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Wave theory of virtual image [Invited]

ARLEN R. BEKIROV,1,* BORIS S. LUK’YANCHUK,1 ZENGBO
WANG,2 AND ANDREY A. FEDYANIN1

1Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
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Abstract: The super resolution effect with virtual image was discovered about ten years ago
using micron-sized transparent spherical dielectric particles. However, within the range of the
corresponding size parameters, the simple approximation of geometric optics is not valid. Correct
description of the virtual image needs the wave theory. Here we developed a novel theoretical
method based on the wave theory of virtual image formation within a transparent dielectric
sphere and discussed a few unusual effects arising in the frame of the wave theory.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The lenses of microscopes and telescopes have a characteristic size R of about centimeter scale. It
means that a typical size parameter, q= 2πR/λ, for these devices in the optical range of spectrum
exceeds q >> 102 -103 . Magnification M of virtual image within the dielectric sphere at q >102

follows well the geometrical optics approximation, M = n/(2-n) (here n is a refractive index)
while the resolution of virtual image in a transparent sphere is restricted by diffraction limit ∆x ∼
λ/2n. However, with a spheres of some micrometer size and refraction index n< 2 it was found
experimentally magnification in the range M = 2 - 8 [1–18] depending on the refraction index.
Resolution is a more complicated problem. Almost all the papers, mention in review [13] show
experiments which overcome diffraction limit; however, the experimental resolution limit vary
in broad range from λ/2 till λ/8. A theoretical description of super resolution effect requires a
description of the virtual image within the frame of the wave theory. In the present paper we
discuss the theory, suggested in [19], in more detail, including the situations out of the limit of
geometrical optics, e.g., at n → 2 where magnification has singularity, M → ∞.

2. Diffraction of an arbitrary wave on a sphere

According to integral Helmholtz-Kirchhoff theorem, the arbitrary field in a free space might be
represented as:

E(r) = 1
4π

∯
Σ

[︁
Gej(n · ∇)Ej − Ejej(n · ∇)G

]︁
k2dSo (2.1)

where G = exp(ik |r⃗−r⃗o |)
k |r⃗−r⃗o |

, ∇ = 1
k

{︂
∂
∂xo

, ∂
∂yo

, ∂
∂zo

}︂
and k = 2π/λ is the wave number.

The field E(r) in (2.1) is written as a superposition of two types of sources: G (r, ro) ej

and ej(n · ∇)G (r, ro) Despite the fact that for true E fields should be div E = 0, the field
in (2.1) is presented by a superposition of sources for each of which div (G(r, ro) ej) ≠ 0, and
div (ej∇iG(r, ro)) ≠ 0. This discrepancy can be avoided if we apply to formula (2.1) an analog
of the gauge transformation, E → E + ∇r(∇rE), here the operator ∇r acts on r variables (!),
similar to how it is done when calculating the field through the Hertz potentials. Applying this
transformation to (2.1) we have

E(i)(r) = 1
4π

∯
Σ

[︂
(n,∇)E(i)

j

(︂
Gej − ∇r∇r

j G
)︂
− E(i)

j

(︂
(n,∇)Gej − ∇r∇r

j (n,∇)G
)︂]︂

k2dSo (2.2)
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The field determined in this manner will be represented as a superposition of purely vortex
sources. In principle, such a transformation might be omitted, but in this case, it is necessary to
consider the longitudinal modes [19]. Formula (2.2) could be represented in another form:

E(i)(r) = −
1

4π

∯
Σ

[︂
i
µ

n

[︂
n, H(i)

]︂
G + i

µ

n

(︂ [︂
n, H(i)

]︂
,∇r

)︂
∇rG +

[︂ [︂
n, E(i)

]︂
,∇G

]︂ ]︂
k2dS0 (2.3)

Representations (2.2) and (2.3) are equivalent in the case of an infinite or closed surface. In
the case of a bounded surface, they differ in the contour integral. Let us denote by I1 the field
value calculated by formula (2.2), and I2 - the field calculated by formula (2.3). According to
[20,21] we have the relation

I2 = I1 +
1

4π

∮
C

[[E(i), s]G + ∇r(∇r, [E(i), s]G)] k dlo (2.4)

Here s is the direction vector of the contour element dlo. This contour integral plays the dominant
role in definition of the optical resolution in the virtual image. Although representations (2.3)
and (2.2) are equivalent, if we calculate the limiting value of the field on the plane

∑︁
and then

substitute this value in (2.2). Thus (2.2) and (2.3) correspond to different approximations for the
field in the plane.

Diffraction of an arbitrary field on a sphere can be presented as a superposition of solutions for
point sources. In general case, the solution has the form (the fields E(1), E(2) are the solutions in
space outside and inside the particle):

E(1) = E(i) +

∞∑︂
ℓ,m

A(c)
ℓmN(c)

ℓm + A(s)
ℓmN(s)

ℓm + B(c)
ℓmM(c)

ℓm + B(s)
ℓmM(s)

ℓm (2.5a)

E(2) =

∞∑︂
ℓ,m

D(c)
ℓmN(c)

ℓm + D(s)
ℓmN(s)

lm + C(c)
ℓmM(c)

ℓm + C(s)
ℓmM(s)

lm (2.5b)

Here M and N are vector spherical harmonics [22]. We seek a solution for functions (2.5) in
the form (2.3). We will denote the corresponding scattering coefficients by small symbols. Let x
be one of the coefficients {a, b}, {c, d } for the scattered field and the internal field, respectively.
Let jx(c/s)lm (ro) is the solution for the source (Gej − ∇r∇r

j G) in (2.2), and j
ix
(c/s)
lm (ro) is the solution

for the source ej∇iG − ∇r∇r
j (∇iG). Similarly, for X = {A, B }, {C, D}, due to linearity, we obtain

X(s/c)
ℓm =

1
4π

∯
Σ

(︂
(n,∇)Ej

jx(c/s)
ℓm − Ejn(i) j

ix
(c/s)
ℓm

)︂
k2dSo. (2.6)

Here Ej are the components of the incident field E(i) (index i remains omitted for brevity),
a similar solution might be written for (2.3). The integration surface in (2.6) can be chosen
arbitrarily. See the details of calculations in the Supplement 1.

3. Wave theory of the image

The history of optical imaging constitutes a fascinating stage in the development of optics.
In 1609, Galileo invented a two-lens telescope, in which a concave diffusing lens formed an
imaginary, magnified image of an object. Among the discoveries made by Galileo with this
telescope were sunspots, which he demonstrated in Rome in the spring of 1611. It is thought that
in the course of these observations, Galileo spoiled his vision, since the virtual image cannot be

https://doi.org/10.6084/m9.figshare.16601414
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projected onto the screen. In contrast, the Kepler’s telescope, invented by him in 1611, can be
converted into a projection device for showing the image of the sun on a screen. Scheiner used
this scheme for observing sunspots in the same 1611 and fought with Galileo for the priority of
the discovery. In fact, sunspots were known long before Galileo [23]. They may be seen even
with the naked eye looking at the Sun through the soot smoked glass.

Kepler in his works of 1611 outlined the rules for constructing an optical image in a lens by
ray tracing method. The development of geometric optics after Kepler has been completed two
hundred years later, when the laws of geometric optics were taken from the wave optics in the
eikonal approximation [24]. Hamilton proved that geometric optics is the limiting case of wave
optics for short wavelengths [25]. An analysis of scattering by a sphere [26] showed that, for
example, for the refractive index n = 1.5, the geometric optics approximation coincides with
a high accuracy with the results of the Mie theory at q = 2πR/λ ≥ 100. In [19], a procedure
was proposed for constructing a virtual converging electromagnetic wave when considering a
complex conjugate field. The image field Eim was defined as

Eim =
1

4π

∬
Γ

(G(n,∇)E∗
se−E∗

se(n,∇)G) k2dS. (3.1)

Here Γ is some infinite surface homotopic to the plane, E se is the field emanating from the
sources. One can also take Γ as the closed surface surrounding the field sources. Integral (3.1)
does not depend on the position and shape of the surface. Field (3.1) can be equivalently
represented in the form of the Fourier transform (see details in Supplement 1)

Eim(x, y, z) =
1

(2πko)
2

∬
k2

x+k2
y ≤k2

o

Ẽ∗
se(kx, ky, zo)e−i(kxx+kyy+kz(z−zo))dkxdky (3.1a)

Here Ẽse is the two-dimensional Fourier transform field in the xy plane at z = z0, k2
z = k2

o−k2
x−k2

y .
It follows from the equivalence of (3.1) and (3.1a) that transformation (3.1) actually reconstructs the
field from the source within the spectral range k0. According to angular spectrum representation,
the collected waves have being decomposed into plane waves, which will then numerically
propagate backward in the negative z direction to form a virtual image on the image plane [27].
Difference in between of (3.1a) and classical formula is related to range of integration over kx
and ky, i.e., k2

x + k2
y ≤ k2

o . This difference led to diffusion of virtual image, caused by diffraction.
Following are a few examples. Consider a point source of the following form:

∆Ese + k2Ese = U, U = −4πk−1(e⊥,∇)δ(r⃗ − r⃗o)K (3.2)

where e⊥ is orthogonal to the contour on which the surface Γ is rests, K is some arbitrary vector.
Using the spectral expansion for the Green’s function of the wave equation G and (3.1a) one can
obtain

Eim =
J1(kρ)

kρ
K∗, z = zo (3.3)

Here ρ⃗ = r⃗o − r⃗ . In the case of a vortex source of the form U →U + grad(div U)/k2, we
obtain instead of (3.3)

Eim =
J1(kρ)

kρ
K∗ −

J2(kρ)
kρ

(K∗
⊥+2K∗

z ez) +
J3(kρ)

kρ
(ρ, K∗)ρ

ρ2 − i
j2(kρ)

kρ

(︃
(ρ, K∗)

ρ
ez + K∗

z
ρ

ρ

)︃
, z = zo

(3.4)
Similarly, in the case of a source of the form ∆Ese + k2Ese = U + grad(div U)/k2, U =

− 4πk−1δ(r⃗ − r⃗o)K, we have

Eim =− i
(︃
j0(kρ)K∗ −

j1(kρ)
kρ

K∗ + j2(kρ)
(ρ, K∗)ρ

ρ2

)︃
−

J2(kρ)
kρ

(︃
(ρ, K∗)

ρ
ez + K∗

z
ρ

ρ

)︃
, z = zo (3.5)
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Fig. 1. Comparison of the point source image half-width (red line) with 1/sinα (blue line).
The inset shows the geometry of the calculation. The result does not change when going
from Z1 to Z2.

Here Jn are the Bessel functions and jn are the spherical Bessel functions. We pay attention
that the formulas (3.3–3.5) are valid only on plane z= zo. If we choose a bounded integration
surface Γ, then the image of (3.2) will broaden in accordance with the formula 1/sinα, see in
Fig. 1. A similar picture takes place for the delta source. This correspondence will be maintained
only when the distance to the source is much greater λ . In this case, the integral in (3.1) does
not change with a change in the integration surface Γ within a given solid angle. The virtual
field (3.1) is consistent with the classical concepts of optical resolution. This makes it possible to
understand Γ as the aperture of an optical device.

The above results of this paragraph refer to the case of free space, without a sphere. Next, we
move on to consider the effects associated with the presence of a sphere. In the experiments with
superresolution [1–6] a virtual image in a sphere obtained from closely spaced slits is usually
considered. The wave theory of such an image was developed in [19]. To calculate the field, one
can use any of the formulas (2.2–2.3), provided that the exact expression for the field in the plane
of the screen is known. Strictly speaking, to find this field, an integral equation should be solved

Fig. 2. Calculated virtual image of four adjacent slits. The geometry on left figure the similar
as [1], 360-nm-wide lines spaced 130 nm apart, wavelength 600 nm, diameter microsphere
4.96 µm. The field of view at z/R= - 2 permits to see just two strips but with higher
magnification. The figure shows that the four strips are not distinguishable, it also emerged
as one at the “border” of the array of spheres. The strips are visible only inside this array,
we believe that the visibility of the four strips is due to the fact that it is inside the array
of spheres, in contrast to our consideration with a single isolated sphere. Note, that the
polarization of the field within the slit also influences resolution [36].
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(see, for example, [28]). The commonly used Kirchhoff approximation (constant field inside the
slit) differs both from the distribution for wide slits known in diffraction theory (see, for example,
the limiting case of diffraction at the edge of the screen [28,29]) and from the distribution at
small apertures [28,30–32]. An experimental study [33] shows that the field maxima are formed
either at the edge of the slit or in its middle, depending on the width of the slit. We used
approximate expressions in our calculations with the field amplitude increasing at the edge of
the slot. We chose the fields E and H in formula (2.3) so that the slits were indistinguishable
in their image based on formula (3.1) in the absence of a sphere. In this case, field (3.1) was
an even plateau without pronounced maxima. Note that the sensitivity to the shape of the field
distribution is related to the contour integral in (2.4). Another important effect is light scattering
due to reflection from the metal shield. This effect was considered in the problem “particle on a
substrate” [34,35]. In our calculations, it was seen that this effect does not significantly affect
the resolution, but significantly affects the observed picture contrast. In particular, if we do
not consider the reflection from the screen, the “flare” in Fig. 2 turns out to be so bright that it
overlaps the images of the slits. Finally, we considered that the fields inside the gap are coherent
only on the scales less than 1.22 λ / 2. The final result of the calculations is shown in Fig. 2.

Thus, it can be expected that the superresolution effect is associated with the specific features
of the behavior of the field inside the slot. This mechanism can be interpreted as follows. Taking
into account the features of the near field in the slit, the sphere collects evanescent waves in the
near field and effectively transmits them to the far field, which makes it possible to overcome the
diffraction limit. Unfortunately, this explanation does not describe superresolution for very small
objects, such as nanopores with diameters on the order of λ/10. It is likely that there must be
another mechanism affecting resolution. In particular, holes should probably be considered when
reflecting from a plane. In our work, we considered reflection from a solid screen.

We now turn to the Magnification problem. Geometric optics at values of the refractive index
close to two, i.e., n= 2, leads to singularities in which the virtual image is projected to infinity,
where the corresponding magnification factor also goes to infinity. The corresponding formula
for magnification is given by

M =
ε secψ

ε + (1 + δ) tanψ
, ψ = 2

(︂
arcsin ε − arcsin

ε

n

)︂
(3.6)

Fig. 3. (a) Magnification versus refractive index according to the geometrical optics
approximation – Eq. (3.6) (solid lines) and according to the wave theory – Eq. (2.2) (dashed).
Insert shows position of the point source – parameters δ and ε. Geometrical optics curves
are computed for ε = 0.22, δ = 0 (red) and ε = 0.42 and δ = 0.1 (blue). (b) Magnification of
a-a line segment at n= 1.33 (b-b), n= 1.6 (c-c), n= 1.75 (d-d), n= 1.8 (e-e). Coordinate x/R
indicates position of virtual image.
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Parameters δ and ε set the position of the point source S (see inset in Fig. 3). One can see
from Fig. 3(a) characteristic range of applicability of geometrical optics approximation (e.g.,
n ≤ 1.6 for δ = 0). Calculations according to the wave theory have been made with ε = 0
and the best fitting of theoretical curves was done with approximation (3.6). Fig.3b shows
magnification of a-a line segment situated on the surface of the particle δ = 0, ε = ± 0.025
at the different refractive index values.

A more difficult problem is to analyze the magnification as a function of the sphere size or a
size parameter. Experiments do not give a clear conclusion about the nature of this relationship.
The inset in Fig. 4 shows the experimental dependence M =M (D) [17], which indicates an
increase in “noise” with an increase in the size of the sphere. In this region of parameters,
theoretical calculations according to our model show a large number of optical resonances, see
Fig. 4. Naturally for white light, these oscillations are smoothed [37].

Passing from the approximation of geometric optics to wave theory, it is useful to turn to
the picture of Huygens wave fronts. In the case of a point source in vacuum, these are the
fronts of diverging spherical waves. When crossing the sphere located near the source, the
wave fronts are distorted. These distortions depend on the refractive index and the size of the

Fig. 4. Optical resonances in magnification versus particle diameter in mm. Refractive
index of the particle was n=1.4599, λ= 600 nm. Insert shows experimental dependence of
magnification M =M (D) from Ref. 17.

Fig. 5. Spherical wave fronts propagating from the point source situated at the distance
δ = 0.1R from the surface below the sphere with size parameter q= 50. Refractive index
n= 1.02 (a) and n= 1.5 (b).
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sphere, Fig. 5. To construct a virtual image, one should create a picture of a converging intensity
distribution, starting from the distorted wavefronts at the exit from the sphere. In the case of
geometrical optics, an enlarged two-dimensional picture of the original object appears in the
“image plane”, Fig. 3(b). In the case of the wave theory, the “image plane” is blurred into a
certain three-dimensional distribution of light intensity, the delta-shaped point source turns into a
“luminous volume”, see in Fig. 6.

Fig. 6. Distribution of intensity of virtual image of the point source situated at the distance δ
= 0.1R along the z-axis at below the sphere with size parameter q= 50. Typical modification
of the full width at half maximum (FWHM) distribution shows the growth of a “luminous
volume” of virtual image versus refractive index due to increased magnification factor at
larger refractive index.

Considering special case with n= 2, which is not described in terms of geometric optics.
Low-intensity oscillation images could be seen following our wave theory model, This oscillation
effect is observed in the range of sufficiently large dimensions (e.g., q> 20); with increasing q
the intensity of the imaginary field tends to zero, as shown in Fig. 7.

Fig. 7. Distribution of intensity in virtual image for n= 2 (singular case in geometric optics)
and size parameter q= 66. Position of a point source is ε = 0 and δ = 0. I0 is the intensity of
image in case n= 1 (no sphere). A white dashed line shows the position of sphere.

Finally, we will point out one qualitative effect - inversion about the center in the virtual
image (transformation r, (x, y) → −r, (−x,−y)). At a distance corresponding to the position of
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the virtual image (in the geometric optics approximation, z = nR/(2 − n)), we see an enlarged
picture of the test structure with the maximum magnification M and symmetry corresponding
to the original test structure. When the focus position changes from the value and approaches
the real plane of the object, z → −R, one can observe an inverted image corresponding to the
point symmetry group Cnv [38] (a group of rotations around the axis of the n-th order and n
reflections in vertical planes). Such symmetry for odd n looks like “ pseudo rotation “, see Fig. 8.
A phenomenon of this type was observed in the experiment (see Fig. 3 in article [1]). Here the
important role plays the coherence of light passing through the star.

Fig. 8. The top left picture corresponds to the test structure (a star cut in a metal plate).
The top right picture illustrating a symmetry transformation in which each point is mirrored
relative to the center O (A → A1, B → B1, . . .). (This transforms a blue-lined star into a
red-lined star. The bottom left and right pictures show a virtual image of a star at distances
z ≈ −3.1R (maximum magnification) and z ≈ −2R (lower magnification factor, compare
Fig. 3(b)). The blurring of the image due to diffraction is also accompanied by its “rotation.”
In the calculations, we used the values of refractive index n= 1.5 and the size parameter
q= 50. Top insert shows the original star image in the experiment [1]. Down insert shows
the virtual image in the dielectric sphere. Corresponding angle of “rotation” is shown by
dashed lines.

The origin of “rotation” can be understood starting from formula (3.1a). For a symmetric
object in the scattered field, there remain modes with a certain parity in the orbital number m.
Formula (3.1a) is invariant under the transformation (x, y) → (-x, -y) and (kx, ky) → (-kx, -ky).
For the x-component the explicit form of this formula for a virtual image is:

E∗
im(x, y, z) =

1
(2π)2

∬
k2
x+k2

y ≤k2
o

[︄
∞∑︂
l,m

AlmÑlm
x (kx, ky, kz) + BlmM̃lm

x (kx, ky, kz)

]︄
eikzzo ei(kxx+kyy+kz(z−zo)) dkxdky

k2
o

(3.7)

(We use E* to shorten the notation of formulas) Let us make the replacement in this formula
(x, y) → (-x, -y) and (kx, ky) → (-kx, -ky) and use the properties of the two-dimensional Fourier
transform for vector spherical functions. We get the transformed formula

E∗
im(−x,−y, z) =

1
(2π)2

∬
k2
x+k2

y ≤k2
o

[︄
∞∑︂
l,m

(−1)m+1(AlmÑlm
x (kx, ky, kz) + BlmM̃lm

x (kx, ky, kz))

]︄
eikzzo ei(kxx+kyy+kz(z−zo)) dkxdky

k2
o

(3.8)
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In the presence of modes of a certain parity in m, expression (3.8) differs from (3.7) only in sign.
The change in the virtual image occurs when the parameter z corresponding to the plane of the
virtual image changes, z< 0. The parameter z0 in formulas (3.7), (3.8) does not play any role.
We have kept it to denote the continuity of these formulas with (3.1). As Ẽse(kx, ky, zo) ∝ eikzz0

then the dependence on z0 in the formulas disappears. From (3.8) it follows that the inversion
with respect to “rotation” takes place only for odd m= 2p+ 1. Such symmetry exists only for
structures with symmetry C2p+1, for example, for an equilateral triangle or a star. At the same
time, for structures with ellipse or square symmetry, no “rotation” occurs in the virtual image
because with a given symmetry, they pass into themselves.

4. Conclusion

The construction of an imaginary image in classical optics has been studied since the time of
Galileo, in whose telescope the concave diffusing lens formed an imaginary, magnified image of
the object. For particles with a size of the order of several light wavelengths λ, the geometric
optics approximation does not work, and it is necessary to use the wave theory of an imaginary
image. For random reasons, this theory turned out to be a blank spot on the map of classical
optics. The experimental investigation and theoretical discussion shows that the virtual image in
micrometer size particles permits to resolve structures below the diffraction limit, e.g., λ/6 and
less. The theoretical limit of resolution also depends on the particle on surface effect, coherence
and exact field distribution within the slit. Experiments shows resolution on the level λ/8 in white
light, i.e., structures with size of about 50 nm were resolved, see e.g. in Ref. [1].
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