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Abstract 

 

Understanding the role of mechanistic processes in species distributions is a key aspect of 

understanding the species spatial ecology, particularly interspecific interactions between 

species with overlapping resource requirements. However, comprehensive understanding is 

often hindered by spatial and temporal coverage of abundance data and lack of established 

statistical methodology to derive this from abundance data. This study aims to address 

these challenges by quantifying similarity among distributions of seabird and cetacean 

species. Intra-guild or taxa separation could indicate potential habitat partitioning, and 

equally, similarity between sympatric species could indicate potential coexistence. This 

study used zero-inflated generalised linear models to model a large-collation of seabird and 

cetacean abundance data across the northeast Atlantic, so that relationships within their 

likely ranges can be identified. Clustering and principal component analysis of the 

conditional model regression coefficients were used to quantitatively identify similarity 

between seabird and cetacean distributions and their environment within each species 

likely range. There was dissimilarity within guilds, and similarity between some sympatric 

species from different guilds. Furthermore, the scale of the relationship between abundance 

and their environment was distinct between taxa, as non-delphinid cetaceans had much 

stronger correlations than delphinids and seabirds. Explainers of dissimilarity can be 

simplified into species’ spatial, behavioural and prey differences. These outcomes align with 

coexistence and competition theories, indicate that products of mechanistic processes are 

observable on a large scale, and that interspecific interactions are potentially involved. 

Future research includes identifying if interspecific interactions are the responsible 

mechanisms driving this similarity structure, then how to appropriately integrate this in 

species distribution modelling processes to improve ecological realism. 
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Type Abbr. Definition 
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ATPF Atlantic Puffin 

BLKW Black-legged Kittiwake 

BTND Bottlenose Dolphin 

CMGM Common Guillemot 

COMD Common Dolphin 

EPSH European Shag 

EPSP European Storm Petrel 

FINW Fin Whale 

HRBP Harbour Porpoise 

HRGL Herring Gull 

KILW Orca 

LBGL Lesser Black-backed Gull 

MINW Minke Whale 

MXSH Manx Shearwater 

NTFU Northern Fulmar 

NTGA Northern Gannet 

PILW Pilot Whale 

RAZB Razorbill 

RISD Risso's Dolphin 

SPRW Sperm Whale 

STRD Striped Dolphin 

WHBD White-beaked Dolphin 

WHSD White-sided Dolphin 

En
vi

ro
n

m
en

ta
l P

ar
am

e
te

r 

BAT Depth (m) 

CHS Total Chlorophyll (mg) in surface layer (satellite imagery) 

CHT 
Total Chlorophyll (mg) depth summed between 0 and 150m from surface 
(modelled) 

CON Distance to 300m isobath (m) 

FEA Depth gradient (m), calculated using terrain ruggedness index 
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SPM Mean surface current speed (ms-1), including tidal influence 

TPF 
Thermal stratification gradient, where higher values indicate greater 
frontal activity 
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Mean potential temperature (Celsius) between 0 and 150m from surface 
(modelled) 

TPR 
Range of potential temperature (Celsius) between 0 and 150m from 
surface (modelled) 

TPS Potential temperature (Celsius) in surface layer (satellite imagery) 
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1.Introduction 

Seabirds and cetaceans have an ecologically important role in top-down mediation of 

species assemblages (Heithaus et al., 2008; Townsend et al., 2008; Baum & Worm, 2009; 

Certain et al., 2011; Mann & Karniski, 2017), therefore, population size and dynamics of 

predators in the highest trophic levels are often considered to be indicators of ecosystem 

health (Moore & Kuletz, 2019). As seabirds and cetaceans are highly mobile, they can fill 

functional roles in multiple ecosystems, for example transporting and cycling nutrients. 

Seabird and cetacean populations are susceptible to a wide variety of pressures, such as 

overfishing on prey resources (DeMaster et al., 2001; Bearzi et al., 2006; Herr et al., 2009; 

Grémillet et al., 2016), noise disturbance (Bailey et al., 2010, 2014; Baltzer et al., 2020), 

bycatch mortality from fisheries (Reeves et al., 2013) and climate change impacts (C. D. 

Macleod et al., 2005; Burthe et al., 2014). 

To mitigate these issues, a comprehensive understanding of seabird and cetacean spatial 

ecology is necessary (Grémillet & Boulinier, 2009). One of the fundamental aspects in 

ecological theory is species interactions, such as habitat partitioning or coexistence (Kneitel 

& Chase, 2004). Understanding these processes on a large scale could be particularly 

relevant for seabirds and cetaceans due to their highly mobile nature (Ritchie, 2002), 

however, there is a lack of understanding of how these processes operate on a large scale, 

potentially in part due to a lack of adequate large-scale data. 

Environmental conditions are widely used as proxies for prevalence of suitable prey 

resources in seabird and cetacean distribution or habitat models, which is widely considered 

to be one of the main drivers of marine top predator distribution (Cox et al., 2018; Waggitt 

et al., 2020). The key components of a prey type being suitable include abundance or prey 

patch density (Friedlaender et al., 2020), nutritional quality (Wanless et al., 2005; Paredes et 

al., 2012; Spitz et al., 2012, 2018), size (Burke & Montevecchi, 2009), and accessibility, such 

as position in the water column (Anderwald et al., 2012; Embling et al., 2012; Lambert et al., 

2014; Baptist et al., 2019), which can vary by season, to month and even at a diurnal scale 

(van der Kooij et al., 2008; Romero-Romero et al., 2019) related to their behaviours, 

ontogeny and quality and accessibility of their prey (Røjbek et al., 2014). The distribution of 
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the top predators can change throughout the year often related to seasonal variation in 

availability of suitable prey resources within the predators range (Nichol, 1990; Couperus, 

1997; K. Macleod et al., 2004; Visser et al., 2011; Sveegaard et al., 2012; Esteban et al., 

2014; Berrow et al., 2015). The physical and biological oceanographic characteristics or 

environmental conditions of a habitat can influence how suitable the prey is as a resource 

for the top predators, as certain conditions can influence the nutritional value (Røjbek et al., 

2014), behaviour (Embling et al., 2013), distribution (Pacariz et al., 2016), and abundance of 

the prey (Maravelias et al., 2000), which can influence the distribution of the top predators 

(Hastie et al., 2004; Teloni et al., 2008; Paredes et al., 2014; Shoji et al., 2015). 

Environmental parameters commonly used have been found to correlate with seabird and 

cetacean distribution and abundance, for example, sea surface temperature (MacLeod et 

al., 2007; Nøttestad et al., 2015; Víkingsson et al., 2015; Rogan et al., 2017; Wakefield et al., 

2017; Mannocci et al., 2020), water depth (K. Macleod et al., 2003, 2009; Wall et al., 2006; 

Ingram et al., 2007; Teloni et al., 2008; Pirotta et al., 2011; Nøttestad et al., 2015; Laran, 

Pettex, Authier et al., 2017), seabed gradient (Cañadas et al., 2002; Weir et al., 2007; 

Canning et al., 2008; Skov & Thomsen, 2008; Booth et al., 2013; Jones et al., 2014; 

Wakefield et al., 2017), chlorophyll concentration as a proxy for primary productivity 

(MacLeod et al., 2007; de Stephanis et al., 2008; Cotté et al., 2010; Gilles et al., 2011; Wong 

& Whitehead, 2014; Griffiths, 2015) and fronts (Doniol-Valcroze et al., 2007; Scales et al., 

2014). 

Seabird and cetacean distributions relative to oceanographic parameters over a large 

spatiotemporal scale is also an amplification or reflection of their varying modern 

morphologies and life strategy, driven by convergent evolution (analogous and homologous) 

and radial expansion, between and within the seabirds and cetaceans (Woodward et al., 

2006; Sato et al., 2007; Mccurry et al., 2017), since the divergence of their lineages around 

310 million years ago (Hedges et al., 1996). In the current stage of the seabird and cetacean 

evolutionary history, simplified as aquatic (shared ancestor) to terrestrial (diverged from 

shared ancestor), then back to aquatic dependency (independent lineages) (Carroll, 2001), 

there is overlap in resource use and varying degrees of plasticity of resource use between 

modern seabirds and cetaceans (Camphuysen et al., 2006). Therefore, there are convergent 

evolutionary traits, for example, related to energy-efficient locomotion underwater, 
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breathe-holding, coping with low oxygen, carbon dioxide build-up and changes in pressure 

between cetaceans and seabirds that forage below the sea surface (Davis & Guderley, 1990; 

Kooyman & Ponganis, 1998; Sato et al., 2007; Mirceta et al., 2013). There is great dietary 

overlap between the seabirds and cetaceans in this study, within and across taxonomic and 

foraging guilds (Pierce et al., 2004; Santos et al., 2004; Jansen et al., 2010; Fayet et al., 

2021), even seabirds and cetaceans with no obvious convergent evolutionary traits, for 

example surface feeding seabirds such as gulls that feed on the same forage fish as 

cetaceans such as minke whales and are commonly observed in multi-species feeding 

aggregations (Anderwald et al., 2011). 

The foraging behaviour and strategy of the seabirds and cetaceans can lead to interspecific 

differences and similarities in their distribution, through influencing what prey types are 

accessible to them, and allowing them to occupy a niche (Woodward et al., 2006; Garthe et 

al., 2014; Lambert et al., 2014; Petalas et al., 2021). Furthermore, the energetic demands 

related to morphology (i.e., influences of body size on thermoregulatory constraints) and 

life history/strategy (all of which can vary by gender and ontogeny), can influence what prey 

types, densities, abundances and behaviours are required to maintain healthy body 

condition by consumption rate and quality of prey (Spitz et al., 2012; Kahane-Rapport et al., 

2020). In turn, this can have a confounding effect on the fluctuations of distribution and 

abundance of the top predators within their ranges, if they are to match these resources 

spatially and temporally (Anderwald et al., 2012; Nøttestad et al., 2015). 

Other studies have used overlap (often distance-based calculations) of species distribution 

model (SDM) predictions (using individual species occurrence data) as a metric of potential 

for species interactions (Godsoe, 2014). An alternative is to compare species environmental 

niches to infer interspecific interactions (related to how this influences species distribution) 

(Broennimann et al., 2012). It has been considered that the niche of a species can be 

described by the environmental conditions where a species is present (Godsoe, 2014), and 

species occurrence and environmental data is suitable for describing a species’ 

environmental niche (Broennimann et al., 2012). Whilst species niche differences defined by 

biological data relating success and resource use are commonly used in species 

comparisons, (Broennimann et al., 2012) suggest that comparing species based on how 



Page | 10 
 

species distribution relates to environmental conditions is more relevant to answering 

questions about changes in species distribution and consider this method of defining 

environmental niche to align with Grinellian niche theory. 

Based on the logic of (Broennimann et al., 2012) and (Godsoe, 2014), identifying how similar 

or dissimilar relationships with environmental parameters are between species, could 

potentially provide insight into influences of interspecific dynamics on species distribution 

within a community (Broennimann et al., 2012). Exploring the structure of similarity or 

dissimilarity of relationships between seabird and cetacean distribution and environmental 

parameters could provide context to anecdotal observations, investigate validity of 

assumptions of similarities between guilds and closely related taxa. It could also be useful to 

understand how similar data-poor species are to other species, especially where multiple 

species’ distribution data are sometimes amalgamated (Baines et al., 2017; Lambert, Pettex 

et al., 2017; Wong et al., 2018; Leonard & Øien, 2020). 

Based on Wilson’s theory (Wilson, 1999) that species within intrinsic guilds would not co-

occur, it could be expected that species in the same intrinsic guild should be most abundant 

in dissimilar environmental conditions. The theory of Phylogenetic Niche Conservatism 

(Pyron et al., 2015) would expect there to be partitioning (dissimilarity) between seabirds 

and cetaceans in the similarity structure. For count data of closely related species to be 

amalgamated in species abundance models with an assemble first, predict later approach, 

these species should be similar in the similarity structure. The aim of this study is to quantify 

the similarity structure of correlations between large-scale seabird and cetacean 

distributions and their environment, and the objective is to identify if there are patterns of 

similarity or dissimilarity between species that share guilds and/or are closely related taxa, 

as this could indicate potential habitat partitioning or coexistence.  
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2.Methods 

Sightings data of 23 species were used in this study, 11 species representing three seabird 

orders, with two families each, and 12 species representing two cetacean orders, with one 

family in one order, and three families in the other order (table 2.1). These species were 

chosen to maximise use of available abundance data, which was collated from a variety of 

sources, described by (Waggitt et al., 2020). The temporal extent of the data was between 

the years 1985 and 2015, and the temporal resolution was on a monthly scale and the 

spatial resolution of the data was 10 km 2. 

Table 2.1 Table of study species. Taxa (from Order to Species) and common name. 

Order and Family Genus and species Common name 
Charadriiformes   
Alcidae Fratercula arctica Atlantic Puffin 
 Uria aalge Common Guillemot 
 Alca torda Razorbill 
Laridae Rissa tridactyla Black-legged Kittiwake 

 Larus argentatus Herring Gull 
 Larus fuscus Lesser Black-backed Gull 
Pelecaniformes   
Phalacrocoracidae Phalacrocorax aristotelis European Shag 
Sulidae Morus bassanus Northern Gannet 
Procellariiformes   
Hydrobatidae Hydrobates pelagicus European Storm Petrel 
Procellariidae Puffinus puffinus Manx Shearwater 
 Fulmarus glacialis Northern Fulmar 
Mysticete   
Balaenopteridae Balaenoptera acutorostrata Minke Whale 
 Balaenoptera physalus Fin Whale 
Odontocete   

Delphinidae Tursiops truncatus Bottlenose Dolphin 
 Delphinus delphis Common Dolphin 
 Globicephala melas Pilot Whale 
 Stenella coeruleoalba Striped Dolphin 
 Lagenorhynchus albirostris White-beaked Dolphin 
 Lagenorhynchus acutus White-sided Dolphin 
 Orcinus orca Orca 
 Grampus griseus Risso's Dolphin 
Physeteridae Physeter macrocephalus Sperm Whale 
Phocoenidae Phocoena phocoena Harbour Porpoise 
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The study area covers the northeast Atlantic (figure 2.1), which has a varied and complex 

biogeography, including shelf seas and oceanic waters, with a variety of topographic 

features such as islands, seamounts, ridges, canyons and shallow banks and complex 

coastlines (figure 2.1). The study area is influenced by multiple oceanographic processes, 

such as large-scale oceanic currents with varying properties, large tidal ranges on the 

continental shelf, producing features such as fronts, and regions of freshwater influence. 

The study area has high primary productivity, particularly in areas of upwelling of nutrient 

rich water, which peaks in spring, and again in autumn. The study area has a temperate 

climate, which is highly influenced by the north Atlantic oscillation of the jet stream and the 

Atlantic meridional overturning circulation. 

 

Figure 2.1 Map of study area 
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To model the effects of different environmental factors listed in Table 2.2 on the 

distribution of 12 cetacean and 11 seabird species (table 2.1), Zero-inflated generalised 

linear models were used, as frequency graphs showed that the data was zero-inflated. these 

models are also referred to as ZIGLM throughout this thesis. The package “glmmTMB”  

(Brooks et al., 2017) was used for the zero-inflated generalised linear models. To compare 

model coefficients between all of the species, the parameters of the ZIGLM conditional 

model were chosen to be consistent, and the parameters for the logistic model were unique 

to each species, to improve model parsimony. Model covariates for the logistic component 

of the ZIGLMs (table 2.3) were selected from the pool of ecologically relevant environmental 

parameters (table 2.2) if they improved model fit. To reduce overparameterisation of the 

ZIGLM, a maximum of five variables were chosen for the conditional model. The variables 

for the conditional model (Table 2.2; highlighted grey) were chosen to represent sea 

temperature, primary productivity, fronts, and static landscape features, due to their 

ecological relevance to the species, and more comparable to other studies because these 

environmental . Maps of these environmental parameters are displayed in appendix 1. 

Table 2.2 Details of environmental parameters and parameter codes. The sources of these 

data are described by (Waggitt et al., 2020). 

Parameter 
codes 

Explanation 

BAT Depth (m) 
CHS Total Chlorophyll (mg) in surface layer (satellite imagery) 
CHT Total Chlorophyll (mg) depth summed between 0 and 150m from surface 

(modelled) 
CON Distance to 300m isobath (m) 
FEA Depth gradient (m), calculated using terrain ruggedness index 
LND Distance to Land (m) 
SPM Mean surface current speed (ms-1), including tidal influence 
TPF Thermal stratification gradient, where higher values indicate greater frontal 

activity 
TPM Mean potential temperature (Celsius) between 0 and 150m from surface 

(modelled) 
TPR Range of potential temperature (Celsius) between 0 and 150m from surface 

(modelled) 
TPS Potential temperature (Celsius) in surface layer (satellite imagery) 
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Table 2.3 Details of chosen models. The species column details the common name of each species. 

The logistic parameter column lists the environmental parameter codes used in the logistic models 

and a colon between two parameters denotes interaction term between the two parameters. The 

environmental parameters corresponding to the codes are detailed in table 2.2. The offset column, 

‘Km’: kilometres travelled per observation, ‘Hr’: survey time (in hours) per observation. Distribution 

column, ‘NB 1’: negative binomial distribution where the variance increases linearly with the 

predicted mean, ‘NB 2’: negative binomial distribution where the variance increases quadratically 

with the predicted mean, ‘P’: poisson distribution. 

Species Logistic parameter Offset Distribution 

Puffin CHT, TPS, BAT, TPF Km NB 1 

black-legged kittiwake TPM, TPF Km NB 1 

bottlenose dolphin CHT:BAT, TPS Km P 

common guillemot 
TPM, SPM, CHS, 
TPF Km NB 1 

Common Dolphin 
TPM:CON, CHT, 
TPR - NB 1 

European shag SPM, TPF, CHS, TPR - P 

European Storm petrel TPM, TPF, TPR - NB2 

Fin whale CHT:BAT Km NB 1 

harbour porpoise  
TPM:BAT, CHT, 
SPM Km NB 1 

herring gull CHT, TPM, SPM Km P 

Lesser Black Backed Gull CHT, TPM, SPM Km NB 1 

Manx Shearwater CHT, SPM Km P 

Minke Whale TPF, SPM Km NB 1 

Northern Fulmar CHT, FEA Hr P 

Northern Gannet TPM, TPF Km NB 1 
Orca TPR:TPS, CON:BAT - P 

Pilot Whale CON:TPM, FEA - NB 1 

Razorbill 
LND, TPF, TPM, 
TPR Km NB 1 

Risso’s Dolphin BAT:TPM, CON - P 

Sperm Whale BAT:FEA, CON Km NB 2 

Striped Dolphin BAT:TPM Km P 
White-beaked Dolphin BAT:TPM - P 

White-sided Dolphin SPM:TPM - NB 1 

As pod size of cetaceans can vary greatly (from pods of 2, to superpods from 200 to 1,000), 

a qualitative decision was made that it is reasonable to consider the maximum count values 

(for cetacean abundance in the dataset used for this study), non-anomalous, as it is 

probable that the values were accurate and not a produce of error. For many species, 

extremely high-count values were identified from visual inspection of Cleveland Dotplots. 

Since these high values are extreme (although not necessarily anomalous), there was not 



Page | 15 
 

enough observations to model the abundance and distribution of superpods with high 

accuracy. Furthermore, these values could have a large and disproportionate, influential 

effect on the model, skewing the fit, and so the rest of the observations would not have a 

close fit with the model, and little predictive power. When there are extreme values within 

a dataset, an option is to apply a transformation to the response data, however, 

transformations affect the relationship between the response and explanatory variables, so 

should be used with caution (Zuur et al., 2009). Consequently, the extreme observations 

were discarded, and no transformation used. Influential observations are usually identified 

by visually inspecting a Cook’s distance plot, however, published R functions did not have 

the capability to use zero-inflated models. It was not within the scope of this project to 

write a custom function that would not be ignorant of the zero-inflated nature of the data. 

Consequently, Cook’s distance was calculated using the fit of a generalised linear model 

(GLM) of the count data only, and interpreted with caution, as it did not represent the full 

dataset. To assess for collinearity among explanatory variables, pair plots were generated 

and analysed, and Variance Inflation Factor (VIF) analysis was also conducted. 

Overdispersion arises when the mean is smaller than the variance (Zuur et al., 2009), which 

is common in heteroskedastic data. When a model is overdispersed, an option is to include 

overdispersion parameters, however this uses parameter space. Too many parameters can 

lead to overfitting, which lowers the predictive power of a model. The distribution families 

tested were poisson distribution and two functions of negative binomial. Poisson 

distribution is often used for count data (Zuur et al., 2009), as it doesn’t predict negative 

values. 

Negative binomial function 1 is where the variance increases linearly with the predicted 
mean (Hardin & Hilbe, 2007): 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜇 ∗ (1 +  𝜑 ) 

Where μ (mu) is the predicted mean, and ϕ (phi) is the dispersion parameter: 

𝜑 = exp (𝜂) 

Where 𝜂 (eta) is the linear predictor from the dispersion model. 

Negative binomial function 2 is where the variance increases quadratically with predicted 
mean 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝜇 ∗ (1 +  
𝜇

𝜑
 ) 
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The link is the relationship between the expected value of the response variable and the 

systematic part (Zuur et al., 2009), (put more simply, it is the type of relationship between 

the mean and the variance). As the link specifies the expected relationship, it affects the 

coefficient values. Within the nested models, the log link function was used in the 

conditional regression model, and the logit link was used in the logistic model; this remained 

consistent among all models for comparability. The R function glmmTMB has capabilities of 

using Matern, Gaussian and Exponential covariance structures, to model the correlation 

between decay and distance and autoregressive order-1 functionality. When there is likely a 

bias in the data from collection, an option is to include an offset parameter, if, however, the 

effort bias does not influence the response variable, then parameter space should be saved, 

so the model does not become overparameterised. 

Because the logistic part of the model refines the range of the conditional model to only the 

areas where they are likely to be present, the estimates for the slope values are only based 

on the relationship between their abundance and the environment within their likely range 

rather than the whole study area and represents the conditions where they are most likely 

to be abundant allowing us to see the nuance of their relationships with environment and 

facilitating more detailed comparisons between species that occur sympatrically. 

2.1. Model validation and Selection 

The use of both k-fold cross validation and Random-Walk Metropolis Sampling provides 

information on how parsimonious the models are. The k-fold cross validation assesses the 

predictive power of the model, and the Random-Walk Metropolis Sampling assesses the 

reproducibility of the regression coefficients on new data. The models were validated using 

the k-fold cross validation technique, where k is equal to 5. To understand how well the 

coefficients of the last parameters represent the model, posterior distribution samples of 

the coefficients were simulated using a random walk Metropolis sampling algorithm, using 

MCMCpack::MCMCmetrop1R (Martin et al., 2011), which is a frequently used Markov Chain 

Monte Carlo algorithm. Trace and density plots from the random walk Metropolis sampling 

are displayed in appendix 2. Mean squared error for the predicted values of training data as 

a function of the test dataset for each iteration of the k-fold cross validation are reported in 
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appendix 2, along with other fit statistics of the ZIGLM, and maps of ZIGLM predictions of 

species distributions. 

Histograms and density plots of the model residuals were used to assess normality. Pearson 

residuals were plotted against fitted values to assess whether the model was 

heteroskedastic. Residuals were plotted against explanatory variables to assess for non-

independence. Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

were considered when selecting the best model for each species. The log-likelihood values 

were compared when selecting the best model for each species. 

2.2. Quantifying Similarity 

As guilds and taxa groups are used to describe ecological or morphological similarity, it 

could be relevant to identify if their similarities are reflected in relationships between their 

distribution and environment. The results of this study identified where species sharing 

guilds/ taxa groups (table 2.4) are in the similarity structure in relation to each other and 

other species. Guilds/taxa groups (table 2.4) will be highlighted in the results section figures 

that represent the similarity structure, to assist visualisation of patterns. The guilds/ taxa 

groups defined in table 2.4 that are highlighted in the results section have been subset from 

guilds/ taxa groups and species with amalgamated data as they are commonly used groups. 

Furthermore, the groups provide simplification to interpretation of similarities between 

guilds/ taxa groups and are at a similar level of shared trait uniqueness compared to other 

species in the study and include more than two species within groups. Additionally, 

crossover between guild and closely related taxa are represented in some of these groups, 

for example auks are deep pursuit diving seabirds, gulls are surface feeders, rorquals 

(balaenopterids) are lunge filter-feeding cetaceans  and deep diving odontocetes also 

represent teuthophageous cetaceans. The harbour porpoise, orca, European shag, and 

gannet were not highlighted in guilds/ taxa groups but were included for context, as they 

have similarities with other species in guilds/ taxa groups such as shared diet (although only 

the piscivorous orca ecotype share diet with the other species) and occur sympatrically in 

large parts of their ranges, and the European shag forages at similar depths to the auks. 
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Moreover, this maximised use of available data of many species in the marine top predator 

community in the northeast Atlantic. 

Table 2.4 Guilds/ taxa groups to investigate. 

Guilds/ taxa groups Species common names References 

Auks Razorbill, common guillemot, 
Atlantic puffin 

(Anderwald et al., 2011; 
McClellan et al., 2014; Le Rest 
et al., 2016; Wong et al., 2018) 

Deep diving 
odontocetes 

Sperm whale, pilot whale, 
Risso’s dolphin 

(Praca & Gannier, 2008; Spitz 
et al., 2011; Giorli et al., 2016) 

Small-sized 
delphinids 

Common dolphin, striped 
dolphin, white-sided dolphin, 
white-beaked dolphin, 
bottlenose dolphin 

(Sigurjónsson et al., 1991; 
Lambert, Laran et al., 2017; 
Lambert, Pettex et al., 2017) 

Gulls Lesser black-backed gull, herring 
gull, black-legged kittiwake 

(Anderwald et al., 2011; Wong 
et al., 2018) 

Procellariiformes Manx shearwater, European 
storm petrel, northern fulmar 

 

Rorquals Fin whale, minke whale  (Kot et al., 2014; Baines et al., 
2017; Kahane-Rapport et al., 
2020) 

2.2.1. Slope value scaling 

Because 𝑚 =
𝑑𝑦

𝑑𝑥
  , the response variables (y) need to be scaled if they are to be compared 

with slope values of other models with different response variables. However, models 

struggle to converge when a response variable is scaled 0-1, resulting in Standard Errors of 

around 4-5 orders of magnitude larger than the slope value. Therefore, the response 

variable was not scaled. To allow slope values of models with different response variables to 

be comparable, the slope values were scaled using the following equation: 

𝑚𝑠𝑐 
=  

𝑚(𝑥2 − 𝑥1) − 𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
  ∙  (𝑠𝑚𝑎𝑥 − 𝑠𝑚𝑖𝑛) + 𝑠𝑚𝑖𝑛 

Where:  
msc  = scaled slope value 
Y = response variable (vector) 
𝑥1  = sample value of 𝑥 
𝑥2 = sample value of 𝑥 , where 𝑥2 > 𝑥1 
Smax = maximum value to scale slope values to (0.8) (arbitrary positive value) 
Smin = minimum value to scale slope values to (-0.8) (negative value with equal proximity 

to 0 as Smax) 
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This equation was derived from 𝑦 = (∑ 𝑚𝑖 𝑥𝑖) + 𝑐 , the Straight-Line Equation. 

Percentage change in population with a 20% increase in the value of the predictor was 

calculated using the following equation, where x1 = 0.1 and x2 = 0.3: 

𝑚(𝑥2 − 𝑥1)

𝑦𝑚𝑎𝑥
 ∙ 100 

2.2.2. Dissimilarity 

A distance matrix was calculated, using stats::dist (R Core Team, 2018), as a proxy for 

dissimilarity. The Euclidean distance measure was used. 

𝑆𝑎𝑢√𝑆𝑡𝑢
−2 + 𝑆𝑐𝑢

−2 + 𝑆𝑡𝑓𝑢
−2 + 𝑆𝑑𝑢

−2 + 𝑆𝑑𝑔𝑢
−2 

Table 2.5 Table of distance matrix equation terms. Term description and non-standardised 

parameter the term represents (ZiGLM parameter code). 

Equation Term Term Description ZiGLM parameter code 

Sau Standardised Abundance Units - 

Stu Standardised Temperature Units TPM 

Scu Standardised Chlorophyll Units CHT 

Stfu Standardised Thermal Front Units TPF 

Sdu Standardised Depth Units BAT 

Sdgu Standardised Depth Gradient Units FEA 

2.2.3. Clustering 

Using stats::kmeans  (R Core Team, 2018). To select the k value, an elbow method was used. 

The apex of the curve was six, which was therefore selected to represent k. Agglomerative 

hierarchical clustering was also used, an unsupervised machine learning technique was used 

to group the species by similarity in how their abundance varies with variation in 

environmental parameters. Agglomerative clustering starts off with all observations in 

individual clusters, (whereas divisive clustering starts with all observations in one cluster). 

Clusters most proximate to one another are merged with each time-step. The point where 

the clusters are joined is the node, the height of which shows the extent to which the leaves 

are similar. Various linkage criteria for agglomerative hierarchical clustering exist, which is 

the function used to compute pairwise distances. The function used determines the way in 
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which the clusters are considered distant. There are four main linkage criterions for 

agglomerative clustering; single, average, complete and ward’s link and a distance matrix 

(Euclidean or Manhattan are commonly used metrics) as a measure of dissimilarity between 

observations. The clustering algorithm used Ward’s 1963 linkage criterion (Murtagh & 

Legendre, 2014), which minimizes the total within-cluster variance. Clusters with minimum 

between-cluster distance are agglomerated. Using stats::hclust (R Core Team, 2018). Code 

used, including project package “MScResPACK” available at: 

https://github.com/RGreensmith/MScResPACK The use of these methods allowed 2,645 

comparisons (number of species squared, multiplied by the number of parameters) to be 

evaluated and quantitatively simplified into latent similarity structures. 

2.2.4 Cross-validation of similarity structure 

To cross-validate the similarity structure, Pearson product-moment correlation coefficients 

were calculated between distance metrics representing structure of the different analyses 

(listed in table 2.6), to identify how well the latent structure identified by the analyses was 

mirrored throughout the different analyses. 

Table 2.6 Table of  inputs for Pearson product-moment correlation coefficient used in 

latent similarity structure cross validation. Distance metrics detail how the structure 

identified in the analysis type is represented as an input in the Pearson product-moment 

correlation coefficient to cross-validate the latent similarity structure. 

Analysis type Distance metrics 

Hierarchical 
clustering 

Cophenetic distances derived from the 
agglomerative hierarchical clustering analysis 

Principle Component 
Analysis 

Euclidean distances between the observation scores 
from principal components 1 and 2 from principal 
component analysis 

ZIGLM conditional 
model coefficients 

Euclidean distances between the conditional 
coefficients of the zero-inflated generalised models 
for each species 

Classical multi-
dimensional scaling 

Euclidean distances between coordinates derived 
from classical multi-dimensional scaling 

https://github.com/RGreensmith/MScResPACK
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3.Results 

Figures 3.1, 3.3 and 3.4 show that the guilds/taxa groups were dispersed throughout the 

similarity structure. The within guild/ taxa group dissimilarity was particularly stark between 

the rorquals (blue rectangle; figures 3.1 and 3.4a) and deep-diving odontocetes (green 

rectangle; figures 3.1 and 3.4a).  

 
Figure 3.1  Biplot of principle components 1 and 2, of coefficients from the conditional models. 
Colour coded by the cluster to which the k means cluster algorithm assigned each species. Eigen 
vectors (direction of the variable plane through the matrix) of the variables are represented by the 
direction of the black arrows (each labelled with variable name in black) and the Eigen values (loading, 
or weighting of the variable) of the variables are represented by the length of the black arrows (each 
labelled with variable name in black). The scores of species are represented by positioning of the 
points (labelled with species abbreviation). Blue rectangles highlight rorquals, green rectangles 
highlight deep-diving odontocetes. 

Figures 3.1 and 3.4a show that the minke whale (MINW) and harbour porpoise (HRBP) are 

close together within the similarity structure, and the combination of relationships with 
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environmental variables that explain their uniqueness to the other species, are also the 

combinations that make the minke whale and harbour porpoise similar to one another. The 

K-means clustering analysis identified a large cluster of 17 species and other than a cluster 

containing the Rissos dolphin and the Orca, the remainder of the clusters only contained 

one species. This was because the scale of the slope estimates for the 6 species not in this 

cluster were so much larger than the other species such that comparitively, the species with 

smaller slope estimates appeared to be similar. Because of this, the large group was taken 

as a subset and re-analysed to investigate if there were any other patterns present at the 

scale of those species. A taxa-based dissimilarity gradient can be observed in figure 3.2, 

where highly similar species were mostly seabirds, and progressing along the gradient of 

increasing dissimilarity, delphinids overlapped with seabirds, then the non-delphinid 

cetaceans had the greatest dissimilarity. 

 

Figure 3.2 Unrooted dendrogram of hierarchical clustering. Unrooted dendrogram quantitatively 
derived from agglomerative hierarchical clustering of species ZIGLM conditional coefficients. Black 
arrow denotes increasing dissimilarity between species from right to left (length of arrow is arbitrary). 
Green shading highlights non-delphinid cetaceans, orange shading highlights delphinids and blue 
shading highlights seabirds. 

 

Within the subset analysis, there was greatest dispersion throughout the similarity structure 

between the small-sized delphinids (green highlight; figures 3.3 and 3.4b) and auks  (orange 

highlight; figures 3.3 and 3.4b). Within the gulls (yellow highlight; figures 3.3 and 3.4b), 

there was high similarity between the herring gull (HRGL) and black-legged kittiwake 
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(BLKW), but the lesser black-backed gull (LBGL) was dissimilar to the other gulls. Within the 

procellariiformes (purple highlight; figures 3.3 and 3.4b), there was high similarity between 

the manx shearwater (MXSH) and northern fulmar (NTFU), and the European storm petrel 

(EPSP) was more distant. The guillemot (CMGM), kittiwake (BLKW) and herring gull (HRGL) 

were highly similar to eachother, as were the gannet (NTGA), northern fulmar (NTFU) and 

manx shearwater (MXSH) to one another (figures 3.3 and 3.4b). 

 

 

Figure 3.3 Biplot of principle components 1 and 2, of coefficients from the conditional models from 
the subset analysis of k means cluster 3. Eigen vectors (direction of the variable plane through the 
matrix) of the variables are represented by the direction of the black arrows (each labelled with 
variable name in black) and the Eigen values (loading, or weighting of the variable) of the variables are 
represented by the length of the blue arrows (each labelled with variable name in blue). The scores of 
species are represented by the grey points (labelled with species abbreviation). The scores of species 
are represented by positioning of the points (labelled with species abbreviation). Shaded rectangles 
highlight species groups, orange: auks, green: small-sized delphinids, yellow: gulls, purple: 
procellariiformes. 
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Figure 3.4 Dendrograms of hierarchical clustering of species ZIGLM conditional coefficients. Figure 
A is clustering of all species and figure B is the subset clustering. Shaded rectangles highlight species 
groups; in figure A,  blue : rorquals and green: deep-diving odontocete, in figure B, orange: auks, green: 
small-sized delphinids, yellow: gulls, purple: procellariiformes. 

The majority of seabirds and cetaceans abundance had the same direction of correlation 

with the dynamic variables: positive correlation with fronts and negative correlation with 

sea temperature and chlorophyll (table 3.1). However, the majority of seabirds and 

cetaceans’ abundances were oppositely correlated with the static parameters: majority of 

seabirds were negatively correlated with seabed gradient and depth, whereas the majority 

of cetaceans were positively correlated (table 3.1). Depth was the only parameter with 

seabird coefficients over the 75th percentile (razorbill and European shag) and the most 

cetaceans below the 25th percentile (common, Risso’s and striped dolphins) (table 3.1). Sea 

temperature was the only parameter where no cetacean coefficients were below the 25th 

percentile (table 3.1). For the seabirds, the order of the most important variables was: (i) 

depth, (ii) sea temperature, (iii) fronts, then (iv) both chlorophyll and seabed gradient 

equally, the order was opposite for the least important variables of seabirds (table 3.1). For 

cetaceans, the order of the most important variables was (i) fronts, (ii) depth, (iii) both sea 

A 

B 
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temperature and chlorophyll equally, then  (iv) seabed gradient (table 3.1). The order of the 

least important variables for cetaceans was (i) depth, (ii) both chlorophyll and seabed 

gradient equally, then (iii) both fronts and sea temperature equally (table 3.1). 

Fronts was the most important variable to the cetaceans that are predominantly found on 

the shelf edge and oceanic waters: two of the deep diving odontocetes (pilot whale and 

sperm whale), striped dolphin (all negatively correlated with fronts) and fin whale (positively 

correlated) (table 3.1). The most important variable for the predominantly neritic cetaceans 

(minke whale, white-beaked dolphin and harbour porpoise) was water depth, with which 

the white-beaked dolphin was negatively correlated (table 3.1). The only cetaceans with 

chlorophyll as the most important variable (Risso’s and bottlenose dolphin) were negatively 

correlated (table 3.1). The most important variable for 3 of the deep diving seabirds was 

depth (guillemot, razorbill and shag), whereas sea temperature was most important to the 

puffin (table 3.1).  
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Table 3.1 Summary of conditional model slope estimates. Bold text highlights where species are 
above the 75th percentile. ‘<25th‘ identifies that the species absolute value is lower than the 25th 
percentile of all species absolute values for the corresponding predictor. ‘>75th‘ means that the species 
absolute value is greater than the 75th percentile of all species absolute values for the corresponding 
predictor, ‘IQR’ denotes the interquartile range. When the value contains ‘+’, the abundance of that 
species increases linearly with an increase in the value of the corresponding predictor. When the value 
contains ‘-‘, the abundance of that species decreases linearly with an increase in the value of the 
corresponding predictor. Dark grey shading highlights the parameter with the steepest slope estimate 
compared to the other parameters for the species, light grey shading highlights the parameter with 
the shallowest slope estimate for the species. 

 
Species Guild/taxa group 

 

 Sea 
Temp. 

Thermal 
fronts 

Chlorophyll 
Seabed 

Gradient 
Depth 

Se
ab

ir
d

s 

Atlantic puffin Auk IQR - IQR + IQR + IQR - IQR - 

Common guillemot Auk IQR - IQR + IQR - IQR - IQR - 

Razorbill Auk <25th + IQR + IQR - IQR + >75th - 

Black-legged kittiwake Gull <25th - <25th + IQR - <25th - <25th - 

Herring gull Gull <25th - <25th + <25th - IQR - IQR - 

Lesser black-backed gull Gull IQR + IQR - IQR + <25th - IQR - 
European storm petrel Procellariiform IQR - IQR - IQR - IQR - IQR - 

Manx shearwater Procellariiform <25th + <25th + <25th + <25th + IQR - 

Northern Fulmar Procellariiform <25th - <25th + <25th - <25th + <25th - 

European shag  IQR - IQR + <25th + IQR + >75th - 
Northern Gannet  <25th - <25th + <25th + <25th - <25th - 

C
et

ac
ea

n
s 

Pilot whale Deep diving odontocete >75th - >75th - IQR - >75th + IQR + 

Risso’s dolphin Deep diving odontocete IQR - >75th + >75th - IQR + <25th + 

Sperm whale Deep diving odontocete >75th - >75th - >75th + >75th + >75th + 

Fin whale Rorqual >75th + >75th + > 75th - IQR + >75th + 

Minke whale Rorqual >75th - >75th + IQR - >75th + >75th - 

Bottlenose dolphin Small-sized delphinid IQR - IQR + IQR - IQR + IQR + 

Common dolphin Small-sized delphinid IQR + IQR + IQR - <25th - <25th + 

Striped dolphin Small-sized delphinid IQR + IQR - IQR + IQR + <25th + 

White-beaked dolphin Small-sized delphinid IQR - <25th + >75th + >75th - IQR + 

White-sided dolphin Small-sized delphinid >75th - IQR + <25th - IQR - IQR + 

Harbour porpoise  IQR - IQR + >75th + >75th + > 75th - 
Orca  >75th - >75th + >75th - >75th + IQR + 

The strong positive correlations between the analyses and the dissimilarity matrix of species 

based on the ZIGLM conditional coefficients (table 3.2) validates the latent similarity 

structure persistent in the different analysis. 

  



Page | 27 
 

Table 3.2 Pearson product-moment correlation coefficient matrix of cophenetic distances derived 
from the agglomerative hierarchical clustering analysis (HClust. cophenetic dist.), Euclidean distances 
between the observation (species) scores from principle dimensions 1 and 2 from principle component 
analysis (Euclid dist. between pc1 and pc2 scores) and the Euclidean distances between the conditional 
coefficients of the zero-inflated generalised mixed models for each species (Euclid dist. between ZIGLM 
coefficients (conditional) for each species) and the Euclidean distances between coordinates derived 
from classical multi-dimensional scaling (Euclid dist. between coordinates from classical MDS). 

HClust. cophenetic 
dist. 

-    

Euclid dist. between 
pc1 and pc2 scores 

0.963 -   

Euclid dist. between 
ZIGLM coefficients 

(conditional) for 
each species 

0.976 0.984 
- 
 

 

Euclid dist. between 
coordinates from 

classical MDS 
0.963 1 0.984 - 

 
HClust. 

cophenetic 
dist. 

Euclid 
dist. 

between 
pc1 and 

pc2 
scores 

Euclid dist. 
between 

ZIGLM 
coefficients 

(conditional) 
for each 
species 

Euclid dist. 
between 

coordinates 
from 

classical 
MDS 

  



Page | 28 
 

4.Discussion 

This study has identified a similarity structure amongst some of the seabird and cetacean 

community in the northeast Atlantic. On a coarse scale, the identified similarity structure 

followed a taxa-based dissimilarity gradient, where highly similar species were mostly 

seabirds, and progressing along the gradient of increasing dissimilarity, delphinids 

overlapped with seabirds, then the non-delphinid cetaceans had the greatest dissimilarity. 

The scale at which the non-delphinid cetaceans were dissimilar resulted in the dissimilarity 

of the seabirds and delphinids being negligible, resulting in a nested similarity structure that 

is observable when the non-delphinid cetaceans and the orca and Risso’s dolphin are 

removed. Across both structures, there is a common theme of dissimilarity between species 

in the same guild, and similarity between sympatric species from separate guilds, and not 

closely related taxa. 

The dissimilarity gradient largely reflected steepness of gradient of correlation with the 

environmental parameters, which could be expected to occur if species at one end of the 

gradient had a relatively low abundance in the study area and the other end of the gradient 

had a relatively high abundance. However, there was a mixture of species across this 

gradient with varying abundance in the study area, for example, species at the dissimilar 

end of the gradient includes the harbour porpoise, the most abundant cetacean in the study 

area (Hammond et al., 2013), and the sperm whale and fin whale, which have a relatively 

low abundance in the study area (K. Macleod et al., 2009; Rogan et al., 2017). Furthermore, 

at the other end of the gradient are species with relatively high abundance such as the 

guillemot (Mitchell et al., 2004), and species with relatively low abundance, such as the 

European storm petrel (Mitchell et al., 2004). Another potential explanation could be annual 

variation in the presence of the species and similarity of the distribution across the seasons. 

However, this was also mixed across the dissimilarity gradient, for example, species that 

have a consistent year-round presence and have comparatively low variation in range across 

the seasons, such as the harbour porpoise (Laran, Pettex, David et al., 2017) and European 

shag (Acker et al., 2020) were spread across the dissimilarity gradient, and migratory species 

with low abundance in the study area at some parts of the year, such as the fin whales 
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(Laran, Pettex, David et al., 2017; Gauffier et al., 2020) and Manx shearwater (Guilford et al., 

2009), were at either end of the dissimilarity gradient. 

A weak correlation between species distribution and the environmental parameters could 

occur if multiple environmental gradients were crossed, which could be more common 

amongst central place foragers, for example, seabirds during the breeding season (Patrick et 

al., 2014). Another instance where this might also apply is when intraspecific habitat 

partitioning occurs within a range that encompasses multiple populations of a species. 

Intraspecific habitat partitioning has been found in many of the species in this study, 

particularly between male and female (Edwards et al., 2016; Clark et al., 2021), which, could 

result in more environmental gradients being crossed by that species if both genders were 

encompassed in the spatial range of the study. Within this study area, both genders of the 

seabirds are present, but relationships between foraging behaviours and habitat can be 

different between the genders for some species such as gannets (Cox et al., 2016), which 

could result in more environmental gradients being represented by the species. Another 

example is the use of a dual foraging strategy by Manx shearwaters at the Skomer Island 

colony during the breeding season, where short foraging trips to the Celtic Sea front were 

used for chick provisioning, and longer foraging trips to the north and west of the Irish Sea 

front for maintaining personal body condition (Shoji et al., 2015). Whilst both types of 

foraging trip were to fronts, there is potential for other environmental gradients to be 

crossed with this dual foraging strategy. Furthermore, high abundances of some seabirds in 

different habitats can occur where species such as Manx shearwaters raft in the sea nearby 

their breeding colony, often in large numbers (Richards et al., 2019), which is a different 

type of habitat to areas where most intense foraging activity occurs. Furthermore, density-

dependent competition results in foraging habitat partitioning between neighbouring 

colonies of conspecifics for a variety of seabirds, such as gannets (Wakefield et al., 2013), 

lesser black-backed gulls (Corman et al., 2016), kittiwakes and guillemots (Wakefield et al., 

2017), which could also result in more environmental gradients being crossed. At the other 

end of the taxa-based dissimilarity gradient, latitudinal partitioning can occur between 

genders of many of the non-delphinid cetaceans (Born et al., 2003; Teloni et al., 2008; 

Laidre et al., 2009), so counts of these species within the northeast Atlantic could be more 

composed of one of the genders, which could result in less environmental gradients being 
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represented by the species. For example, mature male sperm whales mainly occur at higher 

latitudes than their conspecifics (Teloni et al., 2008). 

There was dissimilarity within guilds, which was particularly pronounced among auks, small-

sized delphinids, rorquals, Larus gulls and deep-diving odontocetes. Niche partitioning has 

been found to occur within these guilds in numerous fine-scale studies, for example spatial 

partitioning of foraging areas between sympatric auks (Linnebjerg et al., 2013; Symons, 

2018; Gulka et al., 2019; Delord et al., 2020) and Larus gulls (Kubetzki & Garthe, 2003). 

Habitat partitioning within the small-sized delphinid guild has also been observed, for 

example, between white-sided and common dolphins (Gowans & Whitehead, 1995), 

common and striped dolphins (Giménez et al., 2017), white-beaked and white-sided 

dolphins (MacLeod et al., 2007), and trophic niche partitioning between the white-beaked 

and white-sided dolphins (Das et al., 2003). Fine-scale spatial partitioning and  trophic niche 

partitioning between the rorquals has also been found (Ingram et al., 2007; Ryan et al., 

2013; Gavrilchuk et al., 2014). The dissimilarity between the deep-diving odontocetes in the 

current study reflects observations of habitat and trophic niche partitioning between these 

species in literature (Azzellino et al., 2008; Spitz et al., 2011; Giorli et al., 2016). Policy 

makers, planning authorities and conservationists frequently use species distribution 

models (SDMs) in planning and decision-making processes to predict the current and/or 

future distribution of a species (Mannocci et al., 2017). However, ecological processes such 

as those observed in this study are rarely incorporated, potentially due to lack of data, 

reliable quantification of the processes and a lack of clarity on how relevant the processes 

are to the scenario. The results found here indicate that these processes, that are also 

observed in fine scale studies, could potentially be occurring on a larger scale. 

There was a similarity pattern of species that share similar diets and occur sympatrically 

throughout parts of their range, but were from different guilds. For example, the northern 

fulmar is a surface feeder, the Manx shearwater is a pursuit plunger, and northern gannet a 

plunge diver (Furness & Tasker, 2000), yet they showed similarity. Despite sharing prey 

resources, aspects of the ecology of species showing similarity could result in comparatively 

low competitive pressure, potentially explaining how their relationships between 

distribution and environmental parameters could be relatively similar. The high similarity 



Page | 31 
 

between the gannet, fulmar and shearwater is largely due to their particularly weak 

relationships with environmental parameters in this study, which could be related to 

potentially being observed crossing many environmental gradients, as they are less 

constrained by central place foraging than the other seabirds in the study, frequently 

travelling over 50 km from their nests with maximum ranges over 330 km (Furness & Tasker, 

2000; Thaxter et al., 2012). The similarity could also be because of lack of competition, of 

the species in the current study, (Furness & Tasker, 2000) considered the gannet and fulmar 

(along with the herring gull and storm petrel) to have the greatest plasticity in diet and/or 

foraging methods, and the shearwater slightly less varied methods of foraging and/or prey 

types.  

The guillemot, kittiwake and herring gull are the only species in this study with matching 

direction and similar magnitude of correlation between distribution and the parameters. 

The guillemot and kittiwake were more similar to each other than the herring gull. The 

guillemot and kittiwake are similar in that they share the same diet, as their main prey type 

is sandeels and other forage fish. They are both heavily dependent on sandeels, such that 

their breeding productivity has been linked to population dynamics of sandeels (Frederiksen 

et al., 2006). They are also similar in that they have similar foraging ranges from the colony 

(Furness & Tasker, 2000; Thaxter et al., 2012), their at-sea distribution overlaps (Waggitt et 

al., 2020), their colonies can be adjacent to one-another (Newell et al., 2015), and they are 

both present in the study area during the non-breeding season (Lambert, Pettex et al., 

2017). However, whilst they target the same prey and have similar ranges, their foraging 

behaviours are vastly different, as the kittiwake is a surface feeder, and the guillemot is a 

pursuit diver (Camphuysen & Webb, 1999). As their methods of catching prey greatly differ, 

it could be expected that they would need different physical environments for optimising 

efficiency of prey capture, specific to their behaviours. However, they are frequently 

observed in the same multi-species feeding aggregations, as the guillemots facilitate 

kittiwakes in capturing prey (Skov et al., 2000; Camphuysen et al., 2006). Camphuysen and 

Webb (Camphuysen & Webb, 1999) suggested that facilitation by guillemots could be a 

driver of kittiwake distribution, that auks could determine kittiwake foraging range extent, 

and that this mechanism influencing kittiwake distribution is greatly underestimated. The 

expected result from this theory would be that the guillemot and kittiwake have similar 
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relationships between their distribution and environment, which is present in the results of 

this study. 

The kittiwake facilitates herring gulls in locating prey patches, described as ‘catalysts’ in 

multi-species feeding aggregations due to their high visibility (Camphuysen & Webb, 1999; 

Anderwald et al., 2011). The behaviours of herring gulls can break up the multi-species 

feeding aggregations, by sitting in the centre of the prey patch, blocking the other surface 

feeders, where they often remain until another aggregation is visible (Camphuysen & Webb, 

1999). Since many kittiwake populations are declining (Frederiksen, 2010), it is important to 

have a clear understanding of the processes influencing their distribution. Future research 

must be undertaken to identify if facilitation by feeding guillemots influences kittiwake 

distribution, and if this is the case, then it is important to understand the extent of this 

effect. 

The minke whale and harbour porpoise were found to be similar in this study however, 

unlike the possible explanation for similarity between the guillemot and kittiwake, it is 

highly unlikely that facilitation occurs between the minke whale and harbour porpoise. 

Despite their range and dietary overlap, the similarity between the minke whale and 

harbour porpoise could be explained by lack of competitive exclusion due to their different 

foraging strategies (Johnston & Berta, 2011; Kot et al., 2014). Furthermore, their solitary 

nature (Sigurjónsson et al., 1991) could be less exclusionary to each other at prey patches. 

4.1 Critical appraisal of the methods 

Using linear models to model non-linear data results in information loss, however, it was 

outside of the scope of the project to develop statistical methods to enable a quantifiable 

comparison of the species relationships of non-linear models, which is why generalised 

linear models were chosen. Further improvement to the models would be incorporating 

spatial and temporal autocorrelation structures, however there was not enough time to run 

these models. Slope estimates used in the similarity analysis were scaled to allow 

comparison of slope estimates amongst models, however, this did not account for skewness 

of the different species abundance data. 
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This could be problematic, for instance, scaling slope estimates to the maximum value of 

right-skewed data will result in a shallower slope estimate than that of similarly correlated 

data with a more normal distribution. Whilst a square root transformation of the count data 

would reduce right-skewedness, this can be problematic as transformations alter the 

relationship between the response and explanatory variables (Zuur et al., 2009). A more 

robust approach would be to account for right skewedness of the response variable in 

scaling the slope estimates, by using the 75th percentile of the response variable rather than 

the maximum value when scaling. 

To test this theory, this and the original scaling methods were applied to a conditional 

coefficient of two species, (one heavily skewed, and the other more normally distributed), 

the outcome was that the relative difference between slope estimate scaled using 75th 

percentile of y was slightly smaller than when the slope estimate was scaled using maximum 

y, however the extent that it could affect interpretability of the similarity structure was 

sufficiently negligible. Furthermore, count data for most of the species are right skewed, 

therefore the effect of skewedness on coefficient scaling is relatively consistent and 

patterns of similarity are still interpretable. 

4.2 Conclusion 

The scale of the relationship between species abundance and their environment was 

distinct between taxa, as non-delphinid cetaceans had much stronger correlations than 

delphinids and seabirds. Furthermore, species with resource overlap that were not closely 

related or from the same guilds, showed similarity and there was a pattern of dissimilarity 

between species that were closely related or sharing guilds, which reflected patterns 

expected from species interactions such as habitat partitioning and coexistence. The 

relationships between distribution and environmental parameters of many marine top 

predators cannot be grouped together purely based on them being closely related or 

sharing guilds. Future research directions arisen from this study includes identifying 

underlying mechanisms driving this similarity structure and exploring whether interspecific 

interactions have a role. 
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6.Appendices 

 

Appendix 1: Methodology 

1.1 Environmental parameters 

 

Figure 6.1.1. Mean potential temperature (Celsius) between 0 and 150m from surface 
(modelled) per season (parameter code: TPM). Top left: spring, top right: summer, bottom 
left: autumn, bottom right: winter. 
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Figure 6.1.2. Total Chlorophyll (mg) depth summed between 0 and 150m from surface 
(modelled) (parameter code: CHT). Top left: spring, top right: summer, bottom left: autumn, 
bottom right: winter. 
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Figure 6.1.3. Thermal stratification gradient (unitless) (parameter code: TPF). Higher values 
indicate greater frontal activity Top left: spring, top right: summer, bottom left: autumn, 
bottom right: winter. 
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Figure 6.1.4. Seabed gradient, and square root transformed seabed gradient (parameter 
code: FEA). Depth gradient (m) calculated using terrain ruggedness index. Seabed gradient 
(left), square root transformed seabed gradient (right). 

 

 

Figure 6.1.5. Depth (m), and log10 transformed depth (m) (parameter code: BAT). Depth (m) 
(left), log10 transformed water depth (right). 
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Appendix 2: Results 

Table 6.2.1. Table of k fold cross validation mean squared errors and Durbin-Watson residuals 
statistic. 

Species 
k 1 
(MSE) 

k 2 
(MSE) 

k 3 
(MSE) 

k 4 
(MSE) 

k 5 
(MSE) 

mean of 
k 1-5 
MSEs 

Durbin-
Watson 
(residuals) 

Puffin 257.61 37.88 75.33 99.2 16.16 97.24 1.64 

black-legged kittiwake 3974.56 1055.15 900.41 1757.98 140.73 1565.77 1.97 

bottlenose dolphin 2.47 1.58 1.47 1.34 0.8 1.53 1.8 

common guillemot 3178.47 915.93 1097.99 1230.71 248.27 1334.27 1.76 

Common Dolphin 142.78 65.12 47.92 79.16 27.74 72.54 1.94 

European shag 11.03 2.58 2 5.36 0.66 4.33 1.8 

European Storm petrel 32 7.15 10.52 13.95 2.57 13.24 1.95 

Fin whale      0.03 1.8 

harbour porpoise       1.68 1.86 

herring gull 999.68 201.22 262.96 404.53 56.45 384.97 1.92 

Lesser Black Backed Gull 638 195 183 278 52 269 1.93 

Manx Shearwater 2951 1203 781 1111 56 1220 1.88 

Minke Whale       1.93 

Northern Fulmar 23678 5829 3994 11484 433 9083 1.89 

Northern Gannet 1429.14 430.93 270.02 714.29 106.26 590.13 1.85 

Orca 0.05 0.02 0.01 0.03 0.02 0.03 2.002 

Pilot Whale 2.34 0.7 0.87 1.51 0.59 1.2 1.97 

Razorbill 146.67 39.52 48.79 60.73 16.07 62.35 1.86 

Risso’s Dolphin 0.23 0.08 0.09 0.12 0.05 0.11 1.95 

Sperm Whale      0.01 2 

Striped Dolphin 5.53 1.9 1.96 3 1.06 2.69 1.98 

White-beaked Dolphin 0.94 0.37 0.44 0.59 0.31 0.53 1.9 

White-sided Dolphin 18.56 3.49 1.81 9.66 1.39 6.98 2 
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Figure 6.2.1. Boxplots of averages of fin whale model K fold cross validation mean squared 
errors 

 

 

Figure 6.2.2. Boxplots of averages of harbour porpoise model K fold cross validation mean 
squared errors 
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Figure 6.2.3. Boxplots of averages of sperm whale model K fold cross validation mean 
squared errors 
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2.1 Coefficient Validation 

Table 6.2.2. Table of conditional model parameters where coefficients p value were greater than 
0.05, wide standard error of slope estimate, or predicted coefficients from RW Metropolis sampling 
overlapping zero. 

Species Variable p m% of SE 

Razorbill  TPM 0.19 73 

Sperm whale TPM   

White-beaked dolphin  TPM   

European shag TPF 0.047 51 

Storm petrel TPF 0.038 48 

Herring gull TPF 0.08 55 

Sperm whale TPF   

White-beaked dolphin  TPF   

White-sided dolphin  TPF   

European shag CHT 4.33 13 

Orca  CHT 0.278 91 

Pilot whale  CHT 0.78 27 

Sperm whale CHT   

White-sided dolphin  CHT   

Common dolphin FEA 0.9 14 

Fin whale FEA 0.92 10 

Lesser black-backed gull FEA 0.263 89 

Northern gannet FEA 0.0214 41 

Orca  FEA 0.634 48 

Sperm whale FEA   

White-sided dolphin  FEA   

Orca  BAT 0.312 100 

Risso’s dolphin  BAT 0.998  

Sperm whale BAT     

Razorbill, TPM, proposal distribution = 0.15 (smallest absolute m value of all variables), the 

coefficient values range from around -0.3 to 0.69, and the majority of coefficients have 

values between -0.05 and 0.35. The density of coefficient values are roughly normally 

distributed where the peak density is around 0.15. There is a high density of coefficients 

with values around 0, providing support for the p values probability score that the null 

hypothesis cannot be rejected. There is also a high density of coefficients with values 

around 0.25. the density of coefficients with positive values was still much greater than 

those with negative values (proposal is positive). 
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Figure 6.2.3. density plot (bottom) of random-walk metropolis sampling of the 
conditional model mean sea temperature coefficients. 

Herring gull, TPF, the proposal distribution was centred at 0.11, there was greater density of 

predicted coefficients over 0.2, than the density of coefficients below 0, and the greatest 

density of coefficients had values between 0.025 and 0.21. The density of values not equal 

to zero was much larger than the density of values equal to zero. European shag, TPF, tail of 

metropolis sampling overlaps zero, but density is extremely low. Storm petrel, TPF, tail of 

metropolis sampling overlaps zero, but density is extremely low. Orca, CHT, tail overlaps 0, 

but greatest density of coefficients had values between around -1.25 and 0, and proposal 

distribution was -0.67. Pilot whale, CHT, proposal distribution -0.15, similar density of 

coefficients with positive and negative values, greatest density between around -1 and 0.75, 

slightly greater density of negative values than positive (proposal is negative). European 

shag, CHT, normal distribution around 0, base range < all other variables. Northern gannet, 

FEA, proposal distribution was centred at -0.17. The range of coefficient values was from 

around -0.4 to around 0.1. The majority of values were between -0.3 and -0.05. 

 

RAZB: TPM 

SPRW: TPM 

WHBD: TPM 
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Figure 6.2.4. density plot (bottom) of random-walk metropolis sampling of the conditional 
model thermal front potential coefficients. 
There was a high-density coefficients with values around -0.14 and another peak in density 

of values around -0.225. There was also a high density of coefficients with values around -

0.1. The density of coefficients with a value of zero was much less than the density of 

coefficients with a value not equal to zero. Orca, FEA, proposal distribution was 0.51, and 

greatest density of coefficients was between around -1 and 1.75, close to a normal 

distribution centred around 0, with similar density of coefficients being positive and 

negative, although a slightly greater density of positive values than negative. Lesser black-

backed gull, FEA, high density of coefficients overlapping 0, although greatest density of 

coefficients is between 0 and ~-0.3 (proposal distribution -0.154). Common dolphin, FEA, 

normal distribution around 0, base range < all other variables. Fin whale, FEA, normal 

distribution around 0, base range < all other variables. 

 

EPSH: TPF EPSP: TPF 

HRGL: TPF SPRW: TPF 

WHBD: TPF WHSD: TPF 
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Figure 6.2.5. density plot (bottom) of random-walk metropolis sampling of the conditional model 

chlorophyll concentration coefficients. 

Figure 6.2.6. density plot (bottom) of random-walk metropolis sampling of the conditional 
model water depth coefficients. 

 

EPSH: CHT KILW: CHT 

PILW: CHT SPRW: CHT 

WHSD: CHT 

KILW: BAT RISD: BAT 

SPRW: BAT 
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Figure 6.2.7. density plot (bottom) of random-walk metropolis sampling of the conditional 

model seabed gradient coefficients. 

Orca, BAT, proposal distribution was 0.4, and the greatest density of coefficients had values 

between around -0.15 and 0.75, and the majority of coefficients were positive rather than 

negative (proposal was positive). Risso’s dolphin, BAT, similar density of coefficients with 

positive and negative values, greatest density of coefficients have values between -0.2 and 

0.2 (both still smallest absolute slope value of all variables), normal density distribution of 

predicted coefficients centred around 0. 

 

 

  

COMD: FEA FINW: FEA 

LBBG: FEA NTGA: FEA 

KILW: FEA SPRW: FEA 

WHSD: FEA 
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2.2 Model Outputs 
Table 6.2.3.1. Atlantic puffin ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

C
o

n
d

it
io

n
al

 

(Intercept) 3.16 0.07 44.14 0 

TPM_s -6.44 0.13 -51.38 0 

TPF_s 3.96 0.17 22.67 9.37E-114 

CHT_s 1.35 0.08 15.9 6.65E-57 

FEA_s -2.11 0.24 -8.68 3.79E-18 

BAT_s -2.56 0.15 -17.37 1.36E-67 

Lo
gi

st
ic

 

(Intercept) 3.88 0.17 22.82 2.63E-115 

CHT_s 3.32 0.28 11.93 8.66E-33 

TPS_s -2.87 0.35 -8.15 3.65E-16 

BAT_s -149.17 9.07 -16.45 8.86E-61 

TPF_s -65.28 2.58 -25.34 1.25E-141 

Table 6.2.3.2. Black-legged kittiwake ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

C
o

n
d

it
io

n
al

  

(Intercept) 2.77 0.03 102.80 0 

TPM_s -2.81 0.05 -55.30 0 

TPF_s 1.69 0.10 16.30 1.16E-59 

FEA_s -1.41 0.12 -11.90 8.18E-33 

BAT_s -1.07 0.06 -17.60 1.83E-69 

CHT_s -0.97 0.04 -24.40 2.29E-131 

Lo
gi

st
ic

 (Intercept) 4.48 0.26 17.26 9.34E-67 

TPM_s -21.70 1.03 -20.97 1.14E-97 

TPF_s -44.89 10.82 -4.15 3.33E-05 

Table 6.2.3.3. Bottlenose dolphin ZIGLM model outputs. Slope estimate, standard error, z-value, and 
p-value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 2.73 0.05 51.91 0 

TPM_s -1.93 0.08 -22.78 7.90E-115 

TPF_s 2.55 0.17 15.27 1.26E-52 

FEA_s 1.85 0.05 34.13 2.78E-255 

BAT_s 0.34 0.06 5.71 1.14E-08 

CHT_s -0.71 0.13 -5.29 1.20E-07 

lo
gi

st
ic

 

(Intercept) 7.53 0.12 61.15 0 

CHT_s -3.39 0.30 -11.40 4.35E-30 

BAT_s -0.18 0.20 -0.89 0.38 

TPS_s -4.32 0.19 -22.81 3.34E-115 

CHT_s:BAT_s 5.16 2.02 2.56 0.01 
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Table 6.2.3.4. Common guillemot ZIGLM model outputs. Slope estimate, standard error, z-value, and 
p-value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 3.52 0.03 138.34 0 

TPM_s -3.30 0.05 -67.54 0 

TPF_s 4.02 0.12 33.46 2.11E-245 

FEA_s -1.51 0.19 -7.98 1.49E-15 

BAT_s -7.41 0.18 -41.09 0 

CHT_s -1.28 0.04 -28.50 1.08E-178 

lo
gi

st
ic

 

(Intercept) 5.32 0.27 20.07 1.32E-89 

TPM_s -18.78 0.96 -19.64 7.14E-86 

SPM_s -9.42 0.69 -13.61 3.53E-42 

CHS_s -2.67 0.73 -3.65 0.0003 

TPF_s 16 0.88 18.23 3.01E-74 

Table 6.2.3.5. Common dolphin ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) -5.21 0.18 -28.65 1.67E-180 

TPM_s 10.26 0.37 28.02 9.51E-173 

TPF_s 1.68 0.27 6.33 2.48E-10 

FEA_s -0.02 0.14 -0.12 0.9 

BAT_s 0.71 0.08 8.76 2.03E-18 

CHT_s -3.05 0.27 -11.09 1.45E-28 

lo
gi

st
ic

 

(Intercept) -20.96 1.11 -18.85 3.17E-79 

TPM_s 32.18 1.57 20.52 1.51E-93 

CON_s 34.85 2.55 13.66 1.65E-42 

CHT_s -2.66 0.69 -3.86 0.0001 

TPR_s -0.78 0.20 -3.89 9.92E-05 

TPM_s:CON_s -42.53 3.59 -11.84 2.52E-32 
Table 6.2.3.6. European shag ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 2.11 0.04 47.01 0 

TPM_s -0.99 0.09 -10.85 1.94E-27 

TPF_s 0.35 0.18 1.99 0.047 

FEA_s 3.13 0.34 9.32 1.13E-20 

BAT_s -26.43 1.90 -13.92 4.66E-44 

CHT_s 0.01 0.08 0.17 0.862 

lo
gi

st
ic

 

(Intercept) 3.09 0.06 55.73 0 

SPM_s 2.95 0.19 15.59 8.94E-55 

TPF_s -7.21 0.37 -19.51 9.18E-85 

CHS_s -1.54 0.23 -6.75 1.47E-11 

TPR_s 9.41 0.42 22.46 9.13E-112 
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Table 6.2.3.7. European storm petrel ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter details 
are the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 
co

n
d

it
io

n
al

 
(Intercept) 0.39 0.19 2.08 0.04 

TPM_s -1.03 0.30 -3.43 0.001 

TPF_s -0.65 0.31 -2.08 0.038 

FEA_s -1.18 0.28 -4.14 3.51E-05 

BAT_s -3.06 0.18 -17.08 1.97E-65 

CHT_s -1.06 0.20 -5.30 1.15E-07 

lo
gi

st
ic

 (Intercept) 4.67 0.22 21.70 1.85E-104 

TPM_s -3.25 0.38 -8.51 1.68E-17 

TPF_s -12.48 2.27 -5.49 3.93E-08 

TPR_s -48.63 2.33 -20.92 3.44E-97 

Table 6.2.3.8. Fin whale ZIGLM model outputs. Slope estimate, standard error, z-value, and p-value 
for each parameter within both nested models (conditional and logistic). Parameter details are the 
full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 

Code 
Slope 

Estimate 
Standard 

Error 
z-Value p-Value 

co
n

d
it

io
n

al
 (Intercept) -6.25 0.29 -21.73 1.06E-104 

TPM_s 4.45 0.46 9.68 3.55E-22 
TPF_s 5.36 0.88 6.08 1.22E-09 

FEA_s 0.03 0.29 0.10 0.92 
BAT_s 2.08 0.25 8.31 9.71E-17 
CHT_s -4.40 0.75 -5.90 3.58E-09 

lo
gi

st
ic

 (Intercept) 1.90 0.26 7.30 2.99E-13 
CHT_s 17.00 2.48 6.86 6.80E-12 
BAT_s 4.39 1.37 3.21 0.001 
CHT_s:BAT_s -690.83 89.05 -7.76 8.66E-15 

Table 6.2.3.9. Harbour porpoise ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) -1.19 0.04 -31.50 4.23E-218 

TPM_s -0.50 0.07 -7.00 2.64E-12 

TPF_s 0.95 0.14 6.60 4.01E-11 

FEA_s 6.43 0.30 21.20 6.35E-100 

BAT_s -55.37 1.36 -40.80 0 

CHT_s 3.16 0.12 26.40 5.29E-154 

Lo
gi

st
ic

 

(Intercept) -10.60 0.62 -17.17 4.56E-66 

TPM_s 7.11 1.45 4.92 8.85E-07 

BAT_s 414.17 87.01 4.76 1.93E-06 

CHT_s 7.42 0.95 7.79 6.60E-15 

SPM_s 13.46 0.68 19.76 6.22E-87 

TPM_s:BAT_s -1204.43 262.92 -4.58 4.63E-06 
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Table 6.2.3.10. Herring gull ZIGLM model outputs. Slope estimate, standard error, z-value, and p-value 
for each parameter within both nested models (conditional and logistic). Parameter details are the full 
names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 2.81 0.01 306.47 0 

TPM_s -1.02 0.02 -52.38 0 

TPF_s 0.11 0.06 1.74 0.08 

FEA_s -2.03 0.13 -15.36 3.25E-53 

BAT_s -10.28 0.23 -44.79 0 

CHT_s -0.33 0.02 -16.23 3.19E-59 

lo
gi

st
ic

 (Intercept) 0.05 0.04 1.42 0.155 

CHT_s 0.19 0.06 3.03 0.00242 

TPM_s 3.37 0.07 49.31 0 

SPM_s -0.46 0.06 -7.58 3.56E-14 

Table 6.2.3.11. Lesser black-backed gull ZIGLM model outputs. Slope estimate, standard error, z-
value, and p-value for each parameter within both nested models (conditional and logistic). 
Parameter details are the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) -1.02 0.0377 -27.04 4.97E-161 

TPM_s 1.171 0.0642 18.24 2.33E-74 

TPF_s -0.891 0.1544 -5.77 8.07E-09 

FEA_s -0.154 0.1376 -1.12 0.263 

BAT_s -2.78 0.1248 -22.28 5.84E-110 

CHT_s 3.471 0.0753 46.09 0 

lo
gi

st
ic

 (Intercept) -3.85 0.386 -9.96 2.23E-23 

CHT_s 10.01 0.53 18.88 1.71E-79 

TPM_s -3.57 0.558 -6.39 1.68E-10 

SPM_s -3.46 0.943 -3.67 0.000243 

Table 6.2.3.12. Manx shearwater ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 0.91 0.02 49.80 0 

TPM_s 3.19 0.03 113.10 0 

TPF_s 2.48 0.02 108.60 0 

FEA_s 1.10 0.07 15.00 1.52E-50 

BAT_s -5.93 0.07 -85.50 0 

CHT_s 0.88 0.02 40.00 0 

lo
gi

st
ic

 (Intercept) 3.48 0.03 115.46 0 

CHT_s -3.77 0.08 -49.52 0 

SPM_s -0.68 0.08 -8.19 2.65E-16 
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Table 6.2.3.13. Minke whale ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) -2.70 0.13 -21.14 3.58E-99 

TPM_s -1.45 0.21 -6.88 5.86E-12 

TPF_s 1.19 0.42 2.85 0.004 

FEA_s 3.26 0.35 9.38 6.70E-21 

BAT_s -6.45 0.60 -10.71 9.35E-27 

CHT_s -0.80 0.30 -2.66 0.008 

lo
gi

st
ic

 (Intercept) 0.76 0.17 4.57 4.84E-06 

TPF_s -95.03 8.18 -11.62 3.32E-31 

SPM_s 6.76 0.62 10.89 1.24E-27 

Table 6.2.3.14. Northern gannet ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 4.17 0.005 880.6 0 

TPM_s -2.43 0.010 -240.4 0 

TPF_s 1.81 0.020 91.5 0 

FEA_s 1.69 0.021 79.6 0 

BAT_s -0.64 0.014 -46.4 0 

CHT_s -0.53 0.008 -69 0 

      

lo
gi

st
ic

 (Intercept) 0.25 0.010 25.61 1.21E-144 

CHT_s 0.27 0.043 6.33 2.53E-10 

FEA_s 3.47 0.109 31.9 2.86E-223 

Table 6.2.3.15. Northern gannet ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 1.40 0.03 46.12 0 

TPM_s -0.46 0.05 -8.96 3.30E-19 

TPF_s 1.90 0.08 24.33 9.41E-131 

FEA_s -0.17 0.07 -2.30 0.0214 

BAT_s -1.59 0.05 -30.90 1.06E-209 

CHT_s 0.47 0.03 13.92 4.81E-44 

lo
gi

st
ic

 (Intercept) 5.57 0.14 40.18 0 

TPM_s -18.09 0.43 -41.77 0 

TPF_s -7.42 2.02 -3.67 0.0002 
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Table 6.2.3.16. Orca ZIGLM model outputs. Slope estimate, standard error, z-value, and p-value 
for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 
co

n
d

it
io

n
al

 
(Intercept) 2.47 0.28 8.91 5.19E-19 

TPM_s -2.73 0.60 -4.57 4.83E-06 

TPF_s 3.02 0.78 3.86 0.0001 

FEA_s 0.51 1.07 0.48 0.634 

BAT_s 0.40 0.40 1.01 0.312 

CHT_s -0.67 0.61 -1.09 0.278 

lo
gi

st
ic

 

(Intercept) 5.33 0.53 10.13 4.04E-24 

TPR_s -4.69 1.90 -2.48 0.01 

TPS_s 1.92 1.06 1.80 0.07 

CON_s 5.43 0.78 6.93 4.09E-12 

BAT_s 0.84 0.88 0.96 0.34 

TPR_s:TPS_s 5.70 3.25 1.75 0.08 

CON_s:BAT_s -5.04 7.82 -0.64 0.519 

Table 6.2.3.17. Pilot whale ZIGLM model outputs. Slope estimate, standard error, z-value, and p-value 
for each parameter within both nested models (conditional and logistic). Parameter details are the 
full names of each parameter, corresponding to the parameter code. 

 Model Parameter code Slope Estimate Standard Error z-Value p-Value 

C
o

n
d

it
io

n
al

 (Intercept) 3.13 0.38 8.35 6.84E-17 

TPM -3.27 0.76 -4.29 1.78E-05 
 TPF -9.31 1.76 -5.29 1.20E-07 

CHL -0.15 0.56 -0.28 0.78 
FEA 1.33 0.36 3.75 0.0002 
BAT 1.52 0.26 5.91 3.53E-09 

Lo
gi

st
ic

 

(Intercept) 4.36 0.33 13.33 1.56E-40 

CON 22.55 3.51 6.43 1.32E-10 

TPM -1.85 0.66 -2.79 0.005 

FEA -1.53 0.31 -4.98 6.24E-07 

CON: TPM -16.77 6.27 -2.67 0.0075 

Table 6.2.3.18. Razorbill ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details 
are the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 0.61 0.05 12.32 6.76E-35 

TPM_s 0.15 0.11 1.31 0.19 

TPF_s 5.01 0.25 20.20 1.05E-90 

FEA_s 4.33 0.35 12.19 3.66E-34 

BAT_s -30.36 0.96 -31.58 6.77E-219 

CHT_s -1.28 0.07 -18.85 2.93E-79 

lo
gi

st
ic

 

(Intercept) -10.78 0.34 -32.11 3.46E-226 

LND_s 16.28 0.57 28.49 1.53E-178 

TPF_s 3.47 0.47 7.37 1.67E-13 

TPM_s 15.19 0.47 32.46 3.51E-231 

TPR_s 3.07 0.20 15.05 3.56E-51 



Page | 66 
 

Table 6.2.3.19. Risso’s dolphin ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 
co

n
d

it
io

n
al

 

(Intercept) 1.94 0.18 10.90 1.21E-27 

TPM_s -0.86 0.34 -2.57 0.0101 

TPF_s 2.22 0.41 5.41 6.37E-08 

FEA_s 0.90 0.23 3.93 8.47E-05 

BAT_s 0.00 0.17 0.00 0.998 

CHT_s -2.33 0.46 -5.08 3.76E-07 

      

lo
gi

st
ic

 

(Intercept) 6.36 0.30 21.53 7.4E-103 

BAT_s 7.95 2.35 3.38 0.000715 

TPM_s -2.34 0.51 -4.56 5.11E-06 

CON_s 3.92 0.33 11.93 8.13E-33 

BAT_s:TPM_s -10.05 3.51 -2.87 0.00414 

Table 6.2.3.20. Sperm whale ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

C
o

n
d

it
io

n
al

 

(Intercept) -3.93 0.43 -9.23 2.65E-20 

TPM_s -0.91 0.94 -0.97 0.33 

TPF_s -2.26 2.99 -0.76 0.45 

FEA_s 0.89 0.66 1.37 0.17 

BAT_s 0.75 0.48 1.55 0.12 

CHT_s 0.64 0.89 0.72 0.47 

 
     

lo
gi

st
ic

 

(Intercept) 4.28 0.96 4.46 8.06E-06 

BAT_s -50.72 9.41 -5.39 7.06E-08 

FEA_s -6.45 3.54 -1.82 0.07 

CON_s 28.05 14.53 1.93 0.05 

BAT_s:FEA_s 80.08 18.75 4.27 1.94E-05 

Table 6.2.3.21. Striped dolphin ZIGLM model outputs. Slope estimate, standard error, z-value, and p-
value for each parameter within both nested models (conditional and logistic). Parameter details are 
the full names of each parameter, corresponding to the parameter code. 

Model Parameter Code Slope Estimate Standard Error z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 2.28 0.132 17.25 1.10E-66 

TPM_s 0.43 0.193 2.21 0.0272 

TPF_s -2.01 0.609 -3.3 0.000966 

FEA_s 0.39 0.070 5.55 2.81E-08 

BAT_s 0.40 0.062 6.38 1.82E-10 

CHT_s 0.75 0.176 4.27 1.99E-05 

lo
gi

st
ic

 (Intercept) 13.07 0.540 24.2 2.15E-129 

BAT_s -11.23 1.064 -10.56 4.71E-26 

TPM_s -9.77 0.806 -12.13 7.52E-34 

BAT_s:TPM_s 10.02 1.581 6.34 2.34E-10 
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Table 6.2.3.22. White-beaked dolphin ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

Model 
Parameter 
Code 

Slope 
Estimate 

Standard 
Error 

z-Value p-Value 

co
n

d
it

io
n

al
 

(Intercept) 1.55 0.09 16.90 4.26E-64 

TPM_s -0.16 0.19 -0.82 0.41 

TPF_s 0.03 0.27 0.11 0.91 

FEA_s -1.91 0.91 -2.09 0.04 

BAT_s 2.49 0.49 5.08 3.83E-07 

CHT_s 1.03 0.22 4.68 2.81E-06 

lo
gi

st
ic

 (Intercept) 3.93 0.10 38.22 0 

BAT_s 8.18 3.79 2.16 0.0307 

TPM_s 1.48 0.21 7.15 8.45E-13 

BAT_s:TPM_s -0.47 7.52 -0.06 0.95 

Table 6.2.3.23. White-sided dolphin ZIGLM model outputs. Slope estimate, standard error, z-value, 
and p-value for each parameter within both nested models (conditional and logistic). Parameter 
details are the full names of each parameter, corresponding to the parameter code. 

 Model Parameters 
Slope 

Estimate 
Standard 

Error 
z-Value p-Value 

co
n

d
it

io
n

al
 (Intercept) 7.52 0.85 8.85 8.51E-19 

TPM_s -18.77 1.48 -12.73 3.99E-37 
TPF_s 1.36 1.01 1.34 0.18 
CHT_s -0.05 0.61 -0.09 0.93 
FEA_s -0.59 0.75 -0.78 0.43 

BAT_s 1.18 0.32 3.69 2.26E-04 

lo
gi

st
ic

 (Intercept) 12.19 1.00 12.19 3.76E-34 

SPM_s 9.54 6.08 1.57 0.12 

TPM_s -28.10 2.39 -11.74 8.47E-32 

SPM_s: TPM_s 8.58 13.89 0.62 0.54 
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Atlantic Puffin 

 

Figure 6.2.8.1. Maps of predicted abundance of Atlantic puffin, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
Atlantic puffin dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Black-legged Kittiwake 

 

Figure 6.2.8.2. Maps of predicted abundance of black-legged kittiwakes, overlaying 
bathymetry. Maximum predicted abundance (per 10 km2) subset by season, from the same 
model, expressed as the expected value (mean of the conditional distribution multiplied by 
1 minus the zero-inflation probability) scaled to the maximum observed abundance value in 
the black-legged kittiwake dataset; represented by colour and size (blue-red-yellow 
scalebar). Each season covers 3 months, with spring starting in March. Water depth (m) 
represented by greyscale contours. Green line represents coastline or spatial extent. 
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Bottlenose Dolphin 

 

Figure 6.2.8.3. Maps of predicted abundance of bottlenose dolphins, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
bottlenose dolphin dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Common Guillemot 

 

Figure 6.2.8.4. Maps of predicted abundance of common guillemots, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
common guillemot dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Common Dolphin 

 

Figure 6.2.8.5. Maps of predicted abundance of common dolphins, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
common dolphin dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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European Shag 

 

Figure 6.2.8.6. Maps of predicted abundance of European shags, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
European shag dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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European Storm Petrel 

 

Figure 6.2.8.7. Maps of predicted abundance of European storm petrel, overlaying 
bathymetry. Maximum predicted abundance (per 10 km2) subset by season, from the same 
model, expressed as the expected value (mean of the conditional distribution multiplied by 
1 minus the zero-inflation probability) scaled to the maximum observed abundance value in 
the European storm petrel dataset; represented by colour and size (blue-red-yellow 
scalebar). Each season covers 3 months, with spring starting in March. Water depth (m) 
represented by greyscale contours. Green line represents coastline or spatial extent. 
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Fin Whale 

 

Figure 6.2.8.8. Maps of predicted abundance of fin whales, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the fin 
whale dataset; represented by colour and size (blue-red-yellow scalebar). Each season 
covers 3 months, with spring starting in March. Water depth (m) represented by greyscale 
contours. Green line represents coastline or spatial extent. 
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Harbour Porpoise 

 
Figure 6.2.8.9. Maps of predicted abundance of harbour porpoise, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
harbour porpoise dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Herring Gull 

 

Figure 6.2.8.10. Maps of predicted abundance of herring gulls, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
herring gull dataset; represented by colour and size (blue-red-yellow scalebar). Each season 
covers 3 months, with spring starting in March. Water depth (m) represented by greyscale 
contours. Green line represents coastline or spatial extent. 
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Lesser Black Backed Gull 

 

Figure 6.2.8.11. Maps of predicted abundance of lesser black-backed gulls, overlaying 
bathymetry. Maximum predicted abundance (per 10 km2) subset by season, from the same 
model, expressed as the expected value (mean of the conditional distribution multiplied by 
1 minus the zero-inflation probability) scaled to the maximum observed abundance value in 
the lesser black-backed gull dataset; represented by colour and size (blue-red-yellow 
scalebar). Each season covers 3 months, with spring starting in March. Water depth (m) 
represented by greyscale contours. Green line represents coastline or spatial extent. 
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Manx Shearwater 

 

 

Figure 6.2.8.12. Maps of predicted abundance of Manx shearwaters, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
Manx shearwater dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Minke Whale 

 

Figure 6.2.8.13. Maps of predicted abundance of minke whales, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
minke whale dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Northern Fulmar 

 

Figure 6.2.8.14. Maps of predicted abundance of northern fulmars, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
northern fulmar dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Northern Gannet 

 

Figure 6.2.8.15. Maps of predicted abundance of northern gannets, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
northern gannet dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Orca 

 

Figure 6.2.8.16. Maps of predicted abundance of orcas, overlaying bathymetry. Maximum 
predicted abundance (per 10 km2) subset by season, from the same model, expressed as the 
expected value (mean of the conditional distribution multiplied by 1 minus the zero-inflation 
probability) scaled to the maximum observed abundance value in the orca dataset; 
represented by colour and size (blue-red-yellow scalebar). Each season covers 3 months, 
with spring starting in March. Water depth (m) represented by greyscale contours. Green 
line represents coastline or spatial extent. 
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Pilot Whale 

 
Figure 6.2.8.17. Maps of predicted abundance of pilot whales, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the pilot 
whale dataset; represented by colour and size (blue-red-yellow scalebar). Each season 
covers 3 months, with spring starting in March. Water depth (m) represented by greyscale 
contours. Green line represents coastline or spatial extent. 
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Razorbill 

 

Figure 6.2.8.18. Maps of predicted abundance of razorbills, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
razorbill dataset; represented by colour and size (blue-red-yellow scalebar). Each season 
covers 3 months, with spring starting in March. Water depth (m) represented by greyscale 
contours. Green line represents coastline or spatial extent. 
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Risso’s Dolphin 

 
Figure 6.2.8.19. Maps of predicted abundance of Risso’s dolphins, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
Risso’s dolphin dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Sperm Whale 

 

Figure 6.2.8.20. Maps of predicted abundance of sperm whales, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
sperm whale dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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Striped Dolphin 

 

Figure 6.2.8.21. Maps of predicted abundance of striped dolphins, overlaying bathymetry. 
Maximum predicted abundance (per 10 km2) subset by season, from the same model, 
expressed as the expected value (mean of the conditional distribution multiplied by 1 minus 
the zero-inflation probability) scaled to the maximum observed abundance value in the 
striped dolphin dataset; represented by colour and size (blue-red-yellow scalebar). Each 
season covers 3 months, with spring starting in March. Water depth (m) represented by 
greyscale contours. Green line represents coastline or spatial extent. 
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White-beaked Dolphin 

 

Figure 6.2.8.22. Maps of predicted abundance of white-beaked dolphins, overlaying 
bathymetry. Maximum predicted abundance (per 10 km2) subset by season, from the same 
model, expressed as the expected value (mean of the conditional distribution multiplied by 
1 minus the zero-inflation probability) scaled to the maximum observed abundance value in 
the white-beaked dolphin dataset; represented by colour and size (blue-red-yellow 
scalebar). Each season covers 3 months, with spring starting in March. Water depth (m) 
represented by greyscale contours. Green line represents coastline or spatial extent. 
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White-sided Dolphin 

 

Figure 6.2.8.23. Maps of predicted abundance of white-sided dolphins, overlaying 
bathymetry. Maximum predicted abundance (per 10 km2) subset by season, from the same 
model, expressed as the expected value (mean of the conditional distribution multiplied by 
1 minus the zero-inflation probability) scaled to the maximum observed abundance value in 
the white-sided dolphin dataset; represented by colour and size (blue-red-yellow scalebar). 
Each season covers 3 months, with spring starting in March. Water depth (m) represented 
by greyscale contours. Green line represents coastline or spatial extent. 
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2.3 Additional results 

Table 6.2.4. Table of 75th and 25th percentile of absolute values of percentage change in 
species abundance with a 20% increase in the value of each predictor. 

Parameter 75th percentile (%/20%) 25th percentile (%/20%) 

Sea temperature 0.306 0.014 
Fronts 0.297 0.011 
Chlorophyll 0.27 0.0033 
Seabed gradient 0.24 0.007 
Depth 0.76 0.017 

 

Figure 6.2.9. Matrix of dissimilarity between species ZIGLM conditional coefficients. 
Dissimilarity matrix calculated using Euclidean distances between species ZIGLM 
conditional coefficients, detailed in dissimilarity section of methodology. 

Table 6.2.5. Eigen values of each principle component, representing percentage of 
variance explained by components 1 to 5, and the standard deviations of each 
component.  

Component Variance explained (%) Standard Deviation 

1 57.2 1.7 
2 28.5 1.2 
3 9.5 0.7 
4 4.6 0.5 
5 0.3 0.1 
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Table 6.2.6. Variable loadings in components 1 to 5.  

Variable 
Component 

1 
Component 

2 
Component 

3 
Component 

4 
Component 

5 

Sea Temp 0.54 0.12 0.20 0.74 0.32 

Front Potential 0.52 0.27 0.11 -0.66 0.45 

Seabed Gradient -0.24 0.66 -0.65 0.14 0.24 

Depth 0.25 -0.65 -0.67 -0.01 0.26 

Chlorophyll conc. -0.56 -0.21 0.28 0.04 0.75 

 

Table 6.2.7. Scores of each species for principle components 1 to 5. 

Species Component 1 Component 2 Component 3 Component 4 Component 5 

ATPF -0.039 -0.557 0.214 -0.023 0.041 

BLKW -0.011 -0.531 0.178 0.062 0.045 

BTND -0.070 -0.150 -0.214 -0.215 0.135 

CMGM -0.009 -0.520 0.195 0.045 0.038 

EPSH -0.329 0.246 0.422 0.083 -0.061 

EPSP -0.010 -0.554 0.252 0.042 -0.046 

FINW 7.160 1.444 -0.495 0.474 -0.016 

HRBP -1.958 3.717 1.833 0.311 -0.061 

HRGL -0.017 -0.522 0.223 0.063 0.028 

LBGL -0.042 -0.529 0.205 0.096 0.089 

MXSH -0.009 -0.512 0.178 0.081 0.062 

NTFU -0.014 -0.522 0.168 0.071 0.053 

NTGA -0.011 -0.523 0.178 0.067 0.057 

PILW -0.715 -0.642 -0.275 0.388 -0.377 

RAZB -0.060 -0.242 0.239 0.057 0.040 

RISD 0.456 0.168 -0.448 -0.448 -0.274 

SPRW -2.831 -0.203 -1.919 1.047 0.022 

STRD -0.098 -0.536 0.137 0.181 0.075 

WHBD 0.096 -1.278 0.599 -0.060 0.090 

WHSD -0.332 -0.633 0.059 -0.442 -0.150 

COMD 0.155 -0.485 0.194 0.210 0.083 

KILW -0.039 0.016 -0.505 -1.727 0.009 

MINW -1.275 3.346 -1.416 -0.362 0.119 
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Table 6.2.8. Table of k means cluster centroids for each explanatory variable (ZIGLM 
conditional coefficients) in each cluster, and within-cluster sum of squares. 

Cluster 
Nº 

explanatory variables Within-cluster 
sum of 

squares by 
cluster 

TPM TPF FEA BAT CHT 

Cluster centroids 

1 -0.205 -0.509 0.201 0.168 0.144 0 

2 -0.145 0.119 0.326 -0.645 -0.080 0 

3 -0.013 -0.007 0.002 -0.017 0.001 0.162 

4 0.728 0.878 0.004 0.340 -0.719 0 

5 -0.014 0.028 0.187 -1.607 0.092 0 

6 -0.147 0.199 0.048 0.018 -0.095 0.034 

 

 

Figure 6.2.10. Principle components scores as a function of multi-dimensional scaling 
coordinates. 
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Appendix 3: Discussion 

 

Figure 6.3.1. Frequency of observation count values for fin whale and common dolphin. 

 
Figure 6.3.2. Fin whale slope estimate is dark grey (left bar) common dolphin slope estimates 
are light grey (right bar). A = slope scaled with 75th percentile of y, B = slope scaled with 
maximum y.  
 


