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a b s t r a c t 

The distillery sector is among the biggest industrial water user in the United Kingdom (UK) and simul- 

taneously delivers valuable by-products traditionally used for cattle feed, but in recent years increasingly 

for bioenergy generation. Our research provides new insight into these two aspects of alcohol produc- 

tion by 1) presenting the first water scarcity footprint of Scottish single malt whisky, and 2) comparing 

potential avoided water scarcity impacts through the use of by-products to replace different feeds and 

energy carriers. We applied Life Cycle Assessment, including a water scarcity footprint (AWARE method- 

ology) and carbon footprint, using primary data from a Scottish whisky distillery. By-products used for 

feed were considered to replace imported soybean meal from the Americas or rapemeal from Europe 

combined with UK grown barley to balance protein and metabolisable energy substitution. Alternative 

by-product use for biogas production replaced conventional heat and electricity generation, or transport 

fuel with the digestate substituting mineral fertilisers. The water scarcity footprint of 1 litre of pure al- 

cohol is 0.79 m 

3 world eq., with the majority of water used for cooling, highlighting a hotspot for water 

conservation. The carbon footprint is 4.4 kg CO 2 eq., predominantly caused by heating with gas oil. By- 

product use as animal feed, replacing soybean meal and barley, offsets up to 47% of the water scarcity 

footprint and 32% of the carbon footprint of alcohol production. Using by-products for bioenergy gen- 

erates smaller offsets. Water reuse and heat recovery measures should be investigated as priorities to 

reduce the environmental footprint of whisky. Feeding all cereal based by-products from UK potable al- 

cohol production to cattle could save 370 M m 

3 world eq., or 37% of the UK’s water scarcity footprint 

attributable to imported soy feed. 

© 2021 The Author(s). Published by Elsevier B.V. on behalf of Institution of Chemical Engineers. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

Climate change, an increasing world population, migration, and 

hanging consumption patterns of agricultural products are putting 

ressure on freshwater resources worldwide ( Ercin and Hoek- 

tra, 2014 ; Schewe et al., 2014 ; Vörösmarty et al., 20 0 0 ). Even in

he United Kingdom (UK), generally perceived as a water-abundant 

ountry, water availability issues are apparent with several wa- 

er companies’ catchments classified as seriously water stressed 

 EA and NRW, 2013 ). Water scarcity in the country is expected 

o increase, with increased risk of extreme drought and a dou- 

ling in the frequency of water use restrictions by the year 2050 

 Dobson et al., 2020 ). 

Water consumption and scarcity arises via two main routes 

ithin industrialised economies: direct or domestic consump- 

ion and indirect international consumption via imports of 

ater-intensive commodities, also called external water footprint 

 Hoekstra and Hung, 2002 ). Indeed, 62% of the total water foot- 

rint of the UK (including rainwater as well as water abstracted 

rom ground and surface water bodies) is made up from water 

onsumed outside the country, of which 73% is linked to agricul- 

ural water use ( Chapagain and Orr, 2008 ). Half of the external 

round and surface water consumption for products consumed in 

he UK can be classified as unsustainable ( Hoekstra and Mekon- 

en, 2016 ). Domestically, the majority of water is withdrawn for 

ndustrial, commercial or household use and only 12% is accounted 

or as agricultural use ( FAO, 2016 ). Water abstraction data from the 

nvironment Agency for England support this trend, reporting 1% 

f freshwater use for irrigation and 9% for fish farming ( EA, 2019 ). 

The spirit industry is one of the most economically important 

ater-intensive sectors in the UK. Across the country, a surge in 

icro-distilleries led to a 400% increase in the number of distill- 

ng enterprises from 90 in 2010 to 475 in 2018 ( O’Connor, 2018 ).

cotch whisky alone contributes approximately 21% to UK and 75% 

o Scottish food and drink exports by value, adding £5.5 billion 

n gross value to the UK economy, and distilleries are a popular 

ourist attraction with 2.2 M visits a year ( SWA, 2021a ). In Scot-

and, distilleries abstract 70% of the water licensed for direct ab- 

tractions across all industrial and commercial users, of which 80% 

s used for cooling ( SEPA, 2019 ). 

Scientific literature on water use in distilling is very limited, 

hough it is known that commercial spirit production is a water- 

ntensive activity. A study by Amienyo (2012) includes volumet- 

ic water demand for the life-cycle of a Scottish grain 

1 whisky 

ncluding packaging as part of a Life Cycle Assessment (LCA). A 

ater footprint study by Köseo ̆glu (2017) presents an in-depth 

tudy on malt whisky according to the guidelines of the Water 

ootprint Network ( Hoekstra et al., 2011 ), i.e. the water footprint 

ncludes green (rainwater), blue (ground and surface water) and 

rey (water needed to dilute pollutants to acceptable concentra- 

ion) components. An LCA study on a Swedish single malt whisky 

ontains water consumption in the inventory information but does 

ot consider water footprint as a category in the impact assess- 

ent ( Eriksson et al., 2016 ). However, none of these studies ac- 

ounts for the relative scarcity of water at the abstraction location. 

everal Life Cycle Impact Assessment (LCIA) methods exist today to 

valuate impacts of water consumption, whereas previous meth- 

ds regarding water impacts focused on degradative issues such 
1 Grain whisky can be based on different grains such as barley, wheat, rye or 

aize. Malt whisky is made from malted barley only. 

159 
s eutrophication, acidification or ecotoxicity. Special progress has 

een made to address water scarcity impacts with the consensus- 

ased development of the AWARE (Available WAter REmaining) 

ethodology ( Boulay et al., 2018 ), which is now the recommended 

ethodology for water scarcity impacts according to the Product 

nvironmental Footprint (PEF) Initiative ( Zampori and Pant, 2019 ), 

he Life Cycle Initiative of UN Environment ( Frischknecht et al., 

016 ) and the Environmental Product Declaration (EPD) initiative 

 EPD International AB, 2021 ), amongst others. In addition to quan- 

ifying volumetric freshwater consumption along the life cycle of 

 product, a water scarcity footprint also takes into account the 

easonal availability of water in the geographic area where the 

onsumption occurs. To our knowledge, there have been no stud- 

es quantifying the water scarcity footprint of any spirit. The first 

esearch question addressed in this study is therefore: What is 

he water scarcity footprint of a Scottish single malt whisky (and 

hich distillery processes contribute most to this footprint)? 

The second part of the study is about the use of distillery by- 

roducts. Distilleries deliver valuable by-products in the form of 

pent grain and pot ale, which can be used for a variety of pur- 

oses. Traditionally, distillery by-products have been fed to cattle 

 Crawshaw, 2001 ). They are rich in protein as spirit production 

nly converts carbohydrates into alcohol. Currently though, only 

ne third of all Scotch whisky by-products are used as animal feed, 

eflecting a shift from feed to bioenergy production (mostly biogas) 

etween 2012 and 2019, leading to a 57% decline in use for feed 

 Bell et al., 2019 ). This is partly a result of incentives offered by

he UK and Scottish government for renewable energy technologies 

 Bell et al., 2019 ). At the same time, soy comprises approximately 

0% of compound animal feed produced in the UK ( AHDB, 2020 ). 

mported soybeans contribute 20% to the external cropland foot- 

rint of the UK, and together with rape, exhibited the largest ab- 

olute increase in external cropland footprint of the UK between 

986 and 2009 ( De Ruiter et al., 2016 ). 

A study by Leinonen et al. (2018) showed that the use of by- 

roducts can reduce the carbon footprint of a distillery signifi- 

antly, and hence contribute to the net zero carbon emission goal 

f the Scotch Whisky Association ( SWA, 2021b ). Greater GHG emis- 

ion offset (up to 40%) could be achieved when by-products were 

sed as feed to replace soybean meal and barley, vs. use for biogas 

ased heat and electricity production (up to 27% offset). Avoided 

and use change, in other words deforestation for soy cultivation, 

as one of the main drivers of these “credits”. Similarly, a study 

ssessing changes in GHG emissions from one of the biggest Irish 

istilleries when switching by-product use from feed to biogas pro- 

uction showed that 99% of emission savings through biogas were 

ffset by emissions from replacing the currently produced feed 

hrough imported feed ( O’Shea et al., 2020 ). This was despite a re- 

uction of 54% of direct GHG emissions of the distillery through 

iogas replacing a part of the natural gas used. However, to date, 

o assessment has been made of the water footprint consequences 

f different by-product use pathways. 

The second research question is therefore: To what extent can 

he water scarcity footprint of whisky production be offset through 

ain uses of distillery by-products? 

We applied the LCA methodology based on primary inventory 

ata from the Scottish distillery, Arbikie, for the whisky production 

art of the study. For completeness and better comparison with 

ther studies, we included inventory based volumetric freshwater 

onsumption and GHG emissions as further environmental cate- 

ories. Finally, we estimated the maximum avoidable water and 

arbon footprints using all cereal by-products from UK potable al- 

ohol production 
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. Materials and methods 

.1. Goal and scope 

This study assesses the environmental impacts on water con- 

umption, water scarcity and climate change of the production of 

cottish single malt whisky and different scenarios of by-product 

se. It follows the guidelines for an LCA and encompasses the steps 

rom cradle to gate for the production of the functional unit of 

 litre of pure alcohol (LPA, 100% ethanol) for the production of 

hisky in an unpackaged form. The system boundaries include bar- 

ey production, malt production and distillery operations, including 

ll necessary transport, but excluding infrastructure. Maturation is 

xcluded due to lack of data. To assess how different options of 

y-product use can affect the environmental footprint of whisky 

roduction, we applied a system boundary expansion or avoided 

urden approach as in the ISO 14040 ( ISO, 2006 ) guidelines, pre- 

iously applied in other LCA studies on the production of spirits 

 Amienyo, 2012 ; Eriksson et al., 2016 ; Leinonen et al., 2018 ). I.e.,

he avoided burdens are subtracted from the whisky production 

ootprint. 

.2. Description of the system and inventory 

.2.1. Distillery processes 

The inventory of single malt whisky production is based on pri- 

ary data from Arbikie distillery in Scotland, unless mentioned 

therwise, recorded during 2018/19 with a production schedule 

f eight mashing batches per week. Arbikie uses malt from Scot- 

ish grown, non-irrigated barley, as typical for Scotch whisky dis- 

illeries ( SWA, 2021a ). Barley was modelled taking French barley 

roduction, adjusted for UK water inputs and outputs, allocating 

7% of the impacts to barley grains and the remainder to straw 

economic allocation; Blonk Consultants, 2017 ). The barley is pro- 

essed to barley malt in a malting house and then delivered to the 

istillery. Inventory data for malting are average data from three 

K malt houses (confidential data). Per batch, about 600 kg malt 

re mashed in with about 6400 L of water (of which 2500 L is later

ecycled for the next batch) to solubilise the starch and degrade it 

o sugars, at a temperature of 64 °C and higher. After mashing, the 

rst by-product, the spent grain, is separated and the remaining 

iquid – called wort – is cooled down to 18 °C for fermentation. 

he fermented wort, now called beer wash, is distilled twice at up 

o 100 °C, and yields an approximately 70% spirit which, after mat- 

ration and dilution, becomes whisky. The second by-product, the 

ot ale, remains after the first distillation. It contains about 5% dry 

atter (DM) and is rich in protein as it includes the waste yeast. 

he leftover from the second distillation, spent lees, is predom- 

nantly water ( Akunna and Walker, 2017 ) and spread onto land. 

omponents in the spent lees such as biological and chemical oxy- 

en demand (BOD/COD) and copper were modelled according to 

kunna and Walker (2017) . 

Water is supplied from both mains supply (14%) and a borehole 

86%). It is treated depending on its use: mash water is treated 

o ensure potable quality. The process water feeding the cooling 

ower and steam boiler has to be treated with chemicals to prevent 

orrosion, scaling, fouling and pathogen growth. Chemical manu- 

acture has been modelled using only the main components due 

o limited data availability. A minor amount of water is used for 

leaning of equipment and facility. Electricity requirement for wa- 

er treatment and pumping is included in the total electricity use 

f the distillery which uses UK grid electricity. The steam boiler 

hich heats all processes from mashing to the distillations runs on 

as oil (diesel) and loses water due to blow-downs. Fig. 1 shows an 

verview of the main steps included in the LCA of the production 

f whisky. 
160 
.2.2. By-product use scenarios 

The two most common pathways for distillery by-product use 

re for livestock feed or bioenergy ( Bell et al., 2019 ). Both were

epresented in different scenarios. The total dry matter (DM) con- 

ent of the by-products has been determined using a literature 

alue (311 kg DM/t malt input; Bell et al., 2019 ) and Arbikie’s alco- 

ol yield per malt input ( Table 2.1 ). 

.2.2.1 Feed use scenarios. 

Type and origin of replaced feed. We considered soy and rape 

s being replaced by the by-products. Soy and rape are the two 

ost used oilseeds in the UK to secure sufficient protein supply in 

nimal production, with an average consumption of roughly 1.1 M 

nd 0.7 M tonnes per year during the last decade in the form of 

ake and meal, respectively ( AHDB, 2020 ). 

According to the newest available trade data from 2018, the UK 

ourced almost 90% of its soybean commodities from South Amer- 

ca and the United States (US); some of it indirectly through the 

etherlands. Direct data on exports to the UK and an analysis of 

mport and re-export statistics from the Netherlands resulted in 

he following shares for the three countries of origin, represent- 

ng 90% of the UK’s imports of soy commodities ( House, 2020 ): 

rgentina (AR): 48%, Brazil (BR): 29%, US: 23%. For the base case, 

n import mix from these countries was considered, while single 

ountries were considered in a sensitivity analysis. 

For the origin of rapemeal, we considered the import from 

he EU’s biggest producers, Germany (DE) and France (FR), 

s trade statistics didn’t allow for a unambiguous conclusion 

 Eurostat, 2019 ). France is also the biggest single exporter of rape 

eeds to the UK ( House, 2020 ). The base case considers the average

mpact from rape meal production of both countries. 

Amount of feed replaced. Due to their considerable protein con- 

ent, spent grain and pot ale are suitable replacements for pro- 

ein feed, but they also come with an additional energy content. 

n order to replace an equal amount of both crude protein and 

etabolisable energy, the replacement of a combination of the im- 

orted protein feeds soy or rapemeal and the domestic energy-feed 

rop barley is considered. The most common and suitable use is 

s feed for beef and dairy cattle ( Bell et al., 2019 ), which is why

e considered ruminant metabolisable energy (rME) content. As 

n Lienhardt et al. (2019) and Leinonen et al. (2018) , the quanti- 

ies were determined via linear optimisation, using the Excel solver 

unction, keeping an equal protein and energy content while max- 

mising the amount of feed replaced based on the DM content of 

he by-product. Where available, the protein and energy content 

as been taken from primary data, complemented by literature val- 

es (Table 1). Characteristics for the replaced feed have been de- 

ived from literature (Table 1). 

Form of feed. The by-products can either be fed directly in 

heir fresh form (scenario Feed 1) or processed to dried distiller’s 

rains with solubles (DDGS) which conserves them and reduces 

heir weight, allowing for longer storage and transport and thus 

aking their use more flexible (scenario Feed 2) ( Stewart, 2014 ). 

ater and energy requirements for drying and transport to/from a 

DGS facility have been considered. The water content of the by- 

roducts when fed fresh is considered to return to the same catch- 

ent. For the DDGS case, the water is assumed to evaporate or re- 

urn to water bodies outside the distillery catchment and therefore 

ounts as consumed. 

Overview of the feed use scenarios: 

• Feed 1a: direct use of fresh spent grain and pot ale on a nearby 

farm as cattle feed. Replacing: Imported soybean meal and do- 

mestic barley 

• Feed 1b: as in 1a, but replacing rapemeal and barley 
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Fig. 1. System boundaries of the Life Cycle Assessment of 1 LPA of spirit for the production of Scottish single malt whisky and expanded boundaries for different scenarios 

for the use of the by-products spent grain and pot ale. 
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• Feed 2a: spent grain and pot ale are first processed to DDGS, 

then used as cattle feed. Replacing: imported soybean meal and 

domestic barley 

• Feed 2b: as in 2a, but replacing rapemeal and barley 

.2.2.2 Bioenergy use scenarios. We considered the two following 

cenarios for the use of by-products for bioenergy ( Fig. 1 ): 

• Bioenergy 1: anaerobic digestion (AD) of by-products to biogas, 

subsequent combustion in a combined heat and power (CHP) 

plant. This is currently the most common use for by-products 

in Scotland ( Bell et al., 2019 ). The digestate from AD replaces 

mineral NPK fertilisers. 

• Bioenergy 2: upgrading of biogas to biomethane for use as 

transport fuel in a passenger car. Digestate replaces NPK fer- 

tilisers. 

Biogas production. We assumed the biogas plant is located 

nsite or very close to the distillery ( Clearfleau Group, 2016 ; 

’Shea et al., 2020 ; Pendrous, 2018 ). Transport distance for diges- 

ate as use for fertiliser considers a conservative distance of 50 km 

round the biogas plant in accordance with O’Shea et al. (2020) . 

iogas production includes emissions through methane leakage 

nd considers the amount of parasitic heat and electricity (or its 

quivalent in biogas for bioenergy scenario 2) which is necessary 

o run the AD plant. Parasitic amounts are median values taken 

rom a survey of UK biogas plants ( Styles et al., 2016 ), which were

tatistically indifferent between different plant sizes. 

Digestate storage and application . Digestate needs to be stored 

rior to seasonal application and releases methane (CH 4 ), ammo- 

ia (NH 3 ) and nitrous oxide (N 2 O) during storage. Ammonia emis- 

ions vary depending on the type of storage. Here, we consider 

pen tank storage with a moderate NH 3 –N emission factor of 10% 

f NH 4 –N, lying in between gas tight tank and open lagoon storage 

 Styles et al., 2016 ). Furthermore, emissions of ammonia, nitrous 

xide and nitrate (NO 3 
−) from field application of the digestate are 

ccounted for, following the method in Styles et al. (2016) based 

n the MANNER-NPK tool (see next paragraph), resulting in 7.2% of 

otal nitrogen lost as NH 3 –N and 9.5% lost as NO 3 –N. Nitrous oxide

missions derive from digestate application directly, and indirectly 

rom ammonia and nitrate losses ( IPCC, 2006 ; Styles et al., 2016 ). 
161 
Fertiliser replacement . The MANNER-NPK tool 

 Nicholson et al., 2013 ) was employed to determine the amount 

f mineral fertilisers replaced, assuming digestate application 

hrough shallow injection onto a moist sandy clay loam soil and 

pplication during March, June and September. This resulted in 

n average crop availability of 41%, 50% and 89% of the applied 

itrogen, phosphorus and potassium, respectively. The available 

itrogen amount in the digestate was corrected by losses of NH 3 

uring digestate storage. Avoided emissions of ammonia, nitrous 

xide and nitrate from the avoidance of fertiliser application is 

onsidered as in Styles et al. (2016) (seeTable 1 for further details). 

Bioenergy scenario 1: The heat generated from the CHP plant 

eplaces the heating fuel (diesel) used in the distillery, while 

he electricity replaces natural gas as marginal grid electricity 

 BEIS, 2019 ). CHP electric and heat efficiency have been considered 

s for small CHP plants, but different efficiencies are accounted for 

n the sensitivity analysis. A CHP methane slip of 0.5% is consid- 

red according to Styles et al. (2016) . 

Bioenergy scenario 2: The biogas from AD is upgraded to 

ethane, where carbon dioxide, water, hydrogen sulphide and 

race gases are removed. Upgrading comes with an additional en- 

rgy and material consumption and methane can leak during the 

rocess ( Adams and McManus, 2019 ). A fraction of methane is 

sed to run the AD plant, equal to the amount necessary for 

arasitic electricity and heat requirements in Bioenergy scenario 

. Downstream transport fuel use emissions are considered for a 

ethane fuelled Euro 5 passenger car ( Wernet et al., 2016 ). It 

eplaces diesel driven transport in a Euro 5 passenger car on a 

ehicle-kilometre basis. 

.3. Life cycle impact assessment 

The life cycle impact assessment follows the recommendations 

f the Product Environmental Footprint (PEF) Initiative by the JRC 

f the European Commission which is elaborating LCA standards 

or use with products in the EU ( Zampori and Pant, 2019 ). The

ecommended LCIA methods comprise the adapted IPCC baseline 

odel of 100 years for Climate Change (CC) impacts and the Avail- 

ble WAter REmaining (AWARE) method ( Boulay et al., 2018 ) for 

mpact on water scarcity ( Zampori and Pant, 2019 ). Additional to 

he water scarcity footprint (WSF), we calculated the inventory 
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Table 1 

Inventory for whisky production and by-product use in the base case. 

Process/material Quantity Reference/comment 

Barley and malting 

Barley grains per kg malt 1.19 kg Average of three malting facilities 

Allocation of barley cultivation 77% to barley grains 

23% to barley straw 

Agri-Footprint database for UK barley 

( Blonk Consultants, 2017 ) 

Water per kg malt 4.5 L Average of three malting facilities 

Thermal energy per kg malt 2.49 MJ Average of three malting facilities; natural gas 

UK grid electricity per kg malt 0.102 kWh Average of three malting facilities 

Distillery 

Barley malt per LPA 2.68 kg Process data Arbikie 

Yeast per LPA 0.0167 kg Process data Arbikie 

Water for mashing per LPA 18.8 L Process data Arbikie 

Water for cleaning per LPA 2.07 L Process data Arbikie 

Water for cooling per LPA 65.7 L Process data Arbikie; top-up water for cooling tower. 

Water for steam boiler per LPA 27.3 L Process data Arbikie; 

Water from borehole vs mains water 86% vs 14% Process data Arbikie 

Thermal energy per LPA 8 kWh Process data Arbikie; As gas oil 

UK grid electricity per LPA 1.17 kWh ( Lienhardt et al., 2019 ) 

Total dry matter in by-products 311 kg/t malt ( Bell et al., 2019 ) 

Spent grain DM 22% (0.593 kg DM/LPA) anonymous distillery a 

Spent grain crude protein 24% DM anonymous distillery a 

Spent grain rME 10.1 MJ/kg DM anonymous distillery a 

Pot ale DM 5% (0.242 kg DM/LPA) Primary data Arbikie 

Pot ale crude protein 37% (FAO et al., 2020) 

Pot ale rME 15 MJ/kg DM (FAO et al., 2020) 

Spent lees 2.94 L/LPA Primary data Arbikie 

Feed scenarios 

DDGS production: 

Thermal energy 5.96 MJ/kg DM Amount based on ( Murphy and Power, 2008 ); as 

natural gas ( Stewart, 2014 ) 

UK grid electricity 0.129 kWh/kg DM Based on ( Murphy and Power, 2008 ) 

Tap water requirement 2.49 L/kg DM Based on ( Bell, 2000 ), water evaporated (consumed) 

only 

Avoided feed: 

Soybean meal DM 88% (FAO et al., 2020) 

Soybean meal crude protein 55% (FAO et al., 2020) 

Soybean meal rME 13.4 MJ/kg DM (FAO et al., 2020) 

Rape meal DM 89% (FAO et al., 2020) 

Rape meal crude protein 38% (FAO et al., 2020) 

Rape meal rME 11.1 MJ/kg DM (FAO et al., 2020) 

Barley DM 87% (FAO et al., 2020) 

Barley crude protein 12% (FAO et al., 2020) 

Barley rME 12.4 MJ/kg DM (FAO et al., 2020) 

Bioenergy scenarios 

Anaerobic digestion: 

cumulative methane yield 0.355 m 

3 /kg DM (Luna-delRisco et al., 2011) 

Digester methane leakage 1% ( Styles et al., 2016 ) 

Parasitic electricity/heat use (Bioenergy scenario 1); parasitic 

methane use (Bioenergy scenario 2) 

6% / 33% (electricity/heat); 

22% (methane) 

Share of electricity/heat output from CHP needed or 

share of methane required to run AD. Survey data 

from UK bioenergy plants ( Styles et al., 2016 ) 

Digestate storage: 

CH 4 leakage rate 1.5% For more complete digestion ( Styles et al., 2016 ) 

N content digestate 16% Of crude protein ( FAO et al., 2020 ) 

Digestate total N as NH 4 –N 59% As for brewery waste ( Wellinger et al., 2013 ) 

NH 3 –N leakage rate (fraction of NH 4 –N) 10% For open tank storage ( Styles et al., 2016 ) 

Indirect N 2 O 

–N emission (fraction of NH 3 –N emission) 1% ( Styles et al., 2016 ) 

Digestate application: 

NH 3 –N emission factor (fraction of NH 4 –N) 7.2% Derived based on ( Nicholson et al., 2013 ) 

NO 3 –N emission factor (fraction of NH 4 –N) 9.5% Derived based on ( Nicholson et al., 2013 ) 

Avoided fertiliser: 

Digestate DM 11% 

Spent grain N content 38.9 g/kg DM 16% of crude protein ( FAO et al., 2020 ) 

Pot ale N content 59.8 g/kg DM 16% of crude protein ( FAO et al., 2020 ) 

Spent grain P content 3.3 g/kg DM ( FAO et al., 2020 ) 

Pot ale P content 19 g/kg DM ( FAO et al., 2020 ) 

Spent grain K content 0.3 g/kg DM ( FAO et al., 2020 ) 

Pot ale K content 22.3 g/kg DM ( FAO et al., 2020 ) 

Avoided fertiliser application: 

NH 3 –N emission factor 1.7% ( Misselbrook et al., 2012 ) 

NO 3 –N emission factor 10% ( Duffy et al., 2013 ) 

CHP specifications: 

CHP combustion methane leakage rate 0.5% ( Styles et al., 2016 ) 

CHP electric efficiency 35% ( Styles et al., 2016 ), for a small plant 

CHP thermal efficiency 50% ( Styles et al., 2016 ), for a small plant 

Biomethane scenario: 

Upgrading methane leakage rate 0.5% ( Adams and McManus, 2019 ) 

a UK whisky distillery with production scale comparable to Arbikie distillery. 
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Table 2 

Cases for sensitivity analysis on the inventory for whisky by-product use. 

case scenario description Base value(s) 

Sensitivity 

value(s) 

Reference for 

sensitivity 

value(s) 

A all scenarios higher DM 

content spent 

grain, lower 

DM content 

pot ale 

0.59 / 0.24 kg 

DM spent 

grain/pot ale 

per LPA 

0.65 / 0.19 kg 

DM spent 

grain/pot ale 

per LPA 

( FAO et al., 

2020 ) 

B all scenarios lower DM 

content spent 

grain, higher 

DM content 

pot ale 

0.59 / 0.24 kg 

DM spent 

grain/pot ale 

per LPA 

0.52 / 0.36 kg 

DM spent 

grain/pot ale 

per LPA 

( Pass and 

Lambert, 2003 ) 

C Feed scenarios 

a (soy) 

low impact 

origin only 

UK import mix WSF: BR; CC: 

US 

D Feed scenarios 

a (soy) 

high impact 

origin only 

UK import mix WSF: US; CC: 

AR 

E Feed scenarios 

b (rape) 

low impact 

origin only 

DE + FR mix DE 

F Feed scenarios 

b (rape) 

high impact 

origin only 

DE + FR mix FR 

G Feed scenario 

2a + b 

lower 

electricity 

consumption 

for DDGS 

production 

0.129 kWh per 

kg DM 

0.096 kWh per 

kg DM 

( Bell et al., 

2019 ) 

H Feed scenario 

2a + b 

higher heat 

consumption 

for DDGS 

production 

5.96 MJ per kg 

DM 

7.27 MJ per kg 

DM 

( Bell et al., 

2019 ) 

I Bioenergy 

1 + 2 

lower methane 

yield 

0.355 [m 

3 /kg 

DM] 

−15% Assumption 

based on 

( Luna- 

delRisco et al., 

2011 ) 

J Bioenergy 

1 + 2 

higher 

methane yield 

0.355 [m 

3 /kg 

DM] 

15% Assumption 

based on 

( Luna- 

delRisco et al., 

2011 ) 

K Bioenergy 1 CHP: lower 

energy 

efficiency 

35% electric / 

50% heat 

efficiency 

30% electric / 

40% heat 

efficiency 

( Stewart, 2014 ) 

for small 

plants 

L Bioenergy 1 CHP: different 

split: electric 

vs heat energy 

efficiency 

35% electric / 

50% heat 

efficiency 

40% electric / 

45% heat 

efficiency 

( Styles et al., 

2016 ) for 

medium and 

large plants 

M Bioenergy 2 lower biogas 

upgrading 

leakage 

0.5% 0% ( Adams and 

Mc- 

Manus, 2019 ) 

N Bioenergy 2 higher biogas 

upgrading 

leakage 

0.5% 2% ( Adams and 

Mc- 

Manus, 2019 ) 
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ased volumetric freshwater consumption (FWC) in order to show 

he influence of scarcity factors on the results. The LCA has been 

odelled with the software SimaPro ( PRé Sustainability, 2020 ) us- 

ng the Ecoinvent database version 3.6 for background information 

 Wernet et al., 2016 ). 

.3.1. Water scarcity footprint 

The AWARE method defines scarcity based on the available wa- 

er remaining after human and local ecosystem requirements have 

een met ( Boulay et al., 2018 ). The method is based on water

onsumption , i.e. only accounts for the water abstracted and used 

hich does not return to the same watershed after use but in- 

tead gets incorporated in a product, or – e.g. in case of irriga- 

ion – is lost through evapotranspiration by soil and plants. In this 

tudy, not all water withdrawn is lost from the watershed, as water 

rom cleaning and spent lees is released on-site and therefore sub- 

racted from the net water scarcity contribution. Similarly, water 

n directly used spent grain and pot ale (scenario Feed 1) and in 
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igestate (Bioenergy scenarios) is subtracted from net scarcity. The 

onsumed water is the water being incorporated in the spirit and 

he water for cooling and steam boiler. The cooling water amount 

onsidered is the top-up water which is needed to replace the con- 

tantly evaporating water in the cooling tower. The volume of top- 

p water was monitored by Arbikie distillery over the course of a 

ear. 

Compared to e.g. GHG emissions which are equal in impact 

isregarding the point of release, water scarcity impacts are de- 

endant on location of water abstraction. Therefore, character- 

sation factors (CF) applied to consumed water in the AWARE 

ethod represent the water scarcity or available water remaining 

n a geographic area (watershed) and defined time (month) com- 

ared to the world average – expressed in m 

3 world equivalent . 

n line with the PEF methodology, we used country and annual 

ggregated CF which facilitate data acquisition and conform with 

ackground data in databases such as Ecoinvent that typically do 

ot specify water inventory flows at watershed level. Even with 
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implification to country level, proper application of the AWARE 

ethod poses challenges because some processes in life cycle in- 

entory databases are not available for the respective country. Spe- 

ial scrutiny has therefore been applied to model the water flows 

nd to assign the geographically-correct scarcity factors by adapt- 

ng background datasets to the right geography. Table S1 in the 

upplementary Information (SI) shows a list of the main processes 

nd their adaptations for regionalisation of water in/outputs. 

Crop blue water consumption (irrigation water) relevant for soy 

nd rape cultivation have been taken from the Water Footprint 

etwork (WFN) database ( Mekonnen and Hoekstra, 2010 ). 

.3.2. Climate change 

In line with the PEF guidelines which allow for a simplified 

pproach for closed carbon cycles such as those of food products 

 Zampori and Pant, 2019 ), uptake and emission of biogenic carbon 

as not modelled (i.e. CO 2 uptake during plant growth and release 

uring fermentation and use of by-products and spirit). However, 

ther biogenic GHG emissions mentioned above such as methane, 

s well as ammonia and nitrous oxide emissions from digestate 

torage and application are included, along with GHG emissions 

rom land use change (LUC) such as through soy cultivation in 

outh America. 

.4. Sensitivity analysis 

.4.1. Sensitivity on the inventory 

Sensitivity analysis was applied to variable by-product scenario 

arameters likely to influence results of water scarcity and GHG 

missions – reflecting, e.g., variations in by-product composition 

influencing AD methane yield), process scales (CHP efficiency) and 

pplied technology (methane leakage from biogas upgrading). The 

mount of DM contained in by-products influences all use scenar- 

os, as it is the basis for materials and energy substitution, and has 

een considered for all scenarios. Regarding the feed scenarios, we 

plit the country import mix of soybean and rape meal into single 

ountry origin to show dependence of results on cultivation con- 

itions in the regions. For the water scarcity footprint of soy, we 

how the difference between its origin from Brazil (lowest impact) 

nd the US (highest impact), while for Climate Change, we show 

oy from the US (lowest impact) versus Argentina (highest impact). 

In each sensitivity case, only one parameter was changed at a 

ime, while others remained constant. A full list of changed param- 

ters and the respective references is given in Table 2. 

.4.2. Sensitivity on the AWARE methodology 

Database processes do not provide monthly and watershed level 

nformation for water use which would be necessary to link inven- 

ory flows to the originally developed AWARE CF. The developers 

f the AWARE method have therefore provided country and annual 

verage CF which are by default used in the PEF method. However, 

hey don’t recommend the use of average CF ( Boulay et al., 2019 ).

nstead, they propose the use of more refined factors whenever 

ata on a watershed and monthly level are not available. Several 

mproved CF sets have been published: sector specific CF, distin- 

uishing between the agricultural sector’s water use (“agri”), and 

he domestic or industrial sector (“non-agri”) ( Boulay et al., 2018 ); 

egionalised CF for a sub-national level ( Boulay and Lenoir, 2020 ); 

nd for agricultural water use in particular: crop specific CF for 26 

rops and 224 countries which take into account crop and location 

pecific water availability and consumption ( Boulay et al., 2019 ). 

ll of these CF sets have been shown to potentially change results 

ignificantly and are preferable to the generic country average CF 

 Boulay et al., 2019 ; Boulay and Lenoir, 2020 ; Villanueva-Rey et al.,

018 ). 
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In order to test sensitivity of results to the choice of CF, we 

pplied sector and crop-specific CF, where applicable, for all fore- 

round or direct water consumption as they are not (yet) compati- 

le with the Ecoinvent database used for background processes. In 

he first step, sector-specific CF (agri/non-agri) were used with wa- 

er input and output flows in malting and distilling as well as pro- 

uction of DDGS, soybean and rapemeal, including irrigation wa- 

er. In a second step, further refinement was achieved by replacing 

gricultural CF by the crop-specific CF for soy and rape irrigation 

ater. 

. Results 

First, the results for both water footprints and for climate 

hange for 1 LPA of whisky are shown, before demonstrating 

ow the whisky production footprint can be reduced through dif- 

erent forms of by-product use. Finally, we present an estimate 

n the avoidable burdens through by-product use on a national 

evel. 

.1. Environmental burdens from whisky distilling 

The FWC of one LPA is 0.13 m 

3 and the WSF 0.79 m 

3 world eq.

istillery water use dominates both water footprints, with 84% for 

he water volume consumed and 51% for water scarcity ( Fig. 2 ). In

otal, about 114 L of water are required in the distillery to produce 

 LPA spirit for whisky split into cooling water (66 L), boiler wa- 

er (27 L), mashing water (19 L) and the remaining for cleaning 

2 L). Barley production causes 6% of the water volume used, but 

3% of the water scarcity impacts ( Fig. 2 ) – mainly via water used 

n global production of fertilisers (especially ammonia and urea). A 

mall amount of water is embedded in electricity generation and 

he production of water treatment chemicals, yeast and in trans- 

ort. 

The total CC impact for 1 LPA amounts to 4.4 kg CO 2 eq. Dis-

ribution of impacts between the life cycle stages and production 

teps offer a different profile compared with water: 21% from bar- 

ey cultivation, 14% from malting and 64% from distillery opera- 

ions ( Fig. 2 ). Emissions from barley cultivation are mainly direct 

eld emissions from fertilisation, as well as emissions from pro- 

uction of fertilisers and use of agricultural machinery. Almost all 

HG emissions in malting are due to electricity and heat consump- 

ion, which is also the case in the distillery. Heating requirements 

et through diesel combustion are the single biggest contributor 

o the overall CC result with 2.3 kg CO 2 eq. 

.2. By-product use 

Table S2 in the SI shows the amount of feed, fertilisers, en- 

rgy and transport avoided in the respective scenarios. Fig. 3 shows 

he effect that avoided processes and products have on the whisky 

roduction footprint per LPA. Water scarcity burdens can be re- 

uced by up to 47% or 0.37 m 

3 world eq. when spent grain and

ot ale are used as feed without further processing and replac- 

ng 0.34 kg of imported soybean meal and 0.42 kg of domestic 

arley on a DM basis. Similarly, DDGS replacing soy and barley 

ffsets 43% of the water scarcity footprint. The avoided soy foot- 

rint is dominated by cultivation in the US, which contributes 

0% to water scarcity of the UK import mix despite constituting 

3% by mass. With rape replaced instead of soy, 18% and 15% of 

he WSF can be avoided, when by-products are fed directly or as 

DGS, respectively. When by-products are used for bioenergy pur- 

oses, 1 kWh electricity and 4.5 MJ fossil heat can be replaced 

er LPA, avoiding 13% of water scarcity (Bioenergy 1), or 2.4 km 

f diesel transport can be replaced, reducing water scarcity by 12% 

Bioenergy 2). 
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Fig. 2. Results of the LCA of whisky production (1 LPA of spirit) shown as relative contribution of life cycle inputs. WSF = Water Scarcity Footprint; FWC = Freshwater 

Consumption; CC = Climate Change. Note that water inputs only marginally contribute to CC and therefore don’t appear in the graph. Malting: others = transport, electricity 

and heat; distillery: others = transport and chemicals; distillery: water released = water from cleaning and spent lees. 

Fig. 3. Change of the whisky production footprint by avoided burdens through by-product use. First four columns of each impact category show changes through feed use 

scenarios, while last two columns show bioenergy scenarios. Values show avoided footprints (“credits”) per functional unit of 1 LPA for whisky production in m 

3 world eq. 

(WSF), m 

3 (FWC)) and kg CO 2 eq. (CC). 
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Freshwater consumption savings are less, ranging from 1 to 12% 

or the feed scenarios and 6–7% for the bioenergy scenarios. Again, 

he greatest avoided impact is achievable through replacing soy- 

ean meal and barley through feeding the raw by-products. 

In the case of climate change, by-product use can offset the 

hisky production footprint by up to 32% or 1.40 kg CO 2 eq. per 

PA, when replacing soy and barley feed. Other than with wa- 

er scarcity, avoided carbon emissions through soy replacement, 

re predominantly caused through soybean meal imports from Ar- 

entina and its high LUC emissions connected to deforestation. The 

eplacement of rape and barley is only beneficial when by-products 

re used in their fresh form. In scenario Feed 2b, where spent grain 

nd pot ale are first processed to DDGS, GHG emissions from trans- 

ort and processing of by-products to DDGS outweigh the avoided 

missions from rapemeal and barley production. The use of by- 

roducts as a bioenergy resource delivers potential GHG emission 

avings of 4% to 8%. Emission savings from avoided mineral fer- 

iliser manufacture and application are countered by digestate ap- 

lication emissions of NH 3 and N 2 O, which are higher for digestate 

han for fertiliser application. 
165 
.3. Sensitivity analysis 

.3.1. Sensitivity to inventory change in by-product scenarios 

In total, 14 sensitivity cases were examined, of which eight ap- 

ly to the feed scenarios and seven to the bioenergy scenarios. The 

ighest differences to the base case occurred when changing the 

rigin of the replaced soybean meal. Assuming all soy originated 

rom Brazil, the WSF for whisky would be reduced by 15% (Feed 

a) and 12% (Feed 2a), comparable to reduction potentials through 

ioenergy. However, if soy from the US was substituted by the by- 

roducts, the whisky WSF would be more than offset ( Fig. 4 ). It

ould result in a final footprint of -0.28 (Feed 1a) and -0.21 m 

3 

orld eq. (Feed 2a) for whisky with by-product use. This is due to 

he high water scarcity footprint of US soybean meal of 2.56 m 

3 

orld eq./kg, opposed to 0.27 for Argentinian and 0.07 for Brazil- 

an meal. The scarcity footprint is connected to irrigation water 

equirements which are 92 m 

3 /t for soy from the US, 5 for Ar- 

entina and 1 for Brazil ( Mekonnen and Hoekstra, 2010 ). Further- 

ore, AWARE CF differ amongst these countries with 33.8 (US), 

7.1 (Argentina) and 2.17 (Brazil). Considering that only German 
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Fig. 4. Sensitivity cases C and D: single country origin of avoided soybean meal. 

Relative reduction of whisky production footprint shown for scenario Feed 1a: fresh 

spent grain and pot ale replacing imported soybean meal and UK grown barley. Red 

dotted line where the whisky footprint is fully offset. BR = Brazil, AR = Argentina. 

Mix: as in base case, soybean meal from Argentina, Brazil and the US. 
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apemeal was replaced, relative reduction of the WSF amounted to 

5% (Feed 1b) and 11% (Feed 2b). Freshwater consumption results 

ollowed a similar trend as the WSF (Table S3, SI). 

The origin of the replaced soy also had a considerable influence 

n the results in the CC category, however, with a different country 

rend than for water impacts. CC reduction of the whisky produc- 

ion footprint ranged between 9 and 47%, replacing either soybean 

eal from the US or Argentina (Feed 1a). Avoided CC emissions are 

ainly influenced by LUC (deforestation) emissions for soy grown 

n Argentina and Brazil and which are highest in Argentina, mainly 

ue to conversion of secondary forests into arable land. No LUC 

missions were reported for US grown soy ( Wernet et al., 2016 ). In

he case of DDGS replacing soybean meal from the US (Feed 2a), 

he whisky carbon footprint would not be reduced at all. Single 

ountry origins for rape meal only changed reduction potentials to 

 minor extent. 

Full sensitivity analysis results are available in the SI, Table S3- 

5. 

.3.2. Sensitivity to AWARE CF 

Introduction of sector-specific CF reduced the WSF of whisky 

onsiderably to 0.51 m 

3 world eq./LPA, a reduction of 36% (Ta- 

le S6, SI). This can be explained with the different CF fac- 

or which is 3.5 in the base case (UK yearly average, unspeci- 

ed activity), but 1.3 for UK non-agricultural activities. Changes 

n avoided footprints through by-product use were comparably 

mall with new avoided scarcity footprints ranging from 0.08 to 

.36 m 

3 world eq. compared to previously 0.1 to 0.37 m 

3 world 

q. However relative reduction of the whisky production foot- 

rint increased as can be expected, from 16 to 17% for bioen- 

rgy scenarios to about 70% for both soy scenarios, as shown in 

ig. 5 . 

Replacing agricultural CF through crop specific CF of course did 

ot introduce further changes to the whisky or bioenergy foot- 

rint, but only to irrigation water dependant soybean and rape- 

eal footprints. While reduction potential in the rape scenar- 

os remained almost equal to the sector specific CF case due to 

ow irritation water requirements, reduction potential in the soy 

cenarios was almost halved and nearer to the base case with 

6–38%. 

Despite significant changes in net water scarcity footprints 

ith the refined AWARE CF, overall ranking of by-product use 

ptions remained very similar. Avoidable footprints through feed 

y-product use were generally larger than those for bioenergy 

se, no matter if rape or soybean meal was assumed to be 

eplaced. 
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. Discussion 

.1. Distillery footprint: Analysis and comparison to literature 

As water abstraction data for the distillery sector have shown, 

ooling is the hotspot for water use in distilling ( SEPA, 2019 ), and

his is no different for Arbikie. The distillery uses an open cool- 

ng water loop which includes a cooling tower with fan, i.e. a large 

raction of cooling water evaporates. However, this system requires 

ess water than once-through cooling. Investigation into opportu- 

ities for lowering the distillery’s water footprint should focus on 

ooling water use. Cooling systems conserving water (but not en- 

rgy) include chillers relying on the compression of refrigerants or 

ir cooling systems. The latter are restricted to seasonal use due 

o cooling capacities depending on ambient air temperatures and 

ould require combination with other cooling technologies. An- 

ther option with the potential to reduce water and energy con- 

umption could be the installation of a closed cooling water loop 

ombined with direct water and heat reuse from cooling for mash- 

ng and distillations (Arbikie, personal communication). 

Water use figures from literature vary considerably without giv- 

ng information about the cooling technology used, making it diffi- 

ult to benchmark Arbikie’s water use, although much lower water 

onsumption seems to be achievable(Table 3). In a survey amongst 

ve Scotch whisky distilleries, total direct water consumption per 

PA ranged from 55 to 1470 L, with the average being 503 L (as- 

uming the final whisky contains 40% vol alcohol in order to trans- 

orm the result from litres of whisky to LPA) ( Meadows, 2015 ). Of

he three distilleries, where further breakdown was available, cool- 

ng water accounted for 89 to 96% of the total water consump- 

ion. Other studies reported 7 L/LPA for mashing and 80 L/LPA for 

ooling in Scotch malt whisky production, though admitting poor 

ata availability ( Köseo ̆glu, 2017 ) or 56 L/LPA of total direct water 

onsumption for the production of a Swedish single malt whisky 

 Eriksson et al., 2016 ). These substantial differences will be caused 

ot only by different cooling water systems but also different pro- 

uction scales. 

Several studies could be found which present a carbon footprint 

f whisky based on an LCA. We only included those life cycle steps 

n the comparison which best match the system boundaries of this 

ase study (Table 3). Based on the results in Amienyo (2012) , a 

ootprint of about 7 kg CO 2 /LPA Scotch grain whisky can be de- 

ived which includes all steps until (with) bottling but without dis- 

ribution and packaging (assuming again a content of 40% vol alco- 

ol). Both, the study from Leinonen et al. (2018) on Scotch single 

alt whisky and the Swedish study ( Eriksson et al., 2016 ) report a

ootprint of 2.6 kg CO 2 /LPA, excluding avoided emissions through 

y-product use. Leinonen et al. (2018) considered an energy con- 

umption in the distillery of 2.2 kWh/LPA produced, derived from 

ell et al. (2012) . The Swedish distillery uses solely renewable en- 

rgy, while natural gas is used in the Scottish one. Distillery oper- 

tions of the Swedish whisky therefore only account for 0.23 kg of 

HG emissions. With 4.4 kg CO 2 eq./LPA, the whisky in this study 

ies in between the literature values. With an energy consumption 

f 9.2 kWh/LPA for heating and electricity, Arbikie distillery lies 

bove the average of 8 kWh/LPA based on data from 70 Scottish 

alt distilleries in 2018 ( Sibille, 2020 ). 

In order to mitigate climate change impacts, the greatest op- 

ortunity would lie in lowering the consumption of gas oil or 

hanging to a renewable energy source. Changing to an electric 

oiler has been ruled out as currently not financially viable (Ar- 

ikie, personal communication). Trials at Arbikie have shown that 

nergy efficiency could be improved through increased (overnight) 

roduction cycles, which reduces gas consumption per LPA pro- 

uced, as the boiler is not led to cool down during the night when 

urned off. Another promising measure would be heat recovery 
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Fig. 5. Sensitivity analysis with different AWARE characterisation factors (CF) in the foreground processes. Bio = Bioenergy scenario. Default: use of annual and country average 

CF. Sector: use of sector specific (agri/non-agri) CF. Sector/crop: use of sector specific CF apart from irrigation water where crop specific CF are applied. 

Table 3 

Comparison of water use and energy inventory data and GHG emissions for whisky production reported in the 

literature vs this study. 

Scope This study Literature Reference 

Water use [L/LPA] Distillery 

operations 

114 55–1470 a 

( Meadows, 2015 ) 

56 b ( Eriksson et al., 

2016 ) 

Cooling only 66 238–1418 a 

( Meadows, 2015 ) 

80 

( Köseo ̆glu, 2017 ) 

Mashing only 19 7 

( Köseo ̆glu, 2017 ) 

GHG emissions [CO 2 

eq./LPA] 

Life cycle, incl. 

distillery 

operations 

4.4 7 a , c 

( Amienyo, 2012 ) 

2.6 

( Leinonen et al., 

2018 ) 

2.6 b ( Eriksson et al., 

2016 ) 

Distillery 

operations only 

2.8 0.23 b ( Eriksson et al., 

2016 ) 

Energy use [kWh/LPA] Distillery 

operations only 

9.2 2.2 ( Leinonen 

et al., 2018; 

Bell, Morgan, 

Dick and Reid, 

2012 ) 

8 d ( Sibille, 2020 ) 

a assuming 40% vol alcohol content. 
b considering 43.5% vol alcohol content according to the authors. 
c includes bottling. 
d average of 70 Scottish malt distilleries. 
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t

rom mashing and distillation, as well as from by-product streams. 

his is currently being investigated at the distillery. Energy inte- 

ration, linking heat sources and sinks across several plants could 

ose a promising option to reduce energy consumption for distil- 

eries located in a cluster with other distilleries, biogas or DDGS 

lants. Water savings would also contribute to reduction of indi- 

ect GHG emissions connected to water treatment (e.g. chemicals, 

umping), both at a utility in the case of mains water, as well as 

t the distillery ( Rothausen and Conway, 2011 ; Walker et al., 2021 ).

.2. By-product use – analysis and national potential 

Our study comes to a similar conclusion as 

einonen et al. (2018) , who looked at GHG emissions only, on 
167 
he largest environmental credits being achieved from livestock 

eed use of distillery by-products. However, this study introduces 

ovel evidence on the contribution of by-product use to water 

carcity offsetting in whisky production. Both from a water scarcity 

nd from a climate change perspective, feed use of by-products 

s the preferable option if it contributes to domestic feed supply 

nd decreases the import of soybean meal to the UK. Crucially, we 

howed that water scarcity offsets can in some cases be greater 

han the alcohol footprint, and that “hotspot” animal feed export 

ountries are different for water scarcity (US soy) than for GHG 

missions (Argentinian soy). 

The greatest water scarcity footprint offsets can be achieved 

hen distillery by-products are used as animal feed to substi- 

ute imported soybean meal as well as rapemeal, with only a few 



I. Schestak, D. Styles, K. Black et al. Sustainable Production and Consumption 30 (2022) 158–170 

e

s

c

c

i

s

t

c

h

u

d

w

p

t

b

f

d

3  

m

a

s

p

w

b

c

f

p

n  

t

t

p

a

4

r

a

s

i

s

s

m

w

v

f

K  

w

t

t

b

i  

a

m

b

n

t

p

2

i

y

l

t

f

c

i

f

s

(  

2

c

a

s

s

5

t

B

t

u

w

e

e

i

m

t

i

w

4

b

i

A

b

a

r

W

o

a

l

b

p

r

w

h

p

e

b

N

t

t

d

u

F

a

m

p

r

xceptions in the sensitivity cases where crop country origin led to 

imilar results as in the bioenergy scenarios. Reductions in climate 

hange impacts are more sensitive to the origin of replaced feed 

ommodities and to energy-intensive processing of by-products 

nto DDGS, but also reach highest reduction potentials replacing 

oybean meal. 

During the last ten years, on average, roughly 1100 kt (kilo 

onnes) of animal feed production in the UK was based on soy 

ake and meal ( AHDB, 2020 ). By-products from cereal-based alco- 

ol production in the UK can be quantified at 826 kt DM annually, 

sing data on barley and wheat use by UK brewers, maltsters and 

istillers for potable alcohol production ( AHDB, 2021 ), and fresh 

eight to by-product conversion factors from Bell et al. (2019) . 

If all cereal alcohol by-products were used to substitute im- 

orted soybean feed combined with domestic barley, the consump- 

ion of 16 M m 

3 of freshwater could be avoided – assuming that 

arley and wheat based by-products replace the same amount of 

eed. This equals 39% of the total direct water use of all Scottish 

istilleries (data from 2015 to 2017; SEPA, 2019 ). 

The avoided water scarcity footprint would amount to a total of 

70 M m 

3 world eq., of which 300 M is attributable to soy replace-

ent, and would reduce the UK’s external water scarcity footprint, 

nd 70 M is attributable to barley replacement. Savings through 

oy replacement equal 37% of the water scarcity footprint from im- 

orted soy cake and meal used for feed. 

The potential carbon savings would comprise 1.3 M t CO 2 eq., 

ith all extrapolations applying the methodological choices of the 

ase case of this study. The use of by-products for feed purposes 

an be regarded as a measure to lower the UK’s dependence on 

oreign water resources and to lower the UK’s external water foot- 

rint and water risk ( Ercin et al., 2019 ; Hoekstra and Mekon- 

en, 2016 ; Qu et al., 2018 ). From a carbon and water perspec-

ive, feed use can be suitable to avoid “external” emissions made 

hrough UK imports in the feed and food supply chain. Whisky by- 

roducts therefore deserve recognition as a domestic, high quality 

nd low budget resource for feed. 

.3. Limitations of the study and recommendations for future 

esearch 

While data quality was very high for water use in malting 

nd distilling owing to availability of monitored primary data, our 

tudy relied mostly on literature data for the by-product scenar- 

os where inventory choices had to be made. The sensitivity analy- 

is showed that WSF results for feed scenarios including soy were 

ensitive to country of origin and with it irrigation water require- 

ents. The latter are influenced by the calculation method of crop 

ater requirements and choice of respective database, of which 

arious exist which differ in resulting crop water requirement 

rom the WFN database used here ( Hoekstra and Mekonnen, 2010 ; 

ounina et al., 2013 ; Payen et al., 2018a ). For instance, crop blue

ater consumption data from Pfister and Bayer (2014) were not 

aken, as they calculate a considerable irrigation water consump- 

ion for UK barley, which is not the case for Arbikie’s barley (Ar- 

ikie, personal communication) and extremely rare for UK cereals 

n general ( Chatterton et al., 2010 ; Watts et al., 2015 ). However,

s we used consistent data sources for irrigation water require- 

ents across incurred and avoided processes, our results should 

e relatively robust to some of these uncertainties. Further work is 

eeded to explore water footprint results from different databases. 

The sensitivity analysis for the AWARE CF showed that applica- 

ion of more accurate CF can change results to a large extent, sup- 

orting previous findings ( Payen et al., 2018b ; Villanueva-Rey et al., 

018 ). However, the application of the AWARE method is still in its 

nfancy with the consequence that databases and software do not 

et contain water inventory flows which go beyond country reso- 
168 
ution to be specific for a sector, region or watershed. It is expected 

hat adaptations to inventory datasets will be implemented in the 

uture. 

Looking beyond the AWARE method, there exist different life 

ycle impact assessment methods for water scarcity footprints be- 

ng discussed in the LCA community. It has been shown for dif- 

erent products that choice of methodology does influence water 

carcity results and in some cases can change product rankings 

 Caldeira et al., 2018 ; Jeswani and Azapagic, 2011 ; Payen et al.,

018b ; Villanueva-Rey et al., 2018 ). However, the AWARE method 

hosen here, can currently be regarded as the “most up to date 

nd precise” ( Villanueva-Rey et al., 2018 ) one for blue water con- 

umption impacts ( Boulay et al., 2018 ). A methodological compari- 

on could be the focus of a future study. 

. Conclusion 

This study presents the first water scarcity footprint for a Scot- 

ish single malt whisky based on primary data from a distillery. 

y-product use was included in the study to understand its po- 

ential impacts on the whisky production footprint under different 

se scenarios. Application of the AWARE method for water scarcity 

ith standard average CF generated a footprint of 0.79 m 

3 world 

q./LPA in the base case, which was reduced to 0.51 m 

3 world 

q./LPA when more refined CF were used. The footprint was dom- 

nated by distillery water consumption, which was mainly deter- 

ined through cooling water demand. Measures to reduce the wa- 

er footprint of whisky production should therefore focus on cool- 

ng processes. The climate change footprint was 4.4 kg CO 2 eq./LPA, 

ith heating having the greatest impact. 

In the base case, the spirit WSF could be reduced by up to 

7% when by-products are used as feed replacing imported soy- 

ean meal and domestic barley. This was mainly due to (avoided) 

rrigation requirements for soy in the producing countries Brazil, 

rgentina and the US. When used for bioenergy, the WSF could 

e reduced by 12–13%. For CC, the largest offset could again be 

chieved through replacement of soybean meal feed, although 

eduction potentials were more sensitive to modelling choices. 

hilst the largest WSF credits were generated from substitution 

f US soy (avoided irrigation), the largest CC credits were gener- 

ted through substitution of Argentinian soy (avoided agricultural 

and transformation). 

This study has provided new insight into the role that distillery 

y-products could play in reducing the UK’s external water foot- 

rint whilst contributing to national feed (and thus food) secu- 

ity. If all cereal by-products from UK potable alcohol production 

ere used for feed purposes to replace imported soybean meal and 

ome-grown barley, it was estimated that a water scarcity foot- 

rint of 370 m 

3 world eq. could be avoided annually. Recent gov- 

rnment policies have incentivised the use of whisky (and other) 

y-products for use as bioenergy (biogas) feedstock instead of feed. 

ew water footprint results presented here add to the evidence 

hat policies intended to derive value from “waste” feedstock need 

o carefully consider the range of feasible alternative uses in or- 

er to effectively address global sustainability challenges; avoiding 

nintentional displacement of environmental impacts overseas. 

unding 
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