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Thesis Summary 

Soil is the universal substrate which underpins agricultural productivity, providing plants and 

soil organisms with water and nutrient resources, as well as a plethora of additional 

anthropogenic ecosystem services. However, the sustained intensity at which we are using soil 

resources and the increasing frequency and intensity of extreme weather events is leading to a 

serious decline in soil quality, often defined as ‘the capacity of the soil to function’, and 

associated ecosystem function and service delivery. Better understanding and monitoring soil 

quality is key to slowing and reversing this decline. Soil biology (and related biochemistry) has 

often been underutilised as an indicator of soil quality; however, it is one of the most reactive 

and sensitive indicators. This thesis explores novel methods of profiling the small organic 

molecules (i.e., metabolites) in the soil; produced by the biological community during the 

catabolism of substrates and anabolism of cellular metabolites. It examines methods of 

profiling both primary (i.e., compounds involved directly in the growth, development and 

reproduction of organisms) and secondary (i.e., compounds performing additional functions) 

metabolites in relation to soil quality and carbon (C) cycling. Specifically, I applied untargeted 

primary and secondary metabolomic methods to ‘real world’ field conditions and laboratory 

mesocosm experiments, assessing their applicability and aiming to further understand the 

complex biochemical interactions within the soil under a range of conditions, combining this 

data with a suite of physicochemical measurements to make conclusions about changes in soil 

quality and function. Here, I showed that, under field drought conditions, the primary 

metabolome shows similar trends to previous laboratory-based research, with significant 

increases in drought ‘biomarker’ compounds and storage lipids during drought, followed by a 

significant, rapid decrease in those compounds under post-drought conditions. Overall, soil 

functionality showed a high resilience to drought. Additionally, I showed that pure microplastic 

(MP) addition has little impact on the biological functioning of soil over a field season, even 

at unrealistically high loading rates. From the biological, physical and chemical indicators 

measured, few significant effects relative to no MP application were observed. However, it was 

concluded that while in the short-to-medium term MPs are recalcitrant and inert, pure plastic 

loading is unrealistic, and further research should be undertaken on the effect of plastic 

additives on soil health. Further, I mechanistically disentangled the effect of nutrient addition 

(C:N:P) on the soil microbial metabolite profile and C use efficiency. Demonstrating that; 

nitrogen (N) addition had the greatest impact on the ability of the soil microbial community to 

utilise excess C substrates, while phosphorus (P) addition led to significant increases in the 

synthesis of fatty acids. I concluded that inorganic nutrient enrichment of soils is likely to have 

substantial implications for labile and recalcitrant C cycling and microbial resource partitioning 

within the soil system. Additionally, I explored soil-derived secondary metabolites as an 

indicator of soil quality, by applying a headspace-solid phase microextraction (HS-SPME) 

method to profile the volatile organic compounds (VOCs) under a variety of induced ‘soil 

qualities’. I identified compounds associated with the differences between treatments, showing 

that substrate availability and quality are key in the production and emission of VOCs. Also, I 

evaluated a novel HS-SPME-trap-enrichment method to improve compound recovery and 

sensitivity, comparing it with other HS-VOC extraction methods. I concluded that 

metabolomic and volatilomic methods provide another sensitive tool in the kit for the 

characterisation and elucidation of soil biochemistry and chemical ecology, to aid the 

understanding of the complex small molecule interactions taking place within soils. The 

ultimate aim being the integration of metabolomics with other ‘omics platforms, with an 

emphasis on providing a greater functional understanding of key soil processes and the 

development of new soil health metrics. 
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Project Caveat 

This KESS II funded studentship started as a collaborative initiative between two 

industrial partners and Bangor University with the aim of investigating phospholipid fatty acid 

(PLFA) biomarkers for soil biological quality, tailoring a system that had been validated for 

Australian soils to UK soils. Unfortunately, within the first year of the studentship 

commencing, intellectual property (IP) issues became impassable, leading to both industrial 

partners withdrawing from the project. Subsequently, the studentship was entirely supported 

by KESS II funding.  

In order to avoid infringing IP, the project subsequently took a significant diversion 

from its original aim, with a greater focus on the metabolomic and volatilomic techniques. This 

change brought increased research freedom, allowing for a more dynamic project, responding 

to events and collaborating with several different institutions. The subsequent collection of 

chapters brings together the themes of soil biogenic primary and secondary metabolism as a 

result of this freedom and collaboration. 
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Chapter 1: Introduction 

1.1. General introduction 

Soil is a complex, heterogenous substrate, on which, much of the earth’s life, directly 

or indirectly, depends. It is the intersection of the biosphere, hydrosphere, lithosphere and 

atmosphere, and is one of the most biodiverse habitats on earth, with estimates that a quarter 

of the earth’s biodiversity resides in soil (Guerra et al., 2021). In an anthropogenic context, 

soils are extremely useful, producing a wide range of ecosystem services; goods obtained from 

ecosystems that benefit people’s well-being (Pereira et al., 2018), including climate regulation, 

nutrient cycling, water purification, contaminant removal and the provision of food, fuel and 

fibre (Bardgett and van der Putten, 2014; Baveye et al., 2016). Soil is a finite and non-

renewable resource on a human timescale, taking up to 1000 years to produce 2 – 3 cm of soil. 

However, it is estimated that up to one-third of the world’s soil are degraded, with up to 90% 

of soils potentially becoming degraded by 2050, due to intensification of use, mainly as a result 

of agriculture (UNFAO, 2015). Understanding soil quality, often defined broadly as; ‘the 

capacity of the soil to function’ (Karlen et al., 1997), its trends and inherent dynamism, is key 

to ensuring sustainability into the future.  

1.2. Background and rationale 

The constitution of soil, with its solid, liquid, and gaseous phases, underpinned by 

biological processing and turnover, makes it one of the most complicated and dynamic 

substrates on earth, varying considerably over both space and time (Bünemann et al., 2018). 

Within the context of the agroecosystem, on which this thesis is based, inherent quality is 

governed by extrinsic factors, for example, parent material, climate, topography, as well as 

land use and management.  

 While records are not contemporaneous, the first formal documentation of soil 

assessment originates from the Zhou dynasty (1048 – 256 BCE) in China (Harrison et al., 

2010), while other cultures throughout ancient history, including the Romans, also valued soil 

assessment highly (Warkentin, 1995). Moving towards the present, agricultural soil quality 

assessment has developed at a substantial rate since the 1970’s moving from a small number 

of indicators, focusing on the productivity at a field or farm scale to a plethora of indicators, 

with the aim of assessing the multi-functionality of soil, provision of ecosystem services as 

well as resistance and resilience to perturbation (Bünemann et al., 2018). Soil quality 
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assessment remains highly relevant to understanding and monitoring soil resources particularly 

as agricultural intensification continues, due to the requirement of feeding a growing global 

population. Until relatively recently (circa 2010), soil quality was assessed using physical and 

chemical measurements. However, biological, and particularly biochemical, metrics were often 

neglected due to a lack of analytical approaches, their complexity in interpretation and 

sensitivity to abiotic, e.g., changes in the chemistry (pH, salinity, organic matter, aeration/ 

saturation, available nutrients, application of agrichemicals) or physical conditions (soil 

structure and texture) and biotic factors (for example, aboveground biology) (Bünemann et al., 

2018). Arguably this dynamism is one of biology’s strengths, allowing effective indication 

over a much shorter timeframe than chemical and physical indicators, with soil biology driving 

soil function (Wagg et al., 2014).  

 Soil organic matter consists of the living organisms within soil (e.g., the soil micro- and 

macro-ecology), fresh residues (e.g., plant, animal, and microbial necro mass or excreta) i.e., 

the substrate for prokaryotic and eukaryotic growth, as well as the transformation products of 

these residues in a range of forms, broadly defined as humic and non-humic matter (Nieder and 

Benbi, 2008). The carbon (C) stored within organic matter represents a larger store than global 

and atmospheric C combined (Lehmann and Kleber, 2015). As such, understanding the 

biological and biochemical processes that form the basis of C cycling within the soil is of high 

impetus, having implications for not only soil quality, but also climate stability and food 

production, and more general ecosystem service provision.   

The concept of metabolism, the catabolic (breaking down) and anabolic (building up) 

reactions that allows an organism to function (i.e. grow, develop, reproduce and interact) by 

synthesising new organic material, has widely been applied in individual organisms (Blanco 

and Blanco, 2017). However, the concept may also be applied to the collection of organisms 

within systems in an ecological context i.e. soil (Sardans et al., 2011). The application of 

metabolomics, the large-scale study of small molecules (substrates, intermediates, and 

products) within a sample, to soil has been used to aid the understanding of small molecule 

cycling as well as the interactions between organisms in fine detail (Canarini et al., 2019; Overy 

et al., 2021; Swenson et al., 2015; Tyc et al., 2015; Withers et al., 2020).  

Primary metabolomics, referring to the analysis of the compounds directly involved in 

growth, development, reproduction (e.g. sugars, organic acids, amino acids, phenolics, fatty 

acids etc), and secondary metabolomics, compounds not directly involved in growth, 
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development, reproduction (a chemically diverse group of compounds with functions ranging 

from anti-biotic/fungal and quorum ensuing molecules to degradative enzymes), together form 

the fundamental biochemical building blocks on which C and nutrient cycling, pools and fluxes 

within and from the soil are based. The metabolic profile for the soil is as a result of several 

levels of ‘omic’ interaction. The genome is determined by the soil biome composition. This, in 

turn, determines the transcriptome (ribosome) and proteome (enzyme profile), which in turn 

determines the output of the metabolome. The metabolome therefore reflects the abiotic and 

environmental selection conditions as well as biotic selection and adaption.  

 As alluded to in section 1.1, soil is the foundation of many ecosystem services, and a 

well-functioning and healthy soil system is key to their successful provision. Understanding 

the ability of the soil and its microbial community to respond to both climate change (for 

example, increased risk of drought and flooding (Hamidov et al., 2018)) and anthropogenic 

management (for example the addition of microplastics into the soil system (de Souza Machado 

et al., 2020)) perturbation, in a chemical ecology and biochemical context, furthers our 

knowledge of ecosystem function, as well as potentially identifying new ‘biomarker’ 

compounds for evaluating stress conditions or change.  

1.3. Thesis outline and aims 

Broadly, the aim of this thesis is to explore the soil primary and secondary metabolism 

and its intrinsic link to function within the context of the agroecosystem. Comprising of eight 

chapters, the overarching objective is to advance the current state of knowledge and perception 

of metabolomics within the field of soil science (Fig. 1.1). 
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Figure 1.1. Schematic diagram of the experimental chapters contained within this thesis. 

 

Chapter 2 comprises a review synthesising the current state of research within the field 

of soil metabolomics and its relationship to soil quality. Examining primary, secondary and 

lipid metabolism and the factors affecting them. Advances in the measurement of metabolites, 

and their potential for use as a biochemical quality indicator are also addressed. 

Chapters 3, 4 and 5 apply metabolomic profiling methods to field and laboratory-based 

experiments. Specifically, chapter 3 focuses on primary metabolomic and lipid profiling, 

microbial community structure and greenhouse gas fluxes from soil under natural drought 

conditions, the likelihood of which is increasing with climate change. It aims to examine the 

untargeted microbial metabolomic and lipidomic responses to drought conditions, under 

natural, field conditions, particularly focusing on resilience of the system. Chapter 4, examines 

the effect of microplastic (MP) loading on soil health over a cropping season, combining novel 

metabolomics methods (biogenic amine profiling), with soil biological community, 

physiochemistry, greenhouse gas emissions, and crop health analysis. It aims to provide a 

comprehensive overview of the impact of MP introduction on agroecosystem health. And, 

chapter 5 examines the effects of stoichiometrically balanced nutrient (C:N:P) input to soil, on 

the primary metabolites synthesised. With the aim of providing a mechanistic understanding 

of biogenic nutrient processing and C cycling within an agricultural soil. 
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Chapters 6 and 7 broadly focus on soil secondary metabolism, in particular the analysis 

of volatile organic compounds (VOCs). Chapter 6 describes the utilisation of a headspace solid 

phase micro-extraction (HS-SPME) method combined with gas chromatography mass 

spectrometry (GC-MS) to analyse the soil VOC profile. It aimed to understand the methods’ 

ability to separate soils based on their quality, compared to an established measure of soil 

biological quality, phospholipid fatty acid (PLFA) profiling, and identify potential condition 

specific ‘biomarker’ compounds. Chapter 7 builds on the SPME methods described in chapter 

6, comparing it with other headspace (HS) extraction methods and exploring the possibility of 

enrichment methods to increase sensitivity. It aimed to compare the sensitivity and recovery of 

each method, and to explore the VOC emissions profile associated with each soil treatment. 

Chapter 8 provides a discussion of the use of metabolomics as a tool for the analysis of 

organic matter and C cycling in soils including its strengths and weaknesses, highlighting areas 

of future research and summarising the main conclusions from this body of work. Finally, 

appendices one to five include supplementary material from the data chapters (three to seven), 

and appendix six contains a further study performed and written during this research project 

but which does not fit within the overarching themes of this thesis. 
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Chapter 2: Literature review - Soil metabolism and its intrinsic link to soil 
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2.1. Introduction  

In the UK, 71% of land is used for agriculture, relying on soil for production (DEFRA, 

2016). Additionally, environmental quality, which ultimately determines human health, relies 

on good soil, air, water and ecosystem quality (Karaca et al., 2010). Soil quality, defined by 

Karlen et al. (1997) as "the capacity of a specific kind of soil to function, within natural or 

managed ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance 

water and air quality, and support human health and habitation", is often considered a more 

dynamic subset of overall land quality (Bünemann et al., 2018). Soil provides numerous 

environmental benefits through the provisioning of ecosystem services, summarised in Fig. 

2.1. There are many factors that affect the quality of soil in an agricultural context; these can 

be intrinsic (the factors determining pedogenesis), although in most modern settings it is 

extrinsic factors, namely the management regime and environmental extremes, that have a 

significant impact on soil quality (Dai et al., 2019; Li et al., 2017; Suddarth et al., 2019).  
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Figure 2.1. Examples of soil functions that provide ecosystem services, adapted from Keesstra 

et al. (2016) and Adhikari and Hartemink (2016).   

2.1.1 Criteria for soil quality assessment  

Currently, there is no agreed standard criteria for the assessment of soil quality, instead 

the criteria vary in relation to the requirements of the assessment e.g. management goals. 

However, Bünemann et al. (2018) summarized criteria of soil quality indicators from various 

publications into four broad categories: conceptual, practical, sensitive and interpretable. In 

summary, good indicators must; have relevance and relate to soil function or ecosystem 

processes, integrate biological, chemical and physical properties and be important at an 

applicable scale (Doran and Parkin, 1996; Larson and Pierce, 1994; Macdonald et al., 1998; 

Ritz et al., 2009). Additionally, indicators must be easy to sample or measure, with high 

reliability and relatively low cost (Bone et al., 2012; Doran and Parkin, 1996; Merrington, 

2006). Measurements must be sensitive to spatial and temporal variation as well as changes in 

land use or management (Nortcliff, 2002; Oberholzer et al., 2012), while also being easy to 

interpret, comparable with routine sampling and be able to show trends (Doran and Parkin, 
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1996; Idowu et al., 2008; Ritz et al., 2009). If these criteria can be met, then the resulting soil 

quality index and interpretation will be informative in land management decision making.  

2.1.2 Current quality indicators 

Soil quality can be assessed using physical, chemical and biological indicators 

(Bünemann et al., 2018). The focus has been on physical and chemical indicators, due to their 

ease of sampling and analysis. But biological indicators are now receiving greater interest. 

Physical indicators relate well to the water characteristics, in addition to the stability 

and support of the soil. It is likely they are some of the oldest soil assessment tools as they can 

be assessed qualitatively with little equipment required. Common indicators include water 

storage and infiltration rates (Lowery et al., 1996), bulk density (Arshad et al., 1996) and 

texture, structure and structural stability (Bronick and Lal, 2004).  

Chemical measurements are often indicative of soil buffering and nutrient cycling 

functions and relate to soil water interactions. Traditionally chemical indicators have been most 

widely used to characterise soil quality (Bünemann et al., 2018). These include soil organic 

matter (SOM) (Rasmussen and Collins, 1991), pH (Arshad and Martin, 2002), available 

nitrogen (N) and phosphorus (K) (Dinkins and Jones, 2013) and total N (Kennedy, 1999).  

Presently, one of the best indicators of soil biological health is simply 

presence/abundance and ecotypes of earthworm (Stroud, 2019). As microbiology within the 

soil system is complex and variable, highly dependent on the physical (soil structure and 

texture) and chemical (pH, salinity, organic matter, aeration/ saturation, available nutrients, 

application of agrichemicals) soil properties as well as a range of other factors (climate, 

vegetation type, management and disturbance). Historically, there has been a lack of 

understanding about the link between microbial diversity and soil function (Nannipieri et al., 

2003). For these reasons, biological indicators have often been omitted from soil quality 

indexes (Bünemann et al., 2018). However, their critical role in ecosystem function, as well as 

improvements in the measurement and understanding of biophysicochemical interactions of 

microbiology with the environment, makes them increasingly hard to ignore as part of a broader 

soil quality indexing tool (Enriqueta Arias et al., 2005; Schloter et al., 2003; Visser and 

Parkinson, 1992).  

Additionally, biological indicators can also be effective indicators over much shorter 

temporal periods than traditional physical and chemical indicators (Bastida et al., 2006). 
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Commonly used metrics include soil respiration (Ölinger et al., 1996), microbial biomass 

(Cardoso et al., 2013), phospholipid fatty acids (PLFAs) (Frostegård et al., 1993), N 

mineralisation (Saez et al., 2012) and soil invertebrate surveys (Kanianska et al., 2016). 

However, advancements in technology and reducing cost of techniques have allowed for more 

advanced exploration of soil biology. For example, the assessment of community composition 

through metabarcoding and metagenomic approaches (Feng et al., 2018), gene expression rates 

and impact through transcriptomics (Perazzolli et al., 2016), as well as the processing rate and 

functional impact on the community through metabolomic profiling (Judd et al., 2006; Schimel 

and Schaeffer, 2012). 

2.1.3 Importance of soil assessment 

Soil is a non-renewable resource on a human timescale. Yet it is key, alongside air and 

water, to global ecosystem and agroecosystem functioning as well as the provisioning of a wide 

range of ecosystem functions and services, making it an incredibly valuable resource (Dominati 

et al., 2010). Expansion of agriculture in order to meet future demand for food, fuel and fibre 

is likely to require a combination of sustainable intensification of current agricultural systems 

as well as the need for additional land. This will inevitably lead to greater pressure on soil 

resources (Gomiero and Tiziano, 2016). 

Measurement of soil quality is often used to inform stakeholders (land managers, 

farmers and policy makers) about the current state of their soil and the agroecosystem as a 

whole. Soil degradation from agricultural intensification is an increasing issue, costing the UK 

an estimated £1.2 billion per year, with loss of organic matter, compaction and erosion the 

greatest contributors (Graves et al., 2015). Additionally, soils vary markedly both temporally 

and spatially, so a greater level of agri-statistical information is needed to inform targeted 

approaches to applying agrochemicals as well as interventions such as subsoiling and drainage, 

in order to optimise crop growth at a sub-field scale. More information on soil quality will 

inevitably lead to improved resource use efficiencies, resulting in reduced waste and increased 

benefit to the farmer, while in turn also lowering the risk of environmental pollution. A major 

challenge in developing a soil quality index capable of mainstream adoption is the 

establishment of guidelines for selecting assays that reflect changes in specific agroecosystems 

and the productivity, environmental, and health components of soil quality (Granatstein and 

Bezdicek, 1992).  
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2.2. Metabolism in a soil context 

The concept of soil metabolism was first introduced by Quastel (1955) in order to 

understand the chemical interrelationships affecting biological cell behaviour and processes. 

The metabolome refers to the entirety of small molecules (< 1500 Da) found within a biological 

sample (Klassen et al., 2017). Primary metabolism is key in the sustenance of life. This 

complex set of biochemical catabolic and anabolic processes determines the ability of 

organisms to access the energy within their foodstuff, convert this energy into useful ‘building 

blocks’ i.e. proteins, lipids, nucleic acids and carbohydrates, and dispose of compounds that 

are no longer useful. Therefore, primary metabolites are any small molecule involved directly 

in the growth, development and reproduction of an organism (Rojas et al., 2014). In all 

organisms, primary metabolism is governed by strict metabolic pathways, with the 

transformation of chemicals being facilitated and regulated by specific enzymes (Fig. 2.2), 

which are in turn encoded by an organism’s genes (van der Knaap and Verrijzer, 2016). 

However, the metabolic pathways currently represented on metabolic charts only represent a 

small proportion of the total number present in an organism or environment. This unknown in 

metabolomics research is often referred to as ‘metabolic dark matter’ (Markley et al., 2017). 
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Figure 2.2. The Kyoto Encyclopedia of Genes and Genomes (KEGG) schematic representation 

of known metabolomic pathways (Kanehisa et al., 2016), however the database is not extensive, 

with the potential for many other, as yet unidentified, metabolic pathways, leading to metabolic 

‘dark matter’. 

Generally, primary metabolism is conserved across most life forms (Peregrín-Alvarez 

et al., 2009). The most basic conserved pathway being glycolysis in sugar metabolism, driving 

the citric acid cycle eventually producing adenosine triphosphate (ATP) for energy and 

nicotinamide adenine dinucleotide (NADH) as a reducing agent, ultimately releasing carbon 

dioxide (CO2) (Kalucka et al., 2015). However, soil respiration as well as metabolic quotient 

(qCO2), while barometers of soil metabolic activity, do not reflect the primary metabolism as 

they do not describe carbon (C) accumulation rates or variations in C accumulation in biomass 

(Doi et al., 2010; Manzoni et al., 2010).  

In contrast, secondary metabolism (sometimes referred to as specialised metabolism) 

concerns all other small molecules that are not directly involved in the growth, development or 

reproduction of an organism. In general, their synthesis comes from primary metabolites, either 

directly or as a by-product, and in this sense the two systems are inextricably linked 

(Ramakrishna and Ravishankar, 2011). Secondary metabolites may be involved in a range of 

non-essential roles, as well as serving as mediators for inter- and intra-species signalling and 
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interactions, for example, pathogen growth inhibition, beneficial or symbiotic attraction, 

growth regulation or abiotic stress mitigation (Brilli et al., 2019). As such, they are much more 

varied in their role and chemical composition, with much less conservation across taxa, with 

different groups of organisms often producing unique compounds to their benefit (Holopainen 

et al., 2018). Broadly, secondary metabolites can be grouped by their volatility, either low 

volatility (for example, tannins, organic acids and some alkaloids) or high volatility (for 

example, phenolics, terpenes, alkanes and some sulphides); this characteristic has a major 

effect on their ability to diffuse through the soil and thus the sphere of influence of a compound 

or organism (Rowan, 2011; Tyc et al., 2017b).   

Traditionally, metabolomics has been thought about on the level of a single cell or 

organism (Witting et al., 2018; Zenobi, 2013). However, more recently the idea of metabolism 

has been used in systems biology; monitoring the changes within the metabolome, and from 

this, inferring the physiological state of a cell (Damiani et al., 2020). This process may also be 

applied to larger and more complex systems and communities of organisms; allowing the 

characterisation of the function of an ecosystem at a macro-scale based on the interactions and 

reactions (to abiotic or biotic environmental change) of the members of the microbial 

community at a micro-scale (Abram, 2015). In this sense, the measurement of a systems’ 

metabolism transcends traditional approaches to looking at soil biology, going beyond species, 

phylum or domain level. 

Soil is an extremely complex and dynamic matrix due to its intrinsically linked mixture 

of biology, chemistry and physics. A simplified representation of the soil system’s primary and 

secondary metabolism is displayed in Fig. 2.3. However, the soil system is further complicated 

by its spatial heterogeneity, caused by a number of reasons, for example factors of soil 

formation (climate, geology, flora and fauna, topography and time) and anthropogenic 

management (Burke et al., 1999). However, this may also be an advantage, as each soil type 

and level of health, in theory, will have its own unique metabolic state.  
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Figure 2.3. A generalised schematic of example primary (within spheres) and secondary 

(outside spheres) metabolic interactions in the soil system. Red interactions represent potential 

negative effects (i.e. growth inhibition or toxicity), green interactions represent potential 

positive effects (i.e. growth promotion or attraction of predators in tri-tropic interactions) and 

grey arrows represent loss of volatile organic compounds (VOCs) from the system.   

 



18 

 

2.2.1. Genetic and enzymatic control of metabolic pathways 

Enzymes underpin an organism’s ability to perform metabolic reactions. Enzymes are 

proteins that allow more rapid chemical reactions, while not undergoing any permanent 

alteration themselves, combining with their specific substrates in a specific fashion as to change 

the electronic configuration around certain susceptible bonds (Tabatabai, 1983). The unique 

intracellular enzymes contained within a bacterial cell number in their thousands (Renneberg 

et al., 2017), while enzymes characterised in plants range from tens to thousands depending on 

the species (Engqvist, 2016). In turn, the ability of an organism to encode for and produce 

enzymes within the proteome, is dependent on the genetic information carried in the genome 

(DNA (deoxyribonucleic acid)) and transcriptome (RNA (ribonucleic acid)) (Busk et al., 2014; 

Takahashi et al., 2012; van der Knaap and Verrijzer, 2016; Young et al., 2012).  

Briefly, the genome, carries the genetic information for the development, function, 

growth and reproduction of an organism, i.e. gene function (Cooper, 2000). Of the entire 

genome, ~1 - 2% consist of coding regions (i.e. codes for proteins) in eukaryotes (International 

Human Genome Consortium, 2004; Manzoni et al., 2016). The transcriptome is responsible for 

coding, decoding, regulation and expression of genes. In eukaryotes, 1 - 4% of RNA consists 

of messenger RNA (mRNA) that allows for protein synthesis (Manzoni et al., 2016). The 

transcriptome is then translated into a set of proteins (the proteome). Together, the 

transcriptome and proteome constitute the potential function of an organism, i.e. the ability to 

perform metabolic reactions catalysed by enzyme activities. Subsequently, the set of 

metabolites that make up the metabolome is produced. Ultimately, there is a biological 

hierarchy that culminates with the metabolome, this offers the possibility of capturing several 

layers of underlying biological activity within one analysis (Fig. 2.4).  

In addition to the transcriptional mechanisms, it has been speculated that non-

transcriptional mechanisms (e.g. metabolite–protein interactions and protein phosphorylation) 

are highly relevant in controlling metabolic output (Heinemann and Sauer, 2010; Humphrey et 

al., 2015; Yang et al., 2012). The consequences of non-transcriptional processes; post-

transcriptional, post-translational, and pleiotropic, are likely to have unexpected consequences 

on regulatory networks and possibly affect functionality (Ray et al., 2011). For example, 

affecting the virulence of Salmonella (Shin et al., 2006).  
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Figure 2.4. A conceptual representation of the biological hierarchy from starting with the 

genome and culminating with the metabolome, which is sensitive to environmental and 

organismal change. Adapted from (Takahashi et al., 2012). 

2.2.2 Origins of metabolites in the soil system 

The makeup and speed of metabolic processing of the soil is dependent on the soil’s 

inherent biological, chemical and physical properties. Many soil organisms also process and 

produce metabolites during the decomposition of litter and nutrient cycling. Harder to break 

down structural components (e.g. lignin and cellulose) and presence of secondary metabolites 

(e.g. tannins and phenolics) increase the recalcitrance of litter and make it less palatable to 

decomposers (Pavao-Zuckerman, 2008). Ultimately, if conditions are unfavourable for the 

biological community, the rate of nutrient processing and metabolite production will slow. 

Small molecule metabolites have two main sources in the soil; plants and microorganisms, on 

which this review will focus.  

2.2.2.1 Plant metabolites in the soil system 

Plants represent the largest source of metabolites in the soil. The production and fluxes 

of both primary and secondary metabolites reflects a plant’s current physiological status. 
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Although, abiotic processes can produce metabolites, for example through ultraviolet (UV) 

light breakdown of organic material (Sulzberger et al., 2019). It has been estimated that plants 

exude 21 - 25% of C through their roots (Dessaux et al., 2016; Jones et al., 2009). This major 

rhizospheric C source is then metabolised by the microbial community (Sasse et al., 2018). 

This exudation may not only be of benefit to the plant, but may also promote relationships 

between the plant, microbial, fungal and mesofaunal communities.  

2.2.2.1.1 Plant root primary metabolism 

Plant root primary metabolism is generally endogenous, concerning the small molecule 

interactions within the root, and is very similar in nature to the metabolism of the above ground-

biomass.  However, roots also represent a sink organ, as they rely exclusively on the import of 

sugars from the above ground biomass, which is used by different root tissues for metabolism 

or storage (Hennion et al., 2019). Storage of sucrose, as well as other proteins in roots, blur the 

boundaries between primary and secondary metabolism. In this regard, Bais et al. (2001) 

speculated that some major proteins in underground storage organs have evolved more than 

one function, including defence (e.g., insecticidal properties of palatin in potatoes (Strickland 

et al., 1995)). Roots have also been shown to change their primary metabolic composition, 

particularly carbohydrates and amino acids, in response to insect attack (Zhou et al., 2015). 

The physiological consequences of this change are often exhibited as reduced water and 

nutrient uptake, reduced growth and biomass, as well as the depletion of below-ground storage 

compounds (Johnson et al., 2016). While under environmental stress, e.g. reduced water or 

nutrient conditions, plants may increase the concentration of primary metabolites in their 

tissues, particularly in the roots, in order to enhance the uptake of water and nutrients (Gargallo-

Garriga et al., 2014; Mundim and Pringle, 2018). 

2.2.2.1.2 Plant root secondary metabolism 

Some endogenous primary metabolites (for example, sugars and sugar alcohols, amino 

acids and organic acids) may also be employed as exogenous secondary metabolites as they 

are actively excreted into the rhizosphere by roots to stimulate microbial response, providing 

microbial nutrients (Sasse et al., 2018). This process of engineering the rhizosphere or ‘feeding 

your friends’ may be beneficial to the plant; by bioengineering a non-pathogenic, or even 

symbiotic, biofilm serving as protection from the wider soil biosphere (Dessaux et al., 2016; 

Sasse et al., 2018).  
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Roots are extremely leaky, with root exudation estimated to represent between 10 – 40 

% of assimilated C and 15% of N (Hennion et al., 2019; Venturi and Keel, 2016). The 

rhizodeposition of sugars and amino acids and other large, non-volatile molecules is complex, 

requiring transport through the plasma membrane. While the plasma membrane of cells is 

permeable to some gases (e.g. oxygen (O2) and CO2) and other small hydrophobic molecules, 

larger molecules permeate much more slowly (Yang and Hinner, 2015). Therefore, larger 

molecules require molecule specific transmembrane proteins to facilitate their passage through 

the lipid bilayer, for example sugars use the SWEET transport family (Hennion et al., 2019; 

Manck-Götzenberger and Requena, 2016; Williams et al., 2000) and organic acids use; 

ALMT/malate and MATE/citrate transporters (Meyer et al., 2010). Once out of the phloem 

cell, they are likely excreted via the apoplastic transport pathway, in some plants. 

Microorganisms in the rhizosphere subsequently utilise and metabolise root exudates, lowering 

the concentration in the soil which promotes further exudation, by increasing the diffusion 

gradient (Jones and Darrah, 1996; Vranova et al., 2013). However, there is mixed evidence for 

this theory with some studies showing enhancement of exudation in the absence of 

microorganisms. This may be due to metabolic differences in plant species but being a 

bidirectional exchange, it is very difficult to directly measure (Groleau-Renaud et al., 2000; 

Valentinuzzi et al., 2015).  

It is evident that plants are adaptable as rhizosphere engineers, ‘sensing’ changing soil 

conditions and changing their nutrient foraging strategies accordingly (Gent and Forde, 2017). 

For example, in relation to N availability, plants have been shown to be responsive to the 

concentration of amino acids-to-ammonium (NO3
-) in the soil and adapt their N foraging 

strategy accordingly (amino acids tend to dominate the available N pool in low fertility 

conditions and NO3
- dominates in high fertility) (Henry and Jefferies, 2003; Padgett and 

Leonard, 1993; Schimel and Bennett, 2004).    

Plant root volatile organic compounds (VOCs) are estimated to make up about 1% of 

plant secondary metabolites, however, they represent a very diverse group of compounds, 

which due to their inherent chemical properties, can easily diffuse through gas- and water-filled 

pores and therefore have a wide effective range in soil (Venturi and Keel, 2016). Less is known 

about the transport and release of VOCs from plant roots (Weston et al., 2012). Smaller and 

more volatile compounds are likely to be able to diffuse through cell walls. However, others 

may require transport pathways to move them across membranes. These are likely to be similar 
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to those elsewhere in the plant (i.e. the leaves), for example membrane-bound transport proteins 

including ABC and MATE proteins (Weston et al., 2012).  

2.2.2.1.3 Non-volatile exo-metabolites and rhizosphere interactions 

Roots, and in particular, root tips are hot spots for root exudation, particularly amino 

acids (e.g. glycine, glutamate), organic acids (e.g. citrate, malate) and sugars (e.g. glucose and 

sucrose), offering a rich source of C and N to surrounding microorganisms. This aids the 

establishment of beneficial relationships for example with symbiotic bacteria (e.g. rhizobium) 

and fungi (e.g. arbuscular mycorrhiza) (Li et al., 2016). For instance, legumes exude flavonoids 

to attract N fixing bacteria (Bolton et al., 1986) and the exudation of benzoxazinoids by maize 

has been shown to attract growth-promoting bacteria (e.g. Pseudomonas putida) (Neal et al., 

2012). However, in other cereals, the function of benzoxaziniods has been shown to vary (e.g. 

insecticidal, antimicrobial or allelopathic) (Wouters et al., 2016).  

Mycorrhizal fungi form an extremely important relationship with roots in 90% of all 

terrestrial plants (Canarini et al., 2019). Initial mycorrhizal fungi colonisation of roots is also 

likely to be regulated by the exudation of specific secondary metabolites, however little is 

known about this initial signalling interaction (Parniske, 2008). Once a relationship is 

established, the mycorrhizal fungi receive a large flux of C from their plant host in return for 

other nutrients (van der Heijden et al., 2015). Despite the importance of mycorrhizal fungi there 

is very little understanding of its role and response to root exudation, signalling and 

metabolism.  

Root exudates may not all be released for the benefit of microorganisms. Non-volatile 

exudates can have a considerable effect on rhizosphere architecture, particularly in the 

transition zone (the root zone following the root tip (meristematic zone)), which is key in 

signalling directional root growth, depending on the physiological and nutrient status of a plant 

(Baluška and Mancuso, 2013; Canarini et al., 2019). Exudation of non-volatile metabolites may 

also have a number of other functions, for example the release of organic acid anions can be 

triggered in response to P or iron (Fe) deficiency, making P or Fe more available (Jones and 

Darrah, 1994), carboxylic acids can complex potentially toxic metals (Mench et al., 1987; 

Morel et al., 1986), and terpenoids such as momilactones can act as antimicrobial and 

allelopathic agents (Kato-Noguchi et al., 2008).  
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2.2.2.1.4 VOC metabolite emission and soil interactions  

VOCs represent a much smaller pool of secondary metabolites as opposed to non-

volatile secondary metabolites (Venturi and Keel, 2016). However, their much larger diffusive 

potential and mobility means their influence is likely to extend far beyond the rhizosphere, with 

Schulz-Bohm et al. (2018) showing VOC diffusion up to 12 cm from roots. This ‘volatisphere’, 

may contain a wide variety of molecules with an extensive range of functions, the emission of 

which will almost always have a net positive benefit for the emitting plant. Over 40 years ago 

Vančura and Stotzky (1976) characterised a number of VOCs produced from germinating 

seedlings and suggested their potential ecological impacts. While research techniques have 

improved significantly, the functional attributes of compounds often remain elusive. Below we 

examine two key roles of VOCs in plant-soil interaction, namely, attraction and defence.  

2.2.2.1.4.1 Attraction of beneficial organisms   

Interactions between beneficial or plant growth inducing bacteria aid plants to 

overcome environmental stresses, e.g. water or nutrient limitation, pathogenic infections and 

herbivory. It has been shown that plants can recruit or attract beneficial bacteria to their roots 

over distances greater than the rhizosphere. For example, Schulz-Bohm et al. (2018) showed 

that migration of ‘distant’ soil bacteria outside the rhizosphere can be stimulated by plant root 

VOCs. While no specific VOCs were attributed to the attraction, the majority of VOCs 

identified were aromatic and ester compounds. Other studies have been able to identify specific 

compounds that are involved in the attraction, for example Rudrappa et al. (2008) showed that 

malic acid secreted by roots of Arabidopsis thaliana was a selective signal to recruit Bacillus 

subtilis a beneficial rhizobacteria. Some microorganisms also have the capability to use specific 

compounds as sole C sources, an example of this being the ability both Pseudomonas 

fluorescens and Alcaligenes xylosoxidans to using α-pinene (Kleinheinz et al., 1999). Root 

emission of these compounds are likely to encourage growth of these bacteria. CO2 is also 

crucial as a subsoil plant volatile compound for attraction, location and growth stimulation. 

This is demonstrated by the ability of soybeans to attract beneficial Pseudomonas fluorescens 

using CO2 (Scher et al., 1985). However, the release of CO2 may also have negative 

consequences, allowing herbivores or pathogenic organisms to sense root location, though 

these signals may be masked by the emission of other secondary metabolites (Dreher et al., 

2019; Johnson et al., 2006; Johnson and Gregory, 2006; Reinecke et al., 2008).  
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2.2.2.1.4.2 Defence from hostile organisms  

There are two methods in which plants can counteract root herbivory and attack, either 

release defensive secondary metabolites themselves or release compounds that attract other 

organismal predators of the antagonist or use a combination of both (Erb and Kliebenstein, 

2020). The size of the antagonistic organism is likely to affect the mode of defence employed, 

with smaller infections or attacks being dealt with by the plant alone. While for larger infections 

and attacks the plant may employ entomopathogenic organism in addition to their own 

response. Plant root anti-fungal secondary metabolite defences are well documented in the 

literature, with a large percentage being terpenoids; for example cuminaldehyde and p-cymene 

from Bunium persicum effective against Fusarium oxysporum (Sekine et al., 2007), β-

phellandrene from Smyrnium olusatrum and Rhodiola rosea effective against Fomes annosus 

(Bertoli et al., 2004; Rohloff, 2002) and methyl propanoate and methyl prop-2-enoate are 

effective against common barley pathogens (Fusarium culmorum and Cochliobolus sativus) 

(Kaddes et al., 2019). Equally, anti-microbial potential has also been shown by 1,8-cineol 

against a number of microbes (Kalemba et al., 2002; Vilela et al., 2009). Methyl ketones may 

also provide defence mechanisms against larger attacking organisms (Ntalli et al., 2011; 

Williams et al., 1980).   

The release of secondary metabolites for example, alkaloids (Dawson, 1941), 

glucosinolates (Kaplan et al., 2008), phenolics and benzoxazinoids (Niemeyer, 2009), may also 

reduce the plant quality for the feeding herbivores. The release and production of these 

compounds is likely to decrease the digestive enzyme efficiency of an organism or create a 

toxic response within the organism (Dobler et al., 2011; Houseman et al., 1992). Ultimately, 

making the root tissue a less desirable food source. Terpenoids may also be employed as 

signalling molecules to attract entomopathogenic organisms to respond and limit herbivory. A 

well cited example of tri-trophic signalling is the sesquiterterpene (E)-β-caryophyllene, 

released by maize roots being attacked by Diabrotica virgifera, this volatile signal attracts 

entomopathogenic nematodes, parasitizing and killing the Diabrotica and protecting the plant 

from further herbivory (Ali et al., 2010; Rasmann et al., 2005).  

2.2.2.2 Summary 

It is evident that, even examining a limited range of examples, that the plant 

metabolome is extremely varied and complex. Primary metabolites govern the ability of a plant 

to function and survive on a basic level, while secondary metabolites mediate the relationships 
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that the plant has with the surrounding soil biological and physico-chemical environment, in 

many cases protecting and enhancing its health. In general, study of the plant root metabolome 

has focused on changes and defence mechanisms regarding insect or pathogen attack (Kaddes 

et al., 2019; Rasmann et al., 2005; Schwachtje and Baldwin, 2008). However, much of this 

work is carried out under laboratory conditions. The complexity of the system in a field 

environment may limit the applicability of these results. Further work exploring the role of 

secondary metabolite exudates and VOCs on the complex interaction between plants, fungi and 

bacteria, particularly under field conditions is needed. Equally, little work has been performed 

on the change in metabolic function under abiotic stresses (nutrient limitation and water 

limitation among others), as these are likely to be key regulators of the types of compounds 

emitted.  

2.2.3 Microbial metabolites in the soil system 

Microorganisms provide the second greatest contribution to metabolites in the soil. 

Similarly, to a plant, the production and flux of both primary and secondary metabolites can 

reflect a microorganism’s current physiological status, as this will affect the efficiency of 

transfer and processing of C between environmental and cellular compartments, as summarised 

in Fig. 2.5 (Gougoulias et al., 2014). Being a much more metabolically constrained system, the 

amount of energy and C expended on producing secondary metabolites is likely to be relatively 

larger than plants and larger organisms. As such, microorganisms specialise in producing a 

smaller number of bioactive secondary metabolites (Malik, 1980; Singh et al., 2019). Here we 

will focus on the primary and secondary metabolism of bacteria and fungi in relation to the soil 

system.   
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Figure 2.5. Schematic overview of generalised microbial metabolism, summarising the major 

processes of anabolism and catabolism which underpin cellular function. Adapted from 

Varman et al. (2014) and Kadier et al. (2016). 

 

2.2.3.1 Microbial primary metabolism  

As discussed above, primary metabolism is conserved across most organisms 

(Peregrín-Alvarez et al., 2009). Bacteria and fungi are no exception, relying on the breakdown 

of sugars and other carbon-based molecules to produce energy; key to an organism’s survival 

and fitness. However, microbes use a diverse range of metabolic strategies and in many cases 

can be differentiated based on metabolic characteristics, helping different microbes to establish 

an ecological niche. In the soil system, this translates into a complex patchwork of territorial 

niches on a micro-scale, with one, or a small number of co-existing microorganisms, 

dominating under the specific physicochemical properties and environmental conditions 

present (Bauer et al., 2018). Fungi and most bacteria in the soil are heterotrophic (notable 

exceptions include autotrophic bacteria involved in nitrification e.g. Nitrosomonas europaea 
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and Nitrobacter winogradskyi), or autotrophic obtaining their carbon from organic compounds 

(Marten, 2005; Ritz, 2005). Different specialisations of heterotrophic metabolism are explored 

briefly below. 

Heterotrophic microbes are true chemoorganoheterotrophs; utilising organic 

compounds as both C and energy sources. These organic compounds are often scavenged from 

live hosts (i.e. parasites or symbionts) or dead organic matter (e.g. saprophages). Microbial 

organisms can account for up to 90% of SOM processing, and microbial biomass contributes 

to about 80 % of SOM (Miltner et al., 2012; Schmidt et al., 2011). The most accessible, labile 

organic components are utilised first, and more inaccessible, recalcitrant forms (e.g. cellulose 

and lignin) having longer residence times, often requiring a succession of several different 

organisms to break them down (Lavelle et al., 1993; Thevenot et al., 2010; Yan et al., 2007).   

As discussed above, glycolysis and the citric acid cycle play a central role in metabolic 

models, however prokaryotic heterotopic metabolism allows for more versatility in terms of 

sugar metabolism. For example, the use of the Entner-Doudoroff pathway in Pseudomonas 

(Chavarría et al., 2013; Wilkes et al., 2019), or the pentose phosphate pathway as a parallel to 

glycolysis (Stincone et al., 2015), both allowing for greater oxidative stress tolerance. 

Fermentation metabolism either obligately or facultatively, uses other molecules as a terminal 

electron acceptor instead of oxygen (thus requiring an alternative method to supply NAD+ to 

maintain primary metabolism), and represents another survival method allowing organisms to 

continue producing energy under anaerobic conditions (Jurtshuk, 1996). In general, ATP is 

produced using substrate-level phosphorylation conversion from adenosine diphosphate 

(ADP), rather than using ATP synthase during respiration (Dimroth and Schink, 1998). Other, 

more uncommon, metabolic pathways may include methylotrophy, the ability to use mono-

carbon molecules as energy sources for example Methylomonas and Methylobacter 

(Chistoserdova et al., 2009), or syntrophy, the interaction of two or more species to achieve 

what would normally be an energetically unfavourable reaction, for example Syntrophomonas 

and methanogens (Morris et al., 2013; Zhang et al., 2004).  

It is also important to note that many microorganisms in the soil have the ability to 

switch their metabolic state very rapidly. This allows for long periods of dormancy, allowing 

genetic code to be maintained at low or zero metabolic activity to prevent loss of metabolic 

function and biomass (Lennon and Jones, 2011).  As conditions become more favourable, 

growth can re-occur rapidly (Joergensen and Wichern, 2018). Due to the transient nature of the 
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microbial biomass, it is extremely important to understand the current physiochemical 

properties associated to that metabolic state, as even small changes may change enzyme 

expression rates and thus the metabolic activity of the soil. This may in turn have a large effect 

on the cycling of nutrients and soil organic carbon (Blagodatsky et al., 2000).  

2.2.3.2 Lipid metabolism 

Lipids are key metabolites; they are diverse in their structure and role and arguably 

bridge the gap between primary and secondary metabolism. It may be argued that membrane 

lipids, predominantly phospholipids, glycolipids, and cholesterol, are primary metabolites due 

to their importance in the protection and shielding of both prokaryotic and eukaryotic cells 

from the external environment (Harayama and Riezman, 2018). However, the storage of energy 

and carbon in lipids, largely as poly(hydroxyalkanoates) (PHAs), triacylglycerols (TAGs) and 

wax esters (WEs), may be considered secondary metabolism. As, although they are not 

essential for growth and development of the organism, these are required for its survival in 

unfavourable environments i.e. the maintenance of normal metabolism under starvation or 

stressed conditions (Wältermann and Steinbüchel, 2005).   

2.2.3.2.1 Membrane lipids  

Lipids are the main component in cellular structures providing a function barrier 

between the subcellular compartments as well as the cell and the environment. Typically, lipids 

can be characterised by the polarity of their head groups, neutral lipids (e.g. acylglycerols, free 

fatty acids, sterols, sterols esters, waxes and hydrophobic pigments) which are used in cells to 

store energy and polar lipids (e.g. phospholipids, glycolipids) which are essential components 

of cell membranes (Alberts et al., 2002; Meullemiestre et al., 2015).  

Membrane lipids are very diverse, both compositionally and chemically. The lipid 

composition has a large effect on the physical properties of the membrane as well as the effect 

of membrane protein functions (i.e. ion channels) (Harayama and Riezman, 2018). Since the 

early days of microbiology, bacteria have been classified by their cell wall properties via the 

Gram stain test (Bartholomew and Mitterwer, 1952; Friedländer, 1883). Gram-positive bacteria 

are characterised by a cytoplasmatic membrane and a thick murein cell wall comprising many 

layers, whereas Gram-negative bacteria are characterized by the presence of two distinct 

membranes, and a thin murein cell wall between them.  
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In most cases membranes are formed by glycerophospholipids, however, bacteria may 

also form phosphorus-free membrane lipids e.g. ornithine lipids (OLs), sulfolipids and 

diacylglycerol (DAG) among others (Sohlenkamp and Geiger, 2016). Fungal membrane lipids 

are also very varied, often comprising of sterols and sphingolipids, which the majority of 

bacteria are unable to synthesise (Olsen and Jantzen, 2001; Volkman, 2003).  

In bacteria, membrane lipid synthesis pathways are best characterised in E. coli, which 

for a long time was seen as the model organism. However, development of more detailed 

analysis methods (genomics, transcriptomics and enzymology) have revealed that lipid 

metabolism is not totally uniform across the bacterial kingdom, with E. coli presenting a 

relatively simple membrane composition in comparison to other bacteria (Sohlenkamp and 

Geiger, 2016). Generally, the type II fatty acid synthetic pathway (the conversion of 

carbohydrate derived acetyl-CoA, and NADPH to fatty acids) is key in the production of the 

initial building blocks in lipid synthesis within the cytosol. This pathway is particularly 

important in the production of phospholipid acyl chains in order to maintain membrane 

physicality and function (De Kroon et al., 2013; Zhang and Rock, 2008). However, while the 

metabolism of specific phospholipids is extremely complex, the synthesis of the three most 

common phospholipid groups, phosphatidylethanolamines, phosphatidylglycerols and 

cardiolipins occur from the central metabolite cytidine diphosphate-diacylglycerol 

(Sohlenkamp and Geiger, 2016). The synthesis or modification of other phospholipids, for 

example aminoacylated phosphatidylglycerols or aminoacylated cardiolipins, which can be 

used to lower the net negative charge of their membrane to evade antibacterial agents (e.g. 

cationic antimicrobial peptides) or other environmental stresses (Arendt et al., 2012; Dare et 

al., 2014; Fischer and Leopold, 1999; Roy, 2009).  

Non-phospholipid membrane lipids are also minor components of bacterial 

membranes; examples include, diacylglycerol-based glycolipids which are structurally diverse, 

but important in regulating the physical properties of the membrane as well as the activities of 

some membrane-related enzymes (Goñi and Alonso, 1999). Equally, ornithine lipids which are 

seemly unique to prokaryotes, form under stress to change membrane properties by 

modification of existing lipids, rather than synthesising new lipids (Vences-Guzmán et al., 

2012). It is well documented that microorganisms under stress conditions are able to adapt the 

composition and fluidity of their cell membranes in order to better cope with their environment 

(Bossio and Scow, 1998; Córdova-Kreylos et al., 2006). For example, the phospholipid fatty 

acid (PLFA) content in a culture-grown bacterium (Phyllobacterium myrsinacearum) 
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constituted <0.1% of cell dry weight, which was 50-90 times smaller than in bacterial cells 

extracted from soil, likely due higher stress in the natural environment (Blagodatskaya and 

Kuzyakov, 2013). 

In fungi, phospholipids are the most abundant lipids in cells, constituting up to 60% of 

cellular lipid content, with glycerophospholipids accounting for the majority of structural lipids 

in eukaryotic cells (Casares et al., 2019; van Meer et al., 2008). Additionally, sterols are key in 

functional organisation and sphingolipids are important in membrane structure and as 

signalling molecules (Pan et al., 2018). As in bacteria, fatty acid synthesis, performed in the 

cytosol by the hexameric fatty acid synthase (FAS) complex, forms the basis of lipid 

metabolism (Pan et al., 2018). Fungal lipid membrane composition and glycolipid 

concentration has been shown to affect the virulence of fungal pathogens and membrane 

fluidity (Florek et al., 2018; Rella et al., 2016). Generally, fungal membrane lipids are more 

restricted in diversity compared to bacterial lipids.  

In summary, membrane lipids are key in both bacterial and fungal survival, in terms of 

homeostatic regulation (Agmon and Stockwell, 2017). As well as modulating communication 

between organisms (for example plant-fungi or bacteria-plant or bacteria-bacteria) (Siebers et 

al., 2016) and providing a physical barrier protecting an organism from the environment 

(Casares et al., 2019).    

2.2.3.2.2 Storage lipids 

Lipids are also key molecules in endogenous energy storage and accumulation in the 

cells, of almost all organisms (except yeasts) (Sandager et al., 2002; Zhang and Liu, 2017). 

Fatty acids are reduced and anhydrous, thus have a high energy yield compared to other 

molecules (e.g. carbohydrates) (Berg et al., 2002). Their storage in simple, neutral lipids 

(triacylglycerols, sterol esters or wax esters), allows for very efficient storage, permitting non-

polar, anhydrous fat to store six times more energy per weight as the equivalent in hydrated 

glycogen (Berg et al., 2002). Storage lipids are often grouped into lipid droplet (LD) organelles 

within the cell, consisting of a core of neutral lipids surrounded by a phospholipid monolayer 

interspersed with proteins (Olzmann and Carvalho, 2019).  

It has been speculated that LDs probably evolved in microorganisms to temporarily 

store additional alimentary lipids, surplus to the immediate requirements in membrane 

formation or turnover (Murphy, 2012). Over time it is likely that they evolved a role in long-
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term carbon storage that enabled organisms to survive episodic lack of nutrients, being utilised 

for either energy production or membrane phospholipid synthesis (Olzmann and Carvalho, 

2019). As such, they are very dynamic bodies, accumulating in favourable conditions and 

depleting under unfavourable conditions. Additionally, LDs demonstrate a wide range of 

functions for example increasing resilience to stress (Zhang and Liu, 2017), regulating and 

buffering lipotoxicity within cells (Rambold et al., 2015; Schaffer, 2003) as well as regulating 

host-organism infection (Libbing et al., 2019). 

LD synthesis is still poorly understood but thought to occur using similar pathways in 

prokaryotes and eukaryotes (Wältermann et al., 2004). In eukaryotes, it is thought that they 

form from coalescence of neutral lipids in the endoplasmic reticulum which are subsequently 

secreted, forming buds with high membrane surface tension to minimise contact with the 

aqueous cytosol, amalgamation and growth then occurs (Olzmann and Carvalho, 2019). It is 

evident that formation is highly reliant on protein and enzyme activity. For example, 

biosynthesis of triacylglycerol through diacylglycerol acyltransferases and the facilitation of 

budding by fat storage-inducing transmembrane protein 2 (FITM2) and Coat protein complex 

II (COPII) (Choudhary et al., 2015; Jensen and Schekman, 2011; Wältermann et al., 2007; 

Wilfling et al., 2013). However, little work has focused on identifying the genes involved in 

lipid storage, particularly in bacteria and fungi (Walther and Farese, 2012).  

Utilisation of stored fatty acids is performed in a three-step process. Mobilisation, 

through enzymatic lipolysis of triacylglycerols to fatty acids and glycerol (Berg et al., 2002). 

Fatty acid degradation then occurs either in the cytosol in prokaryotes or the mitochondria in 

eukaryotes through the β-oxidation cycle (Jimenez-Diaz et al., 2017). This produces acetyl-

coenzyme A (CoA), which can be further metabolized to acquire energy and precursors for 

cellular biosynthesis (Shi and Tu, 2015; Wältermann et al., 2007).  

2.2.3.3 Secondary metabolism 

Bacterial and fungal secondary metabolites dominate soil ecological chemistry and 

their production is highly diverse in both structure and quantity, with the function of many still 

yet to be discovered (Insam and Seewald, 2010). The fitness and survival of an organism is, in 

many cases, dependent on how its unique blend of secondary metabolites are adapted to its 

immediate environment, including the effectiveness of the countermeasures it employs (i.e. 

detoxification, resistance (antibiotic/fungal)) to prevent other organisms occupying its niche 

(Giubergia et al., 2016; Karlovsky, 2008).  
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In general, compounds are either soluble, having influence on a nano scale, or volatile 

and have influence on a larger spatial scale. This is largely affected by temperature, polarity of 

molecule, pressure and molecular size. Also, concentration gradients of VOCs in soil are 

expected to be much more stable than in the plant canopy due to the limited air convention. 

Growth inhibitors and allelopathic compounds (e.g. bacteriocins (Cotter et al., 2005; Riley and 

Wertz, 2002), lipopeptides (Raaijmakers et al., 2006; Raaijmakers and Mazzola, 2012), 

alkaloids (Evans, 2009)) make up many soluble compounds excreted by microorganisms. Due 

to their relatively large molecular size, it is likely that these compounds are actively exuded 

through the membrane (Araújo et al., 2005).  

Emission of VOCs may occur actively as metabolic end products or passively through 

diffusion of low molecular weight compounds (Insam and Seewald, 2010). While their role is 

diverse, generally they can be functionally categorised into the following: quorum sensing, 

biological control, or inter-/ intra-organismal interactions (Keller, 2019; Evans, 2009; Yergeau 

et al., 2017). Examples of the diversity and effects of VOCs include, 2,3-butanediol and 

acetoin, emitted by bacteria, promoting plant growth (Ryu et al., 2003), with similar effects 

from the fungal emission of isobutyl alcohol, isopentyl alcohol and 3-methylbutanal (Hung et 

al., 2013). Inhibitory, promotion and interaction effects of VOCs have been shown to be 

produced by bacteria species against one another, fungi and other species (e.g. nematodes and 

plants) (Audrain et al., 2015; Bitas et al., 2013; Garbeva et al., 2014; Kanchiswamy et al., 2015; 

Marmulla and Harder, 2014; Syed-Ab-Rahman et al., 2019; Xu et al., 2015). Equally, VOCs 

have been shown to have the ability to promote distinct post-transcriptionally regulated 

responses in plants (García-Gómez et al., 2019). Hence there is a growing interest in the use of 

VOCs as agrochemicals (Lamy et al., 2017; Song et al., 2013).  

2.3. Factors affecting metabolism 

Metabolic responses may vary over varying scales, with short term perturbation and 

rapid stress of the microbial community potentially presenting ‘biomarker’ responses from a 

limited number of compounds. In the longer term a relatively stable system (i.e. little 

perturbation) the metabolome is likely to reflect the health and function of the population of 

the environment. However, the biological complexity of the system increases significantly 

when examining whole community responses (Fig. 2.6). 

Metabolism and, in a wider ecosystem service context, nutrient cycling relies on 

enzymes to catalyse the underlying biochemical reactions. In the past, measures of metabolic 
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activity have been inferred through measuring enzyme activity (Caldwell, 2005; Casida, 1977; 

Makoi and Ndakidemi, 2008; Perucci, 1992). The efficacy of enzymes driving metabolism as 

well as the loss of secondary metabolites is affected by a number of factors including biological, 

chemical, physical and management as is explored below. 

 

Figure 2.6. The association between detectably of metabolites as ecological stress signals and 

their ecological relevance, adapted from Moore et al. (2004) and Lankadurai et al. (2013).   

 

2.3.1 Biological  

Enzymes, in both exo- and endo- metabolomics, fundamentally underpin the ability of 

an organism to perform primary and secondary metabolism, allowing the transformation of 

molecules and release of energy, i.e. function (Shuler et al., 1979; Von Bertalanffy, 1957). In 

culture, bacteria have distinct, defined growth phases; lag, exponential, stationary, decline and 

death, with cell growth and DNA replication taking place throughout most of the cycle 

(Bertranda, 2019). Eukaryotes growth varies from species to species, with the cell cycle being 

more complex than prokaryotes. The secondary metabolites produced by an organism are often 

highly related to its stage of development (ontogenetic stage). In bacteria they are primarily 

produced in the stationary phase, in eukaryotes the production and type of secondary 

metabolites tend to vary with development stage (Calvo et al., 2002; Isah, 2019; Ramakrishna 

and Ravishankar, 2011; Ruiz et al., 2010). However, this is likely to differ in environmental 
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settings due to external abiotic and biotic factors providing physiological triggers for 

production (Austen et al., 2019; Bibb, 2005). 

Soil metabolism is likely to be very dependent on the activity of organisms. Plant roots 

are highly metabolically active (Bais et al., 2001). Whereas, Blagodatskaya and Kuzyakov 

(2013) suggest that only 0.1 - 0.2% of total microbial biomass is actually active (i.e. utilising 

substrates and performing biochemical transformations), with potentially active 

microorganisms (i.e. can switch on utilisation of substrates within minutes to hours) 

contributing up to 60% (De Nobili et al., 2001). This is a potential strength of soil metabolism 

as a measure of soil biology and function as it is only measuring organisms that are active, and 

thus is representative.  

2.3.2 Chemical  

pH represents the chemical activity of protons, which participate in metabolism related 

reactions as well as interacting with cellular components and structures (Jin and Kirk, 2018a). 

Each soil organism, like each enzyme, will have a definite pH range in which it will achieve 

optimum activity (Dotaniya et al., 2019; Frankenberger and Johanson, 1982). For plants, this 

is usually between pH 5 – 7, as this is the range at which the most macronutrients are most 

accessible from the soil (Goulding, 2016). The composition of bacterial communities has been 

strongly correlated to soil pH (Cho et al., 2016; Fierer and Jackson, 2006; Wang et al., 2019), 

whereas fungal communities are less affected by pH (Rousk et al., 2010; Ullah et al., 2019). 

Nevertheless, pH can strongly affect the metabolic function of the soil, plant and microbial 

community (Ye et al., 2012). This is likely to particularly affect chemotrophs, as they liberate 

chemical energy from their environment by catalysing redox reactions. Thus, factors that 

impact on the energy availability in the environment are likely to affect the metabolic activity 

of microbial communities (Jin and Kirk, 2018b). 

The metabolic activity for all organisms is highly dependent on the availability of 

substrates. Under normal, unstressed conditions external substrates are utilised, whereas under 

starvation conditions, cell biomass decreases, and endogenous substrates are broken down 

(Hockin et al., 2012; Lima et al., 2014; Plaxton and Tran, 2011). Thus, the nutritional status of 

the soil is important, particularly the C:N ratio due to the importance of carbon and nitrogen in 

fundamental cell activities (Zheng, 2009). In general, inorganic nutrient inputs will induce a 

change in the microbial community, increasing the abundance of faster-growing, copiotrophic 

bacteria and reducing fungal prevalence (Carrero-Colón et al., 2006; Fang et al., 2018; Hartman 
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and Richardson, 2013; Leff et al., 2015). A change in either the environment or biotic selection 

will result in a change in metabolic output from the system, as illustrated in Fig. 2.4. Soil 

microorganisms are also key to the transformation, breakdown and stabilisation of soil organic 

matter (SOM), an important source and sink of biological nutrients and have a large influence 

on the physical, chemical and biological functions of soil (Nieder and Benbi, 2008; Powlson et 

al., 2001). Increased SOM levels generally show an enhancement of microbial biomass and 

functional diversity, yet little work has been performed relating SOM to soil metabolism 

(Blankinship et al., 2014). However, exoenzyme activity, microbial substrate utilisation and 

metabolic diversity have been shown to be important in SOM breakdown and biological soil 

quality (Bending et al., 2000; Blankinship et al., 2014).  

An organism’s stress levels can have a large impact on its metabolic efficacy. Stress 

effects are various and may be induced by, for example, injuries, parasites, extreme 

temperatures, osmotic stress (i.e. drought), or soil and atmospheric pollutants, such as trace 

metals or ozone, respectively (Cho et al., 2016; Darko et al., 2019; Gaudinier et al., 2015; 

Jenerette and Chatterjee, 2012; Kesselmeier and Staudt, 1999; Price and Sowers, 2004). 

Temperature is also an important factor in determining VOC production, and gaseous diffusion 

rates, as well as having a direct effect of the efficiency of enzyme activity (Asensio et al., 2007).  

 

2.3.3 Physical  

Physical factors constrain the ability of soil biology to use organic matter and nutrients 

in soil, often limiting the ability of organisms to access substrates, promoting their recalcitrance 

(Ladd et al., 1993). The structure and the structural stability of soil is very important for plant 

growth, allowing the transmission and storage of water, nutrients and gases, as well as 

supporting healthy, unconstrained root growth (Bengough, 2003; Oades, 1984). In this sense, 

structure is also key to a healthy microbial community, however on a much smaller scale, with 

the composition of micro- (<250 μm) and macroaggregates (0.25 to 2 mm) shaping and 

regulating the ecological niches that exist on them (Wilpiszeski et al., 2019). This being said, 

less than 1% of soil surface area is typically occupied by microbes; leading to biological islands 

as hotspots of biochemical activity (Young and Crawford, 2004).   

Poor soil structure often leads to anaerobic conditions, favouring organisms with 

facultative or obligate anaerobic metabolism. Whereas, under a good, aerobic soil structure it 

is likely that aerobic organisms will dominate, although, aerobic soil has been shown to contain 
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anaerobic microsites (Keiluweit et al., 2017). The oxygen status, as well as the redox potential 

of the soil, have been shown to be a major influence on the VOCs formed (Brzezińska et al., 

1998; Silver et al., 1999). For example, under reducing conditions, production of volatile 

sulphur compounds becomes more prevalent (Devai and DeLaune, 1995). Under aerobic 

conditions, organic C sources are predominantly used for energy production and primary 

metabolism, leaving only small amounts of substrate to be utilised for secondary metabolite 

production. However, under anaerobic conditions more C finishes as end products of 

fermentative processes, leading to an increase in the diversity and amount of VOC emitted 

(Insam and Seewald, 2010; Stotzky et al., 1976).  

Equally, in terms of inter- and intra-species interaction, diffusion of solutes and gases 

are highly dependent on pore size, connectivity and water saturation. Under drought conditions 

the exudation of soluble secondary metabolites and signalling molecules are likely significantly 

reduced as energy will be better used in the production of osmolytes for preservation. 

Conversely, under saturated conditions volatile secondary metabolites cannot diffuse and 

instead maybe dissolved. For quorum-sensing bacteria, accumulation of signalling molecules 

aggregates can change microbial pathogenesis, biofilm formation capabilities, motility, and 

production of secondary metabolites (Wu and Gschwend, 1986). 

2.3.4 Management 

Land use type and land use change have a large impact on the ability of soil to function, 

particularly in terms of biology. Under agriculture, perturbation through soil turnover and 

agrochemical inputs are likely to change the selection pressure on the microbial community 

present leading to a change or reduction in the microbial community present, often implying a 

loss of metabolic and functional resilience (Fig. 2.4) (MacRae, 1989; Mazzetto et al., 2016; 

Van Heerden et al., 2002). Management of a soil is likely to affect the substrate (OM) quantity 

and quality as well as the structure and pH, among other factors. As previously mentioned, soil 

biology is sensitive to changes in soil management and may be an early indicator of changing 

function (Bending et al., 2000). As such, this will have a direct and rapid effect on the primary 

and secondary metabolism of the soil biological community. For example, organic 

amendments have been shown to drive soil VOC emissions (Potard et al., 2017). However, 

there is little evidence of the study of soil metabolism across land use types. Equally, 

xenobiotics, i.e. organic or inorganic pollutants, are likely to have a large effect on the ability 

of soil organisms to effectively metabolise. Pollutants will cause a significant shift in microbial 
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and biological community (Gao et al., 2010; Singleton, 1994; Sutton et al., 2013), impacting 

soil enzyme function (García-Gil et al., 2013) and transcription (Van Straalen and Roelofs, 

2008).  

2.4. Recent advances in analytical techniques 

One of the main challenges in the analysis of the metabolome is its complexity and 

chemical diversity ranging from lipids, organic acids, carbohydrates, amino acids, nucleotides 

and steroids. In comparison, genes and proteins are chemically homogenous as genes are based 

on four basic nucleotides, while each protein contains a mixture of 20 amino acids. The 

variability in chemical structure results in a large variety of physicochemical properties, i.e. 

polarity, solubility, size and volatility. As such, there is no single metabolomic analysis 

methodology that can measure the entire metabolome accurately. This is particularly true when 

performing untargeted analysis; comprehensive analysis of all measurable analytes within a 

sample, correlated to reference libraries, providing qualitative results. The workflow for 

untargeted analysis is summarised in Fig. 2.7. The alternative; targeted analysis; the 

measurement of defined and biochemically annotated metabolites quantified with reference 

standards, can be more easily optimised to ensure high sensitivity toward the target analyte. 

This section will briefly discuss current and emerging metabolomic analysis techniques.  
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Figure 2.7. A workflow for analysis in the study of untargeted metabolomics. Adapted from 

Alonso et al. (2015). 

2.4.1 Primary metabolomics  

Primary metabolite extraction methods from soils differ depending on the type of 

analysis required. Untargeted analysis is likely to employ a solvent or solvent mixture that will 

extract a large range of metabolites; polar, non-polar and protein precipitates. Generally, 

extractions for untargeted metabolite analysis are performed using a mixture of organic solvent 

(i.e. methanol, ethanol, acetone, chloroform or acetonitrile) and water to ensure broad coverage 

of metabolite groups (Lankadurai et al., 2013). Examples include methanol/chloroform/water 
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(2:2:1.8) (Bligh and Dyer, 1959; Lin et al., 2007), isopropanol/acetonitrile/water (3:3:2) (Fiehn 

et al., 2008; Swenson et al., 2015). For targeted metabolite analysis, the most efficient solvent 

for liberating the metabolite class of interest must be chosen, for example a water-only 

extraction for water soluble metabolites (Swenson et al., 2015). 

Mechanical and chemical techniques may also be used to improve extraction efficiency, 

for example chloroform fumigation of samples in order to lyse microbial cells and limit 

microbial processing of metabolites (Jenkins et al., 2017), or grinding to homogenise and 

increase the surface area to volume ratio of the soil and pulverise tissues (Lu et al., 2017; Naz 

et al., 2014). In order to limit metabolite change pre-extraction, metabolic (and enzyme) 

activity must be quenched as soon as possible after sampling, this is most often performed by 

flash-freezing (to < -80 °C). Storage to limit changes in metabolite composition is also 

important. Short term storage at -20°C does not significantly affect the metabolite profile, 

however, long-term storage should be conducted at -80°C (Smith et al., 2020; Wandro et al., 

2017). 

Primary metabolomic analysis is commonly performed on gas chromatography mass 

spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS) and nuclear 

magnetic resonance (NMR) systems (Emwas et al., 2019). These techniques and application 

are briefly summarised below. 

MS systems are considered to be the most sensitive, with broad metabolome coverage 

(Theodoridis et al., 2011). Of these, LC-MS systems are considered the most versatile; briefly 

analytes are separated on a column, ionised by an ion source before being separated by a mass 

analyser and subsequently detected. However, a major consideration is that LC-MS requires 

metabolites to ionise in order to detect them, therefore it is not applicable for non-ionisable 

molecules (Lu et al., 2017).  

The principals of GC-MS separation are similar to that of LC-MS. GC-MS strengths 

lie in the analysis of low-molecular weight and volatile analytes, which often are not well 

retained or poorly ionised on LC systems, namely alcohols, hydroxy acids and sugars 

(Papadimitropoulos et al., 2018; Roessner et al., 2000). Extensive mass spectral libraries also 

exist for accurate compound identification. In many cases, derivatisation is needed in order to 

increase compound volatility and separation. However, the high temperatures associated with 

the injection and evaporation of compounds may lead to breakdown or loss of thermolabile 

compounds (Kaspar et al., 2008). 
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NMR exploits the spin of a nucleus. On the application of an external magnetic field to 

a sample, the energy transfer (between base energy and the higher energy level) is measured, 

this corresponds to a specific radio frequency. From this, details of the structure and functional 

groups of a molecule can be determined.  NMR, has a number of unique advantages over other 

metabolomic analysis techniques, particularly sampling is non-destructive and requires little 

sample treatment as well as being able to identify the structures of unknown compounds 

(Markley et al., 2017). However, its lack of sensitivity is the greatest drawback, with metabolite 

yields typically only 20% of those measured using MS techniques (Emwas et al., 2019).   

Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), while not 

commonly used in metabolomics research, possibly due to its comparative relative expense, 

complexity and slow acquisition times, holds great future research potential (Ghaste et al., 

2016). Briefly, mass-to-charge ratios of ions are determined based on the frequency of rotation 

(cyclotron frequency) under a fixed magnet field (Comisarow and Marshall, 1996; Marshall 

and Hendrickson, 2002). Ions, under high vacuum and extremely low temperature are passed 

into a strong magnetic field, where they are forced into a circular motion around the magnetic 

field (perpendicular to the Lorentz Force) and prevented from leaving the cell by trapping 

plates at each end. Excitation of individual mass-to-charge ratios is achieved by a radio 

frequency pulse across the cell, this induces an alternating current which can be detected. The 

frequency of the current produced is equal to the cyclotron frequency of the ions and the 

intensity is proportional to the number of ions. FT-ICR-MS enables high mass (< 1 ppm) and 

resolving accuracy (Ghaste et al., 2016; Han et al., 2008). Allowing the potential for more 

accurate metabolic separation between samples; as shown in whisky characteristics (Roullier-

Gall et al., 2018), grapevine leaves (Maia et al., 2016), cloudwater (Bianco et al., 2019) and 

freshwater (Valle et al., 2018). This offers a great amount of potential in the soil sciences, 

where metabolic separation may potentially be quite subtle.  

2.4.2 Lipids  

As discussed above, lipids may be considered either primary or secondary metabolites 

depending on their classification. Membrane lipids (phospholipids and glycolipids) require a 

different approach to extraction compared to storage lipids (triacylglycerols, sterol esters or 

wax esters). Analysis of lipids in soils has traditionally had a strong focus on PLFAs as a 

measure of the soil biological community structure (Frostegård et al., 2011). Applications have 

included impacts on the soil microbial community through changes in land use (Wu et al., 
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2016), pollution (Chodak et al., 2013), nutrient addition (Marschner et al., 2003), 

environmental conditions (Pétriacq et al., 2017), management practices (García-Orenes et al., 

2013) and seasonal change (Moore-Kucera and Dick, 2008).  

A multi-phase extraction is usually required for membrane lipid analysis from the soil. 

Initial extraction of lipids from the sample is usually performed using a modified Bligh and 

Dyer (1959) method using chloroform, methanol and a (phosphate or citrate) buffer 

(Chowdhury and Dick, 2012). This is followed by fractionation of whole extracted lipids into 

individual lipid classes (for example neutral lipids, glycol-lipids and phospholipids), generally 

performed by liquid chromatography using packed solid phase extraction (SPE) cartridges. 

From these, methylation or derivatization converts lipids into more volatile methyl derivatives. 

The method by which this is performed can have a large effect on the FA profile (Chowdhury 

and Dick, 2012). However, higher throughput methods, with reduced reagent usage have been 

developed (Buyer and Sasser, 2012). Analysis of fatty acid methyl esters (FAMEs) is then 

performed by GC equipped with either a MS or flame ionisation detector (FID) (Dodds et al., 

2005).  

Non-polar lipids, generally involved in storage and organism signalling (e.g. 

triacylglycerols), are treated differently. While still based on the principles of the classical 

Bligh and Dyer (1959) and Folch (1957) methods, the widely applied Matyash et al. (2008) 

method utilises a methyl tert-butyl ether (MTBE), methanol, water solvent mix for rapid and 

clean lipid extraction. However, thus far this method has not been optimised for soil. 

2.4.3 Secondary metabolites  

Secondary metabolites represent many different classes of compounds and the current 

extraction and analysis methods reflect this variability. Generally, compounds of interest are 

either volatile (i.e. VOCs), soluble (i.e. water extractable organic matter (WEOM)) or non-

volatile and insoluble (i.e. complex carbohydrates). Like primary metabolites, there is no one 

method that will effectively extract all classes of secondary metabolite and therefore targeted 

extraction methods must be employed. In soil, research has mostly focused on VOCs and 

soluble metabolites as these are often the most involved in inter- and intra-species interactions 

(Chomel et al., 2016; Insam and Seewald, 2010; Tyc et al., 2017a). 

Extraction of volatile compounds can be performed using a variety of different 

methods. Generally, methods either require the adsorption of volatile molecules onto a material 
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before being desorbed into a GC-MS, or the direct analysis of headspace gases. Thermal 

desorption (TD) techniques are commonly used for a wide range of applications from the food 

and drink industry (Gong et al., 2017) to environmental pollution assessment (Llompart et al., 

2019). Headspace sampling is most commonly used on complex matrices such as soil, to reduce 

fouling of the sorbent and matrix effects (Orazbayeva et al., 2017). The most common solvent-

free techniques for the extraction of volatiles from soil are passive head space (HS) solid phase 

micro-extraction (SPME) for ex-situ sampling (Wypych and Mañko, 2002) and sorbent tube 

extraction for in-situ sampling, i.e. insertion into ground in a permeable container 

(Woolfenden, 2010). Many factors affect the efficacy of compound extraction, for example, 

extraction temperature and sorbent exposure time, sorbent composition (generally a mixed 

polarity coating is most appropriate for environmental applications (e.g. 

Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS)), as well as soil 

moisture and structure (Peñuelas et al., 2014; Turner et al., 2019). Improving the partition 

coefficient (ratio of analyte in headspace-to-analyte in sample) and the phase ratio (volume of 

headspace-to-volume of sample) will generally improve the recovery rate of analytes, however, 

analysis is not extensive and recovery rates are usually deviate from 100% (Tena and Carrillo, 

2007).  

A major drawback of SPME extraction is the large amount of competition for sorbent 

phase, leading to only the most competitive VOCs being adsorbed to the fibre and consequently 

being analysed. This makes the choice of sorbent compound and exposure period critical for 

sensitive and targeted extraction (Pawliszyn, 2000). Equally, passive in-situ sorbent tube 

sampling can lead to fouling and contamination of the sorbent due to the relatively long 

exposure times required to target compounds at low concentrations (Namieśnik et al., 2005). 

Both methods allow for thermal desorption directly into the GC-MS for analysis.  

For dynamic headspace sampling (i.e. purging, or purge and trapping) direct injection 

to the GC can increase the sensitivity of analysis and ensure maximum extraction of analytes. 

However, it has been shown that purge and trap methods lead to poor recovery due to the large 

amount of VOC loss on transfer to sample vessels (Voice and Kolb, 1993). For direct analysis 

of headspace gases in real time, proton-transfer-reaction mass spectrometry (PTR-MS) offers 

a sensitive approach to quantification and identification (Mancuso et al., 2015; Park et al., 

2002). For higher mass resolutions a time-of-flight (TOF) MS may be used, however, ions 

require pulsing into the TOFMS, so there is some loss of ions from the constant stream 

generated by the PTR (Tadjimukhamedov and Forbes, 2015).   
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Research on water-soluble secondary metabolites in the natural environment has largely 

focused on plants (Kosmas et al., 2014). However, recently more interest has been expressed 

in the role of dissolved organic matter (plant and microbial exometabolites) in organic matter 

cycling and biological utilisation, as generally it is the most accessible component of SOM 

(Swenson et al., 2015). The limitation of exometabolite studies is the complexity of soil as a 

substrate, leading to studies being performed on non-environmentally relevant media (e.g. an 

optimised culture) for ease of extraction (Baran et al., 2015; Liebeke and Lalk, 2014). To 

address this problem intra- and extra-cellular approaches are used to reflect the potentially 

accessible microbial metabolites that may be present in soil, i.e. cells were lysed by chloroform 

fumigation before extraction with water (Jenkins et al., 2017; Swenson et al., 2015). Analysis 

of soluble secondary metabolites can be performed by either GC-MS or LC-MS, depending on 

the compounds of interest. Generally, LC-MS is considered to provide the broadest range of 

compounds, however, sugars are better resolved using GC-MS (Jenkins et al., 2017; Pétriacq 

et al., 2017).    

2.4.4 Data and statistical processing and interpretation  

The metabolomics standards initiative (MSI) have released minimum requirements for 

the reporting of data transformation and statistics (Fiehn et al., 2008; Sumner et al., 2007). Data 

pre-processing (i.e. peak picking and alignment) and annotation is extremely important. 

Extraction of metabolite information from raw chromatograms has improved considerably 

from initial manual integration, with many analysis programmes (for example MassHunter 

Workstation Profinder (Agilent Technologies, Palo Alto, USA) or ChromSpace (StepSolve 

Analytical, Peterborough, UK)) allowing chromatogram alignment, deconvolution and feature 

extraction to be conducted within one programme using supervised feature extraction 

algorithms. Databases of metabolites and mass spectra are fundamental to compound 

identification. Commonly used databases include the Kyoto Encyclopaedia of Genes and 

Genomes (KEGG) (Kanehisa and Goto, 2000), Human Metabolome Database (HMDB) 

(Wishart et al., 2018) and National Institute of Standards and Technology (NIST) high 

resolution spectral database. However, care must be taken when reporting identified 

compounds; if solely identified through database searches and not confirmed with analytical 

standards compounds may only be referred to as ‘tentatively identified as X’.     

Metabolomics data, like any large biological dataset are often difficult to interpret. 

However, a large number of assessable statistical tools exist to aid extraction of meaningful 
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conclusions (Chagoyen and Pazos, 2013), many of which have been recently and thoroughly 

reviewed by Gardinassi et al. (2017). These tools are complimentary to more traditional 

statistical analysis in programmes such as R (Costa et al., 2016; Grace and Hudson, 2016). As 

concluded by Gardinassi et al. (2017), there is still work to be done to bridge the gap between 

purely analytical and biological and environmental applications. However, metabolomics is 

becoming an ever-more accessible field through the development of these tools.  

2.5. Use of biological soil quality measurements for land use and management 

assessment 

As discussed previously, soil quality is a complex concept, consisting of the interaction 

between physical, chemical and biological factors. As Bünemann et al. (2018) suggests, 

biological and biochemical indicators have the potential to be highly sensitive to environmental 

and management change, but are under-represented. This is likely due to the complexity of 

datasets and subsequent interpretation compared to more traditional chemical and physical 

measurements. However, as the accessibility of metabolomics increases, with decreasing cost 

and increasing availability of analytical and bioinformatic tools, it has the potential to become 

a powerful addition to the soil analysis toolkit available to farmers, policy makers and land 

managers.  

Lipid metabolism, through the use of PLFAs, represents the most extensively utilised 

metabolomic analysis method in the soil sciences (Quideau et al., 2016). However, there are 

several limitations of this method namely; PLFA biomarkers are often not specific to either 

species or group (for example, Gram-positive, Gram-negative and fungi) making sampling 

context (soil conditions, management level, likelihood of bacterial or fungal dominance) 

extremely important in interpretation (Bárcenas-Moreno and Bååth, 2009; Frostegård et al., 

2011). There is also an inability to differentiate between metabolically active and non-active 

microorganisms (Blagodatskaya and Kuzyakov, 2013) and a lack of standardised extraction 

and analysis method across the literature (Philippot et al., 2012). Ultimately these factors make 

comparison of results between studies difficult.  

Metabolically active (i.e. sensitive, dynamic and relevant) measures will be much more 

useful in the understanding of soil processes by land managers. Metabolomics may be able to 

overcome some of the drawbacks of taxonomic diversity indices and microbial networks as 

indicators of soil quality, namely the lack of sensitivity and specificity, and the prediction of 

process rates from the presence and quantity of genes and transcripts is yet to be clearly 
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established (Karimi et al., 2017; Rocca et al., 2015). Equally, the production and analysis of so 

called “big data” from sequencing still poses a challenge in terms of time, computational 

capability and meaningful interpretation, as the functional and taxonomic characterisation of a 

large proportion of soil organism still remains elusive (Mardis, 2016; Schloter et al., 2018). In 

this sense, metabolomics may yield potentially suitable soil quality indicators with direct links 

to ecosystem processes (Bending et al., 2004, 2000; Insam and Seewald, 2010). However, the 

integration of either primary or secondary metabolomics into soil quality indices would require 

understanding the links and relationships to traditional soil chemical and physical 

measurements, an area of research which remains largely unexplored. It also requires an 

understanding of how metabolic function changes over time. 

2.6. Outlook and conclusions  

Understanding how anthropogenic disturbance and management affects soil quality is 

not only key to improving global food production but will also help build resilience to climate 

change and improve the quality of the wider environment. Some of the most sensitive indicators 

of soil quality; biological and biochemical metrics, are underrepresented in existing soil health 

indices. While the environmental application of metabolomics is still in its infancy, its 

importance in understanding the biochemical system in relation to regulation, management and 

the underpinning of the delivery of ecosystem services is beginning to be understood; in 

particular, the complex links between organisms, as well as the fundamental ability of the 

biological community to process and cycle key nutrients. The metabolome offers the possibility 

of capturing several broad layers of underlying biological activity within one analysis method, 

i.e. the genome, transcriptome and proteome. Primary and secondary metabolomics and 

lipidomics potentially offer a powerful addition to the soil scientist’s and land manager’s 

toolkit. Volatilomics is of particular interest to ecologists, in terms of interactions between 

organism, as they have the potential to be captured non-invasively.  

However, there remain many challenges in the environmental application of 

metabolomics, particularly in complex, heterogeneous matrices such as soil. Summarised are 

some of the key research bottlenecks in the field: 

i) Much of the metabolic network is not yet fully elucidated. Greater understanding of the 

enzymatic links between metabolite anabolism and catabolism is therefore required to 

completely elucidate the function of the system. Consequently, more data is needed to 

understand the entire system. 
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ii) There is a lack of understanding of the contribution of biotic versus abiotic processes to soil 

VOC production and consumption in the field. There is little data to confirm the sources of 

VOCs. While evidence points to most VOCs being of biological origin, abiotic processes, for 

example photodegradation or chemical hydrolysis, have the potential to contribute significantly 

to overall production. 

iii) Little research has focused on the differences in the whole metabolome (i.e. primary, 

secondary and lipid metabolites) under different soil qualities and their implications for system 

functioning, particularly in relation to physicochemical properties. Would a biomarker or 

profiling approach be more appropriate?  

vi) For meaningful integration of indicators based on metabolomic methods into soil quality 

assessments, standardized and optimised extraction and analysis techniques and a reference 

system are required to ensure the ability to compare between studies. While extraction methods 

do exist, there is little evidence that they have been optimised for a soil matrix. Equally, an 

acknowledgement of the bias within a method is important. Although reference systems and 

databases exist, they are largely based on the human metabolome which has been subject to a 

great amount of research, but which may not always be applicable in environmental research.  

vii) An enhanced understanding of the functional role of metabolites in soil is required in order 

to integrate metabolomic research, as measures of chemical ecology, into future methods of 

quality assessment. 
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3.1 Abstract 

Climate change is expected to increase the frequency and severity of droughts in many regions 

of the world. Soil health is likely to be negatively impacted by these extreme events. It is 

therefore important to understand the impact of drought on soil functioning and the delivery of 

soil-related ecosystem services. This study aimed to assess the resilience and change in 

physiological status of the microbial community under extreme moisture stress conditions 

using novel metabolic profiling approaches, namely complex lipids and untargeted primary 

metabolites. In addition, phospholipid fatty acid (PLFA) profiling was used to identify changes 

in microbial community structure. Soil samples were collected during a natural, extreme 

drought event and post-drought from replicated grassland split plots, planted with either deep-

rooting Festulolium (cv. AberNiche) or Lolium perenne L. (cv. AberEcho), receiving nitrogen 

(N) fertiliser loading rates at either 0 or 300 kg N ha-1 yr-1. These plots were split at the start of 

the drought period, and half of each subplot was irrigated with water throughout the drought 

period at a rate of 50 mm week-1 to alleviate moisture stress. PLFA analysis revealed a distinct 

shift in microbial community between drought and post-drought conditions, primarily driven 

by N loading and water deficit. Complex lipid analysis identified 239 compounds and 

untargeted analysis of primary metabolites identified 155 compounds. Both soil complex lipids 

and primary metabolites showed significant changes under drought conditions. Additionally, 

the irrigated ‘reference’ plots had a significantly higher cumulative greenhouse gas (CO2 and 

N2O) flux over the period of sampling. Recovery of the microbial lipidome and metabolome to 

reference plot levels post-drought was rapid (within days). Considerable changes in soil 

primary metabolomic and lipidomic concentrations shown in this study demonstrate that while 

soil metabolism was strongly affected by moisture stress, the system (plant and soil) was highly 

resilient to an intense drought.  

 

Keywords: Ecosystem resilience, Extreme weather, Metabolic profiling, Osmotic stress, Soil 

health. 
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3.2. Introduction 

Climate change is predicted to alter precipitation regimes leading to an increased 

frequency, duration and severity of drought in many regions of the world (Garner et al., 2017; 

Dodd et al., 2021). Generally, natural ecosystems are considered to be at greatest long-term 

risk to these extreme droughts, for example through wildfires (Nolan et al., 2020) or 

combinations of heat and water deficit that can induce complete biome collapse (Matusick et 

al., 2013). However, extreme weather events (e.g. droughts, floods, ground level O3) can also 

have severe short-term impacts on agroecosystems leading to significant yield and economic 

losses (Environment Agency, 2006; Mills et al., 2011). Understanding the impact and regional 

risk and consequences of extreme weather events is therefore key to the design of more resilient 

land management systems (Dodd et al., 2021). While the impact of drought on crop plants and 

the development of strategies to overcome water stress are well advanced in above-ground 

plant components (Tardieu et al., 2018), our understanding of below-ground responses to 

drought still remains fragmented. This is partly due to the complex interrelationships between 

plant roots, their symbionts, the wider microbial community and the physical soil matrix. 

A well-functioning and healthy soil system is crucial for the provision of ecosystem 

services, particularly for food production. This requires a good holistic understanding of soil 

biological and physicochemical properties and their interrelationships. Biological soil quality 

is an understudied, yet dynamic and responsive aspect of soil quality, underpinning many soil 

functions, such as nutrient cycling and carbon (C) storage (Wagg et al., 2014; Hatfield et al., 

2017; Bünemann et al., 2018). The advance of molecular methods has allowed us to better 

understand taxonomically how microbial communities respond to extreme events. However, 

this provides little information on soil functioning under drought, especially given the high 

level of functional redundancy which exists within the soil microbial community (Briones, 

2014; Cortois and De Deyn, 2012). Although soil respiration provides an integrated measure 

of total below-ground metabolic activity, it cannot easily differentiate between CO2 derived 

from plant roots, mesofauna and the soil microbial community (Phillips and Nickerson, 2015; 

Geyer et al., 2016). It is therefore susceptible to misinterpretation in terms of ascribing cause 

and effect to observed CO2 responses (Luo et al., 2006).  

One potential alternative to better understand below-ground functioning is to analyse 

the biochemical pathways that underpin microbial functioning, especially the flow of C into 

structural biomass (e.g. cell walls), storage pools (e.g. fatty acid, acylglycerol and sterol lipids), 

and respiratory pathways (Dijkstra et al., 2011; Wu et al., 2020). This involves the extraction 
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and quantification of primary metabolites; directly involved in growth, development and 

physiological function, present in the microbial community (e.g. sugars, organic acids, amino 

acids, phenolics, fatty acids etc). Metabolites are products or intermediates of enzymatic 

reactions, providing informative proxies of biochemical activity within an organism, or in this 

case the whole soil microbiome. This metabolomic approach has been used extensively in 

biomedical science (Armitage and Barbas, 2014; Gupta et al., 2018; Meyer et al., 2013), plant 

biology (Gomez-Casati et al., 2013; Putri et al., 2013), and for investigating the biochemical 

responses of single microbial species (Brauer et al., 2006; Jozefczuk et al., 2010). However, its 

application to soils, particularly under field conditions, remains rare, where the focus has 

tended to be on specific metabolites (Warren, 2020a). Recent studies, however, have suggested 

that the metabolome is very sensitive to differences in ecosystem productivity (Withers et al., 

2020) and can provide functional information on soil microbial responses to abiotic stress (Li 

et al., 2019; Miura et al., 2020).   

In this study we also used simple (fatty acids, glycerols and alcohols) and complex 

lipids (lipids usually containing three or more chemical identities); compounds insoluble in 

water, to explore how soils respond to and recover from drought stress. Focusing mainly on 

phospholipid fatty acids (PLFAs; found in high concentrations in the cell membrane) and 

triacylglycerols (TAGs; intracellular storage lipids). Lipids are a diverse and ubiquitous group 

of compounds which play many key biological functions, including their core role in microbial 

cell membranes, serving as energy storage sources and participating in signalling pathways. 

Further, the relative diversity and abundance of lipids has been used extensively to investigate 

organismal responses to a range of external stressors (Furse and Shearman, 2018). While the 

majority of previous research in soil has focused on membrane composition through the study 

of PLFAs (Frostegård and Bååth, 1996; Mathew et al., 2012; Lupwayi et al., 2017), and 

recently, intact polar lipids (Ding et al., 2020), understanding the response and use of 

intracellular lipids, e.g. TAGs under drought, may also provide useful insights to changes in 

microbial function. One of the key challenges in this field of research, however, is the 

translation of observed changes in complex lipid or metabolite profiles into soil health 

indicators (i.e. are the observed changes indicative of adverse stress or tolerance?). Under stress 

(e.g. osmotic, oxidative and temperature stresses), the metabolic and lipid profiles of organisms 

will shift in order to provide osmotic adjustment and allow continual organismal function. Soil 

dwelling microorganisms have a number of regulated adaptive responses, many of which have 

been well studied, for example substitution of membrane lipids (Dawaliby et al., 2016; Wang 
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and Levin, 2009) or upregulation of osmoprotectant compounds e.g. ectoine, betaine, proline, 

trehalose, and arabitol (Warren, 2014).  

The cycling and fluxes of carbon (e.g. carbon dioxide (CO2)) and nitrogen compounds 

in soil, as a consequence of biological cycling, has long been the benchmark in understanding 

soil function (Geyer et al., 2016), representing the capacity of soil to support soil life. The 

measurement of the CO2 flux produced from soil and plant respiration is well correlated with 

factors that influence plant growth and microbial activity. For example, soil moisture, 

temperature, and the availability of nutrients and carbon substrates (Phillips and Nickerson, 

2015). The effect of drought on soil and plant respiration and nitrification is well documented; 

supressed CO2 and nitrous oxide (N2O) emissions during drought followed by a sudden but 

short-lived loss of CO2 and N2O upon rewetting as re-metabolization occurs, often referred to 

as the “Birch effect”, it is a good proxy for whole system functionality (Barrat et al., 2020; Sun 

et al., 2019; Unger et al., 2010).  

To advance our understanding of soil metabolic profiling, the aim of this field-based 

study was to examine the microbial metabolomic and lipidomic responses to drought 

conditions, taking advantage of an exceptional period of low rainfall in the summer of 2018. 

We hypothesised that, 1) primary metabolites related to coping with osmotic stress will 

increase under drought conditions, 2) microbial storage lipid composition will increase during 

drought conditions, as soil C and other nutrients become inaccessible, 3) the soil microbial 

community will alter PLFA membrane composition under osmotic stress conditions, 4) the 

microbial community will show a lasting metabolic legacy after alleviation of the drought, and 

5) the post-drought rewetting would result in a flush of CO2 (“Birch effect”) and N2O 

emissions, compared to the reference treatment. 

 

3.3. Materials and methods 

3.3.1. Experimental setup 

The study took place at the Henfaes Agricultural Research Station, Abergwyngregyn, 

North Wales (53°14′N, 4°01′W) (Apprendix 1 Fig. 1). The site has a sandy clay loam textured 

Eutric Cambisol soil type overlying a glacial till parent material, a temperate-oceanic climate 

regime with mean annual rainfall of 1060 mm and temperature of 10°C. The experimental plots 

were initially established in September 2016 and arranged in a randomised, complete block, 

split plot design to create independent replicates of each treatment (n = 4). Within each block 
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(12 × 52 m), half the plots were seeded with Festulolium (cv. AberNiche), a cross between 

Festuca pratensis L. and Lolium multiflorum L. which has an improved drought tolerance 

(relative to L. multiflorum), while the other half of the plots were seeded with Lolium perenne 

L. (cv. AberEcho) which possesses high levels of water-soluble carbohydrate (Harper et al., 

2018). In comparison to L. perenne, Festulolium has a deeper root system (Humphreys et al., 

2018). Each plot (3.5 × 2 m) was then split into two, with one half receiving NH4NO3 fertiliser 

at a rate of 300 kg N ha-1 yr-1 spread over three applications (20th April, 15th June, 17th August) 

and the other half receiving no N fertiliser. At the start of the growing season, P and K was 

applied to all plots at a rate of 20 and 90 kg ha-1 yr-1, respectively, to satisfy crop needs based 

on soil test results (AHDB, 2020). Each plot was divided into two equal sections (1.5 × 2 m) 

with a 0.5 m buffer zone placed between (Appendix 1 Fig. 2). This study did not use rainfall 

exclusion roofs, which may themselves create a range of artifacts and not be truly 

representative of ‘real world’ conditions (Vogel et al., 2013; Kreyling et al., 2017). Instead, we 

took advantage of a period of unprecedented natural drought in the summer of 2018 (Ramonet 

et al., 2018), during which one half of the sub-plots were manually irrigated with low ionic 

strength dechlorinated mains water at a rate of 50 l m-2 week-1 (50 mm week-1 equivalent) to 

alleviate drought stress and form control plots (henceforth referred to as ‘reference’ plots), 

while the other half was left un-watered to represent drought conditions (Fig. 3.1, Appendix 1 

Fig. 3). Irrigation water properties are summarised in Appendix 1 Table 1. As drought 

conditions were naturally occurring, we were not in a position to take soil samples pre-drought. 

Local climatic data were recorded using an automated weather station located adjacent to the 

field plots (Fig. 3.1).  

 

3.3.2. Soil sampling and analysis 

The first soil sampling took place on the 11th July 2018, 45 days after the last significant 

rainfall event (> 2 mm) and after 24 consecutive days of no rainfall (i.e. drought sampling). A 

second sampling (i.e. recovery sampling) was undertaken on the 16th August 2018. In the 10 

days prior to this second sampling 18.3 mm of rain had fallen (Fig. 3.1). On each occasion, 

multiple soil cores (n = 12; ø = 1 cm; depth 0-10 cm) were randomly sampled from each plot 

and homogenised to obtain a representative soil sample per sub-plot. Soil was then sieved 

through a 2 mm mesh to remove stones and plant and root material. Soil moisture content was 

determined gravimetrically by oven drying (105°C, 24 h). Soil pH and electrical conductivity 
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(EC) were measured using standard electrodes submerged in 1:5 (w/v) soil-to-distilled water 

suspensions.  

 

Figure 3.1. Metadata for the experimental field site from mid-Spring to mid-Summer of 2018. 

A. Daily precipitation (sum of hourly precipitation over 24 h). B. Daily surface soil temperature 

(mean of hourly soil temperature over 24 h). C. Daily CO2 flux, (mean of hourly soil 

temperature over 24 h), error bars represent ± SEM (n = 6). D. Soil moisture, black line 

represents daily (Acclima) sensor data (10 cm depth) from an unirrigated adjacent field trial 

until soil sampling started, error bars represent ± SEM (n = 6). Grey dashed lines represent 

the start and end of control plot irrigation.  
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Total soil C and N were determined on oven-dried, ground soil using a TruSpec® 

Analyzer (Leco Corp., St. Joseph, MI, USA). Within 24 h of soil collection, 1:5 (w/v) soil-to-

0.5 M K2SO4 and 1:5 (w/v) soil-to-0.5 M AcOH extractions were performed. Total organic C 

and total extractable N (mineral and organic) was determined on K2SO4 extracts using a Multi 

N/C 2100S Analyzer (AnalytikJena, Jena, Germany). Nitrate (NO3-N), ammonium (NH4-N) 

within the 0.5 M K2SO4 extracts were measured by the colorimetric methods of Miranda et al. 

(2001) and Mulvaney (1996), respectively. Phosphate (P) was determined using the AcOH 

extracts using the method of Murphy and Riley (1962). Exchangeable potassium (K) was 

measured on the 1:5 (w/v) soil-to-0.5 M AcOH extracts using a Sherwood Model 410 Flame 

Photometer (Sherwood Scientific Ltd, Cambridge, UK). Soil characteristics are summarised in 

Table 3.1. 
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Table 3.1. Influence of drought and N fertiliser rate on topsoil (0 - 10 cm depth) quality. Soil was sampled either during the drought or in the 

subsequent post drought (recovery) period. Results are expressed on mean dry soil weight basis ± SEM (n = 4). Letters denote significant 

differences between treatments using an ANOVA with a Tukey Post-hoc test (p < 0.05). 

 Drought period   Recovery period 

 0 kg N ha
-1
 300 kg N ha

-1
   0 kg N ha

-1
 300  kg N ha

-1
 

 Drought Reference Drought Reference   Drought Reference Drought Reference 

Soil moisture (%) 7.38 ± 0.35
A,C,E,G,L

 24.7 ± 0.62
A,B,J

 7.04 ± 0.39
D,F,H,M

 22.9 ± 0.91
C,D

   21.9 ± 0.4
E,F,I

 25.8 ± 0.6
G,H,I,K

 20.4 ± 0.4
J,K,N

 24.1 ± 0.6
L,M,N

 

pH 6.06 ± 0.04
A
 6.19 ± 0.04

B,C
 5.97 ± 0.19

D
 6.01 ± 0.06

E
   5.92 ± 0.06 6.00 ± 0.09

F
 5.57 ± 0.03

A,B,D,E,F
 5.78 ± 0.06

C
 

EC (μS cm
−1

) 90 ± 12 71 ± 11 108 ± 27 57 ± 10   66 ± 6 45 ± 2 88 ± 9 45 ± 3 

Total C (%) 2.58 ± 0.11 2.54 ± 0.11 3.09 ± 0.44 2.49 ± 0.17   2.85 ± 0.12 2.89 ± 0.11 2.58 ± 0.08 2.83 ± 0.15 

Total N (%) 0.28 ± 0.01
B,F,J

 0.29 ± 0.01
C,G,K

 0.29 ± 0.01
D,H

 0.27 ± 0.01
A,E,I,L

   0.15 ± 0.01
A
 0.16 ± 0.01

B,C,D,E
 0.17 ± 0.01

F,G,H,I
 0.16 ± 0.00

J,K,L
 

C:N ratio 9.2 ± 0.3 8.8 ± 0.3 10.4 ± 1.1 9.2 ± 0.5   19.3 ± 1.7 18.1 ± 1.3 15.4 ± 0.5 17.7 ± 1.2 

Dissolved organic C (mg C kg
-1

) 152 ± 12 134 ± 13 203 ± 31
A,B

 134 ± 22   122 ± 3
A
 114 ± 3

B
 134 ± 8 134 ± 6 

Total dissolved N (mg N kg
−1

) 16.6 ± 3.3 11.1 ± 0.8
A
 33.8 ± 6.4

A,B,C
 20.9 ± 6.4   13.6 ± 1.9

B
 12.4 ± 0.8

C
 24.7 ± 4.0 21.2 ± 3.8 

Extractable NO3

-
 (mg N kg

−1
) 1.59 ± 0.38

A,B,C,D,E
 1.90 ± 0.28

F,G,H,I,J
 21.4 ± 4.3

A,F,K
 4.98 ± 1.93

K,L
   8.82 ± 0.77

B,G,M
 7.75 ± 0.46

C,H,N
 28.9 ± 5.9

D,I,L,M,N,O
 9.79 ± 2.61

E,J,O
 

Extractable NH4

+
 (mg N kg

−1
) 5.70 ± 0.59

A,B
 6.41 ± 0.62

C
 28.7 ± 5.80

A,D,E,F
 16.7 ± 4.31

G,H
   6.42 ± 2.72

D,H,I
 3.32 ± 0.80

C,E,G
 24.7 ± 4.15

B,I
 6.77 ± 3.27

F
 

Extractable PO4 (mg P kg
−1

) 5.60 ± 0.52
A,E,I,M

 7.06 ± 1.23
B,F,J,N

 7.06 ± 1.16
C,G,K,O

 6.72 ± 1.71
D,H,L,P

   31.4 ± 3.6
A,B,C,D

 25.6 ± 2.1
E,F,G,H

 26.7 ± 2.9
I,J,K,L

 23.1 ± 1.7
M,N,O,P

 

Exchangeable K (mg kg
−1

) 210 ± 20
A
 694 ± 201

B,C,D,E
 250 ± 88

F
 319 ± 51

G,H
   145 ± 25

B,E
 44 ± 12

C
 88 ± 19

D,G
 78 ± 7

A,E,F,H,I
 

Bacterial/Fungal PLFA ratio 0.10 ± 0.00 0.12 ± 0.00
A,D,F,H,J

 0.09 ± 0.00
A,C

 0.13 ± 0.00
B,C,E,G,I,K

   0.09 ± 0.00
D,E

 0.09 ± 0.00
F,G

 0.09 ± 0.00
H.I

 0.09 ± 0.00
J,K

 

Microbial PLFA biomass  

(μmol PLFA kg
-1

)  
149 ± 4

A,E,I,M
 173 ± 5

B,F,J,N
 140 ± 9

C,G,K,O
 163 ± 6

D,H,L,P
  113 ± 3

A,B,C,D
 112 ± 3

E,F,G,H
 108 ± 3

I,J,K,L
 114 ± 4

M,N,O,P
 

  EC - electrical conductivity 
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3.3.3. Phospholipid fatty acid (PLFA) profiling of the microbial community 

Soil was subsampled from homogenised samples described in section 3.2.2 

immediately after sieving and stored at -80°C. Samples were then lyophilised using a Modulyo 

Freeze Dryer with RV pump (Edwards Ltd., Crawley, UK) and the samples stored again at -

80°C. Samples were then shipped on dry ice (-78.5°C) to Microbial ID Inc. (Newark, DE, 

USA) and extracted, fractionated, and transesterified according to the method of Buyer and 

Sasser (2012). Subsequently, samples were analysed using a 6890 gas chromatograph (GC) 

(Agilent Technologies, Wilmington, DE, USA) equipped with autosampler, split–splitless 

inlet, and flame ionization detector. The system was controlled with MIS Sherlock® (MIDI, 

Inc., Newark, DE, USA) and Agilent ChemStation software. GC-FID specification, analysis 

parameters and standards are as described in Buyer and Sasser (2012). Fatty acids contributing 

to each taxonomic group are summarised in Appendix 1 Table 3. 

 

3.3.4. Untargeted primary metabolites and complex lipids  

Additional multiple soil cores (n = 5; ø = 1 cm; depth 0 – 10 cm) were randomly taken 

across each sub-plot and homogenised to obtain a representative soil sample. After collection, 

the samples were immediately (within 30 s) frozen in the field by placement in liquid N2 to 

quench metabolic and lipid turnover (Wellerdiek et al., 2009). Samples were stored and 

lyophilised as described as described in section 3.2.3. Post-lyophilisation, roots and other 

debris (e.g. plant litter) were removed by hand and the samples finely ground using a sterile 

pestle and mortar, rinsed with distilled water and 70% ethanol between samples, before being 

transferred to sterile polypropylene 1.5 ml microfuge tubes. Samples were then shipped on dry 

ice (-78.5°C) to the West Coast Metabolomics Center (UC Davis Genome Center, Davis, CA, 

USA) for untargeted primary metabolites by automated liner exchange cold injection system 

gas chromatography time of flight mass spectrometry (ALEX-CIS GCTOF MS) and complex 

lipid analysis by charged surface hybrid column electrospray ionization quadrupole time of 

flight tandem mass spectrometry (CSH-ESI QTOF MS/MS).  

Untargeted primary metabolite extraction consisted of vortexing a 1:0.025 (w/v) soil-

to-3:3:2 (v/v/v) MeCN/IPA/H2O solution, before shaking for 5 min at 4°C, centrifuging and an 

aliquot of the supernatant recovered for analysis. Metabolomic analysis was performed on a 

6890 GC (Agilent Technologies) coupled to a Pegasus IV TOF MS (Leco Corp., St. Joseph, 
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MI, USA), injected via a Gerstel CIS4 with dual MPS Injector (Gerstel, Muehlheim, Germany) 

using the chromatographic parameters described in Fiehn et al. (2008). Briefly, data pre-

processing was performed in ChromaTOF vs. 2.32, without smoothing, using 3 s peak width, 

baseline subtraction just above the noise level, automatic mass spectral deconvolution and peak 

detection at signal/noise levels of 5:1 throughout the chromatogram. Data were then validated, 

aligned and filtered using the BinBase algorithm (rtx5) with the following settings: validity of 

chromatogram (< 10 peaks with intensity > 107 counts s-1), unbiased retention index marker 

detection (MS similarity > 800, validity of intensity range for high m/z marker ions), and 

retention index calculation by 5th order polynomial regression, as described in Fiehn et al. 

(2008) and Fiehn (2016). Further curation of the data was carried out as described in Fiehn 

(2016).  Final curated results were reported as peak heights. Internal standards were included; 

however, these were for quality control and peak correction purposes. Data presented are 

therefore qualitative and compounds are tentatively identified, as commonly accepted for 

untargeted analysis (Gertsman and Barshop, 2018).   

Complex lipid extraction was performed using a modified bi-phasic method of Matyash 

et al. (2008). The main advantage of Matyash method over the Bligh and Dyer methods is that 

the lipids are contained in the upper extraction phase (as the Methyl tertiary-butyl ether 

(MTBE) solvent used in the Matyash method has a lower density than water, compared to the 

chloroform (CHCl3) solvent used in the Bligh and Dyer methods, which has higher density 

than water). Thus, the organic phase can be withdrawn directly without risk of contamination 

from the aqueous phase or the interphase. However, we note that the different methods can 

reveal different lipid yields (Sostare et al., 2019). Briefly, 225 µl of MeOH (containing internal 

standards) was added to 40 mg soil sample and vortexed for 20 s, followed by the addition of 

750 µl MTBE and vortexed for a further 10 min. Samples were then placed in a bead grinder 

for 30 s. Subsequently, samples were shaken for 6 min at 4°C, before the addition of 188 µl of 

MS-grade water and centrifugation (2 min). An aliquot of the supernatant was then removed 

and evaporated to dryness using a SpeedVac. Dried extracts were re-suspended using a mixture 

of 9:1 MeOH/toluene (v/v) (containing an internal standard). Sample analysis was performed 

using an Agilent 1290 Infinity LC system (G4220A binary pump, G4226A autosampler, and 

G1316C Column Thermostat) coupled to an Agilent 6530 MS in positive ion mode. Lipids 

were separated on an Acquity UPLC CSH C18 column (100 × 2.1 mm; 1.7 µm). For full 

instrument parameters see Appendix 1 Table 2. The general workflow for data processing 

followed the mass spectrometry-data independent analysis (MS-DIAL) software method 

described in Tsugawa et al. (2015). This was followed by data clean up using the mass spectral 
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feature list optimizer (MS-FLO), as described in DeFelice et al. (2017).  Peaks are annotated 

in manual comparison of MS/MS spectra and accurate masses of the precursor ion to spectra 

given in the Fiehn laboratory’s LipidBlast spectral library (Kind et al., 2013). MassHunter 

Quant software was then used to verify peak candidates based on peak shape, peak height 

reproducibility and retention time reproducibility in replicate samples. Valid and reproducible 

peaks were analysed by targeted MS/MS with the aim of increasing overall peak annotations. 

Final curated results were reported as peak heights. Internal standards were included; however, 

these were for quality control and peak correction purposes only. Hence, data presented are 

therefore qualitative and compounds are tentatively identified, as is the common with 

untargeted analysis (Gertsman and Barshop, 2018).  

 

3.3.5. Monitoring grassland CO2 and N2O emissions 

A mobile automated greenhouse gas (GHG) monitoring system (Queensland University 

of Technology, Institute for Future Environments, Brisbane, Australia), as previously described 

in Marsden et al. (2018), was used to monitor emissions from the drought and reference plots. 

The system can process twelve automated chambers, these were deployed on the 300 kg N ha-

1 treatments of both grass species under drought and wetted conditions (n = 3). Stainless steel 

chamber bases (0.25 m2 basal area) were inserted into the plots (10 cm depth) two weeks prior 

to measurement beginning, and chambers (50 cm × 50 cm × 15 cm) were attached to the bases. 

Emissions were monitored from the 16th July 2018 throughout the remaining drought and 

subsequent recovery period, to 16th August 2018. Chamber headspace samples were pumped 

(ca. 200 ml min−1) through Teflon tubing to a LI-COR LI-820 (Licor, St Joseph, MI, USA) to 

measure CO2. Samples were then passed through a sodium hydroxide filter to remove 

remaining CO2 and moisture before being fed into a GC (SRI 8610C, Torrance, USA) coupled 

to an 63Ni electron capture detector (ECD) to measure N2O. Briefly, each block of chambers 

closed for 1 h, during which time four headspace samples were taken from each chamber (once 

every 15 min), with a calibration standard analysed every fourth gas sample. This resulted in 

the continuous measurement of eight fluxes per 24 h period. An SC100 V air compressor (SGS 

Engineering Ltd., Derby, UK) was used to fill compressed air lines linked to pneumatic 

actuators on the chambers, to open and close chamber lids automatically. Cumulative fluxes 

were calculated using the trapezoidal rule (Marsden et al., 2018). 
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3.3.6. Data processing and statistical analysis 

Lipid data were curated by removing lipids for which sample peak heights that were 

non-statistically different from peak heights of the method blanks (matrix-free negative quality 

controls). This was performed using a two-sample t-test assuming unequal variance, in Excel 

2016. All subsequent analyses were run using R v. 3.6.0 (R Core Team, 2019). Graphical 

analysis was performed using the package ‘ggplot2’ (Wickham, 2016). Normality and 

homogeneity of variance of the chemical and physical soil properties of the Eutric Cambisol 

were assessed using Shapiro-Wilk test and Bartlett’s test, respectively. Not all data conformed 

to parametric assumptions even after using Log10 transformation, therefore, a Kruskall-Wallis 

test (stats package; R Core Team, 2019) was used to assess the similarities between soil 

properties in drought and recovery conditions. The ‘vegan’ package (Oksanen et al., 2019) was 

used to perform two-way repeated measures ANOVA (analysis of variance) to examine the 

influence of treatment (drought and reference) and soil moisture on changes in CO2 flux, with 

significant differences were further explored using a Tukey post-hoc test. Cumulative CO2 and 

N2O fluxes for drought and watered plots were also calculated through area integration, 

differences were tested with a t-test. ’vegan’ and ‘ggplot2’ was also used to a construct 

principal component analysis (PCA) on summed PLFA biomarkers (Appendix 1 Table 3) as a 

percentage of total PLFA biomass (Frostegård et al., 1993). This was followed by computation 

of a PERMANOVA (permutational multivariate analysis of variance) on summed PLFA 

biomarkers as a percentage of total PLFA biomass to identify differences in dispersion between 

centroids of groups. MetaboAnalyist v4.0 (Chong et al., 2018; Chong and Xia, 2018) was used 

for normalisation (generalized logarithm transformation (glog) and Pareto scaling) of lipidomic 

and metabolomic data, as well as ANOVA to identify significant differences in compound 

concentrations between treatments. Normalised data were also used to create heatmaps (using 

Euclidean distance and Ward clustering algorithms) of lipidomic and metabolomic compounds 

using MetaboAnalyst. A significance level of p < 0.05 was used for all analysis. 
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3.4. Results 

3.4.1. Complex lipids as affected by drought and N fertilisation regime 

Curated complex lipid analysis tentatively identified a total of 239 individual 

compounds. Of these compounds detected, 134 showed statistically significant differences 

between treatments (p < 0.03). There were three response groups within the complex lipids 

data (Fig. 3.2); i) compounds that decreased in relative concentration during drought conditions 

in both reference and drought plots (Response A; n = 26), ii) compounds that increased in 

relative concentration under drought conditions in drought plots only (Response B; n = 9), and 

iii) other compounds with no clear response across treatments (Response C; n = 15). Results 

of the PERMANOVA showed that overall, groupings of water stress (p < 0.001) and N loading 

(p < 0.001) had a significant effect on the soil lipid concentrations, while grass species (p = 

0.1) had no overall impact on the pattern of soil lipids. 

 

Figure 3.2. Influence of drought, N fertilisation and grass species on the lipidomic profile of 

soil. Heatmap showing expression profiles of soil treatment groups (n = 8) based on the 50 

most significant tentatively identified lipids as classified by ANOVA p-value (p < 0.03). Lipids 
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were subsequently clustered using Euclidean distance and Ward linkage. Data were 

normalised using a log transformation and Pareto scaling. The colour of samples ranges from 

red to blue, indicating metabolite concentration z-score; numbers 1.5 to -1.5 on the scale bar 

indicate the number of standard deviations from the mean. 

 

3.4.2. Primary metabolites as affected by drought and N fertilisation regime 

Untargeted primary metabolomic analysis tentatively identified a total of 155 

compounds. Of these compounds detected, 118 showed statistically significant differences 

between treatments (p < 0.04). There were two distinct responses within the untargeted 

metabolome data (Fig. 3.3); i) compounds that increased in relative concentration during 

drought conditions in the drought plots only (Response A; n = 4), and ii) compounds that 

decreased in relative concentration during drought conditions (Response B; n = 46). A heatmap 

of all metabolites detected in samples, irrespective of p-value can be found in supplementary 

information (Appendix 1 Fig. S4). Results of the PERMANOVA showed that overall, grouping 

of water stress (p < 0.001) had a significant effect on the soil primary metabolite concentrations, 

however, both N loading (p = 0.2) and grass species (p = 0.4) had no overall impact on the 

dispersion of soil primary metabolite concentrations. 
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Figure 3.3. Influence of drought, N fertilisation and grass species on the metabolic profile of 

soil. Heatmap showing expression profiles of soil treatment groups (n = 8) based on the 50 

most significant tentatively identified metabolites as classified by ANOVA p-value (p < 0.04). 

Metabolites were subsequently clustered using Euclidean distance and Ward linkage. Data 

were normalised using a log transformation and Pareto scaling. The colour of samples ranges 

from red to blue, indicating metabolite concentration z-score; numbers 2 to -2 on the scale bar 

indicate the number of standard deviations from the mean. 

 

3.4.3. Soil characteristics 

Differences in soil characteristics were assessed between drought conditions and 

recovery conditions, post-rainfall. There were statistical differences (p < 0.001) between soil 

pH, EC, NO3
-, NH4

+, K, total PLFA microbial biomass and PLFA fungal-to-bacterial ratio, all 

of which reduced between drought and recovery sampling dates (Table 3.1). As expected, soil 
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moisture levels increased significantly during the recovery period (p < 0.006) following rainfall 

in the drought plots. In contrast, there was no difference in the control (irrigated) plots (p = 

0.37) between the two measurement periods. Soil available P concentrations increased between 

drought and recovery sampling dates (p < 0.001) in all treatments.  

 

3.4.4. PLFA community composition 

PCA was used to depict the variation in PLFA-derived microbial community structure 

between treatments (Fig. 3.4). From this, it can be inferred that the microbial community 

changed between drought and recovery conditions, and that the effect of water availability was 

greater than the differences caused by grass species or N fertiliser loading. Changes in the 

amount of Gram-positive and fungal biomarkers were the vectors predominantly responsible 

for driving the change in community structure between drought and recovery conditions. 

However, the results of the PERMANOVA showed that overall, grouping of soil water stress 

(p < 0.001) and N loading (p < 0.03) had a significant effect on the soil microbial community, 

while grass species (p = 0.9) had no overall impact on the soil microbial community.  
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Figure 3.4. Influence of N and grass species on the PLFA profile of the soil microbial 

community during and after an extreme drought. 2D principal component analysis (PCA) of 

PLFA biomarkers as a percentage of total PLFA biomass. Principal component 1 (PC1) 

explains 58.2 % of total variance, principal component 2 (PC2) explains 21.1 % of total 

variance. Vector arrows indicate the relationship between variables. Ellipses represent 95% 

confidence levels of treatment groups.   

 

3.4.5. Effects of drought and recovery on net ecosystem CO2 and N2O flux  

A repeated measures ANOVA showed that there were significant differences between 

CO2 fluxes by soil water stress (p < 0.001), treatment (p < 0.001) and day number (p < 0.001). 

Post-hoc analysis showed that there was a significant increase in CO2 flux between 23rd July 

(two days after the first considerable rainfall in 29 days) and dates before (20th July) as well as 

after (26th, 27th and 29th July) (p < 0.01). There were no significant differences between dates 

other than the 23rd July, where CO2 flux peaked (Fig. 3.1C). However, significant differences 
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were found between cumulative CO2 (p < 0.02) and N2O (p < 0.005) emissions between the 

drought and water (reference) treatments (Table 3.2). 

 

Table 3.2. Influence of drought on the cumulative flux of the greenhouse gases CO2 and N2O 

from 300 kg N ha-1 plots, over the sampling period (16th July – 16th August 2018; n = 6). 

Values represent means ± SEM. Letters denote significant differences between treatments (p < 

0.05). 

 Treatment Cumulative flux 

N2O 

(mg m-2) 

Reference 10.6 ± 1.5a 

Drought   6.6 ± 0.5b 

   

CO2 

(g m-2) 

Reference 81.9 ± 7.6a 

Drought 51.1 ± 3.0b 

 

 

3.5. Discussion  

3.5.1. Effect of drought on soil derived complex lipids 

This study aimed to assess the response of novel biological soil quality indicators in 

response to extreme drought under contrasting N fertiliser loading rates. Current biological 

indicators (e.g. PLFAs) can be sensitive to changes in environmental conditions, showing shifts 

in soil microbial community. However, they are unable to relate this change to soil function. 

Metabolomic and lipidomic data are directly related to the physical state of the soil microbial 

community (Swenson et al., 2018; Warren, 2018). Identification of specific metabolomic and 

lipidomic molecules that predominate under extreme conditions, in this case osmotic stress, 

may begin to elucidate this change in biological function. 

Soil complex lipid composition was affected both by drought conditions and soil N 

loading. Response A (Fig. 3.2) showed a significant decrease in lipid concentrations during 

drought conditions; the group contained a mix of several types of lipid including 

phosphatidylethanolamines (PEs), phosphatidylcholines (PCs), fatty acids (FAs) and 

ceramides, all of which are found in high concentrations within the cell membrane (Dawaliby 

et al., 2016; Olsen and Jantzen, 2001; Sohlenkamp and Geiger, 2016) and have been reported 

in soil previously (Ding et al., 2020). PEs are key in the regulation of membrane fluidity, and 

PCs and ceramides are used in the cell as regulators of osmotic stress (Dawaliby et al., 2016; 

Hannun and Luberto, 2000; Kiewietdejonge et al., 2006). Many previous studies have shown 
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that bacteria alter their membrane lipid composition and cell size in response to abiotic stresses 

(Romantsov et al., 2009; Wang and Levin, 2009; Weijers et al., 2007; Zhang and Rock, 2008). 

For example, for Escherichia coli under osmotic stress, relative concentrations of cardiolipin 

(CL) increase as phosphatidylethanolamine (PE) decrease (Romantsov et al., 2009). With many 

bacteria modifying membrane biophysical properties by changing the length of fatty acid 

chains, or the ratio of saturated:unsaturated fatty acids (Zhang and Rock, 2008). It is highly 

likely that the long-term osmotic stress induced by a prolonged drought will therefore induce 

the observed shifts in lipid composition. 

Response B (Fig. 3.2) displayed a significant increase of triacylglycerol (TAG) 

compounds under drought conditions. TAGs are neutral lipids, predominantly found in 

eukaryotic organisms as storage lipids or forming part of lipid droplets (LDs), as well as a 

limited number of bacteria mostly of the actinobacteria and cyanobacteria phylum (Lerique et 

al., 1994; Zhang and Liu, 2017). LDs, organelles formed of a neutral lipid core surrounded by 

a phospholipid monolayer, are key to eukaryotic and prokaryotic organisms surviving stress 

conditions (Zhang and Liu, 2017). For example, Zhang et al. (2017) previously reported that 

LDs have the potential to bind to genomic DNA, increasing bacteria survival rate under stress. 

Additionally, cytoplasmic LDs are also key in cellular metabolism and homeostasis (Hashemi 

and Goodman, 2015). This change in TAG concentration under drought conditions is likely to 

represent a change in soil biological function. If organisms are focusing their energy on storage 

this is likely to have an impact on normal cell function and metabolism (Fulda et al., 2010). 

We can therefore accept hypothesis 2, microbial storage lipid composition did increase 

during drought conditions, and was probably as a result of water and essential nutrients 

becoming harder to access. It is likely that TAGs and other storage lipids will only accumulate 

if nutrient availability decreases more than C availability. In this regard, microbial storage is 

highly related to the ratio of available nutrients to available C, for instance soil and microbial 

stoichiometry (Cleveland and Liptzin, 2007; Khan and Joergensen, 2019). However, it must be 

noted that the increase in storage lipids, particularly TAG, may also have had a role in 

osmoprotection. 

 

3.5.2. Effect of drought on soil-derived primary metabolites 

Compounds that significantly decreased under drought included a range of amino acids 

(e.g. leucine and valine). Their abundance has previously been used as a proxy for bacterial 

growth rate (Bastviken and Tranvik, 2001; Pollard and Moriarty, 1984). With a large number 
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of metabolites from across heterotrophic metabolism decreasing in concentration (Jurtshuk, 

1996), many associated directly with microbial growth, it is highly likely that the functioning 

and growth of the bacterial community was impaired during drought.  

Functions of compounds that increased under drought in this study (Response A, Fig. 

3.3), were generally all related to osmoprotection. For example, it has also been shown that 

water soluble carbohydrates (e.g. sucrose) have a key role in continuing growth and 

development during impaired metabolic activity (Van den Ende and Valluru, 2008) and their 

accumulation has been shown to occur under osmotic stress, particularly in replacing 

membrane phospholipids to prevent membrane gelling (Esbelin et al., 2018; Hershkovitz et al., 

1991). This is also consistent with the observed decrease in total phospholipid concentrations 

during the recovery period after alleviation of the drought (Table 3.1). Sugar alcohols (here, 

arabitol and erythritol), are metabolically interrelated with energy storing carbohydrates under 

osmotic stress (Hallsworth and Magan, 1995; Kayingo et al., 2001; Kobayashi et al., 2015, 

2013). Although these compounds can be secreted out of the cell into the surrounding soil 

(Zeidler and Muller, 2019), the extraction procedure used here was unable to differentiate 

between intracellular and extracellular solutes. Also, 2,4-diaminobutyric acid is key in the 

biosynthesis of ectoine in bacteria; an osmolyte highly associated with organism’s potential to 

survive extreme osmotic stress (Bestvater et al., 2008; Czech et al., 2019). It is likely that 

ectoine was upregulated alongside 2,4-diaminobutyric acid, however, it was not identified in 

this study due to limitations of the analytical approaches employed.    

Based on these results we can accept hypothesis 1, primary metabolite compounds 

related to coping with osmotic stress did increase under drought conditions. Metabolites are 

also responsive to changes over short temporal scales (days). With the soil metabolic profile 

recovering to a similar level to that of the reference (control) plots after drought alleviation. 

Although drought plots did not match metabolite profiles of reference plots exactly post-

drought, this is likely to be due to the rapid processing of metabolic compounds as more 

favourable growth conditions occur and the heterogeneous nature of soil (Wang and Levin, 

2009). Based on this study we can tentatively accept hypothesis 4, as the microbial community 

did show some metabolic legacy effect on the alleviation of the drought. However, more work 

is required to show the persistence of this legacy, and the effect of multiple drought and 

rewetting cycles on soil metabolic health.  

Further examples of metabolites commonly associated with this osmotic adjustment are 

proline, mannitol, glycine betaine, trehalose and glucose (Giri et al. 2011; Nawaz and Wang, 

2020; Warren, 2014). Proline was detected in all samples and was present in significantly 



106 

 

higher concentrations under the drought treatments, irrespective of N loading rate. Trehalose 

was detected in all samples, with higher concentrations present under the drought treatment 

under low N compared to reference samples. Glucose was present in all samples with the only 

significant result observed between the high N loading rate samples under drought and drought-

recovery conditions. Glycine betaine was not detected in this study due to the limitations of the 

GC-MS method, as discussed below. Mannitol, while potentially detectible by the described 

GC-MS protocol was not identified, possibly due to being below detection limits. Upon 

rewetting, the microbial recycling of these cellular osmolyte compounds can lead to rapid 

increases in soil respiration (“the Birch effect”) (Slessarev et al., 2020; Warren, 2020a). 

While the GC-MS workflow can measure many primary metabolites, it is generally 

limited by poor resolving power for many N-containing metabolites and highly labile 

metabolites (e.g. many sugar compounds coelute and have the same m/z as other sugar-type 

compounds). Equally, the samples were only run with the MS in positive ion mode; other 

compounds may have been detectable in negative mode. Additionally, other compounds (e.g. 

glycine betaine) are not detectable as they are not amenable to derivatisation. As a result, the 

compounds detected in this study (summarised in supplementary information) cannot be 

considered extensive or exhaustive. However, the findings of this study demonstrate that 

focusing on a targeted range of compounds may simplify the complexity of the biochemical 

response of the plant-soil system to drought, whilst an untargeted approach to analysis may be 

beneficial in identifying further biomarkers of stress. 

 

3.5.3. Effect of drought on soil derived PLFA microbial community 

PCA clustering of PLFA microbial community shows changes in community structure 

between treatments, with distinct separation between drought and recovery communities (Fig. 

3.4). The shift in community composition was mainly bacterially driven. Conversely, there was 

little separation between reference and drought groups between the two sampling points. We 

therefore reject hypothesis 3, as while the soil microbial community did alter their PLFA 

membrane composition under osmotic stress conditions, this was not significantly different to 

reference groupings. Additionally, PLFA microbial biomass was significantly reduced during 

the recovery period compared to the drought period. This is unexpected as a large amount of 

labile C and other nutrients are likely to become available upon soil rewetting after drought 

which should drive microbial growth, at least in the short term (Schimel, 2018). For example, 

it has been shown that a droughted microbial community can respond within seconds of water 
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addition and that microbial growth can re-establish within 48 h of re-wetting (Jones and 

Murphy, 2007; Göransson et al., 2013; Meisner et al., 2015; Siebert et al., 2019).  

Gram-positive bacteria increased in concentration during the recovery period, probably 

as a legacy of their greater resistance to osmotic stress owing to their physiology. The lack of 

increase in the fast-growing Gram-negative community also supports our finding that a large 

amount of labile C did not become available after rewetting to support microbial growth (Fanin 

et al., 2019). However, as noted by Naylor and Coleman-Derr (2018), abundance changes in 

soil microbial community are context dependent and responses are frequently not consistent. 

Nevertheless, Gram-positive bacteria responded more rapidly than the rest of the biological 

community to the increase in available moisture and nutrient associated with rewetting, a likely 

cause of the shift in bacterial-to-fungal ratio (Fanin et al., 2019).  

There are a number of limitations of using PLFA analysis to understand changes in 

microbial community responses to external stress. Firstly, the active, inactive and dead 

community are sampled all together (Nielsen and Petersen, 2000). Additionally, FA membrane 

composition may change in response to the prevailing environmental conditions rather than 

being due to an actual shift in community structure (Bossio and Scow, 1998; Córdova-Kreylos 

et al., 2006). Equally, the soil microbial community has been shown to substitute phospholipids 

with betaine lipids under stress conditions, which may not be accounted for in targeted PLFA 

assays (Warren, 2020b). Therefore, from PLFA data alone it is impossible to separate real 

community change from the current microbial community adjusting to a new environmental 

equilibrium. Targeted approaches: measuring active microorganisms (i.e. 13C-labelled PLFA 

analysis), or combining with a metagenomics approach, may therefore offer additional insights 

into drought responses of the microbial community, particularly changes of soil microbial 

activity after rewetting (Willers et al., 2015b). 

There was a distinct shift of metabolomic and lipidomic compounds during the drought 

when compared to the recovery period. For lipidomic and metabolomic compounds it seems 

that recovery was not purely a reversal of stress responses, with many of the non-drought 

responsive compounds also increasing during the recovery period (Wedeking et al., 2018). This 

shows that, in terms of primary metabolic functionality, the microbial community has a 

resilience to extreme drought and osmotic stress, rapidly reducing metabolic compounds 

associated with mitigating osmotic stress. However, the change in community structure 

suggests that the physiology and function of the community is likely to have altered and may 

be affected for a longer period of time. Although, as discussed, change in PLFA membrane 
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composition may be due to the prevailing environmental conditions rather than being due to an 

actual shift in community structure. 

 

3.5.4. Changes in soil and plant respiration 

The so called “Birch effect” is generally understood to be caused by the mineralization 

of either intracellular osmoregulatory substances released by soil microorganisms in response 

to hypo-osmotic stress and to avoid cell lysis (Unger et al., 2010; Warren, 2014), and/or 

increased availability (and subsequent consumption) of extracellular organic C and microbial 

necromass on rewetting (Slessarev et al., 2020). This is typically associated with a sudden, but 

ephemeral CO2-efflux from soil upon rewetting, indicating a major shift in function and re-

mobilization of internal microbial C stores. Osmolyte hydrolysis and consumption (particularly 

of trehalose), has been indicated as the intracellular mechanism for rapid increases in microbial 

respiration (Slessarev et al., 2020; Slessarev and Schimel, 2020). 

In this study, the Birch effect was shown to occur immediately after the first day of 

considerable rainfall in 29 days with elevated levels of CO2 continuing for 9 subsequent days. 

The CO2 flux peaked two days after the first considerable rainfall (Fig. 3.1), and this increase 

in efflux was evident in both the reference and droughted plots. We may therefore reject 

hypothesis 5, the post-drought rewetting did result in a flush of CO2 (“Birch effect”) and N2O 

emissions but not compared to the reference treatment. However, we note that it is impossible 

to disentangle root and microbial respiration, with both likely to have increased upon rewetting 

(Xu et al., 2010).  

Overall, the non-droughted (reference) plots had a significantly higher cumulative CO2 

and N2O flux over the sampling period (+60 % and +61 %, respectively; Table 3.2). We 

attribute this to the reduced metabolism under severe moisture deficit, reduced rates of 

nitrification and associated N2O production, and the lack of NO3
- substrate and loss of 

anaerobic microsites available for denitrification (Homyak et al., 2017; Schindlbacher et al., 

2012). As we were capitalising on a natural extreme event, we only measured GHG emissions 

in the latter half of the experiment. Consequently, we were unable to complete a full GHG 

budget.  
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3.5.5. Effect of plant species and nitrogen fertilisation rate 

This study assumed all lipids and metabolites detected were derived directly from the 

active soil microbial community. While the majority of compounds detected will be of 

microbial origin, it is likely that some will have been directly extracted from the soil itself for 

example from mesofaunal, microbial and plant necromass and humic moieties (Allard, 2006; 

Swenson et al., 2015).  

Despite the Festulolium grass type being purported to be more drought tolerant 

(Ghesquière et al., 2010), surprisingly, grass species had no major effect on the distribution of 

PLFA, metabolomic or lipidomic concentrations in the soil. This was unexpected given that 

the two grass species used here have different sugar metabolisms, rates of primary productivity, 

root architecture and rooting depth (Gallagher et al., 2015; Humphreys et al., 2018). It does, 

however, support previous work in the same soil that showed that a range of metabolites in soil 

solution were not affected by grass species (Khalid et al., 2007). It may also imply that root 

exudates did not contribute to the metabolomic profiles in comparison to those in the microbial 

biomass.  

In contrast to the influence of grass species, PERMANOVA showed that N loading 

significantly affected the concentration pattern of lipids in soil. While lipids are usually more 

closely associated with C and energy storage than N, previous studies have indicated that N 

source can influence the metabolism and concentration of lipids in prokaryotic and eukaryotic 

cells, with N deficiency leading to TAG accumulation (Anand and Arumugam, 2015; Evans 

and Ratledge, 1983; Gao et al., 2020). Additionally, bacteria and plants under drought stress 

have been shown to produce nutrient-rich solutes particularly when N is abundantly available 

(Liang et al., 2013; Song et al., 2019; Teixidó et al. 2005), creating a more negative osmotic 

potential and aiding to maintain or improve cell hydration (Ashraf and Foolad, 2007). 

However, it is also possible that differences in plant growth and rhizodeposition under the 

higher N regime may have induced changes in microbial metabolism. Further work is required 

to better understand the complex interaction of cell energy use, metabolic function and storage 

in response to nutrient availability under drought.  

 

3.6. Conclusions 

Changes in soil function in response to moisture scarcity were evident over a number 

of temporal scales. Most responsive was the CO2 efflux (likely cause by mineralisation of 
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drought-related osmolytes), followed by the lipid and metabolites and lastly the PLFAs. Both 

untargeted primary metabolomic and complex lipid analysis provide high resolution and 

responsive data on the state of the biological community. In this study we have identified a 

number of compounds that are responsive to drought stress in grassland soils. However, this 

analytical approach is still in its infancy and further work is required to i) elucidate the 

relationship between the stress and the use of microbial storage lipids, ii) further explore 

whether the soil microbial stress-induced compounds in this study are applicable to other stress 

conditions, iii) assess other soil microbial communities constituent metabolomic and lipidomic 

makeup and further relate this to soil quality, iv) complement sequencing and enzymatic studies 

with metabolomic analysis and other indicators of function e.g. measurement of N cycling 

rates, and v) test the resilience of the microbial community over several wetting and drying 

cycles. The results presented here clearly demonstrate that metabolomic and lipidomic analysis 

can provide good indicators of stress and resilience in the soil biological community. Further, 

we show that these approaches can be directly applied to field-based studies. However, this 

increases the inherent complexity of interpretation due to the increased number of variables 

being considered. 
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4.1. Abstract 

Plastics are now widespread in the natural environment. Due to their size, microplastics (MPs; 

defined as particles < 5 mm) in particular, have the potential to cause damage and harm to 

organisms and may lead to a potential loss of ecosystem services. Research has demonstrated 

the significant impact of MPs on aquatic systems; however, little is known about their effects 

on the terrestrial environment, particularly within agroecosystems, the cornerstone of global 

food production. Soil biology is highly responsive to environmental perturbation and change. 

Hereby, we investigated the effect of pure low-density polyethylene (LDPE) MP loading (0, 

100, 1000, or 10000 kg ha-1) on soil and plant biological health in a field environment over a 

cropping season. Our results showed that MP loading had no significant effect (p > 0.05) on 

the soil bacterial community (measured by amplicon sequencing of bacterial 16S rRNA gene), 

the size and structure of the PLFA-derived soil microbial community, or the abundance and 

biomass of earthworms. In addition, metabolomic profiling revealed no dose-dependent effect 

of MP loading on soil biogenic amine concentrations. The growth and yield of wheat plants 

(Triticum aestivum L., cv. Mulika) were also unaffected by MP dose, even at extremely high 

(≥ 1000 kg ha-1) loading levels. Nitrogen (N) cycling gene abundance before and after N 

fertiliser application showed relatively little change, although further experimentation is 

suggested, with similar trends evident for soil nitrous oxide (N2O) flux. Overall, we illustrate 

that MPs themselves may not pose a significant problem in the short term (days to years), due 

to their recalcitrant and inert nature. We also emphasise that most MPs in the environment are 

not pure or uncontaminated, containing additives (e.g. plasticisers, pigments and stabilisers) 

that are generally not chemically bound to the plastic polymer and may be prone to leaching 

into the soil matrix. Understanding the effect of additives on soil biology as well as the longer-

term (years to decades) impact of MPs on soil biological and ecological health in the field 

environment is recommended.  

 

Keywords: Plastic pollution, Metabolomics, Toxicology, Soil quality, Environmental impact  
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4.2. Introduction 

The use of plastics is globally ubiquitous due to their low cost, malleability and 

durability. However, inappropriate disposal has led to their progressive accumulation in the 

environment (Geyer et al., 2017). To date, most plastic and microplastic (MPs; particles < 5 

mm in size) pollution research has focused on freshwater and marine systems where the 

negative effects of plastics on organism health and loss of ecosystem function is now becoming 

well documented (Avio et al., 2017; Sharma and Chatterjee, 2017). However, plastics are also 

rapidly being identified as a threat to terrestrial ecosystems, yet their potential effects remain 

largely unexplored (de Souza Machado et al., 2019).  

In agroecosystems, plastic entry may occur through a variety of pathways, with the 

most common including (i) the use, and incorporation of plastic mulch films to improve plant 

growth and reduce moisture loss (Huang et al., 2020; Sun et al., 2020; Qi et al., 2020); (ii) the 

addition of municipally-derived organic fertilisers, digestates or compost (Watteau et al., 

2018); (iii) the application of biosolids (van den Berg et al., 2020); (iv) the accumulation of 

slow-release fertiliser coatings (Katsumi et al., 2021), and (v) atmospheric deposition (Allen et 

al., 2019). The drive for food security and sustainable intensification has led to an inevitable 

increase in plastic loading to soils globally. For example, the annual input of plastics into 

agricultural soils is estimated to be between 63 - 430 and 44 - 300 × 103 t in Europe and North 

America, respectively, and potentially exceeding 1.3 × 106 t annually for China (Jian et al., 

2020; Nizzetto et al., 2016a). Globally, this greatly surpasses the extrapolated annual mass 

discharge of MPs to ocean surface waters, predicted to be 9.3 × 107 – 2.36 × 108 tonnes 

(Nizzetto et al., 2016b, 2016a, Sebille et al., 2015). Primary MPs (MPs manufactured for a 

specific application, e.g. clothing microfibres; de Falco et al., 2019) may be applied through 

waste streams (i.e. biosolids application) due to their difficulty of removal (Cole et al., 2011). 

In contrast, secondary MPs are formed through degradation and disintegration of larger plastic 

pieces (Cole et al., 2011; Rocha-Santos and Duarte, 2015), such as agricultural mulch films 

(Piehl et al., 2018). Both primary and secondary MPs are likely to influence the ecology, health 

and function of soils, potentially having similar negative effects to those extensively reported 

in marine ecosystems, e.g. organismal ingestion leading to oxidative stress and assimilation of 

endocrine-disrupting chemicals, and subsequent reduced growth and reproduction, as well as 

bioaccumulation up the food chain (Galloway and Lewis, 2016; Kim et al., 2017). Although, 

bioaccumulation is likely to be less of an issue comparatively, due to the relatively smaller size 

of soil-dwelling fauna. 
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Soil is an extremely valuable and non-renewable resource and provides of range of 

ecosystem services, not least the provisioning of food resources (Comerford et al., 2013; 

Kopittke et al., 2019). Maintaining soil health and quality is therefore key for agricultural and 

anthropogenic sustainability (Hou et al., 2020). Soil quality is often broadly defined as the 

capacity of a soil to function (Karlen et al., 1997). Traditional measurements of soil quality are 

based on physical or chemical soil properties, with little exploration of soil biology (Bünemann 

et al., 2018). However, the fertility and productivity of soil are not simply a function of soil 

physical and chemical characteristics, and recently a more holistic view has been proposed 

(Rinot et al., 2019). Soil biology is a crucial mediator and driver of many processes linked to 

nutrient cycling, plant health, and soil productivity (Lal, 2016). It is highly responsive to 

changes in management and environmental conditions and is often associated with functional 

change (Lehman et al., 2015). Research has shown that MPs can have significant negative 

effects on soil microbial community composition (Guo et al., 2020; Zang et al., 2020; Zhang 

et al., 2019), enzymatic activities and nutrient cycling (Fei et al., 2020; Huang et al., 2019; Yi 

et al., 2021), mesofaunal health (Huerta Lwanga et al., 2016; Lahive et al., 2019; Lin et al., 

2020), plant health (de Souza Machado et al., 2019; Zang et al., 2020), and greenhouse gas 

(GHG) emissions (Ren et al., 2020; Sun et al., 2020), all of which will impact the soils ability 

to function effectively. However, most studies to date have been laboratory or mesocosm 

based, over relatively short sampling periods (weeks) and in many cases at unrealistic MP 

doses, which may not accurately reflect processes occurring at the field scale (Fidel et al., 

2019). 

This field-based study aimed to assess the effect of different quantities (0, 100, 1000, 

or 10000 kg ha-1) of pure MP loading on the health and function of key soil biological quality 

indicators over a cropping season, using a range of commonly used biological indicators, as 

well as the novel use of biogenic amine analysis as indicators of metabolism and N cycling in 

soil. We hypothesised that i) MP loading will have negative effects on all measured aspects of 

soil biological quality, ii) higher MP loading rates will increase the detrimental impact on soil 

biology, and iii) crop biomass and yields will be negatively affected by MP loading.  
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4.3. Materials and methods 

4.3.1. Experimental setup 

The experiment took place at the Henfaes Agricultural Research Station, 

Abergwyngregyn, North Wales (53°14′N, 4°01′W). The soil is classified as a sandy clay loam 

textured Eutric Cambisol, overlying a glacial till, with a temperate-oceanic climate. The mean 

annual rainfall is 1060 mm and the mean annual temperature is 10°C. The site has no previous 

history of plastic pollution or application over the last 50 years (Zang et al., 2020). On 18th 

April 2019, a randomised plot design was established to create 4 independent replicates (n = 

4) of each treatment. Each plot (1.4 × 2.85 m) was then treated with LDPE microplastic powder 

(RXP1003 natural; Resinex Ltd., High Wycombe, UK), at a rate of 0, 100, 1000, or 10000 kg 

ha-1 by thorough manual mixing with the top 10 cm of soil. This equated to loading rates of 

0%, ~0.1%, ~1%, and ~10% (w/w) (soil bulk density = 1040 kg m-3; n = 4). These rates were 

chosen to represent ‘existing’, ‘normal’, ‘future’, and ‘extreme’ (or ‘hotspot’) MP loading to 

soil (Gao et al., 2019; Huang et al., 2020; Qi et al., 2020). The microplastic powder was 

confirmed to have a very low level of contamination through total carbon (C) and nitrogen (N) 

analysis using a TruSpec® Analyzer (Leco Corp., Michigan, USA) (Total C, 82.88% ± 0.03%; 

Total N, 0.03 ± 0.01%; n = 5). LDPE was chosen due to its extensive use in agricultural films 

(Espí et al., 2006; Rong et al., 2021). Plots were subsequently sown with spring wheat (Triticum 

aestivum L., cv. Mulika) at a rate of 400 plants m-2. In line with the fertiliser recommendations 

for wheat and taking account of the soil’s Soil Nitrogen Supply (SNS) (AHDB, 2018), 120 kg 

N ha-1 yr-1 was applied to the field as NH4NO3 over two applications, 40 kg N ha-1 on 3rd June 

and 80 kg N ha-1 on 3rd July (reflecting the late sowing of the crop). For scanning electron 

microscopy (SEM), LDPE powder was mounted on adhesive tape, coated with gold, and 

imaged at 10 kV (Tescan Vega3 SEM). These SEM images illustrate the heterogeneous nature 

of the MP mixture, both in terms of particle size and surface texture (Fig. 4.1). 
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Figure 4.1. Scanning electron micrographs of microplastic particles before incorporation into 

the soil. The images were taken across a range of magnifications (A – 20 μm; B – 50 μm; C – 

100 μm; D – 200 μm; E – 200 μm; F – 500 μm). Images illustrate the heterogeneous nature of 

particle size and surface texture within the powder sample. 

 

4.3.2. Soil sampling and analysis 

The soil was sampled one, two, and six months following MP addition. On each 

sampling occasion, multiple fresh soil cores per plot (n = 12; ø = 1 cm; depth = 0 – 10 cm) 

were randomly sampled and homogenised by hand to obtain a representative plot soil sample. 

Soil pH and electrical conductivity (EC) were measured on 1:2.5 (w/v) soil-to-distilled water 

suspensions by submerging standard electrodes. Within 24 h of soil collection, 1:5 (w/v) soil-

to-0.5 M K2SO4 extracts were performed. The colorimetric methods of Miranda et al. (2001) 

and Mulvaney (1996) were used to determine the nitrate (NO3-N) and ammonium (NH4-N) 

concentrations in the K2SO4 extracts, respectively. Bulk density cores (0 – 5 cm, 100 cm3) were 

also collected oven-dried (105°C, 24 h) before being weighed. Soil characteristics are 

summarised in Table 4.1. Climatic data from an adjacent weather station for the sampling 

period and a timeline of sampling are summarised in Appendix 2 Fig. 1. 
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Table 4.1. Influence of microplastic (MP) dose and time since application on soil properties. The soil was sampled one, two or six months post 

microplastic application. Results are expressed on mean dry soil weight basis ± SEM (n = 4). Letters denote significant differences between 

treatments (p < 0.05). EC – Electrical conductivity. 

 1 month post-MP application  2 months post MP application 

MP loading rate 

(kg ha
-1) 

0 100 1000 10000 
 

0 100 1000 10000 

pH 6.26± 0.04a 6.23  ± 0.19a 6.26 ± 0.14a 6.23 ± 0.10a  6.49 ± 0.04a 6.34 ± 0.15a 6.41 ± 0.12a 6.47 ± 0.08a 

EC (μS cm
−1

) 129 ± 38a 91 ± 13a 123 ± 24a 96 ± 22a  37 ± 1.9a 36 ± 2.6a 31 ± 2.3a 31 ± 3.5a 

NO3
- (mg N kg

−1
) 67.4 ± 21.7a 18.6 ± 4.6a 33.4 ± 14.5a 38.3 ± 0.70a  5.04 ± 2.60a 4.96 ± 3.02a 1.86 ± 0.09a 1.61 ± 0.14a 

NH4
+ (mg N kg

−1
) 57.5 ± 16.7a 11.0 ± 5a 22.1± 10.9a 45.8 ± 1.6a  1.01 ± 0.06a 1.11 ± 0.11a 1.13 ± 0.05a 0.89 ± 0.06a 

Bulk density  

(kg m-3) 
    

 
1014 ± 11a 1065 ± 27a 984 ± 30a 977 ± 31a 

Bacterial/Fungal 

PLFA ratio 
     

0.11 ± 0.01ab 0.11 ± 0.01ab 0.11 ± 0.01ab 0.14 ± 0.02a 

Microbial PLFA 

biomass (μmol 

PLFA kg
-1

) 

    
 

174 ± 11ab 175 ± 9ab 162 ± 3a 190 ± 16ab 

 6 months post MP application      

pH 6.27 ± 0.11a 6.16 ± 0.26a 6.14 ± 0.11a 6.09 ± 0.08a      

EC (μS cm
−1

) 55 ± 2.4a 77 ± 25a 55 ± 3.9a 51 ± 2.6a      

NO3
- (mg N kg

−1
) 10.4 ± 4.30a 21.9 ± 9.32a 15.5 ± 4.1a 10.2 ± 1.08a      

NH4
+ (mg N kg

−1
) 2.64 ± 0.30a 5.36 ± 2.09a 3.28 ± 0.88a 3.00 ± 1.05a      

Bulk density  

(kg m-3) 
1065 ± 22a 1106 ± 48a 1092 ± 44a 1062 ± 61a 

 
    

Bacterial/Fungal 

PLFA ratio 
0.09 ± 0.00b 0.10 ± 0.00ab 0.11 ± 0.01ab 0.10 ± 0.01ab 

 
    

Microbial PLFA 

biomass (μmol 

PLFA kg
-1

) 

199 ± 6ab 201 ± 8ab 197 ± 6ab 218 ± 12b 

 

    

Earthworm 

biomass (g m-2) 
92 ± 9a 54 ± 6a 71 ± 24a 79 ± 22a 

 
    

Earthworm 

abundance 

(individuals m-2) 

26 ± 5a 13 ± 2a 24 ± 13a 20 ± 6a 
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4.3.3. Phospholipid fatty acid (PLFA) profiling of the microbial community 

Soil sampling for PLFA analysis was performed after 2 and 6 months of MP addition. 

Fresh homogenised soil samples, collected as described in section 4.2.2, were subsampled for 

PLFA analysis. The subsampled soil was subsequently stored at -80°C to prevent lipid 

turnover. Lyophilisation was performed using a Modulyo Freeze Dryer (Thermo Electron 

Corporation, Waltham, MA, USA) attached to a rotary vane pump (Edwards Ltd., Crawley, 

UK). Samples were shipped on dry ice (-78.5°C) to Microbial ID Inc. (Newark, DE, USA) for 

analysis. The method of Buyer and Sasser (2012) was used for extraction, fractionation and 

transesterification of samples. Analysis was performed on a 6890 gas chromatograph (GC) 

(Agilent Technologies, Wilmington, DE, USA) equipped with an autosampler, split–splitless 

inlet, and flame ionization detector. The system was controlled with MIS Sherlock® (MIDI, 

Inc., Newark, DE, USA) and Agilent ChemStation software. GC-FID specification, analysis 

parameters and standards are as described in Buyer and Sasser (2012).  

 

4.3.4. Biogenic amine extraction and analysis 

Biogenic amine extraction was performed 6 months after microplastic addition. They 

are a subset of the metabolome, key in the processing and cycling of N, which has previously 

been shown to be sensitive to changes in biological quality (Brown et al., 2021; Withers et al., 

2020). On this sampling occasion, additional multiple soil cores (n = 5; ø = 1 cm; depth = 0 – 

10 cm) were taken across each plot and homogenised by hand to obtain a representative soil 

sample. After collection, samples were transferred (< 1 h) to a -80°C freezer to quench 

metabolic amine turnover. Samples were stored and lyophilised as described in section 4.2.3. 

Post-lyophilisation, roots and other debris (e.g. plant litter) were removed and the samples were 

then ground using a stainless-steel ball mill (MM200, Retsch GmbH, Haan, Germany), to aid 

in the recovery of biogenic amines. The mill was sterilised between samples by rinsing with 

deionised water followed by a 70% ethanol solution. Ground soil was transferred to sterile 

polypropylene 1.5 ml microfuge tubes and shipped, on dry ice (-78.5°C), to the West Coast 

Metabolomics Center (UC Davis Genome Center, Davis, CA, USA) for untargeted biogenic 

amine analysis using hydrophilic interaction chromatography electrospray quadrupole time of 

flight tandem mass spectrometry (HILIC-ESI QTOF MS/MS). 
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Briefly, extraction consisted of vortexing (~15 s) a 0.4:1 (w/v) soil-to-3:3:2 (v/v/v) 

MeCN/IPA/H2O solution, before shaking for 5 min at 4°C, centrifuging (2 min, 14000 g) and 

recovering an aliquot of the supernatant for analysis. LC/QTOFMS analysis of extracted 

aliquots was performed on an Agilent 1290 Infinity LC system (G4220A binary pump, 

G4226A autosampler, and G1316C Column Thermostat) coupled to a SCIEX Triple TOF mass 

spectrometer, total runtime was 16.8 min. Polar compounds are separated on an Acquity UPLC 

BEH Amide Column, 13 nm (pore size), 1.7 µm (particle size), 2.1 mm × 150 mm maintained 

at 45°C at a flowrate of 0.4 ml min-1. Solvent pre-heating (Agilent G1316) was used. The 

mobile phases consist of: (A) Water, 10 mM ammonium formate, 0.125% formic acid and (b) 

acetonitrile: water (95/5, v/v), 10 mM ammonium formate, 0.125% formic acid. The gradient 

was: 0 min 100% (B), 0-2 min 100% (B), 2-7 min 70% (B), 7.7-9 min 40% (B), 9.5-10.25 min 

30% (B), 10.25-12.75 min 100% (B), 16.75 min 100% (B). 

A sample volume of 1 µl for positive mode and 3 µl for negative mode was used for 

the injection. Sample temperature was maintained at 4°C in the autosampler. The mass 

spectrometer was operated with gas temperatures set to 300°C and pressure to 345 kPa (curtain 

gas (CUR) – 2.4 bar; IonSpray Voltage Floating (ISFV) – 4500 V; declustering potential (DP) 

– 10 V; capillary electrophoresis (CE) – 100V). Electrospray ionization (ESI) performed full 

scans in the mass range m/z 50–1200. The number of cycles in MS1 was 1667 with a cycle 

time of 500 ms and an accumulation time of 475 ms. Data were collected in both positive and 

negative ion mode and analysed using MS DIAL, open software for metabolome analysis, as 

described in Tsugawa et al. (2015). Final curated results were reported as peak heights, internal 

standards were included for quality control and peak correction purposes only. Therefore, data 

presented are qualitative and compounds are tentatively identified, as is routine for untargeted 

analysis (Gertsman and Barshop, 2018). A full compound list is presented in supplementary 

information with standardised reference nomenclature being generated using RefMet (Fahy 

and Subramaniam, 2020). 

 

4.3.5 Soil N2O flux 

A mobile, automated GHG monitoring system, utilising a GC-Electron Capture 

Detector (8610C, SRI Instruments, CA, USA), as previously described in Marsden et al., 

(2018), was used to monitor nitrous oxide (N2O) fluxes from three of the four replicates for 

each treatment. Stainless steel chamber bases (50 × 50 cm; 0.25 m2) were installed into plots 
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two weeks before MP application, to which chambers (0.0625 m3) were tightly secured. A foam 

strip on the base of each chamber ensured a tight seal. Briefly, the automated sampling system 

provided eight greenhouse gas flux measurements per 24 h period, per chamber during 

uninterrupted measurement. Emissions were monitored for 6 months from installation. 

However, this manuscript focuses on the 2-week periods following initial MP loading, to test 

whether the background emissions from the soil were perturbed by MP incorporation and the 

two subsequent N fertiliser application events, respectively, as these periods were likely to 

produce the greatest fluxes (Bell et al., 2015; Cardenas et al., 2019).  

 

4.3.6. High-throughput sequencing and quantitative PCR analysis 

4.3.6.1. 16S rRNA gene sequencing 

Soil samples for 16S rRNA gene sequencing were collected after 6 months of MP 

incorporation. Five soil cores (n = 5; ø = 1 cm; depth = 0 – 10 cm) were taken from each plot 

and homogenised by hand to obtain a representative sample. After collection, samples were 

passed through a 2 mm sieve and subsequently transferred (< 1 h) to a -80°C freezer for pre-

extraction storage. Genomic DNA was extracted by mechanical lysis from 0.25 g soil per 

sample using a DNA Soil Fecal/Soil Microbiome Kit (ZymoResearch, CA, USA). Quality and 

concentration of extracted DNA were assessed by agarose gel electrophoresis (AGE) using a 

Qubit 4.0 Fluorometer dsDNA BR Assay Kit (Life Technologies, United States). Libraries of 

16S rRNA gene amplicons were created using primers for rRNA marker genes, specifically for 

the V4 region of the 16S rDNA targeting bacteria and archaea (515F/806R), as previously 

described in Fadrosh et al. (2014). PCR was performed using a ViiA7 qPCR system (Applied 

Biosystems, MA USA). Thermocycling conditions were: initial denaturation at 95°C for 3 min, 

followed by 25 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s with a final elongation 

at 72°C for 5 min. Purified amplicons were then quantified using the aforementioned Qubit 4.0 

Fluorometer, pooled in equimolar amounts and the final pool was run on the Illumina MiSeq 

platform (Illumina Inc., CA).  
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4.3.6.2. Bioinformatic analysis  

The previously described protocols of Fadrosh et al. (2014) and Distaso et al. (2020) 

were used to process raw sequencing reads. Briefly, data pre-processing extracted the barcodes 

from sequences, and subsequently cleaned primer sequences using tagcleaner. Barcodes and 

sequences were then re-matched using in-house python scripts and the resulting filtered reads 

analysed using QIIME v1.3.1. Firstly, the libraries were demultiplexed based on the different 

barcodes. Then, the sequences were classified into operational taxonomic units (OTUs) 

combining de novo and reference-based methods (open-reference OTU generation algorithm) 

using the SILVA reference database version 132 (Yilmaz et al., 2014). 

 

4.3.6.3. Quantitative PCR of N cycling functional genes 

Samples for quantitative PCR (qPCR) of N cycling functional genes were collected on 

the 3rd July (pre-N fertiliser application) and on the 15th July (12 days post-N fertiliser 

application). On each occasion five soil cores (n = 5; ø = 1 cm; depth = 0 – 10 cm) were taken 

per plot and homogenised by hand to obtain a representative sample. After collection, samples 

were passed through a 2 mm sieve and subsequently transferred (<1 h) to a -80°C freezer for 

pre-extraction storage. Samples were extracted for NO3-N and NH4-N, as described in section 

4.2.2. DNA was extracted by mechanical lysis from 0.25 g soil per sample using a DNEASY 

Powersoil kit (Qiagen, Hilden, Germany). The quality and concentration of extracted DNA 

were assessed by AGE.  

To obtain the standard curves for qPCR assays, functional genes (urease (ureC), 

archaeal ammonia oxidation (AOA-amoA), bacterial ammonia oxidation (AOB-amoA), 

complete nitrification (comammox), nitrite reductase (nirK; nirS), nitrous oxide reductase 

(nosZ) and nitrogenase iron protein (nifH)) were amplified using the primers listed in Appendix 

2 Table 1.  The concentration of plasmid was determined on a Qubit 4.0 Fluorometer dsDNA 

BR Assay Kit (Life Technologies, United States), and used for the calculation of standard copy 

numbers.  qPCR was performed using a QuantStudio 7 System (Applied Biosystems, Waltham, 

United States). The thermocycling conditions are for each gene are summarised in Appendix 2 

Table 1. For each gene, a high amplification efficiency of 92 – 105% was obtained, the 

R2 values were > 0.99 and no signal was observed in the negative controls. The copy numbers 

for each sample of soil DNA were calculated based on comparison with the standard curve. 
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qPCR was performed using a QuantStudio 7 System (Applied Biosystems, Waltham, United 

States). Results were subsequently normalised by the extracted DNA concentration for each 

sample to account for differences in microbial biomass within samples.   

 

4.3.7. Earthworm abundance and biomass 

Earthworm abundance and weight were assessed after 6 months. Briefly, a 0.018 m3 

(0.3 × 0.3 × 0.2 m) pit was dug in a randomly selected location in each experimental plot. Soil 

from the pit was placed into a tray and thoroughly manually sorted, and earthworms collected. 

All earthworms were counted (abundance) and weighed (biomass). Abundance is expressed as 

individuals m-2 and biomass as fresh weight biomass m-2. 

 

4.3.8. Wheat harvest data 

Spring wheat was harvested at full maturity, 5 months after sowing. The harvest 

protocol consisted of hand cutting, with shears, 1 × 2.85 m strip, through the centre of each 

experimental plot, to remove edge effects. Samples were then dried (85°C, 48 h). For each 

harvested sample, ears were removed from stems and each were weighed. Ear and stem weight 

were subsequently added to calculate a total wheat biomass dry weight per plot or biomass 

yield. Biomass yield was used as it is highly related to grain yield and gives an overall indicator 

of plant health (Damisch and Wiberg, 1991). After drying, harvested wheat seeds were 

separated, weighed and ground, and subsequently analysed for total C and N using a TruSpec® 

Analyser (Leco Corp., St. Joseph, MI, USA) and a C:N ratio calculated. 

 

4.3.9. Statistical analysis 

All statistical analysis was run using R v 4.0.3 (R Core Team, 2021) unless otherwise 

stated. With all graphical analysis being constructed in ‘ggplot2’ (Wickham, 2016) unless 

otherwise stated. A significance level of p < 0.05 was used for all analyses.  

Normality and homogeneity of variance of the chemical and physical soil properties of 

the treated Eutric Cambisol were assessed using Shapiro-Wilk’s test and Levene’s test, 

respectively. For data that did not conform to parametric assumptions even after using log10 
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transformation (NO3-N, NH4-N, EC and PLFA Fungal:Bacterial ratio) a Kruskal-Wallis test 

(stats package; R Core Team, 2021) was used to assess the similarities between MP treatments 

and sampling dates, otherwise a one-way ANOVA (Analysis of variance) was used (for pH, 

bulk density and total PLFA biomass). The results for this are summarised in Table 4.1. A one-

way ANOVA was also used to assess treatment variations in wheat biomass data (total 

aboveground biomass, stem and leaf biomass, ear biomass and harvested wheat seed C:N ratio) 

and earthworm data (abundance and biomass).  

The ‘vegan’ (Oksanen et al., 2020) and ‘ggplot2’ (Wickham, 2016) packages were used 

to construct NMDS (Non-metric multidimensional scaling) analysis of the PLFA community 

based on Bray–Curtis dissimilarities. All PLFAs detected were used in the analysis, to represent 

the whole microbial community. This was followed by computation of an ANOSIM (Analysis 

of similarities) to identify differences in dispersion between centroids of groups as determined 

by MP loading rate, or time of sampling. Fungal-bacterial ratios and Gram positive to Gram 

negative ratios were calculated by summing the FA biomarkers for the respective groups 

(summarised in Appendix 2 Table 2). Total biomass was calculated by summing the 

concentration of PLFAs recovered.  

Fluxes of N2O for each chamber were calculated using the methods described in Scheer 

et al., (2014). The linear slope of N2O concentrations over time included either three or four 

data points. N2O fluxes for each two-week period (post-MP and fertiliser application, 

respectively) were graphically analysed. Trapezoidal integration was used to calculate 

cumulative N2O emissions for each treatment, these were tested for significance using for 

Kruskal-Wallis tests, after failing parametric assumptions.  

Bacterial observed OTU richness was tested for significant differences using ANOVA. 

The evenness of the 16S community was also calculated using Pielou's evenness (Jost, 2010) 

and tested for significant differences using ANOVA. NDMS, followed by an ANOSIM 

(Analysis of similarities) was used to test statistically whether there was a significant difference 

between groups of sampling units between treatments (β-diversity). 

N cycling gene abundance, before and after a N fertilisation event was analysed using 

mixed effect models with the ‘lme4’ package (Bates et al., 2015). We considered MP loading 

rate and sampling time and their interaction as fixed effects and individual plots as temporal 

random effects. For each variable, residuals from each model were tested for normality, 

autocorrelation and heteroscedasticity using graphical tools. For all genes, a log10 conversion 
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was found to improve the fitness of all models. An ANOVA was then run on each model to 

test treatment effects, significant results were further explored using a Tukey adjusted post-hoc 

test using the ‘emmeans’ package (Lenth, 2021). Pre- and post- fertilisation soil NO3-N and 

NH4-N concentrations were analysed by ANOVA. 

MetaboAnalyst v5.0 (Chong et al., 2018; Pang et al., 2020) was used for the analysis 

of biogenic amine data. First, normalisation was performed using generalised logarithm 

transformation (glog) and Pareto scaling. Normalised data was subsequently used for heatmap 

creation (using Euclidean distance and Ward clustering algorithms). One-way ANOVA was 

also performed to identify significant differences in compound concentrations between 

treatments.  

 

4.4. Results 

4.4.1. 16S bacterial community 

In total, 7179 bacterial operational taxonomic units (OTUs) were identified across all 

16S rRNA gene reads. There was little variation in the proportional abundance of OTUs 

between the different MP treatments with Proteobacteria (Gram-negative) and Actinobacteria 

(Gram-positive) being the most abundant phyla (Fig. 4.2A). There were no significant 

differences between bacterial OTU richness (F(3,12) = 0.32,  p > 0.8)  (Fig. 4.2B) or evenness 

(F(3,12) = 1.74,  p > 0.2) (Fig. 4.2C) across the different treatments, as tested by ANOVA. 

Equally, the NMDS ordination shows no clear separation or divergence in soil bacterial 

communities between the MP treatments and the unamended control (Fig. 4.2D). Lastly, we 

found no significant differences in bacterial β-diversity between the treatments, as confirmed 

by ANOSIM analysis (p > 0.8).  
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Figure 4.2 16S sequencing bacterial community in response to different microplastic doses (n 

= 4). A) Proportionate abundances of major phyla within each microplastic loading rate. B) 

Boxplot of observed bacterial OTU richness against microplastic loading rate (n = 4). C) 

Boxplot of bacterial OTU evenness against microplastic loading rate (n = 4). D) Non-metric 

multidimensional scaling (NMDS) ordination plot of bacterial OTU community composition 

across microplastic loading rates. 

 



140 

 

4.4.2. PLFA-derived community 

The fungal-bacterial ratio of PLFAs remained similar across all treatments, there was a 

significant difference between the 2 months post-application 10000 kg ha
-1

 and the 6 months 

post-application 0 kg ha-1 MP loading rates, with the latter having a higher prevalence of 

bacteria (Table 4.1). Total PLFA biomass was also similar across all treatments, with a 

significant difference between the 2 months post-application 1000 kg ha-1 and the 6 months 

post-application 10000 kg ha-1 MP loading rates, the latter having a higher PLFA biomass 

yield.  NMDS analysis was used to show the clustering of all soil-derived PLFA compounds, 

under MP treatments, 2 and 6 months after initial MP application (Fig. 4.3). Overall, the 

different MP treatments separated by sampling date, with a clear separation between the 2 and 

6-month points. The PLFA derived community was also more closely grouped at the 6-month 

sampling point. Results of the PERMANOVA confirmed that there was no significant 

difference in group dispersion between MP loading treatments (p > 0.2). However, there was 

a significant difference in group dispersion between sampling times (p < 0.001). Additionally, 

there was no interaction effect between MP loading and sampling time (p > 0.9).  

 

 

Figure 4.3. NMDS plot of the PLFA profile for each microplastic soil treatment. Ellipses 

represent 95% confidence intervals for each treatment.       
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4.4.3. N cycling genes 

The presence and abundances of eight genes involved in the N cycle, specifically ureC, 

amoA (AOA, AOB, and comammox), nirK, nirS, nosZ and nifH, (functions are summarized in 

Appendix 2 Fig. 2), were assayed by qPCR before and after an N fertilisation event. We 

acknowledge that the primers used to amplify the functional genes (e.g. ureC) do not target all 

of the community. In most cases, gene abundance was not greatly affected by either MP loading 

rate or sampling time (i.e. pre- and post-N fertilisation) (Fig. 4.4, Appendix 2 Table 3). 

However, ANOVA showed that there were significant differences for nirK (F(3,12) = 4.6, p < 

0.05) and nosZ (F(3,24) = 3.2, p < 0.05) abundance, respectively, by MP loading. For both nirk 

and nosZ gene abundance, LMS post-hoc analysis showed a significant difference between 100 

kg ha-1 and 1000 kg ha-1 MP loading (p < 0.05). For AOB, ANOVA also showed a significant 

interaction effect between MP loading rate and sampling time (F(3,24) = 3.5, p < 0.05). LMS 

post-hoc analysis showed that there were significant differences between 0 kg ha-1 and 1000 

kg ha-1 MP loading, pre-fertilisation (p < 0.05) and between 0 kg ha-1 MP loading, pre-

fertilisation, and 10000 kg ha-1 MP loading post-fertilisation (p < 0.05). Concentrations of soil 

NO3-N (F(1,12) = 16.6,  p < 0.01) and NH4-N (F(1,12) = 22.0,  p < 0.01) were significantly higher 

post-fertilisation (Fig. 4.4 E, F). 
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Figure 4.4. N cycling gene soil abundances pre- and post-N fertiliser application (n = 4). A) 

Urease-associated gene UreC, B) Free N fixation associated gene nifH, C) Nitrification-

associated genes, the amoA gene of; i) AOA, ii) AOB, iii) comammox, D) Denitrification-

associated genes; i) nirK, ii) nirS, iii) nosZ, E) Soil nitrate, F) Soil ammonium. All gene 

abundances were normalised by extracted DNA quantities to account for differences in 

microbial biomass and transformed by log10. Soil nitrate and ammonium are reported by dry 

soil weight (n = 4). 

 

4.4.4 N2O flux  

Kruskal-Wallis analysis showed that there were no significant differences between 

cumulative N2O fluxes for the 2 week period following initial MP application (H(3) = 0.74, p = 

0.9), or the first (H(3) = 4.6, p = 0.2) and second fertiliser (H(3) = 3.6, p = 0.3) application events. 

Fluxes over each period are summarised in Fig. 4.5. 
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Figure 4.5. N2O fluxes from soil upon; A) initial MP loading, B) N fertilisation event one (40 

kg N ha-1 equivalent), C) N fertilisation event two (80 kg N ha-1), by MP loading treatment. In 

each panel, the line represents the mean flux (n = 3) and the shaded area represents the upper 

and lower bounds of the SEM.   
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4.4.5. Biogenic amines 

Untargeted biogenic amine analysis identified a total of 112 tentatively identified 

compounds. Of these known compounds detected, none showed statistically significant 

differences between treatments. There were no clear grouping or responses within the biogenic 

amine data (Fig. 4.6). The samples were characterised by a wide range of compounds 

(Appendix 2 Fig. 3) but predominated by amino acids and peptides. 

 

Figure 4.6. Influence of microplastic application rate on the biogenic amine (BA) 

concentration in soil. Heatmap showing expression profiles of soil treatments based on the top 

50 most significant known BAs identified by ANOVA (p < 0.03). BAs are clustered using 

Euclidean distance and Ward linkage. Data was normalised using a log10 transformation and 

Pareto scaling. The colour of samples ranges from red to blue, indicating metabolite 
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concentration z-score; numbers 3 to -3 on the scale bar indicate the number of standard 

deviations from the mean.  

 

4.4.6. Soil properties including inorganic N 

Overall, there were no significant differences in soil chemical properties (pH, EC, NO3-

N and NH4-N) associated with the MP treatment as tested by ANOVA or Kruskal Wallis (p > 

0.1). Trends in the data show some natural variation in all soil properties measured throughout 

the season (summarised in Table 4.1).  

 

4.4.7. Earthworms abundance and biomass 

Earthworm abundance and biomass was not significantly affected by MP loading. All 

earthworms identified in the samples were endogenic. Overall, there were no significant 

differences between total earthworm biomass (F(3,12) = 0.63,  p > 0.6) or earthworm abundance 

(F(3,12) = 0.85,  p > 0.4; Table 4.1).  

 

4.4.8. Plant biomass 

Plant biomass was not significantly affected by MP loading, however, yields of this 

field trail were lower than the typical wheat yields for the year (DEFRA, 2019). There were no 

significant differences between total above ground plant biomass (F(3,12) = 0.09,  p > 0.9), stem 

and leaf biomass (F(3,12) = 0.08,  p > 0.9), ear biomass (F(3,12) = 0.09,  p > 0.9), or harvested 

seed C:N ratio (F(3,11) = 0.03,  p > 0.9; Fig. 4.7).  
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Figure 4.7. Effect of microplastic application rate on above-ground wheat biomass (n = 4). A) 

Total above-ground biomass, B) Stem and leaf biomass, C) Ear biomass and D) Seed C:N 

ratio.   

 

4.5. Discussion 

4.5.1. 16S bacterial community response to MP addition 

Soil microorganisms are vital to soil functioning and are considered the most sensitive 

indicator of soil quality, due to their ability to rapidly respond to changing environmental 

conditions (Bünemann et al., 2018; Lau and Lennon, 2012; Schimel, 2018). Therefore, despite 

a significant amount of functional redundancy (Jia and Whalen, 2020), substantial shifts in the 

microbial community are likely to represent a change in soil function (Lehman et al., 2015). 

This study showed that after 6 months of pure microplastic addition to previously 

uncontaminated soil, there was no significant change in the proportional abundance of the 

bacterial community (Fig 4.2A), bacterial richness (Fig 4.2B), evenness, or bacterial 

community compositional divergence (β-diversity) (Fig 4.2C). To contextualise this, a 

previous study at the same site, showed significant changes in the microbial community under 

biochar application over similar time scales (Jones et al., 2012). 

Currently, the effect of MPs loading on soil microorganisms is unclear. Our findings 

are contradictory to several studies, which observed significant effects of microplastic (e.g. 
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LDPE; Huang et al., 2019), polyvinyl chloride (PVC; Yan et al., 2020), and combined PE and 

PVC (Fei et al., 2020; Seeley et al., 2020)) addition on the soil bacterial community, 

particularly richness, evenness, and diversity. However, H. Chen et al. (2020) and Judy et al. 

(2019) showed various microplastic additions had no significant effects on the microbial 

community over short time periods (70 d and 9 months, respectively). Additionally, Ren et al. 

(2020) reported mixed but largely positive effects of MP on the microbial community (increase 

in richness and diversity) in a fertilised soil over a 30 d period, although the microorganisms 

may have reacted to the fertiliser addition and not the MPs. Based on these studies it is evident 

that the type of plastic incorporated into the soil will dictate the biological and ecological 

effects exhibited. Therefore, further studies of the effects of different types of plastic, and 

combinations of plastics are required to fully understand any impact on soil health.   

 

4.5.2. Effect of MP loading on soil PLFAs 

PLFAs give a representation of the living soil microbial biomass and provide a snapshot 

of soil community structure and abundance at the time of sampling. NMDS clustering of PLFA 

microbial community shows a large amount of overlap between MP loading rates implying 

community structure had not changed significantly (Fig. 4.3). This is contrary to previous 

microcosm studies that have shown significant shifts in PLFA derived microbial community 

even under relatively low levels of MP loading (Zang et al., 2020). MPs are a recalcitrant C 

pool and are only likely to become bioavailable as a viable C source over long time periods 

(years to decades) with the aid of natural abiotic degradation (hydrolysis, photo-oxidation or 

thermal oxidation) (Ángeles-López et al., 2017; Chamas et al., 2020) and to a lesser extent 

biological degradation (e.g. earthworms) (Huerta Lwanga et al., 2016). This biochemical 

inertness in the short to medium term is unlikely to cause major shifts in microbial 

communities. In terms of soil physical properties, MPs have been suggested as a new and 

distinct microbial habitat, for example for biofilm colonisation and formation (McCormick et 

al., 2014; Zhang et al., 2019), potentially leading to a change in the microbial community. 

However, this was not observed in this study as there was no significant community divergence 

in MP treatments from control plots in either 16S bacterial community or PLFA derived 

microbial community. The SEM (Fig. 4.1) illustrates that the MP powder used here is not 

porous or cavity-containing and therefore may not offer an attractive habitat for microbial 

colonisation (Or et al., 2006). Additionally, we would dispute this theory, as studies with 
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biochar, a similarly recalcitrant C source, have shown that microbial colonisation is very 

sparse, concluding that even after several years biochar did not provide a substantial habitat for 

soil microbes (Quilliam et al., 2013). However, this requires confirmation with experimental 

evidence for MPs.   

Separation between all MP loading treatments groups between the two sampling points 

(2 months and 6 months post MP addition) illustrated a distinct temporal shift in the structure 

of the microbial community. Seasonal, as well as cropping-associated, shifts in the PLFA 

composition in soil have been observed (Duncan et al., 2016; Ferrari et al., 2015; Moore-

Kucera and Dick, 2008). These shifts are generally associated with membrane adaptation to 

changing environmental stress levels (for example, temperature, moisture or nutrient 

availability), resulting in physiological community change (Blagodatskaya and Kuzyakov, 

2013; Bossio and Scow, 1998). It is likely the observed change in the soil PLFA community 

between sampling points may be due to natural seasonal changes (for example the difference 

in soil moisture, illustrated in Appendix 2 Fig. 1). 

 

4.5.3. Effect of N cycling gene abundance pre- and post- N fertilisation  

Within agroecosystems, N availability is often considered the predominant limiting 

factor in plant growth (Vitousek and Howarth, 1991) and the second most limiting factor after 

C in microbial growth (Kuypers et al., 2018; Buchkowski et al, 2015). Microbial uptake, 

assimilation, and cycling of mineral and organic N is key to soil function, and as such N cycling 

processes (mineralisation, nitrification, and denitrification) have been used as sensitive and 

ecologically relevant indicators of soil quality and ecological stability (Bünemann et al., 2018; 

Iqbal et al., 2020). Changes in the abundance of the key regulatory functional genes involved 

in these processes are likely to indicate changes in soil function. However, there is little 

evidence of how MPs could affect soil N cycling (Iqbal et al., 2020). Overall, this study showed 

little change in the abundance of N cycling functional genes between pre- and post- inorganic 

N addition under all MP loading rates. Genes that did differ significantly in abundances 

between treatments were denitrification associated (nirK and nosZ) and nitrification associated 

(AOB amoA). For both denitrification associated genes, lower abundances were displayed 

within the 1000 kg ha-1 treatment compared to the 100 kg ha-1 treatment (Fig. 4.4C), with no 

effects on abundances at either higher or lower MP loading rates. AOB amoA gene abundance 

was significantly lower than control levels in the 100 kg ha-1 treatment pre-fertilisation and 
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10000 kg ha-1 treatment post-fertilisation. The general trend in N cycling gene abundances 

showed variability pre-fertilisation. Post-fertilisation this variability was reduced and gene 

abundances were more even across all MP loading treatments, while soil inorganic N was 

significantly increased post-fertilisation (Fig. 4.4).  

N fertilisation has been shown to have a mixed effect on N cycling genes (Tosi et al., 

2020). Effects are highly dependent on the nature of the N source applied (inorganic or 

organic), with inorganic sources of N having a much weaker effect than organic sources of N, 

as well as the fertilizer duration, crop rotation, and pH (Ouyang et al., 2018). The results of this 

study show that there were no large changes in soil N cycling functional genes in the presence 

of MP loading. Although there may have been several further factors influencing N gene 

abundance, for example when fertiliser was applied when the soil was very dry (Appendix 2 

Fig. 1), preventing soil biology from accessing the additional N. Equally, as alluded to above, 

C is the primary limiting factor for soil microbiology, if the community was already C limited 

then it is unlikely that there would be significant growth or change stimulated by N addition. 

Studies have shown that MPs have the potential to affect N cycling processes, for example 

repression of key N cycling enzymes (e.g. leucine-aminopeptidase and N-acetyl-β-

glucosaminidase (Awet et al., 2018; Bandopadhyay et al., 2020)) and N hydrolysis (Huang et 

al., 2019). However, N cycling is a key soil function, particularly in agricultural soil, and the 

longer-term impacts of MPs on should be explored in more detail. 

 

4.5.4 Effect of MP loading on soil N2O flux 

N2O is a potent greenhouse gas, with a global warming potential (GWP) 298 times 

larger than carbon dioxide (CO2) and it is a stratospheric ozone-depleting substance (Stocker, 

2014). In soil, it is primarily produced by the biological pathways of nitrification and 

denitrification. As such it can be used as a functional indicator of soil biological quality at an 

ecosystem processes scale (Bünemann et al., 2018). Therefore, understanding whether MP 

addition influences soil N2O fluxes will be key to understanding their overall environmental 

impact. It has been shown that MPs may reduce soil N2O emissions by inhibiting the microbial 

phyla associated with N cycling genes (Ren et al., 2020; Rillig et al., 2021), although results 

vary depending on the type of MP applied and environmental conditions (Shen et al., 2020; 

Sun et al., 2020).  
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While chambers in this study included plant and soil, the plant contribution of N2O is 

minimal (Chang et al., 1998), therefore we focussed on the soil contribution. Here, N2O flux 

from the soil after MP and fertiliser applications, respectively, were very low (Fig. 4.5). N2O 

fluxes are commonly observed after fertiliser application (up to 250 μg N2O-N m-2 h-1; Carswell 

et al., 2018), however, we observed none. Equally, there were no differences between fluxes 

between MP loading levels (Appendix 2 Table 4). However, it is difficult to attribute this low 

flux directly to the microplastic application, particularly as control plots also exhibited small 

fluxes. Notably, much of the sampling period was dry (Appendix 2 Fig. 1), this is likely to have 

suppressed N2O emission, as water filled pore space (WFPS) was too low to allow the 

development of the anaerobic ‘hotspots’ required for N2O production (via denitrification) and 

emission (Barrat et al., 2020; Dobbie and Smith, 2001). We therefore recommend further field-

based measurement of MPs effect on N2O and other GHGs (particularly CO2 and methane 

(CH4)), under a range of climatic conditions and soil types.   

 

4.5.5. Biogenic amines as effected by MP loading 

BAs are low molecular weight organic bases synthesised by prokaryotes and eukaryotes 

in the soil, mainly through decarboxylation of amino acids or amination and transamination of 

aldehydes and ketones. In a food context, BAs are often seen as undesirable due to their 

potentially toxic properties (Mah et al., 2019), in this sense they are potential food quality 

indicators (Ruiz-Capillas and Herrero, 2019). However, there is also evidence that BAs have a 

role in quorum sensing in the gut between bacteria and host organisms (Hughes and Sperandio, 

2008; Sudo, 2019).  

There has been little exploration of BAs in the soil system specifically. But it is 

generally understood that increased N availability in the soil will increase the number of BAs 

synthesised both by soil biota and plants (Pérez-Álvarez et al., 2017). Equally, homospermidine 

biosynthesis has been proposed as a stress regulator in rhizobia (Fujihara, 2009). In this study, 

one of the first to profile the soil BAs, we found no significant change in the BA amine profile 

of soil applied with MPs compared to control values, 6 months after initial MP application (Fig 

4.5, Appendix 2 Fig. 3). A large range of compounds were extracted, many of which have 

putative functions including 5′-methylthioadenosine, an inhibitory by-product of methionine 

metabolism, which can be processed to salvage biogenically available sulphur (North et al., 

2017). As well as abscisic acid, a plant hormone that regulates many aspects of plant growth, 
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including development, maturation, and stress response (Nambara, 2016) and CcpA, which is 

a core transcriptional regulator in the control of catabolism in Gram-positive bacteria (Carvalho 

et al., 2011). However, due to the variability in response to MP loading and between replicates 

(Fig. 4.6), further research is required to understand the role BAs may play in both quorum 

sensing and stress regulation in the soil system, as well as their spatial homogeneity.    

   

4.5.6. Effect of MP on earthworms 

Earthworms are key representatives of soil fauna in relation to soil health, performing 

an important role in the formation and maintenance of soil fertility and structure, as well as 

being a major contributor to invertebrate biomass in soil (Blouin et al., 2013). Therefore, 

understanding the risks that MPs may pose to their health, abundance, and functioning within 

the agroecosystem is a priority. Earthworms have been shown to transport MPs throughout the 

soil profile either through adhesion to the exterior of the earthworm body (Rillig et al., 2017b) 

or egestion of smaller MP particles (Huerta Lwanga et al., 2016). Our study found that there 

were no significant differences in earthworm abundance or biomass after 6 months of MP 

incorporation into the soil (Table 4.1); however, we did not measure egestion or adhesion. This 

result is inconsistent with much of the existing literature on earthworm exposure to MPs in soil, 

with several studies reporting negative effects on earthworm physiology (e.g. skin damage, 

induction of oxidative stress, loss of body weight, reduction in growth, mortality), although 

experiments were all laboratory or mesocosm based, over short time periods (< 60 days) (Boots 

et al., 2019; Cao et al., 2017; Y. Chen et al., 2020; Huerta Lwanga et al., 2016; Judy et al., 

2019; Rodríguez-Seijo et al., 2019). MP loading rates in the aforementioned experiments 

ranged from 0.01% to 2% (w/w). Here we added MPs at the rates of 0%, ~0.1%, ~1% and 

~10% (w/w), while earthworm health was not directly measured, a lack of change in earthworm 

abundance or biomass suggests that earthworm health had not diminished significantly, even 

at high MP loading. By proxy, this also suggests that earthworms do not actively avoid areas 

of microplastic contamination in the field, as in this study there were no barriers to earthworms 

leaving the MP loaded plots. 

With this, it must be noted that this study only incorporated MPs into the top 10 cm of 

soil, therefore exposure of earthworms to MPs will likely depend on their ecotype, with 

endogenic earthworms likely to have higher exposure rates than the deeper dwelling anecic 

earthworms. As MPs are moved through the soil profile over time it is likely that the full extent 
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of the impact on earthworms will be clearer. Equally, the longer-term (years to decades) impact 

of MPs is likely to be more severe than the short term. As MP particles degrade and fragment, 

they will become more ingestible to macrofauna and microfauna, although it is likely that the 

MP powder added in this study was already small enough to be digestible, possibly leading to 

greater mortality in soil-dwelling fauna (Lahive et al., 2019). Likewise, earthworms live several 

years, therefore it is likely that this study captures only a snapshot of the earthworm lifecycle. 

Longer term monitoring is required to establish trends in earthworm health. 

 

4.5.7. Crop health as affected by MP loading 

The ability to effectively grow healthy crop plants is a key ecosystem service provided 

by the soil in an agroecosystem context, underpinning human health and nutrition (Power, 

2010). However, data on the effect of MP loading on crop yield and health is limited. MPs have 

the potential to affect plants in several ways; altering the soil structure, immobilising nutrients, 

contaminant transport, or adsorption and direct toxicity (Rillig et al., 2019). Several short-term 

laboratory studies have shown the negative effect of MPs on plant health and biomass (de 

Souza Machado et al., 2019; Qi et al., 2020; Zang et al., 2020). The results of this field study 

are contradictory to these studies, suggesting that MPs, even at extremely high loading rates, 

have no significant effects on the aboveground, ear biomass, or C:N ratio of the harvested seed 

of T. aestivum over one cropping season. However, the effect of MPs on root biomass and 

rooting structure was not measured in this study, though it is likely that the aboveground 

biomass would be affected if root growth characteristics were altered by MPs, as a high 

proportion of wheat roots are found within the top 10 cm of soil (Li et al., 2011).  

 

4.5.8. Implications and future research direction 

Most existing data on MPs is based on laboratory or mesocosm based experiments. 

While these data are useful, field studies better represent real-world conditions. Longer-term 

(years to decades) datasets are required to obtain a more comprehensive understanding of the 

effect of MPs on soil physiochemistry as well as soil biology and plant health. The study of 

extremely high MP loading rates may also be useful to understand future effects of MP on soil, 

if continuous loading occurs (e.g. repeated use of plastic mulch films). Generally, it is 

recommended that loading rates for future MP studies should reflect realistic loading rates in 
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soil to accurately reflect a perturbed system. Even in heavily mulched soil MP loading rarely 

exceeds 325 kg ha-1, although this is likely to increase as MPs continue to be added to the soil 

(Huang et al., 2020); additionally, little data explicitly reporting loading rates is available, with 

many studies choosing to report as items kg-1 (Büks and Kaupenjohann, 2020).  

It must also be noted that the potential negative impacts of (particularly conventional) 

MPs on soil and ecosystem health are likely to increase over time as their decomposition rates 

are extremely slow relative to the rate of entry to the system, leading to a progressive 

accumulation within soil (Rillig, 2012; Rillig et al., 2017a), potentially becoming persistent 

organic pollutants. Equally, while biodegradation is possible to a small extent, it is likely MPs 

relative recalcitrance means that microbes will prefer less energetically expensive C sources, 

and therefore, biological, co-metabolic, break-down of plastic is unlikely to occur to any great 

extent in field soils (Ng et al., 2018). That is what our data suggests, i.e. that if there are no 

additives, once a biofilm has formed on the outside, pure MPs are no different from an inert 

sand particle. 

This study applied pure MP LDPE powder, with very low levels of contaminants and 

additives present. The chemical formulation of MP entering agricultural soils, however, is 

expected to vary widely due to their origin (e.g. mulch film, biosolids) giving rise to variable 

amounts of additives (co-pollutants) such as plasticisers (generally low-volatility, insoluble and 

chemically stable; Campanale et al., 2020), colourants and pigments (inorganic pigments 

containing heavy metals or organic pigments including various chromophoric families that are 

potentially carcinogenic and mutagenic; Gičević et al., 2020; Völz, 2009), ultraviolet (UV) 

stabilisers (inorganic or organic cadmium, barium, or lead salts;  Stenmarck et al., 2017) or 

other polymers (Steinmetz et al., 2016). Generally, additives are not chemically bound to the 

plastic polymer and subsequent leaching of these additives may pose more of a hazard to soil 

ecology (particularly microorganisms) than the relatively recalcitrant MP themselves, 

particularly in the short term (days to years). The exchange and effects of additives or 

contaminants between plastic particles and the surrounding soil environment and the 

subsequent effect on soil function (e.g. enzyme inhibition) is a key area for future terrestrial 

plastics research.  

It is also important to state that the majority of published literature on MPs does not 

state the purity of the plastics, MP used and the type (and concentration) of aforementioned 

additives incorporated. Reporting of this information is highly recommended in future 
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literature, due to the potential varying effects on the soil environment as well as toxicity to soil 

ecology, which may significantly affect the results, particularly of biological studies.  

 

4.6. Conclusions 

This study demonstrated that the application of pure LDPE MP powder to a field site 

with no previous history of plastic pollution or application had no significant effect on soil 

biological health or function over one growing season (6 months). In this regard, we reject 

hypotheses i, ii and iii, as there were no significant changes in biological quality, crop biomass, 

or yield with MP loading; equally no effect of loading rate was observed. In conclusion, MPs 

themselves may not pose a significant problem, at least in the short term (days to years) due to 

their recalcitrant nature. Further work should be undertaken focusing on the effect of additives 

and contaminants on soil function and plant health, as well as the longer-term (years to decades) 

effects of MP incorporation to soil, in a field context. 
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5.1 Abstract 

The cycling of soil organic matter (SOM) and carbon (C) within the soil is governed by the 

presence of key macronutrients, particularly nitrogen (N) and phosphorus (P). The relative ratio 

of these nutrients has a direct effect on the potential rates of microbial growth and nutrient 

processing in soil and thus is fundamental to ecosystem functioning. However, the effect of 

changing soil nutrient stoichiometry on the small organic molecule (i.e., metabolite) 

composition and cycling by the microbial community remains poorly understood. Here, we 

aimed to disentangle the effect of stoichiometrically balanced nutrient addition on the soil 

metabolomic profile and microbial carbon use efficiency by adding a labile C source (glucose) 

in combination with N and/or P. After incorporation of the added glucose into the microbial 

biomass (48 h), metabolite profiling was undertaken by UPLC-MS/MS. 494 metabolites were 

identified across all treatments mainly consisting of lipids (n = 199), amino acids (n = 118), 

carbohydrates (n = 43), > 97% of which showed significant changes in concentration between 

at least one treatment. Overall, glucose-C addition generally increased the synthesis of other 

carbohydrates in soil, while addition of C and N together increased peptide synthesis, indicative 

of protein formation and turnover. The combination of C and P significantly increased the 

number of fatty acids synthesised. There was no significant change in the PLFA-derived 

microbial community structure or microbial biomass following C, N and P addition. Further, 

N addition led to an increase in glucose-C partitioning into catabolic processes (i.e., reduced C 

use efficiency, determined by 14C-labelling) suggesting the biomass was N, but not P limited. 

Based on the metabolomic profiles observed here, we conclude that inorganic nutrient 

enrichment causes substantial shifts in both primary and secondary metabolism within the 

microbial community leading to changes in resource flow and thus soil functioning.  

 

Keywords: Metabolic profiling, Soil organic carbon, Stoichiometry, Nutrient cycling, Carbon 

mineralisation   
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5.2. Introduction 

A major portion of terrestrial carbon (C) cycling is mediated and driven through soil 

microorganisms (Gougoulias et al., 2014). Soil microbes and their ability to metabolise (i.e. 

catabolise and anabolise small molecules fundamental to biological function) is inherently 

governed by the stoichiometry of bioavailable nutrients present in the soil (Cleveland and 

Liptzin, 2007). In most soils, available C is the primary factor limiting microbial growth 

(Heuck et al., 2015), with the availability of inorganic nutrients (N and P) being secondary 

regulators once C limitation is overcome (Creamer et al., 2016). It has been suggested that as 

the soil stoichiometric balance, here referring to the ratio of C:N:P, reaches the optimum for 

microbial cells, growth will lead to C storage, with no additional limitations (i.e., pH, oxygen 

and moisture status) (de Sosa et al., 2018; Mason-Jones et al., 2021). However, there is limited 

information on how the availability of these compounds will affect soil metabolomic 

processing and function, particularly at the individual metabolite level. Ultimately, it is the 

relative balance of these metabolites that determines key soil processes (e.g., the amount of C 

stored in the microbial biomass, the release of organic acids and mineral weathering rates, 

secondary metabolite production). 

The metabolome is defined as the entirety of small molecules (< 1500 Da) found within 

a biological sample (Klassen et al., 2017). Primary metabolism, concerning the small molecules 

directly involved in the growth, development and reproduction of an organism, is key to normal 

organismal function (Rojas et al., 2014). Glucose, being a simple sugar, is considered a 

ubiquitous, labile, C substrate and is key in glycolysis, the key energy production pathway in 

most microorganisms (Sanchez and Demain, 2008). N and P are also potentially rate limiting 

nutrients, important in protein and amino acid synthesis, and energy metabolism and formation 

of various organic acids and phospholipids, respectively (Vitousek and Howarth, 1991; 

Kornberg, 1995; Kuypers et al., 2018; Y. Zhang et al., 2019).  

It has been suggested that N and P cycling rates are intrinsically linked due to the 

potential for P limitation to develop under high N availability; as well as in terms of their impact 

on SOC processing under different stochiometric balances (Brailsford et al., 2019). Thus, 

nutrient inputs will shift the underlying stoichiometry of SOC and ultimately the soil organic 

matter (SOM) pools, which are key in both soil health and ecosystem service provision (i.e. 

climate regulation, crop production and water management (Garratt et al., 2018)). However, 

based on the current literature, it is unclear how changes to soil nutrient stoichiometry impact 
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the soil biological community’s metabolism and SOC cycling. Generally, inference of changes 

in SOM/C cycling have been made through direct measurement of soil chemistry (Abrar et al., 

2020), soil processes (e.g. CO2 flux, exoenzyme activity; Hartman and Richardson, 2013), 

shifts in microbial community structure (Aanderud et al., 2018) or functional gene assays 

(Schleuss et al., 2019). However, high-resolution metabolomic approaches to C cycling have 

been shown to be very sensitive to changes in soil conditions (Withers et al., 2020; Overy et 

al., 2021), yet are rarely applied.  

This laboratory-based mesocosm study investigates the effect of changing nutrient 

stoichiometry on primary and secondary metabolism of soil microorganisms, with the aim of 

providing a mechanistic understanding of the microbial breakdown and metabolomic 

processing of labile C, N and P substrates. We used a combination of (i) liquid chromatography/ 

mass spectrometry (LC/MS) based untargeted primary metabolomics assay, (ii) a phospholipid 

fatty acid (PLFA) assay to assess cell growth and structural community change, and (iii) a 14C-

labelled glucose assay to assess the temporal uptake and transformation of labile nutrient 

substrates. 

Within the context of a typical agricultural soil this study aims to provide a better 

mechanistic understanding of biogenic nutrient processing. We hypothesise that: 1) nutrient 

(C:N:P) addition will cause a significant shift in the whole (intercellular and extracellular) 

metabolic profile of soil, 2) nutrient addition will not have an impact on the size and structure 

of the microbial community in the short-term (48 h), 3) glucose addition would lead to an 

increase in the Gram-negative-to-Gram-positive bacterial ratio and a decrease in the fungal-to-

bacterial ratio due to preferential bacterial growth, and 4) eliminating nutrient limitation will 

increase the microbial removal of low-molecular weight C from a high C, low inorganic N and 

P environment.  

 

5.3. Materials and methods 

5.3.1. Soil characteristics and analysis 

Independent replicate samples (0 - 10 cm, n = 5) of a sandy clay loam textured Eutric 

Cambisol soil were collected from a postharvest maize (Zea mays L.) field located at the 

Henfaes Agricultural Research Station, Abergwyngregyn, North Wales (53°14′N, 4°01′W). 

Following collection, the field-moist soil was sieved through a 2 mm mesh to remove stones 
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and plant material and ensure sample homogeneity. Soil characteristics are summarised in 

Table 5.1. Briefly, gravimetric soil moisture was determined by oven drying (105°C, 24 h), 

organic matter was ascertained by loss-on-ignition in a muffle furnace (450°C, 16 h) (Ball, 

1964). C:N ratio was determined on oven-dried, ground soil using a TruSpec® Analyzer (Leco 

Corp., St. Joseph, MI, USA). pH and electrical conductivity were determined on 1:5 (w/v) soil-

to-DI H2O extracts using standard electrodes. Bioavailable N and P levels in soil were 

determined using 1:5 (w/v) soil-to-0.5 M K2SO4 and 1:5 (w/v) soil-to-0.5 M AcOH (acetic 

acid) extracts, respectively. Dissolved organic carbon (DOC) and total nitrogen (TN) were 

determined in the K2SO4 extracts using a Multi N/C 2100S Analyzer (AnalytikJena, Jena, 

Germany). Nitrate (NO3-N) and ammonium (NH4-N) in the K2SO4 extracts were measured by 

the colorimetric methods of Miranda et al. (2001) and Mulvaney, (1996), respectively. 

Phosphate (PO4-P) was measured on the AcOH extracts using the colorimetric method of 

Murphy and Riley (1962). Cations (Na, K and Ca) were measured on the AcOH extracts using 

a Sherwood Model 410 Flame Photometer (Sherwood Scientific Ltd, Cambridge, UK). 

Table 5.1. Characteristics of the soil used in the study. Values represent mean ± SEM (n = 4), 

reported on a dry weight basis. 

 

 

 

 

 

 

 

 

 

Soil characteristics  

Gravimetric moisture content (%) 32.6 ± 1.5 

Organic matter (%) 6.57 ± 0.26 

pH 5.7 ± 0.1 

EC (μS cm-1) 64 ± 4 

Total C (%) 2.62 ± 0.06 

Total N (%) 0.30 ± 0.01 

C:N ratio 8.7 ± 0.1 

Dissolved organic C (mg C kg-1) 54.7 ± 3.0 

Total N (mg N kg-1) 39.0 ± 3.8 

Extractable NO
3

-
 (mg N kg-1) 6.3 ± 0.3 

Extractable NH
4

+ 
(mg N kg-1) 1.0 ± 0.2 

Extractable PO
4

+
 (mg P kg-1) 14.1 ± 0.6 

Exchangeable Na (mg kg-1) 13.5 ± 1.3 

Exchangeable K (mg kg-1) 219.2 ± 63.9 

Exchangeable Ca (mg kg-1) 134.9 ± 12.7 
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5.3.2. Soil treatment  

To stimulate microbial metabolism and metabolite production, a nutrient solution was 

added to the soil. In general, the most common factor limiting microbial activity is the 

availability and quality of C (Demoling et al., 2007). As such, glucose was chosen as the 

primary nutrient to be added, as it represents a major input of C, in both monomeric and 

polymeric form, into soil systems and is utilised by almost all organisms within the microbial 

community (Gunina and Kuzyakov, 2015; Reischke et al., 2015). As N and P also have the 

potential to be microbial growth limiting, glucose was either added alone or in the presence of 

N, or P, or N + P at a stoichiometric ratio of 60:7:1 (C:N:P) based on the ratio of the microbial 

biomass (Cleveland and Liptzin, 2007; Brailsford et al., 2019). The concentration at which 

glucose was added to the soil was based on the likely amount released on plant cell death (50 

mM; Jones and Darrah, 1996; Teusink et al., 1998). This concentration was chosen as it 

provided an excess of C (30 mmol C kg-1) relative to the size of the native microbial biomass 

(18 mmol C kg-1, of which ca. 10% is active; Wang et al., 2014) and DOC pool (4.6 mmol C 

kg-1) and would therefore promote microbial growth, but remain realistic. Preliminary 

experiments showed that this level of glucose induces exponential microbial growth after ca. 

16 h (data not presented). The N was added as NH4NO3 (3.5 mmol N kg-1) and P was added as 

NaH2PO4 (0.5 mmol P kg-1). Following treatment addition, soil samples were incubated at 25 

°C for 48 h (reflecting a summer period), in the dark to stimulate microbial growth and substrate 

utilisation.   

 

5.3.3. Untargeted soil metabolomic sample preparation, extraction, and analysis  

Prior to use, all glassware was acid-washed (5% HCl, > 24 h) to remove chemical 

residues, rinsed in HPLC-grade water three times, and subsequently dry heat sterilised (150 °C, 

2.5 h) (Jain et al., 2020). All equipment used to process the soil (e.g., tweezers and spatulas) 

were thoroughly cleaned both before and between samples with deionised water and 70 % 

industrial methylated spirit (IMS) to prevent cross-contamination. Nutrients in the 

concentrations described in section 5.3.2 were added by pipette in 1 ml of HPLC-plus grade 

water (Sigma-Aldrich, Munich, Germany) evenly across the surface of 10 g fresh weight of 

soil in 240 ml polypropylene sample containers (Snap-Seal®; Corning, NY, USA). This larger 

container was initially used to ensure even coverage of the soil surface with the nutrient 

solution. Five independent soil replicates (n = 5) were used per treatment. Samples were 
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subsequently incubated as described in section 5.3.2. At the end of the incubation period, 

samples were immediately transferred to 20 ml glass vials and fumigated with ethanol-free 

chloroform for 24 h to lyse microbial cells, in order to increase metabolite yield (Swenson et 

al., 2015) and limit microbial processing of metabolites, using the method of Vance et al. 

(1987). After fumigation, samples were immediately frozen (-80 °C) to quench any residual 

metabolic and enzymatic activity (Wellerdiek et al., 2009). From this point onwards, all 

samples were stored at -80 °C unless otherwise stated and while being processed (i.e. out of 

the freezer) samples were kept on ice (4 °C). Lyophilisation of samples (> 24 h) was then 

performed using a Modulyo Freeze Dryer (ThermoFisher Corp, Waltham, MA) equipped with 

an RV vacuum pump (Edwards Ltd., Crawley, UK). Samples were then mechanically ground 

using a Retsch MM200 stainless steel ball mill (Retsch GmbH, Haan, Germany) for 60 s at a 

frequency of 20 Hz to aid in cell lysis and metabolite recovery and sample homogeneity (Wang 

et al., 2015; Withers et al., 2020). The ball mill was cleaned thoroughly between samples with 

HPLC-grade water followed by 70% IMS, to avoid cross-contamination.  

The following extraction method is based on the hybridised methods of Swenson et al. 

(2015) and Fiehn et al. (2008). Briefly, we used the extraction method from Swenson et al. 

(2015) and the solvent makeup (3:3:2) from Fiehn et al. (2008), to ensure broad metabolite 

coverage, with the recovery of both polar and non-polar metabolite classes. Further, the weight 

of soil extracted was increased in order to maximise the volume of supernatant available for 

preconcentration by lyophilisation, and subsequent analysis. A pre-experiment was used to 

compare the efficiency of the metabolite extraction method proposed here to that of the 

Swenson et al. (2015) method (the results are summarised in Appendix 3 Section S1).   

Upon extraction, 6 g of each fumigated, lyophilised, ground soil sample was weighed 

into a 35 ml glass centrifuge tube (Kimax®; DWK Life Sciences, Stoke-on-Trent, UK), to 

which 24 ml of pre-cooled (-20°C) acetonitrile (MeCN)/isopropyl alcohol (IPA)/HPLC-plus 

grade water (H2O) (3:3:2 v/v/v) extractant was added, using a glass pipette. Samples were then 

horizontally shaken on ice (4°C) at a frequency of 200 min-1 for 1 h, then centrifuged at 3320 

× g for 15 min (Swenson et al., 2015). Supernatants were then pipetted, using glass pipettes, 

into 20 ml glass vials and stored at -20 °C (to ensure metabolic activity was quenched but the 

supernatant was not frozen). Samples were left unfiltered due to the potential of contamination 

from dissolution of the filter paper and plastic housing. The supernatant was lyophilised in 2 

ml glass vials using a Modulyo Freeze Dryer with RV pump attached to a SpeedVac vacuum 

concentrator (Savant; ThermoFisher Corp.). The vials were periodically topped up with the 
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supernatant, taking note of the quantity added (~15 ml total) and lyophilised to complete 

dryness. Samples were then shipped on dry ice (-78.5 °C) to Metabolon Inc. (Morrisville, North 

Carolina, USA) for untargeted LC/MS metabolomic analysis. Upon analysis, samples were 

dissolved in methanol:water (4:1 v/v) and subjected to the standard Metabolon sample 

preparation procedure. Ultrahigh Performance Liquid Chromatography-Tandem Mass 

Spectroscopy (UPLC-MS/MS) analysis parameters, bioinformatics, compound ID and data 

curation are summarised in Appendix 3 Section S2. 

 

5.3.4. 14C-glucose labelled nutrient metabolism assays 

Soil metabolism was measured by nutrient depletion following a protocol similar to that 

described for freshwater sediments in Brailsford et al. (2019). Briefly, 2 g fresh weight of soil 

was added to a sterile 50 ml polypropylene centrifuge tube (Falcon®, Corning Inc., Corning, 

NY), and 200 μl of 14C-[U]-glucose (Lot 3,632,475; PerkinElmer Inc., Waltham, MA) was 

added to the soil surface to a final C concentration of 38 μM (3.7 kBq ml-1). This level of 

glucose in the unamended control reflects the natural background level of glucose in soil 

solution in this soil (Boddy et al., 2007). Five independent soil replicates (n = 5) were used per 

treatment. To measure glucose depletion in each of the C, N and P amended treatments (as 

described in section 5.3.2), 14C-labelled glucose was added alone or in the presence of N, or P, 

or N + P in the concentrations described in Section 5.3.2.  

After addition of the 14C-labelled substrate, a 1 M NaOH trap (1 ml) was suspended 

above the soil to catch any respired 14CO2. The tubes were then hermetically sealed and 

incubated at room temperature (20 ± 1℃) in the dark. The NaOH traps were replaced after 0, 

1, 3, 6, 9, 24, 36, 48, 60, 72, 80, 96, 103, 122 148 and 168 h, post glucose application. The 

efficiency of the NaOH traps was > 98% (as determined by collecting 14CO2 generated from 

adding excess 0.1 M HCl to 0.001 M NaH14CO3). The amount of 14C in the NaOH traps was 

measured by mixing with Optiphase HiSafe 3 liquid scintillation cocktail (PerkinElmer Inc., 

Waltham, MA, USA) and placing on a Wallac 1404 scintillation counter (Wallac EG&G, 

Milton Keynes, UK) with automated quench correction. 

The amount of 14C-labelled glucose remaining in the soil was determined after 7 d (168 

h) by extracting each sample with 1:5 (w/v) ice-cold (4℃) 1 M KCl to halt any further glucose 

turnover (Rousk and Jones, 2010). Samples were shaken (200 rev min-1, 30 min) and 

centrifuged (33,000 g, 5 min). Subsequently, 1 ml of supernatant was mixed with Optiphase 
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HiSafe 3 liquid scintillation cocktail (PerkinElmer Inc., Waltham, MA, USA) and their 14C 

content measured by liquid scintillation counting as described above. 

 

5.3.5. Soil PLFA analysis 

Nutrients in the concentrations described in section 5.3.2 were added in 2 ml of HPLC-

plus grade water (Sigma-Aldrich, Munich, Germany) to 20 g fresh weight of soil in 240 ml 

polypropylene sample containers (Snap-Seal®; Corning, NY, USA). Four independent soil 

replicates (n = 4) were used per treatment. Samples were subsequently incubated as described 

in section 5.3.2. At the end of the incubation period, samples were immediately transferred to 

sterile 50 ml polypropylene centrifuge tubes (Falcon®, Corning, NY, USA) and frozen (-80 °C) 

to quench lipid turnover. Lyophilisation (> 24 h) was then performed using a Modulyo Freeze 

Dryer with RV pump. Samples were then shipped on dry ice (-78.5 °C) to Microbial ID 

(Newark, DE, USA) for extraction, fractionation and transesterification using the high 

throughput method of Buyer and Sasser (2012). Subsequently, samples were analysed using an 

Agilent (Agilent Technologies, Wilmington, DE, USA) 6890 gas chromatograph (GC) 

equipped with autosampler, split–splitless inlet, and flame ionization detector. The system was 

controlled by MIS Sherlock® (MIDI, Inc., Newark, DE, USA) and Agilent ChemStation 

software. GC-FID specification, analysis parameters and standards can be found in Buyer and 

Sasser (2012). Microbial biomass was calculated as the sum of all PLFAs detected in the 

sample. The PLFAs detected are summarised in Appendix 3 Table S1.  

 

5.3.6. Statistical analysis 

All statistical and graphical analysis was performed in the R environment (v 4.1.1; R 

Core Team, 2021), and graphical analysis was constructed using the ‘ggplot2’ package 

(Wickham, 2016), unless otherwise stated. Analysis was deemed significant if p < 0.05. All 

metabolomic statistical analysis was performed using, natural log (ln) transformed median 

scaled imputed data. A principal component analysis (PCA) was constructed using the ‘vegan’ 

package (Oksanen et al., 2020), in order to reduce the dimensionality of the dataset and give a 

visual representation of data variance. An analysis of similarity (ANOSIM) was subsequently 

performed using ‘vegan’ to test treatment separation statistically. 
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To measure the magnitude of the effect of nutrient (C, N and P) addition, the number 

of compounds with significant differences using pairwise treatment comparisons were assessed 

using the ‘stats’ package (R Core Team, 2021), and for compounds deemed significantly 

different between treatments the direction of change was summarised. Fatty acids (FAs) were 

also examined in greater detail; a statistical heatmap of a number of exemplary short chain, 

medium and long chain saturated and unsaturated FAs, with pairwise treatment comparisons 

was carried out as above and then graphically represented. 

Specific examples of representative metabolites (carbohydrates, amino acids, peptides 

and FAs) and compounds associated with specific metabolic pathways (TCA cycle and 

glutamate pathway) were further explored graphically and statistically using ANOVA models 

in the ‘stats’ package, significant results were additionally tested using a Tukey posthoc test 

using the ‘agricolae’ package (de Mendiburi, 2019).  

 A non-metric dimensional scaling (NMDS) approach was used to condense the 

multivariate PLFA data in a comprehensible number of dimensions and visualize the relative 

degree of similarity among samples using the whole PLFA dataset, this was performed using 

the ‘vegan’ package. All PLFAs detected were used in the analysis, to represent the structure 

of the whole microbial community. An analysis of similarity (ANOSIM) was subsequently 

performed using ‘vegan’ to test separation statistically. PLFA derived microbial biomass was 

also tested using ANOVA, as above.  

 The cumulative mineralisation of 14C-labelled glucose over time was calculated for 

each replicate. The final percentage (7 d post glucose application) of respired 14CO2 was used 

to calculate microbial C use efficiency (Jones et al., 2018). The final concentration of 14C 

labelled compounds in the soil (as determined by ice-cold 1 M KCl extraction on day 7) was 

not subtracted from this, as it was assumed that these compounds were the result of glucose 

turnover in the soil, i.e., either metabolic by-products or end-products (Glanville et al., 2016). 

Differences in total 14C-CO2 respiration was assessed using a Kruskall-Wallis test, followed by 

a pairwise Wilcox posthoc test, as data did not conform to parametric assumptions. The final 

concentration of 14C-labelled compounds in the soil was assessed by ANOVA, as above.  
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5.4. Results 

5.4.1. Soil primary metabolite profile 

In total, 494 individual metabolite compounds were identified across all treatments. 

This included, 199 fatty acids, 118 amino acids, 43 carbohydrates, 41 nucleotides, 21 peptides 

and 72 other compounds including xenobiotics, secondary metabolites and cofactors and 

election carriers. 

PCA (Fig. 5.1) was used to gain a high-level overview of data variance and sampling 

grouping. The ANOSIM, confirmed significant similarity between treatment groups (R = 

0.147, p = 0.002). However, qualitative interpretation of the PCA showed that the Glu treatment 

was not strongly separated from the no-addition and control treatment groups, possibly because 

these groups appeared to exhibit more variation between replicates than the mineral (+ N/ + P/ 

+ N + P) treated groups (Appendix 3 Fig. S1). The addition of Glu + N and Glu + P led to 

extensive shifts in the soil metabolome, however, the changes in the overall metabolic profile 

of the soil were distinctly different for the two elements. As noted above, P addition in the 

absence of N resulted in a dramatic accumulation of many lipids, but if N was also present, this 

accumulation was much less, or reversed, as evidenced by the proximity of the Glu + N and 

Glu + N + P groups in Figure 5.1 and shown in Table 5.2.  
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Figure 5.1. Influence of nutrient (C, N and P) addition on the primary metabolite profile of 

soil. 2D principal component analysis (PCA) of soil metabolite composition. Principal 

component 1 (PC1) explains 76.5% of total variance, principal component 2 (PC2) explains 

30.0% of total variance. Plotting was performed on natural log (ln) transformed median 

scaled data. 
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Table 5.2. Summary of changes in fatty acids (FAs) between nutrient addition treatments. A tabulated statistical heatmap; numbers in the table 

indicate the ratio of the mean scaled intensity for a metabolite between two experimental groups being compared. Red and green filled cells 

indicate a significant decrease in metabolite concentration and a significant increase in metabolite concentration, respectively, using a Welch’s 

two sample t-test (p ≤ 0.05). Statistical analysis was performed on natural log-transformed data. 

 
Effect of N Effect of P Effect of N + P 

 

Biochemical name 

Glu + N 

/  
No 

addition 

Glu + N 

/ 

Control 

Glu 

+ N 

/ 

Glu 

Glu + P / 

 No 

Addition 

Glu + P 

/ 

Control 

Glu 

+ P / 

Glu 

Glu + 

P / 

Glu + 

N 

Glu + N 

+ P / No 

addition 

Glu + N 

+ P / 

Control 

Glu 

+ N 

+ P 

/ 

Glu 

Glu 

+ N 

+ P / 

Glu 

+ N 

Glu 

+ N 

+ P /  

Glu 

+ P 

Short chain 

butyrate/isobutyrate 

(4:0) 
0.48 0.8 0.83 0.12 0.19 0.2 0.24 0.19 0.31 0.32 0.39 1.61 

isovalerate (i5:0) 0.74 0.69 0.84 0.42 0.4 0.48 0.57 0.28 0.26 0.32 0.38 0.66 

Valerate (5:0) 0.66 0.85 0.87 0.21 0.27 0.27 0.31 0.25 0.32 0.33 0.37 1.2 

Isocaproate (i6:0) 0.81 0.52 1.03 0.15 0.1 0.19 0.18 0.23 0.15 0.29 0.28 1.53 

Caproate (6:0) 1.06 1.03 1.44 0.33 0.33 0.45 0.32 0.59 0.57 0.8 0.56 1.76 

Medium and 

long chain 

saturated 

Caprate (10:0) 0.99 1.02 1.12 1.13 1.16 1.28 1.14 1 1.03 1.13 1.01 0.89 

Myristate (14:0) 0.68 0.64 0.76 4 3.8 4.5 5.92 0.84 0.8 0.95 1.25 0.21 

(12 or 13)-

methylmyristate 

(a15:0 or i15:0) 
0.38 0.34 0.44 7.87 7.05 9.11 20.81 0.56 0.51 0.65 1.49 0.07 

Palmitate (16:0) 0.82 0.7 0.88 4.81 4.09 5.13 5.85 0.97 0.83 1.04 1.18 0.2 

Margarate (17:0) 0.52 0.42 0.6 5.71 4.62 6.59 10.98 0.8 0.65 0.92 1.54 0.14 
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Stearate (18:0) 0.84 0.78 0.86 2.98 2.65 2.96 3.42 1 0.92 1.02 1.18 0.35 

(16 or 17)-

methylstearate 

(a19:0 or i19:0) 
0.28 0.24 0.31 6.72 5.8 7.51 24.08 0.49 0.43 0.55 1.77 0.07 

Arachidate (20:0) 0.67 0.48 0.76 5 3.58 5.67 7.46 1.19 0.85 1.35 1.78 0.24 

Unsaturated 

Palmitoleate 

(16:1n7) 
0.34 0.31 0.34 9.38 8.58 9.29 27.57 0.51 0.47 0.51 1.5 0.05 

Oleate/vaccinate 

(18:1) 
0.36 0.31 0.34 12.65 11.01 12.05 35.55 0.57 0.5 0.54 1.6 0.05 

Eicosenoate (20:1) 0.26 0.25 0.29 5.84 5.5 6.42 22.09 0.5 0.47 0.55 1.9 0.09 

Erucate (22:1n9) 0.28 0.25 0.3 5.62 5.09 6.15 20.22 0.52 0.47 0.57 1.86 0.09 

Hexadecadienoate 

(16:2n6) 
0.44 0.43 0.35 1.69 4.67 3.76 10.76 0.51 0.51 0.41 1.18 0.11 

Linoleate (18:2n6) 0.23 0.31 0.26 9.14 12.64 10.36 40.43 0.37 0.51 0.42 1.63 0.04 

Dihomo-linoleate 

(20:2n6) 
0.36 0.34 0.4 8.23 7.75 9.15 23.06 0.61 0.57 0.67 1.7 0.07 

Hexadecatrienoate 

(16:3n3) 
0.6 0.61 0.48 2.57 2.65 2.08 4.32 0.64 0.66 0.52 1.07 0.25 

Linolenate (alpha or 

gamma; (18:3n3 or 

6)  
0.43 0.5 0.33 11.09 13.1 8.46 25.94 0.63 0.74 0.48 1.47 0.06 

Stearidonate 

(18:4n3) 
0.52 0.56 0.38 5.26 5.69 3.83 10.2 0.64 0.69 0.46 1.24 0.12 

Dihomo-linolenate 

(20:3n3 or 6) 
0.23 0.24 0.26 11.77 12.76 13.42 52.25 0.49 0.53 0.56 2.17 0.04 
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Arachidonate 

(20:4n6) 
0.2 0.21 0.21 15.35 16.48 16.49 78.46 0.46 0.5 0.5 2.37 0.03 

Eicosapentaenoate 

(20:5n3) 
0.8 0.82 0.67 10.48 10.65 8.66 13.02 0.72 0.73 0.59 0.89 0.07 

Docosapentaenoate 

(22:5n3) 
0.6 0.81 0.72 11.64 15.82 13.97 19.51 0.6 0.81 0.72 1 0.05 

Docosapentaenoate 

(22:5n6) 
0.11 0.12 0.13 12.04 13.31 14.46 113.56 0.37 0.41 0.44 3.49 0.03 

Docosahexaenoate 

(22:6n3) 
0.23 0.22 0.3 16.75 16.38 21.59 73.01 0.48 0.47 0.61 2.08 0.03 
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Treatment pairwise comparison (number of compounds significant and direction of 

change) is summarised in Table 5.3. Overall, the number of metabolites significantly affected 

and/or produced in the soil following the addition of water (Control) to the untreated soil (No 

addition) was minimal (n = 25; 5% of the total number of metabolites detected). However, all 

the compounds affected were lower in Control treatment, possibly representing a dilution effect 

compared to the No addition treatment. Glu addition alone (relative to the water-only Control) 

produced a number of significantly different compounds (n = 55; 11% of total detected), 

generally resulting in higher concentrations of carbohydrate molecules. This effect was noted 

in all comparisons involving Glu relative to the Control group, whether or not N and/or P was 

present. The additional effects of N and/or P caused the generation of a large number of further 

compounds (in some treatments up to half of all compounds), when compared to the Control 

or the Glu treatment groups. Additionally, N and/or P addition led to a larger number of changes 

relative to the Glu group than were seen relative to the Control group. 
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Table 5.3. Magnitude of metabolic change between treatments. Summary of the number of 

compounds significantly different between treatments, as measured by pair-wise comparison 

(p ≤ 0.05), and the direction of change. 

Effect Comparison 
Compounds 

significant 
Increase | Decrease 

Effect of H
2
O 

(control) 

Control / 
No addition 

25 0 | 25 

Effect of Glu 

Glu /  
No addition 

142 51 | 91 

Glu /  
Control 

55 46 | 9 

Effect of N 

Glu + N /  
No addition 

173 82 | 91 

Glu + N /  
Control 

137 90 | 47 

Glu + N /  
Glu 

175 95 | 80 

Effect of P 

Glu + P /  
No addition 

233 202 | 31 

Glu + P /  
Control 

223 204 | 19 

Glu + P /  
Glu 

246 222 | 24 

Glu + P /  
Glu + N 

215 170 | 45 

Effect of N + 

P 

Glu + N + P /  
No addition 

237 131 | 106  

Glu + N + P /  
Control 

142 117 | 25 

Glu + N + P /  
Glu 

215 147 | 68 

Glu + N + P /  
Glu + N 

85 67 | 18 

Glu + N + P /  
Glu + P 

240 80 | 180 
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In terms of specific molecules, glucose itself was similar in all treated groups, and 

significantly higher than No addition and the Control, as would be expected (Figs. 5.2 and 5.6). 

With regard to compounds associated with the TCA cycle, the presence of P was a key factor 

in compound (and intermediate) synthesis, with notable increases in alpha-ketoglutarate, 

succinate and fumarate, under Glu  + P (Fig. 5.3). Relative N deficit (and C excess) led to lower 

levels of amino acids and other nitrogenous compounds, while the restoration of the C:N 

balance generally increased the concentration of these compounds. However, 14 (52 %) 

proteinogenic aromatics compounds (e.g. phenylalinine and tryptophan) were found at similar 

levels in all groups, regardless of treatment with the exception of phenyllactate and kynurenate 

(Fig. 5.4A).  
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Figure 5.2. Response of exemplar carbohydrate molecules (glucose, lactate, sedoheptulose, 

ribonate, maltose and trehalose) within the soil in response to nutrient (C, N and P) addition. 

Letters indicate statistical differences between treatment groups (p < 0.05). 
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Figure 5.3. Response of compounds related to the tricarboxylic acid (TCA) cycle (citrate, 

alpha-ketoglutarate, succinate, fumarate, malate) within the soil in response to nutrient (C, N 

and P) addition. Letters indicate statistical differences between treatment groups (p < 0.05). 
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Figure 5.4. Response of proteinogenic and peptide compounds within the soil in response to nutrient (C, N, and P) addition. Panel A 

summarises exemplar amino acid compounds related to the aromatic family (phenylalanine, phenyllactate, tyrosine, tryptophan, kynurenine and 

kynurenate), Panel B summarises exemplar amino acid compounds related to the glutamate pathway (glutamate, gamma-aminobutyrate, 

citrulline and arginine) and Panel C summarises exemplar oligopeptides (alanylleucine, leucylglycine, threonylphenylalanine and 

phenylalanylglycine). Letters indicate statistical differences between treatment groups (p < 0.05).  
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Lipid metabolism was dramatically and consistently altered by supplementation of just 

Glu + P, but not by the combination of Glu + N or Glu + N + P (Table 5.2). This was particularly 

characterised by strong accumulation of long chain FAs in Glu + P treated samples. This effect 

was reversed for the short chain fatty acids (C4-C8; SCFAs). While medium chain length FAs 

were found at increased levels, the observed increases were less that seen for long chain FAs, 

especially polyunsaturated fatty acids (PUFAs), as illustrated in Table 5.2. 

 

5.4.2 PLFA profile 

The size of the microbial biomass showed significant differences between treatments, 

as tested by ANOVA (F(5, 18) = 2.82, p = 0.04) (Appendix 3 Fig. S2). However, further 

exploration using a Tukey HSD posthoc test showed no significant pairwise differences. 

NMDS ordination analysis was used to visually explore the clustering of the PLFA compounds 

produced under soil treatments (Fig. 5.5). Generally, there was little separation, with all 95% 

confidence intervals showing significant overlap, suggesting the PLFA derived microbial 

community structure was similar across all samples. This was further tested using an ANOSIM 

which, while significant, confirmed similarity between groups (R = 0.192, p = 0.02). 
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Figure 5.5. Influence of nutrient (C, N or P) addition on the PLFA derived microbial 

community structure of soil. NMDS plot of PLFA profiles of each soil treatment. Ellipses 

represent 95% confidence intervals for each treatment. 
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5.4.3. 14C-glucose mineralisation  

After incubating the soil with 14C-labelled glucose for 48 h, the microbial biomass had 

entered a phase of exponential growth, with a significant amount (greater than half of the final 

(7 d) total of respired 14C) having been taken up by the microbial biomass and respired as CO2 

(Fig. 5.6). During this first 36 h period following 14C-Glu addition Glu alone showed the most 

rapid mineralisation rate, with Glu + N and Glu + P closely grouped and Glu + N + P 

substantially slower. However, by 48 h Glu-alone had the lowest total 14CO2 production, while 

Glu + N + P had the second highest behind Glu + N. The water-only Control treatment showed 

no lag phase, likely due to the significantly lower amounts of C being applied in the other 

treatments (glucose was only added at a trace amount in this treatment).   

 

Figure 5.6. Microbial mineralisation of 14C-labelled glucose to 14CO2 in soil over 1 week 

(168 h) either in the presence or absence of additional C, N or P. Treatments were replicated 

in quintuplicate (n = 5), and error bars indicate the SEM. 
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By 168 h (7 d) the mineralisation rates in all treatments had slowed and had appeared 

to enter a quasi-stationary growth phase (Fig. 6). Kruskall-Wallis followed by pairwise Wilcox 

test showed there was a significant difference between treatments, specifically, between 

Control and all treatments (p ≤ 0.02), Glu and Glu + N (p = 0.02) and Glu + N + P (p = 0.016), 

Glu + N and Glu + P (p = 0.02), and Glu + P and Glu + N + P (p = 0.016). There were also 

significant differences in the amount of 14C labelled compounds remaining in the soil (F(4,19), 

p < 0.001), with Glu and Glu + P treatments having a higher percentage of 14C compounds 

compared to the other treatments (Fig. 5.7). 

 

Figure 5.7. Percentage of 14C-labelled material remaining in the soil after 1 week following 

the addition of 14C-labelled glucose either in the presence or absence of additional C, N or P. 

Letters indicate statistical differences between treatment groups (p < 0.05). 

 

5.5. Discussion 

5.5.1. Primary metabolite changes induced by nutrient addition 

PCA ordination of the metabolite data (Fig. 5.1) illustrate the general clustering of the 

No addition, Control and Glu treatments, suggesting that these treatments caused little change 

in the overall metabolite profile of the soil. Although this response is not surprising in the 

water-only (Control) treatment, we were expecting a large metabolic shifts in the glucose-only 
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treatment based on the observed exponential growth response in the 14C mineralization profile 

and increase in microbial biomass. Generally, microbial growth in soil is limited by the 

stochiometric ratio of C to macronutrients (i.e., N or P; Griffiths et al., 2012; Hobbie and 

Hobbie 2013), therefore the addition of a labile C substrate (here glucose) is likely to have a 

significant impact on the growth of the microbial community and the metabolite profile. The 

Control treatment showed little difference to the No addition treatment, likely representing the 

negligible biological effect of water addition and a microbial biomass that is primarily limited 

by C. Equally, all treatments receiving glucose had statistically significantly higher levels 

remaining in soil solution compared to the control and no addition treatments, suggesting that 

there was still a considerable amount of residual substrate that had not been metabolised within 

the 48 h incubation period, as we aimed to add sufficient glucose so C was not limiting for the 

duration of the incubation. On average, after 1 week, 99% of the applied glucose had been 

consumed or respired from the soil (Fig. 5.7). N and/or P addition led to more changes relative 

to the Glu group than were seen relative to the Control treatment (Table 5.3), consistent with 

the theory that limiting C may restrict pathways that provide substrates for N and P interactions 

(Griffiths et al., 2012). In the subsequent sections we will discuss the changes in metabolites 

within several major molecular groups, namely, carbohydrates, compounds related to the TCA 

cycle, amino acids and FAs.  

 

5.5.1.1 Carbohydrates 

Carbohydrates (sugar, starch and cellulose) contribute significantly to the makeup of 

SOM (Ratnayake et al., 2013; Reardon et al., 2018). They are also key metabolites in soil 

microorganisms, functioning as metabolic substrates, as well as structural and intra- and exo-

cellular components (Lowe, 1978). As stated in section 5.5.1, glucose was found in 

significantly higher concentrations in all treatments relative to the control and no addition. The 

conversion of glucose to lactate by anaerobic glycolysis is often used by cells that cannot 

produce enough energy (adenosine 5′-triphosphate (ATP)) through oxidative phosphorylation, 

to meet cellular demand (i.e. under anaerobic conditions) (Melkonian and Schury, 2021). 

Unicellular organisms undergoing exponential growth have been shown to grow by glucose 

fermentation, producing a range of small organic molecules such as ethanol, lactate or other 

organic acids (Vander Heiden et al., 2009).  Here, while the addition of glucose alone did not 

stimulate lactate production, lactate was increased in combination with the element additions 

(particular under P treatments; Fig, 5.2). Glucose also led to elevations of several other sugars, 
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sugar acids, and sugar alcohols, as well as di- and tri-saccharides (Fig. 5.2). In most cases, the 

carbohydrate compounds were higher under the nutrient treatments relative to the glucose alone 

group, consistent with generally elevated metabolic activity (Fuhrer et al., 2005; Vénica et al., 

2018). Equally, storage polysaccharide compounds (e.g., glycogen) are too large to be detected 

by the methods employed here, these compounds may have been an important store of excess 

C (Mason-Jones et al., 2021). 

 

5.5.1.2. TCA cycle related compounds 

The tricarboxylic acid cycle (TCA cycle) is the series of chemical reactions that release 

stored energy through the oxidation of organic molecules. Compounds related to the TCA cycle 

were the exception to the pattern described in section 5.5.1.1 (Fig. 5.3).  In this case it is 

possible that P was limiting for maximum oxidative phosphorylation. On P addition this 

limitation was removed, leading to significant increases in key compounds related to TCA, 

namely succinate and fumarate. Inorganic phosphate is the key compound in the synthesis of 

adenosine triphosphate (ATP) from adenosine diphosphate (ADP) (Berg et al., 2002a; Phillips 

et al., 2009).  

  

5.5.1.3. Amino acids 

Amino acids are the structural units required for protein (and enzyme) synthesis, 

therefore are extremely important for cell function, as well as providing substrates for 

biochemical reactions. (Moe, 2013). The Glu treatment contained the lowest levels for these 

amino acids, even below the pre-existing levels in the control soil, while Glu + N and Glu + N 

+ P in most cases had significantly higher levels. It is typical that relative N deficit (and C 

excess) leads to lower levels of amino acids and other nitrogenous compounds as the microbial 

community scavenge nitrogenous compounds from the soil (Geisseler and Horwath, 2014; 

Hicks et al., 2021), and that restoration of the C:N ratio results in increases in these compounds. 

We observed this scenario for many amino acids and their derivatives, especially in the class 

of amino acids derived through the glutamate pathways (arginine, glutamine, proline, 

histamine) (Fig. 5.4B). Glutamate is key to a number of metabolic processes in cells, including 

protein synthesis and glycolysis and the TCA cycle (Helling, 1998; Feehily and Karatzas, 
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2013), and is one of the most ubiquitous amino acids in soil, as a component of root exudates 

and the dissolved organic nitrogen (DON) pool (Paynel et al., 2001; Forde and Lea, 2007).   

An exception to this pattern in amino acid concentration was the pathway for aromatic 

amino acids (Fig. 5.4A).  The proteinogenic aromatics were found at similar levels in all 

groups, regardless of treatment. Amino acids possessing aromatic ring structures are generally 

less attractive to soil microbes as a source of organic N, due to their higher C:N ratio and 

complexity (Sauheitl et al., 2009). However, the Glu + P treatment did cause increases in 

several aromatic amino acid derivatives, for example phenyllactate, kynurenine, and 

kynurenate, presumably through stimulation of catabolic pathway elements. Aromatic amino 

acids are often the metabolic starting point for the production of a variety of secondary 

metabolite (Parthasarathy et al., 2018). And, while secondary metabolism was not specifically 

examined in this study, future research is recommended due to its importance in organismal 

interaction and sensing (Karlovsky, 2008). 

While whole proteins are too large to be considered in a metabolic analysis, peptides 

and tripeptides are considered markers for protein turnover (Doherty and Beynon, 2006). In 

this analysis the addition of glucose alone (Glu) did not lead to changes in peptide levels 

relative to the residual amounts in untreated soil, but both N and P (and their combination) did 

however increase these markers (Fig. 5.4C). These results are consistent with increased 

metabolic activity (protein production and growth) resulting from relief of the nutrient 

limitations (Hartman and Richardson, 2013).   

 

5.5.1.4. Fatty acids 

FAs are key to cellular function, contributing to a number of roles, including as 

membrane lipids (i.e. PLFAs) as well as storage and cell signalling (Carvalho and Caramujo, 

2018). FA biosynthesis pathways are highly conserved across the kingdoms of life (Berg et al., 

2002b).  Here we illustrate that soil microbial lipid metabolism was dramatically and 

consistently altered by the addition of Glu + P to the soil, but not by the combined treatment, 

Glu + N + P (Table 5.2, Appendix 3 Fig S1). P is an essential component of lipid metabolism, 

particularly in the synthesis of PLs, which under unstressed conditions are the dominant polar 

membrane lipid class. P is liberated and solubilised from inorganic P (applied here) by 

phosphatase enzymes (Jones and Oburger, 2011; Alori et al., 2017), and it has previously been 
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suggested that P mineralization and P solubilization are constrained by soil stoichiometry, 

because N and organic C are required for the synthesis of phosphatase (Widdig et al., 2019).  

Equally, an absence of P has also been shown to induce lipid accumulation (Yang et 

al., 2018). This study suggested the opposite, with P surplus, alongside a carbon substrate (Glu 

+ P) causing lipid accumulation, particularly among long chain FAs, which are generally 

involved in cell structure (i.e., PLs) and storage (e.g., triacyclglycerols (TAGs)) (Salati and 

Goodridge, 1996; Brown et al., 2021).  

Short chain fatty acids (SCFAs) decreased significantly under the Glu + P and Glu + N 

+ P treatments (Table 5.2). It is likely that this is a result of the increase in the ratio of labile C 

and P substrate, which was used preferentially to the soil’s inherent more recalcitrant organic 

matter derived substrates. As SCFAs are the metabolic end products of the anaerobic 

fermentation of recalcitrant polymeric carbohydrates (e.g., cellulose, starch, chitin) (Silva et 

al., 2020). SCFAs are functionally important metabolites, serving as electron donors for other 

functional microorganisms (e.g. fermentative Fe(III)-reducing microorganisms) and may also 

act as a substrate for the SCFA-utilising bacterial population (He and Qu, 2008; Awasthi et al., 

2018). Although the soils here were kept generally aerobic and therefore anaerobic processes 

were likely not dominant.  

N deprivation has also been shown to induce storage lipid accumulation (Weng et al., 

2014), while N deprivation was not a direct treatment here, it may have been induced as a result 

of the unbalanced soil stoichiometry (i.e. C:N:P ratio) particularly under Glu + P treatments. 

However, here, N provision without P (Glu + N) led to decreased levels of longer chain fatty 

acids, but not for short chains. This potentially illustrates the partitioning of microbial 

resources; with N addition leading to the metabolism of a greater number of nitrogenous 

compounds (i.e. amino acids and proteins), while P addition led to the metabolism of a greater 

number of P-reliant compounds (i.e. FAs and compounds dependent on oxidative 

phosphorylation). 

 In terms of lipid metabolism, we can speculate that plentiful P (but a deficit of N) led 

to increased oxidative phosphorylation, which provided sufficient ATP for robust fatty acid 

synthesis, but the enzymes and regulatory loops for lipid metabolism and utilization could not 

be generated under N deficit conditions. The combination of P and N may have either alleviated 

this bottleneck to allow normal metabolism to utilize the fatty acids or may have allowed for 

alternative pathways that preclude the generation of the fatty acids in the first place.   
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5.5.2. Soil biological community response 

The size and structure of the soil biological community underpins soil function (Wagg 

et al., 2014), driving SOM turnover and biogeochemical cycling (Rousk and Bengtson, 2014). 

Thus, C-induced shifts in soil microbial community structure may result in changes in soil 

function, notwithstanding the functional redundancy which exists within the community. 

Surprisingly, we observed no significant change in the ratio of key microbial taxa in response 

to C addition when assayed using the conventional PLFA biomarker approach (Fig. 5.5; 

Frostegård et al., 2011). In accordance with other studies, we did show an initial lag phase in 

14C-glucose use (ca. 10-16 h) followed by a short-lived exponential mineralization phase, a 

pattern consistent with microbial growth (Hill et al., 2008; Rousk and Baath, 2007). From the 

mineralization response and the total PLFA data, we conclude that glucose addition did 

stimulate de novo biomass production. This suggests that all components of the biomass grew 

equally, or that the conventional PLFA-biomarker approach failed to capture rapid changes in 

the active microbial community. We hypothesized that glucose addition would lead to an 

increase in the Gram-negative-to-Gram-positive bacterial ratio and a decrease in the fungal-to-

bacterial ratio due to preferential bacterial growth (Fanin et al., 2019). However, this was not 

observed, at the 48 h point of sampling. Overall, our results suggest that metabolite extraction 

and analysis by metabolomic methods may have greater sensitivity than conventional GC-MS 

based analysis of PLFAs. 

 

5.5.3 Use of LMW carbon 

The soil microbial community is expected to experience large pulse inputs of C, N and 

P in response to rhizodeposition, fertilisers and abiotic stress events (e.g. dry-rewet, freeze 

thaw) (Göransson et al., 2013; Jones et al., 2009; Warren, 2014). The treatments used here were 

chosen to reflect these. Although the depletion of 14C-labelled glucose (50 mM) occurred 

rapidly in all treatments (implied by the 14CO2 emission), an initial lag phase was apparent (Fig. 

5.6). We ascribe this slow initial response to a low microbial biomass and an initial saturation 

of internal metabolic pathways, rather than an overloading of the membrane transport systems 

(Hill et al., 2008). Note that no lag phase was observed when only a natural trace amount of 

glucose (38 µM) was added and that it was also catabolised more rapidly. At the time our 

metabolomic measurements were made (48 h), the amount of glucose-C recovered as 14CO2 in 
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the 50 mM glucose treatments was much larger (ca. 50%) than that in the trace glucose addition 

(38 µM, ca 18%; Fig. 5.6). This is consistent with a major shift in microbial C partitioning and 

thus C use efficiency, with more glucose-derived C being channelled into energy intensive 

growth rather than maintenance metabolism. The addition of extra nutrients also induced 

changes in internal C partitioning, with the presence of N leading to a reduction in C use 

efficiency, while P addition generally had no observable effect. We ascribe this response to the 

removal of N limitation allowing slightly more glucose-C (ca. 5%) to be channelled into 

catabolic rather than anabolic processes (Mooshammer et al., 2014; S. Zhang et al., 2019). The 

higher concentrations of 14C labelled compounds remaining in the soil in the Glu and Glu + P 

treatments after 7 d (Fig. 5.7) may also have been a result of this N limitation, reflecting the de 

novo production of exoenzymes (proteases) required to mine extra N from SOM to sustain 

further growth. It is also possible that some of the glucose-derived C in the N-free treatments 

was allocated to storage C pools, a phenomenon that is induced by nutrient imbalance (Mazoni 

et al., 2021).  

 

5.5.4 Implications for SOC cycling 

As plants develop, they have been shown to influence and select their soil microbial 

community through rhizosphere engineering (Sasse et al., 2018). Root exudates are nutrient 

rich solutions, provide the substrate for soil microbial growth and hotspots of interspecies 

interactions and biochemical cycling (Nadarajah, 2016; Canarini et al., 2019). While this 

experiment examined the fundamental response of the soil microbial community to relatively 

low concentrations of nutrient inputs, the field environment is vastly more complex than the 

microcosms examined here. Metabolomics has already been identified as a nascent field with 

potential for the study of the complex relationships within the rhizosphere (Mhlongo et al., 

2018). However, further work must establish the effect of nutrient addition on the competition 

and interactions between plants and the soil microbial community. These experiments must 

also consider the extraction method used, e.g. water, where the water-soluble fraction is most 

likely to yield the most representative of compounds readily accessible to the biological 

community (exo-metabolites), or a solvent extraction, which will yield more extensive intra- 

and exo-metabolites (Swenson et al., 2015).  

Finally, here we used glucose as a simple, labile substrate, however, in the natural 

environment glucose would typically be accompanied by the release of other monomers (e.g. 
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organic acids, amino acids) and oligomers (e.g. oligopeptides, oligosaccharides). For example, 

cellobiose, as a product of cellulose degradation, is one of the most ubiquitous and abundant 

disaccharides in soil, which can then be further broken down to glucose (Schellenberger et al., 

2011; Chmolowska et al., 2016). Further study of the soil microbial community metabolic 

response to complex mixtures of organic compounds is therefore recommended. 

 

5.6. Conclusions 

Addition of labile nutrients in stoichiometrically balanced (and unbalanced) ratios led to 

significant, rapid (< 48 h) changes within the soil metabolome as well as a difference in 

cumulative soil respiration rates over 7 days. Treatments with a combination of glucose and 

minerals elements tended to have a greater effect on the soil metabolism than glucose alone, in 

most cases this is attributed to an elevated microbial activity as nutrient limitations are 

alleviated. The most profound of these changes was the significant increase in FAs under Glu 

+ P treatment likely attributed to increased oxidative phosphorylation, while the relative N 

deficit prevented lipid metabolism and utilisation. Treatments without N addition had 

significantly lower cumulative soil respiration rates over 7 days, while P substrate addition had 

no significant impact on respiration, suggesting N was the main nutrient limiting microbial 

growth in this soil (after C). Inorganic nutrient enrichment of soils is likely to have substantial 

implications for labile and recalcitrant C cycling and microbial resource partitioning within the 

soil system. Understanding the fundamental changes in small molecule cycling is therefore 

likely to improve knowledge of both chemical ecology and soil and microbial function.  Further 

research is suggested to further understand metabolic changes in the soil with regard to C input 

from plants (particularly in the rhizosphere) and under more complex substrate mixtures. 
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6.1. Abstract 

Understanding the change in function of the biological community under different soil 

conditions is key to effective soil quality monitoring and mitigation of soil degradation. Current 

measures of biological soil quality suffer from drawbacks with most techniques having high 

expense, low throughput or a narrow focus on one component of the community. The aim of 

this study was to assess the use of volatilomics as a method to profile the soil microbial 

community and compare the technique to phospholipid fatty acid (PLFA) profiling as a 

measure of biological soil quality. An agricultural grassland soil (Eutric Cambisol) was 

subjected to a range of stresses in replicate laboratory mesocosms. Treatments included the 

imposition of hypoxia/anoxia by flooding with freshwater or saltwater in the presence or 

absence of plant residues. The volatile organic compound (VOC) and PLFA profile of each 

treatment was then compared to unamended mesocosms. We hypothesized that the VOC 

fingerprint of soil would be highly responsive to changes in microbial metabolic 

status/functioning and thus provide a complementary approach to PLFAs for evaluating soil 

biological health. We also hypothesized that the VOC profile would have greater 

discriminatory power than PLFAs for determining differences between soil treatments. A 

headspace solid phase microextraction (HSSPME) method coupled with gas chromatography 

quadrupole-time of flight mass spectrometry (GC/Q-TOFMS) was used to analyse the broad 

spectrum of VOCs produced by each soil. Across all soil treatments 514 unique VOC peaks 

were detected. Overall, VOCs showed greater sensitivity than the PLFA analysis in separating 

soil quality treatments. Eighteen individual VOCs were identified which were primarily 

responsible for this separation (e.g. indole, α-ionone, isophorone, 3-octanone, p-cresol, 2-ethyl-

phenol). Anaerobic soils amended with residues showed the greatest separation from other 

treatments, with most of this differentiation associated with ten individual VOCs. The 

anaerobic soils also showed a significant reduction in the number of VOCs emitted but an 

increase in total VOC emissions. In conclusion, our findings provide evidence that soil VOCs 

rapidly respond to changes in soil quality and therefore hold great potential as a novel, 

functionally relevant diagnostic measure of biological soil quality. 

 

Keywords: soil function, metabolomics, method, microbial communities, soil quality indicator 
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6.2. Introduction 

Soils are key to providing a wide range of ecosystem services crucial for earth system 

function and stability (Adhikari and Hartemink, 2016). However, most of the ice-free soils on 

the planet have been exploited either directly or indirectly by humans. Anthropogenic activity 

has subsequently contributed to the global-scale degradation of around 6 million ha of 

agricultural land (UNFAO and ITPS, 2015). Projections estimate that 95% of the land area on 

Earth could become degraded by 2050 (Montanarella et al., 2018). Therefore, it is essential that 

we continually assess the quality of our soils so that the provision of ecosystem services (e.g. 

nutrient cycling, water purification, food provisioning, climate regulation) can be sustained. 

Effective soil monitoring is fundamental to understanding the causes of degradation, which in 

turn could decrease the economic burden of soil degradation, which is estimated to be $231 bn 

globally and $2 bn in the UK (Graves et al., 2015; Nkonya et al., 2016).  

Soil quality is often broadly defined as the capacity of a soil to function (Karlen et al., 

1997). Although a range of soil quality indicators have been proposed, these mainly focus on 

the measurement of chemical attributes of the soil (e.g. pH, plant macronutrients, organic 

matter) and the physical characteristics of the soil (e.g. texture, bulk density, aggregate 

stability, hydrophobicity) (Bünemann et al., 2018; Schloter et al., 2018). However, soil fertility 

and productivity are not merely a function of soil physical and chemical characteristics. Soil 

biology is a crucial mediator in many processes linked to nutrient cycling, plant health and soil 

productivity, and is highly responsive to changes in management and environmental 

conditions, often being correlated to functional change (Lal, 2016; Lemanceau et al., 2015). 

Common soil biological indicators include measures of microbial activity (e.g. basal or 

substrate-induced respiration, enzyme activity) and the size and composition of the microbial 

community (e.g. metagenomics-metabarcoding, mesofaunal counts, CHCl3-fumigation-

extraction) (Bending et al., 2004). However, these methods all suffer from major drawbacks, 

including: (i) problems defining critical thresholds of 'good' or 'bad' soil quality, (ii) low sample 

throughput, (iii) high labour or equipment costs, (iv) narrow focus on one component of the 

community, and (v) limited spatial resolution/integration.  

Volatile organic compounds (VOCs) are relatively low-molecular weight organic 

compounds (typically <250 amu) with high vapour pressures that give the soil its odour and 

can be produced via both biotic and abiotic processes (though biological production of soil 

VOCs far exceeds the production of VOCs by abiotic processes) (Insam and Seewald, 2010). 
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Farmers and land managers have, for centuries, used soil odour to infer soil quality (Semple, 

1928). Study of soil odour first began to develop with the documentation of geosmin, the odour 

of moist soil in 1891 (Berthelot and André, 1891). Since then, studies have identified a large 

number of VOCs produced from soil but the full extent of the functional significance of these 

compounds still remains largely unknown (Peñuelas et al., 2014). Biological VOCs are 

secondary metabolites, therefore not directly involved in organismal growth, development or 

reproduction. However, soil VOC emissions are highly dynamic, responding rapidly to changes 

in soil conditions and thus giving the soil system a unique VOC emission profile depending on 

soil conditions, the taxa present in soil, and their metabolic activities (Insam and Seewald, 

2010). The type and amount of VOC compounds emitted from soil are dependent on a range 

of factors including; nutrient availability (Wheatley et al., 1996), oxygen status (McNeal and 

Herbert, 2009), moisture availability (Asensio et al., 2007), organic matter inputs (Seewald et 

al., 2010), temperature (Schade and Custer, 2004), pH (Insam and Seewald, 2010) and 

interactions (sorption) with the solid phase (Serrano and Gallego, 2006). This sensitivity of 

VOCs to soil conditions makes them a good candidate as an indicator of soil biological quality. 

Phospholipid fatty acid (PLFA) analysis has become a standard method for profiling 

the soil microbial community; giving a quantitative description of the microbial community 

within a sample (Frostegård et al., 2011). PLFA analysis provides information of the size of 

the microbial biomass, biomarkers of bacterial and fungal community structure, and an insight 

into the functional composition of the community (Willers et al., 2015). Microbial community 

composition and structure is responsive to management or naturally induced changes driven by 

soil physico-chemistry (Chang et al., 2017; Cobb et al., 2017; Hardy et al., 2019). For example, 

soil pH and organic matter content can greatly affect the PLFA composition of the microbial 

community, particularly in regard to fungal:bacterial ratios (Rousk et al., 2009; Welc et al., 

2012). Despite the development of alternative methods in soil biological analysis, for example 

metabarcoding (Orwin et al., 2018) or community level physiological profiling (CLPP; 

Ramsey et al., 2006), PLFA analysis remains a rapid, sensitive and reproducible method of 

detecting differences in community composition between treatments (Frostegård et al., 2011).  

This laboratory mesocosm study aims to critically test the relationship between 

microbial community structure (PLFAs) and VOC production under a range of soil stresses 

(anoxia/waterlogging, salinity) and organic matter regimes (e.g. urine, plant residue addition). 

It tests the hypothesis that there will be significant differences in both the PLFA profile of the 

microbial community and the number and amount of VOCs emitted between treatments. 
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However, as VOC production largely reflects the metabolism of the active microbial 

community, we hypothesize that it will have greater discriminatory power to resolve 

differences between treatments in comparison to PLFAs which reflects both the active, inactive 

and dead microbial biomass pools.  

 

6.3. Materials and methods 

6.3.1. Experimental setup 

A Eutric Cambisol (n = 5, depth = 0 - 10 cm, Ah horizon) was collected from a post-

harvest maize field located at the Henfaes Agricultural Research Station, Abergwyngregyn, 

North Wales (53°14′N, 4°01′W). The site is characterised by a temperate-oceanic climate 

regime with a mean annual temperature of 11 °C and annual rainfall of 960 mm. On collection, 

the soil was sieved to pass 2 mm to remove stones and plant material and to ensure sample 

homogeneity. Field-moist soil (200 g) was then placed in 300 cm3 polypropylene sample 

containers and treatments applied. Treatment consisted of the following, i) aerobic - control, 

ii) aerobic – amended with lysed grass residue (5 % w/w), iii) aerobic – amended with sheep 

urine (equivalent of 5 L m-2), iv) anaerobic – with river water, v) anaerobic – with river water, 

amended with lysed grass residue (5 % w/w), vi) anaerobic – with sea water, and vii) anaerobic 

– with sea water, amended with lysed grass residue (5 % w/w) (Fig. 6.1). There were five 

independent replicates of each treatment. Grass residues were lysed by freezing for 1 h at -80 

°C before being incorporated. This ensured that the plant material was metabolically inactive 

prior to addition (i.e. no de novo biotic plant emissions). Sheep urine was collected from Welsh 

Mountain ewes (Ovis aries L.) as described in Marsden et al. (2018) and was loaded onto soil 

at rates equivalent to a typical sheep urination event (Selbie et al., 2015). To induce 

anaerobiosis, treatments were saturated with either freshwater or saline water and the 

containers hermetically sealed. These conditions reflected recent coastal and river flooding 

events which have occurred close to the sampling site (Sánchez-Rodríguez et al., 2018). 

Aerobic treatments remained unsealed and kept at constant weight throughout the 10-day 

incubation through the daily addition of deionised water. All mesocosms were subsequently 

incubated at 24 °C to stimulate the soil microbial community. This reflected summer soil 

temperatures at the field site. Duplicate mesocosms of each treatment replicate were created to 
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allow for half of the mesocosms to be destructively sampled for soil properties and PLFAs, and 

half to be analysed for VOC’s.  

 

Figure 6.1. Flow diagram illustrating the seven treatments applied in the study.  

 

6.3.2. Soil sampling and analysis 

At the end of the 10-day incubation, excess water was drained from the anaerobic 

mesocosms and soil was homogenised thoroughly by hand with a spatula and analysis 

undertaken immediately. Soil moisture content was determined gravimetrically by oven drying 

(105 °C, 24 h) and soil organic matter was determined by loss-on-ignition (450 °C, 16 h) (Ball, 

1964). Soil pH and electrical conductivity (EC) were measured using standard electrodes 

submerged in 1:5 (w/v) soil-to-deionised water suspensions. The oxidation–reduction potential 

(ORP) was measured directly in the soil using a SenTix® ORP-T 900 combination electrode 

(Xylem Analytics, Weilheim, Germany) connected to a mV reader. Total C and N was 

determined on oven-dried, ground soil using a TruSpec® Analyzer (Leco Corp., St. Joseph, 

MI).  

At the end of the incubation, 1:5 (w/v) soil-to-0.5 M K2SO4, 1:5 (w/v) soil-to-0.5 M 

AcOH (acetic acid) and 1:5 (w/v) soil-to-deionised (DI) H2O extractions were performed. TOC 

(total organic carbon) and TN (total nitrogen) were determined on K2SO4 extracts using a Multi 

N/C 2100S Analyzer (AnalytikJena, Jena, Germany). Nitrate (NO3-N) and ammonium (NH4-
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N) concentrations within the K2SO4 extracts were determined by the colorimetric VCl3 method 

of Miranda et al. (2001) and the salicylic acid method of Mulvaney (1996), respectively. 

Available P was measured on the DI H2O extracts using the molybdate blue colorimetric 

method of Murphy and Riley (1962). Cations (Na, K and Ca) were determined in the AcOH 

extracts using a Sherwood Model 410 Flame Photometer (Sherwood Scientific Ltd, 

Cambridge, UK). Soil characteristics are summarised in Table 6.1. 
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Table 6.1. Characteristics of treated soils used in this study. Values are expressed on a mean dry soil weight basis ± SEM (n = 5). Letters denote 

significant differences between treatments using a Kruskall-Wallis with Dunn Post-hoc test and Bonferroni correction (p < 0.05). 

 Aerobic  Anaerobic 

 Control Residues Urine River water 
River water + 

residues 
Sea water 

Sea water + 

residues 

Texture Sandy clay loam 

Soil moisture (%) 29.3A ± 1.2 36.2 ± 1.3 29.8B,C ± 0.5 74.1 ± 1.8 83.1A,B ± 1.5 68.2 ± 1.1 86.5C ± 1.3 

pH 6.14A ± 0.15 5.71B,C ± 0.06 7.53A,B,D ± 0.11 6.51 ± 0.08 6.90C ± 0.05 6.23D ± 0.09 6.88 ± 0.06 

EC (μS cm−1) 27.1 ± 11.7 54.0 ± 6.3 72.3 ± 2.0 3.3A,B ± 0.1 21.0 ± 1.8 563.6A ± 7.1 661.6B ± 18.9 

ORP (mV) 413.5A,C ± 4.9 325.6 ± 9.8 216.5 ± 2.8 24.5B,D ± 4.7  -73.7A,B ± 3.6 141.5 ± 11.3  -144.9C,D ± 16.2 

Total C (%) 2.63 ± 0.05 2.97 ± 0.18 2.44 ± 0.05 2.44 ± 0.11 2.90 ± 0.12 2.59 ± 0.08 2.6 ± 0.10 

Total N (%) 0.28 ± 0.01 0.36A,B ± 0.02 0.32C ± 0.01 0.25A ± 0.01 0.3 ± 0.01 0.25B,C ± 0.01 0.3 ± 0.01 

C:N ratio 9.40 ± 0.31 8.22C ± 0.15 7.74A,B,D ± 0.17 9.21A ± 0.57 9.53B ± 0.16 9.97C,D,E ± 0.22 9.42E ± 0.44 

Dissolved organic C (mg C kg-1) 51.0A,C ± 2.1 87.3 ± 14.3 171.6 ± 10.5 67.1 ± 4.8 240.3A,B ± 8.6 58.4B,D ± 4.7 303.3C,D ± 45.1 

Extractable NO3
- (mg N kg−1) 36.3 ± 1.7 162.8A,B,D ± 17.0 70.8C ± 6.4 0.65A ± 0.16 1.02 ± 0.23 0.37B,C ± 0.24 0.77D ± 0.18 

Extractable NH4
+ (mg N kg−1) 3.33A,C ± 1.24 51.32 ± 6.57 487.04A,B ± 31.59 2.70B ± 0.50 81.97 ± 4.66 3.28 ± 0.56 98.72C ± 5.78 

Extractable P (mg P kg−1) 2.61 ± 0.33 2.47 ± 0.24 3.12C ± 0.11 4.21A,B,D ± 0.27 1.90A ± 0.08 2.05B ± 0.16 1.74C.D ± 0.04 

Exchangeable Na (mg Na kg−1) 13.8A,C ± 1.5 28.3 ± 2.2 80.2 ± 5.9 17.9B,D ± 1.1 22.3 ± 2.5 5477A.B ± 344 6490C,D ± 99 

Exchangeable K (mg K kg−1) 89.5A,C ± 11.1 406.8 ± 33.9 646.9A,B ± 35.9 121.2B,D ± 8.6 321.7 ± 74.3 376.2 ± 25.1 671.8C,D ± 20.0 

Exchangeable Ca (mg Ca kg−1) 1099A ± 77 1083 ± 90 1169B ± 133 1455 ± 117 1689A,B ± 116 1262 ± 61 1587 ± 1028 

Bacterial/Fungal PLFA ratio 0.06 ± 0.00 0.10 ± 0.01 0.07A ± 0.01 0.07 ± 0.00 0.07 ± 0.01 0.13B ± 0.06 0.04A,B ± 0.01 

Microbial biomass  

(μmol PLFA kg-1)  
110.2A,B,D ± 2.6 177.6A ± 11.0 145.0 ± 6.1 128.7C ± 3.6 215.6B,C ± 14.1 158.7 ± 20.0 209.4D ± 27.3 

EC - electrical conductivity, ORP - redox potential. 
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Characterisation of the soil microbial community was performed by PLFA analysis. 

Homogenised soil was stored at -20 °C prior to, and post lyophilisation using a Modulyo Freeze 

Dryer with RV pump (Edwards, Crawley, UK). 15 g samples were shipped, on dry ice, to 

Microbial ID Inc. (Newark, DE, USA), extracted, fractionated, and transesterified using the 

high throughput method of Buyer and Sasser (2012). Subsequently, samples were analysed 

using an Agilent (Agilent Technologies, Wilmington, DE, USA) 6890 gas chromatograph (GC) 

equipped with autosampler, split–splitless inlet, and flame ionization detector. The system was 

controlled by MIS Sherlock® (MIDI, Inc., Newark, DE, USA) and Agilent ChemStation 

software. GC-FID specification, analysis parameters and standards can be found in Buyer and 

Sasser (2012). 

 

6.3.3. VOC extraction, collection, analysis and data processing  

Duplicate soil samples, as aforementioned in section 6.2.1, were stored at 4 °C before 

analysis. VOCs were collected using headspace solid-phase microextraction (HSSPME) due to 

the method’s suitability for evaluating complex sample matrices. A multi-component solid-

phase microextraction (SPME) fibre (50/30 µm DVB/CAR/PDMS; Supelco, Bellefonte, 

USA), was selected due to both its sensitivity to a wide range of non-polar compounds and the 

thickness of the fibre (Cserháti 2010), which allowed transfer of the fibre from the extraction 

vial into the GC without the likelihood of significant loss of adsorbed volatile compounds. This 

was attached to a manual SPME holder (Supelco, Bellefonte, USA) for sampling. 

Briefly, the SPME fibre was conditioned in the GC injection port at 270 °C prior to 

each soil being sampled, until no interfering peaks were obtained in blank injections. Fresh soil 

(3.5 g) was deposited into a glass vial (10 mL) (Supelco, Bellefonte, USA) alongside a 

magnetic stirrer bar for agitation, and subsequently capped with a SPME compatible 

PTFE/silicone septum (Supelco, Bellefonte, USA). To equilibrate the samples, they were 

agitated in a thermostat bath (80 °C) for 60 min, to decrease the partition coefficient between 

the sample and the headspace, and increase the vapour pressure (Zhang and Pawliszyn, 1993). 

A preconditioned SPME fibre was then manually inserted through the septum into the vial and 

exposed to the headspace for 20 min. The SPME fibre was then withdrawn into the holding 

sheath, removed from the vial and directly (< 30 s) desorbed into a GC-MS injection port at 

250 °C in split mode (1:10 split ratio) for 2 min. A gas chromatograph (7890B; Agilent 

Technologies, Palo Alto, USA) interfaced to a quadrupole time-of-flight mass spectrometer 
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(7200B; Agilent Technologies, Palo Alto, USA) (GC/Q-TOFMS) was used for compound 

identification. Chromatographic separation was obtained on a non-polar column (HP-1 50 m 

length x 0.32 mm id x 0.17 µm Df; Agilent Technologies, Palo Alto, USA) using a He carrier 

gas with a flow of 2 mL min-1. The oven temperature was programmed from 60 °C to 250 °C 

at 4 °C min-1. The transfer line and ion source temperatures were both set to 300 °C. Using the 

electron ionisation (EI) mode at 70 eV, mass spectra were acquired across an m/z range of 25-

400. Compound identification was attained using the NIST Mass Spectrometry library (Stein 

et al., 2014). 

 

6.3.4. Treatment analysis 

The lysed grass treatments’ moisture content was determined gravimetrically by oven 

drying (80 °C, 24 h). Subsequently, grass C:N ratios were determined on the oven-dried and 

ground samples using a TruSpec® Analyzer. The sheep urine treatment was analysed for 

dissolved organic C (DOC) and total dissolved N (TDN) using a Multi N/C 2100S Analyzer. 

River and sea water samples were analysed for pH and EC using standard electrodes in addition 

to colorimetric determination of NO3-N, NH4-N, and P as per the methods described above, 

TOC and TN were also measured using the Multi N/C 2100S Analyzer. Treatment 

characteristics are summarised in Appendix 4 Table 1.  

 

6.3.5. Data and statistical analysis 

The raw VOC data files were processed using MassHunter Workstation Profinder 

version B.08.00 (Agilent Technologies, Palo Alto, CA, USA). Feature extraction was achieved 

using the Batch Feature Extraction algorithm with the subsequent processing parameters: peak 

filters = 500, ion count threshold = 5, retention time tolerance = 0.3 min, absolute height = 

10000 counts, m/z range = 25-250, retention time range = 5-35 min. This processing step 

produced a data output for each independent entity in the form of [intensity × retention time × 

mass]. These data were then input into MassHunter Mass Profiler Professional version B.14.5 

(Agilent Technologies, Palo Alto, CA, USA) and log10 transformed and normalised using an 

external scalar. To moderate the number of features subjected to statistical analysis, data 

filtering was executed. Briefly, a frequency filter (entities present in >90% of samples in at 
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least one sample group), fold change filter (14.0) and sample variability filter (coefficient 

variable < 25%) were applied. This approach identified 18 discriminatory compounds, 

summarised in Fig. 6.2. Total relative VOC production was also quantified by summing the 

areas of all peaks considered from each sample’s chromatogram, examples of which are shown 

in Appendix 4 Fig 2. 

 

Figure 6.2. Heatmap of eighteen VOC compounds identified as driving changes between soil 

treatments. Compounds highlighted in purple are found in significantly higher concentrations 

in anaerobic + residues treatments. Compounds highlighted with † were not significantly 

different between treatments (p > 0.05). Darker red = large positive relative difference 

between treatments, darker blue = large negative relative difference between treatments. 

Samples are ordered using group averages and clustered using a Ward algorithm. Compound 

structures are shown in Appendix 4 Fig. 1. 

 

All of the following statistical analysis was performed in R v3.5.3 (R Core Team, 2019). 

In the analysis of discriminatory VOCs, relative peak heights were used to effectively compare 

samples based on the chemical diversity of compounds. A non-metric dimensional scaling 
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(NMDS) approach was used to condense the multivariate VOC data in a comprehensible 

number of dimensions and visualize the relative degree of similarity among samples using the 

whole VOC dataset, which was performed using the ‘vegan’ package. NMDS was also used to 

analyse PLFA data. All PLFAs detected were used in the analysis, to represent the whole 

microbial community. Heatmap analysis and an ANOVA with Tukey post-hoc test was 

performed on log10 transformed and pareto-scaled discriminatory VOC compound data in 

‘metaboanalyst 4.0’ (Chong et al., 2018). This package was also used to perform hierarchical 

cluster analysis on log10 transformed and pareto-scaled PLFA and VOC data. An ANOVA was 

also used to test log10 transformed total relative VOC production as well as total number of 

peaks identified between treatments. Significant differences were further explored using a 

Tukey HSD post-hoc test. The relationships between total VOCs and number of VOCs to key 

soil parameters were tested using Spearman correlation analysis, using the ‘corrplot’ R package 

(Wei and Simko, 2017). For all analyses the significance threshold was set at p ≤ 0.05.  

 

6.4. Results 

6.4.1. Treatment driven changes in VOCs and PLFAs 

NMDS analysis was used to show the clustering for all VOC and PLFA compounds, 

respectively, produced under the soil treatments. Both, VOC (Fig. 6.3A) and PLFA (Fig. 6.3B) 

analysis show separation between anaerobic + residues treatments compared to other 

treatments, implying a different microbial community and production of VOCs under these 

conditions. Using VOC analysis, anaerobic treatments without residues also grouped closely. 

Hierarchical clustering analysis (Fig. 6.4A and 6.4B) further illustrated the relationships 

between treatment levels, with results largely supporting NMDS findings. Overall, VOC 

analysis was more able to differentiate between anaerobic + residues treatments and aerobic 

treatments, with anaerobic treatments without residues and urine treatments being more closely 

related than they appeared using NMDS analysis. PLFA analysis was less able to separate 

treatments from one another. 
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Figure 6.3 A) NMDS plot of VOC profiles of each soil treatment. B) NMDS plot of PLFA 

profile for each soil treatment. Ellipses represent 95% confidence intervals for each treatment. 

The legend is the same for both panels. 
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Figure 6.4 A) Dendrogram, using Euclidean distance measure and a ward clustering 

algorithm, of VOC profiles of each soil treatment (n = 5). B) Dendrogram, using Euclidean 

distance measure and a ward clustering algorithm, of PLFA profiles of each soil treatment 

replicate (n = 5). 
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6.4.2. Relative VOC production between treatments 

 Total relative VOC production was significantly higher from anaerobic + residues 

treatments (p < 0.001) compared to other treatments. Aerobic residue treatments also produced 

significantly more VOCs than anaerobic without residues and urine treatments (p < 0.001). 

Across all soil treatments 514 unique VOC peaks were detected. The total number of VOC 

compounds detected was significantly lower for both anaerobic + residues treatments (p < 

0.05). Control and urine treatments had a significantly higher number of VOC compounds 

detected (p < 0.05).  

 

6.4.3. Soil factors affecting VOC production 

Several key soil properties were found to be significant predictors of both, the relative 

total concentration of VOCs and the number of VOC compounds emitted from soil samples. 

Particularly, organic matter content, dissolved organic carbon and PLFA microbial biomass 

were significantly correlated with total VOC concentration and number of VOCs emitted 

(summarised in Table 6.2). ORP and soil moisture were also significantly correlated to the 

number of VOCs emitted from soil. 
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Table 6.2. Pearson’s correlation coefficients for key soil properties in relation to both total 

amount of VOCs emitted, and the number of VOCs emitted from samples. NS signifies not 

significant (i.e. p > 0.05). 

 

 

 

 

 

 

6.4.4. Identities of discriminatory VOCs produced 

Across the 7 treatments, software was able to identify 18 VOC compounds that were 

able to differentiate between the control and treated samples; these compounds are 

subsequently referred to as discriminatory compounds (Fig. 6.2). Of the 18 compounds, 16 

were found to have significant differences between treatments when tested statistically (p-

cresol and hexanoic acid were not significantly different between treatments). Additionally, 10 

compounds were found in significantly higher concentrations in anaerobic + residues 

treatments compared to the other treatments (p < 0.001), as highlighted in Fig. 6.2.  

 

6.5. Discussion 

6.5.1. Identification of VOC profile trends 

NMDS and hierarchical clustering of VOC data (Fig. 6.3A and 6.4A) illustrate the 

clustering of anaerobic + residues treatments, suggesting that nutrient-rich anaerobic 

conditions had the greatest impact upon the VOC profile of the soils relative to the control 

soils. Anaerobic + residues treatments also had the highest levels of total VOCs, but the lowest 

number of individual compounds detected. This suggests that addition of plant residues under 

anaerobic conditions caused a large increase in the concentration, but not number, of VOCs 

detected. It is generally understood that VOCs are found in greater concentrations under 

anaerobic conditions, due to the production of metabolic end-products by anaerobic 

fermentation and extracellular degradation of complex organic metabolites (Insam and 

  
Total 

VOCs 

No. 

VOCs 

pH NS NS 

ORP (mV) NS 0.576 

Soil moisture (%) NS -0.64 

Organic matter (%) 0.361 -0.425 

Total dissolved N (mg kg-1) NS NS 

Total dissolved organic C (mg kg-1) 0.385 -0.391 

Microbial biomass (µmol PLFA kg-1) 0.388 -0.489 
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Seewald, 2010; Seewald et al., 2010; Stotzky et al., 1976). However, the results of this study 

show this to be conditional on the amount of available nutrients and C under anaerobic 

conditions, as soils under anaerobic conditions but with no plant residues produced 

significantly less total VOCs than anaerobic soils with plant residues. This is likely due to a 

lack of easily assimilable C in non-residue amended anaerobic samples, as well as lower levels 

of microbial activity and thus VOC production. However, although anaerobic + residues 

treatments resulted in a greater total VOC concentration compared to other treatments, the 

number of compounds contributing to the signal produced was significantly less. This suggests 

a limited range of metabolic reactions are responsible for producing the majority of the soil 

VOC profile, as microbial metabolism is the dominant source of VOC emissions from soil 

(Leff and Fierer, 2008).  

Control and urine amended soils produced a significantly greater number of VOC 

compounds compared to other treatments. Under the control treatment, it is likely that the soil 

microbial community will be highly adapted to the prevailing conditions (i.e. low stress) and 

thus more likely to have a streamlined metabolism and high C use efficiency. Most of the C 

used for energy production will produce only CO2 as an end-product rather than respiratory-

derived VOCs (e.g. ethanol, volatile organic acids) or those used in secondary metabolism for 

stress alleviation (Insam and Seewald, 2010). Under these low stress conditions, the large 

number of different VOC compounds are likely to be characteristic of a diverse soil microbial 

community (McNeal and Herbert, 2009). Conversely, under the urine treatment, the input of 

nutrients into the system, particularly K and soluble N (e.g. urea NH4
+), is likely to induce a 

rapid change in soil microbial metabolism (Waldrop and Firestone, 2004; Williams et al., 

2000). However, it is also likely that the urine itself will contain some unique VOCs (Deev et 

al., 2020; Mozdiak et al., 2019). The experimental set up used here, however, was unable to 

distinguish between the direct and indirect effects of urine on the soil VOC profile.   

 

6.5.2. Sources of discriminatory VOC compounds 

Following the positive identification of 18 discriminatory VOCs, the abundance of 

which could be used to determine several soil characteristics key in determining a soils quality 

(e.g. SOM, levels of oxygen content), prospective sources and functions of the compounds 

were examined using the existing literature. Notably, of these compounds, 10 were found in 
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significantly higher relative concentrations in the anaerobic + residues treatment, several of 

which can be identified as breakdown products of the residues. 

For example, the biodegradation of carotenoids is the most likely source of β-ionone 

and α-ionone. Carotenoids form part of a group of terpenoid organic pigments that play a major 

role in photosynthesis in addition to the photoprotection of photosystems in plants and 

photosynthetic bacteria (Lobo et al., 2012). These compounds were only produced under 

anaerobic + residues treatments suggesting that either under aerobic conditions these molecules 

were further catabolised or were only produced under nutrient-rich anaerobic conditions.  

Benzeneacetic acid, an auxin, was solely identified in anaerobic soils with added grass 

residues. This suggests that under aerobic conditions all the benzeneacetic acid was 

mineralised. Alternatively, benzeneacetic acid may only be produced by anaerobic bacteria. 

For example, it has been reported that Azoarcus evansii, an endophytic facultative anaerobic 

denitrifying bacterium found in several grass species, is a significant producer of benzeneacetic 

acid (Schulz and Dickschat, 2007; Sun et al., 2019).  

Despite many possible sources of the discriminatory compounds, linking a VOC to 

specific processes, functions or microorganisms is challenging due to the variety of degradation 

pathways which a VOC can take within the soil, dependant on environmental conditions (i.e. 

oxygen and nutrient status). Furthermore, the necessity to increase the temperature of the 

sample during the extraction procedure in order to increase the partition coefficient, generates 

a degree of ambiguity as to the true source of the compounds in the headspace, as under such 

conditions there is a possibility of the breakdown of thermolabile compounds within the sample 

(Kaspar et al., 2008). Accordingly, it is uncertain whether the compounds extracted are a 

samples’ intrinsic VOCs; released by the microorganisms within the soil or as a direct result of 

an amendment (e.g.  urine), or VOCs produced during the extraction procedure due to thermal 

degradation of the sample. For example, lignin is widely described as stable below 

temperatures of 100 °C, however, the thermal stability of many soil components is poorly 

reported within the literature (Brebu and Vasile, 2010).  

Additionally, there is potential discrepancy between the production of a volatile 

compound and its emission from matrix. The emission of VOCs from the soil matrix, is highly 

dependent on the soil’s structure and moisture as well as the rate at which the VOCs are being 

emitted. These factors ultimately control the rate of VOC production, dispersal and 

consumption (Aochi and Farmer, 2005). Similarly to greenhouse gases, it is likely that soils act 
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as sources or sinks for VOCs depending on environmental conditions (Insam and Seewald, 

2010; Oertel et al., 2016). For example, VOCs produced further down the soil profile could be 

consumed or degraded before reaching the soil surface. Particularly in aerobic systems, when 

in a steady state equilibrium these production-consumption systems may cause emission of 

very few VOCs, however, on disturbance, emissions may increase. Heating during analysis, to 

improve the partition co-efficient (the ratio of analyte in matrix-to-analyte in headspace) and 

drive VOCs into the headspace, is likely to increase the emissions from the soil sample (Turner 

et al., 2019).     

 

6.5.3. Relationship between soil properties and VOC emission  

Overall, levels of soil moisture seemed to be the best predictor of the number of VOCs 

produced from samples, with higher levels of soil moisture reducing the number of VOCs 

emitted. Similarly, ORP was positively correlated to the number of VOCs produced. Under 

anaerobic, reducing conditions it is likely that alcoholic sugar fermentation predominates 

(Pezeshki and DeLaune, 2012). Previous studies, e.g. Stotzky et al. (1976) and Seewald et al. 

(2010), have shown that anaerobic conditions increase the diversity and amount of VOCs 

emitted. However, this study showed that this was only the case if conditions were not nutrient 

limited. Both anaerobic treatments + residues additions resulted in an increase in total VOCs 

emitted but in a reduction in the number of VOC compounds emitted. As shown previously, 

substrate availability and quality are key in the production and emission of VOCs (Wheatley 

et al., 1996). However, there was no correlation between total dissolved nitrogen and total 

VOCs or number of VOCs produced, and only a weak correlation between available inorganic 

N (NO3 and NH4) and total VOCs emitted. 

 

6.5.4. Critical analysis of VOCs and PLFAs as soil quality indicators  

Whilst both VOCs and PLFAs can be related directly to the soil biological community, 

each offer very different types of insight. PLFAs focus on the membrane lipid composition, 

from which links can be made to microbial community composition (Mann et al., 2019). 

However, use of isotopic substrates can enable PLFA to be used as indicators of soil function, 

i.e. Bull et al. (2000). VOCs focus on secondary metabolism of the soil biological community, 
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which relates to community function. Advantages and disadvantages of each method are 

summarised in Table 6.3.  

Sensitivity is a key attribute in biological quality monitoring, as methods must be able 

to detect subtle changes in soil biochemistry to give an accurate representation of soil quality. 

Both PLFA and VOC analysis are, in theory, sensitive, as both sets of compounds degrade 

rapidly under environmental conditions (Li et al., 2019; Zhang et al., 2019). However, this 

experiment has demonstrated that, in terms of discriminatory power, VOCs can more robustly 

separate the impact of short-term soil treatments, which correspond to different soil qualities 

(Fig. 6.3 and 6.4).  
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Table 6.3. Summary of the advantages and disadvantages of VOC and PLFA analysis in the 

analysis of soil quality. 

 

 

  

  VOC analysis PLFA analysis 

Advantages 

Functionally relevant Sensitive and reproducible. 

Rapid extraction and analysis. Measure of biomass and 

community structure. 
Microbial culture not required. Microbial culture not required. 

Rapid degradation - offers 

snapshot of current state of 

biological activity. 

Rapid degradation - offers 

snapshot of current state of 

biology. 
Possibility of identifying 

characteristic biomarkers for 

specific conditions.  

Lack of group or species-

specific FA’s  
Non-destructive. 

Disadvantages 

Difficult to separate plant and 

microbial derived VOCs in soil. 
Time consuming and complex 

extraction required. 
Lack of fundamental 

understanding of VOCs in soil. Little functional relevance. 

SPME requires destructive 

sampling. 
Extraction of entire microbial 

community – not only the 

active fraction. 
Most relationships have been 

investigated using laboratory/ 

pure culture studies – may not 

reflect diverse soil community 

response. 

Most relationships have been 

investigated using laboratory/ 

pure culture studies – may not 

reflect diverse soil community 

response. 
Medium sample throughput with 

possibility of automation. Low sample throughput. 

High analytical capital costs. 
High capital and labour costs. 

Destructive. 



234 

 

Both PLFAs and VOCs relate to the biological function of soil. However, the turnover 

of VOCs is more rapid and more functionally relevant than PLFAs. The impact of many 

environmental factors e.g. pH, heat and moisture content are similar between both types of 

analysis. One advantage of VOC analysis over PLFA analysis is the lack of pre-treatment and 

multi-stage chemical extraction required, reducing the amount of inherent bias within the 

method. However, identification of individual VOCs is difficult; while databases exist, they 

are by no means extensive, and identification may not be absolute without the use of 

confirmatory standards. 

 

6.5.5. Future research direction 

This study highlights several potential future research areas within the soil and 

environmental sciences. Specifically: Is it possible to increase the rapidity of VOC analysis, by 

reducing extraction and/ or analysis time, while retaining the resolution and sensitivity to 

enable compound identification? How do ex-situ sampling techniques demonstrated in this 

study compare to in-situ, non-destructive, methods, for example, sorbent tube sampling? To 

what extent are abiotic VOCs contributing to the overall soil VOC profile compared to biotic 

VOCs? Under different soil types and cropping regimes, does the core microbiome have similar 

metabolism and therefore produce similar VOCs, i.e. is analysis of VOCs applicable over large 

spatial scales? And what is the temporal frequency of analysis required to accurately assess a 

soils quality? Addressing these questions will further advance sampling and analysis of VOCs 

in soil and elucidate the role of VOCs as indicators of changes in soil quality. Another key 

aspect is defining the boundary values for VOC concentrations and profiles for ‘healthy’ soils. 

Arguably, the control and aerobic residues treatment in this study have started to provide some 

data to represent healthy soils.  

 

6.6. Conclusions 

This study applied a HSSPME extraction and analysis method for the determination of 

VOCs in soils. The method was applied to seven soil treatments representing a range of soil 

qualities and a number of discriminatory compounds were identified. When compared to PLFA 

analysis, VOC analysis was better able to differentiate between soil treatments. 18 
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discriminatory compounds were identified, 10 of which were associated with anaerobic 

treatments with residues. Contrary to previous findings, VOCs under anaerobic treatments with 

residue additions exhibited a relative increase in concentration of total VOCs emitted but a 

reduction in the abundance of specific compounds emitted. These results demonstrate the 

potential of secondary metabolites as an indicator of soil quality and highlights the need for 

further research into soil VOC analysis to understand nutrient cycling and metabolism as well 

as the effect of in-situ vs. ex-situ sampling.  
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7.1. Abstract 

The study of volatile organic compounds (VOCs) in soil and other complex substrates is a 

rapidly developing field. VOCs in soils originate from a wide variety of biological sources; 

bacterial, fungal, mesofaunal, and plant. They are vital to inter- and intra-species interaction 

and soil health, and therefore offer a potential reactive, functional diagnostic tool to determine 

soil quality. The standard methodology for untargeted VOC profiling in environmental samples 

has been headspace solid phase microextraction (HS-SPME), avoiding the need for solvent 

extraction procedures used in many biological soil tests. However, this technique can suffer 

from a lack of sensitivity due to competition between individual VOCs on the solid phases used 

for VOC recovery. Other common techniques used to monitor the VOC fingerprints from soils 

include high capacity sorptive extraction (HCSE). This study presents a novel SPME-trap-

enrichment method using an automated, cryogen-free, focussing and pre-concentration trap 

method to reduce phase competition and increase sensitivity of analysis. This method was 

evaluated against single-SPME-trap and HCSE methods for sensitivity and number of 

compounds identified using a range of induced soil qualities (good, medium and poor). Results 

showed that SPME-trap-enrichment was able to identify 71% and 7% more compounds than 

single-SPME-trap and HCSE, respectively, using a software-based data processing approach, 

as well as increased total peak areas. The VOC profile was substantially affected by the 

extraction method used. The samples within the ‘poor’ treatment produced a larger number of 

aromatic, carboxylic acid and sulphur containing compound groups, while the ‘good’ and 

‘medium’ groups were largely characterised by ketones and aldehydes. The potential 

ecological significance of the compounds identified were also explored. Of those tested, 

SPME-trap-enrichment represented the most robust and sensitive technique for VOC analysis, 

offering the potential to better elucidate the multifaceted interactions of VOCs within plant-

microbial-soil systems. 

 

 

Keywords: Soil quality, Volatilomic profiling, Methods, Secondary metabolites, Complex 

substrates  
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7.2. Introduction 

The ability of soil to function and sustainably provide an increasing food supply for a 

rapidly growing global population has become of vital worldwide importance (Gomiero, 2016). 

Traditionally, soil health; a measure of a soil’s ability to function, has been determined on a 

physicochemical basis with biological characteristics often overlooked (Bünemann et al., 

2018). However, microbiology is extremely responsive to environmental and functional change 

within the soil system (Lehman et al., 2015). One biochemical method proposed as a functional, 

diagnostic indicator of soil health is profiling or fingerprinting the volatile organic compounds 

(VOCs) emitted from soil (Brown et al., 2021).  

In biochemistry, volatile organic compounds (VOCs) form part of secondary 

metabolism; small molecule products derived from primary metabolism that are not essential 

to the survival of an organism (Keller, 2019), with most microbial volatiles formed either as 

end products of fermentative pathways of primary metabolism or intermediates of detritus 

decomposition (Korpi et al., 2009; Seewald et al. 2010). These molecules are key to inter- and 

intra- species signalling and interaction (Schulz-Bohm et al., 2017) and the delivery of a range 

of soil-based ecosystem services (Choudoir et al., 2019). Further, the type and quantity of 

VOCs produced in soil can have a considerable effect on below-ground ecology as well as the 

soil odour profile (Insam and Seewald, 2010; Kesselmeier and Staudt, 1999). Emission and 

cycling of VOCs are also highly dependent on the health of an organism, its ontogenetic stage 

and the prevailing environmental conditions (e.g. temperature, availability of water) as well as 

the amount, composition and bioavailability of organic matter (Insam and Seewald, 2010; Leff 

and Fierer, 2008). Therefore, the study of volatile compounds emitted from the soil has 

potential in the determination of biological soil quality. However, the chemical diversity of 

VOCs emitted from soils and other environmental matrices is often a hindrance to identification 

(Peñuelas et al., 2014; Stahl and Klug, 1996). As soil is a complex matrix with solid, liquid and 

biological elements, extraction and analysis, and subsequent data interpretation of VOCs is 

challenging. 

A large variety of sample techniques for VOCs exist. Traditionally, analysis of VOCs 

was performed using solvent extraction or vapour partitioning methods (Hewitt, 1998). 

However, the issues of preconcentration of analytes, as well as extraction biases of solvent-

based approaches remain challenging (Demeestere et al., 2007; Wardencki et al., 2007) and 

with a move toward green chemistry, solvent-less methods are now well established (Sheldon, 

2018, 2005). The most common solvent free techniques for the extraction of volatiles from soil 
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is passive head space (HS) solid phase micro-extraction (SPME) (Wypych and Mañko, 2002). 

However, a drawback of single HS-SPME extraction is the large amount of competition for 

phase, leading to only the most competitive VOCs being adsorbed to the SPME fibre and 

consequently analysed, making phase compound choice critical for sensitive and targeted 

extraction (Pawliszyn, 2000).  

Annotation of small molecules using high resolution, untargeted, mass spectrometry 

based metabolomic and volatilomics analysis remains a major challenge. With the accuracy of 

analysis techniques ever increasing, the potential to separate and identify a larger number of 

metabolites is becoming increasingly possible allowing for a more comprehensive view of the 

metabolome and volatilome. However, the inability to include calibration standards to confirm 

the wide range of compounds identified in complex samples remains a consistent issue. 

Software-based identification approaches offer an alternative to conventional preparation of 

analytical standards (though only to level 2 (putative annotation)); however, they are limited 

by compound database sizes, the chromatographic resolution of equipment and the ability of 

the algorithm to identify compounds. It is estimated that 1 – 2 million of the > 120 million 

small molecule compounds currently contained with databases are of biological relevance 

(Aksenov et al., 2017; Milman and Zhurkovich, 2017). However, most metabolites and small 

molecule compounds elucidated using untargeted analysis remain unassigned, resulting in 

significant amounts of information about the biochemical system, and environmental 

interaction, being lost. 

Recent developments in automation and pre-concentration technologies have allowed 

the development of a HS-SPME-trap-enrichment method (Mascrez and Purcaro, 2020a). 

Traditional approaches to HS-SPME-trap-enrichment or multiple head space (MHS)-SPME 

offered poor precision as each extraction is analysed by GC-MS separately and an estimated 

total peak area subsequently calculated from the combined data (Costa et al., 2013; Liang et 

al., 2019). This requires very stable retention times across runs to accurately match and identify 

compounds. HS-SPME-trap-enrichment offers the potential to extend VOC extraction by 

reducing phase competition within the headspace and increasing the sensitivity to compounds 

with high and low boiling points. It also ensures stability of retention times for accurate 

compound identification by ‘stacking’ samples onto a trap and analysing several extractions in 

one chromatographic run (Górecki et al., 1999; Jeleń et al., 2017).  

This study presents a novel method of HS-SPME-trap-enrichment for sampling VOCs 

from soil, a complex environmental sample, with comparisons to single HS-SPME as well as 

a high capacity sorptive probe (HS-HCSE). HS-HCSE takes a similar approach to HS-SPME 
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but offers a larger (100x more) phase volume compared to SPME, thus reducing phase 

competition equally. Each of these techniques were combined with an innovative cryogen-free 

focussing and pre-concentration trap, meaning i) all extraction techniques were run on a single 

platform without the need to change the hardware, and ii) single (SPME-trap) and multiple 

extractions (SPME-trap-enrichment) were carried out automatically on samples. The aims of 

the study were to compare the methods for sensitivity and recovery, and to explore the VOC 

emissions profile associated with each soil treatment. 

 

7.3. Materials and methods 

7.3.1. Sample collection and treatment  

Independent replicate soil samples (n = 3) of a Eutric Cambisol (0 - 10 cm) were 

collected from a postharvest wheat (Triticum aestivum L.) field located at Henfaes Agricultural 

Research Station, Abergwyngregyn, North Wales (53°14′N; 4°01′W). Further details of the 

site, management regime and climate can be found in Zang et al. (2020). After collection, soil 

was sieved through a 2 mm mesh to remove stones and plant material and to ensure sample 

homogeneity and stored for 2 weeks at 4°C to allow the samples to equilibrate. Mesocosms 

were created by weighing 300 g of sieved soil into sealable 2 l polypropylene sample containers 

and treatments applied. Treatments were designed to simulate soils under ‘good’, ‘medium’ 

and ‘poor’ soil quality. They consisted of the following; (i) ‘medium’ – no amendment, (ii) 

‘good’ – 5 % soil improver (Verve topsoil conditioner, B&Q, Eastleigh, UK) loading (1:20 

w/w soil improver-to-soil ratio), and (iii) ‘poor’ – 5 % grass residue loading (1:20 w/w lysed 

grass-to-soil ratio) saturated with river water (to generate anaerobic conditions). Grass residues 

(green Lolium perenne L. shoots) were collected from a nearby un-grazed pasture, lysed by 

freezing for 1 h at -80°C and then incorporated into the soil. Anaerobic mesocosms were 

saturated with oligotrophic river water collected from the Afon Rhaeadr-fawr (53°14'N; 

4°01'W) on the day the treatments were set up and the meoscosms sealed with a gas-tight lid. 

Amendment characteristics are summarised in Appendix 5 Table 1. Further details of the river 

water can be found in Sánchez-Rodríguez et al. (2018). The aerobic mesocosms (‘good’ and 

‘medium’ treatments) remained unsealed throughout the experiment to allow gas exchange and 

were maintained in a field moist state throughout the experiment via the addition of deionised 

water. Mesocosms were subsequently incubated at 25°C for 10 d to stimulate soil microbial 
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activity and create a new biochemical equilibrium. At the end of the incubation period the 

mesocosms were destructively sampled as described in Sections 2.2 and 2.3. 

 

7.3.2. Soil analysis 

At destructive harvesting, excess water was drained from the ‘poor’ mesocosms. 

Subsequently, the soil in all treatments was homogenised by hand for 10 s to ensure a 

representative sample was obtained for soil chemical and physical analysis. Briefly, soil 

moisture content was determined gravimetrically by oven drying (105°C, 24 h) and soil organic 

matter was determined by loss-on-ignition (450°C, 16 h) (Ball, 1964). Soil pH and electrical 

conductivity (EC) were measured using standard electrodes submerged in 1:5 (w/v) soil-to-

deionised water suspensions. The oxidation–reduction potential (ORP) was measured directly 

in the soil using a SenTix® ORP-T 900 combination electrode (Xylem Analytics, Weilheim, 

Germany) connected to a mV reader. C:N ratio was determined on oven-dried, ground soil 

using a TruSpec® Analyzer (Leco Corp., St. Joseph, MI).  

Within 12 h of the end of the incubation, 1:5 (w/v) soil-to-0.5 M K2SO4, 1:5 (w/v) soil-

to-0.5 M AcOH and 1:5 (w/v) soil-to-distilled water (dH2O) extraction were performed. Total 

dissolved organic C (DOC) and total dissolved N (TDN) were determined on K2SO4 extracts 

using a Multi N/C 2100S Analyzer (AnalytikJena, Jena, Germany). Nitrate (NO3-N), 

ammonium (NH4-N) and within the K2SO4 extracts were measured by the colorimetric methods 

of Miranda et al. (2001) and Mulvaney (1996), respectively. Phosphate (PO4-P) was measured 

on the dH2O extracts using the colorimetric method of Murphy and Riley (1962). Cations (Na, 

K and Ca) were measured on the AcOH extracts using a flame photometer (Sherwood Model 

410; Sherwood Scientific Ltd, Cambridge, UK). Soil characteristics are summarised in Table 

7.1.  
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Table 7.1. Characteristics of the good, medium and poor quality Eutric Cambisol soil. Values 

are expressed on a mean dry soil weight basis ± SEM (n = 3). Letters denote significant 

differences between treatments using a Kruskall-Wallis with Dunn Post-hoc test and 

Bonferroni correction (p < 0.05). 

 

7.3.3. VOC collection and identification 

The objective of this study was to examine the resultant, equilibrated, mesocosm soil 

quality, therefore the treatments (soil improver and residues) were not analysed alone. For 

single HS-SPME-trap extractions, 2 g of soil sample was placed in a 20 ml glass vial capped 

with a SPME compatible PTFE septum (Merck, Darmstadt, Germany) and spiked with toluene-

d8 (1 ppb) as an internal standard, in order to ensure a reference retention time for data quality 

assessment. Vials were then placed on to an autosampler (Centri®; Markes International, 

Bridgend, UK) for extraction. On analysis, the sample was equilibrated for 5 min at 95 °C. A 

thermally conditioned SPME fibre (85 μm Polyacrylate (PA) ;Restek, USA) was then exposed 

to the headspace for 15 min. The fibre was then thermally desorbed (5 min, 260 °C, 50 ml min-

 Good Medium Poor 

Texture Sandy clay loam 

Soil moisture (%) 35.8 ± 0.8a 30.8 ± 1.6b 80.0 ± 8.0c 

pH 6.65 ± 0.16 6.02 ± 0.20 6.67 ± 0.10 

EC (μS cm−1) 109 ± 31ab 65 ± 3a 393 ± 62b 

ORP (mV) 222 ± 44a 373 ± 38b -37 ± 25c 

Total C (%) 3.87 ±0.98 2.62 ± 0.15 3.06 ± 0.31 

Total N (%) 0.34 ± 0.03 0.31 ± 0.01 0.31 ± 0.00 

C:N ratio 10.9 ± 1.6 8.3 ± 0.4 9.8 ± 0.9 

Total organic C (mg C kg-1) 120 ± 6 114 ± 7 1303 ± 50 

Extractable NO3
- (mg N kg−1) 28.3 ± 1.6a 38.4 ± 3.4b 2.3 ± 0.6c 

Extractable NH4
+ (mg N kg−1) 0.4 ± 0.1 1.1 ± 0.7 270.8 ± 59.7 

Extractable P (mg P kg−1) 14.0 ±1.1a 10.3 ± 1.2b 24.2 ± 1.1c 

Exchangeable Na (mg Na kg−1) 25.8 ± 1.8a 13.1 ± 1.1b 18.2 ± 0.5c 

Exchangeable K (mg K kg−1) 342.5 ± 33.4a 223.6 ± 22.3b 793.3 ± 36.1c 

Exchangeable Ca (mg Ca kg−1) 237.3 ± 14.0 418.6 ± 97.2 448.6 ± 57.5 

Microbial biomass C (mg C kg−1) 1137 ± 114 958 ± 138 1578 ± 806 

Microbial biomass N (mg N kg−1) 109 ± 17 94 ± 20 165 ± 163 

EC, electrical conductivity; ORP, redox potential. 
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1) to a cryogen-free focusing trap (U-T12ME-2S; Markes International). The trap was cooled 

to 20 °C during fibre desorption. Finally, a 1 min purge of the trap was performed at 50 ml min-

1 before desorption (5 min, 280 °C, 5:1 split) directly into the GC.  

HS-SPME-trap-enrichment extraction analysis was performed using the sample 

parameters as described above; however, a 1 min enrichment delay was used before the 

following extraction. Enrichment was achieved by repeating the exposure and desorption to a 

cryogen-free focusing trap for a total of three cycles from each vial. The trap was then purged 

and desorbed directly into the GC, as described above. 

For HS-HCSE extraction, 4 g of soil sample was placed in a 20 ml glass vial capped 

with a HCSE compatible PTFE septum (Merck, Darmstadt, Germany) and spiked with toluene-

d8 (1 ppb) as an internal standard, in order to ensure a reference retention time for data quality 

assessment.. Vials were then placed on to a Centri® autosampler for extraction. On analysis, 

the sample was equilibrated for 5 min at 85 °C. A thermally conditioned polydimethylsiloxane 

(PMDS) probe (HiSorb™ PDMS; Markes International) was subsequently exposed to the 

headspace for 90 min. The probe was then thermally desorbed (5 min, 260 °C, 50 ml min-1) to 

a cryogen-free focusing trap (Centri® with a U-T12ME-2S; Markes International, Bridgend, 

UK). The trap was cooled to 20 °C during probe desorption. Finally, a 1 min purge of the trap 

was performed at 50 ml min-1 before desorption (5 min, 280 °C, 5:1 split) directly into the GC. 

For all methods described above, extraction efficiencies for a range of standard and soil related 

compound were tested, from matrix-less vials prior to the main study (Appendix 5 Fig. 1 and 

2), to ensure methods were applicable.  

Injections (280 °C trap desorption, 32 min, split mode) were performed using an 

autosampler (Centri®; Markes International) integrated to a single quadrupole GC-MS (ISQ 

1300; Thermo Fisher Scientific, Waltham, MA, USA). Chromatographic separation was 

obtained on a mid-polarity column (DB-624 60 m × 0.25 mm × 1.4 µm; Agilent Technologies, 

Palo Alto, USA) using helium flowing at 2 mL min-1 as the carrier gas. The GC oven program 

was: 35 °C for 3 min; then temperature was increased to 100 °C at 10 °C min-1, then increased 

to 220 °C at 20 °C min-1, holding for 5 min and then increased to 260 °C at 20 °C min-1 holding 

for 10 min. The transfer line and ion source temperatures were both set to 230°C. Using the 

electron impact mode at 70 eV, mass spectra were acquired across an m/z range of 35-350 with 

an acquisition frequency of 5 Hz.  
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7.3.4. Data processing and statistics 

Extraction methods were assessed by their sensitivity and the range of volatiles 

extracted. The total peak area of the chromatogram was used as a proxy of the sensitivity of 

extraction, defined as the intensity of signal recorded for a fixed concentration of sample 

(Brown et al., 2021; Tavares et al., 2019). Range of volatiles was assessed by the number of 

compounds successfully/putatively identified using the untargeted software-based approach, 

described subsequently. The number and breadth of volatiles extracted is incredibly relevant to 

the end user, as in untargeted analysis (using software-based identification approaches) it is 

important to have a high conversion ratio of potential compounds (peaks) to (high confidence) 

punitively identified compounds (Blaženović et al., 2018). 

To assess total peak areas of samples, all chromatogram features were manually aligned 

and extracted using Xcalibur™ v2.2 (Thermo Fisher Scientific). Features with a peak area or 

peak height less than 0.01% of the total chromatogram were removed to decrease 

chromatographic noise. Total relative VOC production was then quantified by summing the 

areas of all remaining peaks from each sample’s chromatogram. Total number of compounds 

detected was also calculated by summing the number of peaks detected on each chromatogram.  

Untargeted analysis was undertaken in order to putatively identify as many compounds 

as possible in the samples. Analysis of VOC chromatograms was performed in Chromspace 

(v1.0, Sepsolve Analytical, Peterborough, UK). Background subtraction, deconvolution and 

compound identification was performed prior to compound identification, which was achieved 

through comparison with the NIST mass spectral library. Only compounds with a match factor 

(MF; a software processing method combining forward and backward library comparison and 

probability weighting) greater than 700 were accepted as putatively positively identified. A MF 

value of 700 was assessed to be the best value to balance the number of potential matches while 

ensuring matches were of a high quality (Viana et al., 2018). As a further quality control (QC) 

step, all compounds were manually examined; only compounds with consistent retention times, 

that were present in three or more samples were taken forward for analysis. Duplicated 

compound identities were removed as well as the Toluene D8 internal standard peak. Siloxane 

peaks were also removed as they have been shown to be associated with the breakdown of the 

silicone polymers in the sorbents (Jiang et al., 2006). This produced a total of 214 compounds 

positively identified across all samples and extraction methods. Peak areas were used as a 

qualitative measure of compound concentration. 
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All analysis was performed in MetaboAnalyst 5.0 unless otherwise stated (Chong et al., 

2018; Pang et al., 2020). Heatmapping was performed; during data processing features with 

constant or single values across samples were removed and data was pareto scaled and glog 

transformed. ‘ggplot2’ (Wickham, 2016) was used to produce bar charts of the number of 

compounds identified by each method, by presence or absence across all treatments, using R v 

3.6.0 (R Core Team, 2021). R was also used to perform Kruskall-Wallis tests to determine 

significant differences between treatment properties. Significant differences were further 

explored using Dunn-Sidàk posthoc tests (Table 7.1). 

The method giving the largest number of positive identifications and highest sensitivity, 

was determined to be SPME-trap-enrichment. Data from this method was therefore 

subsequently used to further examine treatment differences. Scaled and normalised data were 

used to graphically examine the relationship between extraction methods using principal 

component analysis (PCA) using the ‘vegan’ and ‘ggplot2’ packages (Oksanen et al., 2020; 

Wickham, 2016). The multiplicative beta (β) diversity of the VOCs detected in each sample 

was also calculated (Whittaker, 1972). One-way ANOVAs were used to test the differences 

between concentrations of VOCs across treatments groups. In cases of significant differences, 

these were further explored using a Tukey HSD. Kendall correlation analysis was used to 

examine relationships between sample characteristics and VOC emission using the ‘stats’ 

package in R. In all analyses the significance level was defined as p < 0.05. 

 

7.4. Results  

7.4.1. Influence of method on HS sample extraction efficacy 

As discussed in section 7.2.4., extraction methods were assessed for their sensitivity 

and the range of volatiles extracted. In terms of sensitivity, SPME-trap-enrichment produced a 

higher total peak area yield, 455% greater than single SPME and 46% greater than HCSE across 

all treatments (Fig. 7.1A). The total number of chromatographic features detected was highest 

using the single SPME method, 27% greater than SPME-trap-enrichment and 14% greater than 

HCSE across all treatments (Fig. 7.1B). The SPME-trap-enrichment was also able to 

successfully identify the greatest number of compounds using the software-based approach, 

55% greater than single SPME and 4% greater than HCSE across all treatments (Fig. 7.1C). 

Overall, the conversion rate of total peaks detected (making the assumption that every peak 

was potentially a unique compound) to successfully identified compounds was greatest using 
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the SPME-trap-enrichment (39%) and smallest using single SPME (18%), while HCSE had a 

conversion rate of 32%.  

Figure 7.1. The influence of extraction method (SPME-trap, SPME-trap-enrichment, HCSE) 

on the recovery of VOCs from a ‘good’, ‘medium’ and ‘poor’ quality soil. A) total peak area, 

B) total peaks (features) identified and C) total number of compounds putatively identified 

using software (MF > 700). 
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7.4.2. Putative identification of individual VOCs 

In total, 212 unique VOCs were positively identified (MF > 700), using the software-

based approach, across all samples and extraction methods. SPME allowed the identification 

of 96 unique compounds, HCSE; 137 and SPME-trap-enrichment; 156. Across all methods, 

several compounds were found consistently under all soil treatments (n = 11). We note that 

compounds deemed to be high quality matches (with an MF score > 700 and QC), may still 

only be considered to be putatively identified, as calibration standards were not used to quantify 

compounds, with a large number of peaks (compounds) remaining unidentified from each 

sample. 

 

7.4.2. Variability of VOCs detected between methods  

The VOC profile was substantially affected by the extraction method used (Fig. 7.2). 

Each method allowed the identification of compounds that remained undetected using other 

methods e.g. furfural using SPME-trap-enrichment or 2-methyl-butanal, using HCSE. HCSE 

and SPME-trap-enrichment methods were both able to detect an equal, or greater number of 

compound groups, consistently across treatment, compared to Single SPME (Fig. 7.3).  
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Figure 7.2. Hierarchically clustered heatmap showing the influence of extraction method 

(SPME-trap, SPME-trap-enrichment, HCSE) on the recovery of VOCs from a ‘good’, 

‘medium’ and ‘poor’ quality soil. Showing the top 50 VOC compounds tentatively identified, 

by significant difference as determined by ANOVA (p < 0.05). VOCs are clustered using 

Euclidean distance and Ward linkage. Data was normalised using log10 transformation and 

Pareto scaling. The colour of samples range from red to blue, indicating metabolite 

concentration z-score; numbers 4 to -4 on the scale bar indicate the number of standard 

deviations from the mean. 
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Figure 7.3. Average number of compounds detected consistently in all replicates (n = 3), in 

each broad VOC compound category identified using three different extraction methods 

(SPME-trap, SPME-trap-enrichment, HCSE) across all soil samples, independent of 

treatment. Error bars indicate the SEM.  

 

7.4.3. Variability of VOCs detected between treatments using SPME-trap-enrichment data 

From the results presented in section 7.3.1. SPME-trap-enrichment was determined to 

be the best method of those evaluated in terms of sensitivity and the number of compounds 

identified. From these data, the ‘poor’ soil quality treatment was the most diverse (β-diversity 

= 0.40), followed by the ‘good’ treatment (β-diversity = 0.36) then the ‘medium’ treatment (β-

diversity = 0.34). Compounds detected in all replicates of each treatment are summarised in 

Table 7.2. Twenty-four compounds were detected across all treatments. A single compound 

was emitted in all replicates of each of the ‘good’ and ‘medium’ treatments, respectively. Ten 

compounds were emitted only by the ‘poor’ treatment. Finally, 3 compounds were emitted only 

by the ‘good’ and ‘medium’ treatments. Generally, compounds emitted under the ’poor’ 

treatment were malodourous, whereas compounds from ‘good’ and ‘medium’ treatments were 

characterised by more pleasant odour compounds. PCA analysis visually confirmed that the 
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‘good’ and ‘medium’ treatments were grouped more similarly, with some overlap compared to 

the ‘poor’ treatment (Fig. 7.4).  

Figure 7.4. Influence of soil quality (good, medium or poor) on the VOC profile determined by 

SPME-trap-enrichment. 2D principal component analysis (PCA) of VOC compounds. Data 

was normalised using log10 transformation and Pareto scaling. Principal component 1 (PC1) 

explains 26.2 % of the total variance, while principal component 2 (PC2) explains 14.8 % of 

the total variance. Ellipses represent 95% confidence levels for each treatment group. 
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Table 7.2. Summary of tentatively identified compounds found in all replicates of each 

treatment using the SPME-trap-enrichment extraction method, and possible metabolic 

functions. Compound marked with an * indicates compounds that were statistically significant 

between treatments. 

 Compound Potential functional role in soil 

Compound(s) 

emitted under all 

treatments 

2-Aminoadipic acid 
Key metabolite in penicillin (antibiotic) formation in fungi 

(Nigam and Singh, 2014; de Valmaseda et al., 2005) 

2-Butanone 

Ubiquitous in the natural environment (Schühle and 

Heider, 2012). Bacterial VOC (non-toxic) (Audrain et al., 

2015). 

2-Butenal, 3-methyl- 

Endogenously formed during lipid peroxidation or after 

oxidative stress, derivative of acrolein. Found in plants as a 

regulator of cytokinin (hormone involved in cell division 

etc.) degradation (Kieber and Schaller, 2014). 

2-Heptanone 

Natural component of some foods and plants. Bacterial 

metabolite shown to attract nematodes (Man et al., 2019). 

Can have inhibitory effect on the survival of bacteria 

(Melkina et al., 2017). 

2-Heptanone, 6-methyl- 

VOC associated with a number of plant, fungal and 

bacterial species (Owens et al., 1997; Goeminne et al., 

2012; Cramer et al., 2005) Methylation product of 2-

hepanone, metabolism shown in B. subtilis (Man et al., 

2019). 

2-Hexenal 
Common plant metabolite showing antibacterial and 

antifungal properties (De Lucca et al., 2013; 2011). 

Acetone 

Ubiquitous soil VOC (Insam and Seewald, 2010). Key in 

ketone metabolism (alternative metabolic fuel source) 

(Puchalska and Crawford, 2017) 

Acetophenone 

Secondary metabolite in some species (Evodia merrillii 

(Chou et al., 1992), Melicope semecarpifolia (Chen et al., 

2008)). May be metabolised by some bacteria 

(Arthrobacter) (Cripps, 1975) and involved in the 

anaerobic degradation of ethylbenzene (Kanehisa et al., 

2017). Antifungal (Ma et al., 2013). 

Benzene 

Naturally present in low concentrations in the 

environment. Metabolised by some plants into organic 

acids (Ugrekhelidze et al., 1997). Benzene present in soil 
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can be enzymatically degraded by aerobic bacteria 

(Kuykendall, 2008). Potentially toxic to soil microbes, 

reduces microbial diversity (Fahy et al., 2005). 

Benzeneacetaldehyde 

Prokaryotic and eukaryotic metabolite derived from 

phenylalanine (essential amino acid) (Saccharomyces 

cerevisiae (Manzoni et al., 1993), Escherichia coli (Parrott 

et al., 1987), tomato plants (Tieman et al., 2006)), also 

breakdown product of styrene in humans. Important VOC 

in flower scent (Kaminaga et al., 2006). 

Benzoic acid 
Growth stimulant for bacteria and fungi but may have 

inhibitory effects for specific species (Liu et al., 2017). 

Benzonitrile 

Precursor to some herbicides and fungicides (Veselá et al., 

2010). Biodegradation by some bacteria (Mukram et al., 

2015). 

Butanal, 3-methyl- 

Plant and bacterial metabolite (Tait et al., 2014). Involved 

in leucine (amino acid) degradation and glycine betaine 

(osmolyte) biosynthesis from betaine aldehyde. 

Creatinine Potentially antibacterial (McDonald et al., 2012).  

Furan, 2-ethyl- 
Derived from furan, bacterial and plant metabolite (Farag 

et al., 2006). 

Furan, 2-pentyl- 

Emitted from Bacillus megaterium with possible growth 

promoting effects on Arabidopsis thaliana (Zou et al., 

2010). 

Furfural * 

Shown to inhibit enzymatic hydrolysis of lignocellulosic 

material (Sun et al., 2016). Highly toxic to most 

microorganisms (Wierckx et al., 2011) 

Heptanal 
Common plant volatile. An endogenous aldehyde coming 

from membrane lipid oxidation.   

Hexenal 

Produced through degradation of unsaturated fatty acids 

during microbial growth (Korpi et al., 1998). Anti-fungal 

VOC (Gardini et al., 1997). 

Nonanal 

Eukaryotic metabolite found in numerous plants (Pophof 

et al., 2005; Wildt et al., 2003; Maganha et al., 2010). 

Potentially antifungal/ antimicrobial (Abanda-Nkpwatt et 

al., 2006; Kobaisy et al., 2001; Sharifi et al., 2018).   

Nonanoic acid 

Eukaryotic metabolite (common in pelargonium plants) 

(Pohanish, 2015). Herbicidal, antimicrobial and antifungal 

properties (Ciriminna et al., 2019; Sahin et al., 2006; Jang 

and Jung, 2012). 
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Octanal 

Plant secondary metabolite, growth inhibitory volatile 

(Mishyna et al., 2015). Bacterial and fungal metabolite, 

involved in fatty acid decomposition (oleic acid) 

(Hamilton-Kemp et al., 2005; Beck et al., 2011). 

Tetrahydrofuran 
Environmental pollutant, few bacterial and fungal species 

are able to metabolise it (He et al., 2014).  

Undecanal 

Role as an antimycobacterial and nematocide, a volatile oil 

component and fatty acid derived plant metabolite 

(Esquivel-Ferriño et al., 2012; Kim et al., 2008; Pickett et 

al., 2016)). 

Compound(s) 

emitted under good 

treatment only 

Azulene, 1,4-dimethyl-

7-(1-methylethyl)- * 

Sesquiterpenoid, shown to possess antimicrobial properties 

(Li et al., 2012). 

Compound(s) 

emitted under 

medium treatment 

only 

Butanal, 2-ethyl-3-

methyl- * 
No evidence supporting function found. 

Compound(s) 

emitted under good 

and medium 

treatment only 

2-Heptenal, (Z)- * Associated with lipid autoxidation (Lorenzo et al., 2013). 

3-Furaldehyde * 

More commonly present as 2-furanaldehyde (furfural). 

Likely a component of ligno/hemicellulose (Jönsson et al., 

2013). 

Formic acid, octyl ester 
Plant and animal metabolite present in the cell membrane 

and used in energy storage.  

Compound(s) 

emitted under poor 

treatment only 

1H-Indole, 2-methyl- 
Highly toxic to microorganisms, few bacteria or fungi can 

metabolise it (Ochiai et al., 1986; Arora et al., 2015). 

2(3H)-Furanone, 

dihydro-5-pentyl- * 
Microbial quorum-quenching activity (Cirou et al., 2012). 

2,4-Di-tert-butylphenol 

* 

Common secondary metabolite produced by various 

groups of organism with potential insecticidal, 

nematocidal, anti-bacteria, -viral and -fungal activities 

(Zhao et al., 2020) 

3-Octanone * 

Secondary metabolite produced in fungi (Takeuchi et al., 

2012; Kanchiswamy et al., 2015). Molluscicide (Khoja et 

al., 2019).  

Aniline 

Used in the synthesis of herbicides. Bacterial degradation 

has been seen in a number of species (Arora, 2015). 

Antifungal activity (Zhang et al., 2020).  

Dimethyl trisulfide * 
Terminal electron acceptor during anaerobic respiration 

(Hedderich et al., 1998). Antimicrobial (Tyc et al., 2015). 
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Disulfide, dimethyl 

Terminal electron acceptor during anaerobic respiration 

(Hedderich et al., 1998). Nematocidal (Yan et al., 2019).  

Quorum-sensing-inhibiting compound (Chernin et al., 

2011). Stimulate bacterial growth and inhibit fungal 

growth (Garbeva et al., 2014). 

Phenol, 4-ethyl- * 

Can act as the sole carbon source for some fungi (Jones et 

al., 1994). Associated with the biological decomposition of 

plant material (Akdeniz et al., 2007). 

Pyridine, 2-methyl- * 
Bacterial and fungal secondary metabolite, fungicidal 

activities (Seifert and King, 1982; Asari et al., 2016). 

trans-β-Ionone * 

Associated with carotenoid degradation (Reese et al., 

2019). Antifungal and antibacterial properties (Borras-

Hidalgo, 2010; Lamikanra and Richard, 2002). 
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Significant differences between treatments, as determined using ANOVA with a Tukey 

post-hoc test, were found for a number of compounds (Table 7.2). Furfural and butanal, 2-

ethyl-3-methyl- were found in higher concentrations under the medium treatment. Azulene, 

1,4-dimethyl-7-1-methylethyl- was detected in greater concentrations under the ‘good’ 

treatment. Pentanal, 3-furaldehyde and (Z)-2-heptenal were all detected in significantly higher 

concentrations under the ‘good’ and ‘medium’ treatments compared to the ‘poor’ soil quality 

treatment. While 2-methyl-1H-indole,; trans-β-ionone; 2(3H)-furanone, dihydro-5-pentyl-; 

2,4-di-tert-butylphenol; 3-octanone; 2-methyl-pyridine,; dimethyl trisulfide and 4-ethyl-

phenol, were all found in significantly higher concentrations under the ‘poor’ treatment. In 

general, the samples within the ‘poor’ treatment had a larger number of aromatic, carboxylic 

acid and sulphur containing compound groups, while the ‘good’ and ‘medium’ groups were 

characterised by ketones and aldehydes. The treatments that were enriched with organic matter 

(good and poor) produce a larger number of aromatic compounds, as summarised in Fig 7.5.  

 

Figure 7.5. Number of compounds detected consistently in all replicates (n = 3) in each broad 

VOC compound category identified using SPME-trap-enrichment, by treatment. 
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7.5. Discussion  

7.5.1. Evaluation of different soil VOC extraction techniques 

Single extraction SPME methods represent a common technique for the environmental 

sampling of VOCs. However, this approach can also suffer from issues associated with 

competition for phase adsorption on the fibre itself (Górecki et al., 1999). This study compared 

standard SPME methods against alternative and novel sample methods (HCSE and SPME-

trap-enrichment) to assess their performance on complex sample matrices. In general, HCSE 

and SPME-trap-enrichment both improved the sensitivity and analyte range of extractions 

compared to single SPME extraction, across all treatments (Fig. 7.4). This was likely a result 

of decreasing the phase competition, particularly for compounds with low and high boiling 

points, respectively. While single SPME yielded the highest number of chromatographic 

features, this did not translate into greater compound identification, likely due to the smaller 

peak areas, making compounds difficult to distinguish from chromatographic noise. Both 

SPME-trap enrichment and HCSE had larger total peak areas for a reduced number of peaks, 

allowing more successful putative software-based compound identification. 

To reduce the generation of pressure, a lower extraction temperature was used for the 

HCSE extractions compared to the other HS sampling methods tested in this study, resulting 

in a comparatively higher partition co-efficient (k) value than the other HS extraction methods. 

A key aspect of this analysis was to keep sample preparation to an absolute minimum, allowing 

this approach to be easily scalable to a greater number of samples. To achieve this, while not 

disturbing the sample, the original moisture content was not altered in any way. At higher 

temperatures, close to the boiling point of water, we reached the physical limitations of the 

probe holder. For instrumental continuity, a lower temperature was used to compensate for the 

limitations of the higher pressure. This had the potential to lower the number of compounds 

emitted to the headspace in the HCSE extractions compared to the other methods. However, 

the larger sorbent volume of the HCSE (65 μl, as opposed to 0.6 μl and 1.8 μl, for SPME-trap 

and SPME-trap-enrichment, respectively) was likely to have played a role in good VOC 

recovery rates, as the rate of adsorption is directly proportional to the surface area (Ouyang et 

al., 2007). The molecular weight of an analyte has a large effect on its retention, longer 

extraction times allow heavier analytes to reach equilibrium increasing the number and 

intensity of peaks (Giri et al., 2010; Yamaguchi et al., 2018).  

It must also be noted that sampling sorbents differed between extraction methods; 

SPME fibres were made of PA (commonly used for recovery of polar semi-volatiles; 80 – 300 
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molecular weight (MW)) while HCSE uses PDMS (widely responsive to volatiles; 60 – 275 

MW), both of which extract analytes via absorption and greatly reduce competition for phase. 

As fibre coating section is a key determinant of compound recovery, this is likely to have 

influenced the types of compounds recovered using each method (Fig. 7.2). PDMS has been 

the most commonly used fibre for soil VOC sampling, particularly with regard to pollution 

sampling and monitoring (James and Stack, 1996; Zhao and Zhai, 2010). However, for more 

subtle changes in the VOCs associated with soil ecology, a combined phase approach (e.g.  

polydimethylsiloxane/divinylbenzene (PDMS/DVB), Carboxen/polydimethylsiloxane 

(CAR/PDMS) or Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS)) is 

often utilised in order to maximise the range of compound recovery from the headspace (Brown 

et al., 2021). However, mixed coatings extract analytes via adsorption, physically interacting 

with the analytes and thus creating competition for phase (Gherghel et al., 2018). Longer 

sampling times will increase competition for the finite number of adsorption sites on the surface 

of a mixed coating fibre, possibly biasing analysis towards compounds with the greatest affinity 

for the fibre (dependent on a number of factors including sampling material and analyte 

polarity) (Kallenbach et al., 2014; Mascrez and Purcaro, 2020b).  

The SPME-trap-enrichment technique warrants further investigation using multi-phase 

fibres; allowing more analyte to be sampled from the headspace, preconcentrated and 

subsequently analysed. Once optimised, this has the potential to increase the ability to monitor 

subtle changes in the ecological VOC profile of complex environmental samples at increased 

sensitivity and wider range of analyte molecular weight and polarity, ultimately reducing bias 

in the extraction method.  

 

7.5.2. Chemical diversity of compound detection using SPME-trap-enrichment 

The soil VOC emission profile is generally a product of the composition of the 

microbial community and the prevailing environmental conditions (Abis et al., 2020; Insam 

and Seewald, 2010; Misztal et al., 2018). The three contrasting treatments used here were 

diverse in their VOC profiles with the aerobic ‘good’ and ‘medium’ soil quality treatments 

being more closely related in their VOC emission profiles relative to the ‘poor’ treatment (Fig. 

7.4). The SPME-trap-enrichment method detected the most compounds across the 11 groups 

summarised in Fig. 7.5. The ‘poor’ treatment produced the greatest diversity of VOCs. We 

ascribe this to the anaerobic conditions where a greater proportion of C is partitioned into 

metabolic by-products from respiration and secondary stress-related metabolites, which often 
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results in an increase in the diversity of VOCs emitted (Seewald et al., 2010). Equally, the 

addition of organic material (lysed grass in poor treatments and soil improver in good 

treatments, respectively) can increase the substrate quality, providing a readily accessible 

source of nutrients, driving the production of VOCs. Though, organic additions are likely to 

have different substrate qualities; soil improver is more stable with more recalcitrant (cellulose 

and lignin) C and N than the lysed grass.  

In the cases of the ‘good’ and ‘poor’ treatments, it is likely that changes in the soil 

system (increased availability of nutrients) generated conditions more favourable for the net 

emission of VOCs (i.e. production ≥ consumption). However, when a biochemical steady state 

equilibrium has been reached (i.e. no significant change in biotic or abiotic conditions), soil 

may be a VOC sink rather than a source (Asensio et al., 2007). Accordingly, it is possible that, 

with no significant inputs or changes to the ‘medium’ treatment, it was in an equilibrium state 

(i.e. consumption ≥ production), and it was only the heating of the sample on analysis that VOC 

emission occurred. All the major VOC chemical groups that have been previously reported 

being emitted from soil were identified in this study (Insam and Seewald, 2010). We also 

acknowledge that, as treatment VOCs signatures were not directly measured, some of the 

VOCs identified may be due to direct amendment and not subsequent microbial metabolism. 

However, as the existing literature shows, soil microbial metabolism has the potential to rapidly 

degrade (particularly labile) compounds and we therefore expect the majority of compounds to 

be microbially synthesised (Bore et al., 2017; Gougoulias et al., 2014; Ray et al., 2020).  

 

7.5.3. Ecological significance of VOC compounds 

The diffusive potential and mobility of VOCs allows microorganisms to increase their 

sphere of influence (‘volatisphere’) within the soil. While the role of VOCs in soil is diverse, 

generally these can be categorised into the following: quorum sensing, biological control, or 

inter-/ intra-organismal interactions (Evans, 2009; Keller, 2019; Yergeau et al., 2017).  

In this study, using data from the most sensitive method (SPME-trap-enrichment), a 

number of compounds were emitted ubiquitously from all treatments, a summary and possible 

ecological role within the system are explored in Table 7.2. These were low molecular weight 

ketones (e.g. acetone and 2-butanone), aldehydes (e.g. octantal and hexanal) and furans 

(furfural and furan, 2-ethyl), which have been shown to be commonly emitted from a range of 

soils, as by-products of microbial anabolism or catabolism (Huber et al., 2010; McBride et al., 

2019; Peñuelas et al., 2014). Other compounds were treatment specific, likely produced as 
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result of, or in response to, the perturbed microbial community. Generally, the compounds 

summarised in Table 7.2, have been shown to have a possible function or benefit for the 

emitting organism, e.g. bacterial or fungal inhibition. However, while many of the compounds 

identified have well defined roles within microbial metabolism, there are still knowledge gaps 

regarding the applicability of VOCs measured in a laboratory setting under favourable 

conditions, to an applied or field setting.  

 

7.6. Conclusions 

SPME-trap-enrichment with some partition coefficient modification and cryogen free 

focusing technology, allows increased sensitivity, particularly of compounds with low and high 

boiling points, and subsequently allows more compounds to be positively identified (MF > 

700). This in turn allows for a much more comprehensive VOC profiling and the potential to 

determine the functions of specific VOC produced by the microbial community. Ultimately, 

these novel methods of VOC extraction provide the key to elucidating environmental 

biochemical interactions on a micro-scale. 
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8.1 Abstract 

Soil is an extremely complex and dynamic matrix, in part, due to the wide diversity of 

organisms living within it. Soil organic matter (SOM) is the fundamental substrate on which 

the provision of ecosystem services depends, providing the metabolic fuel to drive soil 

function. As such, the study of metabolomics (diversity and concentration of low molecular 

weight metabolites) holds the potential to greatly expand our understanding of the behaviour, 

fate, interaction and functional significance of small organic molecules in soil. Encompassing 

a wide range of chemical classes (including amino acids, peptides, lipids and carbohydrates) 

and a large number for individual molecules (estimated 2 × 105 to 1 × 106) the metabolome is 

a product of several layers of a biological hierarchy, namely the genome, transcriptome and 

proteome. Therefore, it may also provide support and validation for metatranscriptomic and 

metagenomic datasets. We present the case for the increased use of metabolomics in soil 

biochemistry, particularly for furthering our fundamental understanding of SOM composition 

and cycling, as well as the scale of the challenge of in terms of extraction and interpretation in 

a complex system. Further, we identify several key areas for future research focus, including 

the importance of untargeted analysis, the emission and fate of volatile organic compounds in 

and from soil and monitoring ecological interaction in the rhizosphere, which will aid the 

fundamental comprehension of biochemical interactions and transformations between the soil 

substrate and soil-dwelling biology.  

 

Keywords: Carbon, Pools and fluxes, Biochemistry, Soil organic matter, Nutrient cycling.  
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8.2. Introduction 

Soil is key to the survival of life on Earth. Its resources not only provide food, fuel and 

fibre for a growing human population, but the large range of additional ecosystem services, for 

example, nutrient cycling, carbon (C) sequestration, climate regulation and flood prevention 

(Pereira et al., 2018). However, soil research faces major challenges into the future, with 

increasing agricultural intensification (Kopittke et al., 2019), salinisation (Clarke et al., 2018), 

desertification and urbanisation (Li et al., 2018), in addition to increasingly unpredictable 

weather patterns (Borrelli et al., 2020). Consequently, a deeper understanding and improved 

management of soil processes will become key in maintaining soil health (Baveye, 2015). Soil 

biology is now recognised as the key driver of soil functioning; however, it is generally 

underrepresented in soil quality assessments, likely due to its immense complexity, both in 

terms of multispecies interaction and interpretation, compared to more traditional chemical and 

physical measures (Bünemann et al., 2018). A combinatorial suite of approaches is therefore 

needed to fully integrate biological indicators into routine soil monitoring. While major 

advances have been made in evaluating the diversity of organisms which live in soil (e.g., via 

metagenomics and metabarcoding), directly linking this to changes in the amount and chemical 

properties of soil organic matter (SOM) and soil functioning has proven difficult.  

SOM is the universal substrate on which the majority of life on Earth relies upon to 

some extent. The amount and quality of SOM underpins most of the ecosystem services 

provided by soil. Biology, being the driving force behind nutrient cycling in soil, facilitates the 

decomposition and transformation of organic residues to organic matter (Jiao et al., 2019; Roth 

et al., 2019). The soil’s cycling of these nutrients, while occurring on a microscale, has global 

implications in terms of C cycling (net emission or sequestration), as well as other key chemical 

cycles (e.g. nitrogen, phosphorus and sulphur cycling) (Gougoulias et al., 2014). Generally, 

there is understanding of the higher-level process governing the cycling of nutrients (i.e. how 

environmental conditions affect aerobic and anaerobic soil respiration, carbon use efficiency, 

or nitrification/denitrification), although potential rates must be interpreted with caution 

(Hazard et al., 2021). Yet, there is little understanding of the small molecule interactions 

underpinning these processes. To date, most characterisation of SOM has been associated with 

techniques that provide a broad view of its chemical composition (e.g. NMR, FTIR). In 

addition, the turnover rate of SOM is normally quantified by measuring total soil respiration or 

heat production (calorimetry). While this provides a total integration of biological activity 

occurring in soil, it provides no detail on the processes involved. The study of environmental 
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metabolomics is in an excellent position to explore this as the output of the metabolome is a 

product of several layers of a biological hierarchy, namely the genome, transcriptome and 

proteome, as summarised in Fig. 8.1.  

 

Figure 8.1. A conceptual representation of the biological hierarchy from genome to 

metabolome, illustrating the metabolome's sensitivity to environmental and organismal 

change. Adapted from Takahashi et al., (2012). 

 

Metabolomics, the study of small molecules (typically 100 – 1500 Da; i.e. metabolites, 

chemical substances produced as a result of organismal metabolism), has been widely applied 

in a number of fields. A brief summary of the methods discussed in this chapter are contained 

within Table 8.1. The application of metabolomic analysis to a single cell, organism or species 

is widely practiced, e.g., to understand virus-host interactions (Kumar et al., 2020), 

environmental stresses on shellfish (Viant et al., 2003), or understanding nutritional 

requirements of single species (Creek et al., 2013). However, in recent years the field of 

environmental metabolomics has evolved, allowing the ability to characterise the interactions 

between a community of organisms and their environment (Bundy et al., 2009). The application 

of metabolomics to soil science is a nascent field, with large potential.  
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Table 1 8.1. A brief description of the subtypes of metabolomics discussed in this chapter. 

 

Metabolomics encompasses a broad range of analytical techniques and metabolic 

subdivisions, therefore the ability to tailor analysis to answer specific hypothesis and research 

questions is a strength. However, the complexity of the metabolome is often a hindrance to 

interpretation (Fig. 8.2), with many laboratory-based studies performed under controlled 

conditions. Often these are not subsequently applied to field scenarios, where many variables 

are uncontrollable.  

Sub-types of 

metabolomic 

analysis 

Brief description References  

Targeted Analysis of defined groups of chemically characterized and 

biochemically annotated metabolites. 
Roberts et al., (2012) 

Untargeted Comprehensive analysis of all the measurable analytes 

including chemical unknowns, limited by analysis and 

extraction technique 

Want et al., (2018) 

Primary 

metabolites 
Compounds involved directly in the normal growth, 

development and reproduction of an organism or 

community. Generally, endogenic, often produced in the 

log phase of growth. 

Crueger and Crueger, 

(1990) 
Sanchez et al., (2008) 

Secondary 

metabolites 
Compounds that are not required for the growth or 

reproduction of an organism or community but are usually 

produced in order to gain a selective advantage.  
Usually, exogenic, often produced in the stationary phase of 

growth.  

Karlovsky, (2008) 
Chomel et al., (2016) 
Erb and Kliebenstein, 

(2020) 
Ruiz et al., (2010) 
Isah, (2019) 

Lipidomics Lipid compounds generally transcend 
the categories of primary and secondary metabolites. For 

example, some groups are crucial for cell function e.g. 

PLFAs as membrane lipids and TAGs as storage lipids 

whereas others are used as signalling compounds.   

Zhao et al., (2018) 
Soto et al., (2019) 
Mahfouz et al., (2020) 
Frostegard et al., (2015) 

Volatilomics A subset of secondary metabolomics concerning all volatile 

metabolites, often referred to as volatile organic compounds 

(VOCs). 

Leff and Fierer, (2008) 
Insam and Seewald, 

(2010) 
Kesselmeirer and Staudt, 

(1999) 
Brown et al., (2021) 
Brilli et al., (2019) 
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Figure 8.2. The Kyoto Encyclopedia of Genes and Genomes (KEGG) schematic representation 

of known metabolomic pathways (Kanehisa et al., 2016), however the database is not extensive, 

with the potential for many other as yet identified metabolic pathways, or ‘metabolic dark 

matter’. Equally, while the main focus of most studies to date is the emission of the three most 

prolific greenhouse gases from soil (CO2, CH4 and N2O), VOCs may potentially be emitted as 

metabolic intermediates from the anabolism and catabolism of various other primary and 

secondary metabolites (Insam and Seewald, 2010), potentially representing a significant flux 

of carbon from the micro- and phyto-biome.  

 

8.3. The importance of metabolomics in the study of soil biochemistry 

Metabolic reactions underpin soil biological life and function within the environment. 

They are the microscale interactions that determine the soil’s ability to provide ecosystem 

services for example, C storage, nutrient cycling and buffering of pollutants (Brown et al., 

2021b; Chomel et al., 2016; Jones et al., 2014). Particular focus has been on understanding 

SOM quality (segregated into water extractable (i.e. accessible compounds), and solvent 
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extractable, (i.e. intracellular compounds, and more polar (less biologically accessible) 

extracellular compounds)) (Swenson et al., 2015; Swenson and Northen, 2019). However, still 

little is known about the small molecule composition of soils, and how these molecules are 

cycled. Where this work has been undertaken, it has tended to focus on a specific group of 

compounds (e.g. organic acids, amino acids, allelochemicals) providing only a small piece of 

the metabolic jigsaw puzzle. However, an untargeted approach, examining the whole 

metabolome, may provide a greater understanding of C cycling, with potentially significant 

effects for C budgets and fluxes within and from soils (Overy et al., 2021). When linked to 

stable isotope labelling of SOM (e.g. 12C/13C, 14N/15N, 32S/34S, 16O/18O) it is also possible to 

simultaneously trace the flux of individual metabolites in soil. This isotope pool dilution 

approach has been used extensively for phospholipids (Maxfield and Evershed et al., 2014; 

Watzinger et al., 2019) and amino acids (Dippold and Kuzyakov, 2013; Dippold et al., 2014), 

however, it has not yet been widely applied to other compound groups. This approach also has 

the potential to track the source and fate of metabolites derived from plants by 13CO2 labelling 

the shoots (Chen et al., 2021).  

Equally, ecological metabolomics (ecometabolomics), the exploration of the 

ecophysiological and ecological function of organisms and ecosystems, is also a field of 

growing importance (Sardans et al., 2011). In this sense its application is not only limited to 

soil microbial communities, the metabolic health of soil dwelling macrofauna (e.g. earthworms 

(Rochfort et al., (2008); Tang et al., (2020); Zhu et al., (2020)) may also be explored. As the 

sensitivity of analytical equipment increases, the resolution at which inter- and intra-species 

interactions may be observed also increases. This is particularly the case with extracellular 

volatile metabolites, which potentially may be profiled in real-time, non-invasively (Seewald 

et al., 2010). 

While only beginning to be elucidated, small molecule interactions are likely to play a 

central role in the fundamental understanding of environmental interactions and ultimately 

environmental quality as a whole. Examples of its use include pollution monitoring (Jones et 

al., 2014), soil quality assessment (Brown et al., 2021a; Withers et al., 2020) and quantifying 

soil stress (Lankadurai et al., 2013) as well as the discovery of new compounds for pesticide 

and drug development (Aliferis et al., 2010; Atanasov et al., 2021; Gupta et al., 2018). While 

soil biological function is currently, generally measured on the output of processes (i.e. GHG 

emission or crop yields), metabolomics may be the key to elucidating functional change on a 

much finer scale. With the potential to increase our understanding of functional metabolomics 
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to that of functional genomics (Danczak et al., 2020; Ungerer et al., 2007; Yan and Xu, 2018), 

ascribing particular metabolites to be indicative of specific processes and further elucidating 

metabolic pathways adding to the Kyoto Encyclopaedia of Genes and Genomes (KEGG; and 

equivalent databases) (Kanehisa et al., 2017; Kanehisa and Goto, 2000). Known examples of 

this include the role of organic acids in regulating P availability in soil (Menezes-Blackburn et 

al., 2016; Zhu et al., 2021), amino acids in drought stress tolerance (Kushal et al., 2015; You 

et al., 2019) and specific peptides in disease regulation (Datta et al., 2015; Khademi et al., 

2020). 

 

8.4. Current limitations 

Soil is, by definition, an extremely complex analytical substrate with biological, 

chemical and physical factors all interacting dynamically, with small perturbations in extrinsic 

or intrinsic factors leading to changes in the equilibrium. Soil is also extremely spatially 

heterogeneous, reflecting soil quality, land use and management (Gravuer et al., 2020; Mao et 

al., 2014), down to the fine-scale variations in exudate composition along a root (Dong et al., 

2019). Potentially rapid temporal changes add to soil’s complexity, with changes in metabolic 

profiles occurring within minutes of perturbation (Gunina et al., 2017), as well as diurnally 

based on plant rhizospheric excretion fluxes (Hubbard et al., 2017). Metabolomic extraction 

methods are often optimised for specific soil types (Jenkins et al., 2017; Swenson et al., 2015), 

or environmental conditions, for example saline soils are likely to hinder the analysis of 

metabolites (Annesley, 2003; Xu et al., 2021), or potentially are not optimised for soil at all 

(Fiehn, 2016; Withers et al., 2020). This combined with a range of available extraction solvents 

(Table 8.2), targeting different fractions of organic matter (OM) (water extractable OM (i.e. 

directly biologically available) vs. solvent extractable OM (examining intracellular, available 

and soil adsorbed/absorbed depending on choice of solvent), leads to difficulty of direct 

comparison between datasets during meta-analysis.  
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Table 8.2. A summary of common metabolite extraction techniques and analysis platforms.   

Extraction 

techniques 
Brief description References 

Fumigation-

extraction 
Fumigation of a soil sample with chloroform has been shown to 

lyse cells and release intracellular metabolites prior to 

extraction. This may be combined with an H2O or solvent based 

extraction. 

Vance et al. (1987) 
Swenson et al. (2015) 

H2O For the extraction of water extractable organic matter (WEOM) 

or soil exometabolites. Effective at extracting a broad range of 

polar compounds. However, may significantly underrepresent 

fatty acids and sterol compounds. Low concentrations of salt 

may be included to reduce the effect of cell lysis and osmotic 

shock, however salt must be removed before analysis. 

Swenson et al. (2015) 
Gregorich et al. (2000) 

Solvent based Solvents may be used either individually or in combination, 

common extraction solutions include, methanol as well as 

combinations of isopropanol, methanol and water or 

isopropanol, acetonitrile and water. Generally, combining 

solvents allows for the extraction of a broader range of 

metabolite compound classes including a greater number of 

non-polar molecules compared to H
2
O only.  

Swenson et al. (2015)  
Ser et al. (2015) 
Capriel et al. (1986) 
Withers et al. (2020) 
Roberts et al. (2012) 

Analysis platforms 
  

GC-MS Flexible, high resolution and sensitivity to a broad range of 

compounds, including volatile organic compounds, lipids and 

derivatizable molecules, allowing for targeted or untargeted 

analysis. Often identifying > 100 compounds per sample. The 

technology is easily combined with mass spectrometers and 

accurate mass measurements. This is complemented by large 

supporting spectral libraries and standardised methodologies.  

Schauer and Fernie 

(2006) 
Fiehn et al. (2016) 

NMR spectroscopy Highly repeatable, easy metabolite identification and non-

destructive analysis. However, generally low resolution and 

sensitivity hinders the determination of metabolites to ≤ 50 per 

sample.  

Emwas et al. (2019) 

LC-MC Flexible, high resolution and sensitivity to a broad range of 

compounds; capable of identifying > 400 compounds per 

sample. Often provides increased resolution for semi-polar 

metabolites. 

Zeki et al. (2020) 

Other PTR-MS – high sensitivity, real-time measurement of VOCs, 

requiring no sample pre-preparation. However, a limited range 

of molecules detectable (only molecules with a proton affinity 

higher than water) and limited total concentration. 
FT-ICR-MS – the most advanced mass analysers in terms of 

high accuracy and resolving power and sensitivity, with sub-

parts-per-million mass accuracy. Potentially greater information 

about heteroatom-rich samples 

Mancuso et al. (2015) 
Hewitt et al. (2003) 
Han et al. (2008) 
 

 

Kirwan et al. (2014) 
Ghaste et al. (2016) 
Simon et al. (2018) 
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Traditionally, untargeted analysis has been associated with hypothesis forming, whilst 

targeted analysis is associated with hypothesis testing and is often viewed as more powerful. 

The data output from targeted analysis is generally quantitative, absolute quantification and 

annotation, whereas untargeted results are often qualitative or, in some cases where a range of 

standards have been included, semi-quantitative. Equally, the diversity of analysis techniques 

(LC/GC-MS, NMR, FT-ICR-MS, Table 8.2) creates further issues for direct comparisons of 

datasets.  

The sheer scale and size of the metabolome is an additional hinderance to analysis, 

particularly considering the significant chemical diversity of metabolites and their dynamic 

range (D’Auria and Gershenzon, 2005; Fernie et al., 2004). For example, from the 4 × 105 

vascular plant species on the planet (Willis, 2017) it is estimated there are between 2 × 105 and 

1 × 106 individual metabolites (Rai et al., 2017; Fang et al., 2019), with any single species 

containing ≥ 5 × 104 compounds (Fernie et al., 2004). Furthermore, while primary metabolism 

is generally conserved, the synthesis of secondary (specialised) metabolites, which can account 

for a large proportion of their metabolome, can be hugely diverse between species (Alseekh 

and Fernie, 2018). This diversity of metabolism is replicated across the fungal kingdom, and 

while bacteria are generally considered to be less metabolically diverse, they still exhibit 

significant variation (depending on their energy requirements and metabolic mechanisms (e.g. 

phototrophs and chemotrophs) (Gomez, 2011).  

Linking metabolite analysis to the underlying genomic, transcriptomic, proteomic and 

enzymatic (although this may only indicate potential rates (Greenfield et al., 2020)) analysis 

remains the gold standard in environmental ’omic research, potentially allowing insight into 

microbial function in unprecedented detail. Whilst it is possible to correlate the presence of 

metabolites to specific members of the biological community (Li et al., 2020; Taylor et al., 

2018), metabolites have also been linked to specific genes (Finn et al., 2020; Hooft et al., 2020; 

Kjærbølling et al., 2018). This translation of ’omics metrics into a functional understanding of 

ecosystem processing and ecosystem function and service provision, will be key to cementing 

their relevance in the study environmental biology into the future (Bahamonde et al., 2016; 

Biswas and Sarkar, 2018). However, this requires the systematic construction of high-

resolution metabolome libraries, including the continual characterisation of as yet unidentified 

metabolites (or ‘metabolic dark matter’, Fig. 8.2). Diverse pathway maps will also be required 

to reflect the variety of metabolism (particularly of secondary metabolism) within the 

taxonomic kingdoms, as this is often not reflected in current, generic metabolic maps. 
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Ultimately, this should aid effective and efficient integration with the other ’omics techniques 

currently utilised in soil research.  

 

8.5. Perspectives on the study of soil metabolomics 

8.5.1. The importance of untargeted analysis  

As alluded to in section 8.3, targeted metabolomic analysis is often viewed as more 

powerful compared to untargeted analysis, due to its quantitative, authenticated nature. 

However, untargeted analysis should not be overlooked. A large number of metabolic 

compounds are yet to be characterised, this so called ‘metabolic dark matter’ (Fig. 8.1) 

represents an exciting and, as yet, untapped source of new analogues of clinically used 

antibiotics theoretically allowing the discovery of metabolites capable of circumventing 

clinically important resistance mechanisms (Peek et al., 2018; Sharrar et al., 2020). In addition, 

this will aid in the understanding of the chemical ecology of soil (Kellogg and Kang, 2020) and 

fundamental fluxes of small organic molecules through soil and the inter- and intra-species 

interactions between soil organisms. It is only by performing untargeted, ‘discovery’ analysis 

that the elucidation of molecular biomarkers, for example typical osmolytes associated with 

drought e.g. trehalose, mannitol and glycine betaine, may be associated with the conditions 

(Nawaz and Wang, 2020; Warren, 2020). We have only scratched the surface in terms of our 

comprehension the high-resolution C cycling in soils, analytical advances in resolution, 

annotation and quantification are likely to enhance this into the future.   

 

8.5.2. The emission and fate of VOCs 

The emission of C from soil is also an area of interest for future research, current models 

focus overwhelmingly on the three most potent greenhouse gases from soil, carbon dioxide 

(CO2), methane (CH4) and nitrous oxide (N2O). While the effect of these gases are well known 

in terms of climate change, the emission of VOC from soil has been little explored. For 

example, biogenic secondary metabolite emission from soil (e.g., isoprene and monoterpenes) 

may also contribute to tropospheric ozone and secondary organic aerosol formation (Ahlberg 

et al., 2017; Fitzky et al., 2019; Sindelarova et al., 2014). With soil VOC emissions having 

shown to be up to 5.0% ± 2.0 of CO2 emissions (molar C equivalent) on rewetting (Rossabi et 
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al., 2018), this may be a significant, previously unaccounted for, loss of C from soil. While, 

VOCs have been incorporated into atmospheric models to some extent, they do not usually 

focus on total VOC emission, rather, a small number of the most abundant VOCs, and often 

not from soil itself (Navarro et al., 2014).  

Nevertheless, modelling has estimated the annual global emission of VOCs from 

vegetation is 6.34 × 108 t C yr−1 (Henrot et al., 2017). Plants are also major emitters of VOCs 

to soil through their roots (Dudareva et al., 2007), of which many are related to abiotic or biotic 

stressors. Therefore, monitoring their emission and diffusion in a non-invasive and non-

destructive way may provide further insight into plant health. Equally, VOCs provide a labile 

substrate and are capable of being consumed in soil (Owen et al., 2007). Therefore, methods 

of measurement throughout the whole soil profile, not just at the surface, will be key to 

understanding the mechanisms of anabolism and catabolism throughout the soil. Future work 

is required to quantify the loss of C from soil. Further, it is not only the emission of these 

compounds, but the interaction effects with the environment and inhabiting biology, as well as 

the degradation pathways and the ultimate fate of this C that is largely unknown and warrants 

further investigation.  

 

8.5.3. The rhizosphere – a key hotspot for biochemical and organismal interaction 

The rhizosphere was long been recognised as a ‘hotspot’ for nutrient transformation, 

biochemical and organismal interaction (Kuzyakov and Blagodatskaya, 2015). Plants exude 

significant amounts of their photosynthetically fixed C and N through their roots, releasing up 

to 20% and 15%, respectively (Mohanram and Kumar, 2019; Venturi and Keel, 2016). Yet, the 

complete reasoning behind this large investment remains elusive. Rhizosphere exudate 

composition is largely defined by the genotype of the plant (Mönchgesang et al., 2016), its 

developmental stage (Chaparro et al., 2013) and level of abiotic stress experienced (Carvalhais 

et al., 2013), all of which have been shown to influence and self-select the plants rhizosphere 

microbiome (Sasse et al., 2018) and subsequent inter-kingdom (Durán et al., 2018) and inter-

species interactions (Badri et al., 2009; Foster and Bell, 2012). This interaction is of 

significance to plants, aiding in their resilience to disease and tolerance to stress (Mohanram 

and Kumar, 2019). There is also great interest in manipulating the plant microbiome to improve 

agricultural productivity and reduce potential N pollutants (N2O and NO3 leaching) through 
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selecting for plant genes that promote nitrification inhibition (Arif et al., 2020; Subbarao et al, 

2021).  

However, further research is required to understand the fundamental relationship 

between the soil metabolite profile and the microbial community, as well as the relationship to 

the regulation of plant rhizo-processes and subsequent nutrient transformations and processing. 

Particularly, investigation into the rhizosphere metabolome and microbiome under different 

plant growth stage and abiotic stresses, including those that are likely to become more prevalent 

with climate change (e.g. drought, flood, salinisation (Jansson and Hofmockel, 2019)), 

anthropogenic perturbation (e.g. plastic and microplastic loading and other pollution events (de 

Souza Machado et al., 2019; Rillig et al., 2017)), and agriculture (e.g. nutrient loading and 

multi-species planting (Overy et al., 2021)). The increased knowledge gained from such studies 

will further guide our ability to engineer the rhizosphere to promote resistance, resilience, 

productivity and sustainability. This is likely to be a challenge, as extracting compounds from 

the rhizosphere without disturbing the root itself (which may lead to a stress response) is 

extremely difficult (Oburger and Jones, 2018). Therefore, the task of disentangling the complex 

relationship between plant-microbe interactions in the rhizosphere should not be 

underestimated. 

 

8.5.4. Understanding temporal metabolite fluxes 

The temporal flux of metabolites through the soil system, through the processing of SOM 

is a key component of soil function. The relative cost of primary metabolomic extraction and 

analysis remains relatively high and is often a hinderance to large-scale experiments with 

measurement over time. Equally, there is currently little analytical scope for real-time 

monitoring, with a focus on the study of metabolic pools (Warren, 2013). Equally, stable- and 

radioisotope analysis is a little explored method which has the potential to be a powerful tool 

for enhancing the understanding of metabolic pathways and networks, as well as overall 

metabolome change within the soil environment (Bore et al., 2017; Dijkstra et al., 2011; 

Nakabayashi and Saito, 2020; Tian et al., 2018; Watzinger, 2015). Ultimately, understanding 

the dynamics of the soil system is key to understanding the rates of C and nutrient cycling and 

the functional implications (Canarini et al., 2019).  
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While the gaseous nature of VOCs is better suited to real-time measurement, for example, 

using proton-transfer-reaction mass spectrometry (PTR-MS), compound detection is not 

extensive, and compound identification is putative and qualitative, unless combined with other 

analytical techniques (e.g. TOF-MS) (Mancuso et al., 2015). However, significant advances in 

calibrated sensor technology (e.g. Photoionization detectors, PIDs) may allow the non-

selective measurement of total VOC fluxes from the soil (Bocos-Bintintan et al., 2019), 

potentially quantitatively aiding the understanding of VOC emission and secondary metabolic 

changes (see section 8.4.2).  

 

8.5.5. Towards functional environmental and ecological ’omics 

Functional metabolomics is a concept originating from the biomedical sciences with the aim 

of overcoming the descriptive nature of interpretation, largely limited to speculating on 

metabolite function based on previous literature (Yan and Xu, 2018). An integrative approach 

is required to truly understand function, drawing on genomic, transcriptomic and proteomic 

approaches. The function of the majority of genes are yet to be elucidated, particularly in the 

case of the gene-protein-metabolite regulation network. This integration of multi-omics data 

can be utilised to tentatively reconstruct the multi-layer regulation network, potentially 

providing a more comprehensive and informative understanding of the regulation of genes to 

transcripts, transcripts to proteins and proteins to metabolites.  

What is more, different level ’omics data can be used to validate each other. While 

likely to be resource intensive work and require significant collaboration between disciplines 

(microbiologists, biochemists, chemical ecologists, environmental scientists, bioinformaticians 

and modellers), future research towards functional environmental ’omics must aim to integrate 

and draw on multiple levels of ’omics data. This integration also requires minimum reporting 

standards for metabolomic data and metadata and publicly accessible data repositories, similar 

to that of genomic sequencing data, to allow future comparison in meta-analyses and modelling 

to maximise use and compatibility of datasets. Previously minimum reporting standards have 

been suggested e.g. Sumner et al., (2007), Viant et al., (2019) and Fiehn et al., (2007), however 

not widely adopted, particularly in the environmental sciences.  
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8.6. Conclusions 

Soil metabolomics provides greater characterisation and elucidation of soil 

biochemistry and chemical ecology at high resolution, aiding the understanding of the complex 

small molecule interactions taking place within soils. Due to its relative infancy there any many 

further possibilities for its application. The use of untargeted ‘discovery’ metabolomics should 

not be undervalued, particularly in such a complex system such as soil. Equally, both the 

rhizosphere and volatile products of secondary metabolism are relatively unexplored research 

areas using metabolomic and volatilomic techniques. Looking to the future, the ultimate goal 

should be the integration of metabolomics with other ’omics platforms, with an emphasis on 

providing a functional understanding to key soil processes e.g., C and nutrient cycling, which 

are essential to (agro-)ecosystem service provision, as well as higher resolution insights into 

ecological interaction. 
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Appendix 1 

Supplementary material from Chapter 3 

Brown, R.W, Chadwick, D.R., Zang, H., Jones, D.L., 2021. Use of metabolomics to quantify 

changes in soil microbial function in response to fertiliser nitrogen supply and extreme drought. 

Soil Biology and Biochemistry, 160, 108351 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Aerial photograph of experimental layout at Henfaes Agricultural Research Station 

taken May 2017. 
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Figure 2. Split plot experimental sampling design. 
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Figure 3. Photos of drought and Reference plots during the drought, illustrating the 

difference in plant health.  
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Figure 4. Influence of drought, N fertilisation and grass species on the metabolic profile of 

soil. Heatmap showing expression profiles of soil treatment groups (n = 8). Metabolites were 

subsequently clustered using Euclidean distance and Ward linkage. Data were normalised 

using a log transformation and Pareto scaling. The colour of samples ranges from red to 

blue, indicating metabolite concentration z-score; numbers 2 to -2 on the scale bar indicate 

the number of standard deviations from the mean. 
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Table 1. Characteristics of bulked water used for irrigation of control plots. Results are 

expressed on a mean basis ± SEM (n = 4). 

 

 

 

 

 

Table 2. UPLC data acquisition parameters. 

Parameter  

Column 

Waters Acquity UPLC CSH C18  

(100 mm length x 2.1 mm internal diameter; 1.7 µm 

particles) 

Positive mode 

Mobile phase A: 60:40 v/v acetonitrile:water + 10 mM 

ammonium formate + 0.1% formic acid 

Mobile phase B: 90:10 v/v isopropanol:acetonitrile + 10 

mM ammonium formate + 0.1% formic acid 

Column temperature 65°C Flow-rate: 0.6 mL/min 

Injection volume 1.67 µL for ESI(+) and 5 µL for ESI(–) 

Injection temperature 4°C 

Gradient 

0 min 15% (B), 0–2 min 30% (B), 2–2.5 min 48% (B), 

2.5–11 min 82% (B), 11–11.5 min 99% (B), 11.5– 12 

min 99% (B), 12–12.1 min 15% (B), 12.1–15 min 15% 

(B) 

ESI capillary voltage ESI(+): +3.5 kV; ESI(–): –3.5 kV 

Precursor/product isolation 

width 

4 Da 

Collision energy 25 eV for ESI(+); 25 eV for ESI(–) 

Scan range positive mode m/z 120 – 1200 Da 

Scan range negative mode m/z 60–1200 Da 

Spectral acquisition speed 

2 spectra/s Mass resolution: 10,000 for ESI(+) on an 

Agilent 6530 QTOF MS; 20,000 for ESI(–) on an 

Agilent 6550 QTOF MS 

 

 

 

 

Irrigation water properties  

pH 6.78 ± 0.1 

EC (μS cm-1) 72 ± 1 

Dissolved organic C (mg C l-1) 2.81 ± 0.8 

NO3
- (mg N l-1) 0.05 ± 0.0 

NH4
+ (mg N l-1) 0.01 ± 0.0 

PO4
- (mg P l-1) 0.03 ± 0.0 
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Table 3. A summary of PLFA biomarkers summed to represent microbial groups. 

 

 

  

Microbial group 

category 
Peaks 

AM Fungi 16:1 w5c    

Saprophytic Fungi 18:2 w6c    

Gram Negative 

10:0 2OH 10:0 3OH 12:1 w8c 12:1 w5c 

13:1 w5c 13:1 w4c 13:1 w3c 12:0 2OH 

14:1 w9c 14:1 w8c 14:1 w7c 14:1 w5c 

15:1 w9c 15:1 w8c 15:1 w7c 15:1 w6c 

15:1 w5c 14:0 2OH 16:1 w9c 16:1 w7c 

16:1 w6c 16:1 w4c 16:1 w3c 17:1 w9c 

17:1 w8c 17:1 w7c 17:1 w6c 17:1 w5c 

17:1 w4c 17:1 w3c 16:0 2OH 17:0 cyclo w7c 

18:1 w8c 18:1 w7c 18:1 w6c 18:0 cyclo w6c 

18:1 w3c 19:1 w9c 19:1 w8c 18:1 w5c 

19:1 w6c 19:0 cyclo w9c 19:0 cyclo w7c 19:1 w17c 

20:1 w9c 20:1 w8c 20:1 w6c 19:0 cyclo w6c 

20:1 w4c 20:0 cyclo w6c 21:1 w9c 21:1 w8c 

21:1 w6c 21:1 w5c 21:1 w4c 21:1 w3c 

22:1 w9c 22:1 w8c 22:1 w6c 22:1 w5c 

22:1 w3c 22:0 cyclo w6c 24:1 w9c 24:1 w7c 

11:0 iso 3OH 14:0 iso 3OH   

Methanotroph 16:1 w8c    

Eukaryote 

15:4 w3c 15:3 w3c 16:4 w3c 16:3 w6c 

18:4 w3c 18:3 w6c 19:4 w6c 19:3 w6c 

19:3 w3c 20:4 w6c 20:5 w3c 20:3 w6c 

20:2 w6c 21:3 w6c 21:3 w3c 22:5 w6c 

22:6 w3c 22:4 w6c 22:5 w3c 22:2 w6c 

23:4 w6c 23:3 w6c 23:3 w3c 23:1 w5c 

23:1 w4c 24:4 w6c 24:3 w6c 24:3 w3c 

24:1 w3c    

Gram Positive 

11:0 so 11:0 anteiso 12:0 iso 12:0 anteiso 

3:0 iso 13:0 anteiso 14:1 iso w7c 14:0 iso 

14:0 anteiso 15:1 iso w9c 15:1 iso w6c 15:1 anteiso w9c 

15:0 iso 15:0 anteiso 16:0 iso 16:0 anteiso 

17:1 iso w9c 17:0 iso 17:0 anteiso 18:0 iso 

17:1 anteiso w9c 17:1 iso w10c 17:1 anteiso w7c 18:1 w9c 

19:0 iso 19:0 anteiso 20:0 iso 22:0 iso 

16:0 10-methyl 
17:1 w7c 10-

methyl 
17:0 10-methyl 

18:1 w7c 10-

methyl 

18:0 10-methyl 
19:1 w7c 10-

methyl 
20:0 10-methyl 22:0 10-methyl 
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Appendix 2 

Supplementary material from Chapter 4 

Brown, R.W., Chadwick D.R., Thornton H., Marshall M.R., Bei, S., Distaso, M.A., Bargiela, 

R., Marsden, K.A., Clode, P.L., Murphy, D.V., Pagella, S., Jones, D.L., (In submission). Field 

application of pure polyethylene microplastic has no significant effect on soil biological quality 

and function. Soil Biology and Biochemistry. 

 

Figure 1. Weather data from sampling period. Air temperature and precipitation were 

collected from an adjacent weather station, soil moisture and soil temperature were collected 
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using Acclima sensors in control plots (depth = 10 cm, n = 4). Vertical lines correspond to the 

following sampling points; Light blue - Wheat sown and MP applied; Yellow 1 - pH, EC, NO3, 

NH4; Yellow 2 - pH, EC, NO3, NH4, BD, PLFA; Green 1 – N cycling genes NO3 and NH4; 

Green 2 – N cycling genes, NO3 and NH4; Yellow 3 - pH, EC, NO3, NH4, BD, PLFA, BA, 16S 

sequencing; Blue – Wheat harvest; Purple – Earthworms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Soil nitrogen cycling genes were measured in this experiment (blue) in relation to 

the N cycle. 

 

 



320 

 

 

Figure 3. Dominant biogenic amine compound classes within the soil samples. All 

compounds identified were found in all samples. ‘Other’ includes; alkaloids, benzoic acids, 

fatty amines, pyridines and quinolines. A full compound list can be found in the additional 

supplementary information. 
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Figure 4. Principal component analysis (PCA) ordination plot of biogenic amines (BAs) by 

MP loading treatment. Data were normalised using a log transformation and Pareto scaling.
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Table 1. Summary of N cycling gene primers and thermocycling conditions.  1 

 2 

Function Targeted phyla 

and genes 
Primers Sequence (5′–3′) Thermocycling conditions References 

Nitrogen 

metabolism 
ureC gene 

ureC1F  

ureC2R 

ACCTAATGTACAGGAGGAT 

GGGCTATCTTCCAAAAT 

94°C for 10 min; 30 cycles of 94°C for 1 min; 

55°C for 1 min, and 72°C for 2 min; and a final 

elongation at 72°C for 10 min. 

Ouyang et al., 2018; 

Koper et al., 2004 

Nitrification 

archaeal amoA  

Arch-amoAF  

Arch-amoAR  

STAATGGTCTGGCTTAGACG 

GCGGCCATCCATCTGTATGT 

95°C for 5 min; 40 cycles consisting of 94°C for 

45 s, 53°C for 1min, and 72°C for 1 min; and final 

elongation at 72°C for 15 min. 

Francis et al., 2005 

bacterial amoA  

amoA-1F  

amoA-2R  

GGGGTTTCTACTGGTGGT 

CCCCTCKGSAAAGCCTTCTTC 

 

94°C for 30s; then 40 cycles consisting of 15 s at 

94°C, 20 s at 55°C, 40 s at 72 °C, and a final 

elongation at 72 °C for 3 min. 

Rotthauwe et al., 1997 

comammox 

Nitrospira  

Ntsp-amoA 

162F  

Ntsp-amoA 

359R 

GGATTTCTGGNTSGATTGGA 

WAGTTNGACCACCASTACCA 

94 °C for 5 min, 40 cycles of 94°C for 30 s,48 °C 

for 30 s and 72 °C for 60 s and a final elongation 

at 72°C for 10 min. 
Fowler et al., 2018 

Denitrification 

nirK 

nirK1F  

nirK3R 

GG(A/C)ATGGT(G/T)CC(C/G)TGGCA 

GAACTTGCCGGT(A/C/G)G(C/T)CCAG

AC 

See Braker et al., 1998. 
Throbäck et al., 2004; 

Braker et al. 1998 

nirS 

nirS1F  

nirS4R  

CCTA(C/T)TGGCCGCC(A/G)CA(A/G)T 

TTCGG(G/A)TG(C/G)GTCTTGA(T/C)G

AA 

As above. 
Throbäck et al., 2004; 

Braker et al. 1998 

nosZ 
nosZ2 

nosZ2R  

FCGCRACGGCAASAAGGTSMSSGT 

CAKRTGCAKSGCRTGGCAGAA 

95 °C for 3 min, 40 cycles of 95°C for 30 s,62 °C 

for 30 s and 72 °C for 60 s. 
Henry et al., 2006 

Free nitrogen 

fixation 
nifH 

nifH-F 

nifH-R 

AAAGGYGGWATCGGYAARTCCACC

AC 

TTGTTSGCSGCRTACATSGCCATCAT 

95 °C for 3 min, with 35 cycles of 95 °C for 30 s, 

55 °C for 30 s, and 72 °C for 45 s, and final 

elongation at 72 °C for 10 min. 

Rösch et al., 2002; 

Feng et al., 2018 

3 
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Table 2. A summary of PLFA biomarkers summed to represent microbial groups. 

 

 

Microbial group 

category 
Peaks 

AM Fungi 16:1 w5c    

Saprophytic Fungi 18:2 w6c    

Gram Negative 

10:0 2OH 10:0 3OH 12:1 w8c 12:1 w5c 

13:1 w5c 13:1 w4c 13:1 w3c 12:0 2OH 

14:1 w9c 14:1 w8c 14:1 w7c 14:1 w5c 

15:1 w9c 15:1 w8c 15:1 w7c 15:1 w6c 

15:1 w5c 14:0 2OH 16:1 w9c 16:1 w7c 

16:1 w6c 16:1 w4c 16:1 w3c 17:1 w9c 

17:1 w8c 17:1 w7c 17:1 w6c 17:1 w5c 

17:1 w4c 17:1 w3c 16:0 2OH 17:0 cyclo w7c 

18:1 w8c 18:1 w7c 18:1 w6c 18:0 cyclo w6c 

18:1 w3c 19:1 w9c 19:1 w8c 18:1 w5c 

19:1 w6c 19:0 cyclo w9c 19:0 cyclo w7c 19:1 w17c 

20:1 w9c 20:1 w8c 20:1 w6c 19:0 cyclo w6c 

20:1 w4c 20:0 cyclo w6c 21:1 w9c 21:1 w8c 

21:1 w6c 21:1 w5c 21:1 w4c 21:1 w3c 

22:1 w9c 22:1 w8c 22:1 w6c 22:1 w5c 

22:1 w3c 22:0 cyclo w6c 24:1 w9c 24:1 w7c 

11:0 iso 3OH 14:0 iso 3OH   

Methanotroph 16:1 w8c    

Eukaryote 

15:4 w3c 15:3 w3c 16:4 w3c 16:3 w6c 

18:4 w3c 18:3 w6c 19:4 w6c 19:3 w6c 

19:3 w3c 20:4 w6c 20:5 w3c 20:3 w6c 

20:2 w6c 21:3 w6c 21:3 w3c 22:5 w6c 

22:6 w3c 22:4 w6c 22:5 w3c 22:2 w6c 

23:4 w6c 23:3 w6c 23:3 w3c 23:1 w5c 

23:1 w4c 24:4 w6c 24:3 w6c 24:3 w3c 

24:1 w3c    

Gram Positive 

11:0 so 11:0 anteiso 12:0 iso 12:0 anteiso 

3:0 iso 13:0 anteiso 14:1 iso w7c 14:0 iso 

14:0 anteiso 15:1 iso w9c 15:1 iso w6c 15:1 anteiso w9c 

15:0 iso 15:0 anteiso 16:0 iso 16:0 anteiso 

17:1 iso w9c 17:0 iso 17:0 anteiso 18:0 iso 

17:1 anteiso w9c 17:1 iso w10c 17:1 anteiso w7c 18:1 w9c 

19:0 iso 19:0 anteiso 20:0 iso 22:0 iso 

16:0 10-methyl 
17:1 w7c 10-

methyl 
17:0 10-methyl 

18:1 w7c 10-

methyl 

18:0 10-methyl 
19:1 w7c 10-

methyl 
20:0 10-methyl 22:0 10-methyl 
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Table 3. N cycling gene linear mixed model outputs.  

  log(UreC) log(AOA) log(AOB) log(Comammox) log(nirK) log(nirS) log(nosZ) log(nifH) 

Predictors 
Estimate

s 
CI p 

Estimate

s 
CI p 

Estimate

s 
CI p 

Estimate

s 
CI p 

Estimate

s 
CI p 

Estimate

s 
CI p 

Estimate

s 
CI p 

Estimate

s 
CI p 

(Intercept) 15.04 14.88 – 15.

20 

<0.00

1 

13.02 12.93 – 13.

11 

<0.00

1 

11.44 11.28 – 11.

60 

<0.00

1 

12.81 12.64 – 12.

98 

<0.00

1 

10.63 10.48 – 10.

78 

<0.00

1 

13.13 12.96 – 13.

31 

<0.00

1 

12.60 12.42 – 12.

77 

<0.00

1 

14.04 13.93 – 14.

15 

<0.00

1 

MP.loading 

[100] 

-0.10 -0.32 – 0.12 0.383 -0.13 -0.26 – -

0.00 

0.045 -0.09 -0.31 – 0.14 0.458 -0.03 -0.28 – 0.21 0.785 0.10 -0.11 – 0.31 0.351 0.13 -0.12 – 0.38 0.296 0.02 -0.22 – 0.27 0.858 0.09 -0.07 – 0.24 0.265 

MP.loading 

[1000] 

-0.01 -0.24 – 0.21 0.907 -0.08 -0.21 – 0.04 0.196 -0.31 -0.54 – -

0.09 

0.007 -0.02 -0.27 – 0.22 0.858 -0.28 -0.49 – -

0.07 

0.009 0.03 -0.22 – 0.27 0.829 -0.33 -0.57 – -

0.08 

0.009 -0.05 -0.20 – 0.10 0.529 

MP.loading 

[10000] 

0.09 -0.13 – 0.32 0.428 -0.02 -0.15 – 0.10 0.714 -0.15 -0.37 – 0.08 0.203 0.05 -0.20 – 0.29 0.700 -0.03 -0.24 – 0.17 0.744 -0.01 -0.26 – 0.23 0.906 -0.07 -0.32 – 0.17 0.558 -0.06 -0.22 – 0.09 0.405 

c.Date -0.26 -0.57 – 0.06 0.107 -0.05 -0.23 – 0.13 0.607 -0.48 -0.80 – -

0.16 

0.003 -0.03 -0.37 – 0.31 0.857 -0.27 -0.56 – 0.02 0.069 -0.16 -0.51 – 0.19 0.368 -0.18 -0.53 – 0.17 0.324 0.08 -0.11 – 0.27 0.385 

MP.loading 

[100] * 

c.Date 

0.46 0.02 – 0.90 0.042 0.20 -0.05 – 0.46 0.123 0.38 -0.07 – 0.83 0.099 0.21 -0.27 – 0.69 0.391 0.17 -0.24 – 0.58 0.419 0.24 -0.26 – 0.73 0.351 0.18 -0.32 – 0.67 0.481 0.07 -0.20 – 0.33 0.627 

MP.loading 

[1000] * 

c.Date 

0.13 -0.32 – 0.57 0.577 0.22 -0.03 – 0.48 0.084 0.65 0.20 – 1.11 0.005 0.10 -0.37 – 0.58 0.669 0.48 0.07 – 0.89 0.021 0.26 -0.23 – 0.75 0.304 0.59 0.09 – 1.08 0.019 0.12 -0.15 – 0.39 0.370 

MP.loading 

[10000] * 

c.Date 

0.24 -0.21 – 0.68 0.296 0.11 -0.14 – 0.37 0.392 0.06 -0.39 – 0.51 0.804 0.11 -0.37 – 0.59 0.651 0.40 -0.01 – 0.81 0.055 0.38 -0.11 – 0.88 0.129 0.11 -0.38 – 0.61 0.658 -0.12 -0.39 – 0.15 0.370 

Random Effects 

σ2 0.05 0.02 0.05 0.06 0.04 0.06 0.06 0.02 

τ00 0.00 Paired 0.00 Paired 0.00 Paired 0.00 Paired 0.00 Paired 0.00 Paired 0.00 Paired 0.00 Paired 

ICC 0.02     0.02 0.02     0.13 

N 16 Paired 16 Paired 16 Paired 16 Paired 16 Paired 16 Paired 16 Paired 16 Paired 

Observatio

ns 

32 32 32 32 32 32 32 32 

Marginal 

R2 / 

Conditional 

R2 

0.198 / 0.211 0.282 / NA 0.445 / NA 0.060 / 0.076 0.399 / 0.413 0.127 / NA 0.343 / NA 0.281 / 0.371 
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Table 4. Cumulative N2O fluxes by treatment and event. Letters denote the lack of statistical 

significance between treatments upon each event. 

Event 
MP loading rate 

(kg ha-1) 

Cumulative flux 

(μg N2O-N m-2) 

Initial MP application 

0 -0.25a ± 6.3 

100 0.13a ± 2.8 

1000 -1.25a ± 7.2 

10000 2.41a ± 2.7 

N fertiliser application 1 

0 66.70b ± 16.8 

100 79.02b ± 21.1 

1000 51.17b ± 1.7 

10000 87.57b ± 6.3 

N fertiliser application 2 

0 16.17c ± 11.6 

100 27.88c ± 27.0 

1000 45.44c ± 19.5 

10000 67.71c ± 12.6 
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Appendix 3 

Supplementary material from Chapter 5  

Brown, R.W., Chadwick, D.R., Jones, D.L., in prep. Labile nutrient enrichment of soil induces 

significant change in its metabolite profile and carbon usage. Soil Biology and Biochemistry. 

  

Figure S1. Influence of nutrient addition on the primary metabolite profile of soil. Heatmap 

showing expression profiles of soil treatment groups (n = 5). Compounds are grouped into 

their superpathways and treatment groups. Plotting was performed on natural log (ln) 

transformed median scaled imputed data. The colour of samples ranges from red to blue, 

indicating metabolite concentration z-score; numbers 4 to −4 on the scale bar indicate the 

number of standard deviations from the mean. Red illustrates a relative increase in the 

compound concentration, blue indicates a relative decrease in compound concentration. 
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Figure S2. Influence of nutrient addition on the PLFA derived microbial biomass. There was 

no significant difference between treatments by Tukey HSD. 
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Table S1. Summary of PLFA biomarkers summed to represent microbial groups. 

 

Microbial group 

category 
Peaks 

AM Fungi 16:1 w5c    

Saprophytic 

Fungi 
18:2 w6c    

Gram Negative 

10:0 2OH 10:0 3OH 12:1 w8c 12:1 w5c 

13:1 w5c 13:1 w4c 13:1 w3c 12:0 2OH 

14:1 w9c 14:1 w8c 14:1 w7c 14:1 w5c 

15:1 w9c 15:1 w8c 15:1 w7c 15:1 w6c 

15:1 w5c 14:0 2OH 16:1 w9c 16:1 w7c 

16:1 w6c 16:1 w4c 16:1 w3c 17:1 w9c 

17:1 w8c 17:1 w7c 17:1 w6c 17:1 w5c 

17:1 w4c 17:1 w3c 16:0 2OH 17:0 cyclo w7c 

18:1 w8c 18:1 w7c 18:1 w6c 18:0 cyclo w6c 

18:1 w3c 19:1 w9c 19:1 w8c 18:1 w5c 

19:1 w6c 19:0 cyclo w9c 19:0 cyclo w7c 19:1 w17c 

20:1 w9c 20:1 w8c 20:1 w6c 19:0 cyclo w6c 

20:1 w4c 20:0 cyclo w6c 21:1 w9c 21:1 w8c 

21:1 w6c 21:1 w5c 21:1 w4c 21:1 w3c 

22:1 w9c 22:1 w8c 22:1 w6c 22:1 w5c 

22:1 w3c 22:0 cyclo w6c 24:1 w9c 24:1 w7c 

11:0 iso 3OH 14:0 iso 3OH   

Methanotroph 16:1 w8c    

Eukaryote 

15:4 w3c 15:3 w3c 16:4 w3c 16:3 w6c 

18:4 w3c 18:3 w6c 19:4 w6c 19:3 w6c 

19:3 w3c 20:4 w6c 20:5 w3c 20:3 w6c 

20:2 w6c 21:3 w6c 21:3 w3c 22:5 w6c 

22:6 w3c 22:4 w6c 22:5 w3c 22:2 w6c 

23:4 w6c 23:3 w6c 23:3 w3c 23:1 w5c 

23:1 w4c 24:4 w6c 24:3 w6c 24:3 w3c 

24:1 w3c    

Gram Positive 

11:0 so 11:0 anteiso 12:0 iso 12:0 anteiso 

3:0 iso 13:0 anteiso 14:1 iso w7c 14:0 iso 

14:0 anteiso 15:1 iso w9c 15:1 iso w6c 
15:1 anteiso 

w9c 

15:0 iso 15:0 anteiso 16:0 iso 16:0 anteiso 

17:1 iso w9c 17:0 iso 17:0 anteiso 18:0 iso 

17:1 anteiso 

w9c 
17:1 iso w10c 

17:1 anteiso 

w7c 
18:1 w9c 

19:0 iso 19:0 anteiso 20:0 iso 22:0 iso 

16:0 10-methyl 
17:1 w7c 10-

methyl 
17:0 10-methyl 

18:1 w7c 10-

methyl 

18:0 10-methyl 
19:1 w7c 10-

methyl 
20:0 10-methyl 22:0 10-methyl 
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Section S1. Comparison of metabolite extraction methods  

S1.1. Soil metabolite extraction  

Four independent replicates of soil were collected from the Henfaes Agricultural Research 

Station, Abergwyngregyn, North Wales (53°14′N, 4°01′W). On collection, field-moist soil 

was sieved through a 2 mm mesh to remove stones and plant material and ensure sample 

homogeneity. Subsequently, samples were chloroform fumigated (24 h), then frozen (-80°C) 

and lyophilised, and mechanically ground using the methods described in section 2.3.  

All glassware used for extraction was cleaned and sterilised as described in section 

2.3. Soils were then extracted using either HPLC-plus grade H2O or acetonitrile 

(MeCN)/isopropyl alcohol (IPA)/HPLC-plus grade water (H2O) (3:3:2 v/v/v). For extraction, 

6 g of soil was weighed into a glass centrifuge tube and the respective extraction solvent 

added (pre-cooled to either 4°C (water) or -20°C (3:3:2)). Samples were then horizontally 

shaken on ice (4°C) at a frequency of 200 min-1 for 1 h then centrifuged at 3320 × g for 15 

min (Swenson et al., 2015). Supernatants were then pipetted, using glass pipettes, into 20 ml 

glass vials and stored at -20°C or 4°C (to ensure metabolic activity was quenched but the 

supernatant was not frozen). Samples were left unfiltered due to the potential of 

contamination from the filter paper and plastic housing. The supernatant was lyophilised in 2 

ml glass vials using a Modulyo Freeze Dryer with RV pump (Edwards Ltd., Crawley, UK) 

attached to a SpeedVac vacuum concentrator (Savant; ThermoFisher, Waltham, MA, USA). 

The vials were periodically topped up with the supernatant, taking note of the quantity added 

(~15 ml total) and lyophilised to complete dryness. Samples were then shipped on dry ice (-

78.5 °C) to Metabolon Inc. (Morrisville, North Carolina, USA) for untargeted LC/MS 

metabolomic analysis. Upon analysis, samples were dissolved in methanol:water (4:1 v/v) 

and subjected to the standard Metabolon sample preparation procedure. LC/MS analysis 

parameters, bioinformatics, compound ID and data curation are summarised in supplementary 

information (section S2). 

 

S1.2. Soil metabolite extraction comparison results 

The present dataset comprises a total of 443 compounds of known identity (named 

biochemicals). The number of compounds detected in the individual soil samples (Table S2) 

showed some variation, with slightly higher numbers (+6 %) being detected in the samples 

extracted with 3:3:2 as compared to H2O. In the case of both extraction methods, the number 
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of detected metabolites were much greater in the soil samples than the matrix blanks.  

Metabolites detected commonly within soil extraction samples and matrix blanks were also 

typically found at much higher levels in the soil extracts. We therefore concluded that the 

methods were comparable in terms of number of compounds detected, although 3:3:2 

generally was more sensitive to non-polar compounds (i.e. lipids).  
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Table S2. Comparison of the number of biochemical detected using 3:3:2 vs. H2O extraction 

methods. 

 

  

Extraction Method 
Client Sample 

ID 

Sample 

Description 

Biochemicals 

Detected 

lyophilized water 

 

1 Soil extraction 354 

2 Soil extraction 360 

3 Soil extraction 358 

4 Soil extraction 357 

5 Matrix Blank 121 

lyophilized acetonitrile, isopropanol, water 

(3:3:2) 

6 Soil extraction 392 

7 Soil extraction 399 

8 Soil extraction 395 

9 Soil extraction 384 

10 Matrix Blank 102 
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Section S2.  Metabolite analysis by ultrahigh Performance Liquid Chromatography-

Tandem Mass Spectroscopy (UPLC-MS/MS)  

S2.1. Sample Accessioning  

Following receipt, samples were inventoried and immediately stored at -80oC. Each sample 

received was accessioned into the Metabolon LIMS system and was assigned by the LIMS a 

unique identifier that was associated with the original source identifier only. This identifier was 

used to track all sample handling, tasks, results, etc. The samples (and all derived aliquots) 

were tracked by the LIMS system. All portions of any sample were automatically assigned 

their own unique identifiers by the LIMS when a new task was created; the relationship of these 

samples was also tracked. All samples were maintained at -80oC until processed. 

 

S2.2. Sample preparation   

Samples were prepared using the automated MicroLab STAR® system from Hamilton 

Company.  Several recovery standards were added prior to the first step in the extraction 

process for QC purposes. To remove protein, dissociate small molecules bound to protein or 

trapped in the precipitated protein matrix, and to recover chemically diverse metabolites, 

proteins were precipitated with methanol under vigorous shaking for 2 min (Glen Mills 

GenoGrinder 2000) followed by centrifugation. The resulting extract was divided into five 

fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with 

positive ion mode electrospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with 

negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, 

and one sample was reserved for backup. Samples were placed briefly on a TurboVap® 

(Zymark) to remove the organic solvent. The sample extracts were stored overnight under 

nitrogen before preparation for analysis.   

 

S2.3. Quality control 

Several types of controls were analyzed in concert with the experimental samples: a pooled 

matrix sample generated by taking a small volume of each experimental sample (or 

alternatively, use of a pool of well-characterized human plasma) served as a technical replicate 

throughout the data set; extracted water samples served as process blanks; and a cocktail of QC 

standards that were carefully chosen not to interfere with the measurement of endogenous 
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compounds were spiked into every analyzed sample, allowed instrument performance 

monitoring and aided chromatographic alignment. Tables S2 and S3 describe these QC samples 

and standards. Instrument variability was determined by calculating the median relative 

standard deviation (RSD) for the standards that were added to each sample prior to injection 

into the mass spectrometers. Overall process variability was determined by calculating the 

median RSD for all endogenous metabolites (i.e., non-instrument standards) present in 100% 

of the pooled matrix samples. Experimental samples were randomized across the platform run 

with QC samples spaced evenly among the injections, as outlined in Figure S2. 
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Table S3. Description of Metabolon QC samples 

Type Description Purpose 

MTRX 

Large pool of human plasma 

maintained by Metabolon that has 

been characterized extensively. 

Assure that all aspects of the Metabolon 

process are operating within specifications. 

CMTRX 

Pool created by taking a small 

aliquot from every customer 

sample. 

Assess the effect of a non-plasma matrix on 

the Metabolon process and distinguish 

biological variability from process variability. 

PRCS Aliquot of ultra-pure water 
Process Blank used to assess the contribution 

to compound signals from the process. 

SOLV 
Aliquot of solvents used in 

extraction. 

Solvent Blank used to segregate 

contamination sources in the extraction. 

Table S4. Metabolon QC Standards 

Type Description Purpose 

RS Recovery Standard 
Assess variability and verify performance of 

extraction and instrumentation. 

IS Internal Standard 
Assess variability and performance of 

instrument. 

 

 

Figure S2.  Preparation of technical replicates. A small aliquot of each sample (colored 

cylinders) is pooled to create a CMTRX technical replicate sample (multi-colored cylinder), 

which is then injected periodically throughout the platform run. Variability among consistently 

Client samples
1st injection Final injection

CMTRX         Process Blank

Client samples

DAY 1

DAY 2

Study samples randomized and balanced

CMTRX: Technical 
replicates created from an 
aliquot of all client study 

samples
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detected biochemicals can be used to calculate an estimate of overall process and platform 

variability. 

 

S2.4. Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-

MS/MS) 

All methods utilized a Waters ACQUITY ultra-performance liquid chromatography (UPLC) 

and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced 

with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 

35,000 mass resolution. The sample extract was dried then reconstituted in solvents compatible 

to each of the four methods.  Each reconstitution solvent contained a series of standards at fixed 

concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed 

using acidic positive ion conditions, chromatographically optimized for more hydrophilic 

compounds.  In this method, the extract was gradient eluted from a C18 column (Waters UPLC 

BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 0.05% 

perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was also analyzed 

using acidic positive ion conditions; however, it was chromatographically optimized for more 

hydrophobic compounds. In this method, the extract was gradient eluted from the same 

aforementioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA 

and was operated at an overall higher organic content. Another aliquot was analyzed using 

basic negative ion optimized conditions using a separate dedicated C18 column. The basic 

extracts were gradient eluted from the column using methanol and water, however with 6.5 

mM ammonium bicarbonate (pH 8). The fourth aliquot was analyzed via negative ionization 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) 

using a gradient consisting of water and acetonitrile with 10mM ammonium formate, pH 10.8. 

The MS analysis alternated between MS and data-dependent MSn scans using dynamic 

exclusion. The scan range varied slighted between methods but covered 70-1000 m/z.  Raw 

data files are archived and extracted as described below. 

 

S2.5. Bioinformatics   

The informatics system consisted of four major components, the Laboratory Information 

Management System (LIMS), the data extraction and peak-identification software, data 
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processing tools for QC and compound identification, and a collection of information 

interpretation and visualization tools for use by data analysts. The hardware and software 

foundations for these informatics components were the LAN backbone, and a database server 

running Oracle 10.2.0.1 Enterprise Edition. 

 

S2.6. LIMS 

The Metabolon LIMS system provided a fully auditable laboratory automation through a secure 

and highly specialized data tracking system. The scope of the Metabolon LIMS system 

encompasses sample accessioning, sample preparation and instrumental analysis and reporting 

and advanced data analysis. All of the subsequent software systems are grounded in the LIMS 

data structures. It has been modified to leverage and interface with the in-house information 

extraction and data visualization systems, as well as third party instrumentation and data 

analysis software. 

 

S2.7. Data extraction and compound identification  

Raw data was extracted, peak-identified and QC processed using Metabolon’s hardware and 

software. These systems are built on a web-service platform utilizing Microsoft’s .NET 

technologies, which run on high-performance application servers and fiber-channel storage 

arrays in clusters to provide active failover and load-balancing. Compounds were identified by 

comparison to library entries of purified standards or recurrent unknown entities. Metabolon 

maintains a library based on authenticated standards that contains the retention time/index (RI), 

mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all 

molecules present in the library. Furthermore, biochemical identifications are based on three 

criteria: retention index within a narrow RI window of the proposed identification, accurate 

mass match to the library +/- 10 ppm, and the MS/MS forward and reverse scores between the 

experimental data and authentic standards. The MS/MS scores are based on a comparison of 

the ions present in the experimental spectrum to the ions present in the library spectrum. While 

there may be similarities between these molecules based on one of these factors, the use of all 

three data points can be utilized to distinguish and differentiate biochemicals. More than 3300 

commercially available purified standard compounds have been acquired and registered into 

LIMS for analysis on all platforms for determination of their analytical characteristics.  
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Additional mass spectral entries have been created for structurally unnamed biochemicals, 

which have been identified by virtue of their recurrent nature (both chromatographic and mass 

spectral). These compounds have the potential to be identified by future acquisition of a 

matching purified standard or by classical structural analysis. 

 

S2.8. Curation   

A variety of curation procedures were carried out to ensure that a high quality data set was 

made available for statistical analysis and data interpretation. The QC and curation processes 

were designed to ensure accurate and consistent identification of true chemical entities, and to 

remove those representing system artifacts, mis-assignments, and background noise.  

Metabolon data analysts use proprietary visualization and interpretation software to confirm 

the consistency of peak identification among the various samples. Library matches for each 

compound were checked for each sample and corrected if necessary. 

 

S2.9. Metabolite quantification and data normalization   

Peaks were quantified using area-under-the-curve. 
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Appendix 4 

Supplementary material from Chapter 6 

Brown, R.W, Bull, I.D, Journeaux, T., Chadwick, D.R., Jones, D.L., 2021. Volatile organic 

compounds (VOCs) allow sensitive differentiation of biological soil quality. Soil Biology and 

Biochemistry, 156, 108187. 

 

Figure 1. Structures of discriminatory compounds highlighted in Fig 5.2. 
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Figure 2. Raw data chromatogram examples of samples representative of each of the soil 

treatments.  
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Table 1. Characteristics of treatments applied to soils. Values represent mean (n = 5) ± SEM. 

Urine characteristics were taken from Marsden et al., (2018), as the same urine was used. 

 

 

 

  

  River water Sea water Sheep urine  Lysed grass 
pH 7.70 ± 0.11 7.94 ± 0.08 8.48 - 
EC (mS cm

−1
) 0.01 ± 0.00 7.92 ± 0.02 13.80 - 

Total organic C (mg C kg
−1

) 1.71 ± 0.05 4.34 ± 0.28 10.1 ± 0.40 - 
Total N (mg N kg

−1
) 0.35 ± 0.01 0.71 ± 0.04 6.35 ± 0.22 - 

Extractable NO
3

-
 (mg N kg

-1
) 0.28 ± 0.01 0.32 ± 0.01 0.61 ± 0.04 - 

Extractable NH
4

+
 (mg N kg

-1
) 0.01 ± 0.01 0.39 ± 0.08 3.75 ± 0.06 - 

Extractable PO
4

+
 (mg P kg

-1
) 0.13 ± 0.00 0.27 ± 0.00 - - 

Moisture (%) - - - 83.6 ± 0.3 
Total C (%) - - - 47.0 ± 0.1 
Total N (%) - - - 5.14 ± 0.08 
C:N ratio - - - 9.17 ± 0.14 
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Appendix 5 

Supplementary material from Chapter 7  

Brown, R.W., Mayser, J.P., Widdowson, C., Chadwick, D.R., Jones, D.L., 2021. Dependence 

of thermal desorption method for profiling volatile organic compound (VOC) emissions from 

soil. Soil Biology and Biochemistry, 160, 108313. 

Table 1. Summary of amendment characteristics applied to soils. Values represent mean (n = 

4) ± SEM. River water collected from the Afon Rhaeadr-fawr (53°14'N 4°01'W), Beds and 

bordered topsoil (Verve, Chandlers Ford, UK) was used as the soil improver addition, and 

grass residues consisted of green Lolium perenne L. shoots, lysed by freezing for 1 h at -

80°C. Soil improver and lysed grass values are expressed on a dry weight basis. 

 

 

 

 

 

 

 

 

 

  

  River water 
Soil 

improver 
Lysed grass 

pH 6.82 ± 0.04 8.54 ± 0.13 - 
EC (µS cm

−1
) 69.5 ± 0.75 274 ± 12 - 

Total organic C (mg C l-1 or mg C kg-1) 2.19 ± 0.04 66.8 ± 9.4 - 
Total N (mg N l-1 or mg N kg-1) 0.23 ± 0.01 6.15 ± 1.9 - 
Extractable NO

3

-
 (mg N l-1 or mg N kg-1) 0.45 ± 0.01 0.99 ± 0.11 - 

Extractable NH
4

+
 (mg N l-1 or mg N kg-1) 0.00 ± 0.00 0.53 ± 0.04 - 

Extractable PO
4

+
 (mg P l-1) 0.03 ± 0.03 - - 

Organic matter (%) - 23.6 ± 0.7 - 

Moisture (%) - 81.1 ± 1 15.7 ± 0.6 
Total C (%) - - 43.1 ± 0.9 
Total N (%) - - 3.72 ± 0.23 
C:N ratio - - 11.6 ± 0.5 
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Figure 1. Extraction efficiencies for soil-related VOC compounds, using matrix-less (no soil) 

vials. A) Phenol, B) Isophorone, C) p-Cresol, D) Indole, E) β-ionone. 
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Figure 2. Extraction efficiencies for standard VOC compounds, using matrix-less (no soil) 

vials. A) Benzene, B) Toluene, C) Ethyl-benzene, D) p-Xylene, E) m-Xylene. 
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Appendix 6 

Saltwater intrusion induces shifts in soil microbial diversity and carbon use efficiency in 

a coastal grassland ecosystem 

Robert W. Browna, Jennifer M. Rhymesa, Davey L. Jonesa,b 

aSchool of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK 

bSoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch 

University, Murdoch WA 6105, Australia 

 

This experiment was designed, performed and the resultant manuscript written during this 

PhD project; however, it was felt that it does not fit within the overarching themes of this 

thesis and therefore has only been included as an appendix. 

 

This manuscript is in preparation for submission to Soil Biology and Biochemistry. 

 

All authors contributed to the conception and design of the experiment. DJ performed soil 

sampling. RB performed soil analysis. JR performed data analysis. Data interpretation was 

performed by all authors. RB and JR wrote the first draft of the manuscript. All authors 

contributed to subsequent revisions. 
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ABSTRACT 

Salt accumulation and salinisation of coastal soils is a global issue. Further, climate change is 

likely to increase the amount of land affected through increasing the frequency and severity of 

coastal flooding and brackish water ingress. The impact of this on the ability of soils to deliver 

ecosystem services, particularly carbon (C) storage, however, remains unclear. We 

hypothesized that coastal inundation would negatively affect C storage by reducing plant C 

inputs and by placing greater osmotic stress on the microbial community leading to a reduced 

C use efficiency (CUE). Here, we use a coastal grassland ecosystem, which is becoming 

increasingly subject to sea and brackish water flooding, to explore the relationship between 

plant/microbial growth and CUE along a natural salinity gradient. To reflect steady state 

conditions, we traced the turnover and partitioning of a low (ambient) dose of 14C-labelled 

glucose into microbial anabolic and catabolic pools, from which microbial CUE was 

calculated. In addition, we added a high dose of 14C-labelled glucose to soil to stimulate 

microbial growth, and again calculated CUE. This was supported by measurements of the 

diversity of the bacterial community across the salinity gradient using 16S metabarcoding. Our 

results showed that coastal flooding aboveground biomass, increased soil C content and 

induced a small increase in microbial CUE under low glucose-C conditions. Conversely, no 

difference in CUE or microbial growth was apparent when a high glucose-C dose was used. 

We ascribe the differences in CUE under the different substrate-C availabilities to microbial 

community life strategy (i.e. r- vs. K-strategists) and the ability of the microbial community to 

readily adapt to life under high salt concentrations. Soil bacterial community alpha (α) diversity 

increased with soil salinity while beta (β) diversity also shifted in response to the higher saline 

conditions. Our analysis suggests that the biggest impact of coastal flooding on soil C cycling 

was the inability of the plant community to adapt, leading to higher plant residue inputs and 

also a decline in soil structure. Conversely, the microbial community had adapted to the 

increased salinity, resulting in only small changes in the uptake and metabolic partitioning of 

C.  

 

Keywords: Carbon dynamics; Seawater; Sodium toxicity, Soil quality, Storm surge.  
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1. Introduction  

It is estimated that 33% of irrigated land and up to 20% of total cultivated land globally is 

suffering from salinisation; the excess accumulation of salt in soils (Otlewska et al., 2020). 

This phenomenon is likely to be further exacerbated through climate change induced sea level 

rise and an increased frequency and severity of extreme weather events leading to vulnerability 

to coastal flooding in many regions of the world (Chen and Zong, 1999; Vitousek et al., 2017; 

Zemp et al., 2019). For example, in the UK, coastal flood risk is expected to increase over the 

next century and beyond, under all Intergovernmental Panel on Climate Change (IPCC) 

representative concentration pathway (RCP) climate change scenarios, mainly due to changes 

in time-mean sea level (predicted to be up to 0.5 m under RCP2.6 to 4.3 m under RCP8.5) (Met 

Office, 2018a). Consequently, mitigating coastal flooding is recognised as one of the top 

priorities for many nations worldwide (Kirezci et al., 2020). Globally, a large proportion of 

productive agricultural land is situated in low lying and reclaimed coastal regions (Gould et al., 

2020), threatening food security and sustainable development into the future (Karim and 

Mimura, 2008; Kirezci et al., 2020).  

The progressive accumulation of salt in soil is known to directly impact soil quality, 

defined here as the capacity of the soil to function (Karlen et al., 1997). For example, the saline 

intolerance of plant roots and soil macrofauna is likely to lead to a reduction in bioturbation 

and aeration, eventually leading to a decline in soil physical structure (Otlewska et al., 2020). 

Additionally, salt-induced dispersion of soil particles can lead to a clogging of soil pores and a 

reduction in hydraulic conductivity (Qadir and Schubert, 2002) which alters the solubility and 

accessibility of soil organic matter (SOM) (Mavi et al., 2012; Wong et al., 2010, 2009). 

Consequently, a negative feedback mechanism may occur leading to a further downward trend 

in physical, chemical and biological soil quality, changing the nature of ecosystem service 

provision.  

Salinity-induced changes to the size, structure, activity and functioning of the soil 

microbial community (i.e. ion toxicity, osmotic and oxidative stress) are known to have 

significant consequences on terrestrial carbon (C) cycling (Yan et al., 2015). In some 

circumstances, the controlled ingress of seawater onto former agricultural land (i.e. managed 

sea realignment) can lead to a major increase in soil C storage (Andrews et al., 2008), however, 

conversely it may also lead to a depletion of soil C stocks (Sjøgaard et al., 2017; Yang et al., 
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2019). Our understanding of this is limited and further research is needed to understand the 

complex feedbacks that may occur in the plant-soil C cycle upon coastal flooding.  

Carbon use efficiency (CUE), the efficacy with which microorganisms metabolise 

available organic substrates into stable biosynthetic products, is critical to ecosystem C cycling 

and C storage (Geyer et al., 2016). The amount of additional biomass C produced per unit 

substrate C metabolised ultimately determines the rate of C accumulation (via SOM) or loss 

(via CO2/CH4 efflux) from a soil (Poeplau et al., 2019). Ultimately, CUE is a critical control 

on the capacity of soil and wider ecosystem to store C (Bradford and Crowther, 2013; Manzoni 

et al., 2012; Wang et al., 2021). A limited amount of work has been performed to evaluate the 

changes in microbial CUE in saline stressed soils. However, environmental drivers have been 

shown to potentially uncouple growth and respiration, changing CUE (Sinsabaugh et al., 2013).  

Microbial community stability and resilience determines how a soil responds to and 

recovers from environmental stresses (Bardgett and Caruso, 2020). Previous work on 

community stability has shown mixed effects, depending on the nature of the disturbance (e.g. 

heavy metal vs. salt loading) (Tobor-Kapłon et al., 2006, 2005). It has been suggested that in 

recently or currently stressed systems, organisms have less energy to cope with further 

disturbance, as in the first instance energy will be allocated to detoxification and repair, rather 

than immediate growth (Griffiths and Philippot, 2013). However, there is evidence to show 

that communities have the potential to adapt and/or develop tolerance to environmental 

conditions resulting in a more stable community, with a high proportion of energy available 

for growth (i.e. higher CUE) (Kallenbach et al., 2019). Previous studies have shown that a shift 

in the composition of the soil bacterial community and reduction in phylogenetic diversity 

occurs with increasing salinity in naturally saline environments (Canfora et al., 2014; Hollister 

et al., 2010; Rath et al., 2019a, 2019b; van Horn et al., 2014). However, the response of soils 

to periodic coastal inundation and salt stress remains poorly understood.  

This study aimed to assess the impact of salinisation on the soil microbial community 

and its resultant CUE across a gradient of salinity in a coastal soil becoming increasing 

susceptible to periodic saltwater flooding from sea level rise and storm surges. We 

hypothesised that; i) CUE would decrease under higher salt conditions, due to increased levels 

of environmental stress, and ii) the soil microbial community under higher salt-stress would 

exhibit change and increased tolerance compared to the unstressed community. 
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2. Materials and methods 

2.1. Study site 

The study site was located at the Henfaes Agricultural Research Station, 

Abergwyngregyn, North Wales (53°14' 30''N, 4°01'22''W). It comprises a sheep-grazed 

grassland agricultural field located next to the Menai Strait, which forms part of the Irish Sea 

(Fig. S1) and is adjacent to the Afon Rhaeadr-fawr river. The site has experienced an increased 

frequency of tidal storm surges and associated brackish riverine flooding over the last decade, 

leading to the progressive ingress of salt water onto productive agricultural land (Ganguli and 

Merz, 2019; Hendry et al., 2019; Met Office, 2018b). This area has also been identified by 

Welsh Government as an area of very high risk from coastal flooding (NRW, 2014, 2020) due 

to its low-lying nature (< 2 m a.s.l) and lack of coastal protection. The vegetation is dominated 

by Lolium perenne L. while the soil is classified as a sandy loam textured Eutric Cambisol 

(Typic Hapludalf) developed on a mixture of glacial till and windblown sand. The site has a 

temperate-oceanic climate regime with mean annual rainfall of 1060 mm and mean annual 

temperature of 10°C (10 y average).  

Three separate areas with clear salt accumulation at the soil surface were chosen for 

this study. Within each of these individual field areas, three individual linear transects were 

demarcated at least 3 m from each other (i.e. nine transects in total). Each transect had a visually 

clear gradient in salt accumulation and vegetation cover (Fig. 1, Fig. S2). Samples of soil were 

collected from the Ah horizon (0-10 cm depth) at four locations along this gradient, 

representing different levels of visual vegetation damage and surface salt accumulation (Fig. 

1). The percentage vegetation cover along the transect was assessed using gridded 60 × 60 cm 

quadrats with 400 individual measurement squares. The relative amount of vegetated and bare 

soil squares was measured for each quadrat alongside a photographic record of the transects. 
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Figure 1. Visual representation of the salinity gradient sampled. A) Control, B) Control Edge, 

C) Salt Edge and D) Salt patch, scale bars represent 10 cm. 

 

2.2. Soil characterisation 

Bulk density cores (0 – 5 cm, 100 cm3) were oven dried (105°C, 24 h) before being 

sieved, to 2 mm, to remove stones, and weighed. After collection, fresh soil was homogenised 

and sieved to pass 8 mm to remove stones, mesofauna and roots. This sieve size was chosen to 

minimise changes in microbial activity (Jones and Willett, 2006). Additionally, a subsample of 

fresh sieved soil was further sieved to 2 mm, to further homogenise and remove stones and 

vegetation, before being stored at -80°C to await bacterial sequencing. Soil pH and electrical 

conductivity (EC) were measured on 1:5 (w/v) soil-to-ultrapure water (UPW) suspensions by 

submerging standard electrodes. Soil salinity across the patch gradients is visualised in Fig. 2. 

Subsequently, 1:5 (w/v) soil-to-0.5 M acetic acid (AcOH) and 1:5 (w/v) soil-to-UPW extracts 

were performed to measure nutrient availability (MISR/SAC, 1985). Extractable nitrate (NO3-

N) and ammonium (NH4-N) concentrations within the UPW extracts were determined by the 

colorimetric methods of Miranda et al. (2001) and Mulvaney (1996), respectively. Bioavailable 

phosphate (PO4-P) concentrations within the AcOH extracts were determined using the 

molybdate blue colorimetric method of Murphy and Riley (1962). Exchangeable soil cations 

(Na, K and Ca) were measured on the AcOH extracts using a Sherwood Model 410 Flame 

Photometer (Sherwood Scientific Ltd, Cambridge, UK). Dissolved organic C (DOC) and total 

dissolved N (TDN) were determined on UPW extracts using a Multi N/C 2100S Analyzer 

(AnalytikJena, Jena, Germany). Soil moisture content was determined gravimetrically on the 

sieved soils by oven drying (105°C, 24 h). The C and N content of the soil was determined on 

oven-dried soil using a TruSpec CN analyzer (Leco Corp, St Joseph, MI). All chemical and 
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physical analysis described subsequently was performed within 48 h of soil collection, during 

which soil samples were stored at 4°C.  

 

 

 

 

 

 

 

 

 

 

Figure 2. Variation in electrical conductivity (EC) between location treatments along a natural 

salinity gradient caused by coastal flooding (n = 9). Horizontal lines show the median, boxes 

the 25th to 75th percentiles, whiskers the 5th to 95th percentile range. Letters denote 

significant differences between location treatments. 

 

2.3. Soil microbial activity and carbon use efficiency  

To determine microbial activity and CUE, we measured the mineralization of 14C-

labelled glucose in each soil sample. Briefly, 5 g of each soil was placed in individual sterile 

50 cm3 polypropylene tubes. Subsequently, 0.5 ml of uniformly 14C-labelled glucose solution 

(10 kBq ml-1) with either a low (100 µM) or high concentration (100 mM) was added to the 

soil surface. After addition of the 14C-labelled glucose, a 1 M NaOH trap (1 ml) was suspended 

above the soil to catch any respired 14CO2. The tubes were then hermetically sealed and 

incubated at room temperature (20 ± 1℃). The NaOH traps were replaced periodically (after 

1, 3, 6, 9, 24, 34, 48, 58, 72 h and subsequently every 24 h) for one week after glucose 

application. The efficiency of the NaOH traps was > 98% (as determined by collecting 14CO2 
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generated from adding excess 0.1 M HCl to 0.001 M NaH14CO3). The amount of 14C in the 

NaOH traps was measured using Optiphase HiSafe 3 liquid scintillation cocktail (PerkinElmer 

Inc., Waltham, MA, USA) and a Wallac 1404 scintillation counter (Wallac EG&G, Milton 

Keynes, UK) with automated quench correction. At the end of the incubation period, the soils 

were extracted with ice-cold 1 M NaCl (200 rev min-1, 15 min), centrifuged (24,000 g, 15 min, 

4°C) and the 14C in the supernatant measured by liquid scintillation counting as described above 

(Rousk and Jones, 2010). Glucose was used as the C substrate due to its almost ubiquitous use 

by soil microorganisms and it represents the largest C input to soil in a polymeric form (Gunina 

and Kuzyakov, 2015). 

 

2.4. 16S amplicon sequencing 

Fresh soil was placed into a MoBio PowerMag Soil DNA Isolation Bead Plate (MoBio 

Laboratories Inc., Carlsbad, CA). DNA was extracted following MoBio’s instructions on a 

KingFisher Flex robot (Thermo Fisher Scientific Corp, Waltham, MA). Bacterial 16S rRNA 

genes were PCR-amplified with dual-barcoded primers targeting the V4 region (515F 5’-

GTGCCAGCMGCCGCGGTAA-3’, and 806R 5’-GGACTACHVGGGTWTCTAAT-3’), as 

per the protocol of Kozich et al. (2013). Amplicons were sequenced with an Illumina MiSeq 

using the 300-bp paired-end kit (v.3) (Illumina Inc., San Diego, CA). Sequences were denoised, 

taxonomically classified using Silva (v. 138) as the reference database, and clustered into 97%-

similarity operational taxonomic units (OTUs) with the mothur software package (v. 1.44.1) 

(Schloss et al., 2009). 

The potential for contamination was addressed by co-sequencing DNA amplified from 

samples and from template-free controls (negative control) and extraction kit reagents 

processed the same way as the samples, a positive control, was also included. OTUs were 

considered putative contaminants (and were removed) if their mean abundance in controls 

reached or exceeded 25 % of their mean abundance in the samples. OTUs were filtered if they 

had fewer than 3 counts and occurred in fewer than 10% of the samples. 

 

2.5. Statistics and data analysis  

To describe glucose mineralization, a double first order kinetic decay equation model 

was fitted to the loss of 14C from the soil (Smin; i.e. the inverse of 14CO2 accumulation) where 
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Smin = (P1 × exp-k1 × t) + (P2 × exp-k2 × t)       (1) 

 and where P1 describes the amount of 14C allocated to the first mineralization pool and k1 is 

the rate constant for P1. Similarly, P2 is the proportion partitioned into the second slower C 

mineralization pool described by rate constant k2. The equation was fitted to the experimental 

data using a least squares iterative model in SigmaPlot v12.3 (Systat Software Inc., San Jose, 

CA). Dependency values for each model parameter were used to indicate whether the 

parameter values were strongly dependent on one another. To critically evaluate which decay 

model best described the experimental data, the following criteria were employed: An r2 value 

of 0.90 was deemed acceptable for assessing the fit of the model to the experimental data. To 

check for model over-fitting, a dependency value cut-off of 0.98 was selected. The half-life 

(t½) for the mineralization pool P1 was calculated as follows: 

 t½ = ln(2)/k1                 (2)                                                                

Further details of the modelling approach and its assumptions are provided in Glanville et al. 

(2016). Microbial C use efficiency for glucose (CUEmic) was calculated according to Jones et 

al. (2018) where  

 CUEmic = P2 / (P1 + P2)        (3) 

where P1 is the amount of 14C allocated to catabolic processes and P2 is the amount of 14C 

allocated to anabolic processes. Differences in substrate half-life and CUEmic between location 

treatments was tested using an ANOVA model followed by a posthoc Tukey HSD test. 

 From the 16S data, alpha diversity was calculated using the Shannon index on raw OTU 

abundance tables after filtering out contaminants, as described in section 2.4. The significance 

of diversity differences between location treatments was tested using an ANOVA model 

followed by a posthoc Tukey HSD test. 

To obtain the overall variance in microbial composition, the similarities in microbial 

diversity across samples and location treatments were visualized by nonmetric 

multidimensional scaling (NMDS) ordinations based on Bray-Curtis dissimilarity. Ellipses for 

each location treatment were calculated using the ‘veganCovEllipse’ function. Significant 

environmental variables (p < 0.05) based on permutated data were selected and fitted onto the 

NMDS ordination space using the ‘envfit’ function in the ‘vegan’ R package (Oksanen et al., 

2020), significances of correlations were tested with 999 permutations. The NMDS results 

were quantitively evaluated with permutational multivariate analysis of variance 
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(PERMANOVA) using the ‘adonis ‘function in ‘vegan’, followed by posthoc pairwise 

comparisons to evaluate microbial diversity differences between location treatments with the 

function “pairwise.perm.manova” from ‘RVAideMemoire’ (Hervé, 2021). Although a 

PERMDISP test conducted with the ‘betadisper’ function in ‘vegan’ identified non-

homogenous dispersion between location treatments (F = 3.15, p = 0.038) PERMANOVA was 

performed as it is robust against non-homogeneous dispersions with balanced designs 

(Anderson, 2017). 

Normality and homoscedasticity of the data were first checked using Anderson Darling 

and Levene’s tests, respectively. Above-ground biomass was subjected to natural log 

transformation to ensure normality was met. Mixed-effect models were performed for each 

measured variable with the ‘lme4’ package (Bates et al., 2018). The models included the fixed 

factor EC (as a proxy for salt stress) and patch number as a random factor to account for spatial 

variation. Predicted fitted values from the mixed-effect model were calculated with 

predictInterval with the ‘merTools’ package (Knowles et al., 2020). The statistical significance 

cut-off for all analysis was set at p < 0.05. 

 

3. Results  

3.1. Impact of salinity on glucose mineralization rate and microbial CUE  

Overall, a double exponential kinetic model fitted well to the 14CO2 mineralization data 

for both the low (r2 > 0.985; mean dependency 0.73 ± 0.01) and high glucose treatments (r2 > 

0.980; mean dependency 0.90 ± 0.01). Exploring the 14C-labelled glucose mineralisation rates 

across the saline gradient showed variation with both patch location (i.e., salinity) and glucose 

(low vs. high) dose (Fig. 3). Under low glucose addition (100 µM), the rate of mineralisation 

was more rapid in the control soil samples than the samples with the highest salinity (F(3,8) = 

20.2,  p < 0.001; Fig. 3). This was evidenced by the shorter half-life for the fast catabolic C 

pool (P1) in the control treatment (t½ = 0.70 ± 0.03 h) relative to those with highest salt 

concentrations (t½ = 1.00 ± 0.05 h)(p = 0.012). No major effect of salt was seen on the rate of 

processing of 14C through the slow metabolic pool (P2) attributable to the turnover of the 

microbial biomass (F(3,8) = 4.1, p = 0.051). Under the low 14C-glucose-C availability, salt stress 

slightly increased soil microbial CUE from 0.749 ± 0.003 in the control treatment to 0.809 ± 

0.008 in the highest salinity treatment (p < 0.05) (Table S1). 
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Figure 3. A comparison of the 14C-lablelled glucose mineralisation rates of soils across a 

saline gradient dosed with either 100 µM (CUE Low) or 100 mM (CUE High). Points represent 

cumulative 14C respired over time (n = 9), error bar bars represent SEM. This data was used 

to calculate CUE presented in Table 1 using the double first order kinetic decay equation model 

described in section 2.5.  

Under high glucose addition (100 mM), a greater proportion of glucose was mineralised 

to 14CO2 relative to the low glucose treatment (paired t-test p < 0.001). In addition, the half-life 

for the fast catabolic C pool (P1) was much slower under the high glucose treatment (t½ = 14.1 

± 1.2 h) relative to the low glucose treatment, however, soil salt content had no effect on the 

turnover rate of this pool (F(3,8) = 3.0,  p = 0.095). Salinity had less impact on the final 

cumulative amount of glucose-C respired, although the control samples exhibited the highest 

cumulative respiration rates (Fig. 3). In contrast to the low-glucose treatment, soil salinity 

status had no effect on CUE in the high glucose treatment (p = 0.73) or on the rate of turnover 

of the microbial biomass, Pool P2 (F(3,8) = 0.95, p = 0.462).  

 

3.2. Impact of salinity on 16S bacterial community structure 

In total, 10442 bacterial operational taxonomic units (OTUs) were identified across all 

16S rRNA gene reads. There was some variation in the proportional abundance of OTUs 
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between location treatments, however, generally Alphaproteobacteria (Gram-negative) and 

Bacilli (Gram-positive) were the most abundant classes (Fig. 4, Fig. S3). Shannon diversities 

also differed between location treatments as tested by ANOVA (F(3,32) = 7.41,  p < 0.01). 

Subsequent posthoc tests revealed that diversity was significantly higher in the Salt Edge (p < 

0.01) and Salt Patch (p < 0.05) compared to the Control treatment.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Mean relative abundance of the dominant soil bacteria at the class taxonomic level 

(> 1%) within each salt gradient treatment. 

Based on the relative abundance of taxa ordered by class, beta-diversity analysis by 

NMDS and variance comparison of Bray-Curtis distances also determined differences in soil 

microbial diversity between location treatments (Fig. 5, PERMANOVA; F = 11.07, p = 0.001). 

Pairwise comparisons of the microbial diversity revealed significant differences between all 

locations along the salinity gradient (Table S2).  The salt stress gradient also correlated strongly 
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with the ordination, as indicated by the fitted vectors of environmental variables (Fig. 5). Here, 

soil EC, a direct measure of salt stress, had the highest squared correlation coefficients (r2) 

compared to other environmental variables (Table S3). 

Figure 5. Non-metric dimensional scaling ordination (stress = 0.07) of bacterial community 

diversity across salt gradient treatments denoted by colours. Results of PERMANOVA 

(F = 11.07, p = 0.001) and dispersion of variances of groups (F = 3.15, p = 0.031) were 

significant.  

 

3.3. Soil physicochemistry 

Exploring relationships through mixed effects models (Fig. 6) shows that salt stress 

significantly reduces aboveground biomass (p < 0.005), where the mean aboveground biomass 

difference between samples collected from the control locations and the salt patch locations 

was 96% (Table S4).  Overall, we found that soil nutrient availability increased along the salt 

stress gradient as evidenced by the positive soil carbon, nitrogen, ammonium, nitrate, and 

phosphate relationship with salt stress (Fig. 6 and Table S5). As an artifact of both total soil C 

and N % increasing with increased salt stress and N having a slightly stronger relationship than 

C (t value for N = 3.99 ad t value for C = 3.12), we found a weak negative relationship between 

soil C:N ratios and salt stress (t = -2.36, p = 0.03). Soils also became more acidic and compact 

with increased salt stress, as demonstrated by the negative soil pH relationship (t = -4.98, p < 

0.05) and positive bulk density relationship (t = 3.55, p < 0.001) with salt stress, respectively. 
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Figure 6. Trends in above ground biomass, soil bulk density, pH, carbon, nitrogen, C: N ratio, 

total organic carbon (TOC), ammonium, nitrate and phosphate across a saline gradient. Points 

represent individual sampling points where colour denotes sampling location to ensure a saline 

gradient was captured. The trend lines represent the predictive fitted ratio change values based 
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on the mixed effects models, where coloured shaded areas represent 95% upper and lower 

confidence intervals of the mean. 

 

4. Discussion 

4.1. CUE along a soil salinity gradient 

Bacterial growth and respiration have both been shown to decrease with higher salinity, 

particularly in soils under agricultural management (Rath et al., 2019b; Rath and Rousk, 2015). 

Here, we used a low concentration (100 µM) of 14C-labelled glucose to measure the ability of 

the intrinsic community to metabolise labile substrate, i.e., maintenance. As well as a high 

concentration (100 mM) of 14C-labelled glucose to assess the ability of the community to grow 

under unlimited substrate, i.e., growth. There was no significant relationship between CUE 

under the high 14C-labelled glucose application and soil EC (Table 1), suggesting that fast 

growing members of the microbial community were not inhibited by excess salt in the soil (i.e., 

adaptation of the copiotrophic community, r-strategists) (Fierer et al., 2007). This also suggests 

that the community did not divert a large amount of C towards osmoprotectant production or 

the operation of Na+ efflux pumps. However, there was a significant positive correlation 

between CUE under low 14C-labelled glucose application and soil EC (Fig. 3), providing 

evidence to suggest that metabolic activity was shifted under higher salt stress. We speculate 

that while the high glucose dose only targets the r-strategists, the low glucose dose provides a 

more representative view across the whole community (i.e., includes slow growing K-

strategists) (Fierer et al., 2007). This CUE pattern under high and low glucose doses was 

contrary to our expectations as we hypothesized that the fast-growing community would 

experience greater disturbance to salt stress, resulting inreduced glucose uptake rate (P1, k1) 

and CUE (Luo et al., 2020). We also hypothesized that C turnover through the microbial 

biomass (i.e. P2, k2) would be slower in the salt-affected soils due to a reduction in mesofaunal 

abundance and microbial grazing. Comparison of the CUE values in the low and high glucose 

doses may therefore indicate that the K-strategists are less adapted to salt stress.  

The structure of the soil microbiome and its intrinsic CUE underpins the ability of a 

soil to store C, as well as its functional ability to cycle and retain nutrients. In this study we 

clearly showed that storm surge-induced coastal inundation resulted in a major shift in bacterial 

community structure and functioning in terms of C turnover. Metabolic C partitioning in the 
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microbial biomass is fundamentally controlled by a range of environmental factors; 

determining the level of community stress, and soil nutrient stoichiometry (Manzoni et al., 

2012). Increasing the microbial CUE of agricultural soils is seen as beneficial, potentially 

increasing C storage while reducing C system losses (Kallenbach et al., 2019). Increasing CUE 

is also likely to enhance the retention of N and P through stoichiometric balance with C. 

Previously, it has been shown that soil communities under high abiotic stress have a lower 

CUE, as more C is respired as organisms attempt to maintain normal cell function while 

producing stress mitigation compounds e.g., osmolytes (Empadinhas and da Costa, 2008; 

Manzoni et al., 2012), or to repair stress-induced damage (Jones et al., 2019; Xu et al., 2018). 

In this soil we have previously shown that osmotic stress induces the transitory production of 

osmoprotectants by the microbial biomass (Miura et al., 2020), which would be consistent with 

a low CUE and a decreased potential for long term C storage and sequestration (Sinsabaugh et 

al., 2013). This is also supported by the CUE data presented here for the low glucose additions. 

 In this study, while soil total C increased with salinity, there was no strong statistical 

relationship between total organic C and salinity (p = 0.8; Fig. 6 and Table S5). Elevated soil 

salinity has been shown to have mixed effects on soil C, either leading to an increase (Chambers 

et al., 2013; Servais et al., 2019) or decrease in C mineralisation (Ardón et al., 2018; Herbert 

et al., 2018). The relative change appears to depend on several factors including experimental 

location and prevailing environmental conditions. As previously discussed by de la Reguera 

and Tully (2021), soil moisture fluctuations will be a major control on C flux, determining the 

anaerobicity of soils and speed of decomposition rates. Similarly, the rate at which salt is 

removed from the soil profile by rainfall and plant uptake is also likely to be an important 

determinant (Isyenkov et al., 2019; Li et al., 2018; Munns et al., 2015). CUE in this experiment 

was performed on field-moist soil, to be as representative as possible of field conditions on 

collection. However, it is highly likely that the CUE of the soil across the saline gradient 

explored here is dynamic and will vary with soil moisture i.e., the degree of inundation and 

subsequent rainfall (Stark et al., 2019). It is therefore recommended that future research 

explores the relationship between frequency and degree of saline and brackish water inundation 

and soil CUE further. 

 

4.2. Changes in the 16S bacterial community across the saline gradient 



362 

 

Salt significantly affected the structure (Fig. 4, Fig. 5, Table S2, and Table S3) and 

likely also the function of the soil bacterial community. We ascribe this change to salt toxicity, 

as well as physical changes to soil structure and a reduction or change in plant primary 

productivity changing the dynamic of rhizosphere-associated bacteria (Rath and Rousk, 2015). 

Indeed, several studies have previously concluded that salinity negatively affects the diversity 

and community composition of microorganism in soils and sediments, consistently across 

coastal ecosystems (Behera et al., 2017; Kim et al., 2019; Zhao et al., 2020).  

In this study, where saline inundation is relatively infrequent, but its legacy is long 

lasting (i.e. salt deposition and salinisation; Fig. 1, Fig. S2), the importance of soil ecological 

resistance (ability to withstand disturbance) and resilience (ability to recover from disturbance) 

must be considered (Bardgett and Caruso, 2020; Griffiths and Philippot, 2013). We know from 

field observations that our field site has experienced unprecedented and repeated storm-surge 

saline intrusions in recent years. Although the dynamics of salt accumulation have not been 

measured, we know that surface salt accumulation has been a progressive process providing 

time for the microbial community to adapt. In contrast, the plant community has not been able 

to adapt leading to the loss of vegetation. We assume that creating a new quasi-stable state 

essentially driving a shift in community with higher salt tolerances, as seen by the significant 

difference in beta-diversity between the Control and Salt patch sampling treatments. Further 

research is required to understand the effects of salt exposure on the temporal dynamics of the 

soil microbial community and the effect on C cycling as it is highly likely that the frequency 

and severity of these events will increase in the future due to climate change (Met Office, 

2018a).  

Plants are soil-ecosystem engineers, with their root exudates creating nutrient hotspots 

within the soil, and consequently influencing the soil microbial community (Berendsen et al., 

2012; Pathan et al., 2020). The grassland soil studied here can essentially all be classed as 

rhizosphere due to the high intrinsic root density (~25 cm root cm-3 soil (0 – 10 cm)). In 

comparison to bulk soil, rhizosphere-associated bacterial communities are denser, have larger 

cells (Lopes et al., 2016) and increased microbial activity (Reinhold-Hurek et al., 2015). Plants 

use their rhizosphere to select for (generally beneficial) microbial communities (Dawson et al., 

2017; Yin et al., 2021), for example plant root exudate cocktails having been shown to 

encourage bacteria with matching substrate uptake preferences (Zhalnina et al., 2018). This 

pre-selection has often been associated with a decrease in species richness and evenness 

(Peiffer et al., 2013; Shi et al., 2015). Here we saw a significant reduction in plant aboveground 



363 

 

biomass with increasing salinity (Fig. 1, Fig. 6) as the species within the grassland were not 

halotolerant and had senesced within the saline patches. With the death of plants and therefore 

loss of the rhizospheric pre-selection of the bacterial community, changes in bacterial alpha- 

and beta-diversity occurred (Fig. 5). 

 

4.3. Soil chemistry as affected by soil salinity 

As plant biomass decreased, as a result of salinity induced ion toxicity and osmotic 

stress, (Fig. 6, Table S5) (Bidalia et al., 2019; Shrivatava and Kumar, 2015), uptake of soil 

available nutrients is impaired (particularly P, NH4
+ and NO3

-), leading to significant 

accumulation in soil porewater. With a reduction in root- biomass and perturbation, and the 

likely flocculation of clay particles (Imadi et al., 2016), we found bulk density to increase under 

saline conditions (Fig. 6). Equally, Na and other saltwater cations can desorb NH4
+ from soil 

exchange sites (Jun et al., 2013; Weston et al., 2010), resulting in dissimilatory nitrate reduction 

in which NO3
- is reduced to NH4

+ (Giblin et al., 2010), leading to further NH4
+ accumulation. 

This study took place > 2 months after inundation, allowing NH4
+ and P to accumulate relative 

to the control (Fig. 6) (Herbert et al., 2018; Sánchez-Rodríguez et al., 2018). Additionally, 

microbial extracellular enzyme activity is likely to be affected by salinity with inhibitory effects 

having been shown on a range on enzymes (e.g. dehydrogenase, β-glucosidase, urease, 

protease, alkaline phosphatase, acidic phosphatase and arylsulphatase) (Rietz and Haynes, 

2003; Tripathi et al., 2007; Zheng et al., 2017), potentially leading to slower nutrient cycling 

rates and lowering microbial growth and biomass (Singh, 2016). While soil pH is likely to 

increase initially after inundation, as seawater is alkaline (pH 8.1), we ascribe the decrease in 

pH with salinity across the gradient to anion accumulation (e.g. NO3
- and PO4

3-) and cation 

exchange between Na+ and H+ (Fig. 6) (Van Tan and Thanh, 2021).  

 

Conclusions 

Climate change is highly likely to increase the frequency and severity of coastal 

flooding in low lying areas. Understanding the effects of salt exposure on the soil microbial 

community and the associated effect on soil C cycling is therefore of high impetus, as salt stress 

can affect the provision of many ecosystem services, including nutrient cycling and soil 

fertility, which is highly likely to have an impact of agroecosystem productivity. Here, we 
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showed that a gradient of salinity caused by infrequent brackish water flooding to a coastal 

grassland significantly altered the soil bacterial community.  

Despite this, the CUE of the soil biological community was relatively unchanged (i.e. 

functionally resilient) under ‘growth’ conditions and higher under ‘maintenance’ conditions 

suggesting that the microbial community adapted to and/or become more tolerant to salt stress, 

allowing the community to efficiently respond to relatively small labile C inputs. We suggest 

that the soil microbial community strategy (r vs. K) was driving differences in CUE under 

different C availability. Potentially showing that C storage and cycling ecosystem service 

provision is likely be dependent on the availability and/or quality of organic substrates as well 

as the level of salt stress. The most significant driver of changes across the gradient was likely 

to be decreased plant biomass with increasing salinity, which is likely to have influenced soil 

chemistry and microbial community structure. Therefore, we conclude that the observed soil 

microbial functioning effects from salt stress are indirect and are mediated by the lack of plant 

C inputs, nutrient uptake and maintenance of soil structure. 
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Figure S1. Sample site location, a sheep-grazed grassland agricultural field located next to 

the Menai Strait, which forms part of the Irish Sea and is adjacent to the Afon Rhaeadr-fawr 

river.  
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Figure S2. Visual representation of the salinity gradient at the patch edge. The white 

colouration is the accumulation of salt at the soil surface. 
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Figure S3. Heatmap of the relative abundance of the dominant soil bacteria ordered by class 

(> 1%) for each sample within each location treatment (n = 9). 

  



379 

 

Table S1. Parameters estimates (β) and respective standard errors (SE), and significance levels 

of the mixed effect models explaining the variability of carbon use efficiencies with low (CUE 

Low) and high carbon availability (response variables). 

Response 

Variable 
Covariates β SE t-value p-value 

CUE Low (Intercept) 0.77 0.008 86.62 <0.005 

EC 0.00007 0.00002 3.71 <0.05 

      

CUE High (Intercept) 0.67 0.008 83.24 <0.005 

EC 0.00007 0.00002 0.35 0.728 
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Table S2. Comparisons of group averages of bacterial diversity at class level among saline 

treatments using pairwise PERMANOVA. Benjamini-Hochberg adjustment was used for p 

value correction. Overall tests revealed significant differences of group average among saline 

treatments (F = 11.07, p = 0.001). 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

  

Pairwise comparison F value Adjusted 

p value 

Control v Control edge 10.8 0.002 

Control v Salt edge 29.3 0.002 

Control v Salt patch 26.5 0.002 

Control edge v Salt edge 3.39 0.02 

Control edge v Salt patch 5.6 0.002 

Salt patch v Salt edge 2.4 0.03 
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Table S3. Correlations of environmental variables with the NMDS ordination of microbial 

diversity and the significance of the correlation based on the ‘envfit’ function (999 

permutations). 

 

Environmental variable r2 p value 

Electrical conductivity 0.75 <0.001 

Aboveground biomass 0.66 <0.001 

Sodium 0.65 <0.001 

Potassium 0.57 <0.001 

Nitrate 0.56 <0.001 

Ammonium 0.42 <0.001 

pH 0.40 <0.001 

Total N 0.38 <0.01 

Total C 0.31 <0.01 

Phosphate 0.30 <0.01 

TOC 0.14 0.09 

Bulk density 0.09 0.24 

Soil moisture 0.07 0.32 

C:N ratio 0.05 0.45 

Calcium 0.01 0.90 
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Table S4. Mean values ± SEM for each of the variables measured across the saline gradient. 
 

Location along salinity gradient 
 

Control Control edge Salt edge Salt patch 

CUE Low 0.75 ± 0.004 0.80 ± 0.006 0.81 ± 0.003 0.81 ± 0.005 

CUE High 0.65 ± 0.004 0.69 ± 0.007 0.68 ± 0.007 0.67 ± 0.009 

Aboveground biomass 

(%) 

99.9 ± 0.04 98.7 ± 0.29 19.4 ± 3.98 3.7 ± 1.2 

Bulk density (g cm3) 0.68 ± 0.03 0.47 ± 0.04 0.70 ± 0.04 0.78 ± 0.04 

Soil moisture (%) 29.3 ± 1.40 37.8 ± 2.34 33.5 ± 1.36 34.3 ± 1.64 

pH 6.20 ± 0.06 6.02 ± 0.08 5.70 ± 0.07 5.62 ± 0.11 

Total carbon (%) 4.84 ± 0.20 6.14 ± 0.81 5.95 ± 0.61 7.35 ± 0.70 

Total nitrogen (%) 0.39 ± 0.01 0.49 ± 0.06 0.49 ± 0.05 0.61 ± 0.05 

C:N ratio 12.5 ± 0.17 12.5 ± 0.28 11.9 ± 0.21 11.9 ± 0.23 

DOC (mg C kg-1) 9.86 ± 1.44 9.60 ± 2.38 7.56 ± 0.90 9.57 ± 1.73 

Ammonium (mg N kg-1) 0.27 ± 0.01 0.25 ± 0.02 0.53 ± 0.10 0.80 ± 0.25 

Nitrate (mg N kg-1) 0.02 ± 0.002 0.05 ± 0.004 0.30 ± 0.11 0.56 ± 0.07 

Phosphate (mg P kg-1) 0.71 ± 0.17 0.63 ± 0.10 0.82 ± 0.14 1.26 ± 0.28 

Calcium (mg Ca kg-1) 1962 ± 342 1436 ± 369 2099 ± 576 2351 ± 653 

Sodium (mg Na kg-1) 37 ± 6 234 ± 40 336 ± 57 432 ± 71 

Potassium (mg K kg-1) 64.2 ± 3.9 88.4 ± 12.8 152 ± 14.5 178 ± 19 
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Table S5. Parameters estimates (β) and respective standard errors (SE), and significance levels 

of the mixed effect models explaining the variability of soil physiochemical parameters 

(response variables). 

 

Response Variable Covariate β SE t-value p value 

Aboveground biomass (%) (Intercept) 4.93 0.22 22.25 <0.005 

EC -0.008 0.0006 -13.64 <0.005 

Bulk density 

(g cm-3) 

(Intercept) 6.11 0.16 39.08 <0.005 

EC -0.001 0.0002 -4.98 <0.005 

pH (Intercept) 6.11 0.16 39.08 <0.005 

EC -0.001 0.0002 -4.98 <0.05 

Carbon (%) (Intercept) 5.20 0.71 7.27 <0.05 

EC 0.004 0.001 3.12 <0.005 

Nitrogen (%) (Intercept) 0.42 0.048 8.57 <0.005 

EC 0.004 0.00009 3.99 <0.005 

C:N ratio (Intercept) 12.47 0.33 38.00 <0.005 

EC -0.001 0.0005 32.86 <0.05 

DOC 

(mg C kg-1) 

(Intercept) 8.95 2.22 4.02 <0.05 

EC 0.0008 0.003 0.26 0.80 

Ammonium 

(mg N kg-1) 

(Intercept) 0.11 0.08 1.35 0.25 

EC 0.002 0.0002 7.23 <0.005 

Nitrate 

(mg N kg-1)  

(Intercept) -0.05 0.03 -1.44 0.16 

EC 0.001 0.0009 13.20 <0.05 

Phosphate 

(mg P kg-1) 

(Intercept) 0.55 0.18 3.15 0.054 

EC 0.001 0.004 3.86 <0.005 

 

 

 


