.462279 
 

9.966 8.845456 11.96791 
 

3.533 

 4132 

2b. Full primary and proxy indicator results  4133 

Economic 4134 
 

Primary economic set CAPEX proxy Volume of water 
produced proxy 

Decision 
making 
units 

Bias-
corrected 
estimates 

Water 
utility 
rank 

Bias-
corrected 
estimates 

Water 
utility 
rank 

Bias-
corrected 
estimates 

Water 
utility 
rank 

14 (WoC) 1.286 1 1.577 2 (-1) 1.275 1 

13 (WoC) 1.524 2 1.541 1 (+1) 1.47 2 

11 (WoC) 1.873 3 1.715 3 1.854 3 

15 (WoC) 2.092 4 1.72 4 2.07 4 

12 (WoC) 3.762 5 3.4 5 2.806 5 

17 (WoC) 4.807 6 4.243 6 3.674 6 

16 (WoC) 6.259 7 6.147 8 (-1) 4.755 7 

9 (WaSC) 6.545 8 5.958 7 (+1) 4.888 8 

6 (WaSC) 7.585 9 7.437 10 (-1) 5.747 9 

5 (WaSC) 10.063 10 6.965 9 (+1) 7.7 10 

3 (WaSC) 16.22 11 13.413 11 12.745 12 (-1) 

1 (WaSC) 16.257 12 14.07 12 12.508 11 (+1) 

10 (WaSC) 18.515 13 16.471 13 14.623 13 

2 (WaSC) 20.326 14 20.146 15 (-1) 16.064 14 

8 (WaSC) 29.17 15 22.199 16 (-1) 23.845 15 

4 (WaSC) 31.222 16 24.661 17 (-1) 25.783 16 

7 (WaSC) 42.467 17 17.059 14 (+3) 35.725 17 

Energy 4135 
 

Primary energy set Volume of water produced 
proxy  

Decision making 
units 

Bias-corrected 
estimates 

Water 
utility rank 

Bias-corrected 
estimates 

Water 
utility rank 

14 (WoC) 1.286 1 1.288 1 

13 (WoC) 1.698 2 1.706 2 
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11 (WoC) 1.835 3 1.841 3 

15 (WoC) 3.268 4 3.262 4 

12 (WoC) 4.685 5 4.712 5 

9 (WaSC) 5.169 6 5.202 6 

17 (WoC) 7.051 7 7.124 7 

6 (WaSC) 8.342 8 8.383 8 

16 (WoC) 9.01 9 9.107 9 

5 (WaSC) 9.202 10 9.366 10 

3 (WaSC) 13.465 11 13.535 11 

1 (WaSC) 13.758 12 13.779 12 

10 (WaSC) 17.91 13 18.167 13 

8 (WaSC) 18.15 14 18.495 14 

2 (WaSC) 21.405 15 21.61 15 

4 (WaSC) 32.278 16 32.989 16 

7 (WaSC) 35.568 17 35.99 17 

Appendix 3: Supplementary Information to Chapter 5 4136 

3a. Full model variation results  4137 

Input: TOTEX 
       

Output: Water delivered and treated 
     

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 0.989 -1.11% 
 

0.963 -3.73% 
 

1.027 2.73% 

2015/16 1.169 16.94% 
 

1.182 18.19% 
 

0.989 -1.06% 

2016/17 0.954 -4.60% 
 

0.963 -3.73% 
 

0.991 -0.90% 

2017/18 0.923 -7.69% 
 

0.906 -9.36% 
 

1.018 1.84% 

2018/19 1.008 0.77% 
 

0.967 -3.32% 
 

1.042 4.23% 
         

Average 
 

0.86% 
  

-0.39% 
  

1.37% 
         

Input: TOTEX 
       

Output: Water supply + wastewater treated, renewables, customer satisfaction 
 

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 0.996 -0.44% 
 

0.995 -0.50% 
 

1.002 0.24% 

2015/16 1.23 22.98% 
 

1.057 5.71% 
 

1.176 17.60% 

2016/17 0.952 -4.82% 
 

0.945 -5.47% 
 

1.006 0.62% 

2017/18 0.945 -5.54% 
 

0.958 -4.19% 
 

0.987 -1.31% 

2018/19 0.969 -3.07% 
 

1.044 4.40% 
 

0.931 -6.86% 
         

Average 1.82% 
  

-0.01% 
  

2.06% 
         

Input: TOTEX 
       

Output: Renewables, customer sat 
     

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 0.993 -0.72% 
 

0.985 -1.51% 
 

1.01 0.96% 

2015/16 1.264 26.38% 
 

0.981 -1.87% 
 

1.292 29.22% 
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2016/17 0.951 -4.88% 
 

0.951 -4.90% 
 

0.999 -0.05% 

2017/18 0.947 -5.32% 
 

0.961 -3.86% 
 

0.985 -1.51% 

2018/19 0.963 -3.72% 
 

1.06 5.95% 
 

0.91 -9.05% 
         

Average  2.35% 
  

-1.24% 
  

3.91% 
         

Input: TOTEX 
       

Output: Leakage reduction, consumption per capita reduction  
   

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 0.968 -3.17% 
 

0.923 -7.71% 
 

1.05 4.98% 

2015/16 1.437 43.66% 
 

1.328 32.85% 
 

1.11 11.03% 

2016/17 0.853 -
14.69% 

 
0.844 -

15.56% 

 
1.01 1.03% 

2017/18 0.901 -9.91% 
 

0.957 -4.26% 
 

0.949 -5.07% 

2018/19 1.084 8.41% 
 

0.961 -3.89% 
 

1.137 13.72% 
         

Average  4.86% 
  

0.29% 
  

5.14% 
         

Input: OPEX 
       

Output: Water delivered and WW treated 
     

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 0.999 -0.14% 
 

0.985 -1.53% 
 

1.014 1.41% 

2015/16 0.969 -3.13% 
 

0.934 -6.61% 
 

1.037 3.73% 

2016/17 0.92 -7.95% 
 

0.971 -2.86% 
 

0.948 -5.24% 

2017/18 0.979 -2.07% 
 

0.93 -7.03% 
 

1.053 5.34% 

2018/19 0.975 -2.47% 
 

0.988 -1.20% 
 

0.987 -1.29% 
         

Average  -3.15% 
  

-3.85% 
  

0.79% 
         

Input: OPEX 
       

Output: Water supply + wastewater treated, renewables, customer satisfaction 
 

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 1.008 0.77% 
 

0.986 -1.39% 
 

1.025 2.50% 

2015/16 1.052 5.24% 
 

1.055 5.54% 
 

0.998 -0.22% 

2016/17 0.922 -7.82% 
 

0.848 -
15.17% 

 
1.089 8.94% 

2017/18 1.018 1.81% 
 

1.098 9.80% 
 

0.932 -6.76% 

2018/19 0.942 -5.77% 
 

0.891 -
10.90% 

 
1.058 5.85% 

         

Average  -1.15% 
  

-2.43% 
  

2.06% 
         

Input: OPEX 
       

Output: Renewables, customer sat 
     

         

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 
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2014/15 1.003452 0.35% 
 

0.97163
4 

-2.84% 
 

1.03590
3 

3.59% 

2015/16 1.071994 7.20% 
 

1.07154
7 

7.15% 
 

1.00156
1 

0.16% 

2016/17 0.925356 -7.46% 
 

0.82296
6 

-
17.70% 

 
1.12385
1 

12.39% 

2017/18 1.022975 2.30% 
 

1.12630
2 

12.63% 
 

0.90950
7 

-9.05% 

2018/19 0.931019 -6.90% 
 

0.86874
6 

-
13.13% 

 
1.07182
4 

7.18% 

         

Actual average percentage 
change 

-0.90% 
  

-2.78% 
  

2.85% 

         

Inputs: OPEX 
       

Outputs: CPC reduction, leakage reduction 
    

         

 
dTFP % 

Change 

 
 dTech % 

Change 

 
 dTFPE % 

Change 

2014/15 0.983853 -1.61% 
 

1.00875
9 

0.88% 
 

0.97554
7 

-2.45% 

2015/16 1.209561 20.96% 
 

1.16974 16.97% 
 

1.04390
1 

4.39% 

2016/17 0.852164 -
14.78% 

 
0.89733
4 

-
10.27% 

 
0.94992
2 

-5.01% 

2017/18 0.94552 -5.45% 
 

1.01277
4 

1.28% 
 

0.94787
2 

-5.21% 

2018/19 1.070074 7.01% 
 

0.79065
8 

-
20.93% 

 
1.36193
4 

36.19% 

         

Actual average percentage 
change 

1.22% 
  

-2.41% 
  

5.58% 
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3b. Chosen model configuration raw data  4139 

Years dTFP dMP dTFPE dITE dISE dIME dRISE dISME dRME 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2014 #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A 

2015 1.005344 0.96249 1.044524 1 1.052576 1 1.044524 1.044524 0.99235 

2015 0.96377 0.961386 1.00248 1.066263 0.965527 1 0.940181 0.940181 0.973748 

2015 1.003417 1.02802 0.976068 1 1 1 0.976068 0.976068 0.976068 

2015 1.126131 1.113696 1.011166 1 1 1 1.011166 1.011166 1.011166 

2015 1.063248 0.961139 1.106237 1.06831 0.99527 1 1.035502 1.035502 1.040424 

2015 0.992776 0.997601 0.995163 1 1 1 0.995163 0.995163 0.995163 
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2015 0.71823 0.961815 0.746745 1 0.727358 1 0.746745 0.746745 1.026654 

2015 1.038822 0.963225 1.078483 1.397829 0.684345 1 0.771541 0.771541 1.127417 

2015 0.944629 1.103745 0.85584 1 1 1 0.85584 0.85584 0.85584 

2015 1.078719 0.961422 1.122003 1.176994 0.923892 1 0.953279 0.953279 1.031808 

2015 0.98613 0.963212 1.023793 1.064804 0.948768 1 0.961485 0.961485 1.013403 

2015 1.02547 0.962044 1.065928 1.316202 0.923112 1 0.809852 0.809852 0.877306 

2016 0.94522 0.953447 0.991371 1 0.761621 1 0.991371 0.991371 1.30166 

2016 1.119421 0.945921 1.183419 0.885942 1.031932 1 1.335776 1.335776 1.294442 

2016 1.332159 1.271722 1.047523 1 1 1 1.047523 1.047523 1.047523 

2016 1.213835 1.115055 1.088588 1 1 1 1.088588 1.088588 1.088588 

2016 1.124515 0.955175 1.177286 1.00077 0.925722 1 1.17638 1.17638 1.27077 

2016 1.065074 1.290605 0.825251 1 1 1 0.825251 0.825251 0.825251 

2016 1.650081 1.225706 1.346229 1 1.311409 1 1.346229 1.346229 1.026551 

2016 1.53278 0.962086 1.593184 1 1.303112 1 1.593184 1.593184 1.2226 

2016 1.062258 1.109739 0.957214 1 1 1 0.957214 0.957214 0.957214 

2016 1.523881 0.949423 1.60506 1.227216 1.071234 1 1.307887 1.307887 1.220916 

2016 1.030322 0.958232 1.075232 0.890456 1.078369 1 1.207507 1.207507 1.119753 

2016 1.158058 0.947706 1.221959 0.845028 0.949726 1 1.446058 1.446058 1.522605 

2017 1.097575 0.934519 1.174482 0.786372 1.412178 1 1.493545 1.493545 1.057619 

2017 0.868911 0.930636 0.933674 0.898764 1.025923 1 1.038842 1.038842 1.012593 

2017 0.982951 0.944958 1.040206 1 1 1 1.040206 1.040206 1.040206 

2017 1.076143 0.96681 1.113086 1 1 1 1.113086 1.113086 1.113086 

2017 0.851987 0.93213 0.914021 0.840132 1.019339 1 1.087949 1.087949 1.067308 

2017 0.842774 0.951595 0.885643 1 0.984958 1 0.885643 0.885643 0.899168 

2017 1.068849 0.990031 1.079612 1 1.030054 1 1.079612 1.079612 1.048113 

2017 1.003208 0.920239 1.09016 1 1.028089 1 1.09016 1.09016 1.060375 

2017 1.014718 0.980232 1.035182 1 1 1 1.035182 1.035182 1.035182 

2017 0.811794 0.928973 0.873862 0.810277 1.024522 1 1.078473 1.078473 1.05266 

2017 0.942952 0.930274 1.013628 1.141328 0.947671 1 0.888113 0.888113 0.937152 

2017 0.85954 0.933534 0.920738 0.754968 1.163536 1 1.219572 1.219572 1.04816 

2018 0.919484 0.964464 0.953363 1.271663 0.760601 1 0.749698 0.749698 0.985665 

2018 0.903113 0.961216 0.939553 0.970081 1.007437 1 0.96853 0.96853 0.961381 

2018 0.866185 0.94289 0.91865 1 1 1 0.91865 0.91865 0.91865 

2018 0.925137 0.999633 0.925476 1 1 1 0.925476 0.925476 0.925476 

2018 0.832617 0.960013 0.867298 0.900329 1.03034 1 0.963312 0.963312 0.934945 

2018 1.049744 0.894011 1.174196 1 1.015272 1 1.174196 1.174196 1.156533 

2018 1.020975 0.968945 1.053698 1 1.09682 1 1.053698 1.053698 0.960685 

2018 1.002231 0.974827 1.028111 1 1.117346 1 1.028111 1.028111 0.920137 

2018 0.902034 0.94289 0.95667 1 1 1 0.95667 0.95667 0.95667 

2018 0.950681 0.964464 0.985709 1.090611 1.005688 1 0.903814 0.903814 0.898702 

2018 0.990744 0.962416 1.029434 0.949976 1.010698 1 1.083642 1.083642 1.072172 

2018 0.971857 0.961216 1.01107 1.133462 0.999003 1 0.892019 0.892019 0.89291 

2019 1.022171 1.081513 0.945131 1 1.109326 1 0.945131 0.945131 0.851987 

2019 0.998179 1.081166 0.923243 1.071093 0.987364 1 0.861964 0.861964 0.872995 

2019 0.930664 1.021953 0.910672 1 1 1 0.910672 0.910672 0.910672 

2019 0.89519 1.016071 0.881031 1 1 1 0.881031 0.881031 0.881031 
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2019 0.971172 1.081166 0.898264 0.972431 1.002513 1 0.923729 0.923729 0.921414 

2019 1.128428 0.960144 1.17527 1 1 1 1.17527 1.17527 1.17527 

2019 0.968171 1.013829 0.954965 1 1 1 0.954965 0.954965 0.954965 

2019 0.97029 1.07723 0.900727 1 1.00223 1 0.900727 0.900727 0.898722 

2019 0.960729 0.951772 1.009411 0.984556 0.995061 1 1.025245 1.025245 1.030334 

2019 0.816826 1.0809 0.75569 0.858429 1.00004 1 0.880318 0.880318 0.880283 

2019 0.998177 1.080969 0.92341 0.921373 1.002268 1 1.00221 1.00221 0.999942 

2019 0.971738 1.081166 0.898788 1.074521 0.98953 1 0.836454 0.836454 0.845304 
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3c. Chosen model configuration full results breakdown 4141 
 

dTFP % 
Change 

 
dTech 

% 
Change 

 
dTFPE 

% 
Change 

 dITE % 
Change 

 dISE % 
Change 

 
dRISE 

% 
Change 

dRME % 
Change 

2014/15 0.996 -0.44% 0.995 -0.50% 1.002 0.24% 1.091 9.09% 0.935 -6.49% 0.925 -7.49% 0.993 -0.66% 

2015/16 1.230 22.98% 1.057 5.71% 1.176 17.60% 0.987 -1.25% 1.036 3.61% 1.194 19.36% 1.158 15.82% 

2016/17 0.952 -4.82% 0.945 -5.47% 1.006 0.62% 0.936 -6.40% 1.053 5.30% 1.088 8.75% 1.031 3.10% 

2017/18 0.945 -5.54% 0.958 -4.19% 0.987 -1.31% 1.026 2.63% 1.004 0.36% 0.968 -3.18% 0.965 -3.47% 

2018/19 0.969 -3.07% 1.044 4.40% 0.931 -6.86% 0.990 -0.98% 1.007 0.74% 0.941 -5.85% 0.935 -6.48% 

Average 
 

1.82% 
 

-0.01% 
 

2.06% 
 

0.62% 
 

0.70% 
 

2.32% 
 

1.66% 
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 4144 

 4145 

 4146 

 4147 

 4148 

 4149 

 4150 

 4151 

 4152 

 4153 

 4154 

 4155 

 4156 

 4157 

 4158 

 4159 

 4160 

 4161 
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 4162 

 4163 

 4164 

 4165 

 4166 

 4167 

 4168 

 4169 

 4170 

 4171 

Appendix 4: Supplementary information for Chapter 6 4172 

4a. Core sample for wastewater energy intensity (kWh/m3) for companies treating at least 4173 
95% at secondary treatment level of better 4174 
  

kWh_m3_ww Size 
(population 
served) 

Country Company 2014 2015 2016 2017 2018 
 

Belarus Baranovichy Communal Unitary Manufacturing 
Enterprise "Vodokanal" [BY6] 

  0.44 0.45   0.51 179,000 

 
Bobruisk State Enterprise "Vodokanal" [BY20]   0.34 0.3   0.33 217,546 

 
Borisov Unitary Enterprise Vodokanal [BY11]         0.4 181,100 

 
Communal Manufacturing Unitary Enterprse 
"Brestvodokanal" [BY7] 

  0.83 0.41   0.44 350,616 

 
Communal Unitary Enterprise "Smolevichi 
Housing and Utilities" [BY38] 

  0.4 0.4   1.18 46,230 

 
Communal Unitary Manufacturing Enterprise 
"Pinskvodokanal" [BY36] 

  0.51 0.75     143,330 

 
Communal Unitary Multisectoral Manufacturing 
Enterprse "Gantsevichy District Housing and 
Utilities" [BY29] 

  0.8 0.78   0.77 9,504 

 
Communal Utility Enterprise of Housing and 
Utilities of Sharkovschina region [BY39] 

    1.48     6,420 

 
Dokshytsy Department of Vitebsk Communal 
Unitary Enterprise Vodokanal [BY54] 

        2.15 328,700 

 
Logoisk communal services company [BY58]         0.3 35,630 

 
Mogilev Municipal Communal Unitary Enterorise 
"Gorvodokanal" [BY10] 

  0.51 0.51   0.41 383,300 

 
Multi-industry communal enterprise Ivanovo 
[BY51] 

        1.59 36,235 

 
Municipal Regional Unitary Enterpise on Housing 
and Utility "Gorodok" [BY31] 

  0.64     0.93 37,000 

 
Oshmyany District Communal Utility  [BY52]         1.28 17,400 

 
Regional Communal Services Company 
Pukhovichskii District Minsk Oblast [BY23] 

    0.66   0.61 208,660 

 
Senno Regional Unitary Enterprise on Housing 
and Utilities [BY25] 

        1.3 8,360 

 
Shklov Unitary Communal Enterprise 
"Zhilkomhoz" [BY17] 

        1.95 27,900 

 
Slutskvodokanal [BY59]         1.25 91,060 

 
Soligorskvodokanal [BY60]         0.54 132,640 

 
Svisloch District Communal Utility [BY53]         0.93 6,430 

 
Unitary Enterprise of Housing and Utilities 
"Dubrovno-Kommunal'nik" [BY32] 

  1.92 2.33     12,378 
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Unitary Enterprise of Housing and Utilities of 
Usvizh District [BY56] 

        1.3 500 

Norway Bergen [811]     0.81     277,500 
 

Oslo kommune [7941]   0.27 0.32 0.85 0.78 679,500 
 

Trondheim [8199]     0.80 0.2 0.29 189,064 

Switzerland Services industriels de Genève [CH1]   0.57 0.57     265,000 

Denmark Aarhus Vand A/S [DK2]   0.81     1.25 259,133 
 

VCS Denmark [DK1]   1.98     1.6 166,500 
 

Vejle 
    

1.52 113,720 
 

Horsens 
    

0.77 90,370 
 

Fredericia 
    

2.25 50,429 
 

DINForsyning 
   

1.56 166,000 
 

Randers 
    

1.27 96,559 
 

Horsholm 
    

0.81 47,499 
 

Herning 
    

1.92 50,332 
 

Koge 
    

1.19 60,675 
 

Mariagerfjord 
   

1.1 30,000 
 

AquaDjurs 
   

1.72 37,558 
 

Billund 
    

1.79 22,240 
 

Kerteminde 
   

0.79 23,756 
 

Sonderborg 
   

0.93 74,650 
 

Odder 
    

0.76 7,919 
 

Fr. Havn 
    

1.69 52,127 
 

Rudersdal 
    

0.78 55,412 
 

Skanderborg 
   

0.82 56,402 
 

Hjorring 
    

1.32 52,000 
 

Lolland 
    

0.84 19,580 
 

Syddjurs 
    

1.36 35,100 
 

Bornholm 
    

0.94 30,000 
 

Viborg 
    

1.07 97,113 
 

NFS A/S 
    

2.17 36,166 
 

Greve 
    

0.9 49,895 
 

Skive 
    

0.9 15,955 
 

Middelfart 
   

1.08 38,553 
 

Fors Holbaek 
   

1.21 60,676 
 

Tarnby 
    

1.06 43,063 
 

HOFOR Dragor 
   

0.98 12,309 
 

Bronderslev 
   

0.99 28,000 
 

Slagelse-Kor 
   

1.89 34,015 
 

Vestforsyning 
   

1 52,000 
 

Ikast-Brande 
   

1.01 36,000 
 

Silkeborg 
    

1.52 83,890 
 

Malov 
    

1.16 8,797 
 

Ringsted 
    

1.06 28,640 
 

BIOFOS SCA 
   

1.29 253,091 
 

Allerod 
    

1.29 24,418 
 

FFV 
    

1.09 51,735 
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Provas 

    
1.07 50,815 

 
Solrod 

    
1.08 23,000 

 
Fredensborg 

   
1.1 40,513 

 
Jammerbugt 

   
1.1 45,700 

 
Stevns 

    
1.1 19,217 

 
Molleavaerket 

   
2.06 150,000 

 
Struer 

    
1.13 19,083 

 
Halsnaes 

    
1.33 28,450 

 
Fors Roskilde 

   
1.36 85,549 

 
Favrskov 

    
1.26 42,200 

 
Morso 

    
1.28 15,970 

 
Tonder 

    
1.29 29,497 

 
Hedensted 

   
1.4 33,350 

 
Thisted 

    
1.82 52,405 

 
Odsherred 

   
1.32 26,100 

 
Lemvig 

    
1.34 19,200 

 
Soro 

    
1.42 21,000 

 
Ringk. Skj 

    
1.45 41,000 

 
Langeland 

   
1.37 9,119 

 
Svendborg 

   
1.61 57,560 

 
Arwos 

    
1.68 49,600 

 
Egedal 

    
1.51 41,495 

 
Naestved 

    
2.27 43,803 

 
Assens 

    
1.55 34,915 

 
Gribvand 

    
1.55 48,163 

 
Fors Lejre 

    
1.58 25,040 

 
Fr. Sund 

    
1.6 41,744 

 
V. Himmerland 

   
1.78 29,530 

 
Fureso 

    
2.64 40,586 

 
Rebild 

    
2.12 23,000 

UK Dwr Cymru Welsh Water [GB2]       0.55 0.51 3,030,618 
 

Yorkshire Water [GB1]   1.03   1.16 1.13 4,979,631 
 

Anglian       0.83 0.79 6,000,000 
 

Northumbrian       0.84 0.83 4,400,000 
 

Severn Trent       0.47 0.50 8,000,000 
 

Southern       1.27 1.31 4,600,000 
 

South West       0.76 0.74 1,700,000 
 

Thames       0.68 0.68 15000000 
 

United Utilities       0.46 0.45 7,000,000 
 

Wessex       1.38 0.78 2,800,000 

Croatia Koprivničke vode d.o.o. Koprivnica [CR6]   0.58       51,668 

Poland Aquanet S.A.,Poznań [PL18]   1.05       761,112 
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MPWiK S.A. we Wrocławiu,Wrocław [PL38]   0.72       635,759 

Ukraine Chernigiv Water and Sewerage Enterprise 
[UA18] 

  0.65       297,865 

 
Communal enterprise Ternopol Vodokanal [UA5]   1.31       245,799 

 
Communal Enterprise Vodokanal of Melitopol 
City Council of Zaporizhzhya region [UAN5] 

  1.17       125,724 

 
Communal Enterprise “Kremenchukvodokanal” 
of Kremenchuk City Council [UAN2] 

  0.62       189,000 

 
Ivano-Frankivskvodoekotekhprom Utility [UAN6]   0.62       283,573 

 
Novomoskovsk Water and Sewerage 
Department of  Dnipropetrovsk Municipal 
Enterprise "Oblvodokanal" [UA9] 

  0.97       75,300 

 
Rivne Oblast Municipal Water and Sewer 
Enterprise [UA9] 

  0.71       293,030 

 
Utility Ilichevskvodokanal [UAN1]   0.77       75,556 

 
СЕ “Boryspilvodokanal” [UAN3]   0.28       60,900 

Moldova Integrated Communal Services Company Faleşti 
[MD19] 

    0.99 0.75   15,600 

 
Integrated Communal Services Company 
Glodeni [MD22] 

    0.83 0.52   10,500 

 
Integrated Communal Services Company Lipcani 
[MD25] 

    2.20 1.86   5,100 

 
Integrated Communal Services Company Ocnita 
[MD27] 

    0.63 0.55   9,236 

 
Integrated Communal Services Company Otaci 
[MD29] 

    0.48 0.58   7,400 

 
Municipal enterprise Apa Canal Anenii Noi [MD1]     0.97 0.76   13,000 

 
Municipal Enterprise Apa Canal Cahul [MD5]     0.49 0.45   48,300 

 
Municipal Enterprise Apa Canal Drochia [MD17]     0.43 0.70   17,500 

 
Municipal Enterprise Apa Canal Edineti [MD18]     1.73 1.17   25,800 

 
Municipal Enterprise Apa Canal Stefan-Vodă 
[MD36] 

    0.24 0.18   7,400 

 
Municipal Enterprise Apa Canal Taraclia [MD38]     0.93 0.82   12,300 

 
Municipal Enterprise Apa Canal Teleneşti 
[MD39] 

    0.54 0.56   8,600 

 
Municipal Enterprise Apa Canal Vulcaneşti 
[MD41] 

      0.52   16,700 

 
Municipal Enterprise Communservice Criulni 
[MD15] 

    0.49 0.43   9,700 

 
Municipal Enterprise Company Apa Canal 
Riscani [MD31] 

    0.57 0.82   13,500 

 
Municipal Enterprise Şoldăneşti-Service [MD33]     0.54 0.64   6,100 

 
S.A. Regia Apă-Canal Chişinău [MD1]     0.44     842,500 

Hondurus Aguas de Puerto Cortés, S.A. de C.V. [9995] 0.64         82,327 

Nigeria Rivers State Water Board [NG28] 0.22 0.77 0.74     1,005,908 

Bosnia AD Vodovod I Kanalizacija Bijeljina [BH6] 0.47 0.18 0.10 0.43 0.87 114,663 
 

JP Vodovod a.d. Trebinje [BH2]   0.38 0.41 0.41 0.41 29,198 
 

Javno poduzeće Broćanac d.o.o. Čitluk [BH66] 1.28 
    

18,820 

Serbia D.o.o. Standard Komunalno preduzeće Stara 
Moravica [8687617] 

  0.04 0.05     5,100 

 
Doo "Potiski Vodovodi" Horgoš [825355] 0.87 0.74 0.83 0.81   23,961 

 
Društveno javno komunalno preduteće "Polet" 
[849599] 

  0.11   0.32   11,334 

 
Javno komunalno preduzeće "6. oktobar" 
Kikinda [83743] 

0.93         59,329 

 
Javno komunalno preduzeće "Gornji Milanovac" 
[7192819] 

0.30 0.17 0.26     48,500 
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Javno komunalno preduzeće "Vodovod i 
kanalizacija" Subotica [865195] 

0.56 0.72 0.86 0.97   141,554 

 
Javno komunalno preduzeće "Vodovod Valjevo" 
[7136277] 

0.23 0.23 0.23 0.16   100,000 

 
Javno komunalno preduzeće Elan Kovačica 
[87769] 

  2.40 0.74   1.15 6,165 

 
Javno komunalno preduzeće Progres [8198748]       3.50 2.72 8,500 

 
Javno komunalno preduzeće Miloš Mitrović 
Velika Plana [716763] 

0.77 0.74 0.93 1.21   40,902 

 
Javno preduzece Vodokanal Becej [869921] 0.56 0.61 0.59 0.57   36,187 

 
Javno preduzeće "Vodovod" Surdulica [71811] 0.04 0.04 0.04 0.05   18,930 

 
Javno preduzeće Komunalac Dimitrovgrad 
[7299974] 

  0.14 0.20     9,623 

 
Javno preduzeće za komunalno-stambenu 
delatnost [7114885] 

    0.17 0.21   70,000 

 
JKP "Drugi oktobar" Vršac [8171]     0.27 0.35   51,217 

 
JKP "Standard" Ada [81375] 1.27 1.14 1.13     16,093 

 
JKP "Vodokanal" Sombor [846751] 0.43 1.05 1.10 1.08   80,400 

 
JKP "Vodovod" Šabac [7168683] 0.15 0.81 0.64 0.37   122,843 

 
JKP vodovod i kanalizacija Pećinci [2585439]       0.45   19,283 

 
JKSP Opština Topola [7123852] 1.03 0.69 1.08     25,000 

 
JP Polet Plandište [8495]     0.22     11,334 

 
JP za komunalnu infrastrukturu i usluge Kikinda 
[2171986] 

    1.10 0.61   55,318 

 
Komunalno javno preduće "Morava" Svilajnac 
[7253931] 

0.27 1.11 0.36 0.40 0.34 23,551 

 
Preduzeće u društvenoj svojini za komunalnu 
delatnost Vršac [8172] 

0.32 0.36       51,217 

Macedonia Berovo Public Utility Works Usluga [MC9] 0.30 0.33       12,714 
 

Ilinden Water Company Vodovod [MC2] 0.49 0.85       15,894 
 

Makedonski [MC15] 0.21         7,203 
 

Public Enterprice "Vodovod" Kumanovo [MC15] 0.22 0.16 0.15     115,000 

Russia Barnaul,OOO "Barnaulskiy Vodokanal" [26]     0.88     651,002 
 

Belgorod,MUE "Gorvodokanal" [27]     0.98     389,112 
 

Birobidzhan,MUE "Vodokanal" [28]     0.37     74,327 
 

Blagoveschensk,JSC "Amurskie kommunalnie 
sistemy" [29] 

    0.65     224,377 

 
Bryansk,MUE "Bryanskiy gorodskoy vodokanal" 
[21] 

    0.75     406,237 

 
Chelyabinsk,MUE "PO vodosnabzheniya I 
vodootvedeniya" [212] 

    0.73     1,195,426 

 
Cherkessk,JSC "Vodokanal" [213]     0.78     122,803 

 
Chita,OOO "Vodokanal-Chita" [214]     0.75     345,299 

 
Ekaterinburg,MUE "Vodokanal" [216]     0.57     1,449,977 

 
Elista,MUE "Gorvodokanal" [217]     0.32     103,952 

 
Gorno-Altaysk,JSC "Vodokanal" [218]     0.83     63,078 

 
Irkutsk,MUE "PU VKH" [219]     0.59     623,580 

 
Ivanovo,JSC "Vodokanal" [22]     0.54     407,479 

 
Izhevsk,MUE "Izhvodokanal" [221]     0.84     644,887 

 
Kaluga,OOO "Kaluzhskiy oblastnoy vodokanal" 
[223] 

    0.41     341,939 

 
Kazan,MUE "Vodokanal" [224]     0.77     1,224,422 

 
Kemerovo,OOO "Kemvod" [225]     1.11     554,998 

 
Khabarovsk,MUE "Vodokanal" [226]     0.75     613,701 

 
Khanty-Mansiysk,MUE "Vodokanalizatsionnoe 
predpriyatie" [227] 

    1.37     97,814 
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Kirov,JSC "Kirovskie kommunalnie sistemy" 
[228] 

    0.95     499,227 

 
Kostroma,OOO "Kostroma Vodokanal" [229]     0.78     277,170 

 
Krasnodar,OOO "Krasnodar Vodokanal" [23]     0.87     867,662 

 
Krasnoyarsk,OOO "Krasnoyarskiy zhilischno-
kommunalniy kompleks" [231] 

    0.84     1,074,934 

 
Kurgan,MUE "Kurganvodokanal" [233]     1.00     323,616 

 
Kursk,MUE "Vodokanal goroda Kurska" [234]     0.81     446,137 

 
Kyzyl,OOO "Vodoprovodno-kanalizatsionnie 
sistemy" [235] 

    0.37     115,943 

 
Lipetsk,JSC "Lipetskaya gorodskaya 
energeticheskaya kompaniya" [236] 

    0.49     510,230 

 
Maikop,MUE "Maikopvodokanal" [238]     0.88     168,918 

 
Moscow,MSUE "Mosvodokanal" [24]     0.51     ######## 

 
Nalchik,ME "Gorvodokanal" [242]     0.29     278,593 

 
Naryan-Mar,"Naryan-Mar Vodokanal" [243]     1.01     24,595 

 
Nizhni Novgorod,JSC "Nizhegorodskiy 
Vodokanal" [245] 

    0.46     1,264,269 

 
Novgorod,MUE "Novgorodskiy Vodokanal" [246]     0.87     222,231 

 
Novosibirsk,MUE "Gorvodokanal" [247]     0.78     1,774,044 

 
Omsk,JSC "OmskVodokanal" [248]     0.95     1,178,235 

 
Orenburg,OOO "Orenburg Vodokanal" [249]     0.28     577,622 

 
Oryol,MUE "Orelvodokanal" [25]     0.77     319,142 

 
Penza,OOO "Gorvodokanal" [252]     1.02     524,179 

 
Perm,OOO "Novogor-Prikamye" [RU 57]     0.89     1,044,941 

 
Petrozavodsk,JSC "Petrozavodskie 
kommunalnie sistemy" [RU 78] 

    0.81     277,831 

 
Pskov,MUE "Gorvodokanal" [256]     0.93     225,207 

 
Rostov-na-Donu,JSC "PO Vodokanal" [257]     0.69     1,122,587 

 
Ryazan,ME "Vodokanal goroda Ryazani" [258]     2.24     536,192 

 
Samara,ME "Samaravodokanal" [26]     0.47     1,182,425 

 
Saransk,ME "Saranskgorvodokanal" [261]     0.75     311,244 

 
Saratov,MUE "Saratovvodokanal" [262]     0.78     863,585 

 
Smolensk,MUE "Gorvodokanal" [263]     0.62     329,380 

 
Stavropol,SUE "Stavropolkraivodokanal" [265]     0.62     431,574 

 
Tambov,JSC "Tambovskie kommunalnie 
sistemy" [267] 

    0.80     391,951 

 
Tomsk,OOO "Veolia Voda Tomsk" [268]     1.75     571,017 

 
Tula,JSC "Tulagorvodokanal" [269]     0.49     651,408 

 
Tver,OOO "Tver Vodokanal" [271]     1.04     417,902 

 
Tyumen,OOO "Tyumen Vodokanal" [272]     0.60     732,565 

 
Ufa,MUE "Ufavodokanal" [273]     1.12     1,113,268 

 
Ulyanovsk,MUE "Ulyanovskvodokanal" [275]     1.21     628,605 

 
Vladikavkaz,OOO "Sevosetinvodokanal" [277]     0.04     307,228 

 
Vladimir,MUE "Vladimirvodokanal" [278]     0.75     355,497 

 
Volgograd,MUE "Gorvodokanal Volgograda" [28]     1.33     1,015,861 

 
Vologda,ME "Vologdagorvodokanal" [281]     0.79     312,849 

 
Yakutsk,JSC "Vodokanal" [283]     1.02     305,874 

 
Yaroslavl,JSC "Yaroslavlvodokanal" [284]     0.93     607,391 

 
Yoshkar-Ola,MUE "Vodokanal" [285]     0.68     265,860 

 
Yuzhno-Sakhalinsk,OOO "Sakhalinskiy 
Vodokanal" [286] 

    0.75     194,276 
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Kazakhstan JSC Kyzylzhar Su, Petropavlovsk [KZ22]   0.77 0.78     215,306 
 

JSC Pavlodar Vodokanal [KZ13]   0.62 0.65     358,800 
 

JSC Vodnye Resursy Marketing, Shymkent 
[KZ14] 

  0.15 0.13     893,800 

 
Karaganda Su Limited Liability company [KZ2]   1.26 1.23     499,615 

 
Open JSC Akbulak, Aqtobe [KZ15]   1.16 1.12     478,000 

 
State Communal Enterprise Astana Su Arnasy 
[KZ1] 

  0.69 0.21     1,000,000 

 
State Communal Enterprise Gorvodokanal 
Ekibastuz [KZ19] 

  0.99 1.03     155,681 

 
State communal Enterprise Infroservice, Ridder 
[KZ9] 

  0.30 0.31     58,049 

 
State communal Enterprise Kokshetau Su 
Arnasy [KZ7] 

  0.89 0.93     159,490 

 
State communal Enterprise Kyzylorda Su 
Zhuiyesi [KZ2] 

  0.81 0.89     297,300 

 
State communal Enterprise Oskemen Vodokanal 
Ust Kamenogorsk [KZ1] 

  0.50 0.53     331,814 

 
State Communal Enterprise Semei Vodokanal, 
Semipalatinsk [KZ5] 

  0.65 0.78     344,500 

 
State Enterprise Vodokanal Zyryanovsk [KZ16]   0.70 0.69     39,859 

 
State Enterprize Saran Kommun Service [KZ9]   0.26 0.22     52,900 

 
Stepnogorsk State Municipal Company 
Vodokanal [KZ2] 

  1.73 1.86     52,450 

New Zealand Ashburton District Council [NZ2]   0.53 0.60 0.65 0.56 34,100 
 

Christchurch City Council [NZ7]   0.30 0.45 0.22 0.22 381,500 
 

Gore District Council [NZ11]   0.29 0.24 0.30   12,450 
 

Hamilton City Council [NZ15]   1.02 1.25 1.09 1.14 165,400 
 

Hutt City Council [NZ3]   1.54 1.41 1.75   54,800 
 

New Plymouth District Council [NZ21]   0.50 1.88 1.72 1.64 80,700 
 

Palmerston North City Council [NZ22]   1.53 0.27 0.52 0.34 87,300 
 

Stratford District Council [NZ58]     0.17     36,800 
 

Tauranga City Council [NZ29]   0.81 0.72 0.80 0.59 47,100 
 

Waimakariri District Council [NZ37]   1.23 1.17 1.04 0.91 30,000 
 

Waimate District Council [NZ59]     0.11     7,536 
 

Wellington   0.67 0.68 0.56 0.70 416,700 
 

Whakatane         0.35 35,600 
 

Nelson         0.29 51,400 
 

Napier         0.25 62,000 
 

Rotorua       1.16 1.17 59,300 
 

Invercargill     0.14 0.2 0.36 22,500 
 

Western Bay of Plenty         1.45 49,000 
 

Masterton       0.12 0.10 25,200 
 

Ruapehu         0.56 28,000 
 

Marlborough District Council [NZ2]   0.67 0.75     45,500 
 

Rangitki District Council [NZ1]       0.51   12,700 
 

South Wairarapa District Council [NZ56]     0.23     10,250 
 

Wairoa District Council [NZ39]   0.29 0.29 0.27   8,150 
 

Watercare, Auckland [NZ1]   0.48 0.51 0.79 0.91 1,665,809 
 

Whangarei Distrcit Council [NZ36]   0.36 0.18 0.14 0.33 89,700 

Federated 
States Of 
Micronesia 

Chuuk Public Utilities Corporation, Micronesia 
[PWWA4] 

  0.43 0.34 0.45 0.45 13,856 

French 
Polynesia 

Polynésienne des Eaux [PWWA5]   0.85 0.58 0.62 0.56 91,056 
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Palau Palau Public Utilities Corporation (PPUC), Palau 
[PWWA14] 

    0.41     17,661 

Samoa Samoa Water Authority [PWWA18]     1.3 1.37 1.53 197,023 

Australia Barwon Water       0.13   312,235 
 

Central Gippsland Region Water Corporation         0.55 147,000 
 

Central Highlands Water       0.77   146,568 
 

Coliban Region Water Corporation       1.26 1.21 170,000 
 

East Gippsland Region Water Corporation       0.68 0.71 35,000 
 

Goulburn Valley Region Water Corporation 0.52 0.62 0.53 0.60 0.56 125,000 
 

Grampians Wimmera Mallee Water Corporation 0.54 0.64 0.55 0.60 0.68 72,000 
 

Hunter Water Corporation 0.58 0.63       600,000 
 

Melbourne Water Corporation         0.33 4,200,000 
 

North East Region Water Corporation       1.23 1.17 109,803 
 

South East Water Corporation         0.23 778,018 
 

South Gippsland Region Water Corporation 0.67 0.66 0.62 0.65 0.62 36,819 
 

Wannon Water       1.00 0.96 100,400 
 

Water Corporation 0.80 0.81 0.87 0.91 0.84 2,600,000 
 

Western Region Water Corporation       1.02 1.04 172,500 
 

Westernport Water Corporation         1.50 22,000 
 

Yarra Valley Water Corporation       0.14 0.13 2,100,000 

Belgium Aquafin NV [BE2] 1.14 
   

3,800,000 

Fiji Water Authority of Fiji [PWWA3] 0.31 0.26 0.28 0.36 0.34 895,537 

Netherlands Aa en Maas 0.93513
8 

   
744,000 

 
Amstel, Gooi en Vecht 0.91703

4 

   
1,300,000 

 
Brabantse Delta 1.13902 

   
800,000 

 
De Dommel 0.89200

3 

   
890,000  

 
De Stichtse Rijnlanden 1.22742

5 

   
750,000 

 
Delfland 

 
1.23020
2 

   
1,400,000 

 
Fryslân 

 
0.96804
6 

   
700,000 

 
Hollands Noorderkwartier 1.38505 

   
1,161,000 

 
Hollandse Delta 0.89625

3 

   
850,000 

 
Hunze en Aa's 0.92339

5 

   
424,000 

 
Noorderzijlvest 0.89614

3 

   
345,000 

 
Rijn en IJssel 1.33415

9 

   
650,000 

 
Rijnland 

 
0.93599
5 

   
1,248,124 

 
Rivierenland 0.99219

7 

   
1,043,000 

 
Scheldestromen 0.94586 

   
383,112 

 
Schieland en de Krimpenerwaard 0.86026

4 

   
657,665 

 
Vallei en Veluwe 1.20104

5 

   
1,120,000 

 
Vechtstromen 1.08673

8 

   
825,000 

 
Zuiderzeeland 1.33633 

   
416,431 

Greece Athens Water Supply and Sewerage Company SA 0.58446
4 

 
3,500,000 

Italy Società Metropolitana Acque Torino S.p.A. 0.27859
2 

0.266805 2,247,449 
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Spain Canal de Isabel II 
  

0.57139
7 

 
6,370,090 

Sweden VA SYD 0.505 0.5125 0.552
5 

  
500,000 

Canada City of Toronto 
  

0.51381
6 

 
2,876,700 

United States King County 
   

0.621871 1,870,000 

 4175 

 4176 

 4177 

 4178 

 4179 

 4180 

 4181 

 4182 

4b. External Sample 4183 

Country kWh/m3 Source 

Japan 0.53 10.1007/s10098-016-1131-1 

Portugal 0.37 doi.org/10.1016/j.jclepro.2018.12.229  

Mexico 1.15 https://doi.org/10.1016/j.scitotenv.2017.02.234 

Brazil 0.24 BRASIL. Ministério das Cidades. Sistema Nacional de Informações 
sobre Saneamento (SNIS), Diagnóstico dos Serviços de Água e Esgotos 
- 2014, 2016. 

South Africa 0.2445 doi.org/10.1016/j.apenergy.2016.07.061  

India 0.24 http://www.iaeme.com/ijciet/issues.asp?JType=IJCIET&VType=10&IType
=9 

Singapore  0.56 https://doi.org/10.1016/j.scitotenv.2011.04.018  

South Korea  0.243 doi.org/10.1016/j.enconman.2013.08.028  

Finland  0.49 https://doi.org/10.1007/s40710-018-0310-y  

Germany 0.43 doi.org/10.1016/j.apenergy.2016.07.061  

China 0.3 doi.org/10.1016/j.apenergy.2016.07.061  

 4184 

4c. Wastewater effluent standards 4185 

Country/R
egion 

WWTP 
category 

COD 
(mg/l) 

BOD5 
(mg/l) 

NH4
+-N, 

NH3-N 
(mg/l) 

NO₂⁻–N, 
NO₃⁻–N 
(mg/l) 

Total 
Nitrogen 
(mg/l) 

PO₄³–P 
(mg/l) 

Total 
Phosphorus 
(mg/l) 

Total 
Suspended 
Solids 
(mg/l) 

Source 

EU <2000 PE 125 25 n/na n/n n/n n/n n/n 35 EC (1991) 
Council 
Directive 
91/271/EEC of 
21 May 1991 
concerning 
urban waste-
water treatment. 
EC, Brussels, 
Belgium  

2000–
10,000 PE 

125 25 n/n n/n n/n n/n n/n 35 
 

 
10,000–
100,000 
PE 

125 25 n/n n/n 15 (areas 
sensitive 
to 

n/n 2 (areas 
sensitive to 

35 
 

https://doi.org/10.1016/j.jclepro.2018.12.229
https://doi.org/10.1016/j.apenergy.2016.07.061
https://doi.org/10.1016/j.scitotenv.2011.04.018
https://doi.org/10.1016/j.enconman.2013.08.028
https://doi.org/10.1007/s40710-018-0310-y
https://doi.org/10.1016/j.apenergy.2016.07.061
https://doi.org/10.1016/j.apenergy.2016.07.061
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eutrophicat
ion) 

eutrophicatio
n)  

>100,000 
PE 

125 25 n/n n/n 10 (areas 
sensitive 
to 
eutrophicat
ion) 

n/n 1 (areas 
sensitive to 
eutrophicatio
n) 

35 
 

Germany BOD₅ < 60 
kg/d 
(<1000 
PE) 

150 40 n/n n/n n/n n/n n/n n/n Federal Ministry 
of Environment 
Nature 
Conservation 
and Nuclear 
Safety (2002) 
Federal Water 
Act of 19 
August 2002. 
Federal Law 
Gazette. 
Federal Ministry 
of Environment 
Nature 
Conservation 
and Nuclear 
Safety, Bonn, 
Germany  

BOD₅ < 30
0 kg/d 
(<5000 
PE) 

110 25 n/n n/n n/n n/n n/n n/n 
 

 
BOD₅ < 12
00 kg/d 
(<20,000 
PE) 

90 20 10 n/n n/n n/n n/n n/n 
 

 
BOD₅ 
< 6000 kg/
d 
(<100,000 
PE) 

90 20 10 n/n 18 n/n 2 n/n 
 

 
BOD₅ < 60
00 kg/d 
(>100,000 
PE) 

75 15 10 n/n 13 n/n 1 n/n 
 

Sweden >2000 PE n/n 15b (B
OD7) 

n/n n/n 15 n/n 0.5 n/n Swedish EPA 
(2016) 
Wastewater 
treatment in 
Sweden 2016. 
Swedish EPA  

2000–
100,000 
PE 

n/n 15 
(BOD7) 

n/n n/n 15 n/n 0.5 n/n 
 

 
>100,000 
PE 

n/n 15 
(BOD7) 

n/n n/n 10 n/n 0.5 n/n 
 

Denmark General 75 10 n/n n/n 8 n/n 0.4 20 Vind J (2017) 
Wastewater 
innovation in 
Denmark - 
Water 
technology 
alliance a report 
by the ministry 
of foreign affairs 
of Denmark, 
Copenhagen 

HELCOM 
signatory 
countries 

300–2000 
PE 

n/n 25 n/n n/n 35 n/n 2 35 HELCOM 
(2007) 
HELCOM 
recommendatio
n 28E/5. 
HELCOM, 
Helsinki, 
Finalnd; 
https://helcom.fi/
media/publicatio
ns/Technical-
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guidance-for-
the-handling-of-
wastewater-in-
ports.pdf  

2000–
10,000 PE 

125 15 n/n n/n 30 n/n 1 35 
 

 
10,000–
100,000 
PE 

125 15 n/n n/n 15 n/n 0.5 35 
 

 
>100,000 
PE 

125 15 n/n n/n 10 n/n 0.5 35 
 

Switzerlan
d 

200–
10,000 PE 

60 20 2 (sum 
of NH3–
N and 
NH4–N) 

0.3 
(NO2−–
N) 

0.8 0.8 n/n 20 The Swiss 
Federal Council 
(1998) Waters 
Protection 
Ordinance 
(814.201) of 28 
October 1998. 
The Swiss 
Federal Council, 
Bern, 
Switzerland  

>10,000 
PE 

45 15 2 (sum 
of NH3–
N and 
NH4–N) 

0.3 
(NO2−–
N) 

0.8 0.8 n/n 15 
 

Belarus <500 PE 125 35 n/n n/n n/n n/n n/n n/n Ministry of 
Environment 
(2012) 
Technical code 
of practice (in 
Russian). 
Ministry of 
Environment, 
Moscow, Russia  

501–2000 
PE 

120 30 20 n/n n/n n/n n/n n/n 
 

 
2001–
10,000 PE 

100 25 15 n/n n/n n/n n/n n/n 
 

 
10,001–
100,000 
PE 

80 20 n/n n/n 20 n/n 4.5 n/n 
 

 
>100,000 
PE 

70 15 n/n n/n 15 n/n 2 n/n 
 

USA n/n n/n 30 6.8 n/n 3–5 (areas 
sensitive 
to 
eutrophicat
ion) 

n/n 1.0–0.1 
(areas 
sensitive to 
eutrophicatio
n) 

n/n Sedlak RI 
(1991) 
Phosphorus and 
nitrogen 
removal from 
municipal 
wastewater: 
principles and 
practice. The 
Soap and 
Detergent 
Association, 
New York, USA; 
US EPA (2012) 
Great lakes 
water quality 
agreement. 
https://doi.org/1
0.1016/j.apener
gy.2016.07.061
13–31. 
https://doi.org/1
0.1016/b978-0-
08-020902-
9.50006-7 

China 
(Taihu 
Lake 
catchment
) 

n/n 50 n/n 8 (NH4
+–

N, 5 in 
winter 
season) 

n/n 15 n/n 0.5 n/n Li WW, Sheng 
GP, Zeng RJ et 
al. (2012) 
China’s 
wastewater 
discharge 
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standards in 
urbanization: 
evolution, 
challenges and 
implications. 
Environ Sci 
Pollut Res 
19:1422–
1431. https://doi
.org/10.1007/s1
1356-011-0572-
7 

BC, 
Canada 

Streams, 
rivers and 
estuaries 

n/n 45 (10 
if 
dilution 
ratio < 
40:1) 

n/n n/n 10 0.5 
(MDFc > 
50 m3/d) 

1.0 
(MDF > 50 m
3/d) 

45 British Columbia 
Office of 
Legislative 
Counsel 
Ministry of 
Attorney 
General (2005) 
Environmental 
Management 
Act Municipal 
Wastewater 
Regulation B.C. 
Reg. 87/2012. 
British Columbia 
Office of 
Legislative 
Counsel 
Ministry of 
Attorney 
General, 
Victoria, 
Canada; US 
EPA (2012) 
Great lakes 
water quality 
agreement. 13–
31. 
https://doi.org/1
0.1016/b978-0-
08-020902-
9.50006-7  

Lakes n/n 45 n/n n/n 10 0.5 
(MDF > 5
0 m3/d) 

1.0 
(MDF > 50 m
3/d) 

45 
 

 
Open 
marine 
water 

n/n 130 
(MDF 
> 10 m
3/d) 

n/n n/n n/n n/n n/n 60 
 

 
Coastal 
waters 

n/n 45 
(MDF 
> 10 m
3/d) 

n/n n/n n/n n/n n/n 45 
 

Russia Industrial 
fishing 
areas 

n/n 3.0d (B
OD20) 

0.39 0.02 
(NO2

−–
N) 9.1 
(NO3

−–
N) 

n/n 2.0 (0.2 
in 
eutrophi
c waters, 
0.15 in 
mesotro
phic 
waters, 
0.05 in 
oligotrop
hic 
waters) 

n/n n/n Ministry of 
Natural 
Resources 
(1991) Surface 
water protection 
act (in Russian). 
Ministry of 
Natural 
Resources, 
Moscow, 
Russia; Ministry 
of Natural 
Resources 
(1999) Surface 
water protection 
regulation (in 
Russian). 
Ministry of 
Natural 
Resources, 
Moscow, 
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Russia; Gogina 
ES (2010) 
Udalenie 
biogennych 
elementow iż 
stocznych wod. 
Moskowskij 
gosudarstwienn
yj stroitelnyj 
uniwersytet, 
Moscow, Russia  

Source of 
water 
supply 

15 3.0 
(BOD2

0) 

n/n n/n n/n n/n n/n n/n 
 

 
Recreation 
and water 
sports 

30 6.0 
(BOD2

0) 

n/n n/n n/n n/n n/n n/n 
 

South 
Africa 

Coastal 
waters, 
lakes 

75 n/n 6 n/n 15 n/n n/n 25 https://selectech
.co.za/updated-
effluent-waste-
water-quality-
standards/  

Rivers and 
dams 

30 n/n 2 n/n 1.5 n/n n/n 10 
 

Brazil General n/n 60 20 n/n n/n n/n n/n 60 Standards for 
Wastewater 
Treatment in 
Brazil Marcos 
von Sperling 

Nigeria Varied 60-90 30-50 1 n/n 10 n/n 2 25 Management 
Recommendatio
ns for Improving 
Decentralized 
Wastewater 
Treatment by 
the Food and 
Beverage 
Industries in 
Nigeria 

India General 250 30 n/n n/n 10 n/n 5 50-100 Management 
Recommendatio
ns for Improving 
Decentralized 
Wastewater 
Treatment by 
the Food and 
Beverage 
Industries in 
Nigeria 

Australia 
(Tasmania
) 

Fresh n/n 15 5 n/n 15 n/n 3 n/n https://epa.tas.g
ov.au/Document
s/Emission_Limi
t_Guidelines_Ju
ne_2001.pdf  

Marine n/n 20 5 n/n 15 n/n 5 n/n 
 

Australia 
(Queensla
nd) 

Surface n/n 30 n/n n/n 15 n/n 6 45 https://apps.des
.qld.gov.au/env-
authorities/pdf/e
ppr00874613.pd
f 

New 
Zealand 

<14,000 
l/day to 
land 

n/n 20 n/n n/n 25 n/n n/n 30 https://www.orc.
govt.nz/media/4
459/form-6a-
wastewater-
discharge-to-
land-from-
domestic-
system-
updated-feb-
2018.pdf 

Moldova General 125 25 n/n n/n 15 n/n 2 35 http://lex.justice.
md/index.php?a
ction=view&vie
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w=doc&lang=1&
id=329400 

Mexico Rivers n/n 30 n/n n/n 15 n/n 5 40 http://cepis.org.
pe/mexican-
official-
standard-
001ecol1996/  

Coastal n/n 75 n/n n/n 15 n/n 5 75 
 

Fiji General n/n 40 n/n n/n 25 n/n 5 60 https://openjicar
eport.jica.go.jp/
pdf/12355251.p
df 

South 
Korea 

<2000 
m3/day 

90 80 n/n n/n 20 n/n 2 80 http://www.wep
a-
db.net/pdf/1003f
orum/12_korea_
yangseok_cho.p
df  

>2000  
m3/day 

70 60 n/n n/n 20 n/n 2 60 
 

 4186 

4d. Carbon conversions (All sources are Ecoinvent v3.7 (cut-off) unless stated; Method: 4187 
CML 2001 (superseded):climate change:GWP 100a).  4188 

Country Average 
kWh/m3 

kgCO2e/kWh 
conversion 
factor  

kgCO2e/
m3 

Source 

Italy 0.27 0.411581 0.112237 
 

Portugal 0.37 0.509904 0.188665 
 

Germany 0.43 0.537487 0.231119 
 

Finland  0.49 0.230592 0.11299 
 

Sweden 0.52 0.041462 0.021698 
 

Switzerland 0.57 0.102839 0.058618 
 

Spain 0.57 0.383463 0.21911 
 

Croatia 0.58 0.510709 0.296211 
 

Greece 0.58 0.741796 0.433553 
 

Norway 0.60 0.022947 0.01373 
 

UK 0.80 0.339658 0.272104 
 

Poland 0.89 1.02889 0.910567 
 

Netherlands 1.06 0.589151 0.623331 
 

Belgium 1.14 0.23474 0.267604 
 

Denmark 1.35 0.242799 0.327573 
 

Macedonia 0.34 1.01825 0.349175 
 

Serbia 0.66 1.085694 0.717697 
 

Bosnia 0.70 1.056708 0.737054 
 

Moldova 0.73 0.637195 0.464215 https://ecometrica.com/assets/Electricity-specific-
emission-factors-for-grid-electricity.pdf 

Kazakhstan 0.76 1.032328 0.785946 
 

Ukraine 0.79 0.568054 0.448132 
 

Russia 0.79 0.76938 0.610864 
 

Belarus 1.00 0.610874 0.608514 https://ecometrica.com/assets/Electricity-specific-
emission-factors-for-grid-electricity.pdf 

Canada 0.51 0.444057 0.228164 
 

United 
States 

0.62 0.561612 0.34925 
 

Brazil 0.24 0.228308 0.054794 
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Honduras 0.64 0.496141 0.31753 
 

Mexico 1.15 0.657385 0.755993 
 

India 0.24 1.458063 0.349935 
 

South Korea  0.243 0.688598 0.167329 
 

China 0.3 0.88582 0.265746 
 

Japan 0.53 0.663665 0.351742 
 

Singapore  0.56 0.460039 0.257622 
 

South Africa 0.2445 1.137141 0.278031 
 

Nigeria 0.58 0.571567 0.329603 
 

Fiji 0.31 0.4479 0.138849 Operating Marging in 
https://www.iges.or.jp/en/pub/list-grid-emission-
factor/en?__cf_chl_jschl_tk__=5d6219bf677e24b9
8e043b6c7b561fcbd0f2f9f6-1612957688-0-
AcSdi5lT8Yzv5Qwb-ziJDdF2kAniWMjv-
aypSeovjDHhtLg_edssNOWtLU0_KdeKUSxnTQots
QCKSZ6SuvxEUsdPSBaYyPR_L-
EdNMcDebbw_xEanRURnFpefah6CC14CJpB-
0CsC-
ijgJegjs9lSB6MzaV0JBZKBqUi4gbbiA7CR6Bh3j4c
H7qxQ8J2lvWj9s-
sTdQkicKAfv1kvJSEeuka6jzsXiQwnKbgMHv-GA-
aO3Y9dWOeGGi8Fwq0tLH5jFuT73oZ9WyjpoE_F-
AqaR7Eu41-
DE_JJdQBAvPWkur0gHYIBS5Ij0WFfN1ORU_iXCc
zVtYcQB256fjSHZfDJ0MQPIwUIp_Fc6GeVGClyeI
n 

Palau 0.41 0.651 0.26691 https://iea.blob.core.windows.net/assets/eb3b2e8d-
28e0-47fd-a8ba-
160f7ed42bc3/CO2_Emissions_from_Fuel_Combu
stion_2019_Highlights.pdf 

Fed. S of 
Micronesia 

0.42 0.651 0.271793 https://iea.blob.core.windows.net/assets/eb3b2e8d-
28e0-47fd-a8ba-
160f7ed42bc3/CO2_Emissions_from_Fuel_Combu
stion_2019_Highlights.pdf 

French 
Polynesia 

0.65 0.651 0.424778 https://iea.blob.core.windows.net/assets/eb3b2e8d-
28e0-47fd-a8ba-
160f7ed42bc3/CO2_Emissions_from_Fuel_Combu
stion_2019_Highlights.pdf 

Samoa 1.40 0.31 0.434 https://wedocs.unep.org/bitstream/handle/20.500.1
1822/10571/narrowing_emission_gap.pdf?sequenc
e=1&isAllowed=y 

New 
Zealand 

0.61 0.118773 0.072011 
 

Australia  0.71 0.973686 0.689914 
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