
Bangor University

DOCTOR OF PHILOSOPHY

Analysis, Design and Implementation of Multiple View Visualisations

Al-Maneea, Hayder Mahdi Abdullah

Award date:
2021

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 13. Mar. 2024

https://research.bangor.ac.uk/portal/en/theses/analysis-design-and-implementation-of-multiple-view-visualisations(3ab52418-5408-442e-a404-10cb63486bbb).html

School of Computer Science and Electronic Engineering
College of Environmental Sciences and Engineering

Analysis, Design and Implementation of
Multiple View Visualisations

Hayder M. Al-maneea

Submitted in partial satisfaction of the requirements for the
Degree of Doctor of Philosophy

in Computer Science

Supervisor Prof. Jonathan C. Roberts

October 2021

Statement of Originality

The work presented in this thesis/dissertation is entirely from the studies
of the individual student, except where otherwise stated. Where derivations are
presented and the origin of the work is either wholly or in part from other sources,
then full reference is given to the original author. This work has not been presented
previously for any degree, nor is it at present under consideration by any other
degree awarding body.

Student:

Hayder M. Al-maneea

Statement of Availability

I hereby acknowledge the availability of any part of this thesis/dissertation for
viewing, photocopying or incorporation into future studies, providing that full
reference is given to the origins of any information contained herein. I further give
permission for a copy of this work to be deposited with the Bangor University
Institutional Digital Repository, the British Library ETHOS system, and/or in any
other repository authorised for use by Bangor University and where necessary have
gained the required permissions for the use of third party material. I acknowledge
that Bangor University may make the title and a summary of this thesis/dissertation
freely available.

Student:

Hayder M. Al-maneea

Acknowledgements

First and foremost, I would like to express my deep and sincere gratitude to my research

supervisor Prof. Jonathan Roberts, for giving me the opportunity to do this research

and providing invaluable guidance throughout this study. His dynamism, vision,

sincerity and motivation have deeply inspired me. He has taught me the methodology

to carry out the research and to present the research work as clearly as possible. It was

a great privilege and honour to work and study under his guidance. I am extremely

grateful for what he has offered me and for his corrections of this thesis. I would also

like to thank him for his friendship and empathy.

I would also like to acknowledge the Ministry of Higher Education and Scientific

Research (MOHESR) of Iraq for generosity in funding my PhD study. Great thanks to

Basra University for supporting and helping me during my undergraduate, master, and

PhD study.

It would not have been possible to write this thesis without the help and support of the

kind people around me: my lovely wife Shatha Al-maliki for his personal support and

great patience at all times. Also, my sweet kids Fatimah and Mohammad for their

kindness and they make my life full with hope without despair. As well, I would like to

thank all my family in Iraq: wonderful mom, dad, sisters and brothers for this support

and prayers to me.

Also, I want to thank my lovely aunt, Sahar Al-maneea, and her kind husband, Hayder

Kubba, for their support during my PhD study.

Last, but not least, I would like to thank all the staff of the School of Computer Science

and Electronic Engineering at Bangor University for their help during these years.

Abstract

Multiple view systems are often used by visualisation developers. They are useful

for displaying or interpreting data in several, multiple or parallel ways. One of the

reasons developers use such duplication is to help clarify the information. Perhaps a

user understands one style of visualisation better than another, or perhaps one type

of visualisation form makes it easier to perform a particular task, whereas another

form makes it easier to perform a different task. For these purposes, there are many

visualisation tools and programming libraries that help users create multiple view

visualisations. However, it is not easy for a new developer to know how to lay out

and position the views in their systems, how many views they should use, what is the

best visualisation type for each view, or what design attributes work best. Therefore,

developers and learners should have guidelines and frameworks to assist them in making

the right design decisions.

The long-term vision of this research is to develop theories for data visualisation, and

develop specific guidelines on best practices for multiple view systems; this will assist

researchers and developers in understanding and developing multiple view systems. To

achieve these goals, guidelines need to be based on current practice. Our methodology

is to perform an in-depth quantitative investigation to understand best practices for what

researchers currently do with multiple view systems. From this investigation guidelines

can be developed. Furthermore, such guidelines could be programmed into a grammar,

and into a multiple view design tool, which would help developers create multiple view

visualisations.

Therefore, this work focuses on investigating multiple view systems, in order to

develop a set of guidelines and a system to help new developers to create multiple

view visualisations and make the correct design decisions. For this purpose, we

designed a visualisation tool based on a quantitative evaluation of multiple view systems.

This grammar-based tool allows learners to create, control and save multiple view

visualisations in a simple way by using a multiple view grammar.

The research focuses on eight research questions that are used to structure this thesis,

ranging from counting views, quantifying views, developing a multiple view grammar,

and creating a multiple view tool: (1)What are the strategies for selecting which multiple

view images to evaluate? (2) What are the strategies for defining and determining a

“view” in multiple view visualisation? (3) What are the strategies for coding multiple

view topologies and visualisation types? (4) How many views should developers

use in multiple view systems? (5) What layout arrangements are popular in multiple

view systems? (6) What visualisation types are used in each view and what types of

visualisation come together? (7) What salient guidelines can be learnt from the analysis,

to assist users in developing multiple view visualisations? (8) What is a multiple view

grammar and how is it used to create a multiple view layout?

By tackling and answering these research questions, the thesis makes six novel research

contributions. First, it introduces a strategy for selecting which images of multiple view

visualisations to evaluate (Chapter Three). Second, this research creates a strategy to

help researchers ascertain “what constitutes a view” in a multiple view visualisation

(Chapter Three). Third, through statistical analyses of multiple view visualisations, this

research produces results of a comprehensive quantitative analysis of multiple view

visualisations, which can help researchers to conduct further investigation on multiple

view systems (Chapter Four). Fourth, from this analysis, the thesis develops a set of

guidelines to help novices in the data visualisation field, as well as developers, to create

robust multiple view visualisations (Chapter Four). Fifth, this research introduces a

new grammar to create multiple view layouts by using the concept of cutting a view

vertically or horizontally to create two views (Chapter Five). Sixth, this work develops

the LayMV tool to create, control and save multiple view visualisation, based on the

analysis of the multiple view systems and the set of guidelines for creating multiple

view systems. The LayMV tool uses the multiple view grammar to create and manage

multiple view visualisations (Chapter Six).

In conclusion, this dissertation provides learners and practitioners with an in-depth

analysis of the multiple view field, which can help them create multiple view

visualisations and carry out further investigations on multiple view systems. In

addition, the LayMV tool and the multiple view grammar can help users to create,

control, save and reload multiple view systems.

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 3
1.3 Vision and aims . 3
1.4 Scope of research . 5
1.5 Research questions and objectives 5
1.6 Research methodology and the structure of the thesis 8
1.7 Contributions . 10

2 Related work 13
2.1 Introduction . 13

2.1.1 Scope and methodology of the related work 14
2.2 History, background and concepts 16

2.2.1 What is a “view” (so that we can have multiple views)? 20
2.2.2 How frequently are multiple and view used? 21
2.2.3 What parts of speech are used for multiple and view? 22
2.2.4 What are the meanings of a view? 25
2.2.5 What words have people used instead of “view”? 26
2.2.6 Creation of views . 28

2.3 Design concepts and general principles of multiple views 30
2.4 Multiple view tools and their use . 33
2.5 Theories and design guidelines for multiple view visualisations 37
2.6 Summary . 39

3 Data gathering and quantification preparation 40
3.1 Introduction to data gathering, quantification and preparation 40
3.2 Image selection and storing data . 43
3.3 Developing general guidelines for view identification 49
3.4 Coding the layout arrangements . 54
3.5 Coding the visualisation types . 62
3.6 Discussion . 64
3.7 Summary . 66

4 Quantification (data collection), analysis, and design guidelines for
multiple view systems 67

4.1 Introduction . 68
4.2 The tabletop strategy to quantify multiple view layouts 71
4.3 The Quantification and the analysis of views number in multiple view

layouts . 73
4.4 The Quantification and the analysis of the symmetrical multiple view

layouts . 75
4.5 The quantification and the analysis of the layouts arrangements 77
4.6 Understanding tasks and domain . 80
4.7 Quantification and analysis of visualisation types 88
4.8 Quantification and analysis of collocational pairs of the visualisation types 95
4.9 Developing of design guidelines for multiple view visualisations . . . 97
4.10 Discussion . 100
4.11 Limitations . 101
4.12 Summary . 103

5 Design and development of a grammar for the MV Layouts tool 105
5.1 Introduction to design of the grammar 105
5.2 Developing the rules for the MVG grammar 108
5.3 Design of the MVG grammar . 111
5.4 MVG grammar for multiple view layouts 113
5.5 Examples for the MVG grammar . 115
5.6 Discussion . 118
5.7 Summary . 120

6 Design and implementation of the MV layouts tool 122
6.1 Introduction . 122
6.2 Design of the LayMV tool . 125
6.3 Implementation of the LayMV tool 130
6.4 Results . 138
6.5 Discussion . 143
6.6 Summary . 145

7 Case studies and discussion 147
7.1 Introduction . 147
7.2 Preparation process and scenario to create multiple view visualisation 149
7.3 First case study . 150
7.4 Second case study . 153
7.5 Third case study . 161
7.6 Discussion . 167
7.7 Summary . 168

8 Discussion and conclusions 170
8.1 Discussion . 170

8.2 Consideration of the work . 173
8.3 Reflections on the research questions 175
8.4 Limitations and future work . 177
8.5 Conclusion . 179

List of Figures

1.1 (Research Procedure) (1) In (§3) Preparation, we explain how we
extracted 491 images from IEEE VIS 2012-2018 Conference publications,
and how we defined a view in multiple view visualisations. (2) In (§3)
Coding the multiple view visualisations, we illustrate how we coded
the images by their topology (making sketches of the layout, totalling 22
sheets of paper); discussing cases to confirm their layouts, we cut the 22
sheets of sketches into individual tiles, and organised them on a tabletop,
to analyse and tally the quantities. Also, in this section we explain how
we coded the visualisation types in order to calculate their quantity. (3) In
(§4) Quantification, analysis and discussion, we analyse and discuss the
results from quantifying multiple view visualisations. Finally, (4) in (§4)
Discussion, Conclusions and Guidelines, we discuss and summarise
the overall results, and we recommend a set of design guidelines to help
beginners in the data visualisation field to create robust multiple view
visualisations. 9

2.1 The methodology of the related work chapter based on exploring the
topics related to the multiple view visualisation area. 14

2.2 Picture from Roberts’ paper “On encouraging multiple views for
visualisation”, showing how multiple views can be formed by changing
parameters in the filtering of the data, or the mapping of the data, or
the presentation and display of the information. Image ©IEEE [105]
presented in International Conference on Information Visualisation (IV),
1998. 18

2.3 Wordcloud of our thesaurus of collocated words that are found in similar
contexts to the given lemma view, in the v6Y corpus. 26

2.4 Multiple views can be created and displayed alongside each other in
different ways: from different projections (a), changing the visual form
(b), or by adapting the data (c). Views can also be created to be
superpositioned (d) or merged through an explicit encoding (e). 28

3.1 Methodology of data gathering and quantification preparation chapter. . 42

3.2 Four visualisation tools (T1-4). Visualisations T1 and T2 clearly show
three views, while T3 has two windows and a menu that is ignored (three
explanatory visualisation tools created by our students [107]. T4 shows
the Vinca estuary visualisation tool [47] demonstrating five views. . . . 49

3.3 We sketched each topology in a small picture; we sketched all possible
alternatives, which were later discussed. 56

3.4 Nomenclature and icons for the most frequent layouts. 57
3.5 Image (from Brown et al. [22]), an example of coding 4-views layout. . 58
3.6 Image (from Chu et al. [34]), an example of coding 4-views layout. . . 58
3.7 Image (from Barba et al. [10]), an example of coding 6-views layout. . . 59
3.8 Image (from Crnovrsanin et al. [37]), an example of coding 3-views layout. 59
3.9 Image (from Hall et al. [53]), an example of coding 2-views layout. . . . 60
3.10 Figure showing 21 image thumbnails and their respective layout

classification. Sample images from our database of 491 images. 61

4.1 The methodology of the quantification and analysis process chapter. . . 69
4.2 Using a tabletop strategy, I cut these sheets into individual tiles such that

I could discuss them and move them around on a tabletop. I layout each
of the multiple-view topologies as separate sketched tiles. The simple
abstract drawings gave us a easy way to compare the structures without
being distracted by the actual view design or content. This provides a
visual summary of the range of layouts. 72

4.3 Histogram showing the frequency distribution of the views. From 491
multiple view systems, in our study we find that a 3-view system is most
frequent. 73

4.4 Histogram of symmetrical versus non-symmetrical views. 76
4.5 Correlations matrix of visualisation types, highlighted the collocational

and non-collocational pairs for visualisation types in layouts with six
views or less. 96

5.1 The picture demonstrates the Multiple View Grammar. It presents a
state-diagram to explain the cut algorithm. The user can cut the main view
horizontally (so it becomes two views) or vertically to create two-view
vertical layout. 107

5.2 The MVG grammar expression “V(50H(50,50),50)” describes the layout
in a hierarchy structure. 113

5.3 The shortcut MVG grammar expression “grid 3x3” created a grid layout
with nine views. 114

5.4 The shortcut MVG grammar expression “GoldenRatioV6Q4S70%”
created a golden ratio layout, where “V6” is the number of views in the
layout (in this example, we have 6 views), “Q4” indicates the position of
the golden ratio in the layout (in this example, the golden ratio is placed
in the fourth quarter of the layout), and “S70” represents the size of the
layout which is 70 percent of the multiple view tool panel, and we will
give more detail about it in the next chapter. 115

5.5 On the left, we show the grammar code v(50h(50,50),50). Where, the
rendering of the code is shown on the right. 115

5.6 On the left we show the grammar code v(75h(25,75v(50,50)),25). Where,
the rendering of the code is shown on the right. And, as shown in the
picture, we can define the size of the view by changing the view’s ratio in
the grammar expression . 116

5.7 This example shows how the user of the MVG grammar can define
variables to describe more complex layout. 116

5.8 The grammar code, on the left, shows how variables can be used. Where,
the rendering of the code is shown on the right. 117

5.9 This example show how to use a complex grammar expression to describe
a complex multiple view layout. 117

5.10 On the left we show the grammar code. The rendering of the code is
shown on the right. Or, we can use the shortcut grammar “grid 4x4” to
create the same layout. 118

6.1 This diagram illustrates the stages to build the LayMV tool, started with
the design of the tool, the implementation, Describe the LayMV Tool,
and finally a discussion about the LayMV tool. 124

6.2 The wireframe layout of LayMV tool, showing four main views: the
grammar editor, visual panel to control the layout visually, and tree-
navigator (to select different parts of the layout code) and the visualisation
editor (to allow users to add in their own visualisation code). 126

6.3 This diagram describes the LayMV tool and illustrates the main
components and functions, these are the main components of the system,
where “A” represented the visual components and “B” underneath the
line represents the hidden (algorithms) components. 130

6.4 This diagram describes the implementation of LayMV tool, we asked
experts in multiple view tools to use the LayMV prototypes and give
feedback for each version of the tool. 131

6.5 A snapshot for an early version of the LayMV tool, the “Add View”
button adds a view to the first left view of the LayMV tool each time we
clicked on it. In addition, we can use the mouse cursor to drag and drop
the views to move them around and build a multiple view layout; Then, by
clicking on the “Render Layout” button, we can render the same layout
in the third view of the tool. 133

6.6 A snapshot for an updated version of the LayMV tool, the “Create layout
by MVG Grammar” button created the multiple view layout by using the
MVG grammar “a:50; b:(a,a); Expr:v(40h(25,75vb),20hb,20hb,20hb);”.134

6.7 A snapshot for the LayMV tool after we added the tree navigator view
and the shortcut grammar (Layout technique editor), the expression
“goldenratiov6q4s100%” in the Layout technique editor created the
above golden ratio layout. 135

6.8 Template viewer. Users can choose a starting layout, search for a specific
view quantity, various multiple view Layouts can be created with different
views number, and the user can later edit the template. 139

6.9 LayMV tool, with three linked views. (A) grammar panel to edit the
grammar (either shorthand e.g., v(50,50) or full JSON, shown), (B)
Visualisation panel of either the wireframe editor or layout editor (shown)
and (C) property panel. 140

6.10 Using MVG grammar to create multiple view Layouts. 142
6.11 Using LayMV Layout Technique to create multiple view Layouts. 143

7.1 This diagram describes the steps that the user of the LayMV tool should
follow to create a multiple view visualisation. 148

7.2 Template viewer. Users can choose a starting layout, search for a specific
view quantity, various multiple view layouts can be created with different
views number, and it can edit later in the second screen. Label “A” shows
the multiple view layout that was chosen through a left mouse click , then
we clicked on the “Create New Layout” button as shown by label “B”. . 151

7.3 Main view. After choosing the template it is shown in the main view.
There are three vertical panels. The left most panel controls the grammar,
and has three tabs. The middle part is the visual editor, allowing users
to ‘draw’ the views. The right most panel shows two views, which can
control the appearance and allow users to add in data and visualisation
code. Along the top, users can choose to save the project and load it. . . 152

7.4 Main screen showing two bar chart visualisations. Users can choose a
starting layout, search for a specific view quantity, various multiple view
Layouts can be created with different views number, and the user can later
edit the template. 152

7.5 Final visualisation. This screenshot demonstrates the final visualisation
for the first case study. It shows a simple D3.js side-by-side view of two
bar charts. 153

7.6 Template viewer. We start again, for case study 2, on the template screen.
In this case the user selects the 2 by one view layout. 154

7.7 Template viewer. Users can choose a starting layout, search for a specific
view quantity, various multiple view Layouts can be created with different
views number, and the user can later edit the template. 155

7.8 Shorthand grammar viewer. Users can write the shorthand grammar in
this window, which will display (when updated) in other views. Using the
shorthand users can create complex views, using some simple commands. 155

7.9 Layuot Appearance views. The user can adapt different aspects of the
appearance. They are able to choose a specific Component of the layout.
The tree is automatically updated from the information in the MVG
grammar. Subsequently, users can then select the Viz, add the Data and
the Visualisation code. Here the Layout appearance is shown in the lower
view. Users can change the parameters to adapt how the views appear. . 156

7.10 This screenshot for the LayMV tool shows the result of the creation
process of the multiple view visualisation. Where label “A” points to the
layout editor (Figure 7.11 gives a clear picture with more details about
this part of the LayMV tool). Moreover, label “B” points to the properties
window of the visualisation technique that located in the third view at
the bottom of the multiple view visualisation (Figure 7.12 gives a clear
picture with more details about this part of the LayMV tool). Finally,
label “C” points to the Data section in the tree navigator that belong
to the third view (Figure 7.13 shows a screenshot for the Date window
that should appear instead of the properties window of the visualisation
technique in the user click on the Data part that belongs to the third view). 157

7.11 This figure shows a clear picture for the layout editor window that was
labelled in Figure 7.10 as “A”. 158

7.12 This figure shows a clear picture for the properties window of the
visualisation technique that was labelled in Figure 7.10 as “B”. 158

7.13 This figure shows a clear picture for the Data window that was labelled in
Figure 7.10 as “C”. 159

7.14 Screenshot for the multiple view visualisation that created by the LayMV
tool. 160

7.15 This figure shows how the user can change the layout of the multiple view
visualisation, that shown in Figure 7.14, using the MVG grammar . . . 161

7.16 The MVG grammar to create a layout with eight views. 162
7.17 Template viewer. Starting again from scratch for case study 2. First use

the template screen. In for this case study, the user selects the 2 by one
view layout. 162

7.18 Template viewer. Users can choose a starting layout, search for a specific
view quantity, various multiple view Layouts can be created with different
views number, and the user can later edit the template. 163

7.19 We used the grammar viewer users can create the multiple view layout in
this window. 163

7.20 From the layout editor we can control layout’s dimensions. 163
7.21 This screenshot for the LayMV tool shows the result of the layout creation

process of the multiple view visualisation. Label “A” points to the layout
editor, where (Figure 7.22 gives a clear picture for this part of the LayMV
tool). Moreover, label “B” points to the visualisation properties window
that located at the bottom corner of the LayMV tool, where (Figure 7.23
gives more details about this part of the LayMV tool). Finally, label “C”
points to the “Data” node in the tree navigator that belong to the third view
of the multiple view layout, where (Figure 7.24 shows a screenshot for the
Date window that should appear instead of the visualisation properties
window when the user click on the “Data” node). 164

7.22 This figure shows a clear picture for the layout editor window that was
labelled in Figure 7.21 as “A”. 165

7.23 This figure shows a clear picture for the properties window of the
visualisation technique that was labelled in Figure 7.21 as “B”. 166

7.24 This figure shows a clear picture for the Data window that was labelled in
Figure 7.21 as “C”. 166

7.25 Screenshot for the multiple view visualisation that created by the LayMV
tool. 167

List of Tables

2.1 Multiple views have been applied to many domains and application areas.
This table presents a summary of some of these areas. 20

2.2 Part of speech (PoS) for multiple and view, highlighting they are more
frequent in the visualisation corpus (v6Y) in comparison to the Open
Access Journal corpus (oAJ). Raw frequencies, and per-million normalised
count 𝑝𝑚 are shown. Non-visualisation words (typically found in any
academic texts) show similar proportions across corpora. 22

2.3 Part Of Speech examples (PoS) for multiple and view published in IEEE
VIS. 23

2.4 Frequency of occurrence, showing raw and normalised per million values
for the first twenty examples of nouns and verbs modified by multiple
and modifiers of view. In the v6Y corpus (IEEE VIS TVCG journals
2012–2017). 24

2.5 Words that are prefixed with multi- in the v6Y corpus (frequency shown
per million). In these results n-tuples are not included, but are shown in
Figure 2.4, e.g., multiple views (without a hyphen) has a frequency of
(268𝑟𝑎𝑤, 42.51𝑝𝑚). To understand scale, v6Y: 100𝑟𝑎𝑤 is 12.16𝑝𝑚. 25

3.1 Strategy to select which multiple view images to evaluate. 47
3.2 Strategy to select which multiple view images to evaluate. 48
3.3 Strategy to help ascertain ‘what is a view’ in a multiple view visualisation. 53
3.4 Strategy to code layout topologies. 55

4.1 Results of tallying the views. Views were also tallied per years, with the
frequency and the percentage frequency. Applications with 20+ views
are aggregated together (and treat them with a system of 20 views, for
calculations). 75

4.2 Results of tallying the specific layouts, per years. Where 𝑓 is frequency,
%𝑉 𝑓 is percentage frequency of that View type, and % 𝑓 is percentage
overall. The complete dataset is shown in this table. It demonstrates a
long tail of many cases with few instances, in fact there are 81 layouts
with 𝑓 < 1). The rows are ordered by their overall rank. 79

4.3 Overall data visualization domains in all layouts, the top-ranked data
visualization domains are mostly found in the top-ranked layouts (as
explained in Section 4.3 and shown in Table 4.1 and the histogram
Figure 4.3). 85

4.4 The quantification of data visualization domains in the top-ranked layout
arrangements (the order of layout arrangements is taken from the top
layout arrangements that listed in Table 4.2 at Section 4.5). The top six
rows are highlighted in green because there are more data domains within
these layouts. 87

4.5 visualisation view types, calculated by year (2012 to 2018). 91
4.6 Overall visualisation types in all layouts, the top-ranked visualisation

types are mostly found in the top-ranked layouts. 92
4.7 The quantification of the visualisation types in the top-ranked layout

arrangements, as both were ranked based on their respective overall
rankings. 94

Chapter 1

Introduction

1.1 Introduction

In today’s digital universe, data are expanding rapidly, and developers and researchers are

creating huge databases. In addition, users employ numerous multiple view visualisation

systems to explore, explain, and discover information from databases. For example,

they use side-by-side views in competitive systems to compare two databases, or look at

a single database from different perspectives. And while multiple views have been used

in visualisation for more than thirty years, people often do not know how many views

they should use. Besides that, they may not know how to lay out their views or adopt

best practices for positioning these views on a screen.

There are many reasons why understanding the quantity of views, the quantity of

visualisation, and the layout configurations is useful. One major reason is to provide

results that can underpin the development of a theory of visualisation. Expert users draw

upon a range of tacit knowledge that they apply in order to design effective systems, and

refine their designs through many iterations. It is this tacit knowledge that is encoded

in their final designs. Our analysis provides quantitative research that can underpin

such theoretical models. Another reason is so that we can develop a set of design

guidelines which will help not only visualisation experts but also those who are creating

visualisations for the first time. The vision of this research is to develop guidelines and

share best practice of different techniques for the general public. If, as a community, we

want to provide guidelines for best practice, we need to understand exactly what we are

doing. As visualisation tools and systems become more widely accessible, and we see

a democratisation of visualisation techniques where the public are creating and using

visualisations, we need to perform quantitative research that can be developed into

1

practical advice. Much like an architect would provide guidelines for how to best design

a building, or a colour researcher would provide guidelines over the design of colours,

so we, as a community, should be providing guidelines in a variety of visualisation

topics.

This thesis presents a quantitative evaluation of the number of views used in multiple

view systems, their layout configurations, and the types of visualisations used. In

this work we concentrate on view juxtaposition, where each view sits alongside each

other view, and on the topology of each design layout (e.g., a 2-view system can have

one view above the other, or left/right of each other). We focus on tools that were

presented in research publications at the IEEE Visualization Conference between 2012

and 2018, inclusively. This seven-year period provides a convenient and reproducible

set of images of the modern visualisation tools that have been designed and presented by

community experts. In particular, because these works have gone through peer review,

we assume that the authors have spent much careful thought over how they present their

tools; and consequently, they have been attentive to the selection of their views and the

presentation of their multiple view systems. After selecting and extracting the images,

we codify them and perform an in-depth analysis of these results.

This study considered many sources, including making use of a general internet search

for visualisation images, video sources such as Vimeo and YouTube, and other online

image repositories. We believed the inclusion of these sources might provide us with a

rich data set of different images, and this is certainly a limitation of what we carried out

here. However, they also bring challenges, because image searches can change over

time, and results can change according to user or geographic location, which would

make it more difficult for others to confirm our studies, and to add more images for

future years.

By focusing on the layout of visualisations (as presented at the IEEE Visualization

Conference) and by understanding what types of visualisation authors use, designers

will have a whole set of guidelines enabling them to develop better visualisation tools,

and researchers can create guidelines which will be useful for visualisation learners,

designers and others who wish to create visualisations. This set of guidelines can then

be used to help designers to create new tools or systems, and guide them to base their

Introduction 2

layout visualisations on best practices. Because expert knowledge is currently tacitly

encoded in visualisation designs, there are numerous research questions that remain

unanswered in the community, in the area of multiple views. However, until now, no

guidelines of this type have ever existed.

1.2 Motivation

Multiple view systems are often used by visualisation developers. But it is not easy for

developers to know how to lay out and position the views in their systems, how many

views they should use, what is the best visualisation type for each view, or what design

attributes work best. We believe that developers and learners should have guidelines

and frameworks which can help them to make good design decisions.

Consequently, the goal of our work is to help researchers to develop theories for

visualisation. And, to achieve this goal, we perform in-depth research to understand the

best practices for what we currently do. The thesis investigates multiple view systems

and develops guidelines and a system to assist new developers in creating better multiple

view visualisations.

1.3 Vision and aims

At the current time, the visualisation community is expanding. Visualisation is not only

carried out by visualisation experts who go to visualisation conferences, and who may

implicitly understand how to create visualisations, but it is also produced by the general

public, by enthusiastic developers, and by employees of companies with typically no

experience or history of developing data visualisations.

These novices are often creating visualisations without much or any knowledge of

good practice that the academic community has developed over the past twenty or

so years. Visualisation democratisation has occurred in part because of the rise of

the availability of open-source tools and software such as D3.js, Angular.js, RStudio,

the widespread access to commercial visualisation tools, such as Qlik, Tableau and

Matlab, and the inclusion of visualisation functions to common tools such as Microsoft’s

Excel. Consequently, people around the globe are now using visualisation to help

Introduction 3

them better understand their data. They are developing systems, using visualisations in

their day-to-day lives, and so on. But how do they distinguish between what is good

practice and what is not? Consequently, we need to examine current practices within

the community, and share those experiences with the general public. We need to create

suitable tools to help developers use and apply best practices.

The vision of this work is to develop guidelines for visualisation developers and teachers

with the following rationale:

If we can understand the multiple view visualisation area better, and place some

quantification analysis on multiple coordinated views, then we will be able to develop

a set of guidelines which help developers understand how to create appropriate tools.

For that reason, when guidelines have been created, they can be used by the public,

by students learning more about visualisation, or by academics to help them teach

best practices. Furthermore, they can be incorporated into design tools, or even

underpin specialist automatic design tools. Our long-term vision is to eventually

develop automatic tools that incorporate these principles, which particularly utilise

multiple views. Moreover, while there are already a number of academic papers that

provide guidelines of multiple views, they appear to be based on subjectivity rather

than quantitative data. For instance, the well-known paper by Baldonado et al. [144]

provides “Guidelines for Using Multiple Views in Information Visualization”, yet it is

unclear what quantitative information underpins this work. It appears that that work

was based on subjective intuition. Consequently, our focus is on quantitative analysis.

By simply considering Baldonado et al., we can accept or deny their guidelines. At the

start of our research, however, we specifically set out to test if the rule of parsimony

stands true: that users only utilise very few visualisations in a multiple view system.

The aim of this study is to develop theories for data visualisation, and, specifically, to

develop guidelines on best practices for multiple view systems; this will help learners

better understand and develop multiple view systems. But to achieve these goals, this

investigation needs to perform in-depth quantitative evaluation research to understand

best practices for what researchers currently do with multiple view systems. In addition,

Introduction 4

this research concentrates on providing a tool to create multiple view visualisation based

on a new multiple view grammar.

1.4 Scope of research

Multiple views have been used in information visualisation for many years. There are

different design strategies from view juxtaposition, superposition of many views, or

cleverly merging the view information, such as by overloading or nesting. In this research

we focus on multiple view layout using view juxtaposition strategy, where developers

display information in many side-by-side views. One of the reasons developers use

such duplication is to help users understand better the information which is displayed.

Additionally, the manipulation of data within these juxtaposed views is often interlinked.

In fact, Coordinated Multiple View systems provide the backbone of most modern

visualisation systems. However, because our primary focus is on multiple views, we do

not investigate coordination in any great depth, although we acknowledge that it is an

extremely important principle, and we do indeed cover some aspects of coordination

in Chapter 2 (Related Work). However, coordinating views is a separate challenge,

and it relies on quick associated arrays and different coding infrastructures. We also

acknowledge that there is certainly much research that can be conducted in this area,

but we leave it to future work, and other researchers, to investigate and review aspects

of coordination in multiple view systems.

1.5 Research questions and objectives

Our approach begins by addressing several research questions, both overarching and

more specific sub-questions. We expand on the holistic motivational research questions

below, and include several discussions to some of the sub-questions in each chapter. For

example, sub-questions include: How were images selected for the multiple view study?

What is the definition of view? How do we count views and organise layouts to quantify

them? Does symmetry play a role? How should design attributes be considered? Does

the type of (or form of) visualisation used make a difference to the view counts and

layout? Below, we summarise our primary research questions (RQ) and outline our

methods to investigate them.

Introduction 5

RQ1 What is the strategy to code layout topologies and visualisation types? To

answer to this question, we sketch all layouts by using the figure-ground method.

First, we remove all the content from the views. Then, we code the layout

topologies after we determine the views for each layout. Subsequently, we code

The visualisation types for each view. This question is addressed in Chapter 3.

RQ2 How many views are used in multiple view systems? Our solution is to

quantitatively analyse the number of views that developers use, presented in the

visualisation literature, by extracting images from visualisation papers presented

in the IEEE visualisation conference series, over a seven-year period, coding the

images, and calculating the quantity of each configuration. These results can be

used by developers to guide them in decisions over view quantity and design.

This question is addressed in Chapter 4.

RQ3 Do developers prefer symmetrical or non-symmetrical layouts for multiple

view systems? Our solution is to quantify and analyse the topologies of multiple

view layouts. This question is addressed in Chapter 4.

RQ4 What layout arrangements are popular in multiple view systems? To answer

this question, we itemise and classify views by their basic topological layouts, and

discuss the results. Our resulting taxonomy (and popularity of each configuration)

can be used by those who wish to configure multiple view systems, and by

developers to create suitable systems. This question is addressed in Chapter 4.

RQ5 What visualisation types are used in multiple view systems? What

visualisation types are the most frequently used? Are some layout

arrangements more likely to hold certain types of visualisations? Our

solution is to code and itemise the types of visualisations (bar chart, line graph,

scatter plot etc.) and their use in different layouts. This information can be used to

develop and summarise design guidelines and identify best practices in multiple

view visualisation. This question is addressed in Chapter 4.

RQ6 What types of visualisations come together in multiple view systems? To

answer this question, we calculate the visualisations that occur together by using

the basket analysis method. This question is addressed in Chapter 4.

Introduction 6

RQ7 What salient guidelines can be learnt from the analysis, to help users to

design and develop robust multiple view visualisations? The analysis of the

answers to the above questions will assist us in providing a set of guidelines to

help learners in the visualisation field and help new developers to build multiple

view visualisations. This question is addressed in Chapter 4.

RQ8 What is a multiple view grammar and how can it be used in multiple view

tools to create multiple view layouts? This question is addressed in Chapters 5,

6 and 7.

These aims will achieved through the following measurable objectives:

Obj 1 Preparing and coding multiple view visualisations. In Chapter 3, this study will

illustrate the preparation and coding processes, which will help answer research

question RQ1.

Obj 2 Quantifying multiple view visualisations. In Chapter 4, this study will explain

how we quantify multiple view visualisations, which will enable us to answer

research questions RQ2, RQ3, RQ4, RQ5 and RQ6.

Obj 3 Analysing the quantification and introducing a set of guidelines to help

developers to create multiple view visualisations. In Chapter 4, this study will

show how we analyse the quantification of multiple view visualisations, which

will enable us to answer research questions RQ2, RQ3, RQ4, RQ5, RQ6 and

RQ7.

Obj 4 Introducing a tool to create and control multiple view layouts based on a

multiple view grammar. In Chapters 5 and 6, this study will demonstrate how

we formulate a grammar which will help us to create multiple view layouts. In

addition, we describe the stages of building a multiple view tool that uses a

multiple view grammar, which will enable us to answer research question RQ8.

Introduction 7

1.6 Research methodology and the structure of the thesis

This doctoral study went through three stages in order to perform the quantitative study,

as shown in Figure 1.1 below: (1) Preparation, where we selected which images

would be used, and extracted them from the papers into a separate database. This

study analyses the layout strategies by creating a database of images from the IEEE

Visualization Conference (IEEE VIS). Every year the IEEE (Institute of Electrical and

Electronics Engineers) organises an annual Visualization Conference, which includes

journal papers published in the IEEE Transactions on Visualization and Computer

Graphics, associated conferences and poster publications. We created a database of

images from the IEEE VIS Conference between 2012 and 2018, inclusive. We selected

491 images, made judgements on the 491 views, made abstract sketches (totalling 17

sheets of paper), and discussed cases in order to confirm their layouts. (2) Coding,

where we considered each visualisation in turn, judging the topological makeup of each

visualisation, coded them in such a way that we could classify them, and recorded a

sketch of their topology; we also coded and recorded the types of visualisations in each

layout. (3) Analysis, where we organised and classified the views according to their

layout, using a method of physically organising the pieces of paper on a table; we then

counted the layouts, and performed quantitative analysis.

(1) Preparation: (i) Select files. (ii) Extract images. (iii) Name images. (iv) View

identification.

(2) Coding: (i) RQ1, coding the layout arrangements. (ii) RQ1, coding the

visualisation types.

(3) Analysis: (i) Results RQ2, how many views? (ii) Results RQ4, what layout

arrangements? (iii) Results RQ5, what visualisation types?

We structure this thesis similarly to our study methodology, as shown in Figure 1.1

below. First, we describe related work in Chapter 2. Second, in Chapter 3, we describe

how we collected the images for our analysis and how we identified a view in multiple

view visualisation, and we present how we have codified the layout arrangements and

Introduction 8

visualisation types. Third, in Chapter 4, we present the results for the quantification of

multiple view visualisations. We then discuss the overall results and present the design

guidelines for how to create robust multiple view visualisations. Fourth, in Chapter 5,

this thesis develops and explains a new multiple view grammar that allows users to

create and control multiple view layouts. Fifth, in Chapter 6, this work builds a tool

that gives users the ability to create, control, save and reload the multiple view layouts.

Sixth, in Chapter 7, we present two case studies to test and discuss the ability of the

multiple view tool to create multiple view visualisations. Finally, in Chapter 8, we

describe our conclusions and make suggestions for future works.

Figure 1.1: (Research Procedure) (1) In (§3) Preparation, we explain how we extracted 491
images from IEEE VIS 2012-2018 Conference publications, and how we defined a view in
multiple view visualisations. (2) In (§3) Coding the multiple view visualisations, we illustrate
how we coded the images by their topology (making sketches of the layout, totalling 22 sheets of
paper); discussing cases to confirm their layouts, we cut the 22 sheets of sketches into individual
tiles, and organised them on a tabletop, to analyse and tally the quantities. Also, in this section
we explain how we coded the visualisation types in order to calculate their quantity. (3) In (§4)
Quantification, analysis and discussion, we analyse and discuss the results from quantifying
multiple view visualisations. Finally, (4) in (§4) Discussion, Conclusions and Guidelines, we
discuss and summarise the overall results, and we recommend a set of design guidelines to help
beginners in the data visualisation field to create robust multiple view visualisations.

Introduction 9

1.7 Contributions

The thesis makes six novel research contributions in the visualisation field, as follows:

(1) A strategy to select which images of multiple view visualisations to evaluate.

(2) A new strategy to help ascertain ‘what is a view’ in a multiple view visualisation.

Other researchers can apply this strategy in order to quantify how many views are

shown in a figure or screenshot.

(3) Results of the comprehensive quantitative analysis of the layout and the

visualisation techniques of multiple view visualisations. These results can

be used by other researchers to help them understand the current use of multiple

views in the visualisation literature. They can be used to help them advise others

and create guidelines for multiple view systems. They can be used to help create

automatic-layout systems, or recommender systems. The results also provide

a snapshot in time, and in the future a similar study could be performed and

compared to our results. Researchers could then observe how the community has

changed.

(4) A set of guidelines to help the community understand, and developers to create,

robust multiple view visualisations.

(5) A new grammar which can be used to create a tool for multiple view layouts and

multiple view visualisations tool. The thesis presents a demonstration system

that integrates the grammar, and demonstrates how it is possible to use it; other

researchers can then extend the grammar and/or utilise it in their own tools. It

can be used by other researchers to help develop appropriate visualisation tools,

and save multiple view layouts.

(6) A new demonstrator tool, LayMV, which creates, controls, saves and reloads

multiple view visualisations. The LayMV tool uses the multiple view grammar

to create and manage multiple view visualisations.

Introduction 10

Furthermore, a total of six papers have been published during the time of the research

for this thesis (P1-P6). Each of the publications has focused on different aspects of the

thesis; these include the strategies to quantify multiple view visualisations, in addition

to the guidelines and the tool to create multiple view visualisations. For each, we

include below a short description of the content and how it contributes to the thesis.

(P1) H. M. Al-maneea and J. C. Roberts, ‘Study of Multiple View Layout Strategies

in Visualisation’, in Posters presented at the IEEE Conference on Visualization

(IEEE VIS 2018), Berlin, Germany, Oct. 2018.

Included in Chapters 3 and 4, this 2-page poster paper contributes the initial

results for the quantification, includes some early values, and presents the process.

From the poster presentation, and discussion of this work with Professor John

Stasko, we changed the quantification process to also include visualisation systems

with one view.

(P2) J. C. Roberts, H. M. A. Al-Maneea, P. W. S. Butcher, R. Lew, G. Rees, N.

Sharma and A. Frankenberg-Garcia, ‘Multiple views: Different meanings

and collocated words’, English, Computer Graphics Forum, Mar. 2019, issn:

1467-8659. doi: https://doi.org/10.1111/cgf.13673.

The second author contributed to knowledge of multiple-view systems and different

words for multiple view. While not the main focus of this thesis, ideas from this

paper are contained within the thesis in Chapter 2 on Related Work.

(P3) H. M. Al-maneea and J. C. Roberts, ‘Towards quantifying multiple view

layouts in visualisation as seen from research publications’, in 2019

IEEE Visualization Conference (VIS), Oct. 2019, pp. 121–121. doi:

10.1109/VISUAL.2019.8933655.

Included in Chapters 3 and 4, this short paper presents the methodology,

discussion of ‘what is a view’, and the main quantitative results.

(P4) H. M. Al-maneea and J. C. Roberts, ‘A tool to help lay out Multiple View

Visualisations guided by view analysis’, in Poster session presented at Eurovis

2020, Norrköping, Sweden, May. 2020.

Introduction 11

Included in Chapters 5 and 6, this poster paper introduces the LayMV tool to

create multiple-view designs.

(P5) X. Chen, W. Zeng, Y. Lin, H. M. Al-Maneea, J. Roberts and R. Chang,

‘Composition and configuration patterns in multiple-view visualisations’,

Transactions on Visualisation and Computer Graphics, (pp. 5, 14, 39), doi:

10.1109/TVCG.2020.3030338

Included in Chapter 4, collaborating with Prof Remco Chang, X.Chen, W.Zeng

and Y.Lin we shared results of our quantitative analysis process and worked

together on a paper focusing on their tool. The writer of this thesis contributed

with the quantification results of multiple view visualisations and the ideas and

the general background of multiple views.

(P6) J. C. Roberts, J. W. Mearman, P. W. S. Butcher, H. M. Al-Maneea and P. D.

Ritsos. “3D visualisations should not be displayed alone – encouraging a need

for multivocality in visualisation”. Eurographics UK-Chapter conference. EG

UK Computer Graphics & Visual Computing (2021).

This represents a collaboration between many authors. Results from the

quantitative analysis (Chapter 4), especially those focusing on 3D visualisations,

fed into this paper.

Introduction 12

Chapter 2

Related work

This chapter aims to provide a holistic understanding of the topics related to multiple

view visualisations. The goals are (a) to understand the development of multiple views;

and (b) to understand the design principles of multiple views and different multiple

view tools. Therefore, this related work provides some underpinning information that

leads towards the goal of developing guidelines related to multiple view visualisations.

Specifically, this chapter focuses on the following research questions and is structured

in the order of the research questions.

Q1/ What terms are used in multiple views, and what do they mean?

Q2/ What are the key moments of history in prior research of multiple views?

Q3/ What are the general design principles?

Q4/ What tools have been designed to create multiple view visualisations?

Q5/ What theories and guidelines (such as grammars) have researchers invented, that

are to do with multiple view visualisations?

2.1 Introduction

This chapter explores and investigates the multiple view visualisations area, and reviews

the breadth of ideas used by developers of multiple view visualisations for deep

understanding. In particular, to study multiple views in depth we need to look at

multiple views from different perspectives, from understanding what the terms mean,

to how they are designed, the tools that are used to create them, and guidelines that

researchers have created for them. This chapter therefore takes a broad approach to the

topic of multiple views. Figure 2.1 shows how these ideas map together.

13

Figure 2.1: The methodology of the related work chapter based on exploring the topics related
to the multiple view visualisation area.

• Background, concepts, history and themes, Section 2.2: The research

investigates multiple views, analysis of terms used around the subject of multiple

views, including the meaning of the terms used in multiple view visualisations,

and the key moments of history in prior research of multiple views. The work

focuses on research questions Q1/ and Q2/, the terminology of multiple views,

and their history.

• Design (general design principles), Section 2.3: This section focuses on design

concepts in general, design principles, and rules about design that would be

relevant to multiple views. The chapter focuses on research question Q3/.

• Tools, Section 2.4: This section focuses on tools and systems related to multiple

views. Because coordinated multiple views are used with tools, we will include

some information on multiple views. This focuses on research question Q4/.

• Visualisation grammars, theories and guidelines, Section 2.5: This section

investigates the theories and design guidelines for multiple view visualisations.

The section focuses on research question Q5/.

• Summary (Section 2.6): This section summarises the whole chapter.

2.1.1 Scope and methodology of the related work

The scope of the research is on view layout. The entire thesis revolves around

understanding how people lay out views, and how these views are positioned side-by-

side or adjacent to each other. We are also concerned with the types of visualisations

Related work 14

that researchers place within these views. Indeed, there are many ideas associated with

multiple views that we could cover in depth, but which are beyond the scope of this

chapter.

One of these important areas, which we do not focus extensively on, is the concept of

coordination. Coordination is certainly an important area of research in visualisation.

The technique of “coordinated multiple views” underpins much of interactive and

exploratory visualisation [116]. When researchers mention multiple views, they often

do so with the phrase ‘multiple coordinated views’ or ‘coordinated multiple views’.

However, because this thesis is more concerned with visual layout of multiple views,

we consider ‘coordination’ to be beyond the scope of an in-depth review for this thesis.

We discussed and considered whether we should add coordination into the quantitative

analysis (Chapter 4), but after this discussion we decided to restrict the focus of the

analysis to aspects of layout and structure. The area of coordination, along with an

in-depth quantitative analysis of how researchers use it, would definitely be interesting,

but we leave this analysis for future work.

For reference, there aremany papers that focus on aspects of coordination in visualisation;

these include: Roberts [116], Boukhelifa et al.’s coordination model [17], North and

Shneirderman’s Snap-Together [94], Weaver’s cross-filtered views [148, 149, 150],

Andrienko’s coordinated views for geo-spatial information [6], Craig, Kennedy and

Gumming’s work on coordinated views in networks [36], and switching and context

with multiple views [35]. More recently, researchers have looked into developing

multiple view interactions and coordinated views across devices, beyond the desktop

and in immersive displays (such as head mounted displays) [119]. Example of this

research are Chowdhury et al.’s work on multimodal interactions [32], Tahir’s work on

immersive analytics [80], and Gaëlle et al. ’s work on distortion and coordination [103].

The chapter follows a methodology whereby papers are located and read using digital

libraries. Because this thesis studies computing aspects of generating multiple views,

the focus has been on computing-based digital libraries – notably, IEEE and ACM, along

with SpringerLink, Elsevier and other publishers. Google Scholar was used to search

through different publications and explore related publications. The research started

with outline keywords of multiple views, side-by-side views, view layout, juxtaposition

Related work 15

and so on, and used the papers returned to locate other relevant publications. We

followed citation links in papers to discover additional papers. The papers were also

stored in Mendeley to help record the academic body of work. For the design section

(Section 2.3) we note that the design literature is vast, and there are many design ideas

that could be included. Consequently, only a small subset of important works is included,

especially those that have been cited by researchers who publish in the visualisation

domain. Finally, it is important to notice that the area of generating guidelines and

investigating the theory of visualisation is a new topic; consequently, there are fewer

references in this area.

2.2 History, background and concepts

Many of the early multiple view systems came from either the statistics community,

or the programming community. In the late 1970s and early 1980s many researchers

were investigating how object-oriented programming could be used to create different

objects, perhaps with a variety of different visual displays, and coordinate them together.

Developers wished to develop systems that link information between different displays.

For example, Tukey and colleagues in the mid-1970s created the Prim-9 interactive

tool [45] to visualise multidimensional data across several views. Statistical information

in one view can be selected and displayed in a highlight colour, and can also be shown

in another view. In this way, a user can explore the data, perhaps brush to select a group

of items that appear close together in one dimensional view, and see how they are spread

in other linked views. Apart from Tukey, many other researchers were influential in

their idea and tool development. For instance, Becker and Cleveland’s early work, that

was published in 1987, on brushing scatterplots [12] was influential not only to the

statistics community and to help revolutionise interactive statistical investigation, but

also to encourage researchers to investigate and develop interactive visualisation tools.

Consequently, many of the early researchers were especially motivated by being able

to brush and link data between views. Researchers created a broad set of interactive

brushing tools, as explained in the reviews by Roberts [116] and Ward [145].

However, in the 1980s and 1990s, few researchers were talking about ‘multiple

coordinated views’. Most researchers stated that they were performing ‘interactive

statistical analysis’ or ‘multidimensional brushing’. For instance, in 1982 John

Related work 16

McDonald was working on the Orion project [86], which he explained as “interactive

graphics for data analysis”. Tufte, Becker, Cleveland and McDonald’s work, as well as

other statistical researchers of the 70s and 80s, helped to establish Exploratory Data

Analysis (EDA) as a branch of statistical analysis.

One of the earliest known occurrences of the phrase ‘multiple views’ or ‘multiple

coordinated views’ was probably its use in 1991 by Buja [87, 23], when he illustrated

an approach called painting multiple views to build a visualisation for complex objects.

At the start of the 1990s new conferences were started. The IEEE Visualization

Conference started and the UK Information Visualisation Conference was also initiated.

Many researchers were developing interactive tools, particularly focused on interactive

visualisation and statistical analysis.

We may consider the 1990s and early 2000s, then, to be a second wave of developments

in the multiple view story, where many researchers developed interactive multiple

coordinated view systems. For instance, Berkin and Jacobson in 1994 [13] published

their Linked Windows Interactive Data System (Linkwinds). Other researchers then

developed a variety of interactive tools. For instance, Roberts developed his Waltz

visualisation tool [111], and Chris North, working with Ben Shneiderman, developed

the Snap-Together interactive visualisation tool in 2000 [94]. Dykes created his CDV

visualisation tool [40], Mondrian by Martin Theus was published in 2002 [140], and in

2004 Weaver published Improvise [148]. These early tools led to the initiation of the

Coordinated Views in Exploratory Visualisation project, funded by EPSRC, which led

to Roberts organising the first set of conferences that focused on multiple coordinated

views (see cvev.bangor.ac.uk). The coordinated and multiple view conference series ran

for five years from 2003 to 2007, inclusive. Several influential publications came from

this series of venue, notably the state of the art in Coordinated Multiple Views (CMV)

in 2007 [116], which has to date been cited over 700 times, as well as phrases such as

multiform [112] to explain the different visualisations, and a model for coordination [17].

During this time, many researchers investigated brushing techniques, and several papers

were influential in this domain. Most notable were Martin and Ward’s work on the

XmDvTool [83], as well as Wong and Bergeron’s work on brushing in volumetric

data [157], Hauser et al.’s [54] work on angular brushing, Li et al.’s [73] work on

Related work 17

Figure 2.2: Picture from Roberts’ paper “On encouraging multiple views for visualisation”,
showing how multiple views can be formed by changing parameters in the filtering of the data, or
the mapping of the data, or the presentation and display of the information. Image ©IEEE [105]
presented in International Conference on Information Visualisation (IV), 1998.

brushing versus dynamic queries, Doleish’s work on smooth brushing [39], Chen’s [27]

work on compound brushing, and Wong and Bergeron’s work on wavelet brushing [156].

During the 1990s and 2000’s, researchers were creating many interactive tools, and

exploring ways to interact with the data. Many influential visualisation systems were

developed, such as AVS [141], IRIS Explorer, and IBMData Explorer, using the dataflow

model [52]). Consequently, researchers could use these systems to create multiple

view visualisations. They loaded the data, filtered, selected and enhanced the data to

create demonstration datasets, and then mapped the information into visualisations [52].

Indeed, the dataflow model creates a convenient way to consider how multiple views

are generated [105]. Roberts writes

“Different visualisations may be formed through changing the data being

filtered and selected; by changing the applied geometry or colourmap, at the

mapping stage; or by adapting the display projection itself. Therefore, by

taking this idea to its extreme, we may draw a graph representing possible

multiple views .. [Figure 2.2], where a particular route through the graph

represents a specific visualisation”, Roberts [105].

Roberts’ diagram is shown in Figure 2.2. It shows the extreme position, whereby

different visualisations can be created by changing parameters to the visualisation

Related work 18

process. When any parameter is changed, a new view can potentially be created

and displayed. This also demonstrates two principles: replication and replacement.

Replication occurs when the values alter the visualisation and a new view appears. On

the other hand, when, on a parameter change, the values affect the same view, then

the visualisation is swapped to the new picture, and the information has been replaced.

These ideas helped to develop later research on a model of view comparison [49], and

we discuss these ideas in more detail in Section 2.2.6.

Researchers in the 2000s and up to the present time then started to use the techniques

developed by these early researchers, and apply them to different domains. Researchers

investigated and extended aspects of, and principles around, coordination and brushing.

For example, Weaver investigated ways to coordinate and filter in his cross-filtered

view technique that he implemented in the Improvise visualisation tool [150]. Koytek

et al. created the MyBrush tool to investigate brushing and linking and bespoke

interaction [66]. Piringer et al. [98] investigated focus+context visualisation with linked

2d and 3d scatterplots. And Covertino et al. [35] looked at context switching and

cognition in dual-view systems. Qu and Hullman looked at how multiple views can be

kept consistent [100]. Finally, Gaëlle et al. [103] explored how spatial distortion can be

used across multiple views. Recently researchers have been interested in exploring how

views can be used across platforms, for example Langer et al. [69] explore how multiple

coordinated views can be used with large displays, or distributed displays [80], and how

different senses and modalities can be used to help interact with multiple views [32].

Multiple view systems have been developed for many application areas. Table 2.1

below shows several areas where coordinated multiple views have been used. These

systems provide examples of application areas. This is not meant to be a complete list of

domains, but provides an understanding of the breadth of different domains. For example,

biological data often uses network visualisations, and network visualisations are used

to display connections between different illnesses, people and transmissions. Medicine

is another area where multiple coordinated views are widely used. Applications have

also been developed in the energy domain. Many developers link geographic views

with other types of display. Searching for information on the web can be visualised in

a multiple view environment. CAD (computer aided design) is an obvious choice for

Related work 19

multiple views, displaying different views on the 3d model. There are many examples

where multiple views have been used to display statistical or high dimensional data.

Table 2.1: Multiple views have been applied to many domains and application areas. This
table presents a summary of some of these areas.

Biology Lawrence et al. [70] developed the exploRase system for biological data.
Graham and Kennedy developed TaxVis to examine sets of multiple classification
trees [51].
Craig et al. [36] developed coordinated parallel views for the exploratory analysis of
microarray time-course data. They also developed a multiple view system of multiple
trees [51].

Medicine Aigner and Miksch worked on using multiple views to aid physicians in treatment
processes [2].
Martin and Aggarwal investigated volumetric visualisations from different views [84].

Energy Brehmer et al. [19] visualised energy portfolios.
Geospatial Dykes explored geospatial data with dynamic graphics [40].

Brodbeck and Girardin used coordinated views to analyse geo-referenced high
dimensional datasets [20].
Plumlee and Ware developed the GeoZui3D system: a geographic visualisation system
for ocean data, where users can navigate from different perspectives [99].

Web searching Roberts, Boukhelifa and Rodgers investigated multiform views for web-based search
result visualisation [104].

CAD Rosenman and Gero explored multiple views of design objects in a collaborative cad
environment [121].

Statistics Ross and Chalmers investigated visualising multidimensional scaling algorithms [122].
Matthew Ward developed the XmDvTool to display multidimensional data [145].
Siirtola investigated parallel coordinate plots with the reorderable matrix [136].
Weaver visualised multidimensional data using cross-filtered views in his Improvise
system [149].
MacEachren et al. [78] investigated visual analysis of multivariate data, by integrating
several methods from information visualisation, exploratory data analysis (EDA), and
geo-visualisation.

2.2.1 What is a “view” (so that we can have multiple views)?

This section investigates word usage and meaning. We focus on the terms multiple and

view. We focus on the terms multiple and view. By analysing these two terms, we are

able to build a foundation that other concepts can be built upon.

To undertake this research, two bespoke sets of corpora were created from visualisation

texts. We used SketchEngine [65] to create these corpora, and used the English Penn

Treebank part-of-speech tagset. The smallest corpus, which we name vTA, was created

from titles and abstracts of visualisation papers 1990–2016 [59], and contains a lexicon

of 17,556 words, while the complete set of corpora consists of 282,619 words. This

provided us with a small, readily searchable corpus, and contains data from 26 years

Related work 20

of visualisation history. Second, to gain a larger, six-year view of the written words

used in the community, a large corpus was created of all IEEE VIS TVCG published

papers 2012 to 2017, inclusive (which we named v6Y). This large corpus comprises

6,303,737 words, and has a lexicon of 134,663 words and 433,220 sentences. So as to

investigate differences in phraseology of visualisation authors in comparison to other

academic writers, a third corpus was used (our reference corpus) created from Open

Access Journals (doaj.org) which we named oAJ. This was chosen because it has over

2.6 billion words from 2,971,481 articles, covering a breadth of fields including science,

social science, medicine, technology and the humanities.

Generally, we use case-insensitive searches (e.g., a search for view finds view, View,

VIEW), and we search for word lemma forms. For example, a search for “view” will find

the following lexemes: view, views, viewer, viewing, etc. Our searches are also neutral to

spelling alternatives, e.g., we treat visualisation the same as visualization. Throughout

this article we refer to the headword, in this case view. we calculate term frequencies,

collocated words and ngrams [65]. Collocations provide a way to investigate habitual

juxtaposition of words. For example, from a corpus of recipe books, when searching for

the word drink, we may find instances of drink juice, drink coffee and drink tea. There

is evidence that juice, coffee and tea are beverages, and share the collocated verb drink.

By widening the context of a lemma (e.g., by using a window of five words), we can

investigate wider collocated terms; e.g., with the lemma views, we find multiple views,

and multiple coordinated views and multiple linked views.

2.2.2 How frequently are multiple and view used?

Our hypothesis was that multiple and view were used more frequently in the corpora

of visualisation papers in comparison to the Open Access Journal corpus. If we were

to use our corpora to analyse the ideas underpinning multiple views, then we needed

to confirm that they were representative for our task. To perform our analysis, we

investigated raw frequencies and calculated normalised values (per million words) on

multiple and view as headwords in vTA and v6Y, and in our reference corpora oAJ. Table

2.2 below shows a summary of our results, confirming our hypothesis: that multiple and

view are used more frequently in visualisation texts in comparison to other academic

articles. To further confirm this analysis, we looked at other words. Obviously, the

Related work 21

word visualisation should be more frequent: it is over two hundred times more likely to

occur. Furthermore, we confirmed that many words were found in similar proportions

in all corpora, where words such as possible, theory, motivation and practice are equally

likely to occur in any academic text, as shown in Table 2.2.

Table 2.2: Part of speech (PoS) for multiple and view, highlighting they are more frequent in
the visualisation corpus (v6Y) in comparison to the Open Access Journal corpus (oAJ). Raw
frequencies, and per-million normalised count 𝑝𝑚 are shown. Non-visualisation words (typically
found in any academic texts) show similar proportions across corpora.

Lemma 𝑃𝑜𝑆 𝑣𝑇 𝐴 𝑣6𝑌 𝑜𝐴𝐽 𝑣𝑇 𝐴𝑝𝑚 𝑣6𝑌𝑝𝑚 𝑜𝐴𝐽𝑝𝑚
𝑣6𝑌
𝑜𝐴𝐽

multiple adj 366 5024 718921 1173.47 610.93 214.60 2.84
multiple n. 42 679 46523 134.66 82.56 13.88 5.94
relationship between PoS: 8.7 7.4 15.5
view n. 462 11440 465899 1481.26 1391.14 139.07 10.00
view v. 50 991 142670 160.31 120.50 42.58 2.82
relationship between PoS: 9.2 11.5 3.3
visualisation n. 3323 42273 71149 10654.22 5140.53 21.23 242.13
possible adj. 131 3649 1147611 420.01 443.73 342.57 1.29
theory n. 89 1340 454086 285.35 162.94 135.55 1.20
motivation n. 5 265 92642 16.03 32.22 27.65 1.16
practice n. 63 1267 502263 201.99 154.07 149.93 1.02

PoS Parts of Speech
vTA Corpus from visualisation titles and abstracts ’90-2016
v6Y IEEE VIS TVCG published papers, 2012 to 2017 inclusive
oAJ OpenAccess Journals (doaj.org)
𝑣𝑇 𝐴𝑝𝑚 Normalised count of VTA per million
𝑣6𝑌𝑝𝑚 Normalised count of v6Y per million
𝑜𝐴𝐽𝑝𝑚 Normalised count of oAJ per million
adj. n. v. Adjective, noun, verb

2.2.3 What parts of speech are used for multiple and view?

Meanings change depending on how the word is used in a sentence. In each of our

corpora we discovered that multiple as a noun is used seven times more than as an

adjective. Table 2.2 above shows the raw frequencies, frequencies per million and parts

of speech (PoS) for each of the corpora for multiple, view and other specific words.

Because there is a similar ratio in each corpus, we suggest that this proportion would

be consistent across years. Likewise, in the oAJ corpus the adjective form is more

frequent; in fact in this corpus it is over 15 times more common than the noun form, and

Related work 22

Table 2.3: Part Of Speech examples (PoS) for multiple and view published in IEEE VIS.

PoS Examples Source
adj. colour to link information across multiple views Koytek and Perin [66]
adj. understanding the relationships among multiple objects. Sarikaya and Gleicher [48]
n. many works use small multiples Fu et al. [46]
n. employs a geographical map and small multiples of Shen et al. [130]
n. the viewer wants to change to a view that is Sarikay and Gleicher [124]
n. similarities and differences across views is Qu and Hullman [100]
v. participants had to view the data Bach et al. [9]
v. This paper takes a top-down view to understandSarikaya and Gleicher [48]

multiple as an noun is used less frequently. We hypothesise that the adjective/noun use

in the visualisation literature is closer together because of the phrase small multiples.

To investigate this hypothesis, we specifically looked at the tuple small multiples. From

the 679 instances of multiple as a noun in v6Y, we find 323 (51.2 per million) from

the phrase small multiples. The remaining tuples are varied and include “progressive

multiples”, “3D multiple”, “nearest multiple [of ten]”, “[in the] X multiple” (where

X refers to a specific visualisation type), whereas only 33 (0.01 per million) cases of

the tuple small multiples were found in oAJ. This analysis supports the hypothesis that

small multiples are more likely to occur in a visualisation context. Table 2.3 above

shows several example sentences for multiple and view, and their part of speech from

the visualisation literature.

The word view as a noun occurs 11.5 times more often than as a verb (see Table 2.2),

yet only 3.3 times more often in the oAJ corpus. This supports our hypothesis that

word view is used more frequently in visualisation texts than other publications. But

also, authors write more frequently about a view as a visual depiction, rather than an

alternative meaning of a person’s view or viewpoint. We also investigated modifiers of

view and multiple and list the top twenty in Table 2.4. From this information, we see

that authors frequently write about different view types, such as 3D view, map view or

timeline view.

The word multiple means numerous, of great number, several or many. In fact, the

prefix multi- comes from Latin multus meaning much or many. There are many words

that are prefixed by multi- that are meaningfully to be used in visualisation, including:

multicoloured, multicomponent, multifaceted, multiform and multi-use. However,

Related work 23

Table 2.4: Frequency of occurrence, showing raw and normalised per million values for the
first twenty examples of nouns and verbs modified by multiple and modifiers of view. In the
v6Y corpus (IEEE VIS TVCG journals 2012–2017).

multiple (adj.) 𝑓𝑟𝑎𝑤 𝑓𝑝𝑚 view (n.) 𝑓𝑟𝑎𝑤 𝑓𝑝𝑚

multiple views 268 42.51 multiple views 268 42.51
at multiple levels of 101 16.02 the 3D view 181 28.71
multiple attributes 97 15.39 the timeline view 174 27.60
small multiple displays 80 12.69 map view 174 27.60
multiple variables 69 10.95 the detail view 172 27.29
multiple sources 68 10.79 the other views 162 25.70
at multiple scales 64 10.15 list view 157 24.91
multiple dimensions 61 9.68 matrix view 157 24.91
multiple instances of 59 9.36 different views 153 24.27
multiple features 59 9.36 detailed view 105 16.66
multiple users 58 9.20 graph view 98 15.55
multiple types of 55 8.72 the network view 97 15.39
multiple times 55 8.72 in a single view 95 15.07
multiple sets 52 8.25 the main view 92 14.59
multiple visualisations 50 7.93 slice view 86 13.64
multiple datasets 48 7.61 2D view 80 12.69
and multiple scattering 44 6.98 the summary view 80 12.69
multiple fields 44 6.98 feature view 75 11.90
in multiple ways 42 6.66 street view 73 11.58
from multiple perspectives 40 6.35 projection view 72 11.42

multicoloured and multicomponent do not occur in v6Y (in either English or American

spelling). A list of the top 60 words prefixed by multi- are shown in Table 2.5 below.

Another prefix that has a similar meaning to multi is poly. Words such as polymorphic,

polymerisation, polygons, polysemy, polynomials are all common, but only 21 words that

start with poly are found in the whole v6Y corpus. Polygon, polylines and polynomial

are the most frequently occurring words in this category. The most useful word for

our study, in this list, is polyline. While the word polyline is widely used, it is only

used in the context of Parallel Coordinate Plots (appearing 18 times per million words).

Finally, the suffix -fold means “of many parts” (source: Merriam Webster Dictionary),

and therefore words ending in fold are potentially of interest to our study. Yet in v6Y

the only -fold words are manifold, twofold, threefold and unfold, but unfortunately these

do not have any word collocations with views, display or visualisations, because they

are only used to describe theories, models and the structure of paper.

Related work 24

Table 2.5: Words that are prefixed with multi- in the v6Y corpus (frequency shown per million).
In these results n-tuples are not included, but are shown in Figure 2.4, e.g., multiple views
(without a hyphen) has a frequency of (268𝑟𝑎𝑤 , 42.51𝑝𝑚). To understand scale, v6Y: 100𝑟𝑎𝑤 is
12.16𝑝𝑚.

𝑓𝑟𝑎𝑤 𝑓𝑝𝑚 𝑓𝑟𝑎𝑤 𝑓𝑝𝑚 𝑓𝑟𝑎𝑤 𝑓𝑝𝑚

multiple 4972 788.7 multifaceted 43 6.8 multiply 19 3.0
multivariate 1262 200.2 multi-view 42 6.7 multiplications 18 2.9
multidimensional 680 107.9 multilevel 42 6.7 multi-threaded 18 2.9
multiples 362 57.4 multimedia 40 6.4 multiplying 17 2.7
multi-dimensional 294 46.6 multiplied 39 6.2 multi-valued 17 2.7
multi-scale 180 28.6 multi-user 39 6.2 multi-way 17 2.7
multi-resolution 165 26.2 multi-field 36 5.7 multi-stage 16 2.5
multimodal 162 25.7 multiclass 35 5.6 multinomial 16 2.5
multiscale 125 19.8 multi-criteria 33 5.2 multi-step 16 2.5
multi-level 107 17.0 multi-generational 31 4.9 multi-core 15 2.4
multifield 94 14.9 multiple-view 30 4.8 multi-pass 15 2.4
multi-touch 90 14.3 multi-modal 25 4.0 multi-objective 14 2.2
multi-attribute 88 14.0 multi-focus 24 3.8 multiform 14 2.2
multi-class 67 10.6 multi-faceted 24 3.8 multi-layer 14 2.2
multiplicity 60 9.5 multi-chart 22 3.5 multiobjective 13 2.1
multiresolution 57 9.0 multitouch 21 3.3 multicriteria 12 1.9
multilinear 53 8.4 multi-pipeline 20 3.2 multi-volume 12 1.9
multitude 52 8.3 multiple-choice 20 3.2 multi-channel 12 1.9
multi-variate 46 7.3 multi 20 3.2 multi-fields 12 1.9
multiplication 43 6.8 multi-relational 19 3.0 multisource 11 1.7

2.2.4 What are the meanings of a view?

To investigate the word meanings, we used the Oxford English (OED), MerriamWebster

(MWD), Macmillan (MMD) and Collins dictionaries (CD). View has many meanings

in English; for instance, the OED has a list of 18 principal concepts and several minor

descriptions. However, many meanings are very similar, and there are too many for

our purpose. To reduce the number of meaning, we used affinity diagramming. We

placed sentences on sheets of paper and through discussion investigated how they can be

grouped together. We consolidated the results into five categories, which we label a to e

(we use this convention throughout the chapter). We summarise their meanings below,

and include a quote used in a paper from the IEEE TVCG papers in our v6Y corpus.

Meaning a. (manner) A view is a particular manner or way of considering or regarding

a subject (OED). “From this view point, the overview visualisation does not only

convey the overall picture of opinion distribution and diffusion patterns.” [159].

Meaning b. (query) A view is a selection of data from a database. It is data generated

by a database in response to a query applied to existing tables, allowing the user

Related work 25

Figure 2.3: Wordcloud of our thesaurus of collocated words that are found in similar contexts
to the given lemma view, in the v6Y corpus.

to select what data is displayed and how it is ordered. “Each widget provides data

viewswith multiple tabs providing different information to the users” [79].

Meaning c. (pictorial representation) A view is a pictorial representation (MWD); it

is a way in which a piece of text or graphics is displayed on a computer screen

(CD). “OpinionFlow allows us to view the overall opinion distribution .. over

time” [159].

Meaning d. (see) View is the ability to see something from a particular place

(MMD) “Examples include view projections (pan and zoom settings, 3D camera

viewpoint)” [62].

Meaning e. (opinion) A view is a personal opinion, interpretation, belief or attitude

about a particular subject (MMD). “Different domain experts have different

views of these cultural entities based on their expertise and disciplines” [162].

We advocate that each of these meanings is applicable and suitable for visualisation.

Indeed, each is used in the context of multiple views.

2.2.5 What words have people used instead of “view”?

To explore this question, we used the v6Y corpus. We created a thesaurus of similar

words. Each thesaurus was comiled by computing the similarity score between two

Related work 26

words 𝑤1, 𝑤2, to find all overlaps where 𝑤1 and 𝑤2 share a collocation, and share a

similar meaning, and they were ordered by their frequency. Using this thesaurus, we

were able to investigate words that occur in similar contexts. Figure 2.3 above shows

a word cloud of thesaurus we generated, from the lemma view (as a noun), with the

word size dependent on the context score. Words such as visualisation, technique, chart,

plot and structure can all be used instead of view. We note that there are limitations

to automatically generating a thesaurus in this way because our 6 million dataset is

reasonably small for this kind of analysis, so scored with lower results become less

relevant and we receive more false positives. But even with these limitations, intuitively

these results seem reliable, and they represent a list of possible synonyms for the word

“view”.

In the thesaurus we generated, we observed a widespread use of words that have a

general meaning, such as charts, plots, graphs, diagrams, images or pictures. One result

is that authors often refer to the visualisation picture indirectly. In other words, rather

than referring to a particular figure or scatterplot, they talk about the algorithm, its

interaction, or a they refer to a specific point on the graph, or discuss the layout or their

results. More importantly, though, we observe many specific (named) visualisation

types being used. From our analysis, we discover that the most common visualisation

type that is used in v6Y is scatterplot (2318𝑟𝑎𝑤, 281.9𝑝𝑚), followed by histogram

(1720𝑟𝑎𝑤, 209.1𝑝𝑚), timeline (1073𝑟𝑎𝑤, 130.5𝑝𝑚) and bar chart (892𝑟𝑎𝑤, 108.5𝑝𝑚).

Interestingly authors are over thirteen times more likely to write bar chart than barchart

(66𝑟𝑎𝑤, 8.0𝑝𝑚), yet prefer boxplot (321𝑟𝑎𝑤, 39.0𝑝𝑚) over box plot (43𝑟𝑎𝑤, 5.2𝑝𝑚). Some

of the named visualisations are composite types, such as grid, matrix and trellis plot.

Other examples are small multiples (323𝑟𝑎𝑤, 51.2𝑝𝑚), matrix view (159𝑟𝑎𝑤, 19.1𝑝𝑚),

scatterplot matrix (120𝑟𝑎𝑤, 14.6𝑝𝑚) and matrix visualisation (92𝑟𝑎𝑤, 11.2𝑝𝑚). Authors

often name their new visualisation designs and reference them throughout their own

paper. However, unless their technique becomes popular and is used by many people

(such as that of treemaps [134]), the frequency of these new less-familiar designs will

be low. It is beyond the scope of this thesis to carry out a full review of all visualisation

types, and other researchers have investigated and classified different types, including

the following: Bertin’s categorisation of diagrams, networks, maps, charts/graphs,

tables/matrix, symbols, icons, glyphs and pictures [15]; Lohse et al.’s categorisation

Related work 27

Data
filter map display

View juxtaposition
Different projections

Data
View juxtaposition
By different forms

Data
View juxtaposition
By different data

Data
Superposition

Data Explicit encoding

(a)

(b)

(c)

(d)

(e)

By overlaying

By difference

Figure 2.4: Multiple views can be created and displayed alongside each other in different ways:
from different projections (a), changing the visual form (b), or by adapting the data (c). Views
can also be created to be superpositioned (d) or merged through an explicit encoding (e).

of visualisation types [76]; and Lengler and Eppler’s periodic table of visualisation

techniques [72].

2.2.6 Creation of views

To consider different ways to lay out the views, we first focus on how views are created.

Multiple view systems are created for different reasons and there are many benefits of

using a variety of views. Perhaps one view helps the user understand the data from one

perspective, whereas another view is clearer for another task. Sometimes interaction is

easier to perform in one view than in another, where, for instance, an alphabetic list of

products makes it easier to select a specific named variety, whereas being ordered by

price would enable the cheapest to be quickly located. Multiple views can also help

users compare data, where for example several views show data across many different

years, or from different geographic locations.

In fact, the dataflow paradigm [52, 141] provides a convenient model to conceptualise

how different views are created, as seen in Figure 2.4. In the dataflow model, data is

loaded, filtered and enhanced, then mapped to a graphical model, which is then displayed.

Gleicher et al. [49, 48] describe three categories of view creation: juxtaposition,

Related work 28

superposition and explicit encoding. We can consider that view juxtaposition is a

fan-out strategy, where changes in the visualisation pipeline cause a new view to be

created and displayed in a new (separate) window. Consequently, view juxtaposition is

the focus of our study. For completeness we include two final strategies can also be

used to create a new view; these fan-in methods merge the data and view together into

one display.

Juxtaposed views sit alongside one another. We highlight three different ways to create

these views (see Figure 2.4): (a) The user can change how the objects are projected. For

instance, architectural multiview technical drawings use up to six different projections

(where the primary view has many auxiliary views, such as first angle, third angle, etc.).

Alternatively, maps can be displayed using different projections (Miller cylindrical,

Mercator, sinusoidal projection, etc.). Another way (b) is for the developer to display

the data in different forms (hence the term multiform views [78, 51]). There are many

different forms, including bar charts, line graphs, parallel coordinate plots, scatterplots,

timelines, treemaps, etc. Finally, (c) by altering the data in some way, a different “view”

will be created. In an interactive exploratory visualisation system (such as through

dynamic queries) this can happen in two ways: either a change in the filtering causes

the new data to flow into a current ‘view’ (the view is updated), or a new window is

created that displays this new information. Superimposed views are overlaid onto the

same window (e.g., consider two line graphs being merged into one visual). Explicit

encoding methods merge the data and algorithms further up the pipeline to create

specific algorithms (e.g., a difference visualisation).

There are several strategies to allow users to create different visualisations; from code

development, visual programming paradigms such as from the module visualisation

environments (e.g. [141]) to the many modern tools, developed by researcher,

which allow users to display different visualisations in multiple windows, such

as Improvise [148], iVisDesigner [102], Jigsaw [138], Keshif for tabular data

exploration [160], Snap-together [94], Voyager [158] and XmdvTool [145]. In addition,

the many commercial visualisation and statistical dashboard tools also support multiple

views, such as Tableau, Qlik, SAS Business dashboard, Microsoft Power BI, IBM

Cognos or Sisense dashboards.

Related work 29

2.3 Design concepts and general principles of multiple

views

This section discusses the design principles and design guidelines in general, including

how people design and look at patterns or pictures. In this context, a designer starts the

design process by distributing and organising the parts of his design into the available

space and filling the space. Then the designer draws the design in detail to indicate how

it should look, and considers how people will look at it so he can organise the parts in

order to achieve his goals. Likewise, the same process happens when developers plan

to design multiple view visualisations.

Moreover, the designer can follow design recommendations and design rules during

the design process; this will help the designer choose a suitable layout for his design,

such as the Gestalt principles, which allow the designer to select the most effective

design [63]. Gestalt principles have seven rules, namely:

• Figure-ground, where people look to objects as being in the foreground or the

background, where the most important objects (the figure) are placed at the front,

and the less important objects (the ground) are put at the back.

• Similarity, where the developer groups items that are similar to each other or

have the same function.

• Proximity, where the developer places things close together when they are related

to each other, and spaces them further apart if they are not related.

• Common region, where the developer put objects within the same closed region

to group them.

• Continuity, where the developer arranges objects in a line or curve if they are

more related than elements which are not on the line or curve.

• Closure, where the developer puts complex objects or arrangements in a single,

recognisable pattern.

• Focal point , where the developer draws the most important object in a distinctive

way that distinguishes it from other objects.

In addition, designers can follow the design rules or rules of thumb where the designer

relies on his practical experience rather than theory [93]. Moreover, designers can

Related work 30

follow heuristic analysis to improve their designs, such as when a designer creates

his design and asks an expert in the field to give him feedback and advice in order to

improve it [153]. Furthermore, designers can follow Shneiderman’s rules, which are a

guideline to good design [133], namely:

1. Strive for consistency.

2. Seek universal usability.

3. Offer informative feedback.

4. Design dialogs to yield closure.

5. Prevent errors.

6. Permit easy reversal of actions.

7. Keep users in control.

8. Reduce short-term memory load.

Furthermore, design aspects grab people’s attention to essential objects by making

them brighter or bigger, by using colour, or by using design interface principles (light

colour where the cursor is dark colour for other objects, focusing on one view). We

also believe there should be more studies on the relationship between the design aspect

and the writing orientation (reading gravity). For example, in the Arabic language, the

written words are organised from the right to the left of a page. So potentially there

could be differences in how designers understand, read and create aspects of design

depending on their experience. Subsequently, any designer needs to consider the skills

and experience of who will be looking at the design.

In addition, the designer needs to know about good design principles, and how the

design will be used. Is it a global design (where people will see it across the world) or

is it a local design (only seen in a local vicinity)? Bearing that in mind, we can decide

the design aspect for each situation. For example, the designer can use reading gravity

in a design so as to place the important objects in such a way that they will be seen first.

However, in some cases, people should look first at an object which is necessary, and

should look first to understand the important object; in this case, the designer can put

the necessary object first, and then the important object second, following the reading

gravity. Designers must note that there are different reading gravities across devices

such as mobile phones and large screens [96].

Related work 31

Furthermore, eye tracking has been used to see which part of a picture people look at

first (how people look at a picture) [91], where a heat map is created to depict how the

eyes move across the design. Based on the eye tracking studies, a number of methods

have been devised for placing objects on a layout, and designers can follow any of these

methods. These methods can help inspire different design layouts.

• z Pattern. This method supposes that people look at the design and move their

eyes in the Z path. For instance, they read along a line and when they get to

the end of a line they quickly return to the beginning of next line. This concept

is named the Gutenberg pattern [96]. Consequently, it would be useful for a

designer to consider how someone looks at several pieces of information. It may

be that a user of a multiple-view system would look at the views at the top left,

and those at the bottom right more closely than those to the side. This is much

like someone will read (in the West) in a left-to-right way, a z-pattern.

• F Pattern. This method supposes that people look at the design as it is, consisting

of multiple rows, and they scan the design starting with the first row at the top

from the left to the right of the row, then they scan the next row, and so on. This

implies that people do not necessarily read or look at the end of the line, and their

views get quicker and quicker as they scan down the page [91]. Consequently, it

may be appropriate for a designer to position important views at the top.

• Columns. In this method, objects are placed in virtual columns, much in the

same way as a spreadsheet is used. People can place multiple views in a gridded

layout.

• Golden Ratio. This is calculated to be about 1.618, and is represented by the

Greek letter phi. It is approximated by dividing sequential numbers in Fibonacci

numbers 2/1, 3/2, 5/3, 8/5 and so on, with higher numbers getting ever closer to the

golden ratio number. This pattern is found in nature, in spirals in flowers, petals,

shells, and is often used in design. A Golden Rectangle allows two rectangles to

be positioned side by side with proportions close to 2/3. The 2/3 layout is used

often by designers to inspire designers. Consequently, designers of visualisation

systems may choose to display two smaller views alongside one larger view, in a

2/3 layout design.

• Space Filling. This is often used to pack information close together. For instance,

Shneiderman in his Treemap algorithm [135] positioned each of the hierarchical

Related work 32

objects using a slice-and-dice packing algorithm. Every part of the display is

used to display the information. Similar techniques can be used for multiple view

visualisation.

• Layouts in Wordpress (and other web creation tools). These allow users to

create the information, and the system re-organises the position of the items. For

instance, an author can create text, include an image, and some ‘see also’ text

in a sidebar. These tools provide responsive graphical user interfaces (GUIs).

While a user defines the site’s layout, the tool provides the code that allows it

to be viewed as defined on the large screen, but as (for instance) one column in

a mobile device or small screen. In this way, the webpage changes the layout

organisation in response to the needs of the user.

2.4 Multiple view tools and their use

Multiple view visualisations help people understand data, andmultiple view systems help

users interactively explore and compare information across many different projections.

We acknowledge the huge quantity of well-cited research that has been achieved in the

area of coordinated multiple view systems, such as ComVis [85], Snap-together [94],

and Waltz [111], where user interaction in one view is linked to another view (such as

linked highlighting). It is through this linking that a user can better explore and discover

interesting facts about the data. In this regard, researchers have created rudiments of

coordination [17], researched linked highlighting and linked navigation [94], and linked

brushing [12]. In particular, developers have created many types of brushing including:

compound brushing [27], multiple brushes [146], and complex filtering operations such

as through angular brushing [54] or cross-filtered views [148]. Other researchers have

directed their attention to keeping multiple views consistent [100], or working across

large displays [69].

Furthermore, there has been some research on multiview layout. For instance, Spotfire

and IVEE were able to re-group widgets [1], and later Spotfire tools allowed users to

drag and drop views. Likewise, Snap-together [94] snapped views together to create

custom combinations, and Improvise [148] packs many visualisations into a tight space,

while Keshif allows users to create visualisations in different parts of theWeb page [160].

Related work 33

Layout is also controlled in dashboard visualisations, and there are many ways to create

visualisation dashboards, including D3.js, highcharts, and in tools such as Tableau,

SAS or Power BI. Tools like datahero.com can be used to create dashboards using a

drag-and-drop interface, and small-multiples can be created in R’s lattice or ggplot2.

Shiny and shinydashboard or Highcharter (an R wrapper for Highcharts in javascript)

can be used to create bespoke multiple view dashboards. However, to date there has

been no systematic study investigating view-layout strategies, and no tool that focuses

on multiview layout using a specialised grammar.

This section reviews the multiple view tools and systems, and their use. In general,

multiple view tools can be divided into three categories based on their functionality. The

first type of tools are the multiple view systems, those tools created by the developers to

display multiple view visualisations. The second type are the multiple view tools which

allow users to create multiple view visualisations. The third type are the tools which

allow users to create multiple view visualisations using multiple view grammar.

There is a series of tools which allow people to create visualisation quickly, for instance

Excel, D3, Adobe, Tableau and Vega-Lite. Moreover, there are other tools which allow

people to create and lay out visualisations. For example, Becker and Cleveland created

a tool to allow users to interactively explore and brush datasets [12]. The R tool creates

layouts automatically (data control) [7], and the closest other tool is Snap-together

where the views are snapped together by the user (user control) [94].

It is clear that developers have used many layout techniques which can be used for

placing the visualisation on the screen. However, the user of the visualisation tool

is forced to use the method specified by the developer without the ability to change

the visualisation layout in order to be able to see the data effectively. Nevertheless,

The developer can give users the control to change the layout in order to improve the

visualisation display. In this case, there are two challenges:

• Auto layout method, which has to be determined at the first appearance of the

visualisation.

• Provide the opportunity for the user to save the layout and apply it to other data.

Related work 34

Furthermore, multiple view tools are used to create multiple view layouts. For example,

we can have a list of points which the layout tool changes into a diagram; and an

application like Omnigraffle has an automatic layout tool (part of it), where a user

can do something similar, something like a list. It will create a block diagram (as an

example) with an arrow from one block to another block. The user can then restructure

it in Omnigraffle by pressing a button, which can rearrange the data into a horizontal

or a vertical or a tree structure. And there are numerous of online tools which can do

that [95]. Moreover, the new version of Microsoft PowerPoint has a design button,

where users can create a small outline, add text and images, hit the design button visible

on the screen, and redesign all of it [77]. There are three types of layout tools based on

who is controlling the process of creating the layouts:

i) Manual tools, such as Visio [131], Omnigraffle, or any vector drawing

packages [163].

ii) Semi-manual tools. For instance, Omnigraffle is used to create diagrams,

PowerPoint can create a diagram from a bulleted list, the Adobe Analytics tool

creates different types of visualisations, and another such tool is Lyra Data

Illustrator Charticulator by John Thompson [125].

iii) More automated recommendation systems. For example, PowerPoint can create a

diagram automatically - diagram me (like Tableau’s Show-me button [101]) and

the annotation tool can perform the same function [28].

In addition, there are multiple view grammar systems which allow users to use grammar

to create multiple view layouts, such as:

• Iterated function systems (IFS) [11], Lindenmayer L-systems [123].

• The grammar-based system in Vega, Vega-lite [126].

• The grammar of graphics, Leyland Wilkenson [90]. R tool, R studio [3] and

Shiny R [155], all based on the grammar of graphics.

• Positional systems: Left, right, up, down e.g., Java’s gridBagLayout [165].

• File formats, and saving the structure of the visualisation, such as Web

frameworks [42]. These are concepts around HTML such as Frames, Layers-

overlay, CSS (structure, DIV), and JSON.

Related work 35

One aspect, in particular, that we feel should be debated and further researched is the

question of who has control over the layout. If we examine programming languages,

we find structures such as the GridBagLayout in Java, which help programmers to

structure their layouts. We see panel layouts in web structures (such as top, left, main,

right or bottom panel), and templates to help Web developers lay out their information.

However, there has been little research into the best layout strategies for visualisation.

Certainly, it will be a developer of a visualisation system who will determine how much

control the user has over the tool, and over the layout of views. We propose five options

for developers to determine the levels of control a user should have:

• Developers can predetermine the layout. This is a fixed strategy, and is usually

reserved for fewer views or bespoke systems (designed for a particular purpose

or user). For instance, in two view systems there is little choice: the views can

be laid out left/right or above/below. Note that such systems are also known

as side-by-side, parallel or dual view [99, 55, 89] systems, or if one view is

more important, then primary/secondary, focus+context or overview and detail

systems.

• Views positioned according to data. For instance, Roberts [105] positions the

views according to a tree of data exploration, while the splom layout [26] (lattice

charts) positions the small multiples to allow pairwise comparison of scatter plots,

and Polaris [139] and the spreadsheet visualisation approach by Chi et al. [31]

display information in grid-based layouts.

• Group views that are coordinated together. For instance, views that share a

linked highlight, or linked navigation, can be positioned closely and perhaps in

the same window. In other word, the type of coordinated manipulation can be

used to control the positions of views. Roberts refers to these as “render groups”

[105], and Weaver puts them side by side and visually connects them with lines

and arrows [148].

• The screen size can be used to determine the layout. For instance, small

multiples are laid on the screen in an order which wraps onto the next line, and as

Related work 36

the window size is changed so the quantity viewed changes, in the same way that

a responsive/mobile-aware adjusts the content determined by the width.

• The user can determine the layout. Systems are often created whereby the user

can drag (from a toolbox of possible visualisation types) and drop the selection

onto a canvas, where the views are snapped to align together, such as with

Improvise [148], Jigsaw [138], Vinca [47] and many other tools.

2.5 Theories and design guidelines for multiple view

visualisations

To date, no quantitative research has been performed investigating the quantity of views

or their layout, and there are no publications that present such results. This thesis aims

to fill this gap. Indeed, as developers of, and writers about, coordinated multiple-views

systems [111, 116], we have had first-hand experience of discussing questions with

other researchers about the quantity and layout strategies of views, and students have

also asked us similar questions, such as, “How many views should we have in our

tools?”. However, we were unable to give a value and thus answered vaguely, saying

“Enough to provide an expressive tool, but not too many to confuse a user”.

Consequently, it can be difficult for developers to know how to lay out their visualisation

tool, or decide how many views to use. Ostensibly there is conflicting guidance. On

the one hand, Roberts [105] suggests that “multiple views should be encouraged”. He

encourages visualisation environments to be developed that can easily create a view,

allowing users to investigate many different parameterisations. On the other hand,

Baldonado et al. [144] say we should “use multiple views minimally”. They added, “A

single view provides a user with a stable context for analysis; multiple views incur the

cost of context switching”.

Yet both models can work together. They both have similar goals, namely for a developer

to create usable yet functionally-rich multiple view tools. Roberts emphasises the term

“lightweight”, saying that views can be easily thrown away [110]. His encouragement is

directed the developer to create techniques to manage this exploration, and organise

the potential explosion of views. On the other hand, Baldonado et al. put the onus

Related work 37

on a developer to critically think about the design and to limit the quantity of views

used; they comment that a developer should “justify the user’s learning costs and the

computational and display space costs of an additional view by appealing to the rules

of diversity, complementarity, or decomposition”. However, none of these researchers

provide a concrete number. How many should be “encouraged”? How many does

“minimal” mean? Where is the balance between ‘view encouragement’ and ‘fewer

views’, between creating systems that manage these views, or merely using fewer views?

This thesis offers an attempt to answer these questions by quantifying how many views

are used in practice, and how current researchers present screenshots on their tools.

However, research over view layout strategies in visualisation is very limited. We do

note some recent research that has investigated phraseology in visualisation, which has

included a number of multiple view phrases pertaining to layout. We note specifically

the study by Isenberg et al. [60], who discuss, in particular, phraseology around

focus+context, and the work of Roberts et al. [109], who classify terms in the general

field of multiple views. What is clear from the related work is that more research is

required in the area of multiple views and the layout of views, so as to develop better

models and guidelines for visualisation designers. Indeed, it is unclear which are the

most popular layout configurations, which is the main focus in this research.

Furthermore, there have been a number of papers that focus on the theoretical aspects of

multiple views, such as rules and principles for the use of multiple views in 2007 [144],

investigating juxtaposition, superposition and explicit designs in 2001 [49, 48], the

phraseology of multiple views in 2019 [120], and even more recently the structure of

view layouts [81, 82].

In addition, some researchers may have a good knowledge of one interpretation of

multiple views, while not realising the breadth of the subject. They may not appreciate

that there are different interpretations and concepts around multiple views. For instance,

developers working in storytelling will be aware that users form different conclusions

from the same results [129], but this concept may not be understood by someone who is

programming or developing coordination visualisation tools. On the other hand, the

programmer will know much more technical detail about how to code a CMV system,

but may not realise about multiple interpretations. This thesis argues that to help

Related work 38

developers to create the best possible system they need to have a good understanding of

a breadth of ideas. While researchers do realise that there is a broad set of words for

this area, they may not understand what they mean or how frequent or infrequent they

are actually used. Therefore, part of our study focuses on words and phrases from the

literature, and aims to quantify how often they are used.

2.6 Summary

This chapter has focused on a review of various visualisation topics. It has answered five

questions: “Q1/ What terms are used in multiple views, and what do they mean?”; “Q2/

What are the keymoments of history in prior research of multiple views?”; “Q3/What are

the general design principles?”; “Q4/ What tools have been designed to create multiple

view visualisations? ”; and “Q5/ What theories and guidelines (such as grammars) have

researchers devised, which are conceded with multiple view visualisation? ”.

In addition, we have reviewed the multiple view tool and visualisation grammar,

including the multiple view systems created by developers to visualise their data. These

multiple view tools allow users to create their multiple view visualisations and layout

tools. Furthermore, this chapter has revised the theories and design guidelines for

multiple view visualisations.

In the following two chapters, this thesis explores multiple view visualisations in depth

to find the popular structures and visualisation types of multiple view visualisations;

this will help with creating design guidelines for multiple view visualisations.

Related work 39

Chapter 3

Data gathering and quantification

preparation

This chapter focuses on data gathering and preparation for the experiments. The goal of

this chapter is to explain how preparation for the experiments was made; by considering

what data to gather and how to collect it. What is required is a suitable dataset of images

(screenshots) of multiple view systems, such that they can be quantified. It is not only a

matter of selecting images, but also deciding what images to select, and making the

philosophical discussion on how to decide whether an image contains one or several

views. The study focuses on answering the following questions:

Q1/ What is the strategy to select multiple view images to evaluate?

Q2/ What is the strategy to define and determine a view in multiple view

visualisation?

Q3/ What are the strategies to code multiple view topologies and visualisation

types?

3.1 Introduction to data gathering, quantification and

preparation

Studying multiple view systems requires a set of multiple view images (of graphical

user interfaces) to judge. The images need to be of a suitable quality so that they are

clear to be judged and they need to display a data visualisation. It would not be suitable

to capture all images from the research papers and supported material, because among

them they would include low quality images, and images, diagrams and photographs,

which do not present data. What is required is a set of images that represent visualisation

40

systems or solutions and are clear enough to make judgements over. Consequently,

a strategy needs to be developed and written down, to allow consistent decisions to

be made. The developed strategy would allow consistent decisions to be made across

different files, articles and academic papers, and the written process would also be

useful to help other researchers replicate the results.

In addition, to the goal of quantifying the multiple views, there needs to be a strategy

that would allow researchers to define ‘what is a view’. It is not often clear to decide

whether a visualisation system contains merely one-view system or contains several

views. In other words, the philosophical question of ‘what is a view’ needs to be

explored. What is required is a strategy to enable the clear and consistent identification

of individual facets of a multiple view display. In other words, the defining strategy

will be used to decide what is a single view, and is so counted individually, or there are

more than one view.

Once views have been identified there needs to be a method to code the results. The

very act of codifying the views helps to confirm and categorise them. The separate

code will enable the types of views to be discussed, counted and recorded. Additionally,

the consistent numbering scheme would allow the work to be discussed and other

researchers to repeat the experiment. Consequently, a consistent code scheme needs to

be developed such that quantification can take place.

The whole process is shown in Figure 3.1. The schematic diagram highlights the three

main stages (1) selection and naming, (2) identification and (3) coding, along with their

subparts, and the research questions they are answering.

The first stage, the selection process, starts with building the first database of all the

PDF files from publications of IEEE VIS 2012-2018 Conferences. Then, builds the

second database which just contains the papers, the workshops, and the posters that have

clear and distinguishable screenshots for its multiple view visualisation layouts, which

we use to build the third database that contains the multiple view images. Section 3.2

explains the selection process, and suggests a guidelines to filter the papers by selects

papers that have clear multiple view images (stage 1.1), and the extraction process that

copies the multiple view images from the papers then names the images (stage 1.2).

Data gathering and quantification preparation 41

(q2)

(q1)

(q3)

(q1)

(q2)

(q3)

(q3)

(q3)

Figure 3.1: Methodology of data gathering and quantification preparation chapter.

The second stage, the view identification process, revolves around finding a strategy

that helps with characterises a view in multiple view images. The strategy will be used

to classify individual views. Section 3.3 investigates the view identification process,

by explains what is a view that we can have multiple views, and develops a set of rules

to identify the view (stage 2).

Finally, the third stage is the coding process, where sketches of the view layouts (from

the fourth database) are made, and the types of each visualisation view are recorded.

Section 3.4 explains the layout coding process and Section 3.5 explains how to code

the visualisation types (stage 3.2).

Data gathering and quantification preparation 42

3.2 Image selection and storing data

What is required is a general set of images, captured in a way that can be replicated by

other researchers. This is a representative set of images. Each image needs to present

a result of a user displaying some kind of data. To gain a broad view, the images are

treated as a bag-of-images. (Much like in linguistics word analysis is often treated as

a bag-of-words, the idea here is to create a set of images that can be treated in any

order). Metadata is kept such that when it is required the type of data or the task for the

data-visualisation can be analysed. But at the start, the concern is towards the image

layout. For instance, treating the views as merely ‘images’ permits a separation of ideas:

on the one hand how they are laid out, and then looking further at the metadata to

classify it as (for instance) a scientific visualisation (SciVis), information visualisation

(InfoVis) or visual analytic (VA) tool.

In fact, the community has previously classified the visualisation tools by SciVis,

InfoVis or VA, it actually does not seem a suitable situation to classify the visualisation

tools in this way. This is because, not only the distinction whether something can be

classified as information visualisation or scientific visualisation is often unclear, but

also the community itself seems to be moving away from this classification. This is

demonstrated perfectly by the recent of the IEEE Visualization Conference to be named

IEEE VIS, rather than of InfoVis, SciVis and VAST. Finally, it is not suitable to keep

photographs, schematic diagrams, or icons or symbols. It is critical to only include

images that represent ‘data-visualisations’ that have been designed by a human being to

display data. Consequently, what is required is a set of images that are:

• Representative. While the selected images are a sample of all possible

visualisation images, they need to contain a cross section of different types

of visualisation interface, such to be classified as a representative sample.

• Reproducible. The bag-of-images need to be reproducible, such that other

researchers could re-create the same database themselves. Explaining the capture

method enables other researchers to follow the methods and reproduce the set.

This would enable other people to validate the results, and the guidelines that are

Data gathering and quantification preparation 43

created from the analysis. It means other researchers can capture the same set of

images and to be able to classify them in the same way.

• Of good quality. What is required is a set of images that are good quality and

have a good resolution. When the image resolution is too poor it would be difficult

to classify them. As an estimate the images need to be greater than 640 pixels.

There could be several ways to collect images of different visualisation systems. One

way could be to use a general search engine (such as Google) to create a list of images.

However this strategy would capture images of a wide variety of quality. It is also

difficult to understand how they were created and for what purpose. Furthermore there

are lots of examples of bad visualisations on the web and it would mean that one of the

first tasks would be to decide on the quality of each visualisation. This would not only

be time-consuming but the process would be difficult to recreate by other researchers.

While exact urls could be captured, which would help in the reproduction process by

other researchers, and often many of the websites do use permalinks, it would still

add unnecessary complications to the capturing process. On the other hand, specific

websites such as Wikipedia or the specific infovis-wiki (infovis-wiki.net/wiki)

could be used to capture the images. But, these websites use visualisations to explain

specific topics, and would not necessarily create a database of representative images. In

other words, they have been specifically crafted to help tell a particular story.

Another strategy could be to capture images from visualisation tools. For instance,

searching for visualisations that have been developed by D3.js, RStudio, ShinyR, or

Tableau, for instance, could provide a specific list of images. Indeed, it could be possible

to collaborate with the Tableau research team to gather specific visualisations that

have been created by their tools. But again, in each of these cases, the generated set

of images would not necessarily provide a representative set of all visualisation tools.

Furthermore, each of the tools (JavaScript-bases or Tableau and so on) would have an

implicit bias in how they were created. This is because each of the tools only offer

specific functionality, which would constrain how the visualisations are laid out. In

other words the selected images would only represent layout schemes that were offered

by those tool developers.

Data gathering and quantification preparation 44

infovis-wiki.net/wiki

Another way, which was eventually chosen, was to capture images from academic

papers. Conferences and publication venues such as IEEE VIS (visualization), ACM

CHI, EuroVis or journals such as IEEE Transactions on Visualisation and Computer

Graphics, or Computer Graphics Forum could be used. There are many advantages

of using this strategy. Because these papers are placed on digital libraries, they can

be readily captured and stored. The list of papers is also easily stored and so can

be used by different researchers. The resulting list of images would be reproducible

by different researchers. Second, on the whole, the images in these papers are of

good quality. They have been through a review process, which will guarantee that the

images are of a reasonable quality. Third, because they are used to present research

results, they represent the current state of the art and use by researchers. There are

some limitations with this strategy. First the papers only represent the results from the

academic community. There are some excellent examples of non-academic researchers

creating very creative visualisations that would be missed. Also, because academics

are taught by other academics they would only present the ideas from perhaps a small

narrow group of society. Third, the academic papers require that they are formatted in a

particular way. This could affect the type of visualisation tool that is described, and the

way that it is presented. After much deliberation and discussion, it was decided that

research papers would provide the best and most suitable set of images for the study.

This investigation started by considering all papers presented at the IEEE visualization

Conference between 2012 and 2018. This period was chosen because we wanted to

focus on modern tools, rather than history systems, and also for convenience because we

had the files available. In addition, the conference folders include all workshop, tutorials

and other inforamtion, making it a large, broad and reproducible dataset. However,

taking all images from the IEEE VIS Conference creates a vast corpus of information.

It consists of TVCG papers, conference papers, posters and supplementary materials.

Consequently we decided to reduce the quantity of images selected. Practically, we

wanted to have a diverse set of visualisation images that this study can evaluate. However

we realised that could only evaluate a few thousand images, so we needed to limit the

years of evaluation and a strategy to reduce the quantity of the images to evaluate. In

fact, there are over 3392 PDF files on the seven years of USB memory sticks from the

IEEE VIS Conferences. Estimating that each file probably has more than one image,

and that not every image presents a screen capture of a visualisation tool, a consistent

Data gathering and quantification preparation 45

strategy to select suitable images was required. This was needed also to reduce the

quantity of images to evaluate to make it possible to review. After deliberation and

experimentation, the selection strategy was to keep PDF files that had suitable images,

before extracting the images from the files.

These papers have been filtered by choosing just the papers which have visualisation

that achieved the following evaluation criteria: (1) the image should be clear and >640

pixels, (2) it needs to show a complete visualisation layout, and (3) the visualisations

need to be applications or websites rather than the visualisations created by gathering

snapshots for individual visualisation.

In addition, it is important to include images of visualisation tools, and to ignore images

that have been edited or manipulated though an image processing program (Photoshop,

Gimp and so on). The set of pictures need to be selected where they are judged

to be original, directly taken from the visualisation tool, and not created or adapted

significantly to fit in with the paper formatting guidelines. Some images are clearly

adapted, while others have more subtle changes applied to them. What is required is to

investigate proxy indicators. Perhaps the same visualisation picture exists in different

media such as a slide in PowerPoint, or when the paper is in two-column format and it

is a wide-screen tool, cut into separate parts. When investigating the different images,

other traits were noticed. For example, editing or misalignment of separate parts to the

image, which may imply that image editing software had changed the image. Ideally,

what is required are pictures that were clearly screenshots of a tool. However, if there

were any indications that manipulation may have taken place, then these files were

removed from the list.

After this filtering process for all the papers, 473 papers were saved. The names of the

papers were changed, by following the method of using the number of authors’ surname

(Authors) in each paper, and the year of published. This selection process is defined

by five stages, as shown in Table 3.1. This process can be used as a strategy, by other

researchers, to select multiple view images in multiple view visualisations analysis.

One of the challenges we faced was to decide whether to include images of systems with

only one-view. On the one hand a one-view visualisation does not necessarily represent

Data gathering and quantification preparation 46

Table 3.1: Strategy to select which multiple view images to evaluate.

1 Removed all files of supplementary materials.
2 Removed papers that did not have visualisations, or only had illustrations and

schematic diagrams.
3 Removed papers that only had images that were clearly put-together or had been

edited (by an image processing tool). Telltale signs were investigated. These
included: miss-aligned sub-images or several image resolutions in different parts
of the figure. Papers were removed that had displayed their images from several
sub-figures, for instance, authors often take several screenshots of their tools and
put them together in several sub-figures. This decision was taken because it is
difficult to quantify how much editing had been achieved by the authors.

4 Removed papers with low resolution or very small figures, where it is difficult
to determine the views inside these figures, or it is hard to characterise the
visualisation types within the views, which would have been unclear to classify.

5 Files were kept that had at least one candidate image.

a visualisation system. It could be created by a user, and itself could actually be a cut

and paste from another multiple view system. However when they are not included, it is

more difficult to calculate suitable statistics over the average of views used. Originally,

the decision was taken to not include them. But after publishing a poster paper at

the IEEE Visualization Conference, and receiving several comments and questions on

the work, the decision was taken to include them. Notably, one eminent visualisation

researcher questioned deeply about ‘what is a view’, and pointed out that if one-view

systems were replicated in a multiple-view visualisation system, then one-views systems

where they stand alone, should be considered. They asked “Why didn’t you include

one view systems?”, and it was hard to discuss and convince them otherwise. They

recommended adding one view systems to the data set. And after deliberation, the same

conclusion was made: to consider single-view systems equivalent to multiple-views

systems. Therefore, one-view systems were henceforth included in the short paper

publication “Towards Quantifying Multiple View Layouts in Visualisation as Seen from

Research Publications" [82] and this thesis.

Furthermore it is statistically relevant to include the 1-view systems, because it gives us

an appropriate baseline. Moreover, it gives us the ability to understand and tell a story

about what people are doing with one view systems comparison with the two, three,

etc. view systems. Finally, one-view systems are not a majority, they represent a small

Data gathering and quantification preparation 47

proportion of the whole (69 from 491 layouts), and so this inclusion helps express a

richer story.

Through this sifting process 473 papers were kept, and one image extracted from each,

apart from sixteen papers that had pictures for two different tools and one paper that

had pictures for three different tools. Works were included from SciVis, InfoVis and

VAST without exclusions based on applications area.

Following the selection process the images needed to be extracted. While automatic

schemes could be used to save the images, for instance Adobe allows all images to be

saved from a PDF, the decision was taken to save them manually. This also meant that

the names of the files could be changed at the same time, and stored in the desired

image format. Images were saved in PNG format, and a bank of 491 images, of

screenshots of selected multiple view visualisation tools from the chosen papers, were

stored in year-based folders. Each image was labelled with a unique abbreviation using

a consistent file name based on the surname of the authors, that is used in LATEXto cite

the papers (as previously explained). The file formatting strategy, and examples are

shown in Table 3.2.

Table 3.2: Strategy to select which multiple view images to evaluate.

Author1[-Author2[-Author3][-ETAL]]Year.png
Where: Author: represents the surname of the author

Year: represents the year of publication
For example:

Erbacher2012.png [41]
This image was extracted from a paper which has only one author.
Lehmann-Theisel2013.png [71]
This image was extracted from a paper which has two authors.
Hong-Lai-ETAL2014.png [56]
This image was extracted from a paper which has more than two
authors, and these are the surnames for the first two authors.
Kucher-Kerren-Paradis-ETAL2014.png [67]
If there are papers shared the same surnames for the first two authors,
in this case, we include the surname for the third author.

The naming convention meant that it is easy to reference the images, locate the associated

publications and cite them later. If there were several suitable images which were

different, then both of them will be collected, and added a F (for Figure) followed by

Data gathering and quantification preparation 48

T1 T2 v1

v1 v2 v3 v3

v1 v2

T3

Window furniture
helps to evidence
a single
application.

Menu ignored T4

Topological layout Topological layout

Topological layoutTopological layout

v2

v1 v2

v3

v4
v5

Figure 3.2: Four visualisation tools (T1-4). Visualisations T1 and T2 clearly show three views,
while T3 has two windows and a menu that is ignored (three explanatory visualisation tools
created by our students [107]. T4 shows the Vinca estuary visualisation tool [47] demonstrating
five views.

the number, to the file name (−𝐹1.𝑝𝑛𝑔, −𝐹2.𝑝𝑛𝑔, etc.), unless the images were similar

where we chose the first image only. This process resulted in a set of 491 images.

Through this approach we gained a wide cross-section of application areas, data types

and display styles.

3.3 Developing general guidelines for view identification

Now a representative set of suitable images has been stored, the next step is to classify

and code them. But ‘what is a view?’ How is judgement made over the image represents

a one-view system or something that is a montage of sub-views? Is the system named a

one-view tool or a multiple-view tool?

Data gathering and quantification preparation 49

In visualisation, a “view” is the basic component of the visualisation layout. The question

“how many views are used in a multiple view system” along with the corresponding

question of “how are they laid out” has been on the minds of many researchers for many

years. Consequently researchers have discussed long and hard over the subsequent

question “what is a view”? However, while these discussions have been made by

researchers, they have been done at conferences and during the conference breaks. It is

surprising to know that there has been no formal record of these discussions, and no

formal strategy has been written down to discern whether (for instance) you may have a

one-view or two-view system.

To address these issues, and to code the multiple view layouts it is important to identify

an individual view in a swath of adjacent and other views. It is not necessarily easy to

identify, or count, views on a visualisation. Sometimes it is clear, that there are separate

dividing parts to the view, that for instance, one visualisation is a scatterplot and another

a bar chart. But other times it is less clear how many sub component parts, or facets, the

visualisation contains. Furthermore, designers can also overlay visualisations, or even

place visualisations in an irregular way which can complicate deciphering the layout.

However, while complications exist in how to interpret a view, because developers want

users to understand their data display, they are deliberate in how they position their

views. They want to craft decipherable and understandable visualisations that are laid

out in a clear way.

In addition, designers will engineer the display such that the graphical marks standout

from the background and contain clearly perceptible parts. In perceptual terms, the

background is known as the ‘ground’ and the marks that are displayed ‘the figure’.

Figure and ground are often discussed in perception, for instance Colin Ware discusses

figure-ground [147]. The graphical marks that encode the data are the figure, which

stands out from the background colour, texture or shape. Even if the background is dark

and the graphical marks light in colour, the user should perceive that they are different.

Therefore the first discernment strategy is to consider elements of design. When

glancing and looking at the screenshot it is possible to notice the spacing that a designer

has used to separate the different views. In most cases a view will be surrounded by

a light colour, or small gap. Moreover, when a designer creates the tool they will put

Data gathering and quantification preparation 50

things that are associated closer together. They will place graphical marks in visual

groupings. For instance, rectangles make bars for a bar chart, which are placed close

together to make the bar chart design. It is often clear to realise that they are part of

the same “bar chart” because they are close together. These concepts therefore are

following the Gestalt principle of proximity [147]: things that are close together and

probably more closely related. So the designer will follow best design principles, and

consequently position the chart pieces close together. This means that the graphical

marks, bars, axis, tick marks, titles, and labels, etc. will all be close together to make

one view. Alternatively the designer will make this explicit by placing a view in a User

Interface window, panel or frame: they will enclose the whole visualisation design

inside a border (this presents the Gestalt principle of enclosure).

For example, Figure 3.2 (T1-4) shows four visualisations. The first three visualisations

show explanatory visualisations [108]; this multiple view visualisation demonstrates

explanatory visualisations of T1 the z-buffer algorithm, showing three different

projections; T2 fractal surfaces algorithm, and T3 Lindenmayer grammar-based

modelling. Although the views inside visualisation tools T1 and T2 are not displayed in

separate windows there is clear separation (space) between the multiforms. T3 makes

this separation explicit by using a box around the each view. Finally T4 shows a five

view system of the Vinca estuary visualisation tool [47], each view is a separate window

that can be positioned by the user, and there is a subtle bounding box around each view

and clear space around the map, Parallel Coordinate Plot (PCP) and three line graphs,

creating a five-view system. Alongside this figure we include our abstract topology of

its design drawn as gray-coloured rectangles.

Another strategy is to consider that each view affords a different task. This is sensible,

because again the designer will want to get the user to focus on a particular task in one

window. Furthermore a developer would often create the tool in a modular way. One

design principle a developer may follow is to apply separation of concerns. Where they

will implement the code in separate classes or modules. View would be implemented by

a different class, or one module would deliver spatial interaction (such as navigation on

a map view) or another module focuses on searching (such as used by a list view). This

represents a ‘separation’ of tasks. For instance, in Figure 3.2T4: the map (v2) shows a

view of an estuary and affords geo-spatial interaction; v3 is a parallel coordinate plot

Data gathering and quantification preparation 51

(PCP) allowing multivariate data manipulation; the line charts (v1,4,5) show temporal

data. This ‘separation of concerns’ idea can help to discern individual views.

When the views become very small it can be challenging to count them. This is

especially true when there are many views, such as displayed in a matrix, Scatter

Plot Matrices (SPLOM), trellis, grid or small-multiple display [109]. When do these

small-multiples become one ‘view’ or when are they separate and individual views?

And, how can we make the judgement that a small-multiple-view is actually a single

view (yet made up from many small parts) or that each cell is a separate view?

While there may be different opinions [109], the decided strategy was to ask the following

key question: “if an individual small-multiple was removed from the whole plot, would

it make sense?” In other words, was it an independent or dependent view? At one

extreme, it is possible to imagine that an individual cell of a reorderable matrix [137] or

a cell of a spreadsheet would not make sense on its own. But, with some scatterplot

matrix plots, it may be possible to remove the cells and they would make sense on their

own. Therefore, a scatterplot matrix is classified as a matrix view — count the cells

and group it with other views having “lots” of cells. Matrix views have structure, where

the position of the cell has a specific meaning.

With a grid of small multiples, their order is less strict, and the same question needs

to be asked: do the small-multiples make sense on their own? This answer probably

depends on the size of the individual pictures; when they are very small, they probably

will not have their own axis, legends, labels, etc. (where this information may be

displayed once for several visualisations) and so will not make sense on their own.

But if they are comprehensible on their own, then we will count the views. In fact, as

humans we prefer to see simple shapes and therefore we abstract complex shapes into

simple groupings, we also perceive things close together as being connected or similar.

Designers will probably follow the Gestalt principles, and will use them when they

create their visualisation tools.

Most visualisation tools have interface components, and may include menus, buttons,

slider bars, legends, colourmaps, legends, etc. Sometimes these are integrated with a

view, sometimes they are shown in their own window. In most cases it is possible to

Data gathering and quantification preparation 52

ignore these menus. However sometimes the menus take up a significant space. These

facets could be coded as a “menu”, however this would not permit the coding to be

applied consistently, because other views have this interaction/menu integrated into the

views. It could be coded as “null” views (or information panels), but again this may

skew the results. Consequently, a multi-criteria solution was chosen. If the menu is

on the side, or along the top, and can be easily ignored without changing the topology

of the view layout we ignore it. If a menu-window is enclosed between other views

then we treat this as “null” space and merge it into the closest neighbouring view. This

allows all menus to be treated as part of (at least) one view, and every visualisation

treated consistently.

To perform meaningful and consistent manual coding of view quantity the rules needed

to be laid down, which is named the view identification process. Five rules were

identified. These determine ‘what is a view’, and researchers can use these rules as a

strategy to code the multiple view layout in their research. They are listed in Table 3.3.

The rules were printed, kept close, and especially referenced with a visualisation that

was difficult to judge.

Table 3.3: Strategy to help ascertain ‘what is a view’ in a multiple view visualisation.

1 Views are usually visually separate from another view. Count the views that
are clearly separated by spacing, a gap that is coloured in the background colour,
rendered in a rectangle, or placed within a window. For instance, many views are
encapsulated in a window, notice a window through its furniture (such as a cross
to close that window or tab).

2 Views have different tasks, there is a “separation of concerns” where different
views are added to gain a variety of perspectives on the data. Count the views
that clearly have different tasks.

3 If we can name them, we have different views. Point to the views and name
them. By naming the views you are treating the view as a “whole”. For example,
you could say “scatterplot, line graph and bar chart” and you would have three
views.

4 Consider how a programmer would code it. If they cannot be separated visually,
they may be able to be separated functionally. This is separation of concerns at
the functional level, e.g., draw.scatterplot().

5 Ignore interface components. Ignore menu windows if it is sensible to do so
(such as a menu along the top of all views). If controls, menu items or legends
are part of their encapsulating view, ignore them (they are part of that window
anyway). If the menu is contained in a separate window that is located in-between
other views then ignore the menu and merge it’s screen real-estate space with the
closest neighbouring view.

Data gathering and quantification preparation 53

3.4 Coding the layout arrangements

The next challenge is to provide a ‘code’ to enable the views to be counted. This

section discusses the coding scheme for the first part of third question (q3): “What is

the strategy to code multiple view topologies?”

To answer this question each image was carefully and systematically evaluated in turn,

considering the topology, and sketching layouts. The coding schemes can be used for

coding individual layouts, and that will help to address research question Q2, Q3 and

Q4. Now, being able to identify a “view” this study needed a way to record the views

and their configuration.

An inductive strategy [44] was chosen to develop codes to answer research question Q2,

Q3 and Q4. The codes were developed through refinement and critical thought. This

study used two investigators (student and supervisor) to evaluate the images. In order

to explore the different possibilities we decided to start with a sketchy visual coding

scheme. This enabled the codes to be created as the analysis happened. Sketching (of

the layouts) was also used to externalise the thoughts and structures on the visualisations.

These sketches were particularly useful to explore difficult layouts.

To proceed, each image was displayed in turn on a large screen and carefully judged.

Each of the 491 images were analysed in turn. For each image, several judgements

were made, and notes on the quantity and layout of the views of a multiple view image

were taken. A simple sketch was made, as a simple representative picture of the layout.

These sketches represented the toplogy and the ‘figure ground’ principles were used to

judge them. If a quick judgement could be made then one simple (indicative) sketch

was made on a piece of paper. However, if a judgement could not be made and the

topology was unclear, then every possible topology was sketched. The image files were

evaluated as follows: framing each view in the visualisation layout and after removing

the container (using the figure-ground method), after that, the structure of the layout for

each multiple view image was evaluated, and every sketch was also labelled with the

paper reference. Then, the sketches were organised into sheets in according to the year

of publication and in alphabetical order as shown in Figure 3.3. If there was a dilemma

on how to sketch the topology we drew all possible arrangements, which were later

Data gathering and quantification preparation 54

discussed. This meant that the ‘codes’ were developed as part of the judging process.

The strategy is summarised in Table 3.4.

The alternative way would be to follow a deductive coding scheme [44] and pre-choose

the categories by calculating in advance the topological permutations and then count.

The deductive method was not chosen, because at the outset it was unclear on what

structures were being used, and it would have been impossible to discover possible new

schemes. In addition, because of the need to emphasise the role of the visualisation

designer in any guidelines that would be created, it was decided to make sketches of the

layouts, which act as visual codes. These sketches would be exchanged for labels at the

end of the whole process and stored into a spreadsheet.

From early discussions about the topology, and initial sketches, it was realised that some

images were easy to judge, while others were not clear. Therefore a training phase was

employed. The two investigators classified individually 20 (randomly chosen) images,

based on the criteria as given in Table 3.3, and sketched small pictures representing

the topology. Out of this set, five were unclear. But after discussing these cases, the

topologies were readily agreed.

Table 3.4: Strategy to code layout topologies.

1 Every image was displayed on a computer screen.
2 Judge topology (using the view rules in Table 3.3)
3 Code the layout in sketches, write file name alongside.
4 With dilemmas, sketch all possible layout configurations.
5 Discuss each dilemma, agree on one topology, and keep agreed topology.
6 Cut the sketches into individual tiles.
7 Arrange tiles on tabletop, discuss ideas, and categorise layouts.
8 Record quantities.

While encoding the data we ignored the size of the facets. Our goal was to focus on

multiple view layout design, and our topological coding scheme (as explained above)

ignores recording the exact sizes of the facets. In other words, the structure of the layout

was evaluated, ignoring their relative sizes. There could be different ways to code the

different sized parts of the views, such as having a sub code, or a percentage value

to determine the split. However, this extra information would complicate the coding

scheme making it more difficult to be consistent in coding and also the analysis would

be more challenging.

Data gathering and quantification preparation 55

In addition, the relative sizes are implied in the structure: where the size of an individual

view, of a multi-faceted visualisation too, would naturally be smaller. Therefore the

sketches code the topological layout and hide some of the fine nuances that may

occur due to size differences of some of the views. For example, when considering a

side-by-side two-view display with the left view taking up less space than the right view

to be structurally the same as another visualisation that has equal 50/50 split of the size

of the each view.

Figure 3.3: We sketched each topology in a small picture; we sketched all possible alternatives,
which were later discussed.

When evaluating all 491 images, over 22 sheets of paper of sketches (with on average

over 22 sketches per page) were created. At the end, two people went through and

discussed each design, and we focused on the sketches which were ambiguous. We

discussed 124 of these ambiguous cases in detail. After discussion we reached a

final judgement on each layout and agreed their topological structure, and updated our

sketches. Random checking of another ten was achieved to make sure that agreements

were made over the necessary judgements. A photograph of the sheets is shown in

Figure 3.3.

Subsequently, 491 sketches were judged. These agreed sketched images were then cut

up into individual tiles, keeping only the agreed topologies, such that we could discuss

them and move them around on a tabletop. By physically moving these tiles, it was

possible to have a frank discussion about their layout strategies. The simple abstract

drawings provided an easy way to compare the structures without being distracted by

the actual view design or content.

Data gathering and quantification preparation 56

To record these classifications, an appropriate nomenclature was needed. This

nomenclature is described now, because it is part of the coding scheme, but practically

it was developed coincidentally with the recording of the data. The shorthand version

occurred because we needed an easy way to refer to each layout. There are different

potential ways to name the view layouts. Real names could be used, such as “one view”,

“dual view” or “three view”, but this strategy would not make a convenient shorthand

version, because ordering of them would be difficult. The solution was to label them

with a number (the view quantity) followed by a letter (indexing a view layout).

For example, “1A” is a one view (there is only one possible layout), and “2A” is a

vertical 2-view layout, while “2B” the horizontal layout. While the number is logical, it

is unclear how to allocate letters to view configurations. The chosen solution is arbitrary,

but consistent and convenient. It was decided on a first-come basis. When counting the

views, the first new type was allocated an A, the next unique type a B, and so on. The

naming scheme is listed in Figure 3.4.

Figure 3.4: Nomenclature and icons for the most frequent layouts.

Five examples are provided in Figure 3.5, Figure 3.6, Figure 3.7, Figure 3.8 and

Figure 3.9. These figures provide a summary of how specific images are coded. And,

as explained in Table 3.4, for each layout, the authors’ surnames and the publication

year are used to reference the layout.

Data gathering and quantification preparation 57

Reference:
Dis-Function: Learning Distance Functions
Interactively.
Eli T. Brown, Jingjing Liu, Carla E. Brodley, Remco
Chang. IEEE Vis Conference 2012
 Metadata:
Reference: Brown-Liu-ETAL2012

Classified: 4D

Figure 3.5: Image (from Brown et al. [22]), an example of coding 4-views layout.

Reference:
Visualizing Hidden Themes of Trajectories with
Semantic Transformation. Ding Chu, David A. Sheets,
Ye Zhao, Yingyu Wu, Maogong Zheng, George Chen,
Jing Yang. IEEE Vis Conference 2013
 Metadata:
Reference: Chu-Sheets-ETAL2013

Classified: 4A

Figure 3.6: Image (from Chu et al. [34]), an example of coding 4-views layout.

Data gathering and quantification preparation 58

Reference:
Integrating Visual Exploration into Traditional
Scientific Research Methodology. Evan Barba,
Yifang Wei, Janet Mann, Lisa Singh. IEEE Vis
Conference 2016
 Metadata:
Reference: Barba-Wei-ETAL2016

Classified: 6C

Figure 3.7: Image (from Barba et al. [10]), an example of coding 6-views layout.

Reference:
A System for Visual Analysis of Radio Signal Data.
Tarik Crnovrsanin, Student Member, IEEE, Chris
Muelder, and Kwan-Liu Ma, Fellow, IEEE. IEEE Vis
Conference 2014
 Metadata:
Reference: Crnovrsanin-Muelder-ETAL2014

Classified: 3B

Figure 3.8: Image (from Crnovrsanin et al. [37]), an example of coding 3-views layout.

Data gathering and quantification preparation 59

Reference:
 TellFinder: Discovering Related Content in Big Data.
 Eric Hall, David Schroh and William Wright. IEEE
Vis Conference 2015

Metadata:
Reference: Hall-Schroh-ETAL2015

Classified: 2B

Figure 3.9: Image (from Hall et al. [53]), an example of coding 2-views layout.

Figure 3.10 shows an additional 21 examples of how multiple view visualisations are

coded. These images are chosen as a convenient sample of some of the images from

the full database of 491 images. The thumbnails come from across the database. They

demonstrate both breadth of types across years and breadth of view-quantity within

years. Three layouts were chosen from each year, running through from 2012 to 2018.

When classifying the images the full resolution of each image was used, which were

displayed individually, and on a large screen.

Data gathering and quantification preparation 60

Figure 3.10: Figure showing 21 image thumbnails and their respective layout classification.
Sample images from our database of 491 images.

Data gathering and quantification preparation 61

3.5 Coding the visualisation types

Finally, the second part of the third question (q3) is addressed: “What is the strategy to

code the visualisation types?”

There are potentially many ways to classify the visualisation types. For instance,

Bertin’s (diagram, network, map, glyph symbol) [15] scheme would provide a broad

classification; Roberts [113] describes several data and visual schemes; ManyEyes [143]

focus on the data and describe views as 1D, 2D planar, volumetric, temporal, tree,

network etc.; while Kerracher and Kennedy [64] classify user actions. But each of

these taxonomies do not allow us to name specific view types that we want for our

classification. Certainly there are many lists of visualisation chart types on the Internet;

names in applications (e.g., D3.js, Excel, Tableau, Qlik and R) or general lists on

Websites such as Wikipedia and infovis-wiki.net. But there is little consistency between

each of these schemes.

In fact, there is no agreed set of names for visualisation types. For example a line

graph could be written equivalently as line plot or line chart. There is little consistency

to how these phrases are written in the community, and no agreed form to what they

are or how they should be written. Because this issue is not the main focus of this

thesis it is explored in a companion paper [109]. Furthermore there is no ontology of

visualisation types. Different designers may name the same visualisation differently,

tool builders make up new names for ideas that are actually commonplace, and bloggers

use names that are convenient for their story (that can be erroneous). For example,

focus+context could be written as focus-and-context; bar chart written bar-chart or

barchart; and there are many names for similar concepts (for instance) trellis plots,

splom, matrix views and small-multiples all share similar traits [109]. This naming

issue is a broader challenge than is possible to tackle in this chapter. Particularly, it is a

challenge that should be tackled by the wider visualisation community, and recently

some researchers have started to address it already. For example, Isenberg et al. [60]

discuss this namespace problem when analysing keywords, and Roberts et al. [109]

investigates the wider namespace of multiple views.

Consequently, an inductive (top down) strategy was chosen, to develop codes to answer

Data gathering and quantification preparation 62

the sixth research question (Q6). The strategy was to look at the visualisation, name it

(by saying it, out loud) and record its name; only adding new names and new types to the

list. The visualisations were named, and the more confusing or challenging ones were

discussed with colleagues in the research group. This meant that all bar charts are put

together, even if they were horizontal, vertical, stacked, etc. In addition, it was important

to make certain that only unique names were used and of consistent formatting (e.g,

lowercase, without hyphens). Any uncertain views were further investigated: going

back to the paper that displayed the visualisation and searching for the description by

the authors. If it was still unclear it was named as “other”.

Visualisation types were grouped together that shared similar traits. For instance, all

network diagrams, graphs and associated node link diagrams were placed into one

category called node link diagram. All stream graphs were placed together in the area

chart category. Likewise, splom and scatter plot matrices were placed together within

the matrix category. And, because there was a large quantity of medical images, medical

renderings and volume visualisations, they were all placed together in the rendered

image category.

On the other hand, small multiples, that demonstrate several separate visualisations,

were placed in their own category: a grid. Which was different category from matrix

views (that show correlations between sets, such as showing ABCD x ABCD). A table

category was also added, to distinguish tabular visualisations, which display mostly

numeric values. In addition, scatter plots and point charts appeared to be placed along

a time-based axis and use complex symbols, while bubble charts differ, because they

present many circles and are not usually displayed on an axis.

Lastly, some of the visualisations were impossible to categorise, because it was unclear

how they were formed; and they were different to other visual depictions, subsequently

they were classified in other category.

Data gathering and quantification preparation 63

3.6 Discussion

The goal of this chapter was to present how images were captured. Each image represents

a visualisation tool or technique, that clearly originated from applications (whether on a

desktop or website), that were created by through a snapshot/screen-grab operation or

directly output from the tool. Many sources were considered, including using a general

Internet search for visualisation images, video sources such as Vimeo or YouTube,

or other online image repositories. However each of these sources change over time,

and sometimes the search engines change the search results dependent on geographic

location, so it would be difficult for others to confirm our studies, and add more images

for future years. In addition, it was required to store a set of images that had been

created by visualisation experts, and not the general public. It could be difficult to judge

the provenance of images from the Internet. Consequently, it was decided that the IEEE

visualization Conference series would be used to create a convenient and reproducible

set of images, where the papers have been through peer review.

Certainly the output media (PDF for a digital library or printing in this case) could

affect decisions over the layout. In fact, deliberations were made, long and hard, over

these issues. A reader can readily imagine a situation where a developer may decide to

layout the views of their visualisation tool differently for different media presentations.

For instance a wide-format PowerPoint slide has different aspect ratio to the space for a

single column in a the IEEE two-column paper format, or even a web page user can

change the aspect of the window. However, because there are many different options

to position the tool in the paper — from the long-thin teaser image, a page width, or

column width — an author would be fastidious over how they present their tool in the

most effective way.

In addition, this study considered how to code the images, whether manual or automatic

encoding. We considered code the layouts using automatic image-processing algorithms,

but the focus was on design layouts and not on algorithm development, and a user would

be looking at the tools and making decisions over them, therefore, the decision was

taken to use a manual coding process approach.

This work concentrated on view juxtaposition [50] where each views sits alongside each

Data gathering and quantification preparation 64

other, and on the topology of each design layout (e.g., a 2-view system can have one

view above another, or left/right of each other). It would have been possible to include

other design strategies. For example, Gleicher et al. [50] proposed several strategies to

allow comparison, first view juxtaposition, second overlay and third comparative view.

Indeed the idea of ‘overlay’ is often used in geographic systems – where a map is the

lower level and additional information is displayed on top. Subsequently it could be

theoretically possible to classify the multiple-view systems in a similar way. However,

while, discerning different facets from a design strategy of juxtaposition is clear, it

is far less clear how to visually separate facets in the other strategies. For instance,

the idea of ‘overlay’ is often used to display geographic information, where different

data variables are laid on top of a lower map level. It would be difficult to visually

separate the individual variables, because they all visually merge together. Likewise the

same challenges would occur to discern individual facets from an ‘explicit difference’

visualisation.

Additionally, automatic methods of analysis could be possible. It would be possible to

develop a deep learning algorithm to decipher the different view facets. While this could

be a successful strategy it changes the task from analysing views to writing appropriate

artificial intelligence algorithms. he goal of this research is to also develop a set of

guidelines that could be used by other researchers. Additionally, it is important to help

formalise the debate over the question of “what is a view”. This would not be achievable

through the deep-learning process, because the methods of the AI would be hidden,

and it is usually difficult to understand how the learnt algorithm actually is making

decisions.

Finally, it would be possible to develop a tool to help judge the views. In a collaboration

with Xi Chen, Wei Zeng and Yanna Lin and Remco Chang (Tufts University) they have

created a tool which enables different users to classify multiple views. The output of

which is then used as input to a recommender system. The reader should view this

published paper for more information about this work, as it is not reported in this

thesis [28].

Data gathering and quantification preparation 65

3.7 Summary

This chapter focused on the preparation process for multiple view quantification,

including image selection and coding process. Consequently, this chapter answered

three questions: “Q1/ What is the strategy to select multiple view images to evaluate?”,

“Q2/ What is the strategy to define and determine a view in multiple view visualisation?”

and “Q3(RQ1)/ What is the strategies to code multiple view topologies and visualisation

types?”.

Images were selected from the IEEE VIS Conferences. Selections came from: published

papers, workshops, and posters from 2012 to 2018 (first database). By providing

guidelines to select multiple view images for multiple view analysis, it allows other

people to create similar sets of images. Two databases were created: the first database

has 473 papers that contain the multiple view images and the second database has 491

multiple view images. This chapter also discussed the question “what is a view” and

developed guidelines for others to follow. These principles enable researchers to look at

the views in the images in terms of separate components. These guidelines can help

users to determine and subsequently quantify the views in multiple view systems. Next

the work explained how the codes were defined. This provided a way to record and

classify the images. The coding process started with the observation of each multiple

view image and made a judgement on the quantity of the views in that image and the

visualisation type in each view, then a representative picture of the layout was sketched,

and each labelled it with the paper reference. Then each of the 491 images were

systematically considered, which generated 22 sheets of paper (the fourth database).

This chapter, focused on providing an objective structure for the preparation process of

quantifying the multiple view visualisations through three sets of guideline that will

help another researchers produce similar databases to extended this work, such that

researchers can make easy judgements on multiple view visualisations.

The next chapter uses these codes, the created databases and developed processes to

quantify the view facets, and develop answers to the remaining research questions (RQ2,

RQ3, RQ4, RQ5, RQ6 and RQ7) that related to the quantification process.

Data gathering and quantification preparation 66

Chapter 4

Quantification (data collection),

analysis, and design guidelines for

multiple view systems

Many developers build multiple view systems, and the method is widely utilised in the

world of visualisation. Each visualisation presents data in a unique manner, and often,

user interaction across views is coordinated. However, it is not always clear to know

how many views a developer should use, what would be the best layout or what is the

best visualisation technique to visualise their data.

This chapter will quantify and analyse various multiple view systems published in

papers and analyse the data stored in the databases from the preparation and coding

chapter (Chapter 3). Additionally, the chapter presents a set of design principles that

will assist developers and learners in creating multiple view visualisations. This study

focuses on the following research questions and is structured around these challenges:

Q1/ How many views are used in multiple view systems?

Q2/ Do developers prefer symmetrical or non-symmetrical layouts for multiple

view systems?

Q3/ What layout arrangements are popular in multiple view systems?

Q4/ What visualisation types are used in multiple view systems?

Q5/ What types of visualisation come together in multiple view systems?

Q6/ What are the guidelines to design multiple view visualisation?

67

4.1 Introduction

It is not always obvious to a developer how to lay out and place views in their systems.

Developers and learners alike should have standards and frameworks to assist them in

making good design decisions. Subsequently, it is important to develop visualisation

theories and, more particularly, developing recommendations for view layout best

practices. However, to accomplish these objectives, researchers must do fundamental

research to ascertain existing best practices. While, as shown in RelatedWork (Chapter 2)

much research has been achieved to develop new multiple view tools, and researchers

have theorised over aspects such as coordination in multiple views, there has been

no quantitative analysis of layout organisation in current multiple view tools. Even

theory papers, such as the well known set of guidelines by Baldonado [144] are not

based on quantitative data analysis, instead are based on lessons learned from using and

developing multiple view systems. Subsequently, by quantitatively evaluating current

tools, researchers will have access to data that can underpin theories and help them

develop appropriate guidelines.

This chapter presents a quantification and analysis of the multiple view systems stored

in our database. This chapter follows from the preparation and coding research that was

presented in Chapter 3. The database contains views that have been presented in print.

Consequently, the analysis is limited by the data that we have available. The database

could be expanded to include animations, commercial tools, websites and so on, but

such expansion would make the database larger, would make it more challenging to

reproduce the dataset, and could include visualisations that are not useful. By relying

on the visualisations created from published works (in a subset of all publications) it

is possible to assume that the papers have gone through peer review, and have been

carefully crafted by the authors to present their work effectively. Furthermore, the

database could be expanded in the future to include other tools. But the databse, of

multiple view images, stands as a representative sample of multiple view tools as

published in leading visualisation conferences and journals, that are respected by the

community.

Different aspects could be analysed from the data, but because the wish is to provide

guidelines over ‘view layout’ it was decided to focus on the quantity and position of

Quantification (data collection), analysis, and design guidelines for multiple view systems 68

views in the multiple view systems, the layout arrangements for multiple view systems,

the visualisation types and the correlation between the visualisation types in the multiple

view systems. There is certainly ‘future work’ to perform. For example, there are many

extensions to this work, including: the use of coordination could be investigated; ways

to visualise how coordination is incorporated in a multiple-view system; colours and

design aspects of the multiple view systems; the differences between multiple view

tools and layouts on different output screens/devices.

Figure 4.1: The methodology of the quantification and analysis process chapter.

This chapter uses a systematic analysis strategy, whereby each question is focused in

turn. The chapter is divided into two broad parts, as shown in Figure 4.1. The first part

(quantification and analysis) provides us with a comprehensive understanding of the

components and characteristics of the multiple view systems. Moreover, the second

part (recommendation) defines a set of steps that can be followed to create effective

multiple view systems.

Quantification (data collection), analysis, and design guidelines for multiple view systems 69

Quantification and analysis.

• Section 4.2: This section explains the methodology that this study followed to

count and classify the multiple view layouts and its views.

• Section 4.3: This section starts with quantifying the number of views in all the

multiple view layouts, then this section classifies the layouts based on the number

of views to find what are the most popular layouts based on views number.

• Section 4.5: This section classifies the layout arrangements to find what are the

most popular layout arrangements in multiple view systems.

• Section 4.4: This section investigates the symmetry design of the multiple view

layouts to find if developers prefer symmetrical or non-symmetrical layouts, and

What is the reason for this preference.

• Section 4.7: This section classifies and counts the visualisation types in the

multiple view systems to find what visualisation types that developers have been

mostly used to visualise their data.

• Section 4.8: This section investigates the correlations between the visualisation

types in the multiple view systems to find the collocational and non-collocational

pairs for visualisation types, this investigation will help to know what types of

visualisation come together in multiple view systems.

Developing guidelines.

• Section 4.9: This section discusses the overall results and the design decisions that

had been made by developers to create multiple view systems. This discussion

will help to create a set of design guidelines to help developers create robust

multiple view systems.

Quantification (data collection), analysis, and design guidelines for multiple view systems 70

4.2 The tabletop strategy to quantify multiple view

layouts

Developers code data for a variety of reasons. One of the reasons ‘coding’ is chosen is

to categorise the data. Coding enables information to be summarised in a way that can

be quantified and counted. This will enable the views to be analysed and quantified.

It will enable a set of recommendations to be created, that could be used by other

researchers in the future. When developers code or re-code data, they organise it to

obtain a better knowledge of it. But it is not only a matter of simplifying or summarising

the information into a reduced form, but the process of coding itself has the additional

benefit of helping the researchers to understand the data in a deeper way. The data

could be ‘coded’ using an automatic approach, whereby we use an artificial intelligence

algorithm to learn typical behaviours. However manual coding was chosen to perform

the analysis. Manual coding enables each view to be evaluated, judged and discussed.

Each view was considered, coded and discussed. While much time and effort was spent

on this process, the actual process gave insights into the data that would have not been

achieved though automatic methods. If programming languages were used to apply

an Artificial Intelligence (or deep learning) algorithms, the AI would learn. It would

not have helped develop a deep understanding of the information. In addition, to code

the views it requires a deep understanding of the processes, and this would have been

required in order to write the AI algorithm. So the act of coding, labelling it, and even

discussing the labels as a research team, benefited and deepened our (as researchers)

understanding of the underlying data. The coding process therefore is just as important

as the codes that are produced.

Along with the manual coding exercise, physical tokens were created. These ‘tiles’ were

formed by sketching the layout on a tile, cutting it out, and positioning it on a table. This

helped to create a deep understanding of the data and it meant that different categories

and orderings could be discussed. This physicalisation was an important step to help

develop and understand the data better. Placing the tiles on a tabletop, positioning tiles

nearby other similar tiles helped to develop and classify the layouts. This process also

helped to confirm the quantity of multiple view layouts in our database, and to count

Quantification (data collection), analysis, and design guidelines for multiple view systems 71

the multiple view systems and its components. A photograph of the table-top is shown

in Figure 4.2.

This is a tangible method. Each sketch is cut into tiles (from the sheets totalling

17 sheets of paper), placed and organised each of the multiple-view topologies as

separate sketched tiles on a tabletop. In fact, there were so many tiles that two tables

were required to hold all the tiles. Each tile was physically moved and located in

place. Placing similar layouts together. This helped to develop a better understand the

frequency of each layout, and also gives a physical area chart of the quantities in each

strategy and shows the relative quantity of each layout. From this tabletop collection of

tiles it was possible to record the quantities in a spreadsheet for further analysis. The

tabletop display provides a visual quantitative summary of view layouts.

The tiles were arranged and classified the layouts tiles on the table by arranging them

into groups. Similar tiles were grouped together: first by quantity of views and then

by their topological structure. This strategy provides a visual way to to investigate the

structures and layouts.

2 3 4

5
6 7

8 9 10 lots

Figure 4.2: Using a tabletop strategy, I cut these sheets into individual tiles such that I could
discuss them and move them around on a tabletop. I layout each of the multiple-view topologies
as separate sketched tiles. The simple abstract drawings gave us a easy way to compare the
structures without being distracted by the actual view design or content. This provides a visual
summary of the range of layouts.

Quantification (data collection), analysis, and design guidelines for multiple view systems 72

4.3 The Quantification and the analysis of views number

in multiple view layouts

This section focuses on the question: q1/ How many views are used in multiple view

systems?.

The tiles were grouped together on the tabletop based on the number of views. Through

discussion of the tiles, and by considering the different quantities of the codes, they

were arranged into 11 groups. For the process of placing the tiles on the table, and for

the higher-view counts, a final category named “lots” was used. This extra category

includes all layouts with more than 10 views. The table-top presentation of the layouts is

shown in Figure 4.2. This photograph provides a useful visual overview of the quantity

of layouts. It shows that three and four view-layouts are most frequent. This strategy

helped with tallying the quantities of multiple view visualisations, enabled us to discuss

different cases and categorise them appropriately. Then, the view layouts/tiles were

counted, and tallied. It is then easy to create a histogram that presents the the frequency

of each layout structure, as shown in Figure 4.3.

Figure 4.3: Histogram showing the frequency distribution of the views. From 491 multiple
view systems, in our study we find that a 3-view system is most frequent.

Initially, when the tiles were transcribed to numerical values, and placed in an excel

spreadsheet, views up to 20 were counted. The decision was taken, that the space

allocated to individual views – when the view quantity exceeds 20 views – is very small.

Therefore the data was binned into a single category of 20+, as shown in Table 4.1. And

Quantification (data collection), analysis, and design guidelines for multiple view systems 73

the data reorganised and recorded the quantity of layouts based on the published year

besides to the views number, and tallied each of the different view topologies up to 20

views.

From this data, and careful analysis of the layout structures of the 491 visualisations

and grouping, the quantity of the visualisation views can be calculated for all layouts.

From our data gathering, the histogram Figure 4.3 and Table 4.1, it is now possible

to answer q1: “how many views do people use”. Because there are different ways to

interpret the statistics, the question is broken into several sub-questions.

What is the most common layout? To answer this question the view quantities are

ranked (see Table 4.1). The most common layout is a 3-view system. Four-view systems

are next, followed by one-view systems and dual-views. Six view systems are slightly

more frequent than five view systems. There is a clear statistical separation (in the

histogram) between 6-view and 7-view (and more) systems. In fact 84.68% of the

systems are 6-view or less. These results are important. They suggest that the majority

of developers use 6-views or less, and most of them choose a 3-view system. The also

suggest that (in general) fewer views are used more often, which supports the rule of

parsimony by Baldonado et al. [144]. In addition, Figure 4.3 shows a breakdown of the

quantities. 44 of the layouts had 11 or more views, and from looking at these designs it

is possible to see that each these visualisation are small multiple displays.

What is the average quantity of views used? The naive arithmetic mean calculates

to 4.9. However, like most averages, this is misleading and this number hides much

detail. We have a positive skew in the distribution of the view count (skew is 1.049),

and it is clear from Figure 4.3 that there is a very long tail. Such a positive skew is

understandable; when the views are counted it is impossible to get a value less than a

one view system, and it is far less likely to see systems with huge quantities of views

(it is just impractical to have a system with hundreds of views). This situation can be

demonstrated by modelling a Normal distribution from 1 to 20, with an average of 3 (as

per the most frequent occurrence), and comparing the observations with this model.

In fact a statistically similar result to the coded observations is achieved: a Pearson

correlation is calculated as 0.960 with a Ttest 𝑝(0.885).

Quantification (data collection), analysis, and design guidelines for multiple view systems 74

In conclusion, the quantification shows that designers do usemany views, and considering

guidance to use multiple views parsimoniously, this is an interesting result. In addition,

per year data was analysed, but it was not possible to make any conclusions from the six

year period. It will certainly be interesting to take a historic look at the visualisation

systems, but this was out of the scope of this current study and will need more years

worth of data to make sense of the information, therefore the per-year question is left to

future work.

Table 4.1: Results of tallying the views. Views were also tallied per years, with the frequency
and the percentage frequency. Applications with 20+ views are aggregated together (and treat
them with a system of 20 views, for calculations).

Views 2012 2013 2014 2015 2016 2017 2018 Freq. % Freq. Rnk
𝑉𝑖 𝑓𝑖 𝑓𝑖 𝑓𝑖 𝑓𝑖 𝑓𝑖 𝑓𝑖 𝑓𝑖 𝑓 % 𝑓

1 10 7 12 12 9 8 11 69 14.05 3
2 10 6 7 9 5 11 14 62 12.62 4
3 8 11 6 10 14 16 20 85 17.31 1
4 12 8 11 13 10 10 14 78 15.88 2
5 7 4 6 9 4 10 11 51 10.39 6
6 8 7 3 9 8 8 14 57 11.60 5
7 1 1 1 3 3 3 2 14 2.85 8
8 3 1 3 3 3 3 0 16 3.25 7
9 3 1 0 1 1 4 0 10 2.03 10

10 1 0 2 0 0 1 1 5 1.01 12
11 0 1 0 2 0 2 0 5 1.01 12
12 0 1 2 0 3 1 2 9 1.83 11
13 0 1 0 0 1 1 1 4 0.81 15
14 0 0 0 0 1 0 0 1 0.20 18
15 0 0 1 0 2 0 2 5 1.01 12
16 0 1 0 0 0 1 1 3 0.61 16
17 0 0 0 0 1 0 0 1 0.20 18
18 0 0 2 0 1 0 0 3 0.61 16
19 0 0 0 0 0 0 0 0 0.00 20

20+ 0 0 4 2 1 5 1 13 2.64 9
Total 63 50 60 73 67 84 94 491 100∑20

𝑖=1𝑉𝑖 𝑓𝑖 272 222 342 327 371 470 421 2425

Avg. 4.31 4.44 5.7 4.47 5.53 5.59 4.47 4.90

4.4 The Quantification and the analysis of the

symmetrical multiple view layouts

During the physical tiling process, some of the topologies seemed more symmetrical

than others. This is a sensible conclusion. One of the design principles, as explained by

Quantification (data collection), analysis, and design guidelines for multiple view systems 75

the Gestalt scientists, is that humans prefer symmetrical designs [147]. But is this the

case, and how is it possible to evaluate this idea? It could be possible to ask researchers

specific questions such as ‘do designers prefer symmetrical multiple view layouts when

they create a multiple view system?’ or ask questions of designers, web developers or

visualisation tool developers. But such a set of questions would probably be repeating

the work of the Gestalt scientists. Therefore, it was decided to evaluate the views in

the database, and use a new sub-code for this purpose. Each view was classified by

the new ‘symmetrical code’. For example, they were coded as being symmetrical, if

the view layouts were more balanced, such as having two identical sides vertically or

horizontally. This is called mirror symmetry [57]. For example, both codes 2A, which

is a horizontal dual-view system, and code 2B, which is a vertical dual-view system are

symmetrical (see, Table 4.2). However, views such as 4D or 4F are not symmetrical.

Figure 4.4: Histogram of symmetrical versus non-symmetrical views.

Symmetry occurs when the view elements are arranged in the same way on both sides

of an axis. Perfect symmetry is when elements are mirrored over the axis and exactly

the same on both sides. Symmetrical balance encourages an equal weight of both sides.

The hypothesis is that more designs are symmetrical than not. In other words, that

visualisation tool developers may follow practices of balance and visual flow [43] that

are found in human computer interaction (HCI), to help them layout their views. For

instance, when a user looks at an image their eyes move around and get attracted to

different parts of the display. Their eyes are pulled, by the visual imagery and layout of

views, to flow in a particular direction. The positioning of the graphics and interface

encourages the visual flow of their gaze towards a particular visual direction [8].

Quantification (data collection), analysis, and design guidelines for multiple view systems 76

In addition, humans often prefer symmetrical pictures, and therefore the developers

may prefer symmetrical views. For instance layout 2A contains a vertical split and

therefore it is vertically balanced; 2B is horizontally balanced, 4B is balanced

vertically, whereas 4F is is not symmetrical. The results of the symmetrical analysing

of multiple view layouts are shown in Figure 4.4, and to explore this hypothesis we plot

the quantity of symmetrical views (whether vertical or horizontal symmetry) against

the non symmetrical. When the results are observed, the conclusion was formed that

there may be a trend to utilise more symmetrical layout strategies. But the results are

not conclusive, because there is a natural tendency for layouts with more views to be

less symmetrical. And it is difficult to tease apart these two observations.

Symmetry in multiple view layout can be a very suitable and sensible design principle.

It can create or maintain balance, calmness, and stability. It can communicate integrity,

professionalism, and solidarity. Asymmetry, on the other hand, can develop strong

points of interest, uniqueness, and character.

4.5 The quantification and the analysis of the layouts

arrangements

This section focuses on the results of the topological structure, and by using the tabletop

layout of the tiles, it is now possible to examine the view layouts. Initially when counting

the layout arrangements, the tiles were exchanged into the nomenclature, as explained

in Section 3.4 and shown in Figure 3.4. This nomenclature provided a way to record

the quantification of the layout arrangements.

The topologies were organised and counted the to find the common layout structures, and

the results for the relative quantity of each layout arrangement are shown in Table 4.2,

the results ordered by the overall usage percentage (% 𝑓) of the layout arrangements,

from top to bottom. The results provide even more fine-grained details, and to calculate

these results we performed some vertical aggregation.

When considering the different styles, there are many different layouts (many are

individual). Therefore, to aggregate the views together, to summarise the main view

layouts, the topology of each view layout was considered. If the views were symmetrical

Quantification (data collection), analysis, and design guidelines for multiple view systems 77

(left to right or top to bottom) then they were counted as the same layout type. So, for

instance, if the topology was the same on the left (such as) and to the right (such

as) the same label was chosen; in this case 3A. Consequently, 3-view layouts with

one long horizontal section and two shorter ones () were counted as a same design

whether the long-thin section was on the top or bottom. For a 4-view layout with two

parts horizontal and two parts vertical split (), were considered the same design as a

view with the opposite arrangement.

While this method does not consider if the views are more left biased or right, it

is a pragmatic decision that allows the names to be quickly tallied. But even with

this aggregation scheme, there were many unique configurations, especially when the

quantity of views increases above four.

Analysing the layouts in fine detail is interesting but challenging. There are many

layouts, and as the quantity of views increase so does the number of arrangements.

From Table 4.2 it is possible to easily observe which are the higher ranking layout

arrangements such as 2A , 3A , 3B . It is interesting that the popular layouts are

not necessarily those with fewer views, for instance layout 6A (is a small gridded

layout) and layout 5A (is a layout with little structure) are within the top ten layout

arrangements. However, the views in layouts 6A and 5A are relatively few compared to

other layouts that contain more than seven views.

In addition, this study recognises that there are many familiar structures, and when the

views quantities become large, there are many more topological arrangements. There

are 44 layouts which show side-by-side views, and a further 18 that a two-way split (top

to bottom). Moreover, four layout arrangements have 3-views, and nine layout strategies

with 4-views. This research also perceives a two-thirds design strategy being prominent,

and more than half of the layouts have a significant left/right division somewhere in

their strategy. The others follow a 3-way split. Moreover, this investigation notes that

16.29% of the layout structures are unique, where 𝑓 = 1, and there is less similarly with

higher view counts. Table 4.2 shows the trend, that as the view count increases there is

less agreement in design strategies.

Furthermore, this study notices some interesting trends from Table 4.2. Most designs

Quantification (data collection), analysis, and design guidelines for multiple view systems 78

with a long and thin division of space use this space for a timeline view. To confirm

this situation, we looked at all of these instances in the 2016 data. There are 9 such

designs and 8 are timeline views. For example, take for instance the paper by Park et

al. [97] who name their top design as a timeline filtering view. Furthermore there are

many familiar structures. 35 views show side-by-side views, and a further 13 have a

two-way split (top to bottom). Four layouts have 3-views, and nine layout strategies

with 4-views. Two-thirds design strategy are prominent, and more than half of the views

have a significant left/right division somewhere in their strategy. The others follow a

3-way split.

Table 4.2: Results of tallying the specific layouts, per years. Where 𝑓 is frequency, %𝑉 𝑓 is
percentage frequency of that View type, and % 𝑓 is percentage overall. The complete dataset is
shown in this table. It demonstrates a long tail of many cases with few instances, in fact there
are 81 layouts with 𝑓 < 1). The rows are ordered by their overall rank.

Layout Y12 Y13 Y14 Y15 Y16 Y17 Y18 𝑓 %𝑉 𝑓 % 𝑓 Rnk
1A 10 7 12 12 9 8 11 69 100.00 14.05 1
2A 9 4 3 5 4 10 9 44 70.96 8.96 2
3A 1 3 3 3 8 7 9 34 40.00 6.92 3
3B 6 3 2 4 4 4 6 29 34.11 5.90 4
4A 4 3 1 5 4 2 5 24 30.76 4.88 5
6A 1 2 1 4 2 3 7 20 35.08 4.07 6
2B 1 2 4 4 1 1 5 18 29.03 3.66 7
3C 0 2 1 2 1 5 3 14 16.47 2.85 8
5A 2 0 1 1 3 2 2 11 21.56 2.24 9
4B 2 0 3 1 3 1 0 10 12.82 2.03 10
4C 2 0 2 0 1 1 4 10 12.82 2.03 10
3D 1 3 0 1 1 0 2 8 9.41 1.62 11
5B 1 1 2 3 0 1 0 8 15.68 1.62 11
6B 1 1 1 1 0 2 2 8 14.03 1.62 11
4D 2 2 0 0 0 3 0 7 8.97 1.42 12
9A 2 1 0 1 0 2 0 7 70.00 1.42 12
4E 0 0 2 2 1 0 1 6 7.69 1.22 13
4F 2 1 1 0 0 1 1 6 7.69 1.22 13
5C 0 0 0 1 0 2 3 6 11.76 1.22 13
6C 0 1 1 0 2 0 2 6 10.52 1.22 13
4G 0 2 0 1 1 1 0 5 6.41 1.01 14
4H 0 0 2 2 0 0 1 5 6.41 1.01 14
4I 0 0 0 2 0 1 2 5 6.41 1.01 14
5D 1 1 1 1 0 0 1 5 9.80 1.01 14
8A 0 0 2 0 1 2 0 5 31.25 1.01 14

Quantification (data collection), analysis, and design guidelines for multiple view systems 79

4.6 Understanding tasks and domain

This section looks at the purpose of the visualisations. What tasks the developer may

ask the user to perform, and what domains they are in. At the end of the chapter, a

domain analysis is performed, and a discussion made over which domains use multiple

view layouts.

Users create multiple view visualisations for a purpose. When creating multiple view

visualisations, the choice of a layout arrangement by the developer is be based on the

tasks required to be performed on the visualisation. Maybe the developer wants the user

to search and locate a specific value in the dataset (represented by a particular graphical

symbol). The developer may want the user to be able to identify a specific data value. It

is important to understand why the developer is creating the tool: they are creating a

tool to address a particular need in a subject domain, and to perform a specific task. For

example, a developer working with oceanographic data would like users to distinguish

between tidal flows; when water-flow up an estuary, in comparison to how the water

flows down the estuary when the tide changes direction.

Many researchers have investigated visualisation tasks, especially tasks performed in a

multiple view system. For example, Shneiderman in 1996 explains the importance of a

task analysis in his seminal work on a “The eyes have it: a task by data type taxonomy

for information visualizations”[132]. To aid in the selection of layout arrangement,

Wehrend and Lewis [151] categorised the operations that a user may need to do to

analyse data as follows:

• Locate: the user is aware of a dataset entry and indicates it with a point or a

description.

• Identify: like locate, but the user identifies the dataset item without prior

knowledge.

• Distinguish: separate visual elements should be used to represent distinct objects.

• Categorise: objects may be distinct due to their affiliation with various categories,

each of which should be defined by the user.

Quantification (data collection), analysis, and design guidelines for multiple view systems 80

• Cluster: the system may detect that categories and items associated with them

are shown connected or clustered together.

• Distribution: the user defines categories, and the items that fall within those

categories are dispersed accordingly.

• Rank: the user is prompted to mark the arrangement of the presented items.

• Compare: the user is prompted to make a comparison of items based on their

characteristics.

• Compare inside and between relations: the user is prompted to make

comparisons between comparable entities or different groups of items.

• Associate: the user is prompted to create relationships between presented items.

• Correlate: the user may notice that items have common characteristics.

Shneiderman [132] developed a taxonomy of information visualisation tasks based

on seven data categories (1-dimensional, 2-dimensional, 3-dimensional, temporal,

multidimensional, tree, and network) and seven user tasks. He defined the following

tasks: overview, zoom, filter, details-on-demand, relate, history, and extract, all of

which are based on the visual information seeking mantra.

Soon after the publication of Shneiderman’s taxonomy, Zhou and Feiner [164] provided

another task classification. They distinguished presenting intentions (the objectives of a

user while interacting with a visual representation) from low-level visual techniques (the

precise action done on a particular item shown in the display) through an intermediary

level called visual tasks. Visual tasks may be thought of as abstract visual methods

since they specify a desired visual effect in the representation, while a visual technique

is a method for achieving that intended effect, whether by the user or the system.

Zhou and Feiner define visual tasks in terms of their visual accomplishments and

implications. Visual accomplishments describe the presenting intentions that a visual

task is intended to serve, while visual implications describe the visual methods that

Quantification (data collection), analysis, and design guidelines for multiple view systems 81

might be used to complete the visual task. Visual accomplishments may be classified

into two categories: inform and enable. Inform tasks are classified further as Elaborate

and Summarise, while enable tasks are categorised as explore and compute.

Morse et al. [88] created amethod for translating this visual taxonomy to actual knowledge

retrieval tasks represented by 50 questions. They tested the role of visualisations in the

area using subsets of these questions and simple visual prototypes. They attempted to

thoroughly assess visualisation skills by creating tests based on this classification.

Visual tasks are substantially different from perceptual operators [88, 58], which

represent the perceptual activities that a user does in a visual environment. Perceptual

operators highlight what a user must do (search, decide, verify, compare, lookup, add,

subtract). At the same time, visual tasks define the support that a visual representation

must offer for user task completion.

Byrne et al. [25] developed a taxonomy of online user tasks based on studies of web

application users’ most frequently performed activities. This study defines patterns for

user tasks in terms of six sub-tasks: using information, locating on the page, going to the

page, providing information, configuring the browser, and reacting to the environment.

These patterns can be used to create a comprehensive vocabulary for user activity in

this application domain.

Amar and Stasko [5] recently discussed the concept of the analytic gap, which refers

to the difficulties that visualisation systems encounter when facilitating high-level

analytical tasks such as domain learning and decision making under uncertainty, which

is typically not covered by existing research on the design and evaluation of information

visualisation systems.

The authors assert that, although Wehrend and Lewis’ and Zhou and Feiner’s low-level

tasks are necessary, they do not provide a consistent foundation for filling analytic

gaps. Thus, they suggested a new taxonomy [5] with higher-level activities that may

assist designers and assessors of visualisation systems. The limitations of the current

visualisation technologies were classified into two broad categories: the Rationale

Gap and the Worldview Gap. The first is described as the gap between experiencing a

connection and being able to explain one’s trust in it, as well as the relationship’s utility.

Quantification (data collection), analysis, and design guidelines for multiple view systems 82

Indeed, users must be able to connect data sets to the domains within which choices

are made. The second is described as the discrepancy between what is presented and

what is required to arrive at a clear representational conclusion for decision-making.

Indeed, users must be able to devise a strategy for exploring a visualisation as well as

for developing, acquiring, and sharing knowledge or information about critical domain

characteristics included inside a data collection.

Then, for each gap, the following three high-level activities should be supported by

visualisation systems (although overlap is possible): a) activities that need exposure

to ambiguity, concretisation of connections, and formulation of cause and effect;

and b) tasks that require a worldview: domain parameter determination, multivariate

explanation, and confirmation of hypotheses.

Amar et al. [4] recently presented a taxonomy of ten low-level activities based on

196 analytical questions discovered by students while studying data using commercial

visualisation tools.

Effectively evaluating information visualisation systems requires a knowledge and

depiction of the activities that a user does when examining data.

Norman’s theory of action [92] states that the connections between tasks and objectives

are apparent. During system interaction, the user’s behaviour follows a seven-stage

cycle: the user has goals; formulates intents; verifies possible actions and chooses the

most appropriate one based on their intentions; executes the selected action; perceives,

interprets, and evaluates system results until the task is completed. Occasionally, a

user objective may be assigned to a single task, but it will often need the coordination

of several tasks. Clearly, users’ requirements and objectives should be considered

throughout the design and development process. Evaluation is the process of validating:

a) how well a system covers users’ objectives efficiently; and b) how effectively,

efficiently, safely, and satisfactorily users’ activities utilising (tasks of a) system match

the precise user goals [61]. However, few writers specifically investigate the collection

of user activities for the aim of assessment. We are particularly interested in addressing

the usage of task comprehension and representation (for example, the well-known HCI

task model) for assessment reasons.

Quantification (data collection), analysis, and design guidelines for multiple view systems 83

Winckler et al. [154] explored how to model these tasks using a formal approach and its

associated environment to take advantage of the possibility of automatically creating

many scenarios that include all of the achievements and consequences associated with

each visual task.

In an ideal world, evaluations of visualisation methods would include the following

capabilities:

• Identify the user’s objectives and determine if the user can accomplish them via

the usage of an application that employs an information visualisation method.

• Determine whether interaction mechanisms made accessible to the user by

visualisation methods are necessary for the user job to be accomplished.

• Recognise the graphical rendering functions used by visualisation methods to

display data.

• Establish a connection between user objectives, interactionmethods, and graphical

display.

By classifying multiple view visualisations based on an integrated analysis of the above

categorisations and the characteristics of datasets (such as the domain of the date that are

used in the multiple view systems), this can help to find out which layout arrangement

would lead to a better solution for an application problem.

The first part of the analysis looks at the relationship between the layout arrangements

and the domain of the data used in the visualisation system. This research can be a

starting point for the collocation of the visualisation task and the layout arrangements,

which will help the developers find the best layout for their data.

Quantification (data collection), analysis, and design guidelines for multiple view systems 84

Table 4.3: Overall data visualization domains in all layouts, the top-ranked data visualization
domains are mostly found in the top-ranked layouts (as explained in Section 4.3 and shown in
Table 4.1 and the histogram Figure 4.3).

The CSS (Computing Classification System) is used. This system provides categories

for the computing field from the ACM Digital Library. The ACM provides a tool within

the visual display format for applying CCS categories to upcoming papers. This tool

helped us classified and quantified the layout arrangements based on their data domain.

We analysed the quantification to discover the relations between the layout arrangements

and the data domain.

Table 4.3 (top), shows the relations between the number of views in layouts and the

domain of the data in the multiple view visualisations located in the publications of

IEEE VIS 2018 Conference as a sample. Where, the most data domains are found in

layouts with six views or less.

Table 4.4 (bottom), shows the relations between the layout arrangements and the domain

Quantification (data collection), analysis, and design guidelines for multiple view systems 85

of the data in the multiple view visualisations located in the publications of IEEE VIS

2018 Conference as a sample.

Furthermore, as seen in Table 4.4, several trends can be observed. Most of the multiple

view systems are related to the “human-centred computing”, “computing methodologies”

and “applied computing” fields. Furthermore, most multiple view systems are associated

with “visualisation”, “machine learning”, “information system application”, “physical

sciences and engineering”, “enterprise computing”, and “life and medical sciences”

topics.

In addition, most of the domain topics are found in multiple view systems with less

view. This find supports our results in Section 4.3 that developers of multiple view

systems prefer to use fewer views in their designs.

However, the developers did not utilise every CSS category. For instance, “semantics

and reasoning”, “randomness, geometry and discrete structures”, “Printed circuit boards”

and “symbolic and algebraic manipulation” are not used. A possible reason is that

the research on these topics does not require to use of visualisation, or that these are

possible topics for future visualisation application.

This quantification can be a starting point for finding the relation between the layout

arraignments, the data domain, and the visualisation tasks; by increasing the samples of

multiple view systems and including more papers to be evaluated, we leave this research

for future work.

Quantification (data collection), analysis, and design guidelines for multiple view systems 86

Table 4.4: The quantification of data visualization domains in the top-ranked layout
arrangements (the order of layout arrangements is taken from the top layout arrangements that
listed in Table 4.2 at Section 4.5). The top six rows are highlighted in green because there are
more data domains within these layouts.

Quantification (data collection), analysis, and design guidelines for multiple view systems 87

4.7 Quantification and analysis of visualisation types

This section focused on the analysis of the results of counting the visualisation types in

all the layouts, in addition to quantifying the visualisation types in the top-ranked layout

arrangements.

Many different types of visualisations have been created. Bar charts, line graphs,

scatterplots are all popular visualisation types. But how can we classify views by types?

What is the best way to decide on a view type? While there are no formal, or widely

agreed lists of visualisation types, there are different ways to collate such lists.

One way to create a list of visualisation types could be by using an Internet search.

Results from the search include returns such as aggregated lists of “top five visualisations”

or “10 visualisation types made simple” and so on. Most of these lists have been

created by keen bloggers, and seem to be of varied quality. However they all include

some popular types: bar chart, line graph, scatterplot, pie chart, area chart and bubble

chart. Anecdotally this already provides a casual researcher with some hints at the

most popular visualisation types. But what types of visualisations do researchers use,

when they create multiple view visualisation tools? We could use data from these

Internet searches to create our own ‘informal’ list of types, or look to lists in academic

publications.

Another place to look would be the research literature. Several researchers have looked at

creating taxonomies for visualisation. However many of these taxonomies concern with

other visualisation issues, for example Shneiderman’s task by data-type taxonomy [132]

includes general visualisation concepts from linear visualisations, planar, volumetric

temporal and so on; which has been used to classify visualisation types (e.g., for the

LibGuide collection 1). Ed Chi’s taxonomy of visualisation techniques using the data-

state reference model [29] helped to develop the dataflow visualisation model. Several

researchers are highly influenced by Bertin’s work and categorisation. Bertin [14]

provides information about different categories of visualisation, and created a visual

naming scheme to realise this categorisation, and their categorisations and taxonomies

are based on Bertin’s ideas. For example, Tory and Möller’s “Rethinking visualisation:

1LibGuide, http://guides.library.duke.edu/datavis/vis_types

Quantification (data collection), analysis, and design guidelines for multiple view systems 88

a high level taxonomy” incorporate Diagrams, Networks, Maps and Symbols and split

the visual forms into linear, planar, volumetric, etc. Brodlie [21] extends Bertin’s ideas

in his work titled “Visualization Notations, Models and Taxonomies” and Roberts [114]

classifies both data-types and visual types. While these researchers do classify the

visualisation types, they are not broad enough for our purpose. Other researchers have

classified specific areas of visualisations, such as Kuncher and Kerren’s taxonomy of

“text visualisation techniques” [68] or the periodic table of visualisation methods, which

is located under visual-literacy.org2.

There are challenges in looking at lists from researchers. We researched words associated

with multiple views. That research, as explained in Section 2.2, helped to inform the

research in this PhD. For example:

• Researchers are regularly inventing new visualisation types, creating new and

original names for them, and it could be difficult to keep an up-to-date list. Some

of these visualisations do then become popular. For example, Treemap was

developed by Ben Shneiderman in 1991 as a technical report, and then published

in ACM Transactions on Graphics [135]. Treemaps are now common place in

many visualisation tools, and thanks to work by other researchers (such as cushion

treemaps and SequioView [142]) Treemaps are used by many Microsoft Windows

machines to view the hard drive. While the Treemaps story is inspiring, there

are many visualisation types that are not used so widely. We are interested to

investigate popular visualisation types, and so any new visualisation type would

have far fewer instances of use.

• Another challenge, which we learnt from the “Multiple Views: different meanings

and collocated words” work, was the names given to a visualisation type, are not

uniquely agreed by researchers or tool developers. For example, some researchers

say “scatter plot” others use it as one word “scatterplot”. Some people write

“SPLOM chart” and others write “scatterplot matrics”.

Another way we could get the list of visualisation types, is to look to the visualisation

tools. For instance, tools such as ManyEyes [143], the IBM visualisation aggregation

2https://www.visual-literacy.org/periodic_table/periodic_table.html

Quantification (data collection), analysis, and design guidelines for multiple view systems 89

tool that allowed the public to upload different visualisations, held a list of visualisation

names. Polaris [139], Voyager [158], Keshif [160] all include many visualisation types,

even packages such as Excel𝑇𝑀 include many visualisation types, such as Maps, Bar

chart, line graph, pie chart, sparklines and radar, along with some less familiar types

such as funnel and waterfall charts. While it can be useful to look at all these lists, we

leave it to further research to develop a inclusive list of visualisation types. In addition,

many of these types would probably not be found in our database, because they are

infrequently used.

Consequently, it was decided to take a bottom up approach, and develop the ‘codes’ for

the visualisation types, based on what we observe in the data.

The visualisation types were named, and the more confusing or challenging ones were

discussed with colleagues in the research group. Visualisation types that shared similar

traits were grouped together. For instance, all network diagrams, graphs and associated

node link diagrams were placed into one category called node link diagram. All stream

graphs were placed together in the area chart category. Likewise, splom and scatter

plot matrices were put together with the matrix category. And, a large quantity of

medical images, medical renderings and volume visualisations, were placed together in

the rendered image category.

Table 4.5, Table 4.6 and Table 4.7 show the visualisation types, calculated per year

(2012 to 2018), per layouts (based on number of views in the layouts) and per layout

arrangements, respectively, where each of the visualisation types in every view of the

multiple view layouts were counted. Consequently, if a two-by-two grid visualisation

(4A) contained four bar charts, then a value of four was recorded. In this way the

types of visualisation that are close together, and record the most popular visualisation

types, can be analysed.

Quantification (data collection), analysis, and design guidelines for multiple view systems 90

Table 4.5: visualisation view types, calculated by year (2012 to 2018).

Vis.Type 12 13 14 15 16 17 18
∑

%
Bar Chart 29 22 24 40 72 60 89 336 13.86
Scatter Plot 44 37 56 30 30 85 46 328 13.53
Line Chart 23 18 39 17 33 62 36 228 9.40
Heatmap 48 5 36 25 40 42 22 218 8.99
Node Link 18 27 13 50 28 17 30 183 7.55
Small Multiple 3 16 21 21 18 53 36 168 6.93
Map 12 10 26 27 17 15 13 120 4.95
Text 12 6 7 9 18 25 32 109 4.49
Area Chart 9 12 13 7 25 14 21 101 4.16
Other 6 6 29 13 5 10 3 72 2.96
Rendered Image 1 7 23 5 15 1 12 64 2.64
Parallel Coordinate 6 5 4 11 16 12 8 62 2.56
Table 7 8 2 11 11 5 14 58 2.39
Histogram 2 6 14 11 4 12 6 55 2.27
Treemap 7 4 18 5 4 10 6 54 2.23
Pie Chart 16 7 0 3 3 5 8 42 1.73
Hierarchy 3 4 4 10 3 9 6 39 1.61
Star Plot 1 11 1 2 0 10 4 29 1.20
Timeline 1 4 2 5 5 8 3 28 1.15
3D 3 3 3 6 4 4 3 26 1.07
Matrix 2 0 2 3 4 5 8 24 0.99
Point Chart 5 1 2 7 6 1 1 23 0.95
Bubble Chart 2 1 1 0 6 1 11 22 0.91
Image 8 1 1 2 2 4 0 18 0.74
Glyph 0 0 0 7 2 0 3 12 0.49
Video 4 1 1 0 0 0 0 6 0.25
Total 272 222 342 327 371 470 421 2425

One of the challenges was the issue of how to classify visualisations with many views.

Are these multiple view systems with many individual views? Are they small-multiple

displays? Or perhaps they could be a matrix view, such as a scatterplot matrix or

SPLOM. Small multiples occur when they demonstrate several separate visualisations.

Quantification (data collection), analysis, and design guidelines for multiple view systems 91

Grid-based visualisations are different from matrix views. Matrix views will show

correlations between sets, such as showing ABCD by ABCD. We also added a table

category, where the tabular values were mostly numeric.

In addition, from the data it was noticed that Scatter plots and point charts are often

on time axis and show more complex symbols, while bubble charts present many

circles and are not usually displayed on an axis. Lastly, some of the visualisations were

impossible to categorise, because it was unclear how they were formed; and they were

different to other visual depictions, subsequently they were tallied in the other category.

Table 4.6: Overall visualisation types in all layouts, the top-ranked visualisation types are
mostly found in the top-ranked layouts.

Quantification (data collection), analysis, and design guidelines for multiple view systems 92

Now, it is possible to answer the research question “what visualisation types are used

in each view?” From Table 4.5 and Table 4.6 most of the top-ranking visualisation

types are traditional visualisation charts (bar chart, scatter plots, line chart, heatmap,

and node link diagram). In fact, nearly 14% of overall views include a bar chart, and

the top five visualisation types take up over 53% of the total visualisation types in all

views. It is clear that bar charts and scatter plots are the most popular visualisation

types in multiple view systems.

Observations from Table 4.7 provide understanding that most of the top-ranking

visualisation types are in the higher-ranking layout arrangements, and the five top-ranking

visualisation types nearly appeared in all the layout arrangements. Furthermore, the

complex layout arrangements with more views appear to have more simple visualisation

types such as bar chart rather than complex visualisation types such as hierarchy.

Nevertheless, the visualisation types with more details, such as a map, are in large views

inside layout with fewer views.

In addition, there are some potential other trends that can be noticed, especially between

the layouts and the visualisation types:

• Up to 48% of the overall visualisations are found in three, four, five and six views

layouts.

• Most node link diagram (more than 86%) in layouts with views number is less

than or equal to eight views.

• Node link diagram and map can be use on own in one view layouts, 17.39% and

11.59% from the one view layouts are node link diagram and map, respectively.

• However, small multiple, text, histogram, star plot, video and glyph visualisation

types do not appear on their own, and they were not noticeable in any of the

one-view layouts (represent 0% from the overall one view layouts).

• 84% of the small-multiple visualisation type are in layouts with view numbers

greater than nine views.

Quantification (data collection), analysis, and design guidelines for multiple view systems 93

Table 4.7: The quantification of the visualisation types in the top-ranked layout arrangements,
as both were ranked based on their respective overall rankings.

Quantification (data collection), analysis, and design guidelines for multiple view systems 94

• Also, this study found that people usually use small multiple visualisations (more

than 83% of the small multiple) when there are more than nine views in the

layouts.

• Two-view layouts contain 21% of the map visualisations, as the map visualisations

have lots of details and can fit easily in large views provided by the two-view

layouts.

• 96.15% of the 3D visualisations are in layouts with seven views or less.

• Over 66% of the Treemap visualisations are in layouts with seven views or less,

and Treemap visualisations tend to be in large and square views.

4.8 Quantification and analysis of collocational pairs of

the visualisation types

This section focuses on answering the research question “Which types of visualisation

come together?” by quantifying all the collocational pairs of the visualisation types in

the multiple view layouts, and then analysing these results. The idea of this collocation

analysis is to ascertain what views are typically found together.

Assuming that the pictures of visualisation tools in our database are typical and present

a representative sample, and from our previous visualisation-type classification the next

stage is to perform a basket analysis [18] to understand which views appear together.

The results are shown in Figure 4.5, as a correlation matrix plot. This matrix provides

a way to locate the collocational and non-collocational pairs of visualisation types in

layouts with six views or less. After discussion, the focus was to look at six-viewed

and less, layouts because they represent 85% of the overall layouts. In addition, the

remaining 15% of the layouts are omitted from this investigation, because they represent

only a smaller proportion of the overall layout and only have weak correlations, and

therefore their omission does not impact significantly on the analysis of the results.

Quantification (data collection), analysis, and design guidelines for multiple view systems 95

Figure 4.5: Correlations matrix of visualisation types, highlighted the collocational and
non-collocational pairs for visualisation types in layouts with six views or less.

From the correlation matrix (Figure 4.5) it is possible to ask the question “which pairs of

visualisation types go together?” The overarching correlation can be evaluated from all

the visualisation types of 1058 correlations. Over 83% of the overall correlations were

with bar chart, scatter plots, node link diagram, heatmap, line chart, text and map; and

44% of the overall correlations were between these visualisation types. Additionally,

from Figure 4.5, we observe the following trends of the collocation of visualisations:

1. There is a high correlations between the visualisation types and itself. This can

be observed by looking at the top instances down the diagonal (𝑥 = 𝑦). In other

words, researchers duplicate view types to create their multiple view system, but

Quantification (data collection), analysis, and design guidelines for multiple view systems 96

only in the popular visualisation types (bar chart, scatter plot, node link, heatmap,

line chart, text, map, table). Consequently, designers appear to created multiple

view systems with duplicate visualisation types of the more common types. For

example, 18% (45 collocational pairs) from the overall correlations of the bar

chart (253 collocational pairs) were collocated with other bar chart views.

2. While there are many instances of strong correlations with the popular

visualisations, there are few correlations between bottom-ranking visualisation

types and itself. See the lower portion of the diagonal (𝑥 = 𝑦) in the matrix view

(see Table 4.5 and Figure 4.5). It appears that designers include one of these

less-familiar visualisations alongside other more well-known visualisation types.

3. Finally, there are a few top-ranked correlations. Collocations between bar chart

(bc), scatter plot (sp) and itself ((bc, bc), (bc, sc) and (sc, sc)) are the strongest

correlations, 45, 36 and 32 correlations, respectively. This represents 10.68%

from the overall collocational pairs.

4.9 Developing of design guidelines for multiple view

visualisations

This section focused on providing design guidelines for multiple view visualisations.

For this purpose, the information was distilled information from the investigation work,

and ideas also from previous knowledge and experience, to introduce a set of eleven

recommended design guidelines that can be followed to create robust multiple view

visualisations.

It is clear to see that developers of multiple view systems have used many different

layout strategies to position their views on the screen. Yet, there is a commonality in

their design, and lessons learnt that we can subsume from the analysis.

• Use fewer views. The results demonstrate that more authors present systems with

fewer views, we calculated that 84.68% of the layouts are 6-view or less, and

3-view layouts are the most popular, see Figure 4.3 and Table 4.1. Even though

the results demonstrate that there is a preference for fewer views, some developers

Quantification (data collection), analysis, and design guidelines for multiple view systems 97

still display systems with a considerable quantity of views, layouts with 7-views

and more equal over 15% of the total amount of layouts.

• Choose one of the main eight layouts. The results demonstrate that there are

eight top visualisation layout strategies are simple layout arrangements with fewer

views, which are: 1A , 2A , 3A , 3B , 4A , 6A , 2B , 3C (see

Table 4.2). All these arrangements are symmetric with fewer views.

• Use a symmetrical design. If a developer wants to use different layout

arrangements, it is better to employ symmetrical layouts. There appears to

be a preference for symmetrical layouts over non-symmetrical layouts, see

Figure 4.4. Perhaps people prefer the symmetrical views, and the designers are

following principles of balance in their design decisions. Besides, symmetrical

balance encourages an equal weight of both sides.

• Variety is good Visualize your data using a variety of different visualisation

types; see Table 4.5, Table 4.6 and Figure 4.5 for a list of twenty-five different

visualisation types that can be used in multiple view visualisations.

• Use well-known visualisation types. The results demonstrate that the two simple

visualisations (bar charts and scatter plots) are widespread, and that together with

line charts, heatmaps and node-link diagrams they form over 50% of all views in

multiple view systems, see Table 4.5 and Table 4.6.

• Include, at least one principal visualisation. Have a principle visualisation

that takes up most of the space (or more than other views), this is why visual

designers often encourage the user to look at certain parts of the picture, and hint

to the user to flow in the right direction. In this way, it is clear for the user to see

what is the main visualisation, and where they should spend all their time. Other

views will then depend on this view.

• Make it simple. Use simple visualisation types, particularly if you want to but

lots of things together, it is more helpful to keep it in the simplest form. A

developer should choose between bar charts, scatter plots, line charts, heatmaps

and node-link diagrams, see Table 4.5 and Table 4.6.

Quantification (data collection), analysis, and design guidelines for multiple view systems 98

• Put complex visualisations in a simple layout. If you are creating a complex

visualisation with more details, put it in spacious view and have less views

(including simple visualisations) around it within a simple layout arrangement.

From Table 4.7, we notice that complex visualisations tend to be in simple

layout arrangements with fewer views. This has happened because complex

visualisations contain lots of details to be focused on, which is required to be in a

view with ample space (in large view) so that the user can notice the details more

clearly in less time. As example, 71% of the maps are in 2A layout arrangement

which has two large views.

• Divide a complex task into simple tasks. Use views with simple visualisation

types to achieve complex task, such as bar chart and scatter plots. Make sure

that there are clear relationships between views with an obvious story to tell.

Table 4.5 and Table 4.6 show that the top-ranking visualisation types are simple

visualisations. This tendency shows the aim of developers to follow the principle

of simplify the complex system’s function into several simple tasks, where each

simple task represented by a simple visualisation.

• Separate views. Put things that are associated closer together to make one view.

And, use a light colour, or small gap or shadow to separate views, see Section 3.3.

• Determine what is the purpose of the visualisation views. This study realises

that the purpose of the visualisation would change depending on the quantity of

views used: with fewer views a user interacts with specific views; with many

views the user is less likely to manipulate one view, but gains an overview of

the information from all views. Moreover, if the views have equal importance it

should have equal size.

This set of the design guidelines can help the novices in data visualisation field and

developers to allow them create multiple view visualisations, and helps them make

objective design decisions.

Quantification (data collection), analysis, and design guidelines for multiple view systems 99

4.10 Discussion

This analysis has comprehensively investigated views as presented in the visualisation

literature. The work has answered the proposed research questions (the last six

questions), presented quantifications for multiple view systems, counted the layout types,

quantified the visualisation types, investigated the connection between view layouts and

the types of visualisation they hold, and finally looked to the correlations between the

visualisation types to enumerate the collocational pairs of the visualisation types. In

addition, the study analysed these statistics, which is help us to answer the last question

and provide a set of design guidelines from our quantitative analysis. This work helps

the community move closer to developing a theory of visualisation, and to provide

guidelines on visualisation phraseology and use. Certainly the in-depth evaluation and

presentation of results will give quantitative data to researchers to develop new sets of

guidelines over layout strategies.

One challenge with the results is that, in order to calculate the views, there is a degree

of generalisation. For instance, the scale and proportions of the views is not kept, but

generalised into a layout. This helps to make decisions over the views, but some of the

find detail is lost. However the work does discover several well-used strategies (see

Table 4.2) and confirm that side-by-side, three-way, two-thirds and view layouts are

popular. However, similar generalisations or constraints occur in the development of

all visualisation systems. Software, that developers use to create the visualisations,

often restricts what is possible. Often the developer is given a few layout options. This

challenge can be overcome by giving the user control to change the layout to improve

the display of the visualisation. In this case, there will be two challenges:

• Auto layout method which has to be determined at the first appearance for the

visualisation.

• Give the possibility for the user to save the layout and apply it on another data.

The analysis acts as a starting point to help designers create better visualisations, acts as

a taxonomy of visualisation layouts, and provides a quantitative analysis of how many

views developers have used in their visualisation systems. One of our long term goals

Quantification (data collection), analysis, and design guidelines for multiple view systems 100

for this study is to provide guidelines for newcomers. Certainly the in-depth evaluation

and presentation of results will give quantitative data to researchers to develop new sets

of guidelines over layout strategies.

The results demonstrate that developers are creating individual layout designs, but the

majority of the design layouts are similar; which gives hope to provide quantitative

view guidelines. The work also demonstrates that while the method enacts a reasonable

simple quantification of views, the method helps to develop many conclusions. These

include that visualisation layouts from one system to another are similar, and while in

practice they include different visualisation types, they are structured similarly. However,

there is more diversity when the views are investigated in detail. Furthermore, it is

possible to observe that certain layout configurations afford particular visualisations

and tasks. For example, those that contain a long thin view are typically used for a

timeline, or a line graph.

It is clear, however, that there is still much information hidden in this data that could be

extracted. In particular it is possible that the results and analysis will restart the debate

over how many views are suitable, and will help to focus the minds of the developer as

they create multiple view systems, to contemplate how they are laying out their views,

and how many views they are using. Finally, this study provides a good starting point for

more research. We encourage researchers to investigate various layouts and to consider

our results when they are designing their next visualisation tool.

4.11 Limitations

As with all quantitative research there are limitations. One limitation with the analysis

approach is that it works on historic data. In other words, evaluations are only calculated

on views over the past few years. Furthermore the analysis is restricted to visualisations

that are used in the academic domain. The focus on the past seven years of tools

presented at IEEE VIS. While the work did investigate a broad range of structures only

topology, view type and position is investigated. Furthermore, the work focused on

view juxtaposition, and not on superposition, overlay or nesting.

Furthermore, the visualisation domain is continuously evolving. Many visualisation

Quantification (data collection), analysis, and design guidelines for multiple view systems 101

tools are presented on the Web, developers are non-academic and therefore would not

present their work at the IEEE VIS Conference, and there is a noticeably with the

rise of immersive and interactive visualisation experiences. In fact, there are many

opportunities to look beyond WIMP based (fixed screen) solutions [106], and this

change will have an impact on the area of multiple views. A view will be embedded in

an ephemeral 3D world that users will be immersed within. A similar challenge is that

visualisation is becoming democratised, with the general public creating more of their

own visualisations, and telling their own data stories. Thus many questions remain;

such as how views are used by non-academics, or used by researchers in other fields, etc.

It will be interesting to perform a similar study in the future to see how visualisation

researchers are using views.

Furthermore, there are many more questions that have not been explored, and there is

much further work to be done. Indeed, there is much more detailed analysis that could be

performed in this area for example while the work started to investigate the connection

between view layouts and the visualisation forms, as described in Section 4.7, it would

seem sensible, from a design standpoint, that there is a strong correlation between view

type and position in the layout. With (for instance) long and thin structures, such as

timelines or line graphs, would be placed in long and thin layouts.

Additionally, it is possible to imagine that there may be a connection between the

view layout strategy and its position of the layout in the article. Where, for instance,

visualisations that have more views are placed along the top of the article, with those

with less views in a column. Again, the analysis was uncertain. It was not possible to

make this correlation, because location information was not encoded in detail. This is

also left to future work.

Quantification (data collection), analysis, and design guidelines for multiple view systems 102

4.12 Summary

This chapter focused on the quantification and analysis processes for multiple view

visualisations evaluation, including counting the views number, the symmetrical layouts,

the layouts arrangements, the visualisation types and the collocational pairs of the

visualisation types, and analysed these statistics. In addition, this chapter posed a series

of questions, exploring and investigate the quantity of views that people use, and their

design layout configuration. The result was a framework of ideas and design strategies

for multiple views in visualisation that would be useful as a resource for new researchers

and a reference for experts as a set of design guidelines for multiple view visualisations.

Moreover, this study presented in-depth results of a quantitative analysis of how

developers laid out the visualisations in their multiple view systems, and what

are the visualisation types that are been used in these systems as reported in the

papers, workshops, and posters published in the IEEE VIS Conferences 2012 to

2018. Consequently, this chapter answered six research questions: “Q1(RQ2)/ How

many views are used in multiple view systems?”, “Q2(RQ3)/ Do developers prefer

symmetrical or non-symmetrical layouts for multiple view systems?”, “Q3(RQ4)/

What layout arrangements are popular in multiple view systems?”, “Q4(RQ5)/ What

visualisation types are used in multiple view systems?”, “Q5(RQ6)/ What types of

visualisation come together in multiple view systems?” and “Q6(RQ7)/ What are the

guidelines to design multiple view visualisation?”.

This chapter started with quantifying the views that been used in multiple view systems,

counted the number of views in each layout to find the most popular layout based on

number of views. Then, this evaluation chapter looked to the symmetry feature in these

multiple view layouts, quantifying all symmetrical layouts and non-symmetrical layouts

to find which type are mostly used by the designers.

Moreover, this research classified the layouts based on its structure, grouped together

all the layouts that has the same views number and structure. This process helped to

find that the most popular layout arrangements in the multiple view systems has less

than seven views, while there are less layouts with 7-view or more, with more variety in

layout structure.

Quantification (data collection), analysis, and design guidelines for multiple view systems 103

Furthermore, this study enumerated the types and the numbers of the visualisation

techniques that are used in these selected multiple view layouts. These statistics helped

us to find the most popular visualisation types in layouts, also to find the most popular

visualisation types in each layout arrangements. In additional, this study observed the

correlation between the visualisation types, and recorded all the collocational pairs of

the visualisation types to find what visualisation types come together.

Subsequently, from analysis our statistics of counting the multiple view visualisations,

we can summarise our findings in five headlines:

• More authors present systems with fewer views, 84.68% of the layouts are 6-view

or less. The most frequent view was a 3-view system.

• Authors prefer symmetrical over non-symmetrical layouts.

• Dual view, three-view and four-view layouts are popular.

• More simple visualisations are used. bar chart, scatter plots, line chart, heatmap,

and node link diagram account for more than 53% of the overall view types in

multiple view systems.

• There are strong correlations between the simple visualisation types, secondly,

between the simple visualisation types and the other visualisation types.

Finally, this study delivered another contribution through this chapter which is providing

an objective design guidelines that will help developers to create robust multiple view

visualisations (this is the answer of question six), such that developers can make

objective design decision when they create multiple view visualisations.

In the next chapter, the results and design information captured here are applied to

develop a grammar for multiple view layouts. Furthermore, a new tool is developed,

based on the knowledge from on the quantification and analysis processes for multiple

view systems that done in this chapter, the grammar can be used to create, control and

save multiple view layouts.

Quantification (data collection), analysis, and design guidelines for multiple view systems 104

Chapter 5

Design and development of a

grammar for the MV Layouts tool

This chapter focuses on developing a grammar for multiple view layouts which will

give developers more flexibility in creating, saving and reloading multiple view layouts.

The chapter focuses on the following research questions and is likewise structured to

answer these challenges:

q1/ What is a multiple view grammar?

q2/ Why users need a multiple view grammar, and how is it used?

q3/ Why we did choose to create our multiple view grammar over another

grammar?

q4/ How is our multiple view grammar structured?

q5/ What is the advantage of using multiple view grammar, and what is the

limitation?

5.1 Introduction to design of the grammar

There are very few tools that help developers and users createmultiple view visualisations.

Another option is for developers to use the code to create and organise multiple

view layouts. That means the user has less control over the layout. Sometimes the

programmers code movable windows, where users can drag the windows around. For

example, North and Shneiderman’s Snap-Together [94] allows users to place views

side-by-side. And other systems such as Weaver’s Improvise [148] allow developers to

code side-by-side views. However, while these systems are extremely command-rich,

they are not very intuitive to control where the views are positioned. For example,

105

Improvise requires a high level of code knowledge to control effectively. Systems

such as D3.js (d3js.org/) [16] allow people to code and craft multiple views, and

libraries such as Vega and Vega-lite enable users to more easily craft multiple view

visualisation systems. However, again these systems require a reasonable knowledge

of the underpinning code. Systems such as Adobe’s data-illustrator [74] permit users

to drag and drop and craft visualisations without programming. Libraries such as

R and Shiny (shiny.rstudio.com/) grant people the ability to describe multiple-view

layouts through markdown descriptions, which are more approachable for general

coders. However, while each of the systems have advantages, have a general purpose

rather than being focused on multiple views.

The goal of this research, and presentation in this chapter, is to develop something that

can be expressive and simple (like Shiny-R and markdown code), something that is

comprehensive like Vega-lite but more specific to the purpose of creating multiple-view

visualisation layouts. And something like Snap-Together and Data Illustrator, which

allows users to readily craft designs through simple drag and drop interfaces.

This chapter explains a new layout grammar: named Multiple View Grammar (MVG).

The grammar represents a way to express multiple view layouts, and fulfils several

purposes. The first purpose is to allow developers to create software that can save, and

reload multiple view layouts, as well as It would allow developers to share them across

platforms. Second, it allows developers to create systems where multiple-view-layouts

can be edited. For instance, the grammar can be directly integrated into a visual editor,

or a visualisation editing system, to allow users to craft and describe their own layouts.

The overarching philosophy of the grammar design is one of ‘cutting’. For example,

consider holding a sheet of A4 paper and cutting it into sub parts. Each part represents

one view in a multiple view system. When cutting the sheet of paper, a pair of scissors

is constrained to only cut in straight lines through the whole sheet. While a simple

concept, it is can create very complex multiple view structures.

The MVG grammar is based on the concept of cutting a view horizontally (H) or

vertically (V). So starting with a page and using a vertical cut, it will create two views.

The idea is that users of this grammar can repeat this process on previously generated

Design and development of a grammar for the MV Layouts tool 106

views to produce more views to build the multiple view layout. Figure 5.1 shows this

principle in action in a state-diagram. Starting with a Horizontal cut (for instance)

moves to the left state. Then choosing one of those sub parts, gives another “View”

and moves back to the centre state. Then the user can choose to cut this View into

sub-parts, and so on. By stipulating the proportions of the cuts — left cut and right cut,

for the Horizontal cuts, or top/bottom proportions for the Vertical cuts — it is possible

to control the layout of the multiple view layout.

View V cutH cut

Figure 5.1: The picture demonstrates the Multiple View Grammar. It presents a state-diagram
to explain the cut algorithm. The user can cut the main view horizontally (so it becomes two
views) or vertically to create two-view vertical layout.
This strategy can be repeated on the generated views to create more complex layouts.

This chapter presents the specification of the multiple view grammar based on the

multiple view layout model. Design decisions are explained and discussed, and the

MVG grammar is explained with examples. This chapter is structured as follows:

• Section 5.2: This section explains the characteristics of multiple view grammars

in general, and what are the rules that should be followed to develop multiple

view grammar?

• Section 5.3: This section discusses the design decisions to develop the MVG

grammar and the consideration of alternatives.

• Section 5.4: This section explains the design process of the MVG grammar and

how it is structured.

Design and development of a grammar for the MV Layouts tool 107

• Section 5.5: This section gives examples for the MVG grammar to explain how it

is work.

• Section 5.6: This section discusses the advantages and the limitations of MVG

grammar.

5.2 Developing the rules for the MVG grammar

This section covers the MVG grammar. The most important feature for the MVG

grammar is that the grammar expressions can describe any multiple view layout and

gives the ability to the multiple view tool to create, save and reload the layouts, which

will help users to use the same layout with different data and/ or different visualisation

techniques.

It is important, with any grammar expression, that every time the grammar is used it

should produce the same layout each time. In other words, the grammar needs to be

deterministic. There may be situations where a non-deterministic grammar is useful. For

instance, it would be feasible to consider creating a system that creates a random layout

of, for instance, a 3x4 configuration. However, any such non-deterministic conditions

can be stored in a deterministic expression, even though the result is non-deterministic.

In other words, one way to achieve this is that the grammar saves the final output

choice, rather than the many options. Alternatively, it is possible to envisage a situation

whereby a command is stored in the grammar to express that “the user wants a random

3x4 layout”. Furthermore, deterministic grammars are easier to parse. This process

required a parser to transform the expressions of the MVG grammar into actual multiple

view layouts, which required a set of algorithms that convert the MVG expressions to

multiple view layouts.

Many developers have created a range of grammars, across computer science, for

different purposes. These different structures allow developers to craft and save

descriptions. For instance, markup languages, such as HTML, LATEX, are human

readable and were originally designed to be edited by a human. However, there are

editors that can be used to output them, whereas, other languages such as PDF or

Postscript are really too complex for a human author to write, and require editors to

Design and development of a grammar for the MV Layouts tool 108

create. Over the past years, there has been a desire by many programmers to create

languages and grammars that are human readable, yet able to be read by a computer

and creates very complex output. Systems such as Markdown, AsciiDoc, and Jeckyll fit

into this category. For example, an AsciiDoc (asciidoctor.org) document is written in

plain English, with simple commands to markup and describe the document content

and its structure. To use the Asciidoc information, there is a wider tool chain that loads

the document, parses it and formats it based on a layout specification. So, an author

may describe their document with a human-readable file (an .adoc), and use a tool to

interpret that code. Asciidoctor pulls in a style sheet, which describes how it will look

and output an HTML file. The same .adoc can be used to output a PDF, or an HTML

file with a different appearance.

Even considering Microsoft Word, they have moved from a non human-readable file

format .doc, and now to a hierarchical file structure .docx. Indeed, the docx system is

really a zip file of different files, put together in one folder hierarchy. This means that it

is much easier for 3rd party software to read and write the files, and for humans to edit

the information. It also helps to future proof the system, as it is not reliant on a specific

binary formatting. E.g., it would be possible to create a Java program and save it as a

class file. This is a very simple solution. However this solution is not future proof. As

by changing any of the class structure means that the files that had been saved under a

previous version would not be readable.

This tool-chain structure was inspirational to us, and it would be possible to create a

tool chain for describing multiple views, storing it in the grammar (MVG), and then

using the multiple view structure, and so on.

Consider creating a multiple view file (our MVG). This file can be read by a grammar

tool, edited by a grammar editor, incorporate data (saved in an external file) and

incorporate a visualisation library (such as D3.js) to output the information.

Subsequently, the requirement was to create something that can be written out by a user

to a file, and this file should be readable by a human, and potentially editable by an

ASCII editor. In this way it would be possible to create a graphical user interface that

then can save the grammar to the file, where it could be loaded to display a specific

Design and development of a grammar for the MV Layouts tool 109

multiple view layout, and could be edited either by a specific grammar editor that we

create, or by an ASCII editor. In summary, four specifications are made, for the design

of the MVG grammar:

1/ It needs to be deterministic. The MVG grammar parser will produce the same

output; in other words, every MVG grammar expression should always produce

the same multiple view layout each time we run the MVG grammar parser.

The same thing should happened when we save and reload the multiple view

layout. Moreover, the MVG grammar expression which represent the saved layout

should be save into a file with a deterministic format, and by using deterministic

algorithms every time we run the file we will have the same predictable layout.

2/ It needs to be human-readable. The MVG grammar needs to be different

from the Computer-implemented grammars, where in the Computer-implemented

grammar it would be possible to develop a grammar that was only machine

readable, with such grammars the computer writes it out, and it is not going to be

edited by a user.

3/ It needs to be machine readable and parsable by a computer. Similar to the

markup languages HTML and CSS which used DIVs components to describe

the multiple view layout, where the code of these languages are still readable by

human, the MVG grammar should be parsable by a computer. For that, the MVG

grammar parser used deterministic algorithms to transform the MVG grammar

expressions into codes, these codes are coded using JavaScript and CSS languages,

which can be read by a computer to produce the actual multiple view layouts.

4/ It needs to be functionally rich to allow users to be able to describe some

difficult cases. The purpose of creating multiple view visualisations are varied,

and that required a variety in its layout structure to achieve all these purposes. For

that, the user should create all the possible layout structures, including complex

layouts, this variety in layout structures came from the difference in the number

of views in each layout and the difference in the layout’s structures. For that, the

MVG grammar should allow the user to create any required multiple view layout

to achieve his goal from creating his visualisations.

Design and development of a grammar for the MV Layouts tool 110

These rules provided a way to constrain the design and create reliable grammar

expression that creates one existing layout every time the parser transforms the grammar

expression into multiple view layout. At the same time, this grammar is human readable

and can be run by the computer to create any potential layouts.

5.3 Design of the MVG grammar

When we started designing a layout grammar for our multiple view tool, there were

two choices; the first choice was to use an existing grammar such as Vega-lite grammar,

and the other choice was to create our grammar. We thought, we could use Vega-lite

grammar to describe the layout, but the problem with Vega lite grammar is, at that time

especially, Vega-lite was new, and there had not been the widespread take up there is

now. Even now, it does not mention much about layout, rather it focuses on creating

visual depictions.

Also, we contemplated using the HTML infrastructure. Perhaps use a Div to describe a

grid system, put in HTML with CSS potentially use Frames within the HTML structure.

For instance, a 4B view (1-1-2) view could be setup in frames using the code

showing in Listing 5.1. However, the frame structure was made obsolete in HTML5.

There are several reasons for this. First, because it caused compatibility problems across

browsers. Second, it provided accessibility challenges. Third, all this functionality can

be better implemented using CSS. This is because what was wanted for the web2.0 was

a way to split content, while keeping information close that related together. In other

words web developers wanted the content to display (equally well) on a large-screen

setup or a small mobile phone. Consequently, these goals are different to ours. We

want to specifically control the layout of the views, and put information side-by-side

when required. However there are some interesting and relevant ideas with the HTML

frame constructs. First, frames allowed developers to control the position. Through

using the command ∗ developers express that the frame fits the available size. This is

similar to the LATEXcommand hfill. Second, frames could control exact window sizes,

or proportional sizes. For example, <frameset cols="20%,∗,20%"> defines a column

with the first and last column being 20% each, and the centre part to fill in the space

(which would be 60%).

Design and development of a grammar for the MV Layouts tool 111

Listing 5.1: Multiple views described in HTML frames
< f ramese t c o l s =" ∗ ,∗ ,∗ ">

< f ramese t rows=" ∗ ,∗ ">
<frame src=" f rame1a . h tml ">
<frame src=" frame1b . h tml ">

< / f ramese t>
<frame src=" frame2 . h tml ">
<frame src=" frame3 . h tml ">

< / f ramese t>

However these structures do not fulfil the goal or requirements. What is required is a

way to describe views that can be saved and loaded. The HTML description was quite

verbose and would be needed to be adapted to fit the desired purpose. However, it could

be possible to adapt the Div structure to fit the goals. Nevertheless, a description file

is required, that could act as an intermediary to create, save and reload multiple view

layout, which is made specifically for multiple view systems. This file should describe

various layouts. Consequently, the use of Frames and also Vega-lite were rejected.

There are other web structures that are useful. JSON files allow information stored in a

text file to be exchanged on the web. It is a common file format, used throughout the

web, and would allow us to save the information of the view structure. It would also

allow users to save additional information about the visualisation and any associated

data. It can act as an intermediate file between the design-environment (e.g., drag

and drop, front end) and the grammar editing interface, and the saved file. It has the

advantages of being web-enabled, and can incorporate the visualisation information.

As we mentioned before and shown in Figure 5.1 above, the principle of cutting a view

into two views vertically or horizontally to create multiple view layouts and repeating

this process will split a different part of the layout as a hierarchy. The MVG grammar

could describe this process by first determining the type of the cut, whether horizontal

or vertical. Second, the area ratio of generated views from the parent view needs to be

specified. For example, when the goal is to create a layout with two equal side-by-side

views, in this case, the grammar expression should be “V(50,50)”. Where the letter V

represents the vertical cut, and the numbers 50 and 50 represent the area ratio for the

generated views which are taken from the parent view. In the next section, the MVG

Grammar in described in detail.

Design and development of a grammar for the MV Layouts tool 112

Listing 5.2: BNF description of the MVG
<Code> : : = <Expr >
<Expr > : : = <Op> + " (: ␣+␣<Area >␣+␣ ") :
<Area > : : = <Va r i a b l e > + " , " + <Va r i a b l e >
<Va r i a b l e > : : = " number " | " number " + <Expr >
<Op> : : = " v " | " h "

5.4 MVG grammar for multiple view layouts

Main
Layout

Left View Right View

Top View Bottom
View

V Cut

50 50

H Cut

50 50

V(50H(50, 50), 50)

Figure 5.2: The MVG grammar expression “V(50H(50,50),50)” describes the layout in a
hierarchy structure.

The same hierarchical method can be used to describe any multiple view layout, where

we can change or add more vertical and horizontal cuts to the grammar expressions, in

addition to changing the area ratio for the views.

Design and development of a grammar for the MV Layouts tool 113

Also, the structure of the MVG grammar expression can be formally written using the

Backus normal form (BNF), as shown in Listing 5.2. BNF is a convenient meta-syntax,

that is useful for context-free grammars. Non-terminal= { Code, Expr, Variable, Area,

Op} and Terminal= { “number”, “V”, “H”, “(”, “)”, “,”} Where:

Expr is the MVG grammar expression.

Area is the layout area or a view area

OP is the operation.

v is the vertical cut.

h is the horizontal cut.

number is the area ratio of a view from the area of the parent view

In addition, there are some view combinations that can be shortened. By making some

shorthand descriptions the MVG grammar can be simplified. This simplified version

can be used to create well-known layouts structure such as a Grid and the Golden Ratio

structures. This will make creating these multiple view layouts much easier. These are

referenced as a ‘shortcut’ grammar. E.g., user can use the MVG grammar expression

“grid 3x3” to create a grid layout which has nine views as shown in Figure 5.3.

Figure 5.3: The shortcut MVG grammar expression “grid 3x3” created a grid layout with
nine views.

Moreover, the same technique can be used to create a golden ratio layout using the MVG

grammar expression. For example, we can use the expression “GoldenRatioV6Q4S70%”

to create a layout as shown in Figure 5.4.

Design and development of a grammar for the MV Layouts tool 114

Figure 5.4: The shortcut MVG grammar expression “GoldenRatioV6Q4S70%” created a
golden ratio layout, where “V6” is the number of views in the layout (in this example, we have 6
views), “Q4” indicates the position of the golden ratio in the layout (in this example, the golden
ratio is placed in the fourth quarter of the layout), and “S70” represents the size of the layout
which is 70 percent of the multiple view tool panel, and we will give more detail about it in the
next chapter.

Section 5.5 “Examples for the MVG Grammar”, provides more examples to explain

the breath of possibilities with the MVG grammar.

5.5 Examples for the MVG grammar

This section focuses on explaining the functionality of the MVG grammar. Moreover,

the following examples will explain the depth of the MVG grammar; where the MVG

grammar is used to express various multiple view layouts.

Example 1. The first example starts simple. It provides a 3-view system, of two views

on the left hand side, with a larger vertical view on the right, written as v(50h(50,50),50).

It can be considered in a two step process: First, the vertical cut v(50,50) divides the

layout into two views vertically. Second, the expression h(50,50) divides the left layout

into two views horizontally, as shown in Figure 5.5.

Expr : v (50 h (5 0 , 5 0) , 5 0)

Figure 5.5: On the left, we show the grammar code v(50h(50,50),50). Where, the rendering of
the code is shown on the right.

Design and development of a grammar for the MV Layouts tool 115

Example 2, demonstrates a more complex layout. The idea is to extend the Example 1

(Figure 5.5) and adds an additional cut. This is achieved by changing the size of the views

and adding one more view by using the grammar expression v(75h(25,75v(50,50)),25)

to describe the layout, as shown in Figure 5.6.

v (75 h (25 ,75 v (5 0 , 5 0)) , 2 5)

Figure 5.6: On the left we show the grammar code v(75h(25,75v(50,50)),25). Where, the
rendering of the code is shown on the right. And, as shown in the picture, we can define the size
of the view by changing the view’s ratio in the grammar expression

Example 3, demonstrates how the user can define variables to write the MVG grammar,

this will simplify the grammar expression when the grammar describes a complicated

multiple view layout. The v(40h(25,75vb),20hb,20hb,20hb) expression creates complex

layout in a simple way, where “a” is a variable equal to “50” and “b” is a variable

equal to “(a,a)”, as shown in Figure 5.7. Obviously, if variables are not used, then the

grammar expression will be v(40h(25,75v(50,50)),20h(50,50),20h(50,50),20h(50,50)).

a : 50
b : (a , a)
Expr : v (40 h (25 ,75 vb) ,

20hb , 20 hb , 20 hb)

Figure 5.7: This example shows how the user of the MVG grammar can define variables to
describe more complex layout.

Design and development of a grammar for the MV Layouts tool 116

Example 4, this example shows how more complicated layouts can be created, using

more variables. The variables enable values to be changed more effectively, as shown

in Figure 5.8.

a : 25
b : (a , a , a)
c : 20 hb
Expr : v (40 h (25 ,75 vb) , c , c , c)

Figure 5.8: The grammar code, on the left, shows how variables can be used. Where, the
rendering of the code is shown on the right.

Example 5, in this example we used theMVG grammar expression v(38.1h(38.46v(62.5,

37.5h(60,40v(33.3,66.7))),61.54),61.9) to describe a golden-ratio layout, and that

expression represents a complex grammar, as shown in Figure 5.9. Alternatively the

solution can be achieved using the shortcut grammar “GoldenRatioV6Q2S100%” to

describe this layout, which will give the same result.

Expr : v (3 8 . 1 h (3 8 . 4 6 v (6 2 . 5 ,
37 . 5 h (60 ,40 v (3 3 . 3 , 6 6 . 7))) ,
6 1 . 5 4) , 6 1 . 9)

Figure 5.9: This example show how to use a complex grammar expression to describe a
complex multiple view layout.

Example 6, this is another example of using a complex MVG grammar expression to

describe a multiple view layout, even when we used the variables “a” and “b” in the

expression “v(25hb,25hb,25hb,25hb)”, that did not simplify the grammar expression,

as shown in Figure 5.10. However, as we mentioned before, an alternative solution is to

use the shortcut grammar “grid 4x4” to describe this layout.

Design and development of a grammar for the MV Layouts tool 117

a : 25
b : (a , a , a , a)
Expr : v (25 hb , 25 hb , 25 hb , 25 hb)

Figure 5.10: On the left we show the grammar code. The rendering of the code is shown on
the right. Or, we can use the shortcut grammar “grid 4x4” to create the same layout.

5.6 Discussion

The goal was to develop a grammar that describes multiple view layout, and this

grammar can be used in multiple view visualisation tools to create a multiple view

layout; the MVG grammar created by using the principle of cut a view into two views

horizontally or vertically.

This grammar is helpful on many levels because it is simple and matches the slicing and

dicing ideas, and it is relatively easy to parse. Moreover, the MVG grammar is reliable

because it is working and we used it to code all the layout we want, and this grammar

allows the user to save the structure of the layout and load it again. In addition, this

grammar allows the user to edit the layout.

When starting this research, about using grammar in our multiple view tool, there were

many considerations made: such as using existing grammar such as Vega-lite. However,

each of these grammars require a specific parser, and the grammar is designed for

specific purposes, so as developers it was not possible to have complete control over

the language. It would be difficult to adapt it to the research purpose and change it in

an efficient timely manner. It would require change to the tool design for this thesis.

Consequently the decision was taken to create this new grammar.

Actually, if Vega lite was chosen, and while it would be able to describe multiple view

visualisation layouts, it would be challenging to extend the functionality such as the

ability to craft bespoke shorthand layouts such as GoldenRatioV6Q4S60%. Using JSON

files it is possible to embed it into any type of visualisation system, and subsequently

use the grammar with D3.js commands. Furthermore, by creating the bespoke layout

Design and development of a grammar for the MV Layouts tool 118

structure it is possible to adapt it for any purpose, as it provides more control over the

layout description.

In addition, this study considered how to develop the grammar in a formal and effective

way. This done by using BNF notation method, a representation that helped us to cover

all the possible of multiple view layouts that can be made by users. Moreover, the MVG

grammar expressions can build any juxtaposition multiple view layout, where the views

are positioned beside each other. Furthermore, using this definition to represents the

layout, it is possible to use it in any multiple view tool, to save and reload the layout and

even use the layout with other visualisations or data.

Nevertheless, there are potential limitations. Some layouts may not be possible or

may be difficult to create. For instance, creating a complected layout with many views

would be difficult, because the grammar expression would be large. This would not be

impossible, just tedious to create by hand. However, shorthand definition, do simplify

this problem. So for instance, golden ratio with many levels could be possible, but

would be very tedious to create without the shortcut grammar version.

There could be other shorthand definition such as to define ‘adjacent’ commands,

or packing commands that organised many views in a specific lattice layout.

Reconfiguration may also be possible, where the layout that describes percentages of

requirements. This is similar to the floating layouts in LATEX, which are controlled

by values. The user can say that they want the figure to be here [h], or at the top [t]

and so on, but LATEXmay decide that this is not possible and consequently they are

floated to the next page, as appropriate. Likewise it may be possible to say ‘put this

here, probably, and if it will fit’ otherwise ‘put it over there’, ‘if these positions are not

possible then do your best’. To achieve these commands, heuristic algorithms are used.

Similar algorithms are used in label-placement visualisation (see for example work by

Christensen et al. [33]), or in graph drawing layouts (e.g., see work by Di Battista, Peter

Eades and colleagues [38]). Other (non juxtaposition) layout types, such as overlaying

layouts, are not covered by the MVG grammar. Indeed, it will be interesting to develop

the MVG grammar to describe overlapping multiple view layouts. In addition, even

including the visualisation in the MVG grammar as an option will be an excellent

addition to the MVG grammar to describe the entire multiple view visualisation systems.

Design and development of a grammar for the MV Layouts tool 119

Moreover, it will be interesting to develop the MVG grammar to describe these multiple

view layouts. In addition, even including the visualisation in the MVG grammar as an

option will be an excellent addition to the MVG grammar to describe the entire multiple

view visualisation systems.

Therefore, this study considered to use a simple version of the MVG grammar when we

want creating more complex layouts, for that we considered using variables to build

complex grammar expressions and also we created a short-cut grammar which is very

short expression to create specific types of layouts, as the use of the normal MVG

grammar will be hard to tackle these layouts.

5.7 Summary

This chapter focused on describing a new grammar that can be used to describe and

create multiple view layout. Consequently, this chapter answered five questions: “Q1/

What is a multiple view grammar?”, “Q2/ Why users need a multiple view grammar,

and how is it used?”, “Q3/ Why we did choose to create our multiple view grammar over

another grammar?”, “Q4/ How is our multiple view grammar structured?” and “Q5/

What is the advantage of using multiple view grammar, and what is the limitation?”.

This study developed rules for the MVG grammar, that make this grammar more formal,

where each grammar expression describes a unique multiple view layout. This chapter

determined the specification of the MVG grammar and we explained ability of this

grammar, and we specified the goals we want to achieve from this grammar. Next the

chapter discussed the design decisions that were made to develop the MVG Grammar

and the consideration of alternatives, and included a comparison between different styles

of grammar. After that, the work focused to explain how the grammar was created and

discussed the different design decisions that were made over the grammar and solution.

Subsequently, the MVG grammar was defined, and how it could be used to create

multiple view layouts, the structure of the MVG grammar was explained, and how

it works. Principles underpinning the grammar were explained: how the idea of

vertical and horizontal cutting can be used to create the layouts, and used to develop a

hierarchical structure. Finally, this chapter presented examples for the MVG grammar,

Design and development of a grammar for the MV Layouts tool 120

to explain the depth and functionality of the MVG grammar, and demonstrated how the

grammar can be used to explain several example layouts.

This chapter focused on, and answered the first part of the research question “RQ8/

What is a multiple view grammar and how can it be used in multiple view tools to

create multiple view layouts?”. The next chapter will use the MVG grammar and the

shortcut grammar for the the MVG grammar to create multiple view layouts using the

multiple view tool that we present in this thesis.

Design and development of a grammar for the MV Layouts tool 121

Chapter 6

Design and implementation of the

MV layouts tool

This chapter focuses on developing a tool for multiple view layout. The chapter describes

the design and implementation of the “Layouts for Multiple Views” (LayMV) tool,

a web-based software. This tool will give developers of multiple view visualisations

more flexibility in creating, saving and reloading multiple view layouts.

The chapter concentrates on the following research questions and is likewise structured

to answer these challenges:

Q1/ Why we want to develop the LayMV tool.

Q2/ What methodology should be used to design the LayMV tool? And, what

alternatives are there?

Q3/ What process should be followed to implement the LayMV tool?

Q4/ What is the role of the MVG grammar in the LayMV tool?

Q5/ What methodologies could be used to evaluate the LayMV tool?

6.1 Introduction

Visualization tools, libraries and systems all help users create visualisations. While

there are many ways to create a visualisation, controlling the layout of multiple view

systems is still difficult. This is not the case for websites, where there are many design

tools to help users layout their websites. Moreover, Java programmers can use methods

such as GridBag Layout to easily organise different components, or a BorderPane layout

to place nodes: top, bottom, left, right, and center. Why can we not have the same idea

122

in visualisation? Visualisation developers would likewise benefit from a similar system.

Templates could help users follow ‘typical’ layout strategies, and methods to graphically

design different layouts. While there are similarities between a web page structure and

a visualisation multiple view layout, there are differences. Both present information,

both often have multiple facets – web pages have the main story, adverts, menus, while

multiple view visualisation tools have many faceted views. But, their goals are different.

Web pages have a goal to inform and provide predominantly written information, and do

not require much control or linkages between facets, whereas multiple view visualisation

tools are typically more visual, and many are highly coordinated interfaces. But people

do often create visualisation tools on websites, and consequently, we used the a web

page as an end-platform for our LayMV tool.

This study presents LayMV (Layouts for Multiple views) tool, the goal of which is to

allow users to lay out their visualisations using pre-designed layouts, or easily create

their own design configurations. This tool helps users create and re-configure different

multiple view visualisations. Yet, it is not focusing on creating the visualisations for

multiple view. Instead, it is used for laying out and controlling visualisation views.

where, LayMV creating visualisations by using D3 library.

The motivation is to give users the ability to create juxtaposed view layouts in a simple

and easy way. Furthermore, the goal is to allow users to create ‘typical’ layouts,

and consequently we drew on our quantification work as explained in Chapter 4 and

presented in Almaneea and Roberts [81] [82]. The work quantifies and identifies

typical and frequent layout strategies as used in the scientific literature and presented by

visualisation researchers. This tool utilises the results from these previous quantitative

studies, and the tool helps guide users on popular arrangements.

This chapter demonstrates how the LayMV tool was designed, implemented, and

presents screenshots of the tool in action. To motivate and guide the research, at the start

of this process, several research questions were posed: “How can we develop a system

to help visualisation users lay out their views?”, “How can we allow users to quickly

layout their views, and then easily change their layout design?” and “How do we map

data to a view and easily change the appearance of the layout viewer?”. These questions

focus around the development and use of the layout tool. At the start of the research, it

Design and implementation of the MV layouts tool 123

was clear that the goal was to create something that would help people layout views.

But how? What would the tool look like? Would it be focused around the grammar, or

a drag-and-drop (or similar) interface? Additionally, we asked: how would it be used?

Developers would need to use the layouts in their own applications. But how? How can

these structures be created, without (potentially) building a whole design system?

In addition, this chapter explains what is this LayMV tool is used for, how it was

built, the main components of the tool and what it will look like. This chapter also

explains how the MVG grammar is parsed and used to create different multiple view

visualisations. Furthermore, this chapter explains the functionality of the LayMV tool

and discusses what methodologies could be used to evaluate it.

The tool is designed based on the design guidelines from Chapter 4. We start the

design with sketches, using the five design sheet method (FDS) [117, 118], low-fidelity

prototype, and developing a prototype in JavaScript, HTML, D3 and JSON (JavaScript

Object Notation). Users can create different multiple view layouts, associate specific

visualisation types with a view panel, and change the appearance of the final multiple

view layout. In addition, they can control the layouts through bespoke grammar in

JSON. They can choose default layouts, design their layout, go back-and-forth between

grammar and visual interface, and factor and re-factor their view layouts to allow, for

example, an “n*m” and swap it to a “m*n”.

Design the
LayMV Tool

Implement
the LayMV
prototypes

Describe the
final version
of the
LayMV Tool

Discuss the
LayMV Tool

Figure 6.1: This diagram illustrates the stages to build the LayMV tool, started with the design
of the tool, the implementation, Describe the LayMV Tool, and finally a discussion about the
LayMV tool.

The chapter contains three main sections: the design, implementation and results of

developing LayMV, followed by the Discussion and Conclusions. Figure 6.1 shown

Design and implementation of the MV layouts tool 124

different stages of building a multiple view tool. This chapter is structured around these

stages, as follows:

• Section 6.2: The design of the LayMV Tool section, explaining the design process

and the reasons and the purposes from building the LayMV tool. In addition, we

explain the design methodology we followed to design the tool and what decisions

that we made and the alternatives of each decision.

• Section 6.3: This section on the LayMVTool’s implementation discusses howwe

built the tool, our rationale for developing it, and our consideration of alternatives.

• Section 6.4: The results section describes LayMV’s layout, clarifies the LayMV’s

functionality and demonstrates how to use MV’s grammar to create multiple view

layouts.

• Section 6.5: Finally, the discussion section discusses the design process for

LayMV tool and the benefits from using the MVG grammar, including the

advantages and the limitations of the tool.

6.2 Design of the LayMV tool

This section provides a description of the design methodology. The methodology

was to start by drafting the vision, and then refining the concepts through several

prototype implementations. Because an incremental approach was used (with three

main prototypes) this section focuses on the main design concepts to create the LayMV

tool. Then the implementation goes into detail for each prototype. There are several

stages to designing a tool that can be used to create multiple view layout. The following

steps were followed to design LayMV tool:

(Step 1) Explore alternative design methods and define a vision for the system.

(Step 2) Sketch ideas for the LayMV layout.

(Step 3) Determine the LayMV tool functions and the main components.

(Step 4) Incrementally improve the LayMV design through analysing the LayMV layout

and the LayMV functions to detect design errors, which required building

different prototype versions.

Design and implementation of the MV layouts tool 125

MV Grammar
Editor

Multiple View
Visualisation Panel

Visualisation Editor

Tree Navigator

Figure 6.2: The wireframe layout of LayMV tool, showing four main views: the grammar
editor, visual panel to control the layout visually, and tree-navigator (to select different parts of
the layout code) and the visualisation editor (to allow users to add in their own visualisation
code).

The Wilson’s method of heuristic evaluation [153] was followed, which was used to

examine each prototype. Three developers were involved (who were separate to this

project); two with visualisation expertise and one a generalist software engineer to

provide think-aloud comments, we developed three major prototypes.

The design study investigated general ideas of how the system would work and appear.

The goal of this design study was to determine the appearance and main functionally

of the tool. The Five Design-Sheet (FDS) method was chosen because it was familiar.

While there are alternatives, such as using ad hoc sketching [24]. However, the FDS

method gives a very defined set of instructions to follow that will create not only lots of

the different design ideas, but three focused design concepts and then a final design

idea. This process helps us to expand the ideas and consider alternative ideas in great

detail. In addition, through the design process the concepts that have been evaluated in

Chapter 4 can be integrated with the designs, and we apply the design guidelines from

Section 4.9. After the sketches then a wire frames model were created [128].

Design and implementation of the MV layouts tool 126

As shown in Figure 6.2, the design of the LayMV fits with our design guidelines (see

Section 4.9) as the LayMV has simple layout structure with four views and a vertical

Symmetrical balance.

(View 1) MVG grammar editor, this view will be the place where the user can write

and edit the grammar expression to create multiple view visualisation.

(View 2) Multiple view visualisation panel, this view will be the place where the user

can see and control the created multiple view visualisation.

(View 3) Tree navigator, this view will be used by the user to choose a specific view

from the multiple view layout to add a data and a visualisation technique to it

through the fourth view.

(View 4) Visualisation editor, this view will be the place where the user can add data

and visualisation technique to each view, moreover, this view will control the

appearance of the created multiple view visualisation.

Using these Low-fidelity designs, we got the experts to reflect on the proposed ideas

(Step 4). While this was an informal session, we used Wilson’s method of heuristic

evaluation [153] as a guideline for analysis.

The feedback from the experts was positive. They liked the many-view system that we

proposed. They were positive about the idea of a layout grammar. One suggested that

we could consider using Vega-lite [127], which extends Leland Wilkinson’s Grammar

of Graphics [152]. However after our discussion, the expert agreed that Vega-lite was

not suitable for our purpose.

One of the main design goals was to create a visual editor (named Multiple View

Visualisation component, shown in Figure 6.3). There are different ways this could

be achieved and implemented. For instance, the layout of the views themselves could

be controlled by the data. This is similar to ggplot and gridBagLayout in Java,

where the developer says that they want a view to the left, to the right, and so on, and

the system places the views in their actual position. Some views could be snapped

next to others. For instance, there are many examples of tiled views (especially on

mobile devices) where the user can drag a widget into place, and it gets snapped close

to its neighbour widget. They are automatically aligned. Alternatively, the user can

Design and implementation of the MV layouts tool 127

take complete control. For instance, in a drawing program, the user can control the

size of the rectangle, and use split, or merge commands to split this rectangle in two

parts, and so on. In this way, we posed the question “who controls the layout of the

views – the designer and user, or the system in an automatic way” [82]. The automatic

layout mechanisms can be considered as a ‘geometric object packing’ [75]. Where

objects (views in our instance) are placed side-by-side in a grid or layout that does not

leave any gaps. There are also similarities to other visualisation designs. For example,

treemaps [134] pack the data in hierarchies; a slice-and-dice algorithm is used to pack

the data hierarchy. Small multiples layout visualisations in a grid [78], spreadsheet

visualisations [30] organise the small visualisations in a regular lattice, and the view

bracketing concept of Roberts [115] places visualisations in threes.

Following, it was decided to design a system with some automatic snapping. This

would allow a designer to align objects suitably. Systems look untidy if the windows are

slightly misaligned. However, we also want designers to craft multiple-view systems

from their imagination and under their control. Consequently we decided that they

system should also allow users to position individual parts by hand. For these reasons,

and similar to packing problems, it was realised that four challenges need to be solved:

• First, a way to define the space of the layouts, to allow users to position views

side-by-side, on top, or to the left of other views.

• Second to define the content of that space. In other words, what is required is a

way for a user to define the grammar that will describe the visualisation contained

with in that space.

• Third, there needs to be a way for the user to be able to define the appearance

of the windows, frames or spaces that the visualisations sit within. What is

required is a way to define: window spacing, background colour, frame colour,

whether the frame can be moved, etc. For instance, each multiple view part may

be surrounded by a blue frame, or have no visible frame at all.

• Fourth, there needs to beway for the user to loaddata and visualise it. Furthermore,

the data needs to be mapped to each visualisation. Perhaps every visualisation

uses the same data, or some windows use one data, and others use another.

Design and implementation of the MV layouts tool 128

These design requirements led to a multi-part solution, with several component parts

(step 3). The implementation was divided into components that (A) deal with the visual

front end, and (B) those that pertain to the underlying functionality. Through discussion

with the experts, it was decided to split the system into eightmain components. Figure 6.3

shows a schematic picture of this model. This model was useful in communication and

conversation. It meant that intermediate prototypes could be created, which contain

some components, get feedback from the experts, and then develop the others in turn.

1) LayMV layout. This module controls the visual visual components of the LayMV

tool.

2) MVG grammar is the MVG grammar editor, where users can type new grammar

and edit existing text.

3) Multiple View Visualisation is the code that controls the main system.

4) Appearance allows users to control the appearance of the layouts that are created

through the LayMV system.

5) MVG grammar checker is the checker algorithm that allows the code to be

checked and validated. It means that validated code will be used to present the

layout in the visual (Multiple View Visualisation) component. This is a two-way

link, meaning that changes to the grammar alter the layout view, or changes to the

layout view alter the grammar code.

6) MVG Grammar parser, the algorithm that should be used to convert the

grammar expression into a multiple view layout. On loading, or on a change to

the layout, the grammar is parsed.

7) Save/ Load component enables the project to be saved and loaded. On load,

grammar is parsed and checked.

8) Multiple view visualisation algorithms, these are the algorithms that should be

used to visualise the data and to create the multiple view visualisation.

Design and implementation of the MV layouts tool 129

LayMV
LayoutMV Grammar Appearance

MV Grammar
Parser

MV Grammar
Checker Save/ Load

LayMV Tool Components

Multiple View Visualisation

Multiple View Visualisation
Algorithms

A

B

Figure 6.3: This diagram describes the LayMV tool and illustrates the main components
and functions, these are the main components of the system, where “A” represented the visual
components and “B” underneath the line represents the hidden (algorithms) components.

6.3 Implementation of the LayMV tool

The process of implementing the LayMV tool went through several prototypes. Starting

with the components in the design stage (Section 6.2). Second, the first prototype had

basic information that was tested with experts. Third, the prototype was improved.

During this process the LayMV design was improved through analysing the LayMV

layout and the LayMV functionality to detect design errors and problems in each LayMV

prototypes, and then redesigned and rebuilt to develop a new enhanced version of the

tool based on the evaluation of the previous version. The improvement process repeated

until the final design for the LayMV tool. For communication purposes this whole

process can be summarised by three principal prototypes. The final step is where users

Design and implementation of the MV layouts tool 130

Final version of the
LayMV tool

Design the LayMV
prototype

Build the first version
of LayMV prototype

Improve the design of
the LayMV prototype

Build a new version
of LayMV prototype

Test the LayMV
prototype functionalities

Evaluate the LayMV
prototype by an expert
in multiple view tools

Im
provem

ent Process

Figure 6.4: This diagram describes the implementation of LayMV tool, we asked experts in
multiple view tools to use the LayMV prototypes and give feedback for each version of the tool.

do a end-user-evaluation for the tool. Figure 6.4 illustrates the LayMV implementation

process.

For the implementation a Web design environment was chosen. This utilised: HTML,

JavaScript and JavaScript Object Notation (JSON) to build the LayMV tool. The

motivation for this choice is to make the overall system able to be used remotely, as

well as to be visualisation agnostic. Typically visualisation systems are built with

single libraries. However, one of the goals of this research is to create a structure (the

grammar) which has the potential to be used by other systems. Certainly, the software

could have been built using different libraries and tools. Processing.org could be used

to create the visualisations, but the goal was to focus on the layout and not develop

additional bespoke visualisations. D3.js would be another obvious choice, but through

Design and implementation of the MV layouts tool 131

discussion with the experts, it was decided that while D3 would provide the visualisation

components it was less suitable for the task of developing the tool. The decision was

therefore taken to use HTML with JavaScript, which would mean that the prototype

could work on any browser. Then we could allow visualisation libraries (such as D3) to

be integrated with the tool. It would mean that we could create a system that hopefully

could be used for D3, Shiny-R and other visualisation libraries.

The first prototype (a two-view system with three panels), shown in Figure 6.5. The

left panel is the layout editor, and the right panel shows the rendered output. The middle

panel contains a button to “render” the output. We use the slice-and-dice methodology,

to draw the view layouts. On the editor view the user can cut a view in half, and

subsequently cut each other view in two. These early prototypes helped us understand

how we should lay the views to create a layout in one of the LayMV views and how we

render the same layout in another view.

The feedback from the expert visualisation designers was positive for this first prototype.

They realised that it was in the early phases of the developments, but were very

encouraging. But the experts found some configurations tedious to create (such as as 5

by 5 view). Certainly, with the experts and supervisor, we had been discussing, different

ways to make the design more efficient. Subsequently, from the feedback of this group,

methods to make (e.g., 5x5 view) views less tedious were investigated. The expert

group also noticed that sometimes they believed it to be easier to craft view layouts

by hand, and other times through commands. This exactly was the vision; that some

configurations would be easier in code and others to do on screen, and their feedback

was positive encouragement that the development was on track.

Design and implementation of the MV layouts tool 132

Figure 6.5: A snapshot for an early version of the LayMV tool, the “Add View” button adds a
view to the first left view of the LayMV tool each time we clicked on it. In addition, we can use
the mouse cursor to drag and drop the views to move them around and build a multiple view
layout; Then, by clicking on the “Render Layout” button, we can render the same layout in the
third view of the tool.

The second prototype added more components. The design study (Step 3) described a

multiple-window design, and so this development stage started to implement this idea,

and make the system more complete, as shown in Figure 6.3. Prototype-2 contained

some menus and control buttons (top left), the grammar editor (lower left) and right the

layout editor. The first major improvement on the previous versions of the LayMV tool

was done through adding the MVG Grammar editor to create the multiple view layout,

as shown Picture 6.6; these grammar can be edited to modify the multiple view layout.

In addition, this prototype included the implementation of some summary grammar

expressions, which allow users to quickly explain views through grammar commands.

The control panel enabled the user to match the grammar to the editor, or the other way

round.

Again the experts were asked to comment on the design, and feedback on how the

LayMV prototypes can be improved. In addition, they were asked to suggest solutions

Design and implementation of the MV layouts tool 133

for problems that were faced during the implementation process. And they gave helpful

suggestions of how to succeed in the development of the interactions and lay out of the

menus. At this stage they were keen to have the tool completed. They mentioned the

need to ‘error check’ the input and output files. Saying that, as developers themselves

they would want to edit the file outside the application, and so parsing and error checking

was important. They also commented on the fluidity of the commands, suggesting that

dynamic editing would be possible, where the grammar is automatically updated from

the design, or the other way round. The experts also emphasised the need to keep the

three different parts of the design separate. This would allow the user to focus on a

specific part of the layout design:

1) Grammar Editor, to create and control a multiple view layout.

2) Visualisation Editor, to upload data, map the data and create and control the

visualisations inside the layout.

3) Layout Panel, where the layout will placed.

Figure 6.6: A snapshot for an updated version of the LayMV tool, the “Create layout by
MVG Grammar” button created the multiple view layout by using the MVG grammar “a:50;
b:(a,a); Expr:v(40h(25,75vb),20hb,20hb,20hb);”.

The final prototype included each of the component parts, along with the parser, file

save and load, and grammar checker (as per the components described in Figure 6.3).

Design and implementation of the MV layouts tool 134

The final prototype is shown in Figure 6.7. In addition, a tree navigator was added.

This helps the user add data, visualisation and appearance to a specific view in the

multiple view layout, and edit appearance of the layout itself. Furthermore, a shortcut

grammar editor was added to give the user the ability to quickly create particular layouts

efficiently (such as Golden Ratio layout).

Figure 6.7: A snapshot for the LayMV tool after we added the tree navigator view and the
shortcut grammar (Layout technique editor), the expression “goldenratiov6q4s100%” in the
Layout technique editor created the above golden ratio layout.

As considered in Section 6.2, the final layout of the LayMV tool has four views, which

are three main views divided horizontally, where the third view divided into two views

vertically. The four views from the left are:

• First view (V1) has three tabs; we named them as “Grammar Tabs”. The first tab

is the “Layout Editor”, used to find and edit the details of the created multiple

view layout, such as the position and the size of each view. The second tab is the

“Layout Technique” where the user can use the shortcut grammar to create special

multiple view layouts. The third tab is called “Grammar’ where the user can use

the MVG grammar to create a multiple view layout.

• Second view (V2) is used as a multiple view panel where the user can create and

Design and implementation of the MV layouts tool 135

modify the multiple view visualisation visually by using the mouse cursor, where

the user can resize the views and change its positions.

• Third view(V3) is the tree navigator, which the user can use to navigate the

multiple view layout and select a specific view to add visualisation to the chosen

view through the fourth view. In addition, the user can choose “LayoutAppearance”

to edit the overall appearance of the multiple view layout.

• Fourth view (V4) is used to add data and visualisation techniques to any view

in the multiple view layout; first, where the user can select a view by the “tree

navigator”, then the user can add visualisation to the chosen view. In addition,

users can change the overall appearance through this view.

In addition, besides the visual components of the LayMV layout, the LayMV tool has

underpinning algorithms that responsible for performing the tasks and the functions of

the LayMV tool and ensuring its correct functioning. The main algorithms are:

1) MVGGrammar checker, this algorithm checks that theMVGgrammar expressions

are legal and fit with the MVG grammar parser requirement.

2) MVG grammar parser, this algorithm converts the MVG grammar expressions

into visual multiple view layouts.

3) Views synchroniser, this algorithm responsible for the synchronisation between

LayMV views.

4) State saver, this algorithm allows the user of the LayMV to save all the details of

the multiple view layout.

5) Visualisation creator, this algorithm adds visualisations to the multiple view

layout.

MVG grammar checker algorithm makes sure that the MVG grammar expression is

writing accurately. Suppose the user did not write the MVG grammar expression in

the correct form. In that case, the checker algorithm will prevent sending the MVG

expression to the MVG grammar parser, eliminating errors in the MVG grammar parser.

In order to have a successful MVG grammar expressions, the expressions should be

written in the following format:

1) The expression starts with Expr: and end with a semicolon “;”.

Design and implementation of the MV layouts tool 136

2) The cut operations divide a view (or the whole layout) into two or more areas

(views), and the user should put a comma “,” between each two areas. In away, the

vertical cut “v” and the horizontal cut “h” should be followed by the “(” bracket

and end with the “)” bracket, and the user should define the percentage of the

size of each new view from the parent view and put it between these two bracket,

where the size summation of the all new views equal to “100”. In addition, there

are spacial ways to define the areas for the new views, such as:

A) h(), this expression will divided the layout into two horizontal views.

B) v(„), this expression will divided the layout into three vertical views.

C) v(50„), this expression will divided the layout into three vertical views,

where the area of the first view will be 50 percent from the parent view and

other two views will have share the rest of the area equally.

3) The user of the LayMV tool can define variables to simplify the complex

expressions; in this case, the grammar expressions will have more than one line.

E.g., the first line is a:(50,50); and the second line is Expr:v(50ha,50);, this

grammar expression will create the layout . Furthermore, the user should put a

semicolon “;” each time he defines a variable.

In addition, the grammar checker examines the shortcut MVG grammar to be sure that

the expression is written in the right form. As the shortcut grammar create ether grid

layouts or golden ratio layouts, the expression should follow the following structure:

1) The shortcut MVG grammar expression should be put between the “{” bracket, and

the “}” bracket.

2) The expression should start with "layTech" then followed by : and ending with

shortcut expression such as "grid3*3" to create 3 by 3 grid. In this case the whole

shortcut expression should be written as "layTech": "grid3*3", see Section 5.4.

Next, if the MVG grammar expression passed the grammar checker successfully, then

it will by moved to the MVG grammar parser algorithm which will convert the

expression to a visual multiple view layout.

The views synchroniser algorithm synchronises events between LayMV components.

It makes sure that all the views of the LayMV tool are up-to-date, and the information

Design and implementation of the MV layouts tool 137

is harmonious across each view. It also guarantees that all the views of the LayMV tool

have non-contradictory details about the multiple view layout, and these views are not

conflicting and fight with each other. Furthermore, all these views are connected and

any change in the data that belong to a view will affect the data of the rest views. The

user can make a manual synchronisation using Update TextEditor button, e.g., if the

user create a layout using the MVG grammar in the grammar tab, then the user needs

click on the Update TextEditor button to update the contain of the layout editor tab so

that the layout editor will be described the created layout.

Finally, a user can use the tree navigator to add data and associate different visualisations

to each view in the multiple view layout, to build the overall multiple-visualisation

system. Moreover, the LayMV tool can save the project’s detail as a text file this will

allows the user to save the state of the multiple view project. This also includes the

layout, the visualisation techniques and how views share the same data or not. A possible

drag-and-drop operation was discussed and trialed, however this method did not work

well. It was difficult to control where the data was going to go, and difficult to control

the window placement. The idea could be used to add data or a visualisation to one

panel, and then drag and copy it to other parts. However, instead it was decided to use a

tree view to control this functionality. This tree view means that the data is explicitly

described, that it can readily be saved into the file, and users clearly understand how to

add data to specific multiple views.

6.4 Results

The LayMV tool allows users to design, create and modify a multiple view layout

visually or by use the MV grammar. In addition, this tool allows users to save, reload

and edit the MVG grammar. Also, the LayMV tool do grammar checking, and highlight

the grammar that needs to be corrected. The LayMV tool included the ability to choose

pre-designed layouts and add visualisations to the views, in addition to a tree navigator

that helps the user to add data, visualisation and appearance to a specific view in the

multiple view layout.

This section focuses on the final version of the LayMV tool and what the tool looks

Design and implementation of the MV layouts tool 138

like, and its functionality. Screen shots are included, with explanation of the different

components, to explain the main functions. This section records the final prototype.

LayMV tool Description: The final prototype has two screens, each addressing a

different task, the first screen is the “templates viewer” and the second screen is the

“grammar viewer”.

LayMV tool provides layout templates on the first screen, the first screen has one main

view which called the templates viewer, as shown in Figure 6.8, and this screen is the

default first screen and allows a pre-built design to be selected. The tool provides the

ability for users to filter the layouts, where users can search and filter designs. After

selecting a starting template, which could be a blank layout, the second screen will be

opened.

Figure 6.8: Template viewer. Users can choose a starting layout, search for a specific view
quantity, various multiple view Layouts can be created with different views number, and the
user can later edit the template.

The second screen has four main views, as shown in Figure 6.9, the grammar view (the

“Grammar Tabs”), the visualisation editor, the tree navigator view and the property view.

Design and implementation of the MV layouts tool 139

A CB

Figure 6.9: LayMV tool, with three linked views. (A) grammar panel to edit the grammar
(either shorthand e.g., v(50,50) or full JSON, shown), (B) Visualisation panel of either the
wireframe editor or layout editor (shown) and (C) property panel.

The grammar view, as shown in Figure 6.9 A, has three tabbed parts. The first tab

allows the “Layout Editor” to be shown. In this window users can edit grammar that

describes the position and the size of each view. The second tab shows the “Layout

Technique” editor. This allows users to use the MVG shortcut grammar to used to

create a multiple view layout. The fourth tab “Grammar” allows users to use the MVG

grammar to create a multiple view layout

The visualisation Panel, as shown in Figure 6.9 B, shows either a wireframe layout

editor (without visualisations), or the final visualisation view. In this picture, Figure 6.9

B, the final visualisation of two bar charts are shown. The wireframe editor allows users

to add, delete and change the size and the position of the views, and snap wireframe

views together. The grammar description is dynamically updated on the left panel,

allowing users to jump between grammar or layout descriptions.

The property panel, as shown in Figure 6.9 C, has two panels, the top panel is the

“Tree navigator” which allows users navigate the layout to add data and visualisation

techniques. The bottom panel is the “property view” which allows users to change

the appearance of the layout (border width, background colour, etc.) and how the

Design and implementation of the MV layouts tool 140

visualisations and data are mapped to panels. Different visualisation libraries could

embedded, the example in Figure 6.9 uses D3.

LayMV tool functionality: LayMV tool allows user to create and control multiple

view visualisations by doing the following:

1. Create a new layout either by choosing a layout template from first screen, or

using the mouse cursor by clicking on the “Add View” button in the second screen

to add a new view and use the mouse cursor to resize and place the view in the

right position.

2. Also, the user can change the parameters in the layout editor or by using the

mouse cursor.

3. By using the MVG grammar a user can create a multiple view layout, the basic

idea is based on hierarchical cuts. Cut one view horizontally (h) or vertically (v)

to produce two views, and so on. E.g., h(50,50) creates an equal sized side-by-side

view . The value 50 is representative, ℎ(20, 20) would provide the same result.

Moreover, complex cuts can be easily created, e.g., h(50v(75,25),50) creates layout

with three views, a long bottom view, with the top split 75% across . We can control

quantities, make variables, define prototype layouts in the grammar. E.g., a:50; b:(a,a);

Expr:h(30vb, 40hb, 30vb) creates a layout with six views. We can quickly define a

nine-grid view ("laytech":"Grid3*3") or place six views in a golden ratio with a centre

in the fourth quarter ("laytech":"GoldenRatioV6Q4"). A full description of the grammar

is not possible here, due to space constraints. The JSON can be saved, and reloaded,

and is checked for errors on load.

First, the grammar will produce two horizontal views with the same size percentage

from the layout, then the top view (parent view) will be divided into two vertical

views, the size for the first vertical view from the left will be 75% of the parent view

size and the size for the second vertical view will be 25% of the parent view. With

the experts feedback, much thought and effort was made, on how the data will be

stored to define the structure of the layout within JSON, and make it easier to control

specific view arrangements. Quantities can be controlled, users make variables, define

prototype layouts in the grammar. E.g., a:50; b:(a,a); Expr:h(30vb, 40hb, 30vb)

Design and implementation of the MV layouts tool 141

creates a layout with six views. For instance, users can quickly define a nine-grid view

("laytech":"Grid3*3") or place six views in a golden ratio with a centre in the fourth

quarter ("laytech":"GoldenRatioV6Q4"), more description will be in Chapter 7. The

JSON can be saved, and reloaded, and is parsed and checked for errors on load.

In order to have a successful MVG grammar expression, if the user of the LayMV tool

did not write the MVG grammar expression in the right format, the MVG grammar

checker would indicate an error in the expression format and the colour of the expression

text will be changed from black to red. In this case, the MVG Grammar checker will

not pass the expression to the MVG grammar parser.

Continuing on the functionality, LayMV allows users to:

4. Upload data files to be related with its views.

5. Add and edit visualisation technique for each view by using the visualisation

editor.

6. Use the tree map navigator to navigate the visualisation components (the views

and its content).

7. Save and reload the visualisation project (the layout, the data sets and the

visualisation techniques).

Figure 6.10 shows the LayMV tool created a multiple view layout using the a MVG

grammar.

Figure 6.10: Using MVG grammar to create multiple view Layouts.

Design and implementation of the MV layouts tool 142

In addition, Figure 6.11 shows how user can a create multiple view Layouts using a the

MVG shortcut grammar.

Figure 6.11: Using LayMV Layout Technique to create multiple view Layouts.

6.5 Discussion

There are many foundational parts to the thesis that have led to the development of the

LayMV tool. First, the related work chapter described many different multiple view

visualisation systems, and the work discussed different multiple view visualisations

techniques, such as: design concepts, multiple view systems and tools, and theories and

design guidelines for multiple views. Second, the quantification Chapter (Chapter 4)

provides insight into how people use multiple views. The analysis of multiple view

visualisations helped to develop and create a new set of design guidelines for multiple

view visualisations. From this analysis people are using few views but also developers

also do create many viewed systems. Consequently there needs to be a way for people

to create multi-viewed systems, and create them in a simple way. Third, the grammar

chapter (Chapter 5) provides the underpinning principles that lead to the file structure

of LayMC. It provides a convenient way to, not only store view layouts, but edit them

(outside of the LayMV system), and load them between sessions.

It is clear to see that developers have many layout techniques which can be used for

placing the visualization on the screen. However, the user which is used the visualisation

tool is forced to use the method specified by the developer without the ability to change

the visualization layout, to be able to see the data effectively. This gap can be reduced by

Design and implementation of the MV layouts tool 143

given the users the control to change the layout to improve the display of the visualization.

In this case, there will be two challenges:

• Auto layout method which has to be determined at the first appearance for the

visualization.

• Give the possibility for the user to save the layout and apply it on another data.

This chapter presented the “Lay multiple view” (LayMV) tool based on an in-depth

analysis study, we have done on multiple view layouts, this tool helps users build, control

and save multiple view visualisations simply and easily using a bespoke grammar.

The tool incorporates template multiple view layout strategies as quantified from prior

research on view analysis, and the user can build different layouts by defining the

grammar, or through the linked visual interface. In addition, the LayMV tool was

designed from the design guidelines, that were introduced in this study, see Section 4.9.

LayMV tool guides the user to (i) design and control the multiple view layout, (ii) add

data and allocate a specific visualisation technique for each view, and (iii) to adapt

specific appearance properties of the layout.

After that, the user can assign data and a visualisation technique for each view so that

he can use JSON file later to develop the multiple view visualisation by changing the

layout or using different data sets or different visualisation techniques. In addition,

much thought and effort on how the user will store the structure of the layout was given.

With discussion with the expert group, the LayMV system was developed. This chapter

provided details of the visualisations itself (project), and basic structure capture that

within JSON file. In a way the JSON file is like a style sheet, where the LayMV tool

allows users to save multiple view visualisations as JSON files, including all the details

of the layout and attributes of the visualisations, which can be subsequently loaded and

adapted or used to create dashboards.

There are limitations to the current implementation. It would be good to add more

interaction and animation to the views. Users currently need to take the code, and

extend it to define their own interaction. It would be good to add these commands

to the Tree viewer. The data entry can also be fiddly, and this could be adapted by

Design and implementation of the MV layouts tool 144

adding a drag-and-drop function to the data and views, to drop data between views.

Furthermore, different types of visualisations could be crafted. It would be good to have

a comprehensive set of visualisations that, again, could be dragged and dropped into

place. However, as we mentioned early in this thesis, the focus on our research was to

develop tools around analysing and controlling layout. What LayMV does demonstrate

is that the grammar works, and that it is possible to integrate it into a working multiple

view editor.

6.6 Summary

This chapter focused on developing a tool that allows users to create and control multiple

view visualisations. Consequently, this chapter answered five research questions: “Q1/

Why we want to develop the LayMV tool?”, “Q2/ What methodology should be used

to design the LayMV tool? And, what alternatives are there?”, “Q3/ What process

should be followed to implement the LayMV tool?”, “Q4/ What is the role of the MVG

grammar in the LayMV tool?” and “Q5/ What methodologies could be used to evaluate

the LayMV tool?”.

The chapter explains how the LayMV tool was designed and built. It allows users to

lay out the multiple view visualisation. Users can select a template layout, or edit the

layout visually or control the layout through the MVG grammar. The grammar is used

to save/load view layouts, and each view is linked, such as when the user controls the

wireframe editor, the grammar updates. The tool was developed through prototypes,

with expert heuristic feedback. Its application was demonstrated with examples using

D3, and it has the potential to be used with other visualisation languages and tools.

LayMV is still being developed, and the plan is to provide a more in-depth user

evaluation. But already the ongoing feedback from the experts, during the prototype

development, has helped to create a working and suitable system.

The goals from building the LayMV tool have been to demonstrate the grammar and

develop a working system, to help users manage views in multiple view systems. The

work started with the five design sheets method, where the design decisions were

discussed and alternative possible design solutions were discussed. Then, the tool

development was explained, starting with early prototype versions, and from the expert

Design and implementation of the MV layouts tool 145

feedback the tool was developed, and its layout and the functionality of the LayMV tool

improved. Subsequent, this chapter presented examples for how the LayMV tool creates

multiple view visualisation to explain the tool’s depth and functionality and show how

the tool is work. Finally, this study described the LayMV tool layout, and the tool’s

functionality explained the goal and the job of each window and algorithm in the tool.

In this chapter, this study answered the second part of the research question “RQ8/ What

is a multiple view grammar and how can it be used in multiple view tools to create

multiple view layouts?”.

The next chapter will explain how LayMV can be used. Several case studies will be

presented, that explain how a user can create different multiple view visualisations,

highlighting the functionality of the tool.

Design and implementation of the MV layouts tool 146

Chapter 7

Case studies and discussion

This chapter shows and explains how the LayMV tool works to create multiple view

layouts, and allow visualisations to be added to the layouts. This chapter will describe

the application of the LayMV system that uses the grammar, as described in Chapter 5

and the design of the system, as described in Chapter 6. The chapter follows three

designs, a 2-view system, a 3-view and a 8-view system. It adds D3.js code to the

layouts, which demonstrate that visualisations can be added into the defined layouts.

The chapter focuses on demonstrating the LayMV system and the application of the

grammar, and demonstrates the following research questions.

Q1/ How can users use the LayMV tool and the MVG grammar to create a

multiple view layout?

Q2/ How can users start using the LayMV tool, and what is the process they need

to go through?

7.1 Introduction

Developers of the software need to be able to create a multiple view layout. They

need to be able to use the grammar, and be able to discover logical errors, bugs and

limitations in the grammar. Also users need to create layouts quickly. We follow two

case studies, to demonstrate how someone can use the LayMV tool. The first study

creates a simple two-view system. The dual view layout is common, and while it is

simple to create, the procedures followed in the examples demonstrate the principle

ideas of the tool and grammar. The tool and grammar work together to create quick

multiple view layouts. The examples herein, also demonstrate the possibilities and

147

limitations of the process, which will be discussed later in this chapter, and in future

work in Chapter 8. Subsequently, we suggest a sequential process for developing views.

Figure 7.1 illustrates the case study and creation process of a multiple view visualisation

using the LayMV tool.

The result is:
Multiple View Visualisation

Choose a visualisation
technique for each view

Prepare a data set for
each view

Create the multiple
view layout

Append a data set
for each view

Create a visualisation
technique for each view

Im
plem

entation Process

Sketch the multiple
view layout Preparation Process

Change the appearance
of the multiple view

visualisation

Figure 7.1: This diagram describes the steps that the user of the LayMV tool should follow to
create a multiple view visualisation.

This chapter therefore contains three main sections: the scenario that required to be be

followed to create a multiple view visualisation, the implementation process to create

the first and the second case studies, and followed by the discussion of the results and

Conclusions of using the LayMV tool to create multiple view visualisation. This chapter

is structured around these stages, as follows:

Case studies and discussion 148

• Section 7.2: This section explains the preparation process and the scenario to

create a create multiple view visualisation.

• Section 7.3: This section illustrates the the first case study.

• Section 7.4: This section illustrates the the second case study.

• Section 7.5: This section illustrates the the third case study.

• Section 7.6: this section discusses the limitation the results of case study one and

two.

7.2 Preparation process and scenario to create multiple

view visualisation

Figure 7.1 summarises the scenario and creation process that the user of the LayMV

tool should follow to create a multiple view visualisation, the scenario includes the

following steps:

1) Sketch a multiple view design.

2) Prepare a data set for each view.

3) Create a multiple view layout using the LayMV tool.

4) Edit the appearance of the multiple view layout.

5) Upload and assign the date set for each view.

6) Create a visualisation technique for each view in the layout.

7) Edit the appearance of the visualisation technique for each view.

8) Browse the result (the multiple view visualisation) or take a Screenshot for the

multiple view visualisation.

9) Repeat any of the above steps to edit the multiple view visualisation.

When a user wants to create a multiple view, they need to have an idea (a vision) of

what they want to create. The LayMV tool helps the user in this regard. Especially the

first screen, that is shown to the user, is the Template view, where users can quickly

choose a template, and then once chosen, can adapt the layout. Also, the user needs to

consider what library they will use for their visualisation. They need to prepare their

data, and understand the visualisation library. For these examples, D3.js will be used,

but it would be possible to use other visualisation libraries.

Case studies and discussion 149

The first stage is the preparation process, where the developer needs to prepare the

required materials and consider their scenario, prepare their data. Then they implement

their layout. Using LayMV and the grammar they can design a layout, append their data,

create their visualisation in their chosen library, append it to the LayMV tool, and alter

the appearance of the multiple views (by changing parameters of the frames of each

view, background colours and so on). Finally they present their results. Users can go

back to different stages and adapt. For example, they could go back to the layout editor,

change the layout and then they will need to alter how the visualisations are loaded in

each view.

At any stage, they can save the layout in a JSON file, saving whole project. When a

project is reloaded, it is checked for compliance with the MVG grammar, before being

loaded. The visual editor is updated appropriately. When the file is saved, everything

will be saved including the data and the details of the visualisation types for each view,

the layout appearance, along with the grammar.

7.3 First case study

When a user loads the tool, the first screen that is shown is the Template viewer. This is

shown in Figure 7.2. The figure demonstrates two parts. In part A, the user can choose

from a list of the top 52 layouts. These layouts were chosen to demonstrate the most

popular versions. They are ordered by the quantity of views, and also included with

normalised scales, in 50/50 proportions. Users can also search for a particular layout,

using the search term.

Users can use these ‘templates’ to initiate the setup. The template loads default values

into LayMV, places each of the views in the middle, and provides default values for

all of the parameters and appearances. The user can change the layouts through the

grammar at a later stage, or through the visual layout editor, and they can also change

the proportions of the views. One of the main design inspirations for this template

viewer was Microsoft Word𝑇𝑀 interface. When the Word word-processor is loaded, it

offers the user to choose from some templates. In this way a user can define the initial

appearance of their document. Similarly, users of LayMV can start choose a template

and start with a predetermined layout.

Case studies and discussion 150

B A

Figure 7.2: Template viewer. Users can choose a starting layout, search for a specific view
quantity, various multiple view layouts can be created with different views number, and it can
edit later in the second screen. Label “A” shows the multiple view layout that was chosen
through a left mouse click , then we clicked on the “Create New Layout” button as shown by
label “B”.

In this example the user has chosen a 2-view system, with a horizontal split. The result

of choosing this template is shown in Figure 7.3. The user can adapt it, choose to edit

the grammar, or to edit the shorthand code. They can change the appearance of the

layout through defining the appearance of the stokes around each window, or the colour

of each multiple view, and so on. Users can also add their own visualisation code.

When the user changes the grammar, the editor window updates. Every view can be

kept consistent with each other. So when the user changes the appearance of the view,

they can update the main view, by selecting ‘update text editor’ and the information

populates to the other views. It would be possible to make this automatic, however

because the grammar needs to be checked, and that the grammar could come from the

shorthand grammar (which needs to be parsed and interpreted) there are many different

parts of information that need to be updated. Consequently, in this demonstrate we

took the decision to make the updates manually controlled. This has the advantage that

users can edit the grammar and when completed they can press ‘update’. On systems,

such as Overleaf, that do have a live update mode, sometimes the update creates errors.

Say, for instance, someone is writing LATEXcommands that have an open and closed

curly bracket. If the system automatically renders when the user has only typed the

open bracket, then an error will occur. Subsequently, we took the decision, in this

demonstrator, and to have an ‘update’ button.

Case studies and discussion 151

Figure 7.3: Main view. After choosing the template it is shown in the main view. There are
three vertical panels. The left most panel controls the grammar, and has three tabs. The middle
part is the visual editor, allowing users to ‘draw’ the views. The right most panel shows two
views, which can control the appearance and allow users to add in data and visualisation code.
Along the top, users can choose to save the project and load it.

Figure 7.4: Main screen showing two bar chart visualisations. Users can choose a starting
layout, search for a specific view quantity, various multiple view Layouts can be created with
different views number, and the user can later edit the template.

Case studies and discussion 152

This example demonstrates how someone can add in D3.js code, to create a 2-view bar

chart, as shown in Figure 7.4. The code gets added into the data part (as shown in the

panel on the right of the two bar charts, in Figure 7.4. When the code is created then

the user can look at the main visualisation, and interact with it (if this is included in the

D3.js code). The final visualisation, therefore, is shown in Figure 7.5.

Figure 7.5: Final visualisation. This screenshot demonstrates the final visualisation for the
first case study. It shows a simple D3.js side-by-side view of two bar charts.

7.4 Second case study

The second case study demonstrates a more complex visualisation layout. This example

shows how a user can edit and adapt the full grammar, or the shorthand grammar. Like

the first case study, the user is first shown the Template viewer. Where they can choose

the initial layout. Should a user want to start from scratch, they can choose the blank

view, with no multiple views. Then they can add the views using the shorthand grammar,

or by typing the grammar. However, it is usually going to be easier to start with a layout

that is close to what the user requires, and then adapt the layout to fit the need of the

user. The template viewer is shown, for the second case study, in Figure 7.6.

Case studies and discussion 153

Figure 7.6: Template viewer. We start again, for case study 2, on the template screen. In this
case the user selects the 2 by one view layout.

The next goal for the user is to make the layout their own. To adapt it to their needs.

This can be done in several ways. Figure 7.7, shows how a user can (A) change the

grammar, and (B) change the appearance of the layout. When the user wants to adapt

the grammar, they also have a few choices to make. They can choose the Layout Editor,

Layout Technique or the Grammar. In other words, they can choose to adapt the layout

manually by creating cuts over the graphical output of the views. This is a visual

process and users can snap the graphical elements, cut them and divide them to create

the desired layout. Or they can choose to edit the grammar itself, or they can edit the

shorthand grammar.

The shorthand grammar is shown in Figure 7.8. It demonstrates the split, and the

grammar as the template viewer has created. Each of the views are split in half. And

there is one horizontal, and one vertical.

The next stage is to consider the appearance. Users can change several aspects of the

appearance of the views. They can change different colours, whether there are vertical

or horizontal lines the delineate the multiple views, and if there are borders or shadows.

Also the user can determine the padding around the views. This is shown in Figure 7.9.

Case studies and discussion 154

A B

Figure 7.7: Template viewer. Users can choose a starting layout, search for a specific view
quantity, various multiple view Layouts can be created with different views number, and the
user can later edit the template.

Figure 7.8: Shorthand grammar viewer. Users can write the shorthand grammar in this
window, which will display (when updated) in other views. Using the shorthand users can create
complex views, using some simple commands.

Case studies and discussion 155

Figure 7.9: Layuot Appearance views. The user can adapt different aspects of the appearance.
They are able to choose a specific Component of the layout. The tree is automatically updated
from the information in the MVG grammar. Subsequently, users can then select the Viz, add the
Data and the Visualisation code. Here the Layout appearance is shown in the lower view. Users
can change the parameters to adapt how the views appear.

Case studies and discussion 156

A B C

Figure 7.10: This screenshot for the LayMV tool shows the result of the creation process of
the multiple view visualisation. Where label “A” points to the layout editor (Figure 7.11 gives a
clear picture with more details about this part of the LayMV tool). Moreover, label “B” points to
the properties window of the visualisation technique that located in the third view at the bottom
of the multiple view visualisation (Figure 7.12 gives a clear picture with more details about
this part of the LayMV tool). Finally, label “C” points to the Data section in the tree navigator
that belong to the third view (Figure 7.13 shows a screenshot for the Date window that should
appear instead of the properties window of the visualisation technique in the user click on the
Data part that belongs to the third view).

Figure 7.10 shows the final screenshot, for the second case study. Because it is difficult to

understand the individual parts from this picture, each part will be explained separately

in the following paragraphs. Different parts of the LayMV system will be highlighted,

shown as a large picture and explained. These are shown in the next five pictures and

explained below.

Figure 7.11 shows a clear picture of the layout editor where all the details of the multiple

views are located, the user of the LayMV tool can change the parameters in this editor

to change the position and the size of the views. In addition, the user can assign a data

set that belongs to a view to another view.

In addition, users can create and edit the visualisation technique that belongs to a view

through the properties window. First, the user should select the visualisation section

(the word “visualisation”) in the tree navigator that belongs to a specific view. Then

the properties window of the visualisation will display underneath the tree navigator

window that relates to the selected view, as shown in Figure 7.12.

Case studies and discussion 157

Figure 7.11: This figure shows a clear picture
for the layout editor window that was labelled
in Figure 7.10 as “A”.

Figure 7.12: This figure shows a clear picture
for the properties window of the visualisation
technique that was labelled in Figure 7.10 as
“B”.

Case studies and discussion 158

Figure 7.13: This figure shows a clear picture for the Data window that was labelled in
Figure 7.10 as “C”.

Case studies and discussion 159

Furthermore, Figure 7.13 shows the data window where a user can assign data to each

view by writing the data directly in this view or copy it from a CSV file and paste it into

the window or through upload a data file (file.csv) by clicking on the “choose-data-file”

button.

Figure 7.14 shows a screenshot of the multiple view visualisation; if the user want to

interact with the multiple view visualisation then he should using the LayMV tool.

Figure 7.14: Screenshot for the multiple view visualisation that created by the LayMV tool.

The user may modify the layout of the multiple view visualisation by manipulating the

MVG grammar, as shown in Figure 7.15.

Case studies and discussion 160

Figure 7.15: This figure shows how the user can change the layout of the multiple view
visualisation, that shown in Figure 7.14, using the MVG grammar

7.5 Third case study

The third case study demonstrates that the LayMV tool can create a multiple view

visualisation with eight views. What is developed is a layout similar to the example

layout developed by Keshif [161]. This layout is achieved as follows:

• First, the layout is created through an MVG grammar expression, as shown in

Figure 7.16 below, where the layout is divided into three side-by-side views. Next

each view is divided into three, two and three views, respectively.

• Second, the LayMV tool should parse the MVG grammar expression to create

the required layout.

• Third, eight datasets are uploaded. And the user needs to associate them with

each view.

• Fourth, the LayMV tool will generate a visualisation for each view.

Case studies and discussion 161

a : (3 4 , 3 3 , 3 3) ;
Expr : v (30 ha , 40 h (50 , 5 0) , 3 0 ha) ;

Or ,

Expr : v (30 h (3 4 , 3 3 , 3 3) ,
40h (5 0 , 5 0) ,
30h (3 4 , 3 3 , 3 3)) ;

Figure 7.16: The MVG grammar to create a layout with eight views.

The first stage is to use the template-viewer (LayMV tool first-screen) to start the layout

creation process. This can be achieved by clicking on the “Create new layout" button”

at the top left corner, as shown in Figure 7.17 below, this will then take the user to the

next screen.

Figure 7.17: Template viewer. Starting again from scratch for case study 2. First use the
template screen. In for this case study, the user selects the 2 by one view layout.

In the LayMV tool second-screen, the user can write the MVG grammar expression for

the required multiple view, as explained in Figure 7.16. In this window the user writes

the expression inside the Grammar editor, located in left side of the tool, as shown in

Figure 7.18 below. Then, the user chooses the option to “Create layout by grammar”.

and that will create the multiple view layout.

Case studies and discussion 162

The MVG grammar is shown clearly in Figure 7.19. This demonstrates how users

can split the views into sub views. Then, the user can change the layout’s dimensions

through “Layout editor”, as shown in Figure 7.20 below, which will allow them to

control the layout’s shape.

Figure 7.18: Template viewer. Users can choose a starting layout, search for a specific view
quantity, various multiple view Layouts can be created with different views number, and the
user can later edit the template.

Figure 7.19: Weused the grammar viewer
users can create the multiple view layout in
this window.

Layout
dimensions

Figure 7.20: From the layout editor we
can control layout’s dimensions.

Case studies and discussion 163

The next goal, is for the user to create the actual visualisation for each view based on

its dataset. For that, the user looks to the tree-navigator panel, which is located at the

top right corner of layMV tool’s second-screen. This navigator helps the user to select

a specific view name which represent a view in the layout, and then they can select a

“Data” node from the tree-navigator to assign a dataset for each view.

Figure 7.21 shows the final screenshot after the user has created the multiple view

visualisation for the third case study. As it is difficult to see all the details in this picture,

details will be explained in the next set of paragraphs and pictures.

A B C

Figure 7.21: This screenshot for the LayMV tool shows the result of the layout creation process
of the multiple view visualisation. Label “A” points to the layout editor, where (Figure 7.22
gives a clear picture for this part of the LayMV tool). Moreover, label “B” points to the
visualisation properties window that located at the bottom corner of the LayMV tool, where
(Figure 7.23 gives more details about this part of the LayMV tool). Finally, label “C” points to
the “Data” node in the tree navigator that belong to the third view of the multiple view layout,
where (Figure 7.24 shows a screenshot for the Date window that should appear instead of the
visualisation properties window when the user click on the “Data” node).

Case studies and discussion 164

Figure 7.22 below shows the layout editor. This figure explains howwe can command the

LayMV tool’s parser to display the right visualisation-type template in the visualisation

properties window for each view, where we can control the appearance of the

visualisation, as shown in Figure 7.23 below. For this case study, we chose the

bar chart visualisation for each view in the multiple view layout by putting the word

“Barchart” in the “vizTech” section at the “layout editor”. Then, we clicked on the

“Create Layout by” button after choosing the “Text Editor” option at the top right

corner. This procedure allows us to define the appearance of the bar chart visualisation.

We can use the tree-navigator to switch between views to control the visualisation

properties for each view in the multiple view layout.

Likewise, we can extend the ability of the LayMV tool to create various visualisations

(in addition to bar chart) by adding more D3.js visualisation types to the LayMV’s code.

Then, we can add a visualisation type, for example, “line chart”, to a view in multiple

view layout by following the same procedure above to create and control the line chart

visualisation.

Figure 7.22: This figure shows a clear picture for the layout editor window that was labelled in
Figure 7.21 as “A”.

Case studies and discussion 165

In addition, the layout editor can be used to control the multiple view layout as all the

details of the multiple view layout are located in the layout editor. The user, of the

LayMV tool, can change the parameters in this editor to change the position and the

size of the views.

Figure 7.23: This figure shows a clear
picture for the properties window of the
visualisation technique that was labelled in
Figure 7.21 as “B”.

Figure 7.24: This figure shows a clear
picture for the Data window that was
labelled in Figure 7.21 as “C”.

Finally, Figure 7.24 above shows the data window where a user can upload datasets and

correlate these datasets to the multiple view layout.

From all these actions, the user can observe the multiple view visualisation. Figure 7.25

Case studies and discussion 166

below shows the result. Now, if the user wishes to change anything, they can. For

example, users can change the multiple view visualisation either by changing the layout

structure through the MVG grammar (or the layout editor), or by changing the data that

assigned to the views, as we explained in Section 7.3 and Section 7.4.

Figure 7.25: Screenshot for the multiple view visualisation that created by the LayMV tool.

7.6 Discussion

This chapter focused on explaining how a user can use the LayMV tool to create different

layouts, and develop multiple view visualisations using the MVG grammar. In addition,

the chapter explained how someone starts using the tool, and then adapt the view layouts.

The case studies demonstrate how the tool can be used, grammars created and saved,

and how the grammar can be used to create a visualisation layout.

There are limitations to this study. The case studies started with simple few-view

systems moving to an 8-view system. The case studies do not include an example of a

larger viewed systems (such as a 20-view system); although the larger viewed systems

are merely an extension of the same process. Furthermore, the case studies did not

exemplify the full potential of the grammar, such as the full potential of short-hand

methods, but these were covered in previous chapters. It is certainly possible to create

Case studies and discussion 167

different examples, however the grammar chapter, with the implementation and this case

study together do explain the full potential of the LayMV tool and grammar. Indeed, it

must be emphasised that the focus of the case studies was to demonstrate the principles

of the tool, and use the grammar, rather than focus on the usability of the tool. This

thesis has substantial evaluation and analysis of quantification, which took much time.

Consequently it was decided to focus on a case study approach, use expert heuristics to

develop the tool through prototype development, rather than doing another study with

other users at the end of the project. While the tool is useful and has much potential, it

is important to reiterate that the LayMV tool itself was designed to demonstrate the

principles and application of the grammar, and not be a completed commercial product.

While there are limitations, there are successes too. The LayMV tool makes several

useful contributions. The “template view” is an idea that can be extended to other

visualisation tools. Generating demonstration code, and draft layouts is powerful idea.

This idea could be extended to other visualisation systems, for instance, it could be

possible to create demonstration (draft) visualisation colour maps, which can then

be adapted. This is similar to the ‘show me’ concept in Tableau, where users can

select different buttons to see what they can do with the data. Loading and saving

the information in the JSON format is useful, and allows users to create visualisation

layouts and then save them, load them and adapt them. In one regard, the whole LayMV

system, and integration of the grammar, flips the visualisation design on its head. Users

first think about the layout of their tool, and then how to add the visualisations. Users

should follow the suggested processes, as described in Figure 7.1.

7.7 Summary

This chapter focused to explain how users of the LayMV tool can create multiple view

visualisations, this was done by following two case studies. First creating a 2-view

system, second a 3-view system and third a 8-view system. In each view a d3.js

visualisation is added, and the appearance of the frames are determined. Consequently,

this chapter answered two research questions: “Q1/ How can users use the LayMV tool

and the MVG grammar to create a multiple view layout?”, and “Q2/ How can users

start using the LayMV tool, and what is the process they need to go through?”.

Case studies and discussion 168

This chapter also included a process by which the user can create multiple views,

starting with a sketch of their idea, following the layout, the grammar, and adding

the visualisations along with data. In the preparation process of the case studies, the

proposed layout was sketched before each case study, data prepared and decisions made

over the type of visualisations that would be used in each view. In the implementation

process, we described the steps that the user should follow to implement the multiple

view visualisation, including how the user can choose a template layout from the first

screen or create a custom layout using the MV grammar or create the multiple view

layout manually by adding views and using the mouse to arrange the views. Next, we

explained how the user of the LayMV could append a data set and create a visualisation

technique for each view and change the appearance of the multiple view visualisation.

The goals from creating these case studies were to explain how the LayMV tool works

and discover the advantages and limitations of the tool. Finally, this study described

how the user of the LayMV tool could manipulate the multiple view visualisation by

changing the data or the multiple view layout or the visualisation techniques.

The next chapter reflects on the research questions of the thesis, and work achieved. In

addition, general discussions on the successes of the research are made, the limitations

and opportunities of future work of this research.

Case studies and discussion 169

Chapter 8

Discussion and conclusions

The vision of the thesis was to investigate the layout of multiple views. Through the

course of this study research six publications have been achieved and two further papers

are pending publication. Related work has been investigated, values quantified, new

grammar developed and a new tool created. This chapter reflects on the achievements

and discusses potential further research.

8.1 Discussion

Multiple views is a broad topic, that has been applied to many disciplines. The topic has

certainly attracted and excited a large set of researchers, who have used the technique to

a wide range of application domains. Frommedical applications, volume data, statistical

information to virtual reality – see the Related Work chapter (Chapter 2).

Multiple views, as a technique for visualisation, has been around for many years. The

idea of seeing information from different perspectives, and placing those views in

different windows, has been achieved since early windowing systems were developed.

Merging and linking between many windows has been a part of computing interfaces

since the early days and development of the graphical user interface, and graphical

operating systems. Early Windows – windows, icons, menus, pointer (WIMP) interfaces

– interfaces, interactive Unix graphical user interfaces, and other systems, all demonstrate

many windows. However the use of multiple views for visualisation started in the mid

1970s, especially with brushing and scatterplot interfaces by Becker and Cleveland [12]

and Tukey in the Prim9 system [45]. Subsequently it is now in its third wave of research

in the area, as discussed in the Related Work chapter (Chapter 2). In the first wave

researchers investigated the technique and explored how brushing was used. In the

170

second wave people created tools and researchers were using multiple views in a variety

of application areas. Now, in the third wave, researchers are starting to understand

how people use multiple views, and how they can be applied beyond the desktop and

through (for instance) immersive displays [106]. Indeed, nowadays multiple views and

multiple coordinated views are expected technologies. Users expect to be able to move

information between windows (through at least copy and paste), to see the information

displayed in different windows, and to understand the information in different ways.

Products like Tableau, Qlik and other commercial visualisation tools all allow multiple

views. Software libraries such as R, Matlab, and libraries such as D3.js and other

JavaScript visualisation tools all can help to create different multiple view visualisation

tools. However there are still challenges and questions over multiple views that remain

unanswered today. Indeed, this study has looked at some of the research questions over

multiple views, starting with the Introduction and working through each of the chapters.

We have investigated and investigated multiple views through many viewpoints and

using different strategies.

Chapter 1 provided an introduction, the vision and aims for this body of thesis. The

vision of the work was to develop guidelines for visualisation developers and teachers,

such that:

If we (as researchers) can understand the multiple view visualisation area

better, and place some quantification analysis on multiple coordinated

views, then we will be able to develop a set of guidelines which help

developers understand how to create appropriate tools.

In order to investigate this vision fully, the objectives of the project were:

Obj 1. Preparing and coding multiple view visualisations.

Obj 2. Quantifying multiple view visualisations.

Obj 3. Analysing the quantification and introducing a set of guidelines to help developers

to create multiple view visualisations.

Discussion and conclusions 171

Obj 4 Introducing a tool to create multiple view visualisation based on multiple view

grammar.

Chapter 2 described the related work, and presented an overview of the topics in

multiple views, things like tools, coordination, grammar and the guidelines. This

chapter explained that researchers have moved from treating multiple views as a novel

technique, to developing systems that utilise multiple views, to now (in the third wave)

looking at how they can be used beyond the windows, icons, menus, pointer (WIMP)

interfaces [106]. The chapter also presented a broad background into different words that

people use in topic of ‘multiple views’. These include, side-by-side views, juxtaposition,

separation of concerns, multiform, and so on.

Chapter 3 illustrated the preparing and coding processes, this helped to answer the

research questions RQ1, RQ2 and RQ3. This chapter explained how a database of images

was created and how they were analysed. The chapter proposed a new methodology,

that can be used by other people, to extract suitable images from research papers. This

chapter also helped to develop understanding into the breadth of how people have

used multiple views, and the diversity of application areas in multiple view systems.

From this work a new coding methodology was developed, that enabled layouts to

be classified, and the work started to understand the different layouts ready for the

quantification analysis of the next chapter.

Chapter 4 quantified the data. The chapter also presented a set of design guidelines for

multiple view visualisation, which helped to answer research questions RQ4, RQ5, RQ6,

RQ7 and RQ8. This chapter also explained the results from the view quantification.

From this analysis it was clear to see that people preferred to use three-view systems.

The work also proposed that there was a long tail in the statistics, demonstrating that

there are people who used many views in their visualisation systems. However, over

ten-view-systems were used rarely. The work also demonstrated that most multiple

view systems (80% of the multiple view systems) were six views or less. Furthermore,

the work also demonstrates that one-view systems were useful, and have their place in

scientific presentation.

Chapter 5 demonstrated how the a grammar can be created to help people describe

Discussion and conclusions 172

multiple view layouts. The grammar is explained, and its shorthand form, to address

complex layout arrangements. In addition, the chapter explained that it was possible

to easily create simple layouts from the grammar, as well as more complex layouts,

through a human readable grammar. And the grammar is powerful to be able to describe

complex layouts.

Chapter 6 described the stages that been used to build the multiple view tool that used

multiple view grammar, helping to answer research question RQ10. The chapter also

demonstrated that it was possible to incorporate the grammar into a visualisation system.

The chapter demonstrated how it was suitable to create a multiple view system to allow

users to create different multiple view layouts. Users can use the grammar to create

the multiple view layouts, or can use the shorthand, or can design layouts through

a graphical editor. Each of these present the user with different ‘viewpoints’ on the

information. This, therefore, creates a very powerful, and comprehensive multiple view

system for editing different multiple view layouts. The chapter demonstrated that it was

possible to integrate visualisations (the examples used D3.js) and change the appearance

of the layout of the views.

Chapter 7 presented three case studies, which demonstrate the functionality of the

LayMV multiple view tool that was described in the earlier chapter. Finally, the case

studies explain in a systematic way, how people can use the different buttons and menus

of the tool to create different visualisations, and alternative multiple view layouts.

8.2 Consideration of the work

Developing multiple view systems is difficult. There are many challenges to overcome.

Developers, creating any visualisation, need to decide on how to load the data, how to

map and associate the data to the visualisation, and choose which visualisation type

they will use. It does seem that developers leave the layout of views to the last moment.

However, from a design point-of-view perhaps the design layout of the multiple view

system, should be the first consideration. While visualisation tools do often provide

the user with some functionality of laying out different views it is still difficult for

users to layout their designs appropriately. The layout can be better provided, and more

Discussion and conclusions 173

functionally rich expressions can be allowed, through better interfaces and access to

grammars.

This thesis has discussed, created and demonstrated both a grammar (MVG) and a

system (LayMV) to help people create multiple view layouts. The proposed ‘systems’

allow users to model their multi- layout systems by either controlling the grammar, or

through the design environment of the interactive tool (the LayMV tool). The LayMV

tool has therefore much potential. And it is hoped that the structures, methods and

operation of the tool will be used and taken up by other researchers. The grammar

could be readily integrated and used with other libraries. The resultant layouts can be

used with different libraries (e.g., D3 demonstrations were given).

These systems, however, are only the start of the journey, to help people create complex

multiple view systems more easily. Indeed, they need to be integrated into visualisation

systems that help and advice the developer; helping users create better designed and

easier-to-control multiple view visualisations. Researchers have started to do this

already. As discussed previously, tools like Keshif and Adobe’s Data-illustrator provide

the user with ways to create visualisations more easily. However, the LayMV the MVG

grammar make an excellent contribution towards these goals. And the next step would

be to geth the grammar and the layouts from the LayMV system to be used more widely.

But tool design, is not only (and should not be) about “using tools to create multiple

view visualisations” but needs to incorporate ‘best practices’. The research community,

in their research papers, obviously are presenting ‘best practices’, and researchers are

starting to develop more ‘guidelines for visualisation’. Certainly we (as a community)

are only at the start of this journey. Indeed, it does appear that more research papers are

being published that propose guidelines, taxonomies, structures, new design methods,

and help to increase data-literacy. However, it is important to note that if these ‘ideas’

and recommendations of ‘good practice’ only stay within the academic community

then the general public will not improve. This thesis has studied, quantified data, and

from the quantification process proposed and demonstrated a suite of recommendations

and guidelines over the use of multiple coordinated views. Again these are a great

start, and develop from, and improve on guidelines from previous researchers (such as

Baldonado [144]). However, unless these guidelines are exposed and championed to

Discussion and conclusions 174

the general public then they will, again, stay in the academic domain and not be used

by the general population. What is required now are ways to take these ideas forward

and champion them to the general public. Perhaps a potential next step would be to try

to get the guidelines taught in Schools and colleges. To promote them to the public

through social media, for instance, and present them in a way that they can be consumed

by the general public.

8.3 Reflections on the research questions

At the outset of the research, eight research questions were posited, see Chapter 1.

Each question has been systematically and comprehensively addressed. The research

successes, in answer to these questions, is summarised as follows:

RQ1 What is the strategy to code layout topologies and visualisation types? To answer

this question, sketches were first made, by using the figure-ground method. First,

all content from the views were removed. Then the layout was coded, based on

the layout topologies. These topologies were coded, and the visualisation types

for each view stored. This thesis addressed this question in Chapter 3.

RQ2 How many views are used in multiple view systems? The solution was to

quantitatively analyse the number of views that developers used, presented in the

visualisation literature, by extracted images from visualisation papers presented

in the IEEE visualization Conference series, over a seven year period, coded the

images and calculated the quantity of each configuration. These results can be

used by developers to guide them in decisions over view quantity and design.

This thesis addressed this question in Chapter 4.

RQ3 Do developers prefer symmetrical or non-symmetrical layouts for multiple view

systems? The solution, to answer this question, was to quantify and analyse

the topology of multiple view layouts. This thesis addressed this question in

Chapter 4.

RQ4 What layout arrangements are popular in multiple view systems? When answering

this question, items were classified their basic topological layouts, and results

Discussion and conclusions 175

discussed to confirm decisions made. The resultant taxonomy (and popularity of

each configuration) can be used by users who wish to configure multiple view

systems and developers to create suitable systems. This thesis addressed this

question in Chapter 4.

RQ5 What visualisation types are used in multiple view systems? What visualisation

types are the most frequently used? Are some layout arrangements more likely to

hold certain types of visualisations? The solution was to code and quantify the

types of visualisations (bar chart, line graph, scatter plot etc.) and their use in

different layouts. This information was used to develop and summarise design

guidelines and identified best practices in multiple view visualisation. This thesis

addressed this question in Chapter 4.

RQ6 What types of visualisations come together in multiple view systems? To answer

this question, a basket analysis was used. This provided a set of correlations

and results to help answer this question. This thesis addressed this question in

Chapter 4.

RQ7 What salient guidelines can be learnt from the analysis, to help users to design

and develop robust multiple view visualisations? The analysis of the answers for

the above questions assisted to provide a set of guidelines to help the learners in

the visualisation field and new developers to build multiple view visualisations.

This thesis addressed this question in Chapter 4.

RQ8 What is a multiple view grammar and how can it be used in multiple view tools

to create multiple view layouts? A new grammar has been defined (that can be

used to store and edit view layouts). The grammar was also used to develop a new

multiple view visualisation system, to help people create different view layouts.

These ideas were also demonstrated in several case studies. This thesis addressed

this question in Chapter 5, Chapter 6 and Chapter 7.

Discussion and conclusions 176

8.4 Limitations and future work

There is much future work that can be achieved such as minor improvements to the

research. For instance, the LayMV tool could be adapted to include more coordination

between views. While the tabbed views is useful, it may be better to separate these tabs

into individual windows. Also, while the work demonstrates that D3 visualisations

can be integrated into the tool, it would be good to explore how other libraries could

be included. Furthermore, additional demonstrations could be included to explore a

variety of types of visualisation (bar charts, line graphs, scatter plots, geographical

maps and so on). While there will always be minor things to improve, there are several

major ideas that could be investigated in the future.

First, it would be good to allow LayMV to generate code that can be included into

other software. For instance, it can be used to create code that can be incorporated

on websites, or mobile phones. There are some software development libraries, and

interface creation tools, such as Adobe XD, InVision, or Proto.io that help users create

interfaces quickly. They allow users to drag and drop images, and link them from one

part of the screen to another, to make hot-zones that (when run) can be clicked to load

the next image. In this way the user can rapidly prototype a demonstration system. One

idea to develop LayMV towards this direction, whereby the grammar could be created

and the tool would output code that could be incorporated by other systems. Another

idea could be to adapt towards a suite of tools, and create a tool-chain of individual tools

that can be used together to exchange the output into a different form. For instance, like

in Unix, many functions can be piped together. Or like markdown is written by the user,

and then these tools are used to convert it to an output form, such as HTML or PDF. The

grammar could be extended to be used in a similar tool-chain. For instance, it could be

possible to create the grammar, store it in a file, run the multiple view extractor function,

incorporate multiple-view style sheets, which add code to describe the appearance of

the layouts, and then output working code that can be incorporated into other systems.

This code could then be used on small mobile phone interfaces or large infrastructure

systems (e.g., power grid systems, air-traffic control systems, nuclear power stations,

train systems).

Another idea would be to research how to integrate aspects of coordination into the

Discussion and conclusions 177

grammar, and to develop techniques of how to markup coordination. To describe ways

to allow the information to be coordinated by the viewers. When this had been created,

then it would be interesting to investigate how LayMV could be used to create multiple

view systems across devices. How can these be created? How can they be managed?

How can individual views be connected? How would it be possible to describe general

aspects of coordination between specific parts of the data? Also, our quantitative study

did not investigate coordination methods. Further work could be achieved to quantify

coordination (such as brushed highlight, and not zooming, window focus etc.). Much

like we investigated and quantified the quantity of views used, it would be useful to

extend the analysis to how coordination is used by these developers. To achieve this,

a way to ‘code’ the types of interaction would be required. Perhaps following from

the different types of coordination that North and Shneiderman classify [94] or by

classifications and rudiments by Boukhelifa and Roberts [17] or Weaver [148]. In

addition, the MVG grammar could be integrated into other systems, and extended for

other uses (e.g., in windowing systems such as Windows10 or IOS).

Third, another whole set of research is required to look beyond juxtaposition. Throughout

the thesis, and especially in the quantification (chapter 4) and the chapter on grammar

(Chapter 5), the chapter on the LayMV tool (Chapter 6) the work focused on juxtaposed

views. But how can non-juxtaposed systems be created? Is it possible to define

overlaid or enhanced views through the grammar? Then how does interaction get

included into the grammar, to allow users to interact with overlaid views? For that

matter, how is the information layered? Would there be an order to the layers, and

perhaps would some layers be more transparent than others? Layering is often used in

geographical visualisation (e.g., see Plumlee and Ware’s work in geo-visualisation [99]

or work by Andrienko and Andrienko [6] in time and space). But how can this be

done in information visualisation? How can users allow for and control overalapping

visualisations?

Discussion and conclusions 178

8.5 Conclusion

This research has comprehensively examined views as presented in the visualisation

literature, and have answered eight research questions: presented the strategy to select

multiple view visualisation, the strategy to identify views and the strategy to code

layouts; the quantity of views, count layout types and count visualisation types; which

is help us answered question number seven by provided the design guidelines set

from our analysis. Subsequently, a new grammar (MVG) has been developed. This

grammar can be used to express view layouts, and designed and built a tool ‘Layouts for

Multiple View’ (LMV) to help users lay out multiple view systems. Users can select

a template-layout, or edit the layout visually or control the layout through a grammar.

The grammar is used to save/load view layouts, and each view is linked, such when the

user controls the wireframe editor the grammar updates. Several prototypes have been

developed and three core instances of these prototypes were explained. Each prototype

was improved through expert heuristic feedback. The LayMV tool was explained and

D3 was used to create the visualisations and examples. These case studies demonstrate

how the grammar has potential, and could be used with other visualisation languages

and tools. The following results were achieved throughout the duration of this project:

Obj 1. Developed the strategies for the preparing process and the coding process which

helped us analysed multiple view visualisations.

Obj 2. Quantified multiple view visualisations, as seen through research publications.

Obj 3. Analysed the quantification and introduced a set of guidelines to help developers

to create multiple view visualisations.

Obj 4 Introduced the multiple view tool to create multiple view visualisation based on

multiple view grammar.

Discussion and conclusions 179

Bibliography

[1] Christopher Ahlberg and Ben Shneiderman. ‘Visual information seeking using

the FilmFinder’. In: CHI ’94: Conference companion on Human factors in

computing systems. Boston, Massachusetts, United States: ACM Press, 1994,

pp. 433–434. isbn: 0-89791-651-4. doi: 10.1145/259963.260431.

[2] W. Aigner and S. Miksch. ‘Supporting protocol-based care in medicine via

multiple coordinated views’. In: Proceedings. Second International Conference

on Coordinated and Multiple Views in Exploratory Visualization, 2004. July

2004, pp. 118–129. doi: 10.1109/CMV.2004.1319532.

[3] J. Allaire. ‘RStudio: integrated development environment for R’. In: Boston,

MA 770 (2012), p. 394.

[4] Robert Amar, James Eagan and John Stasko. ‘Low-level components of analytic

activity in information visualization’. In: IEEE Symposium on Information

Visualization, 2005. INFOVIS 2005. IEEE. 2005, pp. 111–117.

[5] Robert Amar and John Stasko. ‘BEST PAPER: A knowledge task-based

framework for design and evaluation of information visualizations’. In: IEEE

Symposium on Information Visualization. IEEE. 2004, pp. 143–150.

[6] N. Andrienko and G. Andrienko. ‘Coordinated views for informed spatial

decision making’. In: Proceedings International Conference on Coordinated

and Multiple Views in Exploratory Visualization - CMV 2003 -. July 2003,

pp. 44–54. doi: 10.1109/CMV.2003.1215002.

[7] Massimo Aria and Corrado Cuccurullo. ‘bibliometrix: An R-tool for

comprehensive science mapping analysis’. In: Journal of informetrics 11.4

(2017), pp. 959–975.

[8] Rudolf Arnheim. Art and visual perception: A psychology of the creative eye.

Univ of California Press, 1965.

[9] B. Bach et al. ‘The Hologram in My Hand: How Effective is Interactive

Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?’

180

https://doi.org/10.1145/259963.260431
https://doi.org/10.1109/CMV.2004.1319532
https://doi.org/10.1109/CMV.2003.1215002

In: IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan.

2018), pp. 457–467. issn: 1077-2626. doi: 10.1109/TVCG.2017.2745941.

[10] Evan Barba et al. ‘Integrating Visual Exploration into Traditional Scientific

Research Methodology’. In: Posters presented at the IEEE Conference on

Visualization (IEEE VIS 2016), Baltimore, Maryland, USA. Oct. 2016.

[11] Michael F Barnsley, John H Elton and Douglas P Hardin. ‘Recurrent iterated

function systems’. In: Constructive approximation 5.1 (1989), pp. 3–31.

[12] Richard A. Becker and William S. Cleveland. ‘Brushing Scatterplots’. In:

Technometrics 29.2 (1987), pp. 127–142.

[13] A.L. Berkin and A.S. Jacobson. ‘LinkWinds, a visual data analysis system and

its application to remote sensed data’. In: Proceedings of IGARSS ’94 - 1994

IEEE International Geoscience and Remote Sensing Symposium. Vol. 3. 1994,

1799–1801 vol.3. doi: 10.1109/IGARSS.1994.399569.

[14] Jacques Bertin. Graphics and Graphic Information Processing. Trans. by

W.J.Berg and P.Scott. Walter de Gruyter Inc, Jan. 1981. isbn: 3110088681.

[15] Jacques Bertin.Graphics and graphic information processing.Walter deGruyter,

1981.

[16] Michael Bostock, Vadim Ogievetsky and Jeffrey Heer. ‘D3 Data-Driven

Documents’. In: IEEE Transactions on Visualization and Computer Graphics

17.12 (2011), pp. 2301–2309. doi: 10.1109/TVCG.2011.185.

[17] N. Boukhelifa, J. C. Roberts and P. J. Rodgers. ‘A coordination model for

exploratory multiview visualization’. In: Proceedings International Conference

on Coordinated and Multiple Views in Exploratory Visualization - CMV 2003.

July 2003, pp. 76–85. doi: 10.1109/CMV.2003.1215005.

[18] Richard Brath and David Jonker. Graph analysis and visualization: discovering

business opportunity in linked data. John Wiley & Sons, Inc, 2015. isbn:

978-1-118-8-84584.

[19] M. Brehmer et al. ‘Matches, Mismatches, and Methods: Multiple-View

Workflows for Energy Portfolio Analysis’. In: IEEE Transactions on

Visualization and Computer Graphics 22.1 (Jan. 2016), pp. 449–458. issn:

1077-2626. doi: 10.1109/TVCG.2015.2466971.

[20] D. Brodbeck and L. Girardin. ‘Design study: using multiple coordinated

views to analyze geo-referenced high-dimensional datasets’. In: Proceedings

International Conference on Coordinated and Multiple Views in Exploratory

BIBLIOGRAPHY 181

https://doi.org/10.1109/TVCG.2017.2745941
https://doi.org/10.1109/IGARSS.1994.399569
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/CMV.2003.1215005
https://doi.org/10.1109/TVCG.2015.2466971

Visualization - CMV 2003 -. July 2003, pp. 104–111. doi: 10.1109/CMV.2003.

1215008.

[21] Ken W Brodlie and NF Mohd Noor. ‘Visualization notations, models and

taxonomies’. In: Theory and Practice of Computer Graphics 2007, Eurographics

UK Chapter Proceedings. Eurographics Association. 2007, pp. 207–212.

[22] Eli T Brown et al. ‘Dis-function: Learning distance functions interactively’.

In: 2012 IEEE conference on visual analytics science and technology (VAST).

IEEE. 2012, pp. 83–92.

[23] Andreas Buja et al. ‘Interactive Data Visualization Using Focusing and Linking’.

In: Proceedings of the 2nd Conference on Visualization ’91. VIS ’91. San Diego,

California: IEEE Computer Society Press, 1991, pp. 156–163. isbn: 0-8186-

2245-8.

[24] Bill Buxton. Sketching user experiences: getting the design right and the right

design: getting the design right and the right design. Morgan Kaufmann, 2010.

[25] Michael D Byrne et al. ‘The tangled web we wove: A taskonomy of WWW use’.

In: Proceedings of the SIGCHI conference on Human Factors in Computing

Systems. 1999, pp. 544–551.

[26] D. B. Carr et al. ‘Scatterplot Matrix Techniques for Large N’. In: Journal

of the American Statistical Association 82.398 (1987), pp. 424–436. doi:

10.1080/01621459.1987.10478445.

[27] Hong Chen. ‘Compound brushing explained’. In: Information Visualization 3.2

(2004), pp. 96–108. issn: 1473-8716. doi: http://dx.doi.org/10.1057/

palgrave.ivs.9500068.

[28] Xi Chen et al. ‘Composition and configuration patterns in multiple-view

visualizations’. In: IEEE Transactions on Visualization and Computer Graphics

(2020).

[29] E. H. Chi. ‘A taxonomy of visualization techniques using the data state reference

model’. In: IEEE Symposium on Information Visualization 2000. INFOVIS

2000. Proceedings. 2000, pp. 69–75. doi: 10.1109/INFVIS.2000.885092.

[30] Ed Huai-hsin Chi et al. ‘A Spreadsheet Approach to Information Visualization’.

In: Proceedings of the 10th Annual ACM Symposium on User Interface Software

and Technology. UIST ’97. Banff, Alberta, Canada: ACM, 1997, pp. 79–80.

isbn: 0-89791-881-9. doi: 10.1145/263407.263513.

BIBLIOGRAPHY 182

https://doi.org/10.1109/CMV.2003.1215008
https://doi.org/10.1109/CMV.2003.1215008
https://doi.org/10.1080/01621459.1987.10478445
https://doi.org/http://dx.doi.org/10.1057/palgrave.ivs.9500068
https://doi.org/http://dx.doi.org/10.1057/palgrave.ivs.9500068
https://doi.org/10.1109/INFVIS.2000.885092
https://doi.org/10.1145/263407.263513

[31] EH-H Chi et al. ‘A spreadsheet approach to information visualization’. In:

Symposium on Information Visualization. IEEE. 1997, pp. 17–24.

[32] Imran Chowdhury et al. ‘MIVA: Multimodal interactions for facilitating

visual analysis with multiple coordinated views’. In: 2020 24th International

Conference Information Visualisation (IV). IEEE. 2020, pp. 714–717.

[33] JonChristensen, JoeMarks andStuart Shieber. ‘An empirical study of algorithms

for point-feature label placement’. In: ACM Transactions on Graphics (TOG)

14.3 (1995), pp. 203–232.

[34] Ding Chu et al. ‘Visualizing Hidden Themes of Trajectories with Semantic

Transformation’. In: Posters presented at the IEEE Conference on Visualization

(IEEE VIS 2013), Atlanta, Georgia. Oct. 2013.

[35] G. Convertino et al. ‘Exploring context switching and cognition in dual-

view coordinated visualizations’. In: Proceedings International Conference on

Coordinated and Multiple Views in Exploratory Visualization - CMV 2003 -.

July 2003, pp. 55–62. doi: 10.1109/CMV.2003.1215003.

[36] P. Craig, J. Kennedy and A. Gumming. ‘Coordinated parallel views for the

exploratory analysis of microarray time-course data’. In: Coordinated and

Multiple Views in Exploratory Visualization (CMV’05). July 2005, pp. 3–14.

doi: 10.1109/CMV.2005.5.

[37] Tarik Crnovrsanin, Chris Muelder and Kwan-Liu Ma. ‘A system for visual

analysis of radio signal data’. In: 2014 IEEE Conference on Visual Analytics

Science and Technology (VAST). 2014, pp. 33–42. doi: 10.1109/VAST.2014.

7042479.

[38] Giuseppe Di Battista et al. ‘Algorithms for drawing graphs: an annotated

bibliography’. In: Computational Geometry 4.5 (1994), pp. 235–282.

[39] Helmut Doleisch. ‘Smooth Brushing for Focus+Context Visualization of

Simulation Data in 3D ’. In: Proceedings of The 10-th International Conference

in Central Europe on Computer Graphics, Visualization and Interactive Digital

Media 2002 (WSCG 2002). Plzen, Czech Republic, 2002, pp. 147–154.

[40] Jason A. Dykes. ‘Exploring spatial data representation with dynamic

graphics’. In: Computers & Geosciences 23.4 (1997). Exploratory Cartograpic

Visualisation, pp. 345–370. issn: 0098-3004.

[41] Robert F. Erbacher. ‘Visualization Design for Immediate High-Level Situational

Assessment’. In: Proceedings of the Ninth International Symposium on

BIBLIOGRAPHY 183

https://doi.org/10.1109/CMV.2003.1215003
https://doi.org/10.1109/CMV.2005.5
https://doi.org/10.1109/VAST.2014.7042479
https://doi.org/10.1109/VAST.2014.7042479

Visualization for Cyber Security. VizSec ’12. Seattle, Washington, USA:

Association for Computing Machinery, 2012, pp. 17–24. isbn: 9781450314138.

doi: 10.1145/2379690.2379693.

[42] Guillaume Erétéo et al. ‘Analysis of a real online social network using semantic

web frameworks’. In: International semantic web conference. Springer. 2009,

pp. 180–195.

[43] Charles W. Eriksen and Derek W. Schultz. ‘Information processing in visual

search: A continuous flow conception and experimental results’. In: Perception

& Psychophysics 25.4 (1979), pp. 249–263.

[44] Jennifer Fereday and Eimear Muir-Cochrane. ‘Demonstrating Rigor Using

Thematic Analysis: A Hybrid Approach of Inductive and Deductive Coding

and Theme Development’. In: International Journal of Qualitative Methods 5.1

(2006), pp. 80–92. doi: 10.1177/160940690600500107.

[45] Mary A. Fisherkeller, Jerome H. Friedman and John W. Tukey. ‘PRIM-9: An

Interactive Multidimensional Data Display and Analysis System’. In: Dynamic

Graphics for Statistics (1975), pp. 91–109.

[46] S. Fu et al. ‘How Do Ancestral Traits Shape Family Trees Over Generations?’ In:

IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018),

pp. 205–214. issn: 1077-2626. doi: 10.1109/TVCG.2017.2744080.

[47] R. George et al. ‘Interactive Visual Analytics of Coastal Oceanographic

Simulation data’. In: Posters presented at IEEE VIS 2012. Oct. 2012.

[48] M. Gleicher. ‘Considerations for Visualizing Comparison’. In: IEEE

Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018),

pp. 413–423. issn: 1077-2626. doi: 10.1109/TVCG.2017.2744199.

[49] Michael Gleicher et al. ‘Visual comparison for information visualization’.

In: Information Visualization 10.4 (2011), pp. 289–309. doi: 10 . 1177 /

1473871611416549.

[50] Michael Gleicher et al. ‘Visual comparison for information visualization’.

In: Information Visualization 10.4 (2011), pp. 289–309. doi: 10 . 1177 /

1473871611416549.

[51] M. Graham and J. Kennedy. ‘Multiform Views of Multiple Trees’. In: 2008 12th

International Conference Information Visualisation. July 2008, pp. 252–257.

doi: 10.1109/IV.2008.21.

BIBLIOGRAPHY 184

https://doi.org/10.1145/2379690.2379693
https://doi.org/10.1177/160940690600500107
https://doi.org/10.1109/TVCG.2017.2744080
https://doi.org/10.1109/TVCG.2017.2744199
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1177/1473871611416549
https://doi.org/10.1109/IV.2008.21

[52] Robert B Haber and David A Mcnabb. ‘Visualization ldioms : A Conceptual

Model Visualization for Scientific Systems’. In: Visualization in scientific

computing 74 (1990), p. 93.

[53] Eric Hall et al. ‘TellFinder: Discovering Related Content in Big Data’. In:

Posters presented at the IEEE Conference on Visualization (IEEE VIS 2015),

Chicago, Illinois, USA. July 2015.

[54] H. Hauser, F. Ledermann and H. Doleisch. ‘Angular brushing for extended

parallel coordinates’. In: Proceedings of the IEEE Symposium on Information

Visualization. 2002, pp. 127–130.

[55] N. Henry and J. d. Fekete. ‘MatrixExplorer: a Dual-Representation System

to Explore Social Networks’. In: IEEE Transactions on Visualization and

Computer Graphics 12.5 (Sept. 2006), pp. 677–684. issn: 1077-2626. doi:

10.1109/TVCG.2006.160.

[56] Fan Hong et al. ‘FLDA: Latent Dirichlet Allocation Based Unsteady Flow

Analysis’. In: Visualization and Computer Graphics, IEEE Transactions on 20

(Dec. 2014), pp. 2545–2554. doi: 10.1109/TVCG.2014.2346416.

[57] Clare E. Horne. Geometric symmetry in patterns and tilings. Woodhead

Publishing Ltd, 2000. isbn: 1855734923.

[58] Eve Ignatius, Hikmet Senay and Jean Favre. ‘An intelligent system for task-

specific visualization assistance’. In: Journal of Visual Languages & Computing

5.4 (1994), pp. 321–338.

[59] P. Isenberg et al. ‘Vispubdata.org: A Metadata Collection About IEEE

Visualization (VIS) Publications’. In: IEEE Transactions on Visualization

and Computer Graphics 23.9 (Sept. 2017), pp. 2199–2206. issn: 1077-2626.

doi: 10.1109/TVCG.2016.2615308.

[60] P. Isenberg et al. ‘Visualization as Seen through its Research Paper Keywords’.

In: IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan.

2017), pp. 771–780. issn: 1077-2626. doi: 10.1109/TVCG.2016.2598827.

[61] Y. Rogers J. Preece and H. Sharp. Interaction design: Beyond human-computer

interaction. Springer, 2002.

[62] Y. Jansen and P. Dragicevic. ‘An Interaction Model for Visualizations Beyond

The Desktop’. In: IEEE Transactions on Visualization and Computer Graphics

19.12 (Dec. 2013), pp. 2396–2405. issn: 1077-2626. doi: 10.1109/TVCG.

2013.134.

BIBLIOGRAPHY 185

https://doi.org/10.1109/TVCG.2006.160
https://doi.org/10.1109/TVCG.2014.2346416
https://doi.org/10.1109/TVCG.2016.2615308
https://doi.org/10.1109/TVCG.2016.2598827
https://doi.org/10.1109/TVCG.2013.134
https://doi.org/10.1109/TVCG.2013.134

[63] Gaetano Kanizsa. Organization in vision: Essays on Gestalt perception. Praeger

Publishers, 1979.

[64] N. Kerracher and J. Kennedy. ‘Constructing and Evaluating Visualisation Task

Classifications: Process and Considerations’. In: Computer Graphics Forum

36.3 (2017), pp. 47–59. doi: 10.1111/cgf.13167.

[65] Adam Kilgarriff et al. ‘The Sketch Engine: ten years on’. In: Lexicography

(2014), pp. 7–36. doi: 10.1007/s40607-014-0009-9.

[66] P. Koytek et al. ‘MyBrush: Brushing and Linking with Personal Agency’. In:

IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018),

pp. 605–615. issn: 1077-2626. doi: 10.1109/TVCG.2017.2743859.

[67] K. Kucher et al. ‘Visual analysis of stance markers in online social media’. In:

2014 IEEE Conference on Visual Analytics Science and Technology (VAST).

2014, pp. 259–260.

[68] Kostiantyn Kucher and Andreas Kerren. ‘Text visualization techniques:

Taxonomy, visual survey, and community insights’. In: 2015 IEEE Pacific

Visualization Symposium (PacificVis). IEEE. 2015, pp. 117–121.

[69] Ricardo Langner, Ulrike Kister and Raimund Dachselt. ‘Multiple Coordinated

Views at Large Displays for Multiple Users: Empirical Findings on User

Behavior, Movements, and Distances’. In: IEEE Transactions on Visualization

and Computer Graphics 25 (1 Jan. 2019), pp. 608–618. doi: 10.1109/TVCG.

2018.2865235.

[70] M. Lawrence et al. ‘exploRase: Exploratory Data Analysis of Systems Biology

Data’. In: Coordinated and Multiple Views in Exploratory Visualization, 2006.

Proceedings. International Conference on. July 2006, pp. 14–20. doi: 10.1109/

CMV.2006.7.

[71] D. J. Lehmann and H. Theisel. ‘Orthographic Star Coordinates’. In:

IEEE Transactions on Visualization and Computer Graphics 19.12 (2013),

pp. 2615–2624.

[72] Ralph Lengler and Martin J. Eppler. ‘Towards a Periodic Table of Visualization

Methods of Management’. In: Proceedings of the IASTED International

Conference on Graphics and Visualization in Engineering. GVE ’07. Clearwater,

Florida: ACTA Press, 2007, pp. 83–88. isbn: 978-0-88986-627-0.

BIBLIOGRAPHY 186

https://doi.org/10.1111/cgf.13167
https://doi.org/10.1007/s40607-014-0009-9
https://doi.org/10.1109/TVCG.2017.2743859
https://doi.org/10.1109/TVCG.2018.2865235
https://doi.org/10.1109/TVCG.2018.2865235
https://doi.org/10.1109/CMV.2006.7
https://doi.org/10.1109/CMV.2006.7

[73] Qing Li et al. ‘Dynamic query sliders vs. brushing histograms’. In:CHI ’03: CHI

’03 extended abstracts on Human factors in computing systems. Ft. Lauderdale,

Florida, USA: ACM Press, 2003, pp. 834–835. isbn: 1-58113-637-4.

[74] Zhicheng Liu et al. ‘Data Illustrator: Augmenting Vector Design Tools with

Lazy Data Binding for Expressive Visualization Authoring’. In: Proceedings of

the 2018 CHI Conference on Human Factors in Computing Systems. CHI’18.

Montreal QC, Canada: Association for Computing Machinery, 2018, pp. 1–13.

isbn: 9781450356206. doi: 10.1145/3173574.3173697.

[75] Andrea Lodi, Silvano Martello and Michele Monaci. ‘Two-dimensional packing

problems: A survey’. In: European Journal of Operational Research 141.2

(2002), pp. 241–252. issn: 0377-2217. doi: 10.1016/S0377- 2217(02)

00123-6.

[76] Jerry Lohse et al. ‘Classifying visual knowledge representations: a foundation

for visualization research’. In: Proceedings of the First IEEE Conference on

Visualization. IEEE. 1990, pp. 131–138.

[77] Doug Lowe. PowerPoint 2019 For Dummies. Dummies, 2019. isbn:

1119514223.

[78] A. MacEachren et al. ‘Exploring high-D spaces with multiform matrices and

small multiples’. In: IEEE Symposium on Information Visualization 2003. Oct.

2003, pp. 31–38. doi: 10.1109/INFVIS.2003.1249006.

[79] K. Madhavan et al. ‘DIA2: Web-based Cyberinfrastructure for Visual Analysis

of Funding Portfolios’. In: IEEE Transactions on Visualization and Computer

Graphics 20.12 (Dec. 2014), pp. 1823–1832. issn: 1077-2626. doi: 10.1109/

TVCG.2014.2346747.

[80] Tahir Mahmood et al. ‘Building multiple coordinated spaces for effective

immersive analytics through distributed cognition’. In: 2018 International

Symposium on Big Data Visual and Immersive Analytics (BDVA). IEEE. 2018,

pp. 1–11.

[81] Hayder M. Al-maneea and Jonathan C. Roberts. ‘Study of Multiple View Layout

Strategies in Visualisation’. In: Posters presented at the IEEE Conference on

Visualization (IEEE VIS 2018), Berlin, Germany. Oct. 2018.

[82] Hayder M. Al-maneea and Jonathan C. Roberts. ‘Towards Quantifying Multiple

View Layouts in Visualisation as Seen from Research Publications’. In: 2019

BIBLIOGRAPHY 187

https://doi.org/10.1145/3173574.3173697
https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.1016/S0377-2217(02)00123-6
https://doi.org/10.1109/INFVIS.2003.1249006
https://doi.org/10.1109/TVCG.2014.2346747
https://doi.org/10.1109/TVCG.2014.2346747

IEEE Visualization Conference (VIS). Oct. 2019, pp. 121–121. doi: 10.1109/

VISUAL.2019.8933655.

[83] Allen R. Martin and Matthew O. Ward. ‘High Dimensional Brushing for

Interactive Exploration of Multivariate Data’. In: VIS ’95: Proceedings

Visualization ’95. IEEE Computer Society, 1995, p. 271. isbn: 0-8186-7187-4.

[84] W. N. Martin and J. K. Aggarwal. ‘Volumetric Descriptions of Objects from

Multiple Views’. In: IEEE Transactions on Pattern Analysis and Machine

Intelligence PAMI-5.2 (Mar. 1983), pp. 150–158. issn: 0162-8828. doi: 10.

1109/TPAMI.1983.4767367.

[85] K. Matkovic et al. ‘ComVis: A Coordinated Multiple Views System for

Prototyping New Visualization Technology’. In: 2008 12th International

Conference Information Visualisation. July 2008, pp. 215–220. doi: 10.1109/

IV.2008.87.

[86] John Alan McDonald. ‘Interactive graphics for data analysis’. PhD thesis.

Citeseer, 1982.

[87] John Alan McDonald, Werner Stuetzle and Andreas Buja. Painting multiple

views of complex objects. 1990.

[88] Emile Morse, Michael Lewis and Kai A Olsen. ‘Evaluating visualizations: using

a taxonomic guide’. In: International Journal of Human-Computer Studies 53.5

(2000), pp. 637–662.

[89] Galileo Mark Namata et al. ‘A Dual-view Approach to Interactive Network

Visualization’. In: Proceedings of the Sixteenth ACM Conference on Conference

on Information and Knowledge Management. CIKM ’07. Lisbon, Portugal:

ACM, 2007, pp. 939–942. isbn: 978-1-59593-803-9. doi: 10.1145/1321440.

1321580.

[90] Deon Nel, Leyland Pitt and Trevor Webb. ‘Using Chernoff faces to portray

service quality data’. In: Journal of Marketing Management 10.1-3 (1994),

pp. 247–255.

[91] Jakob Nielsen and Kara Pernice. Eyetracking Web Usability. Thousand Oaks,

CA, USA: New Riders Publishing, 2009. isbn: 9780321498366.

[92] Donald A Norman. User centered system design: New perspectives on human-

computer interaction. CRC Press, 1986.

BIBLIOGRAPHY 188

https://doi.org/10.1109/VISUAL.2019.8933655
https://doi.org/10.1109/VISUAL.2019.8933655
https://doi.org/10.1109/TPAMI.1983.4767367
https://doi.org/10.1109/TPAMI.1983.4767367
https://doi.org/10.1109/IV.2008.87
https://doi.org/10.1109/IV.2008.87
https://doi.org/10.1145/1321440.1321580
https://doi.org/10.1145/1321440.1321580

[93] Donald A. Norman. ‘Design Rules Based on Analyses of Human Error’.

In: Commun. ACM 26.4 (Apr. 1983), pp. 254–258. issn: 0001-0782. doi:

10.1145/2163.358092.

[94] Chris North and Ben Shneiderman. ‘Snap-together Visualization: A User

Interface for Coordinating Visualizations via Relational Schemata’. In:

Proceedings of the Working Conference on Advanced Visual Interfaces. AVI

’00. Palermo, Italy: ACM, 2000, pp. 128–135. isbn: 1-58113-252-2. doi:

10.1145/345513.345282.

[95] Ruben Olsen. OmniGraffle 5 Diagramming Essentials: Create Better Diagrams

with Less Effort Using OmniGraffle. Packt Publishing Ltd, 2010.

[96] Xufang Pang et al. ‘Directing user attention via visual flow on web designs’. In:

ACM Transactions on Graphics (TOG) 35.6 (2016), p. 240.

[97] J. H. Park et al. ‘C2A: Crowd consensus analytics for virtual colonoscopy’. In:

2016 IEEE Conference on Visual Analytics Science and Technology (VAST).

Oct. 2016, pp. 21–30. doi: 10.1109/VAST.2016.7883508.

[98] H. Piringer, R. Kosara and H. Hauser. ‘Interactive focus+context visualization

with linked 2D/3D scatterplots’. In: Proceedings. Second International

Conference on Coordinated and Multiple Views in Exploratory Visualization,

2004. July 2004, pp. 49–60. doi: 10.1109/CMV.2004.1319526.

[99] M. Plumlee and C. Ware. ‘Integrating multiple 3D views through frame-of-

reference interaction’. In: Proceedings International Conference on Coordinated

and Multiple Views in Exploratory Visualization - CMV 2003 -. July 2003,

pp. 34–43. doi: 10.1109/CMV.2003.1215001.

[100] Z. Qu and J. Hullman. ‘Keeping Multiple Views Consistent: Constraints,

Validations, and Exceptions in Visualization Authoring’. In: IEEE Transactions

on Visualization and Computer Graphics 24.1 (Jan. 2018), pp. 468–477. issn:

1077-2626. doi: 10.1109/TVCG.2017.2744198.

[101] François Quesnay. Tableau oeconomique. Macmillan, 1894.

[102] D. Ren, T. Höllerer and X. Yuan. ‘iVisDesigner: Expressive Interactive Design

of Information Visualizations’. In: IEEE Transactions on Visualization and

Computer Graphics 20.12 (Dec. 2014), pp. 2092–2101. issn: 1077-2626. doi:

10.1109/TVCG.2014.2346291.

[103] Gaëlle Richer, Romain Bourqui and David Auber. ‘CorFish: Coordinating

Emphasis Across Multiple Views Using Spatial Distortion’. In: 2019 IEEE

BIBLIOGRAPHY 189

https://doi.org/10.1145/2163.358092
https://doi.org/10.1145/345513.345282
https://doi.org/10.1109/VAST.2016.7883508
https://doi.org/10.1109/CMV.2004.1319526
https://doi.org/10.1109/CMV.2003.1215001
https://doi.org/10.1109/TVCG.2017.2744198
https://doi.org/10.1109/TVCG.2014.2346291

Pacific Visualization Symposium (PacificVis). 2019, pp. 1–10. doi: 10.1109/

PacificVis.2019.00009.

[104] J. Roberts, N. Boukhelifa and P. Rodgers. ‘Multiform glyph based web

search result visualization’. In: Proceedings Sixth International Conference

on Information Visualisation. 2002, pp. 549–554. doi: 10.1109/IV.2002.

1028828.

[105] J. C. Roberts. ‘On encouragingmultiple views for visualization’. In:Proceedings

IEEE Conference on Information Visualization. July 1998, pp. 8–14. doi:

10.1109/IV.1998.694193.

[106] J. C. Roberts et al. ‘Visualization beyond the Desktop–the Next Big Thing’. In:

IEEE Computer Graphics and Applications 34.6 (Nov. 2014), pp. 26–34. issn:

0272-1716. doi: 10.1109/MCG.2014.82.

[107] J. C. Roberts et al. ‘The Explanatory Visualization Framework: An Active

Learning Framework for Teaching Creative Computing Using Explanatory

Visualizations’. In: IEEE Transactions on Visualization and Computer Graphics

24.1 (Jan. 2018), pp. 791–801. issn: 1077-2626. doi: 10.1109/TVCG.2017.

2745878.

[108] J. C. Roberts et al. ‘Visualisation Approaches for Corpus Linguistics: Towards

Visual Integration of Data-Driven Learning’. In: 3rd Workshop on Visualization

for the Digital Humanities, at IEEE VIS, Berlin, Germany. Oct. 2018.

[109] J. C. Roberts et al. ‘Multiple Views: different meanings and collocated words’.

In: Computer Graphics Forum (EuroVis2019, Porto, Portugal) (2019). Accepted

for publication.

[110] Jonathan C Roberts. ‘Exploratory visualization with multiple linked views’. In:

Exploring geovisualization. Elsevier, 2005, pp. 159–180.

[111] Jonathan C. Roberts. ‘Waltz - An exploratory visualization tool for volume data,

using multiform abstract displays’. In: Visual Data Exploration and Analysis

V, Proceedings of SPIE. Ed. by Robert F. Erbacher and Alex Pang. Vol. 3298.

Bellingham, Washington, USA, 1998, pp. 112–122. doi: 10.1117/12.309533.

[112] Jonathan C. Roberts. ‘Multiple-View and Multiform Visualization’. In: Visual

Data Exploration and Analysis VII, Proceedings of SPIE. Ed. by Robert Erbacher

et al. Vol. 3960. IS&T and SPIE. Jan. 2000, pp. 182–196. doi: 10.1117/12.

378894.

BIBLIOGRAPHY 190

https://doi.org/10.1109/PacificVis.2019.00009
https://doi.org/10.1109/PacificVis.2019.00009
https://doi.org/10.1109/IV.2002.1028828
https://doi.org/10.1109/IV.2002.1028828
https://doi.org/10.1109/IV.1998.694193
https://doi.org/10.1109/MCG.2014.82
https://doi.org/10.1109/TVCG.2017.2745878
https://doi.org/10.1109/TVCG.2017.2745878
https://doi.org/10.1117/12.309533
https://doi.org/10.1117/12.378894
https://doi.org/10.1117/12.378894

[113] Jonathan C. Roberts. ‘Visualization display models – ways to classify visual

representations’. In: International Journal of Computer Integrated Design and

Construction 2.4 (Dec. 2000), pp. 241–250.

[114] Jonathan C. Roberts. ‘Visualization display models-ways to classify visual

representations’. In: International Journal of Computer Integrated Design and

Construction 2.4 (Dec. 2000), pp. 241–250.

[115] Jonathan C. Roberts. ‘Exploratory Visualization Using Bracketing’. In:

Proceedings of the Working Conference on Advanced Visual Interfaces. AVI

’04. Gallipoli, Italy: ACM, 2004, pp. 188–192. isbn: 1581138679. doi: 10.

1145/989863.989893.

[116] Jonathan C. Roberts. ‘State of the Art: Coordinated Multiple Views in

Exploratory Visualization’. In: Fifth International Conference on Coordinated

and Multiple Views in Exploratory Visualization (CMV 2007). July 2007,

pp. 61–71. doi: 10.1109/CMV.2007.20.

[117] Jonathan C. Roberts, Christopher Headleand and Panagiotis D. Ritsos.

‘Sketching Designs Using the Five Design-Sheet Methodology’. In: IEEE

Transactions on Visualization and Computer Graphics (Jan. 2016). issn: 1077-

2626. doi: 10.1109/TVCG.2015.2467271.

[118] Jonathan C. Roberts, Christopher J. Headleand and Panagiotis D. Ritsos. Five

Design-Sheets – Creative design and sketching in Computing and Visualization.

SpringerNature, 2017. isbn: 978-3-319-55626-0. doi: 10.1007/978-3-319-

55627-7.

[119] Jonathan C. Roberts et al. ‘Visualization beyond the Desktop–the Next Big

Thing’. In: Computer Graphics and Applications, IEEE 34.6 (Nov. 2014),

pp. 26–34. issn: 0272-1716. doi: 10.1109/MCG.2014.82.

[120] Jonathan C. Roberts et al. ‘Multiple Views: different meanings and collocated

words’. English. In: Computer Graphics Forum (Mar. 2019). issn: 0167-7055.

[121] M.A. Rosenman and J.S. Gero. ‘Modelling multiple views of design objects

in a collaborative cad environment’. In: Computer-Aided Design 28.3 (1996).

Artificial Intelligence in Computer-Aided Design, pp. 193–205. issn: 0010-4485.

doi: 10.1016/0010-4485(96)86822-9.

[122] Greg Ross and Matthew Chalmers. ‘A Visual Workspace for Hybrid

Multidimensional Scaling Algorithms’. In: Proceedings of the Ninth Annual

BIBLIOGRAPHY 191

https://doi.org/10.1145/989863.989893
https://doi.org/10.1145/989863.989893
https://doi.org/10.1109/CMV.2007.20
https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1007/978-3-319-55627-7
https://doi.org/10.1007/978-3-319-55627-7
https://doi.org/10.1109/MCG.2014.82
https://doi.org/10.1016/0010-4485(96)86822-9

IEEE Conference on Information Visualization. INFOVIS’03. Seattle,

Washington: IEEE Computer Society, 2003, pp. 91–96. isbn: 0-7803-8154-8.

[123] Grzegorz Rozenberg and Arto Salomaa. The book of L. Springer Science &

Business Media, 2012.

[124] A. Sarikaya and M. Gleicher. ‘Scatterplots: Tasks, Data, and Designs’. In:

IEEE Transactions on Visualization and Computer Graphics 24.1 (Jan. 2018),

pp. 402–412. issn: 1077-2626. doi: 10.1109/TVCG.2017.2744184.

[125] Arvind Satyanarayan and Jeffrey Heer. ‘Lyra: An interactive visualization design

environment’. In: Computer Graphics Forum. Vol. 33. 3. Wiley Online Library.

2014, pp. 351–360.

[126] Arvind Satyanarayan et al. ‘Vega-lite: A grammar of interactive graphics’.

In: IEEE transactions on visualization and computer graphics 23.1 (2016),

pp. 341–350.

[127] Arvind Satyanarayan et al. ‘Vega-Lite: A Grammar of Interactive Graphics’. In:

IEEE Transactions on Visualization and Computer Graphics 23.1 (Jan. 2017),

pp. 341–350. issn: 1077-2626. doi: 10.1109/TVCG.2016.2599030.

[128] M. Sedlmair, M. D. Meyer and T. Munzner. ‘Design Study Methodology:

Reflections from the Trenches and the Stacks’. In: IEEE Transactions on

Visualization and Computer Graphics 18.12 (2012), pp. 2431–2440.

[129] E. Segel and J. Heer. ‘Narrative Visualization: Telling Stories with Data’. In:

IEEE Transactions on Visualization and Computer Graphics 16.6 (Nov. 2010),

pp. 1139–1148. issn: 1077-2626. doi: 10.1109/TVCG.2010.179.

[130] Q. Shen et al. ‘StreetVizor: Visual Exploration of Human-Scale Urban Forms

Based on Street Views’. In: IEEE Transactions on Visualization and Computer

Graphics 24.1 (Jan. 2018), pp. 1004–1013. issn: 1077-2626. doi: 10.1109/

TVCG.2017.2744159.

[131] Sergei Andreevich Shershakov. ‘VTMine for Visio: Graphical Tool forModeling

in Process Mining’. In: information systems 27.2 (2020), pp. 194–217.

[132] B. Shneiderman. ‘The eyes have it: a task by data type taxonomy for information

visualizations’. In: Proceedings 1996 IEEE Symposium on Visual Languages.

1996, pp. 336–343. doi: 10.1109/VL.1996.545307.

[133] B. Shneiderman and C. Plaisant. Designing the User Interface: Strategies for

Effective Human-Computer Interaction. Pearson Addison-Wesley, 2017. isbn:

9781292153926.

BIBLIOGRAPHY 192

https://doi.org/10.1109/TVCG.2017.2744184
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2010.179
https://doi.org/10.1109/TVCG.2017.2744159
https://doi.org/10.1109/TVCG.2017.2744159
https://doi.org/10.1109/VL.1996.545307

[134] B. Shneiderman and M. Wattenberg. ‘Ordered treemap layouts’. In: IEEE

Symposium on Information Visualization, 2001. INFOVIS 2001. 2001, pp. 73–78.

doi: 10.1109/INFVIS.2001.963283.

[135] Ben Shneiderman. ‘Tree Visualization with Tree-Maps: 2-d Space-Filling

Approach’. In: ACM Trans. Graph. 11.1 (Jan. 1992), pp. 92–99. issn: 0730-

0301. doi: 10.1145/102377.115768.

[136] H. Siirtola. ‘Combining parallel coordinates with the reorderable matrix’. In:

Proceedings International Conference on Coordinated and Multiple Views in

Exploratory Visualization - CMV 2003 -. July 2003, pp. 63–74. doi: 10.1109/

CMV.2003.1215004.

[137] Harri Siirtola and Erkki Mäkinen. ‘Constructing and Reconstructing the

Reorderable Matrix’. In: Information Visualization 4.1 (Mar. 2005), pp. 32–48.

issn: 1473-8716. doi: 10.1057/palgrave.ivs.9500086.

[138] John Stasko, Carsten Görg and Zhicheng Liu. ‘Jigsaw: supporting investigative

analysis through interactive visualization’. In: Information visualization 7.2

(2008), pp. 118–132.

[139] C. Stolte, D. Tang and P. Hanrahan. ‘Polaris: a system for query, analysis, and

visualization of multidimensional relational databases’. In: IEEE Transactions

on Visualization and Computer Graphics 8.1 (Jan. 2002), pp. 52–65. issn:

1077-2626. doi: 10.1109/2945.981851.

[140] Martin Theus. ‘Interactive data visualization using Mondrian’. In: Journal of

Statistical Software 7.11 (2002), pp. 1–9.

[141] C. Upson et al. ‘The application visualization system: a computational

environment for scientific visualization’. In: IEEE Computer Graphics and

Applications 9.4 (1989). issn: 0272-1716. doi: 10.1109/38.31462.

[142] J. J. Van Wijk and H. Van de Wetering. ‘Cushion treemaps: visualization of

hierarchical information’. In:Proceedings 1999 IEEE Symposium on Information

Visualization (InfoVis’99). 1999, pp. 73–78. doi: 10.1109/INFVIS.1999.

801860.

[143] F. B. Viegas et al. ‘ManyEyes: a Site for Visualization at Internet Scale’. In:

IEEE Transactions on Visualization and Computer Graphics 13.6 (Nov. 2007),

pp. 1121–1128. issn: 1077-2626. doi: 10.1109/TVCG.2007.70577.

[144] Michelle Q. Wang Baldonado, Allison Woodruff and Allan Kuchinsky.

‘Guidelines for Using Multiple Views in Information Visualization’. In:

BIBLIOGRAPHY 193

https://doi.org/10.1109/INFVIS.2001.963283
https://doi.org/10.1145/102377.115768
https://doi.org/10.1109/CMV.2003.1215004
https://doi.org/10.1109/CMV.2003.1215004
https://doi.org/10.1057/palgrave.ivs.9500086
https://doi.org/10.1109/2945.981851
https://doi.org/10.1109/38.31462
https://doi.org/10.1109/INFVIS.1999.801860
https://doi.org/10.1109/INFVIS.1999.801860
https://doi.org/10.1109/TVCG.2007.70577

Proceedings of the Working Conference on Advanced Visual Interfaces. AVI

’00. Palermo, Italy: ACM, 2000, pp. 110–119. isbn: 1-58113-252-2. doi:

10.1145/345513.345271.

[145] Matthew O. Ward. ‘XmdvTool: integrating multiple methods for visualizing

multivariate data’. In: VIS ’94: Proceedings Visualization ’94. Washinton, D.C.:

IEEE Computer Society Press, 1994, pp. 326–333. isbn: 0-7803-2521-4.

[146] Matthew O. Ward. ‘Creating and Manipulating N-Dimensional Brushes’. In:

Proceedings of Joint Statistical Meeting. Baltimore, USA, 1997, pp. 6–14.

[147] Colin Ware. Information Visualization: Perception for Design. Amsterdam:

Elsevier (Morgan Kaufmann), 2012.

[148] C. Weaver. ‘Building Highly-Coordinated Visualizations in Improvise’. In:

IEEE Symposium on Information Visualization. 2004, pp. 159–166. doi: 10.

1109/INFVIS.2004.12.

[149] C. Weaver. ‘Multidimensional visual analysis using cross-filtered views’. In:

2008 IEEE Symposium on Visual Analytics Science and Technology. Oct. 2008,

pp. 163–170. doi: 10.1109/VAST.2008.4677370.

[150] C. Weaver. ‘Cross-Filtered Views for Multidimensional Visual Analysis’. In:

IEEE Transactions on Visualization and Computer Graphics 16.2 (Mar. 2010),

pp. 192–204. issn: 1077-2626. doi: 10.1109/TVCG.2009.94.

[151] Stephen Wehrend and Clayton Lewis. ‘A problem-oriented classification of

visualization techniques’. In: Proceedings of the First IEEE Conference on

Visualization: Visualization90. IEEE. 1990, pp. 139–143.

[152] LelandWilkinson. The Grammar of Graphics (Statistics and Computing). Berlin,

Heidelberg: Springer-Verlag, 2005. isbn: 0387245448. doi: 10.5555/1088896.

[153] Chauncey Wilson. User Interface Inspection Methods. A User-Centered Design

Method. Elsevier (Morgan Kaufmann), 2014. isbn: 9780124103917.

[154] Marco A Winckler, Philippe Palanque and Carla MDS Freitas. ‘Tasks

and scenario-based evaluation of information visualization techniques’. In:

Proceedings of the 3rd annual conference on Task models and diagrams. 2004,

pp. 165–172.

[155] JessicaWojciechowski, AshleyM. Hopkins and Richard Neil Upton. ‘Interactive

pharmacometric applications using R and the shiny package’. In: CPT:

pharmacometrics & systems pharmacology 4.3 (2015), pp. 146–159.

BIBLIOGRAPHY 194

https://doi.org/10.1145/345513.345271
https://doi.org/10.1109/INFVIS.2004.12
https://doi.org/10.1109/INFVIS.2004.12
https://doi.org/10.1109/VAST.2008.4677370
https://doi.org/10.1109/TVCG.2009.94
https://doi.org/10.5555/1088896

[156] Pak Chung Wong and R. Daniel Bergeron. ‘Multiresolution multidimensional

wavelet brushing’. In: VIS ’96: Proceedings Visualization ’96. San Francisco,

California, United States: IEEE Computer Society Press, 1996, pp. 141–148.

isbn: 0-89791-864-9.

[157] Pak Chung Wong and R. Daniel Bergeron. ‘Brushing Techniques for Exploring

VolumeDatasets’. In: IEEE Visualization ’97. Ed. byRoniYagel andHansHagen.

1997, pp. 429–432.

[158] K. Wongsuphasawat et al. ‘Voyager: Exploratory Analysis via Faceted Browsing

of Visualization Recommendations’. In: IEEE Transactions on Visualization

and Computer Graphics 22.1 (Jan. 2016), pp. 649–658. issn: 1077-2626. doi:

10.1109/TVCG.2015.2467191.

[159] Y. Wu et al. ‘OpinionFlow: Visual Analysis of Opinion Diffusion on Social

Media’. In: IEEE Transactions on Visualization and Computer Graphics 20.12

(Dec. 2014), pp. 1763–1772. issn: 1077-2626. doi: 10.1109/TVCG.2014.

2346920.

[160] M. Adil Yalcin, Niklas Elmqvist and Benjamin B. Bederson. ‘Keshif: Rapid

and Expressive Tabular Data Exploration for Novices’. In: IEEE Transactions

on Visualization & Computer Graphics (19th May 2017).

[161] Mehmet Adil Yalçın, Niklas Elmqvist and Benjamin B. Bederson. ‘Keshif: Rapid

and Expressive Tabular Data Exploration for Novices’. In: IEEE Transactions

on Visualization and Computer Graphics 24.8 (2018), pp. 2339–2352. doi:

10.1109/TVCG.2017.2723393.

[162] J. Zhang et al. ‘Vis4Heritage: Visual Analytics Approach on Grotto Wall

Painting Degradations’. In: IEEE Transactions on Visualization and Computer

Graphics 19.12 (Dec. 2013), pp. 1982–1991. issn: 1077-2626. doi: 10.1109/

TVCG.2013.219.

[163] Nannan Zhang. ‘Application of Computer Graphics and Image Software in

Marine Graphic Design’. In: Journal of Coastal Research 106.SI (2020),

pp. 600–604.

[164] Michelle X Zhou and Steven K Feiner. ‘Visual task characterization for

automated visual discourse synthesis’. In:Proceedings of the SIGCHI conference

on Human factors in computing systems. 1998, pp. 392–399.

[165] John Zukowski. Java AWT reference. O’Reilly Media, 1997. isbn: 978-

1565922402.

BIBLIOGRAPHY 195

https://doi.org/10.1109/TVCG.2015.2467191
https://doi.org/10.1109/TVCG.2014.2346920
https://doi.org/10.1109/TVCG.2014.2346920
https://doi.org/10.1109/TVCG.2017.2723393
https://doi.org/10.1109/TVCG.2013.219
https://doi.org/10.1109/TVCG.2013.219

	Title Page
	Statement of Originality & Availability
	Abstract
	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Vision and aims
	1.4 Scope of research
	1.5 Research questions and objectives
	1.6 Research methodology and the structure of the thesis
	1.7 Contributions

	2 Related work
	2.1 Introduction
	2.1.1 Scope and methodology of the related work

	2.2 History, background and concepts
	2.2.1 What is a ``view'' (so that we can have multiple views)?
	2.2.2 How frequently are multiple and view used?
	2.2.3 What parts of speech are used for multiple and view?
	2.2.4 What are the meanings of a view?
	2.2.5 What words have people used instead of ``view''?
	2.2.6 Creation of views

	2.3 Design concepts and general principles of multiple views
	2.4 Multiple view tools and their use
	2.5 Theories and design guidelines for multiple view visualisations
	2.6 Summary

	3 Data gathering and quantification preparation
	3.1 Introduction to data gathering, quantification and preparation
	3.2 Image selection and storing data
	3.3 Developing general guidelines for view identification
	3.4 Coding the layout arrangements
	3.5 Coding the visualisation types
	3.6 Discussion
	3.7 Summary

	4 Quantification (data collection), analysis, and design guidelines for multiple view systems
	4.1 Introduction
	4.2 The tabletop strategy to quantify multiple view layouts
	4.3 The Quantification and the analysis of views number in multiple view layouts
	4.4 The Quantification and the analysis of the symmetrical multiple view layouts
	4.5 The quantification and the analysis of the layouts arrangements
	4.6 Understanding tasks and domain
	4.7 Quantification and analysis of visualisation types
	4.8 Quantification and analysis of collocational pairs of the visualisation types
	4.9 Developing of design guidelines for multiple view visualisations
	4.10 Discussion
	4.11 Limitations
	4.12 Summary

	5 Design and development of a grammar for the MV Layouts tool
	5.1 Introduction to design of the grammar
	5.2 Developing the rules for the MVG grammar
	5.3 Design of the MVG grammar
	5.4 MVG grammar for multiple view layouts
	5.5 Examples for the MVG grammar
	5.6 Discussion
	5.7 Summary

	6 Design and implementation of the MV layouts tool
	6.1 Introduction
	6.2 Design of the LayMV tool
	6.3 Implementation of the LayMV tool
	6.4 Results
	6.5 Discussion
	6.6 Summary

	7 Case studies and discussion
	7.1 Introduction
	7.2 Preparation process and scenario to create multiple view visualisation
	7.3 First case study
	7.4 Second case study
	7.5 Third case study
	7.6 Discussion
	7.7 Summary

	8 Discussion and conclusions
	8.1 Discussion
	8.2 Consideration of the work
	8.3 Reflections on the research questions
	8.4 Limitations and future work
	8.5 Conclusion

