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SI-1 Validation sets, models and ensembles 
 

Table SI-1-1. Validation sets and Models (across 2 pages), including their coverage within the United 

Kingdom. The UK consists of 4 countries: England, Scotland, Wales –together referred to as Great 

Britain (GB) – and Northern Ireland (NI; Figure SI-2-1); Self-governing dependencies of the UK are 

not included (such as the Isle of Man and Channel Islands); i.e. <GB + NI> indicates the full scale 

studied (242,495 km2). For model descriptions see below. Model type terminology follows Mulligan & 

Wainwright (2013),  Ding & Bullock (2018) and  Willcock et al. (2019). References to these models 

and examples of usage can be found at the descriptions below. 

 

Validation sets Service/Proxy Coverage 

Grid Size & 

timeframe if 

applicable 

Type 

National River Flow 

Archive 

Flow volume 

through gauging 

stations  

GB + NI 

519 selected 

Watersheds, annual 

average 1995-2015 

Measurements 

Forest Research, 

inventories  

Forest estates carbon 

stocks 

England & 

Scotland  

2078 continuous 

forest fragments in 

2019 

Inventories 

Models run especially for this work (SI-1-1a)  

InVest 

Above ground 

carbon stocks 
GB + NI 25 × 25 meter  Look-up table 

Water run-off per 

cell 
GB + NI Idem Process model 

$-benefit transfer 

Above ground 

carbon stock 

monetary value 

GB + NI 25 × 25 meter Look-up table 

Water run-of 

monetary value per 

cell 

GB + NI Idem Look-up table 

Scholes Growth Days 

# Days precipitation 

exceeds evapo-

transpiration; proxy 

Water for run-off 

GB + NI 1-km2 
Deterministic 

model 

LPJ-GUESS 

Vegetation biomass 

stocks 
GB + NI 

0.5 Degrees (≈ 45.6 × 

45.6 km), average for 

years 2009-2018 

Process model 

Water run-off per 

cell 
GB + NI Idem Process model 

LUCI 

Above ground 

carbon stocks 
GB 10 × 10 meter Look-up table 

Flow volume in 

rivers: accumulated 

run-off 

England & 

Wales 
5 × 5 meter Process model 

National Forest 

Inventory Woodland 

GB 2018 with added 

Look-up table 

Above ground 

carbon stocks with 

partial input 

selection 

GB  20 × 20 meter Look-up table 

Models run through online tools without input selection options (SI-1-1b) 

WaterWorld 

Flow volume in 

rivers: accumulated 

run-off 

GB + NI 
0.0083 degrees  

(≈ 1-km2) 
Process model 
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ARIES k-ExplorerS14 

Joined above and 

below ground carbon 

stocks 

GB + NI 1-hectare Look-up table 

Existing modelled outputs from online repositories or existing with co-authors (SI-1-1c) 

Grid-to-Grid 

Flow volume in 

rivers: accumulated 

run-off 

GB 
1-km2, annual 

average 1995-2015 
Process model 

DECIPHeR 

Flow volume 

through watershed 

outlet: accumulated 

run-off 

GB 

487 catchments 

overlapping with 

validation set, annual 

average 1995-2015 

Process model 

Aqueduct v2.1 Total 

Blue Water 
Water run-off  GB + NI 138 flow areas  

Deterministic 

model 

Henrys et al. (2016) 
Above ground 

carbon stocks 
England 1-km2 Look-up table  

Barredo et al. (2012) 
Above ground 

biomass stocks 
GB + NI 1-km2 Look-up table 

Kindermann et al. 

(2008) 

Above ground 

biomass stocks 
GB + NI 1-hectare 

Deterministic 

model 

Copernicus, Tree 

Cover Density 

Proxy: tree cover 

density per cell 
GB + NI 20 × 20 meter 

Deterministic 

model 

 

SI-1-1 Model inputs and outputs used 

 

SI-1-1a Models run especially for this work 

 

InVest 

InVest is a suite of stand-alone, free and open-source models from the Natural Capital Project (Kareiva 

et al. 2011; McKenzie et al. 2014) and are downloaded as one package from the website 

(naturalcapitalproject.org/invest/). Extended descriptions of each model are provided in the online user 

guide (data.naturalcapitalproject.org/ nightly-build/invest-users-guide/html/).  

 

InVest comprises independent modules, each module covering one ecosystem service. In this study we 

used two of the more widely used modules; the water yield module (e.g. Redhead et al. 2016) and the 

carbon module (e.g. Goldstein et al. 2012) of release v3.7.0, which was the current version at the time 

of conducting this part of our research in 2020. Although software-based, the two InVest modules we 

used do not contain autonomously drawn-in data sources. Instead, all datasets need to be provided 

manually. The output generated is at the spatial resolution equal of the provided land cover map, which 

was the LCM2015 (Rowland et al. 2017) in our case. 

 

InVest water yield module. 

The InVest water yield model is a process model, built as a hydropower module, identifying 

quantitatively how much water or economic value each part of the landscape contributes to hydropower 

production. This is done by estimating water run-off through a single point. The model has three 

components: water yield, water consumption, and hydropower valuation. We employed the first 

component here, using the gridded outputs of water run-off per grid cell, allowing standardising 

extraction per validation polygon among model data sets. Parametrisation followed Redhead et al. 

(2016) as far as feasible. 

 

As input data we used: 

➢ Annual total precipitation at 1-km gridded estimates of monthly rainfall for Great-Britain and 

Northern Ireland from 1890 to 2017 (CEH-GEAR: Tanguy er al. 2019). The rainfall estimates 

are derived from the Met Office national database of observed precipitation and are downloaded 

from CEH- EIDC (catalogue.ceh.ac.uk/documents/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556). 

http://www.naturalcapitalproject.org/invest/
http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/
https://catalogue.ceh.ac.uk/documents/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556
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The data were extracted per month, summed per year and averaged for the period 1996-2015. 

The employed end date of 2015 matches the used Grid-to-Grid (Bell et al. 2018b and DECIPHeR 

(Coxon et al. 2019b) existing model outputs. 

➢ Global Potential Evapotranspiration from CGIAR-CSI on a 0.009 degree raster: 

(csi.cgiar.org/Aridity/), clipped to the UK and resampled to an exact 1-km raster. 

➢ Root restricting raster was obtained from the European Soil Database (ESDB) version 2: 

esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data. Soils for 

the UK were extracted. The soil depths was calculated as to the minimum of the rock depth (DR) 

or the depth to a gleyed horizon (DGH) with a maximum of 1500 cm. Subsequently, this polygon 

layer was converted to an exact 1-km grid. 

➢ Land use was following the LCM2015 (Rowland et al. 2017), the leading UK land cover map 

when conducting this research, with 21 classes at a 25 × 25 meter resolution. 

catalogue.ceh.ac.uk/documents/bb15e200-9349-403c-bda9-b430093807c7  

➢ Plant Available Water Content (PAWC) raster was obtained from the European Soil Database 

(ESDB) version 2 (link see above). Soils for the UK were extracted. PAWC was calculated based 

on Easily Available Water Capacity (EAWC) as weighted average of two layers, the topsoil of 

20 cm depth and subsoil up to the root restriction depth calculated above. Subsequently, this 

polygon layer was converted to an exact 1-km grid. 

➢ The seasonality factor (Z) was set at 30, following (Redhead et al. 2016)  

➢ The maximum rooting depth and evapotranspiration coefficient (Kc), as look-up table per Land 

Cover class, were provided by John Redhead as used in Redhead et al. (2016). 

 

InVest carbon module 

This InVest module is a look-up table based model, which uses maps of land use and land cover types 

and data on wood harvest rates, harvested product degradation rates, and stocks in four carbon pools 

(aboveground biomass, belowground biomass, soil, dead organic matter) to estimate the amount of 

carbon currently stored in a landscape or the amount of carbon sequestered over time. We did not employ 

the sequestration functions and restricted ourselves to above ground, standing, carbon pool only to match 

our Forest Research (FR; SI-1-2) validation set. The model generates gridded maps of standing carbon 

per land use based on the carbon pools at the spatial resolution equal of the provided land cover map, 

which was the LCM2015 (Rowland et al. 2017) in our case. 

 

As input data we used: 

➢ Land use was following the LCM2015 (Rowland et al. 2017), the leading UK land cover map 

when conducting this research, with 21 classes at a 25 × 25 meter resolution. 

catalogue.ceh.ac.uk/documents/bb15e200-9349-403c-bda9-b430093807c7  

➢ Ecofloristic zones via CDIAC: (cdiac.ess-dive.lbl.gov/ftp/global_carbon/ecofloristic_zones.zip) 

➢ Carbon stocks per land use class per ecofloristic zone via CDIAC (Ruesch & Gibbs 2008; Table 

SI-1-2): (cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_tables.pdf). We only used above 

ground stored carbon values. In the model carbon stocks for the other layers, below ground, soil 

and dead material were set to 0.  

 

  

http://csi.cgiar.org/Aridity/
https://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data#tabs-0-description=1
https://catalogue.ceh.ac.uk/documents/bb15e200-9349-403c-bda9-b430093807c7
https://catalogue.ceh.ac.uk/documents/bb15e200-9349-403c-bda9-b430093807c7
http://cdiac.ess-dive.lbl.gov/ftp/global_carbon/ecofloristic_zones.zip
http://cdiac.ornl.gov/epubs/ndp/global_carbon/carbon_tables.pdf
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Table. SI-1-2. Look-up table above ground carbon estimates in tonnes per 

hectare per ecofloristic region (Ruesch & Gibbs 2008) per LCM2015 class 

(Rowland et al. 2017) used in the InVest Carbon module 

LCM2015 class 

Temperate 

Oceanic 

Forest 

Temperate 

mountain 

systems 

Boreal 

coniferous 

forest 

Boreal 

mountain 

systems 

Broadleaved woodland  69 58 33 9 

Coniferous Woodland 73 61 33 9 

Arable and Horticulture 5 5 5 5 

Improved Grassland 5 5 5 5 

Neutral Grassland 4.5 4.5 5 5 

Calcareous Grassland 4.5 4.5 5 5 

Acid grassland  4.5 4.5 5 5 

Fen, Marsh and Swamp 7.4 7.4 3 3 

Heather  7.4 7.4 3 3 

Heather grassland  4.5 4.5 5 5 

Bog 7.4 7.4 3 3 

Inland Rock 1 1 1 1 

Saltwater  0 0 0 0 

 Freshwater  0 0 0 0 

Supra-littoral Rock 1 1 1 1 

Supra-littoral Sediment 1 1 1 1 

Littoral Rock 1 1 1 1 

Littoral sediment  1 1 1 1 

Saltmarsh  7.4 7.4 3 3 

Urban  0 0 0 0 

Suburban  0 0 0 0 
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$- Benefit transfer 

$- Benefit transfer is a look-up table based model employing Costanza et al. (2014), who provides 

estimates of the monetary value of global ecosystem services based on the TEEB study (de Groot et al. 

2012) and associated SVD-TEEB-database.. Following Costanza et al. (2014)  and Willcock et al. 

(2019), we associated LCM 2015 classes (Rowland et al. 2017) with benefit values for water supply and 

Climate regulation (carbon) at a 25 x25 meter grid size (Table SI-2-2). Here water was defined as use 

per person by dividing by population density at a 1-hectare resolution using WorldPop (2018). 

 

Table. SI-1-3. Look-up Table values in US-$ per hectare per year as used for $-benefit transfer  

LCM2015 class  

Climate 

Regulation 

Water 

Supply 

Costanza et al. 

Category 

Broadleaved woodland  152 191 Temperate Forest 

Coniferous woodland 152 191 Temperate Forest 

Arable and horticulture 0† 400 Cropland 

Improved grassland 0† 400 Cropland 

Neutral grassland 40 60 Grassland 

Calcareous grassland 40 60 Grassland 

Acid grassland  40 60 Grassland 

Fen, marsh and swamp  2‡ 408 Swamps/Floodplains 

Heather  2‡ 408 Swamps/Floodplains 

Heather grassland   2‡ 408 Swamps/Floodplains 

Bog 2‡ 408 Swamps/Floodplains 

Inland rock 0 0 n/a 

Saltwater   0 0 n/a 

Freshwater   0 1808 Lakes/Rivers 

Supra-littoral rock 0 0 n/a 

Supra-littoral sediment 0 0 n/a 

Littoral rock 0 0 n/a 

Littoral sediment   0 0 n/a 

Saltmarsh   65 1217 Tidal Marsh/Mangroves 

 Urban   54¶ 0 Urban 

 Suburban   145§ 0 Urban 

†Assumed to be fully harvested = 0 stock; ‡ from (de Groot et al. 2012) for the UK; ¶ adaptation as: 

[904.7 × 6%] with the 6% the tree density ((land.copernicus.eu/pan-european/high-resolution-

layers/forests/tree-cover-density/status-maps/2015) within Urban cell in CM2015 cells; § idem as ¶ but 

with 16% tree density in suburban cells. 

 

Scholes Growth days 

The annual number of days rainfall exceeds evapotranspiration was calculated in monthly bins (Scholes 

1998; Willcock et al. 2019) as statistical deterministic model and is calculated as: 

𝐺𝐷𝑥 =  ∑ (
𝑑𝑚∗𝑃(𝑚,𝑥)

𝐸(𝑚,𝑥)
)12

𝑚=1     Eq. SI-1-1 

With P = precipitation in grid cell x in month m; E = potential evapotranspiration in grid cell x in month 

m; m = month (1 to 12), x = 1-km2 grid cell and d = number of days per month. 

 

We used the follow source data: 

1) Monthly precipitation using WorldClim, version 2.1 (Fick et al. 2017), on a 0.009 degree 

resolution (30 degree seconds) and resampled to exactly 1000 × 1000 meter cells from 

(worldclim.org/). 

 

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
http://www.worldclim.org/
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2) Monthly global Potential Evapotranspiration from CGIAR-CSI (Zomer et al. 2006) on a 0.009 

degree resolution (30 degree seconds) and resampled to exactly 1000 × 1000 meter cells  from 

(csi.cgiar.org/Aridity/). 

 

LPJ-GUESS  

The Lund–Potsdam–Jena General Ecosystem Simulator (LPJ-GUESS, www.nateko.lu.se/lpj-guess; e.g. 

Smith et al. 2014; Ahlström et al. 2015) is a dynamic vegetation/ecosystem process model designed for 

regional to global applications. The model combines process-based representations of terrestrial 

vegetation dynamics and land–atmosphere carbon and water exchanges in a modular framework. LPJ-

GUESS explicitly considers key vegetation and ecosystem processes such as photosynthesis, vegetation 

growth, resource (light, water and nitrogen) competition between plant functional types (PFTs), 

disturbance by fires, and carbon storage.  

 

Compared to other dynamic global vegetation models, LPJ-GUESS represents vegetation dynamics and 

canopy structure at a high level of detail and simulates individual trees with a forest gap model approach 

(Bugmann 2001). Stochastic establishment and mortality of individual trees is simulated at the so-called 

patch level (1000-m2), and the results of a number of replicate patches (here 10) are averaged to represent 

the overall vegetation of a model grid cell with homogenous environmental input. This detail is an 

advantage for regional or local applications (Smith et al. 2001; Hickler et al. 2012). 

 

The model has been successfully evaluated against a large number of benchmarks at local to global 

scales (e.g. Smith et al. 2014; Ahlström et al. 2015; see more examples at : iis4.nateko.lu.se/lpj-

guess/LPJ-GUESS_bibliography.pdf). The version applied here described fully in Smith et al. (2014) 

and the references therein, with the additional inclusion of the SIMFIRE-BLAZE fire model (Knorr et 

al. 2019). The input datasets for climate, atmospheric CO2 concentration, human population density, 

nitrogen deposition and land use are identical to those used by the dynamic global vegetation models 

(including LPJ-GUESS) contributing to the Global Carbon Project 2019 (Friedlingstein et al. 2019). For 

the climate data input, CRU-JRA 6-hourly forcing (was aggregated to daily resolution and used (Viovy 

2009; Harris et al. 2014; Kobayashi et al. 2015), rather than the alternative monthly climate input 

dataset.  

 

A more general popular-science description of the model also addressing non-experts, but not including 

the most recent parameterization, the nitrogen cycle or the SIMFIRE-BLAZE fire model, can be found 

here: iis4.nateko.lu.se/lpj-guess/guess.pdf. 

 

LPJ-GUESS output was provided by co-author Matthew Forrest. We used:  

➢ The vegetation carbon stocks;  

➢ The total simulated water runoff.  

LPJ-GUESS was applied at 0.5° spatial resolution, which approximates to 45.6 × 45.6 km grid cells in 

the UK. 

 

LUCI 

The Land Utilisation Capability Indicator (www.lucitools.org/; e.g. Sharps et al. 2017; Trodahl et al. 

2017; Thomas et al. 2020) is an ecosystem services modelling tool which illustrates the impacts of land 

use on various ecosystem services. It runs at fine spatial scales modelling a range of ecosystem services, 

and produces outputs as both physical units, and a status classification. LUCI combines status 

classification data for multiple services to identify areas where landscape usage change might be 

beneficial, and where maintenance of the status quo might be desirable. The model automatically applies 

spatial discretisation at the same resolution as the topographic data, which may be considered false 

precision for highly spatially aggregated climate datasets, but is more appropriate for hydrological 

routing functions, and allows for minimal loss of spatial information from the polygon land use dataset. 

The carbon stock model is look-up table based and is estimated in this case at a 10 × 10 meter scale. 

The water yield module provides accumulated water run-off at a 5 × 5 meter scale as process model, 

and also calculates in-stream annual average flow. Existing runs were collated for this study. 

http://csi.cgiar.org/Aridity/
http://www.nateko.lu.se/lpj-guess
http://iis4.nateko.lu.se/lpj-guess/LPJ-GUESS_bibliography.pdf
http://iis4.nateko.lu.se/lpj-guess/LPJ-GUESS_bibliography.pdf
http://iis4.nateko.lu.se/lpj-guess/guess.pdf
https://www.lucitools.org/
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LUCI water yield module. 

The LUCI (Land Utilisation & Capability Index) model simulates flow accumulation over the landscape, 

using GIS functions for calculating flow direction and accumulating water through the landscape to the 

watercourse, to give annual average streamflow at all points on the river network. For this model run, 

evapotranspiration was a user provided input which does not change with changing land cover; 

development is underway to modify evapotranspiration according to changing land cover and soil 

properties but this functionality was not parameterised for the UK at the time of writing.  

 

As input data we used: 

➢ Annual total precipitation at 1-km gridded estimates of monthly rainfall for Great-Britain and 

Northern Ireland from 1890 to 2014 (CEH-GEAR). The rainfall estimates are derived from the 

Met Office national database of observed precipitation and are downloaded from CEH- EIDC 

(https://catalogue.ceh.ac.uk/documents/f2856ee8-da6e-4b67-bedb-590520c77b3c ). The data 

were extracted per month, summed per year and averaged for the period 2000-2010.  

➢ Potential Evapotranspiration (PET) was calculated using the CHESS (Climate hydrology and 

ecology research support system) meteorological dataset (Robinson et al. 2017) and the Penman-

Monteith equation (Monteith 1965) parameterised as a reference grass crop everywhere. 

➢ Digital terrain model (DTM) with 5m spatial resolution from NextPerspectives. Licensed to: UK 

Centre for Ecology & Hydrology for PGA, through Next Perspectives™ 

 

 

LUCI carbon module 

The LUCI carbon model is look up table based, and maps carbon in soils and vegetation using input 

data on soil type and land use. Soil carbon was not included here, but is generally mapped according to 

England and Wales average values for land use and soil combinations at two depths: a) 0-30 cm depth 

and b) 0-1m depth. Vegetation carbon was calculated based on Tier 2 IPCC partitions of aboveground 

live, aboveground dead and belowground. 

 

As input data we used: 

 

➢ Land use was assigned using LCM2007 (Morton et al. 2014), in polygon format (LCM2007 © 

and database right NERC (CEH) 2011. All rights reserved. Contains Ordnance Survey data © 

Crown copyright and database right 2007.) 

➢ A lookup table provided as part of the LUCI model toolboxes 

 

National Forest Inventory Woodland GB 2018  

The NFI woodland map covers all forest and woodland area over 0.5-hectare with a minimum of 20% 

canopy cover (or the potential to achieve it) and a minimum width of 20 metres, including areas of new 

planting, clear-fell, windblow and restocked areas. This grid layer was downloaded via data-

forestry.opendata.arcgis.com/datasets/d3d7bfba1cba4a3b83a948f33c5777c0_0 at a 20 × 20 meter scale, 

to which we added a self-collated look-up table (Table SI2-3). 

 

  

https://catalogue.ceh.ac.uk/documents/f2856ee8-da6e-4b67-bedb-590520c77b3c
https://www.apgb.co.uk/
http://data-forestry.opendata.arcgis.com/datasets/d3d7bfba1cba4a3b83a948f33c5777c0_0
http://data-forestry.opendata.arcgis.com/datasets/d3d7bfba1cba4a3b83a948f33c5777c0_0
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Table. SI-1-4. Look-up table for carbon stock in tons per hectare for National Forest Inventory 

woodland 

FC Inventory Class Carbon stock Description/Justification 

Grass 4.50 From CDIAC†: Grassland 

Other vegetation 3.00 From CDIAC†: Bogs etc. 

Open water 0 Assumed 0 

Assumed woodland 48.2 Mean broadleaved and conifer 

Broadleaved woodland 64.4 
Weighted CDIAC† values across all 4 UK 

ecozones 

Conifer woodland 32.0 
Weighted CDIAC† values across all 4 UK 

ecozones 

Ground prep 0 Assumed 0 

Low density woodland 12.05 Assumed 25% of full woodland 

Mixed mainly broadleaved 

woodland 
64.4 = Broadleaved woodland 

Mixed mainly conifer woodland 32.0 = Conifer woodland 

Young trees 2.89 

[Fraction of cumulative carbon for all species 

as: mean <=15 years vs. mean >=50 year ^ < 

100 years)]‡ × mean(Broadleaved and 

Conifer) 

Shrub 2.89 = young trees 

Agriculture land 5.00 From CDIAC†: Arable 

Bare area 0 Assumed 0 

River 0 Assumed 0 

Urban 0 Assumed 0 

Felled 0 To be removed: 0 stock 

Coppice 5.78 = young trees × 2 

Cloud shadow 0 Assumed 0 

Quarry 0 Assumed 0 

Road 0 Assumed 0 

Coppice with standards 5.78 = coppice 

Windfarm 0 Assumed 0 

Uncertain 0 Assumed 0 

Power line 0 Assumed 0 

†Ruesch & Gibbs 2008; ‡From Forest Research sequestration cumulative tables (see validation set) 

 

 

SI-1-1b. Models run through online tools without input selection options 
 

WaterWorld 

WaterWorld (version 2; Mulligan 2013) is an internally parameterised, process-based model of water 

accumulation, which we used to model water supply in our study. The model as we used it is readily 

available via (www.policysupport.org/waterworld). A freely available description is provided on the 

website. We run and downloaded accumulated water supply at a ≈ 1-km2 scale (0.0083°), the runs were 

conducted web-based.  

 

ARIES 

ARIES (ARtificial Intelligence for Ecosystem Services, but recently renamed to ARtificial Intelligence 

for Environment and Sustainability; e.g. Villa et al. 2014; Martínez-López et al. 2019) is a networked 

collaborative software technology designed for rapid ecosystem service assessment and valuation 

(http://aries.integratedmodelling.org/). It gives equal emphasis to ecosystem service supply, demand and 

http://www.policysupport.org/waterworld
http://aries.integratedmodelling.org/
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flow in order to quantify actual service provision and use by society (as opposed to quantifying potential 

service benefits). It aims to provide a suite of models that support science-based decision-making. We 

used the web-based ARIES Explorer (k.Explorer) that aims to allow non-technical users for carbon 

stocks at a 1-hectare scale as look-up table based model. The water supply module was not finished at 

the time of conducting this research (last check 07-04-2021).  

 

 

SI-1-1c. Existing modelled outputs from online repositories or existing with co-authors 

 

Grid-to-Grid 

Grid-to-Grid (Bell et al. 2009; 2018a) is an hydrological accumulated flow process model for water 

supply in Great Britain (England, Scotland &Wales). This national-scale hydrological model runs on an 

exact 1000 × 1000 meter grid aligned with the GB national grid, at a 15-minute time-step, and is 

parameterised using digital datasets (e.g. soil types, land-cover). The effect of urban and suburban land-

cover on runoff and downstream flows is accounted for in the model. The downloaded dataset (Bell et 

al. 2018b: catalogue.ceh.ac.uk/documents/f52f012d-9f2e-42cc-b628-9cdea4fa3ba0) was produced as 

part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity), which 

was a UK NERC-funded research project (2014-2017) that developed a risk-based approach to drought 

and water scarcity (mariusdroughtproject.org/).  

 

We used the 1996-2015 predictions, averaging monthly m3 s-1 values per grid cell, and summing those 

into annual flows, weighted with seconds per month. For details see our anonymous GitHub account: 

https://github.com/EnsemblesTypes/DataExtractionTools, module ExtractDataG2G. 

 

DECIPHeR  

DECIPHeR (Dynamic fluxEs and ConnectIvity for Predictions of HydRology; Coxon et al. 2019a) is a 

process model framework that simulates and predicts hydrologicflows from spatial scales of small 

headwater catchments to entire continent. Here we downloaded DECIPHeR model estimates of daily 

flow for 1366 gauged catchments in Great Britain (1962-2015). The downloaded dataset (Coxon et al. 

2019b: catalogue.ceh.ac.uk/documents/d770b12a-3824-4e40-8da1-930cf9470858) was produced as 

part of MaRIUS (Managing the Risks, Impacts and Uncertainties of drought and water Scarcity) to 

provide national scale probabilistic flow simulations and predictions for UK drought risk analysis. 

MaRIUS was a UK NERC-funded research project (2014-2017) that developed a risk-based approach 

to drought and water scarcity (mariusdroughtproject.org/). 

 

We selected the 487 catchments corresponding between Coxon et al. (2019b) and our NRFA validation 

dataset. We used the 1996-2015 predictions, summing daily values into years, translating from m3 s-1 to 

days per grid cell. Subsequently we averaged among years. For details see our GitHub code at: 

https://github.com/EnsemblesTypes/DataExtractionTools, module ExtractDataDECIPHeR. 

 

Aqueduct v2.1  

From the world-wide maps for Water of the World resources Institute (Gassert et al 2015: 

wri.org/resources/data-sets/aqueduct-global-maps-21-data) we used the total annual Blue Water (BA) 

per main catchment, which is statistically deterministic modelled data. The total blue water estimate 

approximates natural river discharge and does not account for withdrawals or consumptive use. Since 

the 138 main catchments do not match NRFA aligned catchments, we resampled into 1-km2 grid cells 

of equal value enabling to extract based on our smaller validation catchments. 

 

Henrys et al. (2016) 

Model estimates of aboveground carbon for Great Britain (Henrys et al. 2016) at a 1-km2 scale 

downloaded from: catalogue.ceh.ac.uk/documents/9be652e7-d5ce-44c1-a5fc-8349f76f5f5c. This look-

up table based spatial dataset presents estimates of total carbon stored in vegetation across England, not 

Great Britain as claimed in the title, and is based upon methodology developed in Milne & Brown 

(1997). Presented as carbon density (tonnes per hectare) at a 1-km scale, this map was produced using 

estimates of the average amount of carbon stored in each land cover type and upscaling to a full England 

https://catalogue.ceh.ac.uk/documents/f52f012d-9f2e-42cc-b628-9cdea4fa3ba0
http://www.mariusdroughtproject.org/
https://github.com/EnsemblesTypes/DataExtractionTools
https://catalogue.ceh.ac.uk/documents/d770b12a-3824-4e40-8da1-930cf9470858
http://www.mariusdroughtproject.org/
https://github.com/EnsemblesTypes/DataExtractionTools
https://www.wri.org/resources/data-sets/aqueduct-global-maps-21-data
https://catalogue.ceh.ac.uk/documents/9be652e7-d5ce-44c1-a5fc-8349f76f5f5c
https://catalogue.ceh.ac.uk/documents/9be652e7-d5ce-44c1-a5fc-8349f76f5f5c
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coverage, based on the estimated spatial distribution of land cover across England using the 2007 Land 

Cover Map (Morton et al. 2014). Estimates of carbon in tonnes per hectare for each land cover category 

as a whole, not being woodland, was estimated using Milne & Brown (1997) as well were carbon density 

for woodlands based on among species differences and age specific estimates. Countryside Survey data 

from 2007 (Maskell et al. 2008) was used to derive these species and age structure.  
 

Barredo et al. 

From the JRC report, A European map of living forest biomass and carbon stock (Barredo et al. 2012; 

Avitabile & Camia 2018), using the map of above ground forest living biomass at a 1-km2 scale, 

provided into the project by co-author José I. Barredo. The report can be downloaded via 

op.europa.eu/en/publication-detail/-/publication/b9345574-a96f-4417-87ed-1a85d2252834/language-

en and is described in Avitabile & Camia (2018). 

 

The methodology for creating the map, based on IPCC (2006) and Ruesch & Gibbs (2008), is a look-up 

table associated with a Corine land cover map (EEA 1993; 2000) and the FAO’s map of Global 

Ecological Zones for the Global Forest (FAO 2001). The method spatializes biomass density values in 

forest, sourced from the IPCC report on Guidelines for National Greenhouse Gas Inventories (IPCC 

2006: tables 4.7, 4.8).  

 

Biomass values were allocated to each grid cell taking into consideration the forest area and the biomass 

density corresponding to the ecological zone of the grid cell. Then, the forest biomass map was adjusted 

at grid cell level by applying ratios to match the country-level biomass values reported in the FAO’s 

Forest Resource Assessment (FAO 2010). Therefore, the adjusted map is in agreement with reported 

biomass at country level. 

 

The adjusted biomass map was validated using sub-national data from National Forest Inventories of 

four European countries. The validation indicated that the map represents faithfully the amounts of 

biomass at subnational level. Additionally, Avitabile & Camia (2018) implemented an assessment of 

forest biomass maps in Europe using harmonized national statistics and inventory plots. Their results 

indicate that the forest biomass map of Barredo et al. (2012) ranked high in comparison to other 

commonly used biomass maps of Europe. 

 

Kindermann et al. 

From Kindermann et al. (2008), updated for Avitabile & Camia (2018): A global forest growing stock, 

biomass and carbon map based on FAO statistics, using the carbon forest map at a 1-hectare scale, 

provided into the project by co-author Georg Kindermann. This model is a deterministic model 

downscaling country statistics given by FAO. Therefore it estimates site productivity using temperature, 

precipitation, radiation, altitude and soil characteristics. With this site productivity the standing biomass 

of full stocked normal forest stand with an increment optimal rotation time is estimated, weighted with 

a forest cover map and scaled to fit the country statistics. 

 

Tree Cover Density 2015  

As a proxy of carbon stock, the density of trees deterministically modelled from Modis satellite imagery 

at a 20 × 20 meter scale using the pan-European Copernicus data-base (land.copernicus.eu/pan-

european/high-resolution-layers/forests/tree-cover-density/status-maps/2015).  

 

 

  

https://op.europa.eu/en/publication-detail/-/publication/b9345574-a96f-4417-87ed-1a85d2252834/language-en
https://op.europa.eu/en/publication-detail/-/publication/b9345574-a96f-4417-87ed-1a85d2252834/language-en
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density/status-maps/2015
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SI-1-2 Validation datasets 

 

UK National River Flow Archive 

This validation set provides annual flow in m3 through a catchment pour point. 

 

The National River Flow Archive (NRFA: nrfa.ceh.ac.uk/; e.g. Dixon et al. 2013; Harvey et al. 2012) 

is the UK’s focal point for river flow data. The NRFA collates, quality controls, and archives 

hydrometric data from gauging station networks across the UK including the extensive networks 

operated by the Environment Agency (England), Natural Resources Wales, the Scottish Environment 

Protection Agency and for Northern Ireland, the Department for Infrastructure - Rivers. The NRFA data 

underpin much of the hydrological research and water resources development and management activity 

in the UK. Peak flow datasets provided by the archive form the basis of UK industry standard flood 

frequency estimates for planning and development purposes. One of the key features of the NRFA is 

providing a central database and retrieval service of hydrometric measurements for 1,597 gauging 

stations associated to delineated catchments in the UK of which 1,239 stations were active in 2019. 

Their associated catchments vary in size from <1-km2 to 9948 km2 (larger Thames area).  

 

We selected 519 selected hydrometric gauging stations from the NRFA database, with associated 

catchments varying in size and spatially spread across the UK (Figure S1-1). Spatial representation is as 

polygons of these watersheds. We used the following criteria to select gauging stations: 

➢ The gauging station opened before 1996 

➢ The station was still in use in 2015 

➢ A delineated catchment was present as polygon in the database 

➢ The catchment fitted the size criteria below and was not subsequent along the same river. 

For the latter, firstly we selected all gauging stations with an associated catchment > 1000 km2 (82 

stations). Thereafter, we selected stations with associated catchment size > 100 km2, with the 

prerequisite of not taking multiple gauging stations along the same river, given the river’s name and first 

2 digits of station code, which are river specific. In those cases the station with the largest catchment 

(i.e. most downstream) was selected. We additionally included a set of 41 Welsh catchments > 25km2 

to assure spatial fit with the LUCI model.  

 

The provided daily flows (in m3 s-1) were calculated into daily totals and subsequently summed in annual 

values for the period 1996-2015 and averaged among years. The employed end date of 31-12-2015 

matches the used existing model outputs for Grid-to-Grid (Bell et al. 2018b) and DECIPHeR (Coxon et 

al. 2019b).  

For details see our GitHub code at: https://github.com/EnsemblesTypes/DataExtractionTools, module 

ExtractDataNRFA.  

 

Because of partial overlaps of the associated catchments, model data extractions for these polygons were 

conducted per single polygon using the ArcGIS Zonal tool, afterwards the results are combined. See 

GitHub: https://github.com/EnsemblesTypes/DataExtractionTools, modules Water_Extractions(arcpy) 

and WaterModelDataCombine. 

 

https://nrfa.ceh.ac.uk/
https://github.com/EnsemblesTypes/DataExtractionTools
https://github.com/EnsemblesTypes/DataExtractionTools
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Figure SI-1-1. Catchment coverage of the UK. The 519 catchments used for water validation and 

ensemble calculations. Smaller catchments overlapping bigger ones are put on top; lines show 

underlying largest catchment level. Colours are for depiction purpose only. Included are the four 

countries of the United Kingdom, catchments can cross these borders.  

 

 

National Forest Estate Sub-compartments for England and Scotland 2019 

This validation set provides a close estimate for above ground standing carbon stocks. 

 

The carbon stock validation dataset was retrieved from UK Forest Research (FR) open data with the 

guidance of Kevin Watts and consists of species inventories in all forest estates in England and Scotland 

in 2019. The FR open data sources, among others, holds a Sub-Compartment Database (SCDB) and 

forest stock maps. The goal is to provide an authoritative data source, providing information for forest 

stock recording, monitoring, analysis and reporting. Through this, the dataset supports decision-making 

on the whole of the estates. Information from the inventory is used by the Forestry Commission, wider 

government, industry and the public for economic, environmental and social forest-related decision-

making. The total covered area by these estates is 8894 km2 (889,410 hectares). See Figure SI-2-2. The 

data can be found at: 

data-forestry.opendata.arcgis.com/datasets/3993555ec8124b1e91b55a4a8b84567c_0  

data-forestry.opendata.arcgis.com/datasets/1a971b7b3e14439f8481d016f46d99d3_0  

 

In 201,143 present forest compartments of varying size (mean: 4.4-hectares. median 1.6-hectares, ± 

22.1), tree species, stand age and thinning regime were recorded for three forest layers. Accumulated 

carbon was calculated per hectare per compartment using the UK species specific accumulated CO2 

sequestration with stand age, with a 12/44 CO2 to carbon conversion rate 

woodlandcarboncode.org.uk/images/Spreadsheets/WCC_CarbonCalculationSpreadsheet_Version2.3_

12May2020.xlsx (sheet: Biomass Carbon Look Up Table), linking to the full list of the 135 UK tree 

species (forestresearch.gov.uk/documents/2783/PF2011_Tree_Species.pdf).  

 

 

http://data-forestry.opendata.arcgis.com/datasets/3993555ec8124b1e91b55a4a8b84567c_0
http://data-forestry.opendata.arcgis.com/datasets/1a971b7b3e14439f8481d016f46d99d3_0
https://www.woodlandcarboncode.org.uk/images/Spreadsheets/WCC_CarbonCalculationSpreadsheet_Version2.3_12May2020.xlsx
https://www.woodlandcarboncode.org.uk/images/Spreadsheets/WCC_CarbonCalculationSpreadsheet_Version2.3_12May2020.xlsx
https://www.forestresearch.gov.uk/documents/2783/PF2011_Tree_Species.pdf
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For all 201,143 sub-compartments, all mentioned species could, after an initial cross-check, relate to the 

species in the UK tree species list. For each compartment for each of the three layers, the unique 

combination of stand age, thinning regime and species was searched in the Biomass Carbon Look Up 

Table and area converted to carbon per hectare. Subsequently the three layers were summed to get an 

overall carbon estimate per compartment, as carbon per hectare.  For details see our GitHub code at: 

https://github.com/EnsemblesTypes/DataExtractionTools, module CarbonCompartments, with the 

actual search and area conversions in Lines 75-83, 109 and 116; most remaining code is to initiate the 

input data (up to line 34) and detect potential table errors and inconsistencies in stand ages 

(‘Weird_list’), and correct those where possible. Finally, only 4 sub-compartments were removed 

because of unresolvable inconsistencies in stand ages. 

 

Subsequently, sub-compartments were spatially joined into 2078 polygons of forest with a large size 

range (mean: 409-hectares. median 34.1-hectares, ± 2569), summing the carbon estimates of the 

different units within. Afterwards model prediction results are extracted using codes on GitHub: 

https://github.com/EnsemblesTypes/DataExtractionTools, module Carbon_Extractions(arcpy). 

 

Though not being measurements per se, these data are as close as feasible to such large scale estimates 

and similar as used for forest plots in e.g. Africa (Willcock et al. 2014; Avitabile et al. 2016). 

 

 
 

Figure SI-1-2. Forest Estate Locations in England and Scotland provided by Forest Research. (data-

forestry.opendata.arcgis.com/). Included are the UK country divisions. 

  

https://github.com/EnsemblesTypes/DataExtractionTools
https://github.com/EnsemblesTypes/DataExtractionTools
http://data-forestry.opendata.arcgis.com/
http://data-forestry.opendata.arcgis.com/
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SI-1-3 Ensemble calculations and comparisons 
  

There is a knowledge gap as to which ensemble approach is best for ES modelling to support decision-

making: should ES model ensembles be produced by unweighted averaging, or weighting using either 

trained or untrained approaches? Here, we address this by implementing a range of ensemble methods 

to evaluate which produces the most accurate predictions against validation data. 

  

Many approaches exist to calculate ensembles (Araújo & New 2007; Marmion et al. 2009; Dormann et 

al. 2018) – we compare 10 ways of doing this here. Broadly, weighted ensemble approaches fall into 

two categories: ‘untrained’ where ensembles are obtained without any validation data; and ‘trained’ 

where validation data are incorporated. Unweighted ensembles (mean and median) have been most 

generally used, in both species distribution (Araújo & New 2007; Marmion et al. 2009) - and climate 

modelling (Refsgaard et al. 2014).  

 

However, weighting unequally among model outputs is suggested as a possible approach to acquire 

better accuracy (Marmion et al. 2009; Knutti et al. 2013; Dormann et al. 2018; Willcock et al. 2020). 

Still, as yet there are no guidelines to combine ES model outputs of various forms and scales using 

weighting approaches aiming to reduce uncertainty among models by weighting them unequally 

(Marmion et al. 2009; Dormann et al. 2018). Based on ideas developed in other fields we test several 

approaches of determining weights. Especially where validation data are not available, the consensus 

among models, can be used to weight their individual contribution to the ensemble value. This approach 

follows the logic that models whose output values differ more from those of the other models (i.e. are 

more distinct) are more likely to be incorrect. We restrict ourselves to weighting methods feasible for a 

wide group of users with standard statistics packages available – such as R, SPSS, SAS, Matlab – 

focussing on consensus. The selected weighting types should be feasible to replicate without much 

coding ability.  

 

We use examples of three type of methods to determine weights:  

1. Deterministic consensus (i.e. determining a consensus axis: Marmion et al. 2009; Grenouillet et 

al. 2011);  

2. Iterated consensus (through regression and cross-validation: Araújo & New 2007; Dormann et al. 

2018);  

3. Attribute-based (e.g. Marmion et al. 2009; Masson & Knutti 2011; Englund et al. 2017; Willcock 

et al. 2019; Brun et al. 2020).  

 

Deterministic consensus among models can be calculated using several approaches, including the fit to 

a common consensus axis such as through Principal Components Analysis, or weighting by correlation 

coefficients (En-3 & En-4; ensemble numbering follows Table 1 main text and below). However, 

through using structured trial-and-error, iterative approaches might more accurately quantify consensus 

among models by reducing uncertainty. We will test here whether that is true using examples of two 

regression techniques: between the individual models and the median (En-5) and leave-one-out cross-

validation (En-6), as well as trained regression between validation data and modelled values, (En-10). 

By contrast, one might a priori place value on particular model attribute and use these to create weights 

(En-7, En-8 & En-9). For example, by up- or down-weighting more distinct model types emphasising 

models that may contain processes not captured in others, or by penalising those models that go against 

the convention (En-8), or penalising models that run at coarser spatial resolutions (since smaller grid 

sizes are deemed more useful for decision-making: En-7; Willcock et al. 2016). The attribute matrix we 

developed for the latter is explained in SI-1-4. As a last category, when validation data are available, it 

is possible to weight individual models by model accuracy (En-9).  

 

Most employed weighting techniques are from species distribution modelling ensembles (e.g. from 

Araújo & New 2007, Marmion et al. 2009, Brun et al. 2020, Liu & Liang 2020), adapted to our goals 

with feasibility as important selection criterion. We refer to sources of these both here and in the main 

text. We do not claim to be exhaustive in any form, many other techniques to determine weight could 

exist, within the same categories as used here or coming from different, e.g. a more mathematical angles 
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(Dormann et al. 2018). For example, it is less feasible to use more Bayesian oriented ensemble 

techniques from species distribution modelling  – such as BIOMOD or GAM or similar applications or 

approaches; Thuiller et al. 2009; 2019–, in which most work has been conducted. Such models generally 

deal with binary data (presence vs non-presence) whereas ES uses continuous data; hence, available 

packages do not fulfil our goals. The development of suitable mathematical approaches and codes to do 

so is beyond our goal of providing feasible methods for a wider audience of policymakers and other 

stakeholders (Willcock et al. 2016). 

 

All our ensemble calculations followed the same procedure, we show the flow among codes used in 

Figure SI-1-3; the ensembles are explained in SI-1-3b.  

 

To generate uncertainty estimates allowing statistical comparison with the models and among ensembles 

we used a bagging approach (see Dormann et al. 2018) in which we jack-knifed with 50% of the spatial 

data polygons for 250 runs following such suggestions in Araújo & New (2007) and Refsgaard et al. 

(2014). To assure like-for-like comparisons, per run all model and ensemble calculations and their 

comparisons were calculated on the same set of jack-knifed spatial data points. Afterwards mean 

averages and standard deviations were calculated among runs. Table 1 (main text) presents our 10 

ensemble types as equations, below they are textually explained (SI-1-3b). All mentioned codes are 

written in Matlab v7.0.14.739 with statistical and parallel toolboxes available. “Modules” are written 

code by ourselves, “daughter functions” were written within the modules and only available from within 

modules, “tools” refer to codes within the Matlab package and are not generated by the authors. For the 

latter full function descriptions are available within Matlab help and online via mathworks.com.  

 

SI-1-3a. Code flow 

 
In our GitHub account https://github.com/EnsemblesTypes/EnsemblesTypes, the steering module is 

Ensembles_Analyses, which needs to be called with its target validation set, mode and maximum 

numbers or runs. The full flow of codes is depicted in Figure SI-1-3, with arrows the module call flow. 

After parameter and definition fixations, the actual runs are performed through main module TheRuns. 

Fixed parameter values, such as thresholds, iterations, and model and validator sets are stored in 

DefintionSet called upon by the steering module. As well in DefintionSet the required model and 

validation data sets are loaded. 

 

https://nl.mathworks.com/help/
https://github.com/EnsemblesTypes/EnsemblesTypes
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Figure SI-1-3. Module flow to guide to the GitHub deposited codes in 

https://github.com/EnsemblesTypes/EnsemblesTypes. We cite actual module names. 

Arrows indicate the direction of call, e.g. the steering module calls DefinitionSet, 

ClusterTest at the start of the model, TheRuns for performing all jack-knifed model 

and ensemble assessments and JoinFunc to join the runs into means and standard 

deviations among runs. Outputs flow the opposite directions. After selecting a jack-

knife proportion of the dataset, set at 50% (100% for SI-3) in TheRuns. Model 

accuracy was run through the Make_ModelResults module; subsequently ensembles 

were generated and tested for accuracy in the Make_Ensembles module. Along with 

the steering information, both modules output accuracy measures, as well as the 

ensemble module outputting weights. Outputs were stored per run as labelled swap 

files to be collated by the JoinFunc module. 

 

The accuracy calculations were run by the module Accuracy_statistics, which is called upon for all 

accuracy calculations as well as outputs ensemble polygon values for depictions (see SI-3). It includes 

a full normalisation to the 2.5% and 97.5% percentile prior to accuracy assessment for all models and 

ensembles each time the module is called upon (daughter function Winsor), hence all accuracy 

calculations were done over the full 0-1 range for both models, ensemble and the comparator. This also 

assures scales are identical among runs, as normalisation is done within runs. Missing values were 

reciprocally removed from both model and the comparator per combination – so the number of 

datapoints among models can be different due to missing information (Table SI-1-1); no missing values 

were present in the ensembles since that would imply none of the models contained valid values. The 

normalised ensemble output per validation polygon calculated generated in Accuracy_statistics was 

outputted for use in spatial mapping (SI-3). 

 

After conducting all runs, they were collated through the JoinFunc module, generating among runs 

(mean) averages and standard deviations for accuracy, weights and especially bilateral differences, 

calculated as [
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑗

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖
], with i and j different ensemble types, or the mean among models (see below). 

Bilateral differences were as well calculated per run and averaged afterwards providing a mean and 

standard deviation of bilateral differences. These standard deviations among runs are the error bars used 

https://github.com/EnsemblesTypes/EnsemblesTypes
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in Figure 2 (main text, with i above the mean ensemble) and Figure SI-2-1 and Figure SI-2-2 (with i 

above the median ensemble). 

 

SI-1-3b. Calculations per run, including all ensembles 

 
1) We selected 50% of data points, in case of unequal data points (water) this was the ceiling. This 

selection would remain for all model and ensemble calculations. The remaining 50% of data-points 

was stored to be used in the trained ensembles procedures (TheRuns: lines 7:12) 

2) For the models, accuracy was calculated over this 50% of datapoints between model output (see 

SI-1-1) and comparator (validation data sets, see SI-1-2) and stored. This was run through the 

Make_ModelResults module. “A randomly chosen individual model” (see main text) was 

represented by the mean accuracy among models per run. This mean value was afterwards averaged 

over all runs (see JoinFunc module).  

3) Progressing to the Make_Ensembles module, we firstly calculated the unweighted ensembles by 

taking per data-point the mean (En-1 in Table 1 main text) respectively the median (En-2 in Table 

1 main text), i.e. a datapoint represents one validation polygon. Accuracy of these ensembles were 

assessed against the comparator validation data set in the Accuracy_statistics module. See for 

unweighted method discussions e.g. Marmion et al. (2009), Grenouillet et al. (2011), Refsgaard et 

al. 2014 and Willcock et al. (2020). 

4) Subsequently, we calculated the untrained weighted ensembles simulating the situation without 

any or reliable validation data present. Ensembles are of the general form:  

   𝐸(𝑥) = ∑ (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

× 𝑌𝑖)𝑛
𝑖

(𝑥)
       Eq. SI-1-2 

with positive weights ωi for model i of validation polygon x, weights ωi are normalised to sum to 

1, Y the modelled values for i per polygon (step 3), and n the total number of models per service.  

 

This implies every model has one weight assigned which will be used to multiply all its containing 

datapoints with. The difference in approaches is how the weights are generated. After assessing 

weights Eq. SI-1-2 is performed using the daughter function Weightin_algo, including 

normalisation of weights to sum to 1 (daughter function ShapeWeights). The resulting ensemble 

values are tested against the comparator validation data set in the Accuracy_statistics module. 

Weights per runs are stored and averaged in JoinFunc for use in spatial mapping (SI-3). 

 

We calculated the following untrained weighted ensembles (numbering follows Table 1 main text): 

En-3  PCA as consensus axis is a deterministic consensus method. The suggestion of using PCA’s 

comes from Marmion et al. (2009) and Grenouillet et al. (2011). Deterministic here means 

that the result is an inherent property of the dataset, i.e. the statistical outcome is identical 

given the same dataset. Principal components were calculated using the princomp-tool, the 

weights per model i outputted to Eq. SI-1-2 were the loadings to the first –main– pca axis. 

So models with the better correlation to the consensus axis are assigned higher weights.  

 

En-4 The correlation coefficient method is our second deterministic consensus method. Here we 

calculated the full [model × model] correlation matrix using the corrcoef-tool. Following the 

weight per model was the mean correlation of that individual model with all other models, 

not including itself. Hence the higher general correlation to the other models, the more 

weight a model has. This technique was developed to have a second deterministic approach 

using a consensus axis different than under (En-3) and can be seen as further way to minimise 

variance among models (Dormann et al. 2018). 

  

En-5 Regression to the median is our first iterative consensus method using log-likelihood 

regression (Dormann et al. 2018). Using multivariate regression we assess weights such that 

the summed results maximises the explanation of an comparator. The resulting regression 

coefficients are used as weights. In this case the comparator is the median ensemble (En-2), 

asking which contribution of models would be most closely result to the median – note this 
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can’t be done with the mean, since on definition means are generated by equal weighting –. 

The regression contains no constant, hence it can be represented as: [Eii ~ ω1Y1 + ω2Y2 …. + 

ωnYn].  

Full regression equations can be found in the daughter function RegresAlgo and her linked 

daughter CreateModelFun.  

 

This method is iterative, parameter space is step-wise systematically explored improving the 

maximum log-likelihood until convergence is reached, i.e. no better solutions is found. 

Theoretically, different outcomes would be possible by redoing the calculation. However, 

the used Matlab tools are of such quality, including multiple replications, that noticeable 

difference are absent – which could be caused by local but not absolute maximum log-

likelihood in parameter space. Multi-variate regression to the median was done using the 

nlmefit-tool, maximising log-likelihood with 200 iterations: repeating the regression 200 

times), an output tolerance of 1.0000e-4 and naïve priors (all 𝜔𝑖  =
1

𝑛
  at the start). We point 

to the tool help function (mathworks.com/help/stats/nlmefit.html), its called tools and 

explanations there for the exact algorithm. The resulting regression coefficients (𝜔𝑖) per 

model were the weights that were used in Eq. SI-1-2. 

 

En-6 Exhaustive leave-one-out cross-validation is our second iterative consensus method 

following direct recommendation in Dormann et al. (2018), with the difference of not 

omitting sets of data points but entire models one-by-one. As for (En-5) this is done using a 

no constant multi-variation regression with the same nlmefit-tool, with the same settings and 

naïve priors. However, in this method we loop through the model outputs. One-by-one, a 

regression is performed using a single model output as comparator and the remaining model 

outputs as explanatory variables. For model 1 such would be the regression representation 

[Y1 ~ ω2Y2 + ω3Y3 …. + ωnYn]. The regression coefficients (ωi) are stored as consensus 

weights. After looping through all models – 9 water models or 10 carbon models, or less for 

our African comparison –, the mean is taken of all regression coefficients per model as 

weights (excluding itself), i.e. this represents the weights that would generate the highest 

mean consensus with all models. The resulting mean consensus per model were the weights 

that were used in Eq. SI-1-2. 

 

En-7 Models that are generated on smaller scales (i.e. with smaller grid cells) could be more 

accurate since the information per cell could better represent the local situation whereas 

larger grid cells could be more averaged across larger areas (Willcock et al. 2019; 2020). To 

include this we generated an ensemble in which we penalised model outputs that are 

generated at coarser spatial resolutions (Willcock et al. 2016). The weights taken were: ωi =
1

log10(spatial resolutioni)
, for which the resulting weights were normalised afterwards to sum to 

1 (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

). These weights were the weights that were used in Eq. SI-1-2. Spatial resolution 

assessment was done in the DefenitionSet module at the start as these weights are not run 

specific. Due to jack-knifing data-points, the resulting accuracy was different among runs to 

some small extent. 

 

En-8 One might a priori place value on particular model characteristics and use these to create 

weights (Masson & Knutti 2011; Englund et al. 2017; Willcock et al. 2019). For example, 

up- or down-weighting more distinct model types emphasising models that may contain 

processes not captured in others, or by penalising those models that go against the convention 

(Grenouillet et al. 2011). Attribute weighting could be done for many attributes, which are 

largely arbitrary in use. To not focus on one attribute but many at the same them we choose 

an overall attribute assessment into groups based on 17 categories per model. The grouping 

statistic used is a pairwise Spearman’s rank correlation among binary classifications (SI-1-

4). The goal was to generate 4 or 5 groups of different amounts of models with similar 

https://nl.mathworks.com/help/stats/nlmefit.html
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attributes. The attributes, the resulting trees and model grouping are explained and depicted 

in SI-1-4. The output variable we included in our weighting is the distinctiveness factor, 

representing how proportional representation of a group of models among all models (see 

Table 1 main text). By upweighting distinctiveness, models in minority groups (g) are 

assigned a higher weight compared to majority groups as 𝜔𝑖 = (
𝑛𝑔

𝑛
) when upweighted with 

𝑛𝑔 = 𝑖 ∈ group g and n the number of models. Alternatively, consensus is sought so 

distinctiveness is downweighted, assigning higher weights to majority groups as 𝜔𝑖 = (
𝑛

𝑛𝑔). 

In all cases resulting weights are normalised afterwards to sum to 1 (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

). These weights 

were the weights that were used in Eq. SI-1-2. Grouping is done in the ClusterTest module, 

called at the start from the steering module as these weights are no run specific. Due to jack-

knifing data-points the resulting accuracy is different among runs though. 

 

5)  Subsequently, we calculated the trained weighted ensembles simulating the situation in which 

validation data are partly present or present for a very similar area. So this approximates the 

standard Species distribution modelling techniques were data is split in a training and a testing set 

following Marmion et al. (2009), Thuiller et al. (2009; 2019) and Djengdoh et al. (2020). In these 

ensembles the 50% data points selected in step 1 and their accompanying validation data for the 

same points is to train the model. Subsequently, the resulting weights are multiplied with the second 

set of 50% of the data following Eq. SI-1-2, so the part of data that was not used for training. This 

ensemble is than tested for accuracy against the validation comparator belonging to this second set 

of data-points. By doing this in a jack-knife loop, a good representation of all possible combinations 

of selected data is provided and accuracy by chance is avoided.  

 

En-9 Accuracy weighted ensembles are based on the model accuracies as calculated in step 2 over 

the 50% of datapoints assigned to all ensembles. See the supplementary materials of 

Willcock et al. (2019) for a preliminary try with this with ES data. This weighting is similar 

to AUC weighting as suggested in Marmion et al. (2009), Crossman et al. (2012), Grenouillet 

et al. (2011) and Dormann et al. (2018). These “trained” accuracies per model (either D↓ or 

Spearman ρ) are, after normalisation to sum to 1 (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

), used as weights (ωi) in Eq. SI-1-2, 

with as Yi the second set of datapoints not used in the training. Accuracy is assessed against 

the corresponding set of comparator validation data points not used in the training. 

 

En-10  Log-likelihood regression is identical to (En-5), with the difference that models are not 

regressed against their median but against their corresponding validation data points 

represented as: [V ~ ω1Y1 + ω2Y2 …. + ωnYn], with V the validator. The resulting regression 

coefficients (ωi) per model are used, after normalisation to sum to 1 (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

), as weights in 

Eq. SI-1-2 with as Yi the second set of datapoints not used in the training. Accuracy is 

assessed against the corresponding set of comparator validation data points not used in the 

training. 
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SI-1-4 Model attribute weighting (distinctiveness) 
Attribute weighting could be done for many attributes following Marmion et al. (2009), Masson & Knutti (2011), Englund et al. (2017), Willcock et al. (2019) 

and Brun et al. (2020). To not focus on one attribute but many at the same time we made an overall attribute assessment into groups based on 17 categories per 

model with attributes either being true or false. The goal was to generate 4 or 5 groups of different amounts of models with similar attributes. Below we first 

show first the classification tables and following the resulting trees with the used model groupings. 

 

Table. SI-1-5. Binary classification (1 = true, 0= false) of model outputs for water supply in these categories used in pairwise Spearman’s ranked correlation 

distance among binary classifications (Matlab pdist-tool), so e.g. InVest water yield model is parameterized as being true for LCM2015 (Rowland et al. 2017) 

and so false for hydrological units (NOAH: Coxon et al. 2019a; HRU’s: Bell et al. 2018a), contains measured instead of modelled Climate data (Tanguy et al. 

2019 vs. Fick et al. 2017), is specific to the UK with inputs, has a below 1-hectare grid, contains no time-series or within year units (such as months) and is 

process based. †Contains no LCM; ‡No climate data. Model terminology follows SI-1-1. 

  

InVest  

Water Yield 

Growth 

Days† 
WaterWorld 

$-

Transfer‡ 

Grid-to-

Grid 
Aqueduct DECIPHeR 

LPJ-

GUESS 
LUCI 

 LCM2015 1 0 0 1 0 0 0 0 1 

Corine 0 0 0 0 0 0 0 0 0 

Land cover map 

employed. 

Modis 0 0 1 0 0 0 0 0 0 

Mixed covers 0 0 0 0 0 0 0 1 0 

 NOAH v. 3.3 land surface model 0 0 0 0 0 1 0 0 0 

Hydrological Research Units 0 0 0 0 1 0 1 0 0 

Climate 
Measured 1 0 0 0 1 1 1 1 1 

Modelled (WorldClim) 0 1 1 0 0 0 0 0 0 

Model specificity  

(World = both 0) 

Europe 0 0 0 0 0 0 0 0 0 

UK 1 0 0 1 1 0 1 0 1 

Output Grid  

(>1km = all 0) 

Below 1-Hectare 1 0 0 1 0 0 1 0 1 

Per hectare 0 0 0 0 0 0 0 0 0 

Per 1-km2 0 1 1 0 1 0 0 0 0 

Time Series over years Yes/no 0 0 0 0 1 0 1 1 0 

Within year units (months/  

days, 0 = annual sum) 
Yes/no 0 1 1 0 1 0 1 0 0 

Model Type  

(Look-up = both 0) 

Process based 1 0 1 0 1 0 1 1 1 

Deterministic 0 1 0 0 0 1 0 0 0 
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Table. SI-1-6. Binary classification (1 = true, 0= false) of model outputs for above ground carbon stocks in 17 categories used in pairwise Spearman’s ranked 

correlation distance among binary classifications (Matlab pdist-tool), so e.g. InVest carbon model is parameterized being true for LCM2015 (Rowland et al. 

2017) and so false for hydrological units (NOAH: Coxon et al. 2019a; HRU’s: Bell et al. 2018a), contains no Climate data (both 0), has no UK/Europe specific 

inputs (being CDIAC based: Ruesch & Gibbs 2008), has a below 1-hectare grid, contains no time-series or within year units (such as months) and is look-up 

table based. Note specifically for carbon, being standing stocks, not all categories are employed as not being present in any of the models (e.g. hydrological 

research units, Within year units) but maintained to allow synchronising with Table SI-1-1, similarly for look-up table based models several categories are 

redundant (e.g. time-series) but no for process models. Model terminology follows SI-1-1. 

 

 

  

InVest 

Carbon 

$-

Transfer 
ARIES Henrys Barredo 

Kinder-

mann 
Density 

FC- 

Inventory 

LPJ-

GUESS 
LUCI 

 LCM2015 1 1 0 1 0 0 0 1 0 1 

Corine 0 0 1 0 1 0 1 0 0 0 

Land cover map 

employed. 

Modis 0 0 0 0 0 1 0 0 0 0 

Mixed covers 0 0 0 0 0 0 0 0 1 0 

 NOAH v. 3.3 land surface model 0 0 0 0 0 0 0 0 0 0 

Hydrological Research Units 0 0 0 0 0 0 0 0 0 0 

Climate 
Measured 0 0 0 0 0 0 0 0 1 0 

Modelled (WorldClim) 0 0 0 0 0 0 0 0 0 0 

Model specificity  

(World = both 0) 

Europe 0 0 0 0 0 0 1 0 0 0 

UK 0 0 0 1 0 0 0 1 0 1 

Output Grid  

(>1km = all 0) 

Below 1-Hectare 1 1 0 0 0 0 1 1 0 1 

Per hectare 0 0 1 0 0 0 0 0 0 0 

Per 1-km2 0 0 0 1 1 1 0 0 0 0 

Time Series over 

years 
Yes/no 0 0 0 0 0 0 0 0 1 0 

Within year units 

(months/days) 
Yes/no 0 0 0 0 0 0 0 0 0 0 

Model Type  

(Look-up = both 0) 

Process based 0 0 0 0 0 0 0 0 1 0 

Deterministic 0 0 0 0 0 1 1 0 0 0 
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Figure SI-1-4. Distinctiveness in 5 groups of carbon stock models based on pairwise Spearman’s rank correlations among binary classifications in 

17 categories (Table SI-1-5) with manually set threshold (dotted line), without among category weighting (all differences weight equal). Model 

terminology follows SI-1. 

Upweighting is done as 𝛽𝑚 =  
# 𝑚𝑜𝑑𝑒𝑙𝑠

# 𝑚𝑜𝑑𝑒𝑙𝑠 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑖
 , downweighting as [1./upweight value]. Both subsequently normalised as:  𝛽𝑚

′ =
𝛽𝑚

∑ 𝛽𝑚
# 𝑚𝑜𝑑𝑒𝑙𝑠
1

. 

† FC 2018 = National Forest Inventory Woodland GB 2018; ‡ Density = Tree Cover Density 2015. 
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  Figure SI-1-5. Distinctiveness in 4 groups of water supply models based on pairwise Spearman’s rank correlations among binary classifications in 

17 categories (Table SI-1-6) with manually set threshold (dotted line), without among category weighting (all differences weight equal). Model 

terminology follows SI-1. 

Upweighting is done as 𝛽𝑚 =  
# 𝑚𝑜𝑑𝑒𝑙𝑠

# 𝑚𝑜𝑑𝑒𝑙𝑠 𝑖𝑛 𝑔𝑟𝑜𝑢𝑝 𝑖
 , downweighting as [1./upweight value]. Both subsequently normalised as:  𝛽𝑚

′ =
𝛽𝑚

∑ 𝛽𝑚
# 𝑚𝑜𝑑𝑒𝑙𝑠
1
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SI-2 Additional analyses  

 

Figure legends, figures below 

 
Figure SI-2-1. Accuracy of above ground carbon stock ensembles (10 models) against inventories in Forest Research estates in England and Scotland 

(a and b), and of different water supply ensembles (9 models) against NRFA measurements 1996-2015 for water supply per hectare (c and d). For 

definitions and calculations of the different ensembles see main text Table 1. Shown is the average accuracy of 250 bootstrap runs with 50% of the dataset (N ≈ 

(1598/2=799) per bootstrap). Vertical dashed line indicates the reference unweighted median-averaged ensemble (black dot, ‘median ensemble’). Error bars 

indicate standard deviation among runs in proportional difference to the median ensemble, calculated per bootstrap run as the difference in accuracy with the 

median ensemble divided by the accuracy of the median ensemble. The (not shown) Coefficient of Variation among bootstraps for the median carbon ensemble 

is 4% and 1%, for ρ and D↓ respectively, and 1 % and 2% for water. Blue coloured ensembles accuracies are significantly higher than the median ensemble 

(Bonferroni corrected α = (0.05/14)) from the median ensemble; Red coloured bars are significantly lower with Black dashed bars not different from the median 

ensemble. This analyses mimics Figure 2 of the main text but with the median-averaged ensemble as reference. 

 

Figure SI-2-2. Accuracy of different carbon stock ensembles of 4 models from Willcock et al. (2019) against ForestPlots.net plots (Avitabile et al. 2016) 

as above ground carbon stock per hectare (a and b), accuracy of different water supply ensembles of 6 models from Willcock et al. (2019) against 

GRDC recorded flows per weir (bafg.de/GRDC) as flow per ha catchment (c and d). For definitions and calculations of the different ensembles see main 

text Table 1. Shown is the average accuracy of 250 bootstrap runs with 50% of the dataset (N ≈ (147/2 = 74) and N ≈ (512/2 = 256) per bootstrap respectively 

for carbon and water. Vertical dashed line indicates the reference unweighted mean-averaged ensemble (black dot, ‘mean ensemble’). Error bars indicate standard 

deviation among runs in proportional difference to the mean ensemble, calculated per bootstrap run as the difference in accuracy with the mean ensemble divided 

by the accuracy of the mean ensemble. The (not shown) Coefficient of Variation among bootstraps for the mean carbon ensemble is 15% and 3%, for ρ and D↓ 

respectively, and 3% and 1% for water. Blue coloured ensembles accuracies are significantly higher than the mean ensemble (Bonferroni corrected α = (0.05/14)) 

from the mean ensemble; Red coloured bars are significantly lower with Black dashed bars not different from the mean ensemble. 

 

 

http://www.bafg.de/GRDC
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Figure SI-2-1  
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Figure SI-2-2  
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SI-3 All spatial ensemble maps  
 

To aid decision making we mapped all our ES ensembles for the UK. These spatial maps are available 

as gridded tiff-files through https://eidc.ac.uk/ (https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-

2b594bae5d38). All calculations mentioned here are performed using ArcGIS 10.7.111. 

 

For all the water supply ensembles, the mean normalised ensemble predictions per ensemble method 

were mapped as catchment polygons (step 5, N = 519). For all carbon stocks ensembles we mapped 

these for the full UK as 1-km2 grid cells –253,802 cells that (partially) contain non-sea land cover–, 

transferring the per model weights calculated for the forest polygons to the full area. We transferred the 

weights calculated for the forests since running cross-validation approaches on over 250K data points 

would not be computable. In this way we include areas beyond the small fraction of the UK used as 

validation polygons.  

 

Following are depictions of the ensembles (see Table 1 and SI-1-3 for descriptions). Most apparent are 

the differences in spread of values among ensemble approaches: some ensembles tend more towards the 

extremes (red and blue colours), whereas others are more regressing the median values. Discussions of 

these among ensemble spatial differences are beyond the scope of our work with the exception of the 

variation coefficient among untrained ensembles (see SI-4). 

 

For mapping, we followed the following procedure. 

1) We conducted full runs with all data points (519 for water and 2078 forest polygons) to calculate 

the weights per ensemble approach using the identical codes as for jack-knifed runs (SI-1-3, 

https://github.com/EnsemblesTypes/EnsemblesTypes).  

2) For water, the calculated ensemble values per validation polygon (SI-1-3) were one-to-one 

copied to ArcGIS for depiction per polygon. Uncertainty among ensembles and models as 

reported in SI-4 is directly calculated over all catchment polygons, i.e. with variation per 

polygon. Since not all model output cover the full area (see SI-1), for uncertainty we corrected 

for this by using a Standard Error of Means as (
𝜎(𝑥)

√𝑛(𝑥)
), instead of Standard Deviation (σ), with n 

the number of models per grid cell x. 

 

For carbon, extrapolating to the full UK area we used an ArcGIS approach: 

3) All model outputs, with grid size above 100 × 100 meters (Henrys, Barredo, LPJ-GUESS), were 

resampled to 100 × 100 meters with their carbon indicator or proxy as per hectare. Smaller grid 

sizes were left untouched to avoid information loss. By adding no data values all models were 

extended to the spatial tile exactly including the full UK area and afterwards clipped to an UK 

non-sea outline polygon, i.e. full sea area is set as no data values and all 0-values would be land-

based true zeros. 

4) All model outputs were normalised to their 0.95% percentile based on the average (μ) and 

standard deviation (SE) of their non-sea and data area into Y, the normalised model output value, 

using [T = μ+ 1.65 × SE] followed by [Y = (if(Value(x) > T, 1, Value(x)/T))] for all x = grid cells 

and Value the model output value at that grid cell. We used the ArcGIS Raster Calculator (spatial 

analyst toolbox) for this. 

5) The weights as calculated in step 1 were recorded and transferred to ArcGIS Raster Calculator 

(spatial analyst toolbox) and multiplied with the respective resampled normalised model outputs 

into a 25  × 25 meter grid size (ArcGIS environment setting, using mean values when upscaling) 

into Ensemble values (E) at grid cell x as 𝐸(𝑥) = ∑ (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

× 𝑌𝑖)𝑛
𝑖

(𝑥)
, with Y the normalised 

model output value of model i at grid cell x, ωi the weight of model i.  

6) The resulting layer at 25-meter resolution was clipped once again to the UK non-sea outline. 

This results in exact identical sizes among all ensemble maps. 

https://eidc.ac.uk/
https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38
https://doi.org/10.5285/a9ae773d-b742-4d42-ae42-2b594bae5d38
https://github.com/EnsemblesTypes/EnsemblesTypes
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7) Identical to step 4, the ensemble layers are each individually normalised to their 95% percentile. 

8) Using the ArcGIS Aggregate tool (spatial analyst toolbox) we aggregated to a 1000 × 1000 

meter grid size using the mean across all containing values, setting processing extent and grid 

size to that of the first reference ensemble generated (the mean ensemble); creating all equal 

maps of 656 columns and 1212 rows of each grid cell being exact 1000 × 1000 meters.  

9) To show spatial uncertainty among ensembles as well to test for drivers of this spatial 

uncertainty among models and among ensembles (SI-4), we calculated the variation among 

models and among untrained ensembles for 25-meter grid cell using the standard deviation (Cell 

Statistics, spatial analyst toolbox), with 25-meter environment settings. Noting that not all 

model output cover the full area (see SI-1), for uncertainty we corrected for this by using a 

Standard Error of Means as (
𝜎(𝑥)

√𝑛(𝑥)
), with Standard Deviation (σ), with n the number of models 

per grid cell x. Afterwards we followed the same procedure as steps 6-8, The reported levels of 

uncertainty reported in main paper and in SI-4 are of the aggregated 1000 × 1000 meter 

resolution uncertainty maps. 
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Figure SI-3-1. Unweighted averaging ensembles; a carbon mean ensemble (En-1); b carbon median 

ensemble (En-2); c water mean ensemble (En-1); d water median ensemble (En-2) 
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Figure SI-3-2 . Untrained weighted ensembles carbon: a PCA (En-3); b correlation coefficient (En-

4); c regression to the median (En-5); d Leave-one-out cross-validation (En-6); e upweighted finer 

spatial resolutions (En-7); f upweighted distinctiveness (En-8) ; g downweighted distinctiveness (En-

8). 
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Figure SI-3-3. Untrained weighted ensembles water: a PCA (En-3); b correlation coefficient (En-4); 

c regression to the median (En-5); d Leave-one-out cross-validation(En-6); e upweighted finer spatial 

resolutions (En-7); f upweighted distinctiveness (En-8) ; g downweighted distinctiveness (En-8).  
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Figure SI-3-4. Trained weighted ensembles; carbon; a accuracy weighted inversed deviance carbon 

(D↓, En-9; b accuracy weighted Spearman ρ carbon (En-9) c log-likelihood regressions carbon (En-10); 

water; d accuracy weighted inversed deviance water (D↓, En-9); e accuracy weighted Spearman ρ water 

(En-9) f log-likelihood regressions water (En-10).  



  Supplementary Information to Weighted Ensembles reduce uncertainty in ES modelling  GG      

34 
 

SI-4 Spatial patterns of uncertainty 
 

Introduction 

Decision-makers require information on a wide range of ES, across a variety of temporal and spatial 

scales, and show both capacity and willingness to engage with the uncertainty associated with such 

information should these data be made available (McKenzie et al. 2014; Willcock et al. 2016). For 

example, in a survey of stakeholders within sub-Saharan Africa, technical experts indicated that ES 

models with up to a 10% uncertainty were useful to support decision-making (Willcock et al. 2016). 

Whilst environmental management policy can be sensitive to the inclusion of uncertainty (Polasky et al. 

2011), stakeholders understand that uncertainty is unavoidable and acceptable, provided it is expressed 

transparently Evans et al. 2009; Hamel & Bryant 2017). Furthermore, uncertainty in ES ensembles is a 

reasonable proxy for ensemble accuracy (Willcock et al. 2020), and so communicating where ensemble 

variation is higher enables decision-makers to understand which areas decisions based on model outputs 

might be less robust. 

Since ecosystems differ in many ways – such as in land-use, in topography and in climate (Schirpke er 

al. 2013) and ES models process this variation differently, uncertainty in modelled predictions may be 

increased by such spatial attributes. Many studies have been conducted into the relationships between 

ES and climate (Prather et al. 2013; Nelson er al. 2013) – mostly focusing at change but this would be 

equally valid for gradients–, similarly land use differences are steering ES production (Lawler et al. 

2014) as are elevation differences in mountainous terrain (Lavorel et  al. 2011), as especially Scotland 

and Wales contain mountain ranges. Whilst our ES ensembles are UK specific, but containing 

substantial gradients such as for rainfall (Tanguy et al. 2019), such geographic drivers of uncertainty 

may be transferable to other regions as they may indicate systematic biases within currently available 

ES models. 

 

Here, we tested the degree of uncertainty in both the individual model and ensemble predictions (as the 

standard error of the mean of predictions at each location) against 15 putative drivers to identify the 

causes of this uncertainty (Table SI-4-1). We corrected for spatial autocorrelation with all drivers 

normalised (Dormann et al. 2007; Willcock et al. 2019).  

 

Methods 

We generated UK-scale maps of spatial variation in the differences among individual models, in terms 

of the standard error of the mean (SEM) among model outputs (SI-3 step 9; Figure SI-4-1). We did the 

same to map differences among the untrained ensemble approaches (SI-3 step 9; Figure SI-4-1). For the 

water supply untrained ensembles, the mean across jack-knifed ensemble predictions per run were 

mapped as polygons (N = 519). For carbon stocks maps these were mapped as 1-km2 grid cells. In total 

this carbon dataset had 253,802 cells that contained non-sea land cover. See SI-3 for all model and 

ensemble mapping details. 

 

The causes of spatial variation in uncertainty were assessed using 15 putative drivers representative for 

climate, land use and topography (Table SI-4-1) Drivers included human population size from WorldPop 

(2018), UK climatic data for annual precipitation (Tanguy et al. 2019) and potential evapotranspiration 

(Zomer et al. 2006)  as well as modelled climatic data from WorldClim (Fick et al. 2017) for seasonality 

in precipitation, annual mean temperature, temperature coldest month, seasonality in temperature, and 

temperature range. Furthermore we correlated uncertainty against average elevation from the 

Copernicus EU-DEM (v1, land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1) at a 25 × 25 meter 

scale and the ruggedness of the terrain. The latter was estimated as the average slope per 1-km2 cell 

employing the ArcGIS 10.7.111 slope-tool (spatial analyst toolbox). We completed the set of putative 

drivers with land use km-2 as proportion of 25 × 25 meter cells from the leading UK land cover map, 

LCM2015 (Rowland et al. 2017; 1600 cells km-2). We calculated per 1-km2 the proportional cover of 

(sub)urban, forest, peatlands, agricultural land including improved grassland, and the proportion natural 

grassland.  

 

https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
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We made sure environmental layers and spatial variation among models and ensembles were aggregated 

to exact 1000 × 1000 meter (1-km2), with the layers overlapping fully and all sized as 656 cells wide 

and 1212 cells high, identical to all ensemble layers (see SI-3). For comparison to water supply, the 

mean of these cells was taken per polygon, with the exception of population size, which was summed. 

After exporting the layers to Matlab v7.14.0.739 we correlated putative drivers after normalising the 

driver data following the same procedure as above, one-by-one (Driver) with both the variation among 

models and the variation among untrained ensembles using a SS-type I model with the Matlab tools 

LinearModel.fit and Anova: 

 [T(x) ~ β0 + β1Auto(x) + β2Driver(x) + ε] in which T(x) is either variation among models or ensembles 

for spatial cell x, with effect sizes β.  

 

We incorporated a correction for potential spatial autocorrelation through inclusion of a covariate (Auto) 

prior to estimating the correlation of the driver of interest, describing relatedness between individual 

predictions in T with the Euclidean distances among centroids of grid cells (Dormann et al. 2007; 

Willcock et al. 2020). For water supply, correlations were performed using all 519 data-points at once. 

For carbon, to avoid spurious findings of significance through having over 250 thousand replicates, we 

assessed correlations using bootstrapped tranches of N = 519 each for 10,000 runs, from a total cover of 

253,802 km2-cells. We used the median sum of squares across the runs to generate F statistics using the 

residual error (ε), P-values were calculated based on this median F and median degrees of freedom based 

on the F-probability density function (fpdf tool). Since we independently performed the same statistical 

test for 15 drivers, we employed a full Bonferroni correction as (α = 0.05/15). Our codes for these 

correlations are provided at https://github.com/EnsemblesTypes/DriverRegressions. 

 

Results 

For carbon, population density and proportion of urban area per 1 km2-cell explained these spatial 

differences in ensemble certainty (Bonferroni corrected P< 0.001/15). Between the least and most 

densely-populated areas there was an estimated 43% increase in uncertainty among ensembles 

(calculated as [effect size/μ]), and a 81% uncertainty increase between the lowest and highest 

proportions of urban area. This population density correlation did not explain variation among individual 

models themselves, although the maps show similar patterns (Figure SI-4-1, Table SI-4-1). The 

proportion of woodland and peatland per cell (i.e. high carbon areas above- and below ground 

respectively) explained uncertainty among both models and ensemble approaches (P< 0.001/15). 

However, as our weights were estimated using data from forest/woodland locations only, increased 

accuracy in woodland areas is to be expected. None of the other tested drivers were significant predictors 

of uncertainty (P>0.05/15, Table 1). 

 

For water, the gradient both East-West and North-South in precipitation in the UK (Tanguy et al. 2019) 

is clearly seen as a gradient in water supply per hectare (Figure SI-4-1). The uncertainty both among 

water models and among ensemble approaches was highest in high rainfall areas (Figure SI-4-1). After 

removing spatial autocorrelation, the amount of precipitation and its seasonality were significantly 

positively correlated with this uncertainty (Bonferroni corrected P< 0.001/15; Table SI-4-1) with an 

estimated difference of 53% increase in among-ensemble uncertainty between the areas of lowest and 

highest precipitation (calculated as [effect size/μ]). Furthermore, among model and among ensemble 

variation were greater with higher variation in elevation change per cell (i.e. ruggedness) and lower in 

areas of greater land use without permanent cover (agriculture; Table SI-4-1) vs permanent cover 

(woodlands and grassland areas; Table SI-4-1).  

 

https://github.com/EnsemblesTypes/DriverRegressions
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Figure SI-4-1. Spatial variation in the differences among ES models per hectare, represented as 

standard error of the mean in percentiles. (a) uncertainty among 10 carbon models (μ = 0.09 with σ 

0.028); (b) uncertainty among all untrained carbon ensembles (μ = 0.025 with σ 0.011); N = 253,802 

cell of 1-km2; (c) uncertainty among 9 water models (μ = 0.078 with σ 0.034); (d) uncertainty among all 

untrained water ensembles (μ = 0.013 with σ 0.007).  
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Table. SI-4-1. Explanatory drivers of variation correlated to uncertainty, as standard error of 

mean, among models and among all untrained ensembles per grid cell/catchment. For carbon the 

estimated weights as calculated for the validation data locations are transferred to the full map; water 

remains on a per catchment base since non-accumulated flow, accumulated flow and outlet flow per 

catchment cannot be combined in one gridded map. We show linear F-values with significance 

(direction). We employed a SS-type I model: [T(x) ~ β0 + β1Auto(x) + β2Driver(x) + ε] in which T(x) is 

either variation among models or ensembles for spatial cell x, Driver is the tested driver, with effect 

sizes β. Since we perform the same statistical test separately for 15 independent drivers, we employ a 

full Bonferroni correction.  

 

 Uncertainty for 

 Carbon Water  

 Individual 

Models 

Ensembles Individual 

Models 

Ensembles 

Spatial Auto Correlation (Auto) 18.9***(+) 80.5***(+) 1118***(+) 753***(+) 

     

Explanatory Driver (Driver)     

   Population density† 2.47 44.7***(+) 0.07 3.26 

   Annual precipitation‡ 0.95 0.32 116***(+) 111***(+) 

   Potential evapotranspiration¶ 0.80 0.86 1.66 2.65 

   Seasonality in precipitation§ 2.70 0.80 90.8***(+) 63.8***(+) 

   Annual mean temperature§ 3.76 0.66 0.21 0.11 

   Temperature coldest month§ 2.28 0.45 1.38 0.20 

   Seasonality in temperature§ 4.05 0.39 2.73 0.21 

   Temperature range§ 3.82 0.40 5.32 1.48 

   Mean elevation© 2.97 0.33 21.5***(+) 15.7**(+) 

   Ruggedness (mean slopes)†† 1.20 1.08 74.0***(+) 61.0***(+) 

     

   % Agriculture‡‡ 58.5***(-) 7.70**(-) 32.9***(-) 19.5***(-) 

   % Grasslands‡‡ 1.79 0.63 59.4***(+) 65.0***(+) 

   % Peatlands‡‡ 1.57 9.87*(+) 1.12 9.24*(-) 

   % (sub)Urban‡‡ 67.0***(+) 119***(+) 0.12 0.41 

   % Forests‡‡ 71.4***(+) 111***(-) 25.0***(+) 21.0***(+) 

Following: †(WorldPop 2018); ‡(Rowland et al. 2017); ¶(Zomer et al. 2006); §(Fick et al. 

2017); © Copernicus EU-DEM v1 25m; †† derived from © using ArcGis Spatial Analyst Slope 

tool; ‡‡ % per 1-km2 for LCM2015 (Rowland et al. 2017); * P < (0.05/15); ** P < (0.01/15); 

*** P < (0.001/15). 
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Discussion 

Whilst our ES ensembles are UK specific, the geographic drivers of ensemble uncertainty identified 

here may be transferable to other regions. Broadly, our results show that our ES ensembles are less 

accurate in urban areas. For example we showed population dense areas to contain a higher uncertainty 

for carbon – forest trees do not equal urban trees with regard to ES (McHale et al. 2009). Most ES 

models are derived from a natural science perspective and focus on biophysical capacity in rural areas 

(Egoh et al. 2012; Martínez-Harms & Balvanera 2012; Wong et al. 2014). This is not to say that urban 

ES are not of high importance, but rather that urban residents may use different services (Larondell & 

Haase 2013; Haase et al. 2014) or the same services with different flow structures. For instance, it has 

been argued that rural inhabitants are more dependent on their local environment but urban inhabitants 

instead capitalise on ES flows from distant ecosystems (Cumming et al. 2014). Differences such as these 

have yet to be incorporated into many ES modelling platforms. For example, none of the InVest modules 

focus on urban ES, although this is currently being addressed by the UK National Capital Project. Thus, 

ES models developed for rural areas might not reliably characterise ES within a city ward; indeed, 

Co$ting Nature avoids spurious estimates by masking out ES in urban areas (Mulligan et al. 2010; 

Mulligan 2015). Despite this, these models are being applied in landscapes containing substantial urban 

and peri-urban areas (Pataki et al. 2011; Haase et al. 2014; Lee et al. 2015) and for ES comparisons 

under scenarios of increasing urbanisation (Bagstad et al. 2013; Zank et al. 2016), with potentially 

detrimental consequences for model accuracy.  

 

We also find that ensembles for water are less accurate in areas of high rainfall, seasonality and rugosity. 

This could be because extreme processes are less well captured in models, requiring additional input 

data, i.e. it is likely models have an tendency to regress to the mean and not capture extreme events 

(Willcock et al. 2019). 

 

Thus, evaluation of the accuracy of ES models and ensembles of ES models should become standard 

practice within the scientific community, although the feasibility of this is dependent on the availability 

of suitable validation data (Bryant et al. 2018). We advocate for the need to collect primary data on ES 

supply, use, perceptions, and well-being contributions over large regions (e.g. through national 

censuses) partly to incorporate into, but also to independently validate, ES models. Extra caution should 

be taken when using model predictions to support decision-making in areas with more among ensemble 

uncertainty.  
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SI-5 Advantages of winsorisation protocol for this dataset 
 

In this work, to avoid impacts of extreme values without eliminating such data-points, we employed a 

double-sided winsorising protocol for normalisation (Willcock et al. 2019; Verhagen et al. 2017), using 

the 2.5% and 97.5% percentiles of the number of data points to define the 0 and 1 values: values below 

or above these percentiles became 0 or 1 respectively. This winsorising normalisation protocol assumes 

outlier data are valid values but have skewed and are corrected for by compressing the variance tails 

rather than trimming these (Kesselman et al. 2008; Erceg & Mirosevich 2008). Hence, we trade-off an 

even data distribution over the full 0-1 normalised range against the chance of having a true far outlier 

maximum. An even distribution is defined as having symmetric two sized tails – with ideally the lower 

and higher 2.5% of data points each covering 2.5% of the data-range –,  with both the distribution mean 

and median values close to 0.5. 

 

In our case, the skew is partly driven by the per area correction. Although we use lower size thresholds 

(2-ha for ‘forests’ and 25km2 for catchments), this effect still skews the dataset. On one side smaller 

areas outlier values could have a much stronger effect on the area corrected value per polygon due to 

the sampling effect of having a very high or low value per chance included. On the other hand, polygons 

are unequal in size and larger ones might contain lower value areas (especially for carbon).  

 

Here, we show the effects of two normalisation protocols on our validation datasets in Figure SI-5-1A 

(carbon) and SI-5-1B (water supply). See SI-1-2 for the datasets. For the comparison ‘standard 

normalisation’, we divided the dataset by the absolute maximum. 

 

For carbon, under standard normalisation there is a long one-sided higher end flat tail, without a lower-

tail present (Figure SI-5-1A). The upper valued 2.5% of datapoints covers 40% of the data-range 

(calculated as maximum minus minimum value). This can be seen by the upper drawn dashed bar, 

representing the 97.5% percentile of number of datapoints, crossing the standard normalisation (brown) 

bars at the value of 0.62. This indicates there is an skew towards the dataset containing too many 

relatively low valued points and too few high valued points. The winsorising protocol compresses this 

upper 40% of the data-range that is covered with these few  high valued points, spreading the whole 

data spectrum. As an effect of winsorisation the distribution is much less skewed and better spread out 

over the full 0-1 range. The mean value becomes closer to the expected 0.5. For the standard 

normalisation this was relatively low 0.31 (+/- 0.18 std) with a median of 0.32, for the winsorising 

protocol the mean is 0.47 (+/- 0.26 std) with an median value of 0.48, i.e., the latter the value at 50% of 

data-points. By spreading out the data, the standard deviation increases accordingly. 

 

For water supply, under standard normalisation, this dataset is already more balanced than carbon, 

having two tails under standard normalisation. However, there is longer lower end tail, with a small 

upper tail effect. For standard normalisation the lower 2.5% of points take up about 25% of the data-

range: there are relatively too few low valued points. This can be seen by the upper drawn dashed bar, 

representing the 2.5% percentile of number of datapoints, crossing the standard normalisation (brown) 

bars at the value of 0.25. The winsorising protocol generates more relatively lower values, spreading the 

whole data spectrum. The upper tail of 10% of the range for 2.5% of the data-range is as well spread out 

more. The mean value becomes closer to an expected 0.5 value, in this case the mean value comes down 

because of removal of the lower tail range – i.e. there were too many high values compared to low 

values. For the standard normalisation this was a skewed low 0.62 (+/- 0.18 std), with a median of 0.63, 

for the winsorising protocol the mean is 0.54 (+/- 0.27 std) with a median of 0.56.  

 

In conclusion, although the extremes are likely potentially ecologically relevant, the step of expressing 

our data as values per unit area has a skewing effect on the data distribution creating under standard 

normalisation, creating relatively long one-sided data range tails. The double winsorising protocol partly 

corrects for this skew, without removing data-points. This is most profound for carbon. With this double-
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sided winsorising protocol, we generated a more statistically balanced dataset with mean values more 

close to the expected 0.5-value. 

 

 

 

 
 

Figure SI-5-1. Effect of two different normalisation protocols on the distribution of the validation 

data-sets from this study (SI-1-2) after correction by area. Standard normalisation divides the full data-

range by the absolute maximum value whereas the Winsorising protocol uses the lower and upper 2.5% 

percentile of the number of datapoints. 
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