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Abstract  10 

The distribution and organisation of benthic organisms on tropical reefs are typically 11 

heterogenous yet display distinct zonation patterns across depth gradients. However, there are 12 

few datasets which inform our understanding of how depth zonation in benthic community 13 

composition varies spatially among and within different reef systemsdepending on the scale 14 

of investigation.  Here, we assess the depth zonation in benthic forereef slope communities in 15 

the Central Indian Ocean, prior to the back-to-back bleaching events in 2014–2017. We 16 

compare benthic communities between the shallow (5–10 m) and deep (20–25 m) sites, at 17 

two spatial scales: among and within 4 atolls.  Our analyses showed the variation in both 18 

major functional groups and hard coral assemblages between depth varied among atolls, at 19 

the archipelago scale, and within-atoll comparisons revealed distinct differences between 20 

shallow and deep forereef slope communities. Indicator taxa analyses characterising the hard 21 

coral community between depths revealed a higher number of coral genera characteristic of 22 

the deep forereef slopes (10) than of the shallow forereef slopes (6). Only two coral genera 23 

consistently associated with both depths across all atolls, and these were Acropora and 24 

Porites. Our results reveal spatial variation in depth zonation of benthic communities, 25 

potentially driven by biophysical processes varying across depths and atolls, and provide a 26 

baseline to understand and measure the impacts of future global climate change on benthic 27 

communities across depths. 28 

Keywords: depth zonation, coral reefs, remote systems, benthic ecology, community 29 

composition, hard coral assemblages 30 

 31 

1. Introduction 32 

One of the main goals in ecology is to understand how communities occupy space. 33 

Biotic (González et al. 2017; Des Roches et al. 2018), abiotic (McGill et al. 2006; Agrawal et 34 

al. 2007), and stochastic processes (Hubbell 2005) that are responsible for the organisation of 35 

ecological communities, interact and create natural environmental gradients in biophysical 36 

resources (Leibold and McPeek 2006; Vellend 2010; Brandl et al. 2019). These naturally 37 

occurring gradients combine to limit the distribution, abundance, and diversity of communities 38 

(Holt 2003; Peischl et al. 2015). Similar natural variations occur across water depth gradients 39 
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on tropical reef systems, where biophysical conditions known to influence the physiology of 40 

reef organisms co-vary, such as light availability (Brakel 1979; Hoegh-Guldberg and Jones 41 

1999; Cooper et al. 2007), temperature, salinity (Kleypas et al. 1999), and wave and current 42 

regimes (Lowe and Falter 2015; Radice et al. 2019). Coral reef species develop different traits 43 

to survive within variations of these parameters across depths (Kneitel and Chase 2004; McGill 44 

et al. 2006; Darling et al. 2012).As a result, distinct and predictable ecological zonation patterns 45 

in coral reef ecosystems can be observed across depths (Sheppard 1982; Done 1983; Roberts 46 

et al. 2015; Karisa et al. 2020). 47 

Different zones on shallow coral reef systems are usually defined by the occurrence of 48 

one or more dominant organisms that occupy a certain depth in a location (Goreau 1959; 49 

Sheppard 1982; Done 1983). For instance, zonation patterns in shallow forereef slope 50 

communities are described as being predictably dominated by structurally robust species. Coral 51 

species exposed to high light regimes and large temperature fluctuations on shallow areas of 52 

the reef slope have adapted morpho-physiologically to this dynamic environment (Titlyanov 53 

and Titlyanova 2002; Iglesias-Prieto et al. 2004; Marcelino et al. 2013; Guest et al. 2016). 54 

Often prone to high exposure to wave and surge energy (Done 1983), some shallow water 55 

species are adapted to thrive in areas where frequent sediment resuspension occurs, forming 56 

robust morphologies which can resist high water flow and physical forces (Todd 2008; 57 

Duckworth et al. 2017). In contrast, deeper forereefs which are more sheltered from surface 58 

wave exposure and receive lower irradiance due to light attenuation with depth (Done 1983; 59 

Rex et al. 1995), are characterised by coral communities that frequently adopt encrusting and 60 

foliose growth forms to increase light capture efficiency (Titlyanov and Titlyanova 2002; 61 

DiPerna et al. 2018a). There is also an increase in mixotrophic and heterotrophic traits in 62 

marine organisms, such as hard corals, soft corals and sponges to offset limited light 63 

availability in deeper reef zones (Fabricius and Klumpp 1995; Fabricius and De’ath 2008; 64 

Houlbrèque and Ferrier-Pagès 2009).   65 

Our understanding of the consistency of how coral reef benthic communities vary 66 

spatially across depths remains unclear (Edmunds and Leichter 2016; Roberts et al. 2019). This 67 

may be due to the complex interactive effects of biophysical processes that drive ecological 68 

community structure, which vary across multiple spatial and temporal scales (Hatcher et al. 69 

1987; Magurran 2004; Leibold and McPeek 2006; Vellend 2010; Brandl et al. 2019), resulting 70 
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in highly heterogenous coral reef communities (Edmunds and Bruno 1996; Huntington and 71 

Lirman 2012; Obura 2012; Dalton and Roff 2013; McClanahan et al. 2014; Ford et al. 2020). 72 

In addition, much of our current understanding of depth zonation patterns on reefs is based  on 73 

observations made  decades ago (Goreau 1959; Done 1982; Sheppard 1982; Done 1983), prior 74 

to subsequent climate change impacts that have altered coral reef communities (Dubinsky and 75 

Stambler 2010; Williams et al. 2019).  76 

Coral reefs around the world are increasingly vulnerable to more intense and frequent 77 

climate-driven disturbances (Anthony 2016; Hughes et al. 2017, 2018; Perry and Alvarez-Filip 78 

2019). However, the extent at which coral reefs are affected by anthropogenic stressors is not 79 

uniform across space and varies across depths (Bongaerts et al. 2010; Bridge et al. 2013; Baird 80 

et al. 2018). Examining depth zonation of benthic communities in the context of systemic 81 

disturbance has provided important insights into complex dynamics such as diverging 82 

ecological trajectories and regime shifts, but these studies have been generally limited to 83 

shallow (3–10 m) depth ranges (Graham et al. 2015; Gouezo et al. 2019). This focus on shallow 84 

depth ranges has limited our understanding of how benthic community composition change 85 

across different depths within contemporary shallow tropical reefs (<30 m) (Bridge et al. 2014; 86 

Edmunds and Leichter 2016).  87 

 88 

Here we examined depth zonation in benthic community composition at two spatial 89 

scales (among and within atolls) in the Chagos Archipelago, a relatively isolated reef system 90 

in the Central Indian Ocean, prior to pan- tropical bleaching events in 2014–2017 (Eakin et al. 91 

2019) and post 1998 bleaching (Sheppard 1999a). Isolated reefs can be used an ecological 92 

reference point (Sandin et al. 2008; Smith et al. 2008; Williams et al. 2013; Heenan et al. 2017; 93 

Head et al. 2019)  and examining benthic communities, prior to the back-to-back bleaching 94 

event in 2014–2017, establishes a baseline to measure the extent of further climate change 95 

impacts and how these vary across depths. Specifically, we compare benthic composition 96 

among and within four atolls, between two depth ranges: 5–10 m and 20–25 m on the forereef 97 

slopes. With our current knowledge of depth dependent zonation on coral reefs (Done 1982; 98 

Sheppard 1982; Done 1983), we expected to find zonation across depth in benthic community 99 

composition that was consistent amongst atolls.  100 

 101 
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2. Methods  102 

2.1 Study sites 103 

The Chagos Archipelago is located in the centre of the Indian Ocean, at the remote 104 

southern end of the Laccadives-Maldives-Chagos ridge, ~500 km from south of Maldives 105 

(Sheppard 1999b). The archipelago is comprised of 5 atolls, 52 islands, and constitutes 9400 106 

km2 of submerged shallow reefs (<40 m depth) (Dumbraveanu and Sheppard 1999; Sheppard 107 

et al. 2013a). The archipelago has been largely uninhabited since the early 1970s (Sheppard, 108 

1999), with the exception of Diego Garcia (DG), the southern-most atoll that hosts a US naval 109 

facility, where strict environmental regulations are enforced, prohibiting all commercial fishing 110 

and extractive activities at sea (Purkis et al. 2008).  In this study, a total of 26 sites; including 111 

13 at 5–10m depth (hereafter ‘shallow’ reefs) and 13 at 20–25m depth (hereafter ‘deep’ reefs), 112 

were surveyed on forereef slopes across 4 atolls: Peros Banhos (PB), Salomon (SA) (northern 113 

atolls), Great Chagos Bank (GCB) and Egmont (EG) (southern atolls) (Figure 1, Table S1).  114 

 115 

2.2 Benthic composition  116 

At each site, benthic composition was quantified from 30 digital photo-quadrats taken 117 

in February and March 2013 (total across all sites, n = 780). Digital photo-quadrats were 118 

randomly extracted as still images from 10 min continuous video-swims at both 5–10 m and 119 

20–25 m depths. The housing was equipped with two spotlights and two red laser pointers set 120 

at 10 cm apart to provide a consistent scale-measurement of the benthos and to adjust for lower-121 

light levels at greater depth to facilitate benthic image analysis. The camera was maintained 122 

approximately 0.5 m above the substrate and at a 45° angle to capture benthic organisms under 123 

overhangs and canopies (Goatley and Bellwood 2011). 124 

Each video was converted into an image sequence (25 frames per sec; in Pinnacle 125 

Studio, v22.2.0). To ensure that images selected for analysis did not contain the same section 126 

of the forereef, frames were randomly selected, but separated by a minimum of 80–100 frames 127 

(Matlab, R2018a.Ink). Benthic image analysis was carried out by SSP, RR, and LR using Coral 128 

Point Count with excel extensions (CPCe) (Kohler and Gill 2006) . To account for any variation 129 

in observer bias in identification of benthic composition, the frames were equally divided 130 
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among observers and analysed (10 images each per person per site). Proportional cover of 131 

benthic categories was quantified by identifying substrate and benthic organisms under fifteen 132 

randomly allocated points on each image, with one point assigned within a 3 x 5 grid cell 133 

stratification (Suchley 2014).   134 

Substrate type and benthic organisms were categorised as: hard coral (identified to 135 

genus), soft coral (identified to family), non-scleractinian coral (Millepora, Heliopora and 136 

Distichopora), sponge, crustose coralline algae (CCA), macroalgae, turf algae, bare substrate 137 

with algal film (hereafter bare substrate), sand, rubble (< 10 cm maximum length), dead coral, 138 

bleached coral, diseased coral, ‘other live’ and unknown. ‘Other live’ included all sessile 139 

invertebrates such as bryozoans, tunicates, bivalves, giant clams, corallimorphs, anemones and 140 

zoanthids. Soft corals were identified and grouped within the four most common families 141 

occurring in the archipelago – Alcyoniidae, Xeniidae, Nepthtiidae and Nidaliidae (Schleyer 142 

and Benayahu 2010), or other soft coral. Where image quality limited identification of hard 143 

corals to genus level or morphology (approximately 0.1–0.5%), corals were classified as 144 

‘other’. The classification of benthic categories for this study was based on NOAA Coral Reef 145 

Information System (2014), Dennis et al, (2017) and the CATAMI classification system 146 

(Althaus et al. 2015).  147 

 148 

2.3 Data analysis 149 

To assess whether benthic composition varied across depths, and if depth zonation 150 

varied among atolls, benthic community composition was first visualised at two levels: 1) 151 

proportional cover of major functional groups (hard coral, soft coral, sponge, CCA, 152 

macroalgae, turf algae, bare substrate with algal film, sand and rubble, non-scleractinian coral, 153 

bleached coral, dead coral, diseased coral, ‘other live’), and 2) proportional cover of hard coral 154 

assemblages, identified to genera. Benthic composition was  visualised across: a) depth, and b) 155 

atoll, using non-metric Multidimensional Scaling (nMDS: vegan package; Oksanen et al., 156 

2012), based on a Bray-Curtis dissimilarity matrix of square root transformed data. A scree 157 

plot was used to evaluate ordination stress and a Shepard stress plot to confirm correlation 158 

between the original dissimilarity matrix and the distances on the final nMDS plot. The nMDS 159 

was computed on 3 dimensions (k = 3) with a stress value ≤ 0.1. The envfit function (vegan 160 
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package) was used to fit vectors of major functional groups and coral genera, to their respective 161 

nMDS ordinations. 162 

To assess differences in benthic composition across depth and atolls, we performed 163 

two-way nested permutational multivariate analyses of variance (PERMANOVA; Anderson 164 

2017) on: 1) major functional groups, and 2) coral genera, as a function of the interaction 165 

between atolls (4 atolls; fixed factors) and depths (2 depths; fixed factors),  with sites (random 166 

factors) nested  in atoll (9999 permutations; adonis2 function: vegan package). Average within-167 

group dispersion was examined using a multivariate homogeneity test (betadisper: vegan 168 

package). Where a significant interaction between depth and atoll was found, we tested for 169 

variation in 1) major functional groups, and 2) coral genera across depths at each individual 170 

atoll using one-way nested PERMANOVAs. Data were square-root transformed and analysed 171 

using Type III sum of squares to accommodate an unbalanced design, in both one-way and 172 

two-way PERMANOVA.  173 

Indicator taxa analyses were used to determine the association between coral genera 174 

and the depth ranges at which they occur.  Coral genera  that significantly associated with 175 

shallow and deep reefs across each atoll, were used to infer on the biotic and abiotic state of 176 

the environment that prevail at the different depth ranges (Cáceres and Legendre 2009). Prior 177 

to analysis, the proportional cover matrix of the coral genera assemblage was converted into 178 

presence/absence data. Coral genera characteristic of shallow and deep reefs were identified 179 

using a p-value threshold of <0.05 (9999 permutations, indicators: indicspecies package; 180 

Cáceres 2020).  181 

Generalised linear mixed-effects models (GLMMs) with a binomial distribution and 182 

logit-link function were used to model major functional groups within each atoll, treating depth 183 

as a fixed effect and sites as a random effect (glmer: lme4 package, Bates et al. 2015). GLMMs 184 

were also performed on coral genera that consistently characterised the hard coral assemblage 185 

across both depths and all atolls. When major functional groups or  coral genera cover had a 186 

high number of zeros  and did not fit the standard binomial distribution (> 55% of the data 187 

consisted of zero values), a zero-inflated generalised linear mixed-effect models with a beta 188 

distribution was fitted (depth as a fixed factor and sites  as a random factor; glmmtmb: 189 

glmmTMB package; Brooks et al. 2017).  All analyses were performed using R 3.5.1 (R 190 

Development Core Team 3.5.1, 2018).  191 
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3. Results 192 

3.1 Variation in major functional groups 193 

Within-atoll analyses revealed significant variation in major functional groups between 194 

shallow and deep reefs across all four atolls (PERMANOVA, all: p =0.001, Table 1). There 195 

was also an interactive effect of depth and atoll (PERMANOVA, Pseudo F3, 779 = 13.54, p = 196 

0.001) and dispersion (Table S4) on benthic composition, indicating the variation in major 197 

functional groups between depth varied among atolls; notably at EG and PB (Table 1, Table 198 

S5a).  199 

A decreasing hard coral, bare substrate and dead coral cover was observed with 200 

increasing depth compared to CCA, macroalgae, sand and rubble and sponge cover which 201 

increased on the deep forereef slopes at EG (Table 1b). At PB, hard coral and dead coral cover 202 

also decreased with depth compared to sand and rubble, sponge, soft coral and turf algae cover 203 

which increased on the deep forereef slopes (Table 1b). At GCB, only dead coral cover varied 204 

significantly with depth (Table 1b). At SA, macroalgae and ‘other live’ cover increased 205 

significantly with depth while dead coral showed a significant decrease with increasing depth 206 

(Table 1b).  207 

 208 

3.2 Variation in hard coral assemblage 209 

Thirty-seven coral genera were recorded across all sites, with a higher number of coral 210 

genera were recorded at deep reefs (34) than shallow reefs (23).  SA contained the highest coral 211 

genera richness (29), followed by GCB (22 genera), PB (20 genera) and EG (16 genera). 212 

Within-atoll variation revealed significant differences in hard coral assemblages between 213 

depths (PERMANOVA, all: p =0.001, Table 2a). However, significant depth-by-atoll 214 

interactions (PERMANOVA, Pseudo F3, 650 = 7.40, p = 0.001; Figure S1) and dispersion (Table 215 

S4), indicate the variation in hard coral assemblages between depth varied among atolls across 216 

the archipelago, particularly at SA and PB (Table S5b). 217 

Indicator taxa analyses identified a total of 14 coral genera as well as the ‘other’ 218 

category that characterised the hard coral community across all atolls and depth combinations 219 
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(Table 3). A higher number of coral genera (10) characterised the deeper reefs than the shallow 220 

reefs (6). Coral genera significantly associated with shallow reefs in EG were Acropora, 221 

Porites and Pocillopora. cCoral genera significantly associated with deep reefs   in EG were 222 

Favia, Pachyseris and Pavona. Porites was the only genus that significantly characterised the 223 

shallow reefs in GCB. The hard coral assemblage on deep reefs  in GCB was characterised by 224 

Acropora, Echinopora, Pachyseris and Symphyllia.  The shallow reefs of both northern atolls, 225 

PB and SA were characterised by Acropora, Pocillopora, Porites and Stylophora.  The only 226 

coral genus that significantly associated with the deep reefs   in PB was Tubastrea.  In SA, the 227 

hard coral community on deep reefs was characterised by Acanthastrea, Goniastrea, 228 

Montipora, Pachyseris and Seriatopora (Table 3).  229 

Acropora and Porites were the only genera that were consistently associated with both 230 

depths across all atolls. Univariate analyses showed that the cover of Acropora decreased with 231 

increasing depth  at EG and SA (Table 2b). Increasing depth also had a negative effect on the 232 

cover of Porites at EG and PB (Table 2b).  233 

 234 

4. Discussion 235 

Our results showed the variation in the benthic community structure of the Chagos 236 

Archipelago was driven by significant depth-by-atoll interactions. Although the zonation 237 

patterns of the benthic community varied across atolls, a distinct contrast was observed 238 

between shallow (5–10 m) and deep (20–25 m) communities, both in terms of the major 239 

functional groups and hard coral assemblages, within each atoll. Several earlier coral reef 240 

studies report predictable vertical zonation in benthic communities and hard coral assemblages 241 

(e.g. Goreau 1959; Done 1982, 1983; Sheppard 1982). However, the among-atoll variation in 242 

depth effect observed in this study is consistent with recent research documenting spatial 243 

heterogeneity in tropical reefs (Edmunds and Bruno 1996; Williams et al. 2013; Edmunds and 244 

Leichter 2016; Karisa et al. 2020; Ford et al. 2020). Spatial variation in depth zonation may be 245 

indicative of local biophysical gradients at each atoll that are interacting with depth to structure 246 

benthic assemblages (Whittaker 1972; Reice 1994; Vellend 2010). Physical variables that co-247 

vary with depth, such as light (Edmunds et al. 2018), wave exposure (Williams et al. 2013; 248 

Gove et al. 2015), reef slope (Sheppard 1982), seasonal thermocline (Kahng and Kelley 2007), 249 
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resource availability (Fox et al. 2018; Williams et al. 2018), internal wave activities (Leichter 250 

and Salvatore 2006; Radice et al. 2019), and disturbance history, e.g. storms (Hughes and 251 

Connell 1999) and climate-induced bleaching events (Bridge et al. 2013, 2014; Adjeroud et al. 252 

2018), have been shown to influence reef communities.  253 

The distinct variation in benthic composition across depth within each atoll, is  254 

comparable to changes with depth in several other Indo-Pacific locations: Central Pacific 255 

Kingman and Palmyra atoll (Williams et al. 2013), French Polynesia (Edmunds and Leichter 256 

2016), New Caledonia (Adjeroud et al. 2019), the Maldives (Ciarapica and Passeri 1993), and 257 

Kenya (Karisa et al. 2020). Coral genera that consistently associated with shallow reefs were 258 

Acropora, Pocillopora and Stylophora. These coral genera frequently exhibit arborescent and 259 

bushy morphologies in shallow areas (Sheppard 1982) and have better light-scattering 260 

properties (Titlyanov and Titlyanova 2002; Marcelino et al. 2013). They are therefore better 261 

adapted to the high light regimes that can be experienced in shallow reef environments (Hoegh-262 

Guldberg and Jones 1999; Winters et al. 2003). These species also have effective mechanisms, 263 

such as polyp inflation, tentacular action and mucus production to shed sediment particles that 264 

are resuspended due to wave action (Erftemeijer et al. 2012; Duckworth et al. 2017) at highly 265 

exposed shallow reefs (Fulton et al. 2001). Both light and wave regimes strongly affect the 266 

structure and dynamics of benthic coral reef communities (Gove et al. 2015; Edmunds et al. 267 

2018).  268 

Pachyseris, Pavona, Echinopora, Acanthastrea, Goniastrea, Montipora and 269 

Symphyllia were characteristic of the hard coral assemblage on deep reefs. These coral genera 270 

frequently adopt foliose, encrusting and massive growth forms on deeper forereef slopes 271 

(Sheppard 1982). As irradiance levels decrease with increasing depths, morphological 272 

adaptations including the development of larger surface areas, such as foliose and encrusting 273 

growth forms, help increase efficiency in light capture to optimise photosynthetic activities 274 

(Done 1983; DiPerna et al. 2018b). Foliose and massive species also contain higher densities 275 

of photosynthetic dinoflagellates (Symbiodinium) for maximising food production in low light 276 

regimes (Li et al. 2008). Many of the deeper dwelling massive and sub-massive species exhibit 277 

heterotrophic traits; with larger polyp sizes and longer tentacles to allow energy requirements 278 

to be met by zooplankton feeding (Hoogenboom et al. 2015; Tremblay et al. 2015). The 279 

occurrence of the azooxanthellate Tubastrea as a characteristic coral genera across the deep 280 
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overhangs of the northern atoll, PB (Andradi-Brown et al. 2019) provides evidence of the 281 

presence of highly productive waters in the area. We hypothesise that that the deeper forereef  282 

areas of the archipelago are more likely recipient of cooler, nutrient-rich upwelling waters than 283 

shallow reef areas (Sheppard 2009; Sheppard et al. 2017).   284 

Acropora and Porites  characterised both shallow and deep forereef slopes across all 285 

atolls. Previous studies in the Chagos Archipelago have also highlighted the dominance of 286 

these two coral genera at both shallow and deep forereef slopes (Sheppard et al. 2008). These 287 

typically depth generalist corals havegenera contain large numbers of species (Veron et al. 288 

2019) that have different physiological and phenotypical traits which give them the ability to 289 

persist in diverse environments across depth gradients (Toda et al. 2007; Darling et al. 2012). 290 

Both genera have high larval dispersion rates facilitating settlement across depths (Holstein et 291 

al. 2016; Serrano et al. 2016). Acropora and Porites  have been found to host diverse 292 

endosymbionts to optimise photosynthesis in decreased light (Muir et al. 2015; Ziegler et al. 293 

2015; Tan et al. 2020). Acropora are often characterised as a fast growing weedy species which 294 

have overtopping abilities and can encroach neighbouring species (Riegl and Purkis 2009). 295 

Porites with massive morphologies can grow taller and larger, and physically outcompete other 296 

surrounding species (Potts et al. 1985).  297 

 Increasing depth had a positive effect on turf algae at PB and CCA cover at EG. Several 298 

previous studies have found that turf algae and CCA were more abundant in shallow reef 299 

environments (Williams et al. 2013; Marlow et al. 2019; Karisa et al. 2020). The high cover of 300 

turf algae and CCA we observed at deep  forereef slopes of the Chagos Archipelago may be 301 

related to the grazing pressure across depth (Heenan and Williams 2013). Intensive herbivory 302 

promotes the removal of epiphytic turf algae (Rasher et al. 2012; Osuka et al. 2018; Roff et al. 303 

2019) and provides space for the growth of the rapid colonising CCA (Airoldi 2000; Russell 304 

2007). Within EG, Hhigh grazing intensity coupled with elevated herbivore and excavator 305 

biomass between 8–17 m, were found in shallow sites associated with turf and CCA dominated 306 

habitats on forereef slopes, especially at EG (Samoilys et al. 2018; Sheppard et al. 2013b). A 307 

lower biomass of herbivorous fishes has also been reported on the deeper forereefs of the 308 

Chagos Archipelago (Andradi-Brown et al. 2019), which could potentially explain the 309 

observed higher turf cover on the deep reefs of PB.  310 
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Among all measured major functional groups, dead coral was the only group which had 311 

consistently higher cover in shallow forereef slopes across all atolls. During the 1998 massive 312 

bleaching events, all shallow ocean-facing reefs in the Chagos Archipelago were highly 313 

impacted, leaving large quantities of dead corals (Sheppard, 1999). Several subsequent 314 

bleaching events in shallow waters in the 2000s also resulted in localised mortality (Harris and 315 

Sheppard 2008; Sheppard et al. 2008), which may have inhibited recruitment and growth, 316 

explaining the higher dead coral cover at 5–10m across the archipelago. 317 

Soft coral and sponge cover increased with depth, notably at EG and PB.  and this is 318 

supported by pPrevious findings in Indo-Pacific reef systems (Reichelt et al. 1986; Barnes and 319 

Bell 2002), including the Chagos Archipelago (Sheppard 1981; Schleyer and Benayahu 2010) 320 

show similar increase in soft coral and sponge cover with depth. Sponges and soft corals 321 

species have phototrophic, heterotrophic and mixotrophic abilities (Wilkinson 1983; Fabricius 322 

and Klumpp 1995). Their high cover in deeper forereef  can result from  photoadaptation of 323 

autotrophic species to increased depths (Fabricius and De’ath 2008; Shoham and Benayahu 324 

2017). Mixotrophic and heterotrophic sponges and soft corals can feed from large flows of 325 

inorganic nutrients that are delivered by cold water upwelling and/or internal waves that occur 326 

on deeper reef sites (Lesser 2006; Pupier et al. 2019). Deep steep walls are also less prone to 327 

sedimentation creating favourable habitat for octocorals (Bridge et al. 2011). Accentuated by 328 

the steep walls of deep sites of PB (Sheppard 1980; Winterbottom et al. 1989), deep rich waters 329 

may upregulate heterotrophic feeding in soft corals and sponges, explaining the observed 330 

higher cover in its deep forereef slopes (Schleyer and Benayahu 2010; Sheppard et al. 2013b).  331 

 332 

It is important to understand the reef community composition of the Chagos 333 

Archipelago in the context of disturbances that have affected its reefs. Classic ecological 334 

theories suggest that following a disturbance, communities undergo secondary succession 335 

(Horn 1974). A major disturbance event prior to 2013 was the pan tropical bleaching event in 336 

1998 (Wilkinson et al. 1999). Previous studies provided evidence that the benthic community 337 

of the Chagos Archipelago has transitioned through different successional stages since the 1998 338 

bleaching event. A recovery occurred from minimal hard coral cover (~12% in 1999; Sheppard, 339 

1999) to a coral-dominated community where no significant divergence was apparent in 2012, 340 

relative to the pre-1998 community (Sheppard et al. 2008, 2013b). Despite the overall 341 

reassembly towards a coral-dominated reef, there was significant variability in benthic 342 
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community recovery, across depths and atolls (Sheppard et al. 2008). In 2001, less degradation 343 

was observed in deep sites of the northern atolls (PB and SA) (high mortality observed at <10–344 

15 m) while the southern atolls (GCB and EG) showed significant mortality at depths >35 m 345 

(Sheppard et al. 2002). In 2006, the hard coral assemblages in shallow sites (4–10 m) recovered 346 

faster than deep forereef slopes (20–25 m) across PB, SA and GCB, with the exception of EG 347 

where no recovery was observed at either depth (Sheppard et al. 2008). In 2012, a general 348 

decrease in hard coral cover and increase in sponge and soft coral cover could be observed with 349 

increasing depth (5–25 m) across the archipelago (Sheppard et al. 2013b). This rapid recovery 350 

in shallow sites (8–10 m) may be driven by the high growth rates in Acropora-dominated 351 

shallow communities within the archipelago (Perry et al. 2015).  352 

Our results reveal the spatial variation in depth zonation of benthic communities, 353 

potentially linked to previously described biophysical gradients occurring across these depths 354 

and atolls (Sheppard 2009; Fasolo 2013; Sheppard et al. 2017). These Using benthic 355 

community data from 2013 will provide insights into the impact of the 2014–2017 back-to-356 

back bleaching event as well as subsequent recovery., we set a baseline that can provide 357 

insights into recovery patterns and re-assembly across depths, following the 2014-2017 back-358 

to-back bleaching event. It is becoming more important to understand the spatial variability in 359 

reef ecosystems in order to infer  and predict how communities might respond to the effects of 360 

increasing disturbances (Bridge et al. 2014; Hughes et al. 2019). There is therefore a need to 361 

incorporate spatial variation in depth effect within ecological studies, as contemporary shallow 362 

reefs are changing rapidly across depths.  363 
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Abstract  10 

The distribution and organisation of benthic organisms on tropical reefs are typically 11 

heterogenous yet display distinct zonation patterns across depth gradients. However, there are 12 

few datasets which inform our understanding of how depth zonation in benthic community 13 

composition varies spatially among and within different reef systems.  Here, we assess the 14 

depth zonation in benthic forereef slope communities in the Central Indian Ocean, prior to the 15 

back-to-back bleaching events in 2014–2017. We compare benthic communities between 16 

shallow (5–10 m) and deep (20–25 m) sites, at two spatial scales: among and within 4 atolls.  17 

Our analyses showed the variation in both major functional groups and hard coral assemblages 18 

between depth varied among atolls, and within-atoll comparisons revealed distinct differences 19 

between shallow and deep forereef slope communities. Indicator taxa analyses characterising 20 

the hard coral community between depths revealed a higher number of coral genera 21 

characteristic of the deep forereef slopes (10) than of the shallow forereef slopes (6). Only two 22 

coral genera consistently associated with both depths across all atolls, and these were Acropora 23 

and Porites. Our results reveal spatial variation in depth zonation of benthic communities, 24 

potentially driven by biophysical processes varying across depths and atolls, and provide a 25 

baseline to understand and measure the impacts of future global climate change on benthic 26 

communities across depths. 27 

Keywords: depth zonation, coral reefs, remote systems, benthic ecology, community 28 

composition, hard coral assemblages 29 

 30 

1. Introduction 31 

One of the main goals in ecology is to understand how communities occupy space. 32 

Biotic (González et al. 2017; Des Roches et al. 2018), abiotic (McGill et al. 2006; Agrawal et 33 

al. 2007), and stochastic processes (Hubbell 2005) that are responsible for the organisation of 34 

ecological communities, interact and create natural environmental gradients in biophysical 35 

resources (Leibold and McPeek 2006; Vellend 2010; Brandl et al. 2019). These naturally 36 

occurring gradients combine to limit the distribution, abundance, and diversity of communities 37 

(Holt 2003; Peischl et al. 2015). Similar natural variations occur across water depth gradients 38 

on tropical reef systems, where biophysical conditions known to influence the physiology of 39 
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reef organisms co-vary, such as light availability (Brakel 1979; Hoegh-Guldberg and Jones 40 

1999; Cooper et al. 2007), temperature, salinity (Kleypas et al. 1999), and wave and current 41 

regimes (Lowe and Falter 2015; Radice et al. 2019). Coral reef species develop different traits 42 

to survive within variations of these parameters across depths (Kneitel and Chase 2004; McGill 43 

et al. 2006; Darling et al. 2012).As a result, distinct and predictable ecological zonation patterns 44 

in coral reef ecosystems can be observed across depths (Sheppard 1982; Done 1983; Roberts 45 

et al. 2015; Karisa et al. 2020). 46 

Different zones on shallow coral reef systems are usually defined by the occurrence of 47 

one or more dominant organisms that occupy a certain depth in a location (Goreau 1959; 48 

Sheppard 1982; Done 1983). For instance, zonation patterns in shallow forereef slope 49 

communities are described as being predictably dominated by structurally robust species. Coral 50 

species exposed to high light regimes and large temperature fluctuations on shallow areas of 51 

the reef slope have adapted morpho-physiologically to this dynamic environment (Titlyanov 52 

and Titlyanova 2002; Iglesias-Prieto et al. 2004; Marcelino et al. 2013; Guest et al. 2016). 53 

Often prone to high exposure to wave and surge energy (Done 1983), some shallow water 54 

species are adapted to thrive in areas where frequent sediment resuspension occurs, forming 55 

robust morphologies which can resist high water flow and physical forces (Todd 2008; 56 

Duckworth et al. 2017). In contrast, deeper forereefs which are more sheltered from surface 57 

wave exposure and receive lower irradiance due to light attenuation with depth (Done 1983; 58 

Rex et al. 1995), are characterised by coral communities that frequently adopt encrusting and 59 

foliose growth forms to increase light capture efficiency (Titlyanov and Titlyanova 2002; 60 

DiPerna et al. 2018a). There is also an increase in mixotrophic and heterotrophic traits in 61 

marine organisms, such as hard corals, soft corals and sponges to offset limited light 62 

availability in deeper reef zones (Fabricius and Klumpp 1995; Fabricius and De’ath 2008; 63 

Houlbrèque and Ferrier-Pagès 2009).   64 

Our understanding of the consistency of how coral reef benthic communities vary 65 

spatially across depths remains unclear (Edmunds and Leichter 2016; Roberts et al. 2019). This 66 

may be due to the complex interactive effects of biophysical processes that drive ecological 67 

community structure, which vary across multiple spatial and temporal scales (Hatcher et al. 68 

1987; Magurran 2004; Leibold and McPeek 2006; Vellend 2010; Brandl et al. 2019), resulting 69 

in highly heterogenous coral reef communities (Edmunds and Bruno 1996; Huntington and 70 
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Lirman 2012; Obura 2012; Dalton and Roff 2013; McClanahan et al. 2014; Ford et al. 2020). 71 

In addition, much of our current understanding of depth zonation patterns on reefs is based  on 72 

observations made  decades ago (Goreau 1959; Done 1982; Sheppard 1982; Done 1983), prior 73 

to subsequent climate change impacts that have altered coral reef communities (Dubinsky and 74 

Stambler 2010; Williams et al. 2019).  75 

Coral reefs around the world are increasingly vulnerable to more intense and frequent 76 

climate-driven disturbances (Anthony 2016; Hughes et al. 2017, 2018; Perry and Alvarez-Filip 77 

2019). However, the extent at which coral reefs are affected by anthropogenic stressors is not 78 

uniform across space and varies across depths (Bongaerts et al. 2010; Bridge et al. 2013; Baird 79 

et al. 2018). Examining depth zonation of benthic communities in the context of systemic 80 

disturbance has provided important insights into complex dynamics such as diverging 81 

ecological trajectories and regime shifts, but these studies have been generally limited to 82 

shallow (3–10 m) depth ranges (Graham et al. 2015; Gouezo et al. 2019). This focus on shallow 83 

depth ranges has limited our understanding of how benthic community composition change 84 

across different depths within contemporary shallow tropical reefs (<30 m) (Bridge et al. 2014; 85 

Edmunds and Leichter 2016).  86 

 87 

Here we examined depth zonation in benthic community composition at two spatial 88 

scales (among and within atolls) in the Chagos Archipelago, a relatively isolated reef system 89 

in the Central Indian Ocean, prior to pan-tropical bleaching events in 2014–2017 (Eakin et al. 90 

2019) and post 1998 bleaching (Sheppard 1999a). Isolated reefs can be used an ecological 91 

reference point (Sandin et al. 2008; Smith et al. 2008; Williams et al. 2013; Heenan et al. 2017; 92 

Head et al. 2019)  and examining benthic communities, prior to the back-to-back bleaching 93 

event in 2014–2017, establishes a baseline to measure the extent of further climate change 94 

impacts and how these vary across depths. Specifically, we compare benthic composition 95 

among and within four atolls, between two depth ranges: 5–10 m and 20–25 m on the forereef 96 

slopes. With our current knowledge of depth dependent zonation on coral reefs (Done 1982; 97 

Sheppard 1982; Done 1983), we expected to find zonation across depth in benthic community 98 

composition that was consistent amongst atolls.  99 
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2. Methods  101 

2.1 Study sites 102 

The Chagos Archipelago is located in the centre of the Indian Ocean, at the remote 103 

southern end of the Laccadives-Maldives-Chagos ridge, ~500 km from south of Maldives 104 

(Sheppard 1999b). The archipelago is comprised of 5 atolls, 52 islands, and constitutes 9400 105 

km2 of submerged shallow reefs (<40 m depth) (Dumbraveanu and Sheppard 1999; Sheppard 106 

et al. 2013a). The archipelago has been largely uninhabited since the early 1970s (Sheppard, 107 

1999), with the exception of Diego Garcia (DG), the southern-most atoll that hosts a US naval 108 

facility, where strict environmental regulations are enforced, prohibiting all commercial fishing 109 

and extractive activities at sea (Purkis et al. 2008).  In this study, a total of 26 sites; including 110 

13 at 5–10m depth (hereafter ‘shallow’ reefs) and 13 at 20–25m depth (hereafter ‘deep’ reefs), 111 

were surveyed on forereef slopes across 4 atolls: Peros Banhos (PB), Salomon (SA) (northern 112 

atolls), Great Chagos Bank (GCB) and Egmont (EG) (southern atolls) (Figure 1, Table S1).  113 

 114 

2.2 Benthic composition  115 

At each site, benthic composition was quantified from 30 digital photo-quadrats taken 116 

in February and March 2013 (total across all sites, n = 780). Digital photo-quadrats were 117 

randomly extracted as still images from 10 min continuous video-swims at both 5–10 m and 118 

20–25 m depths. The housing was equipped with two spotlights and two red laser pointers set 119 

at 10 cm apart to provide a consistent scale-measurement of the benthos and to adjust for lower-120 

light levels at greater depth to facilitate benthic image analysis. The camera was maintained 121 

approximately 0.5 m above the substrate and at a 45° angle to capture benthic organisms under 122 

overhangs and canopies (Goatley and Bellwood 2011). 123 

Each video was converted into an image sequence (25 frames per sec; in Pinnacle 124 

Studio, v22.2.0). To ensure that images selected for analysis did not contain the same section 125 

of the forereef, frames were randomly selected, but separated by a minimum of 80–100 frames 126 

(Matlab, R2018a.Ink). Benthic image analysis was carried out by SSP, RR, and LR using Coral 127 

Point Count with excel extensions (CPCe) (Kohler and Gill 2006) . To account for any variation 128 

in observer bias in identification of benthic composition, the frames were equally divided 129 
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among observers and analysed (10 images each per person per site). Proportional cover of 130 

benthic categories was quantified by identifying substrate and benthic organisms under fifteen 131 

randomly allocated points on each image, with one point assigned within a 3 x 5 grid cell 132 

stratification (Suchley 2014).   133 

Substrate type and benthic organisms were categorised as: hard coral (identified to 134 

genus), soft coral (identified to family), non-scleractinian coral (Millepora, Heliopora and 135 

Distichopora), sponge, crustose coralline algae (CCA), macroalgae, turf algae, bare substrate 136 

with algal film (hereafter bare substrate), sand, rubble (< 10 cm maximum length), dead coral, 137 

bleached coral, diseased coral, ‘other live’ and unknown. ‘Other live’ included all sessile 138 

invertebrates such as bryozoans, tunicates, bivalves, giant clams, corallimorphs, anemones and 139 

zoanthids. Soft corals were identified and grouped within the four most common families 140 

occurring in the archipelago – Alcyoniidae, Xeniidae, Nepthtiidae and Nidaliidae (Schleyer 141 

and Benayahu 2010), or other soft coral. Where image quality limited identification of hard 142 

corals to genus level or morphology (approximately 0.1–0.5%), corals were classified as 143 

‘other’. The classification of benthic categories for this study was based on NOAA Coral Reef 144 

Information System (2014), Dennis et al, (2017) and the CATAMI classification system 145 

(Althaus et al. 2015).  146 

 147 

2.3 Data analysis 148 

To assess whether benthic composition varied across depths, and if depth zonation 149 

varied among atolls, benthic community composition was first visualised at two levels: 1) 150 

proportional cover of major functional groups (hard coral, soft coral, sponge, CCA, 151 

macroalgae, turf algae, bare substrate with algal film, sand and rubble, non-scleractinian coral, 152 

bleached coral, dead coral, diseased coral, ‘other live’), and 2) proportional cover of hard coral 153 

assemblages, identified to genera. Benthic composition was  visualised across: a) depth, and b) 154 

atoll, using non-metric Multidimensional Scaling (nMDS: vegan package; Oksanen et al., 155 

2012), based on a Bray-Curtis dissimilarity matrix of square root transformed data. A scree 156 

plot was used to evaluate ordination stress and a Shepard stress plot to confirm correlation 157 

between the original dissimilarity matrix and the distances on the final nMDS plot. The nMDS 158 

was computed on 3 dimensions (k = 3) with a stress value ≤ 0.1. The envfit function (vegan 159 
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package) was used to fit vectors of major functional groups and coral genera, to their respective 160 

nMDS ordinations. 161 

To assess differences in benthic composition across depth and atolls, we performed 162 

two-way nested permutational multivariate analyses of variance (PERMANOVA; Anderson 163 

2017) on: 1) major functional groups, and 2) coral genera, as a function of the interaction 164 

between atolls (4 atolls; fixed factors) and depths (2 depths; fixed factors),  with sites (random 165 

factors) nested  in atoll (9999 permutations; adonis2 function: vegan package). Average within-166 

group dispersion was examined using a multivariate homogeneity test (betadisper: vegan 167 

package). Where a significant interaction between depth and atoll was found, we tested for 168 

variation in 1) major functional groups, and 2) coral genera across depths at each individual 169 

atoll using one-way nested PERMANOVAs. Data were square-root transformed and analysed 170 

using Type III sum of squares to accommodate an unbalanced design, in both one-way and 171 

two-way PERMANOVA.  172 

Indicator taxa analyses were used to determine the association between coral genera 173 

and the depth ranges at which they occur.  Coral genera  that significantly associated with 174 

shallow and deep reefs across each atoll, were used to infer on the biotic and abiotic state of 175 

the environment that prevail at the different depth ranges (Cáceres and Legendre 2009). Prior 176 

to analysis, the proportional cover matrix of the coral genera assemblage was converted into 177 

presence/absence data. Coral genera characteristic of shallow and deep reefs were identified 178 

using a p-value threshold of <0.05 (9999 permutations, indicators: indicspecies package; 179 

Cáceres 2020).  180 

Generalised linear mixed-effects models (GLMMs) with a binomial distribution and 181 

logit-link function were used to model major functional groups within each atoll, treating depth 182 

as a fixed effect and sites as a random effect (glmer: lme4 package, Bates et al. 2015). GLMMs 183 

were also performed on coral genera that consistently characterised the hard coral assemblage 184 

across both depths and all atolls. When major functional groups or  coral genera cover had a 185 

high number of zeros  and did not fit the standard binomial distribution (> 55% of the data 186 

consisted of zero values), a zero-inflated generalised linear mixed-effect models with a beta 187 

distribution was fitted (depth as a fixed factor and sites  as a random factor; glmmtmb: 188 

glmmTMB package; Brooks et al. 2017).  All analyses were performed using R 3.5.1 (R 189 

Development Core Team 3.5.1, 2018).  190 
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3. Results 191 

3.1 Variation in major functional groups 192 

Within-atoll analyses revealed significant variation in major functional groups between 193 

shallow and deep reefs across all four atolls (PERMANOVA, all: p =0.001, Table 1). There 194 

was also an interactive effect of depth and atoll (PERMANOVA, Pseudo F3, 779 = 13.54, p = 195 

0.001) and dispersion (Table S4) on benthic composition, indicating the variation in major 196 

functional groups between depth varied among atolls; notably at EG and PB (Table 1, Table 197 

S5a).  198 

A decreasing hard coral, bare substrate and dead coral cover was observed with 199 

increasing depth compared to CCA, macroalgae, sand and rubble and sponge cover which 200 

increased on the deep forereef slopes at EG (Table 1b). At PB, hard coral and dead coral cover 201 

also decreased with depth compared to sand and rubble, sponge, soft coral and turf algae cover 202 

which increased on the deep forereef slopes (Table 1b). At GCB, only dead coral cover varied 203 

significantly with depth (Table 1b). At SA, macroalgae and ‘other live’ cover increased 204 

significantly with depth while dead coral showed a significant decrease with increasing depth 205 

(Table 1b).  206 

 207 

3.2 Variation in hard coral assemblage 208 

Thirty-seven coral genera were recorded across all sites, with a higher number of coral 209 

genera were recorded at deep reefs (34) than shallow reefs (23).  SA contained the highest coral 210 

genera richness (29), followed by GCB (22 genera), PB (20 genera) and EG (16 genera). 211 

Within-atoll variation revealed significant differences in hard coral assemblages between 212 

depths (PERMANOVA, all: p =0.001, Table 2a). However, significant depth-by-atoll 213 

interactions (PERMANOVA, Pseudo F3, 650 = 7.40, p = 0.001; Figure S1) and dispersion (Table 214 

S4), indicate the variation in hard coral assemblages between depth varied among atolls across 215 

the archipelago, particularly at SA and PB (Table S5b). 216 

Indicator taxa analyses identified a total of 14 coral genera as well as the ‘other’ 217 

category that characterised the hard coral community across all atolls and depth combinations 218 
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(Table 3). A higher number of coral genera (10) characterised the deeper reefs than the shallow 219 

reefs (6). Coral genera significantly associated with shallow reefs in EG were Acropora, 220 

Porites and Pocillopora. Coral genera significantly associated with deep reefs  in EG were 221 

Favia, Pachyseris and Pavona. Porites was the only genus that significantly characterised the 222 

shallow reefs in GCB. The hard coral assemblage on deep reefs in GCB was characterised by 223 

Acropora, Echinopora, Pachyseris and Symphyllia.  The shallow reefs of both northern atolls, 224 

PB and SA were characterised by Acropora, Pocillopora, Porites and Stylophora.  The only 225 

coral genus that significantly associated with the deep reefs   in PB was Tubastrea.  In SA, the 226 

hard coral community on deep reefs was characterised by Acanthastrea, Goniastrea, 227 

Montipora, Pachyseris and Seriatopora (Table 3).  228 

Acropora and Porites were the only genera that were consistently associated with both 229 

depths across all atolls. Univariate analyses showed that the cover of Acropora decreased with 230 

increasing depth at EG and SA (Table 2b). Increasing depth also had a negative effect on the 231 

cover of Porites at EG and PB (Table 2b).  232 

 233 

4. Discussion 234 

Our results showed the variation in the benthic community structure of the Chagos 235 

Archipelago was driven by significant depth-by-atoll interactions. Although the zonation 236 

patterns of the benthic community varied across atolls, a distinct contrast was observed 237 

between shallow (5–10 m) and deep (20–25 m) communities, both in terms of the major 238 

functional groups and hard coral assemblages, within each atoll. Several earlier coral reef 239 

studies report predictable vertical zonation in benthic communities and hard coral assemblages 240 

(e.g. Goreau 1959; Done 1982, 1983; Sheppard 1982). However, the among-atoll variation in 241 

depth effect observed in this study is consistent with recent research documenting spatial 242 

heterogeneity in tropical reefs (Edmunds and Bruno 1996; Williams et al. 2013; Edmunds and 243 

Leichter 2016; Karisa et al. 2020; Ford et al. 2020). Spatial variation in depth zonation may be 244 

indicative of local biophysical gradients at each atoll that are interacting with depth to structure 245 

benthic assemblages (Whittaker 1972; Reice 1994; Vellend 2010). Physical variables that co-246 

vary with depth, such as light (Edmunds et al. 2018), wave exposure (Williams et al. 2013; 247 

Gove et al. 2015), reef slope (Sheppard 1982), seasonal thermocline (Kahng and Kelley 2007), 248 
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resource availability (Fox et al. 2018; Williams et al. 2018), internal wave activities (Leichter 249 

and Salvatore 2006; Radice et al. 2019), and disturbance history, e.g. storms (Hughes and 250 

Connell 1999) and climate-induced bleaching events (Bridge et al. 2013, 2014; Adjeroud et al. 251 

2018), have been shown to influence reef communities.  252 

The distinct variation in benthic composition across depth within each atoll, is  253 

comparable to changes with depth in several other Indo-Pacific locations: Central Pacific 254 

Kingman and Palmyra atoll (Williams et al. 2013), French Polynesia (Edmunds and Leichter 255 

2016), New Caledonia (Adjeroud et al. 2019), the Maldives (Ciarapica and Passeri 1993), and 256 

Kenya (Karisa et al. 2020). Coral genera that consistently associated with shallow reefs were 257 

Acropora, Pocillopora and Stylophora. These coral genera frequently exhibit arborescent and 258 

bushy morphologies in shallow areas (Sheppard 1982) and have better light-scattering 259 

properties (Titlyanov and Titlyanova 2002; Marcelino et al. 2013). They are therefore better 260 

adapted to the high light regimes that can be experienced in shallow reef environments (Hoegh-261 

Guldberg and Jones 1999; Winters et al. 2003). These species also have effective mechanisms, 262 

such as polyp inflation, tentacular action and mucus production to shed sediment particles that 263 

are resuspended due to wave action (Erftemeijer et al. 2012; Duckworth et al. 2017) at highly 264 

exposed shallow reefs (Fulton et al. 2001).  265 

Pachyseris, Pavona, Echinopora, Acanthastrea, Goniastrea, Montipora and 266 

Symphyllia were characteristic of the hard coral assemblage on deep reefs. These coral genera 267 

frequently adopt foliose, encrusting and massive growth forms on deeper forereef slopes 268 

(Sheppard 1982). As irradiance levels decrease with increasing depths, morphological 269 

adaptations including the development of larger surface areas, such as foliose and encrusting 270 

growth forms, help increase efficiency in light capture to optimise photosynthetic activities 271 

(Done 1983; DiPerna et al. 2018b). Foliose and massive species also contain higher densities 272 

of photosynthetic dinoflagellates (Symbiodinium) for maximising food production in low light 273 

regimes (Li et al. 2008). Many of the deeper dwelling massive and sub-massive species exhibit 274 

heterotrophic traits; with larger polyp sizes and longer tentacles to allow energy requirements 275 

to be met by zooplankton feeding (Hoogenboom et al. 2015; Tremblay et al. 2015). The 276 

occurrence of the azooxanthellate Tubastrea as a characteristic coral genera across the deep 277 

overhangs of the northern atoll, PB (Andradi-Brown et al. 2019) provides evidence of the 278 

presence of highly productive waters in the area. We hypothesise that that the deeper forereef  279 
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areas of the archipelago are more likely recipient of cooler, nutrient-rich upwelling waters than 280 

shallow reef areas (Sheppard 2009; Sheppard et al. 2017).   281 

Acropora and Porites characterised both shallow and deep forereef slopes across all 282 

atolls. Previous studies in the Chagos Archipelago have also highlighted the dominance of 283 

these two coral genera at both shallow and deep forereef slopes (Sheppard et al. 2008). These 284 

typically depth generalist genera contain large numbers of species (Veron et al. 2019) that have 285 

different physiological and phenotypical traits which give them the ability to persist in diverse 286 

environments across depth gradients (Toda et al. 2007; Darling et al. 2012). Both genera have 287 

high larval dispersion rates facilitating settlement across depths (Holstein et al. 2016; Serrano 288 

et al. 2016). Acropora and Porites  have been found to host diverse endosymbionts to optimise 289 

photosynthesis in decreased light (Muir et al. 2015; Ziegler et al. 2015; Tan et al. 2020). 290 

Acropora are often characterised as a fast growing weedy species which have overtopping 291 

abilities and can encroach neighbouring species (Riegl and Purkis 2009). Porites with massive 292 

morphologies can grow taller and larger, and physically outcompete other surrounding species 293 

(Potts et al. 1985).  294 

 Increasing depth had a positive effect on turf algae at PB and CCA cover at EG. Several 295 

previous studies have found that turf algae and CCA were more abundant in shallow reef 296 

environments (Williams et al. 2013; Marlow et al. 2019; Karisa et al. 2020). The high cover of 297 

turf algae and CCA we observed at deep forereef slopes of the Chagos Archipelago may be 298 

related to the grazing pressure across depth (Heenan and Williams 2013). Intensive herbivory 299 

promotes the removal of epiphytic turf algae (Rasher et al. 2012; Osuka et al. 2018; Roff et al. 300 

2019) and provides space for the growth of the rapid colonising CCA (Airoldi 2000; Russell 301 

2007). Within EG, high grazing intensity coupled with elevated herbivore and excavator 302 

biomass between 8–17 m, were  associated with  CCA dominated habitats on forereef slopes 303 

(Samoilys et al. 2018; Sheppard et al. 2013b). A lower biomass of herbivorous fishes has also 304 

been reported on the deeper forereefs of the Chagos Archipelago (Andradi-Brown et al. 2019), 305 

which could potentially explain the observed higher turf cover on the deep reefs of PB.  306 

Among all measured major functional groups, dead coral was the only group which had 307 

consistently higher cover in shallow forereef slopes across all atolls. During the 1998 massive 308 

bleaching events, all shallow ocean-facing reefs in the Chagos Archipelago were highly 309 

impacted, leaving large quantities of dead corals (Sheppard, 1999). Several subsequent 310 
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bleaching events in shallow waters in the 2000s also resulted in localised mortality (Harris and 311 

Sheppard 2008; Sheppard et al. 2008), which may have inhibited recruitment and growth, 312 

explaining the higher dead coral cover at 5–10m across the archipelago. 313 

Soft coral and sponge cover increased with depth, notably at EG and PB.  Previous 314 

findings in Indo-Pacific reef systems (Reichelt et al. 1986; Barnes and Bell 2002), including 315 

the Chagos Archipelago (Sheppard 1981; Schleyer and Benayahu 2010) show similar increase 316 

in soft coral and sponge cover with depth. Sponges and soft corals species have phototrophic, 317 

heterotrophic and mixotrophic abilities (Wilkinson 1983; Fabricius and Klumpp 1995). Their 318 

high cover in deeper forereef  can result from  photoadaptation of autotrophic species to 319 

increased depths (Fabricius and De’ath 2008; Shoham and Benayahu 2017). Mixotrophic and 320 

heterotrophic sponges and soft corals can feed from large flows of inorganic nutrients that are 321 

delivered by cold water upwelling and/or internal waves that occur on deeper reef sites (Lesser 322 

2006; Pupier et al. 2019). Deep steep walls are also less prone to sedimentation creating 323 

favourable habitat for octocorals (Bridge et al. 2011). Accentuated by the steep walls of deep 324 

sites of PB (Sheppard 1980; Winterbottom et al. 1989), deep rich waters may upregulate 325 

heterotrophic feeding in soft corals and sponges, explaining the observed higher cover in its 326 

deep forereef slopes (Schleyer and Benayahu 2010; Sheppard et al. 2013b).  327 

 328 

It is important to understand the reef community composition of the Chagos 329 

Archipelago in the context of disturbances that have affected its reefs. Classic ecological 330 

theories suggest that following a disturbance, communities undergo secondary succession 331 

(Horn 1974). A major disturbance event prior to 2013 was the pan tropical bleaching event in 332 

1998 (Wilkinson et al. 1999). Previous studies provided evidence that the benthic community 333 

of the Chagos Archipelago has transitioned through different successional stages since the 1998 334 

bleaching event. A recovery occurred from minimal hard coral cover (~12% in 1999; Sheppard, 335 

1999) to a coral-dominated community where no significant divergence was apparent in 2012, 336 

relative to the pre-1998 community (Sheppard et al. 2008, 2013b). Despite the overall 337 

reassembly towards a coral-dominated reef, there was significant variability in benthic 338 

community recovery, across depths and atolls (Sheppard et al. 2008). In 2001, less degradation 339 

was observed in deep sites of the northern atolls (PB and SA) (high mortality observed at <10–340 

15 m) while the southern atolls (GCB and EG) showed significant mortality at depths >35 m 341 

(Sheppard et al. 2002). In 2006, the hard coral assemblages in shallow sites (4–10 m) recovered 342 
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faster than deep forereef slopes (20–25 m) across PB, SA and GCB, with the exception of EG 343 

where no recovery was observed at either depth (Sheppard et al. 2008). In 2012, a general 344 

decrease in hard coral cover and increase in sponge and soft coral cover could be observed with 345 

increasing depth (5–25 m) across the archipelago (Sheppard et al. 2013b). This rapid recovery 346 

in shallow sites (8–10 m) may be driven by the high growth rates in Acropora-dominated 347 

shallow communities within the archipelago (Perry et al. 2015).  348 

Our results reveal the spatial variation in depth zonation of benthic communities, 349 

potentially linked to previously described biophysical gradients occurring across these depths 350 

and atolls (Sheppard 2009; Fasolo 2013; Sheppard et al. 2017). These benthic community data 351 

from 2013 will provide insights into the impact of the 2014–2017 back-to-back bleaching 352 

events as well as subsequent recovery. It is becoming more important to understand the spatial 353 

variability in reef ecosystems in order to infer  and predict how communities might respond to 354 

the effects of increasing disturbances (Bridge et al. 2014; Hughes et al. 2019). There is 355 

therefore a need to incorporate spatial variation in depth effect within ecological studies, as 356 

contemporary shallow reefs are changing rapidly across depths.  357 
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List of figures: 

 

Figure 1.EPS: Map of Chagos Archipelago showing sampled sites (red points) around surveyed 

atolls (in bold) – northern atolls: Peros Banhos (PB), Salomon (SA) and southern atolls Great 

Chagos Bank (GCB) and Egmont (EG) - see Table S1 for list of sites and coordinates. 

 

Figure 2.EPS: Non-metric dimensional scaling (nMDS) of a) major functional groups (left) and 

b) coral genera assemblage (right), showing clustering by depths, based on Bray-Curtis 

dissimilarities of square-root transformed data in a total of 26 sites in the Chagos Archipelago. 

Coloured ellipses represent dispersion of depth centroids at 95% confidence limit – blue: 

shallow sites (5–10 m) and red: deep site (20–25 m). Symbols represent surveyed atolls – 

Egmont (EG), Great Chagos Bank (GCB), Peros Banhos (PB) and Salomon (SA). Bottom: 

Vectors represent a) major functional groups (left) and b) coral genera (right) distribution to 

the patterns on the ordination plot. Red labels in (a) indicate a significant contribution and black 

labels indicate a non-significant contribution 

 

Figure 3.EPS: Variation in major functional groups (generalised linear mixed effects models) 

between depth (5–10 m (grey) and 20–25 m (black)) across atolls - Egmont (EG), Great Chagos 

Bank (GCB), Peros Banhos (PB) and Salomon (SA) in Chagos Archipelago 2013. * represent 

p <0.05 (see Table S2)
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List of tables: 

 

Table 1: Variation in major functional groups between depth (5–10m vs 20–25m) on a) multivariate scale (One-way permutational analysis of 

variance (PERMANOVA) and b) on a univariate scale (generalised linear mixed effect models (GLMM)) within atolls: Egmont (EG), Great 

Chagos Bank (GCB), Peros Banhos (PB) and Salomon (SA) in the Chagos Archipelago in 2013. BS – Bare substrate, CCA – crustose coralline 

algae, HC – hard coral, MA – macroalgae, DC- dead coral, OL – other live, SR – sand and rubble, SP – sponge, T – turf, BL – bleached coral, 

UK – unknown, NS – non-scleractinian coral. In bold are significant p values. df- degree of freedom 

 

a) 

 

Atoll 
PERMANOVA 

PseudoF-ratio df p-value 

EG 46.844 1, 179 <0.001 

GCB 5.156 1, 179 <0.001 

PB 48.943 1, 119 <0.001 

SA 28.208 1, 229 <0.001 

 

 

b) 

 

Atoll 
GLMM  

  BS CCA HC MA DC OL SR SC SP T BL UK NS 

EG 

Coeff 0.628 -1.464 1.052 -2.189 1.742 -1.269 -1.158 -0.393 -1.294 0.078 - 0.032 - 

SE 0.210 0.287 0.322 0.607 0.397 1.009 0.521 0.865 0.340 0.215   0.461   

p-value 0.003* <0.001 0.001 <0.001 <0.001 0.209 0.026 0.650 <0.001 0.717   0.946   

GCB 
Coeff 0.466 -0.573 -0.356 -0.456 0.5418  -1.122 -0.733 -1.021 -0.105 0.321 0.321 0.740 - 

SE 0.384 0.867 0.461 1.204 0.189 0.978 0.418 0.991 0.819 0.499 0.499 1.153   
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p-value 0.225 0.509 0.440 0.705 0.004 0.251 0.079 0.303 0.898 0.520 0.193 0.521   

PB 

Coeff 0.732 0.260 2.165 -1.399 2.864 -0.359 -2.096 -0.944 -1.698 -1.622 - 
 
 

0.088 - 
 
 

SE 1.092 0.320 0.244 1.035 0.657 0.624 0.710 0.293 0.543 0.519 0.167 

p-value 0.503 0.416 <0.001 0.176 <0.001 0.566* 0.003 0.001 0.002 0.002 0.589* 

SA 

Coeff 0.642 -0.490 0.398 -2.119 1.628 -2.966 -1.292 -0.698 -0.624 -0.395 - 
 
 

0.150 -0.791 

SE 0.392 0.252 0.418 0.516 0.357 0.948 0.840 0.650 0.509 0.303 0.335 1.983 

p-value 0.101 0.052 0.341 <0.001 <0.001 0.002 0.124 0.283 0.221 0.192 0.654 0.690 

'-' could not compare as groups did not occur at both depths, '*' zero inflated model using GLMMTMB 
 

 



Table 2: Variation in the hard coral assemblage between depth on a) multivariate scale (One-way permutational analysis of variance 

(PERMANOVA) and b) variation in common indicator coral genera on a univariate level (generalised linear mixed effect models (GLMM)) 

within atolls: Egmont (EG), Great Chagos Bank (GCB), Peros Banhos (PB) and Salomon (SA) in the Chagos Archipelago in 2013. In bold are 

significant p values. * indicate where zero-inflated generalised mixed effect models were performed. df – degree of freedom, Coeff- coefficient 

estimates, SE- Standard error. 

 

a)  

Atoll 
PERMANOVA 

PseudoF-ratio df p-value 

EG 17.016 1, 116 <0.001 

GCB 6.494 1, 160 <0.001 

PB 25.461 1, 95 <0.001 

SA 15.150 1, 276 <0.001 

 

 

 

b)  

Variable Atoll Effect Coeff SE z-statistics p-value 

Acropora 

EG 

Intercept -5.636 0.758 -7.437 <0.001 

  Depth 2.145 0.972 2.208 0.027 

Porites Intercept -4.725 0.397 -11.900 <0.001 

  Depth 2.113 0.493 4.290 <0.001 

Pocillopora* Intercept -1.647 0.239 -6.886 <0.001 

  Depth -0.285 0.269 -1.058 0.290 

Other Intercept -3.518 0.267 -13.183 <0.001 

  Depth 0.197 0.369 0.533 0.594 



Acropora 

GCB 

Intercept -2.137 1.101 -1.941 0.052 

  Depth -1.607 1.608 -0.999 0.318 

Porites Intercept -4.339 1.090 -3.981 <0.001 

  Depth 1.062 1.490 0.713 0.476 

Pocillopora Intercept -4.076 0.340 -12.006 <0.001 

  Depth -0.192 0.475 -0.405 0.686 

Other Intercept -3.205 0.261 -12.297 <0.001 

  Depth 0.090 0.365 0.248 0.804 

Acropora* 

PB 

Intercept -2.245 0.776 -2.891 0.004 

  Depth 0.491 0.783 0.627 0.531 

Porites Intercept -4.719 1.041 -4.532 <0.001 

  Depth 3.632 1.341 2.708 0.007 

Pocillopora* Intercept -1.344 0.259 -5.183 <0.001 

  Depth -0.707 0.294 -2.407 0.016 

Other Intercept -4.563 0.430 -10.614 <0.001 

  Depth 1.508 0.531 2.841 0.004 

Acropora 

SA 

Intercept -3.838 0.625 -6.146 <0.001 

  Depth 1.771 0.865 2.047 0.041 

Porites Intercept -2.980 0.313 -9.529 <0.001 

  Depth 0.430 0.435 0.989 0.323 

Pocillopora Intercept -5.288 0.338 -15.627 <0.001 

  Depth 0.987 0.409 2.412 0.016 

Other Intercept -3.056 0.151 -20.283 <0.001 

  Depth 0.245 0.208 1.175 0.240 

 

 

 



Table 3: Indicator coral genera at atolls- Egmont (EG), Great Chagos Bank (GCB), Peros Banhos (PB) and Salomon (SA) at shallow (5-10m) and 

deep (20-25m) sites. `A` represents the specificity of a genera as an indicator of the depth group, `B` is the fidelity of the genera as an indicator of 

the samples collected within the respective depth group and `sqrtIV` represents the square-root of the indicator value index. The lower and upper 

confidence interval (CI) were calculated using bootstrapping technique (Cáceres and Legendre 2009).  

 

 

Atoll Depth Coral genera A Lower

CI 

Upper

CI 

B Lower

CI 

Upper

CI 

sqrtIV Lower

CI 

Upper

CI 

p-value 

EG 5-10m Acropora 0.842 0.643 1.000 0.178 0.089 0.267 0.387 0.239 0.475 0.001 

  Favia 1.000 1.000 1.000 0.056 0.013 0.114 0.236 0.115 0.338 0.029 

  Pocillopora 0.813 0.600 1.000 0.144 0.073 0.213 0.343 0.221 0.438 0.009 

  Porites 0.844 0.737 0.930 0.600 0.482 0.700 0.712 0.610 0.785 0.0001 

 20-25m Pachyseris 1.000 1.000 1.000 0.056 0.011 0.096 0.236 0.103 0.318 0.028 

  Pavona 1.000 1.000 1.000 0.089 0.037 0.149 0.298 0.191 0.391 0.004 

GCB 5-10m Porites 0.651 0.500 0.762 0.456 0.347 0.567 0.544 0.443 0.636 0.002 

 20-25m Acropora 0.594 0.479 0.710 0.456 0.347 0.564 0.520 0.419 0.615 0.034 

  Echinopora 1.000 1.000 1.000 0.078 0.030 0.133 0.279 0.177 0.364 0.007 

  Pachyseris 0.909 0.667 1.000 0.111 0.047 0.180 0.318 0.195 0.411 0.005 

  Symphyllia 1.000 1.000 1.000 0.078 0.027 0.133 0.279 0.163 0.364 0.007 

PB 5-10m Acropora 0.970 0.893 1.000 0.533 0.404 0.640 0.719 0.628 0.796 0.0001 

  Other 0.763 0.613 0.905 0.483 0.375 0.594 0.607 0.491 0.703 0.0001 

  Pocillopora 0.846 0.600 1.000 0.183 0.089 0.274 0.394 0.242 0.513 0.008 

  Porites 0.873 0.794 0.945 0.917 0.845 0.984 0.895 0.832 0.946 0.0001 

  Stylophora 1.000 1.000 1.000 0.150 0.068 0.246 0.387 0.260 0.496 0.001 

 20-25m Tubastraea 1.000 1.000 1.000 0.217 0.120 0.328 0.465 0.346 0.573 0.0003 

SA 5-10m Acropora 0.696 0.600 0.766 0.580 0.497 0.660 0.635 0.552 0.703 0.0001 

  Pocillopora 0.694 0.537 0.846 0.167 0.107 0.225 0.340 0.248 0.412 0.009 

  Porites 0.573 0.488 0.655 0.473 0.390 0.556 0.521 0.450 0.588 0.021 

  Stylophora 0.917 0.769 1.000 0.073 0.039 0.122 0.259 0.186 0.349 0.004 



 20-25m Acanthastrea 1.000 1.000 1.000 0.033 0.006 0.070 0.183 0.083 0.270 0.032 

  Goniastrea 0.917 0.714 1.000 0.073 0.033 0.115 0.259 0.163 0.330 0.004 

  Montipora 0.727 0.595 0.865 0.160 0.105 0.216 0.341 0.259 0.418 0.005 

  Pachyseris 1.000 1.000 1.000 0.147 0.086 0.195 0.383 0.292 0.442 0.0001 

  Seriatopora 1.000 1.000 1.000 0.080 0.041 0.128 0.283 0.203 0.357 0.0002 
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