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Improving Decision Making in the Management of Hospital Readmissions 

using Modern Survival Analysis Techniques 

Abstract  

Hospital readmissions lead to unnecessary demand for healthcare resources, greater financial 

costs, and poorer patient outcomes. These consequences have led hospitals to attempt to identify 

high-risk patients with predictive models, but research has rarely focused on survival analysis 

techniques, model applications, and performance measures.  This study establishes the uses of 

survival models to support managerial decision-making for readmissions. First, machine learning 

and statistical survival techniques are applied, ten of which have not been used in previous 

readmission research. Secondly, applications of survival models in a decision support capacity 

are proposed, relating to intervention targeting, follow-up care customisation, and demand 

forecasting. Thirdly, performance measures for the proposed applications are determined and 

used for empirical model assessment. These performance measures have not been applied in 

previous readmission research. The empirical assessment is based on adult admissions to the 

Emergency Department of Gold Coast University Hospital (n = 46,659) and Robina Hospital (n = 

23,976) in Queensland, Australia. The relevant aspects of performance were determined to be 

discrimination and calibration, as measured by time-dependent concordance and D-Calibration 

respectively. A range of discrimination and calibration combinations can be achieved by different 

models, with the Recursively Imputed Survival Tree, Cox regression, and hybrid Cox-ANN 

techniques being most promising. Survival approaches linking techniques, proposed applications, 

and performance measurement should be given greater consideration in future healthcare research 

and in institutions aiming to manage readmissions.  

Keywords: Predictive analytics; Hospital readmissions; Survival analysis; Machine learning; 

Performance measurement 
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1 Introduction  

Unplanned and early readmissions put patients at greater risk of adverse outcomes, burdens 

limited hospital resources, and imposes costs on the healthcare system. Readmissions may also 

indicate underlying issues in the quality of care being provided to patients before and after their 

discharge [19].  

The US Hospital Readmissions Reductions Program (HRRP) introduced in 2012 is the most 

prominent example of healthcare policy targeting readmissions, under which hospital risk-

adjusted readmission rates for certain conditions are linked to funding [10]. Healthcare policies 

targeting readmissions have similarly been implemented in Germany, Denmark, and England 

[42]. Most recently, Australia’s Independent Hospital Pricing Authority [32] has developed a 

pricing model adjusting funding for admission episodes based on readmission outcome, condition 

and complexity. Such policy aims to incentivise hospitals to improve quality of care, 

communication and management of high-risk patients to reduce readmissions.  

While the usage of financial penalties have been critiqued in some cases [19, 37, 42, 70], 

there is agreement that many readmissions are avoidable [61, 72], through better clinical 

management or discharge planning [7]. Research has found robust interventions to be effective, 

though resource requirements make it important to identify high-risk patients for intervention 

targeting [41]. Accordingly, much research has focused on the development of predictive models 

relating patient-specific factors to readmission risk. These models are intended to serve as 

decision support systems for hospitals. Unlike risk adjustment models in healthcare policy, they 

are restricted to data available at the time when decisions are made, commonly discharge time. 

Many predictive models have been proposed to quantify the risk of readmission given a 

patient’s available information, though these have often been characterised by unimpressive 

performance. Most such predictive models have taken a classification approach in which 

readmission status is considered at a single time point, generally 30 days. This approach allows 
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for straightforward application of well-established techniques, easily interpretable predictions, 

and facilitates standardised performance comparisons across hospitals. Reflecting the focus on 

supporting administrative rather than clinical decisions, less interpretable machine learning 

classification techniques have also been applied. Survival approaches have primarily been used in 

inferential readmission research aiming to identify risk factors, with predictive research 

employing survival techniques being much rarer. Fewer still have considered practical 

applications specific to survival approaches and associated performance measures. This work (i) 

identifies a range of applicable survival techniques, (ii) proposes applications of survival models 

to support managerial decision-making, and (iii) determines performance measures suitable for 

assessing the survival models for these applications. The primary contribution of this work is in 

linking these three elements of developing decision support tools for hospital administrators, with 

this link lacking in prior research. To operationalise this, the following research question is 

considered: “How well can various survival modelling techniques capture aspects of hospital 

readmission risk over time relevant to managerial decision-making?”  

In addressing this question, four practical applications of survival models to support 

managerial decision-making for readmissions are proposed: 

 Dynamic Risk Ranking (DRR): To facilitate allocation of limited resources for 

interventions and patient management, patients can be stratified by risk of 

readmission with a survival model. This stratification is dynamic in that it can be 

updated for patients who have already been discharged, rather than being limited to 

the time of discharge as in classification models. 

 Elevated Risk Period (ERP) and Elevated Risk Period Probability (ERPP): The 

ERP application of a survival model assesses the length of time before a patient’s risk 

of readmission reaches some acceptable level and thus how long they are of interest 

for post-discharge management decisions. The ERPP application assesses the 
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probability of readmission within the ERP. These applications allow for differences in 

risk profiles between patients (rather than considering a single time point for all 

patients) and context-specific customisation of how acceptable risk levels are defined.  

 Expected Readmissions: Given survival curves from a well-fitted model, it is 

straightforward to calculate the expected number of readmissions in a period 

conditional on patients being readmission-free up to the start of the period. 

Forecasting of aggregate readmissions supports planning and resource allocation 

decisions. 

Additionally, ten machine learning survival techniques which have not been investigated in 

prior readmission research are identified and empirically evaluated. The empirical assessment is 

based on adult admissions to the Emergency Department of Gold Coast University Hospital (n = 

46,659) and Robina Hospital (n = 23,976) in Queensland, Australia. on two emergency 

department populations. Unlike many prior studies using survival models, this evaluation is based 

on measures of discrimination and calibration that directly relate to the desirable features of 

models in the proposed applications. This empirical assessment of machine learning techniques 

and comparison with more interpretable statistical techniques demonstrates the range of 

alternatives available for readmission modelling. It also allows for consideration of whether there 

is a loss of predictive power from more interpretable techniques and, if so, how much. 

The remainder of this paper is set out as follows. Section 2 summarises key prior research in 

the field of readmission prediction. Section 3 describes the data used in this work and its 

processing. Section 4 details the modelling techniques considered, describes the model selection 

process, and discusses appropriate performance measures. Section 5 presents and discusses the 

performance of the final models with respect to the research question, which are discussed further 

in Section 6. Finally, Section 7 highlights the key contributions made, suggests directions for 

future research, and discusses relevant limitations. 
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2 Summary of Key Related Research 

Motivated by the various costs associated with readmissions, many studies have aimed to 

develop and validate predictive models to support decisions regarding interventions and clinical 

management. Most have adopted a classification approach in which readmission is a binary 

outcome determined by patient status at a fixed time point. The most common time point has 

been 30 days, which matches the definition of readmissions used in the US HRRP [10]. Beyond 

matching policy definitions, considering outcomes as binary has allowed for application of well-

established techniques, most often logistic regression [6]. Less commonly, studies have used 

survival models to predict readmissions, with such models more frequently seen in studies 

investigating risk factors. Survival models do not require that readmission status be considered 

only at a fixed time point and instead aim to model risk across time. The most common survival 

technique for readmission prediction has been the Cox regression model and related variations 

[25, 46], as noted in a recent review [6].  

Motivated by a desire to improve on the performance of existing statistical readmission 

models [38], machine learning techniques have increasingly been considered [6]. This has been 

further motivated by their lack of distributional assumptions and their greater ability to capture 

highly non-linear and complex relationships compared to traditional techniques. Prominent 

machine learning techniques have included artificial neural networks (ANNs) [2, 24, 36, 65, 68], 

support vector machines (SVMs) [8, 56, 69], random forests [15, 20, 27], and decision trees [48, 

63]. In general, more complex techniques have been found to improve on logistic regression, 

though generalisation of results is made difficult by differences in datasets, patient groups, and 

conditions across studies [6]. Under survival approaches, the only machine learning techniques 

applied have been random survival forests (RSFs) [28, 46].   

Classification models are often intended to assist in stratifying patients by risk of 

readmission. Accordingly, model performance is typically assessed by the area under the receiver 

operating characteristic curve (AUC), which measures the ability of a model to discriminate 
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between positive and negative observations. Survival models are not restricted to a fixed time and 

risk predictions can be calculated conditional on the patient being readmission free for some 

period. This allows for alternative model applications and thus requires alternative appropriate 

performance measures. One such measure is Harrell’s concordance index [29], which has been 

used to assess the discrimination of survival models applied for risk stratification [25, 46]. It was 

developed in the context of the Cox regression model, however, and relies on the assumption of 

time-invariant risk rankings, which machine learning models may not provide. 

As stated in the introduction, this work applies a wide range of previously unconsidered 

machine learning survival techniques, suggests survival-specific model applications, and employs 

appropriate performance measures. This is motivated by two characteristics of prior research.  

The first characteristic is the increased interest in machine learning techniques for 

readmission prediction. This has almost exclusively been seen for classification approaches, with 

encouraging results, despite the motivation for such techniques being equally applicable to 

survival approaches. This work explores the potential value of a wide range of previously 

unconsidered machine learning survival techniques in addition to RSFs and Cox regression.  

The second characteristic of prior research relates to the absence of studies combining 

survival models, survival-specific applications, and appropriate performance measurement. 

Where survival models were used, evaluation of predictive performance was often cursory [13], 

or absent [34, 55]. Where predictive performance was assessed, this was often based on 

prediction at discrete points [1] or how classification models would be applied [43, 64, 67], 

despite some studies mentioning applications specific to survival models such as dynamic risk 

ranking [28]. Other studies used survival models but did not identify potential survival-specific 

applications [3, 46, 47]. A final study directly applied regression techniques by only considering 

readmission times for 30-day readmissions and used regression performance measures [21]. 
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This work aims to address this lack through the proposal of several survival-specific model 

applications and identification of model performance measures appropriate to these applications.  

This reflects the view that survival approaches should be seen as complementary rather than 

competitive with classification approaches. Of the four applications proposed, prior research has 

only considered DRR [28] and performance measures did not appropriately consider predictions 

of risk over time or the possibility of time-varying risk rankings. The authors are not aware of any 

readmission research which has considered the remaining three applications of ERP, ERPP, and 

Expected Readmissions. 

3 Data  

The data used in this work consists of costing data for hospital discharges of adult patients 

admitted to the Emergency Department (ED) of Gold Coast University Hospital (GCUH) (n = 

46,659) and Robina Hospital (RH) (n = 23,976), both of which service the Gold Coast region of 

Australia. These relate to adults discharged in the period ranging from April 30th, 2016 to April 

30th, 2018. The hospitals are treated as separate datasets given the goal of developing institution-

specific decision support tools. Additionally, the two hospitals service different patient 

populations and treating them separately allows for results to be compared. For both hospitals, 

data was longitudinally split into training and test sets containing 70% and 30% of the data 

respectively, as shown in Table 1.  

Table 1. Train and Test Data - Size and Dates 

Hospital Split Quantity Start Date End Date 
GCUH Train 32,661 2016-04-30 2017-09-30 
 Test 13,998 2017-09-30 2018-04-30 
RH Train 16,783 2016-04-30 2017-09-29 
 Test 7,193 2017-09-29 2018-04-30 

 

Patient discharges were also excluded if discharge was to another hospital, as details of 

patient care and effective discharge date are unknown, or if discharge was against medical advice, 

as consistent with existing literature and measurement under relevant healthcare policy [10, 32].  
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Table 2. Features Used in Modelling 

Feature Feature Description 
AdmitWardCode1 (Derived 
Feature) 

An aggregated version of the AdmitWardCode field. 
This derived field is described in Appendix A. 
AdmitWardCode: WardCode patient is admitted to. 

Age Age of a patient calculated at the time of discharge.  
ED_NumPresPrevYear Number of ED presentations that occurred during the 

year prior to the current admission.  
ED_NumPresSincePrevAdm  Number of ED presentations that occurred since the 

patient's previous inpatient admission via ED. 
ED_NumPresSincePrevAdmALL Number of ED presentations that occurred since the 

patient's previous inpatient admission (via Outpatients, 
ED etc.). 

GenderCode Gender of a patient (M or F). 
iGC (Derived Feature) A grouped version of the Postcode field specifying the 

region of the Gold Coast the patient’s home address is 
in. This derived field is described in Appendix A. 

Inpat_NumAdmPrevYearALL The number of all inpatient admissions (via Outpatients, 
ED etc.) that occurred during the year prior to the 
current admission. 

Inpat_PrevAdmLOSPrevYear Length of stay of previous inpatient admission via ED in 
days. 

Inpat_PrevAdmLOSPrevYearALL Length of stay of previous inpatient admission (via 
Outpatients, ED etc.) in days. 

Inpat_TimeSincePrevAdmALL Days since the previous inpatient admission (via 
Outpatients, ED etc.) that occurred during the year prior 
to the current row's admission date. 

Inpat_TotalAdmInICU Number of Inpatient Admissions that the patient had in 
the ICU within the previous year. 

Inpat_TotalAdmInICUALL Number of Inpatient Admissions (via Outpatients, ED 
etc.) when the patient was in ICU within the previous 
year from the current row's admission date.  

Inpat_TotalTimeAdmPrevYear Cumulative length of stay in days as an inpatient 
admission via ED during the year prior to the current 
row's admission date. 

Inpat_TotalTimeAdmPrevYearALL Cumulative length of stay in days as an inpatient 
admission (via Outpatients, ED etc.) within hospital 
during the year prior to the current row's admission date. 

LOSCalc (Derived Feature) Difference in days between the time of inpatient 
admission and time of inpatient discharge. 

Outp_NumApptPrevYear Number of outpatient appointments that occurred during 
the year prior to the current row's admission date. 

Outp_NumApptSincePrevAdm Number of outpatient appointments that occurred since 
the patient's previous inpatient admission via ED. 

Outp_NumApptSincePrevAdmALL Number of outpatient appointments that occurred since 
the patient's previous inpatient admission (via 
Outpatients, ED etc.) 

 



9 
 

Table 3. Descriptive Statistics (Full Data) 

 GCUH RH 
Data   
Total admissions  46,659  23,976  
Readmissions in 30 days  14.41% 15.65% 
Censored Observations  61.62% 58.02% 
   
Selected Features used in Modelling   
Age: Mean (SD) 59.16 

(20.50) 
66.48 
(19.94) 

Female (%) 48.13% 52.25% 
Region 
  Inner Gold Coast 
  Outer Gold Coast 
  Other  

 
62.94% 
24.14% 
12.92% 

 
74.51% 
17.86% 
7.63% 

   
Length of Stay: Mean 4.53 3.98 
   
Inpatient Admissions in Previous Year: Mean (Median) 1.30 (0) 1.41 (0) 
Outpatient Appointments in Previous Year: Mean (Median) 5.42 (1) 4.41 (0) 
ED Presentations in Previous Year: Mean (Median) 1.94 (1) 2.16 (1) 

 

To avoid consideration of planned and routine admissions, discharges were considered to 

have resulted in an unplanned readmission if readmission type was coded as Acute and 

readmission status was coded as Emergency. Considered data features related to prior use of 

health services, sociodemographic factors, and length of stay for the initial admission. All 

features and descriptions are shown in Table 2. 

Descriptive statistics for the dataset are shown in Table 3, which further supports the decision 

to consider the two hospitals separately. RH is characterised by patients who are older, are 

admitted for shorter times, have less frequent inpatient and outpatient admissions, and are more 

often from the inner Gold Coast region. 

Additional problem-specific processing of the data was carried out before the application of 

all techniques outlined in Section 4.1. This is detailed in Appendix A. 
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4 Methods 

4.1 Techniques Considered 

In determining the techniques considered in this work, the focus was on exploring the 

performance of a wider range of techniques than considered in prior research. Accordingly, both 

Cox regression and RSFs were included. Other techniques were selected based on a review of 

major machine learning categorisations, which included decision trees, ensembles, SVMs, and 

ANNs. Within these categories, techniques adapted for survival data were identified. Techniques 

were not included if they did not provide predictions of risk over time, or if they were improved 

upon in a later variation. Fully parametric techniques were not included as they entail statistical 

constraints beyond that of Cox regression and the consideration of machine learning techniques 

here and in prior work has been motivated in part by their non-parametric nature. 

From decision trees, survival trees under a log-rank splitting rule and under a one-step 

likelihood approach [44] are considered. Direct extensions of decision trees to survival data have 

been achieved via modification of splitting rules, and these two variations have been among the 

most common employed.  Doubly robust Censoring Unbiased Regression Trees (CURTs) [52] 

are also considered. This extension of trees to censored data is based on data transformations 

rather than modified splitting rules, with the doubly robust transformation being more robust than 

the alternative inverse probability of censoring weighting (IPCW) transformation [52]. From 

ensembles, RSFs [33], doubly robust Censoring Unbiased Regression Ensembles (CURE) [53], 

Recursively Imputed Survival Trees (RIST) [71], and Bayesian Additive Regression Trees 

(BART) [51] are considered. The doubly robust transformation is used for the CURE technique 

rather than the IPCW transformation for the same reason as already stated. Excluding those using 

IPCW transformations [30] or only bootstrapped aggregation of survival trees [31], no other 

ensembles of trees were identified in the literature. For ANNs, three extensions to survival data 

were identified and considered. These were a time-coded ANN, multiple time point ANN, and 

hybrid Cox-ANN. The considered time-coded ANN is based on the principles set out by 
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Biganzoli, Boracchi and Marubini [9]. A recent implementation of a multiple time point ANN is 

used, termed Nnet-survival [22], as well as a recent implementation of a hybrid Cox-ANN, 

termed Cox-nnet [11, 62].  A fourth, single time point extension of ANNs to survival data was 

also identified [14, 35], but not included as this extension predicted risk at a single time point. 

Lastly, while several extensions of SVMs to survival data were identified [16, 17, 23, 39, 40, 49, 

50, 57-60], none produced risk over time predictions by default or with straightforward 

modifications. Of these machine learning survival techniques, only RSFs are known to have been 

applied to readmission prediction [28, 46].  

It should be noted that the CURT and CURE techniques do not offer probabilistic outputs as 

part of their original algorithms, but they are included because this can be simply remedied. This 

is achieved by summarising terminal nodes with Kaplan-Meier functions. 

4.2 Performance Measures 

Considering the four applications of survival models outlined in the introduction, the two 

relevant aspects of performance are discrimination and calibration. Model discrimination is of 

primary importance for DRR, while ERP, ERPP, and Expected Readmissions also require a 

discriminative model to ensure these applications account for the differences in patient 

characteristics. Model calibration is of primary importance for ERP, ERPP, and Expected 

Readmissions to ensure the underlying risk predictions are reliable. While the relative value of 

discrimination and calibration will depend in practice upon the specific application and context, 

these aspects of model performance are most relevant for the proposed applications supporting 

managerial decision-making.  

The most common measure of discrimination for survival models is Harrell’s concordance 

index, also known as the c-index [29]. This measure considers the temporal aspect of survival 

data by comparing model predictions only on observation pairs where one observation is known 

to have experienced the event before the other, known as comparable pairs. It does not, however, 

allow for the assigned risk ranking of observations to vary over time. While this is suitable for 
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proportional models such as Cox regression, it is inappropriate for machine learning models 

which may produce time-varying risk rankings. A more appropriate, time-dependent concordant 

index was proposed by Antolini, Boracchi and Biganzoli [5]. In this time-dependent concordance 

index, for a comparable pair of observations, the model’s predictions are concordant if the 

observation experiencing the event was assigned a high probability of event occurrence at the 

time of the event. While this measure has been applied in other areas of health analytics [18, 45, 

66], the authors are not aware of its usage within readmission research.  

While calibration measures such as the Hosmer-Lemeshow test are well established and 

appropriate for predicting 𝑛-day readmissions (where 𝑛 is constant), they lack a direct extension 

to risk over time predictions. Motivated by the prognostic value of individualised survival curves 

and the need for tests of their calibration, a measure termed “D-Calibration” has been proposed 

[4, 26]. The core idea of the D-calibration measure is that the model producing individual 

survival functions acts as a mapping of observed event times on the interval [0, ∞) to survival 

probabilities on the interval [0,1]. It is then expected that the proportion of probabilities in a 

subset [𝑎, 𝑏] of the interval [0,1] will be equal to the width of the interval for a well-calibrated 

model. This idea leads to a straightforward application of the 𝜒  test to assess the null hypothesis 

that the model is D-Calibrated.   

These identified measures of discrimination and calibration appropriately capture the desired 

characteristics of survival models in the proposed applications. A third measure, however, is 

introduced to supplement time-dependent concordance and D-Calibration, as neither are 

appropriate for determining the final hyperparameter settings for the machine learning techniques 

considered in this work. Using either measure in isolation would result in a final model that did 

not reflect the need for both aspects of model performance. Accordingly, the Integrated Brier 

Score (IBS) is used for model selection. IBS is commonly used in survival modelling contexts 

and has the attractive feature of considering both discrimination and calibration, albeit in a 

distinct and fixed manner, and can be expressed as a sum of these two components [54]. The 
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more specialised time-dependent concordance index and D-Calibration measures are then used in 

conjunction with IBS for richer evaluation of the final models associated with each technique.   

4.3 Model Tuning and Selection 

To facilitate comparability and reproducibility, five-fold cross-validation and minimum IBS 

is used to determine the final hyperparameter settings for each machine learning model. Standard 

grid search approach is employed, with the hyperparameter values considered and used available 

in Appendix BAppendix A. The only exception to this was the BART technique, for which no 

hyperparameters were varied. This was driven by previous findings that excellent performance is 

achieved by the default hyperparameter settings [12, 51] and by BART being extremely 

computationally intensive with respect to runtimes and memory requirements. When using the R 

programming language, generating predictions for the training data of RH took 6.89 hours and 

the prediction object was 138.8Gb. Additional implementation details for the ANN techniques are 

provided in Appendix CAppendix B. Where model predictions are only available at discrete time 

points, such as for decision trees and some ANN techniques, survival curves were linearly 

interpolated. 

4.3.1 Cox Regression 

Given that statistical models make assumptions about the nature of the underlying data, 

adjustments to the training data are an inherent part of a sophisticated model implementation. 

This is relevant as many of the features exhibit high positive skew with large outliers. The 

presence of extreme outliers or skewness leading to sparse regions in the predictors is 

problematic because of the large effect on coefficient estimates. As would be the case in practice, 

the data are adjusted prior to model fitting. This was only done for Cox regression, as machine 

learning models are purported to be more flexible and better able to handle such data 

characteristics without requiring extensive pre-processing. To ensure reproducibility, adjustments 

for numeric data were made according to two rules:  
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Rule 1: Let 𝑜 , , 𝑜 , , … , 𝑜 ,  be the 𝑈 unique and ordered values of the 𝑗-th covariate. If the 

relative frequency of 𝑜 ,  is greater than 85%, the variable is transformed with the equation 𝑥 ,
∗ =

𝟏 𝑥 , = 𝑜 , × 𝑜 , + 𝟏 𝑥 , > 𝑜 , × 𝑜 ,  where 𝟏 is the indicator function taking a value of 1 

if the condition is satisfied and 0 otherwise. 

Rule 2: If the combined relative frequency of 𝑜 , , … , 𝑜 ,  is less than 1/𝑈 and 𝑢 is the 

minimum value for which this condition is true, the variable is transformed with the equation 

𝑥 ,
∗ = 𝟏 𝑥 , ≤ 𝑜 , × 𝑥 , + 𝟏 𝑥 , > 𝑜 , × 𝑜 , . 

The effects of the modifications are shown in Table 4.  

Table 4. Statistical Model Data Transformations 

Feature 
Upper Bounds - 
GCUH 

Upper Bounds - 
RH 

Age 105  95 107  97 
ED_NumPresPrevYear 74  11 76  11 
ED_NumPresSincePrevAdm 38  1 23  1 
ED_NumPresSincePrevAdmALL 38  1 23  1 
Inpat_NumAdmPrevYearALL 34  8 34  7 
Inpat_PrevAdmLOSPrevYear 195  14 150  12 
Inpat_PrevAdmLOSPrevYearALL 195  16 154  14 
Inpat_TimeSincePrevAdmALL 365  162 365  203 
Inpat_TotalAdmInICU 6  1 7  1 
Inpat_TotalAdmInICUALL 6  1 7  1 
Inpat_TotalTimeAdmPrevYear 273  31 152  30 
Inpat_TotalTimeAdmPrevYearALL 297  44 270  37 
LOSCalc 303  22 489  20 
Outp_NumApptPrevYear 140  30 185  27 
Outp_NumApptSincePrevAdm 105  12 103  8 
Outp_NumApptSincePrevAdmALL 114  12 86  9 

 

Term selection was performed systematically by considering main effects, interactions, and 

polynomial terms. As it is unrealistic to define a candidate variable set considering all possible 

effects of each type, a greedy-style approach to determining the terms to include in a final model 

was used. This involves the application of stepwise procedures to the training data in three stages. 
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1. All covariates are considered as main effects. A hybrid forward and backward stepwise 

procedure using the Akaike Information Criterion (AIC) beginning from a full model is 

applied to identify a reduced set of main effects. 

2. Main effects that remain after Stage 1 are considered in addition to all their possible 

pairwise interactions. A similar stepwise procedure is then applied using the Bayesian 

Information Criterion (BIC). 

3. For each numeric feature with more than ten unique values retained after Stage 2, squared 

and cubic terms are considered using another BIC-based stepwise procedure to identify 

the final Cox regression model. 

As stepwise procedures aim to maximise an information criterion intended to proxy for out-

of-sample performance, using cross-validation procedures as well is unnecessary. This makes the 

model development procedure distinct from that used for machine learning techniques but reflects 

the lack of hyperparameters relevant to Cox regression beyond the information criterion being 

maximised in the stepwise procedures.    

4.3.2 Discretisation of Time  

For the time-coded and multiple time point ANNs, risk is predicted for discrete time intervals 

rather than as a truly continuous variable. These techniques necessitate the definition of intervals. 

While there is little guidance in the literature on how these intervals should be defined for time-

coded models, there is some evidence that the multiple time point ANN is insensitive to how 

intervals are defined [22]. Time intervals are defined in this work to reflect the problem-specific 

emphasis on the time soon after discharge where most readmissions occur. Each interval has an 

approximately equal number of observed events for a pre-specified number of intervals. The 

number of intervals is set to 40 for the time coded ANN and treated as a hyperparameter for 

Nnet-survival.  
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4.3.3 Modifications to CURT and CURE Algorithms  

To implement the CURT and CURE algorithms, the code used was provided by the primary 

author of the publications proposing them [52, 53]. Modifications made to the algorithms are 

briefly described for completeness. Firstly, the original algorithms of CURT and CURE did not 

provide survival predictions by default. This research modified the code to compute Kaplan-

Meier functions to summarise terminal nodes, which were also averaged between trees in the case 

of CURE. Second, the CURT code automatically selected tree depth using a simulation approach 

with a quadratic loss function. A model using this method was included in the results (CURT 

V1), as well as a second version (CURT V2) in which depth was treated as a hyperparameter in 

the five-fold cross-validation process. 

5 Results  

The performance of the final models for GCUH and RH are presented in Table 5 and Table 6. 

The results are presented ordered by time-dependent concordance, analogous to the emphasis on 

AUC in readmission literature, and again ordered by IBS, which was used for model selection. 

This facilitates comparisons between the four scenarios, corresponding to the two bases for 

ranking and the two hospitals. The p-value results from the test of D-Calibration are considered 

only in terms of whether a model is calibrated, as the omnibus nature of the underlying 𝜒  test 

makes ranking these values inappropriate.  

These results are briefly described in terms of each of the three measures individually. A 

summary of the measure results is then provided before the discussion.  

Concordance performance varied within a tight band for each hospital. Excluding the worst 

four models for GCUH and RH, the range of concordance values were 1.186% and 0.699% 

respectively. Much lower performance was seen for the survival tree and CURT models, with 

concordance values at least 2.227% and 2.480% lower than all other models for GCUH and RH, 

respectively. RH appears to be a more complex problem characterised by lower performance in 
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general with respect to concordance (and IBS as will be mentioned below). Notably, machine 

learning models demonstrated slightly improved relative performance on the more complex 

problem. 

All models were found to be D-calibrated at the 5% level of significance apart from the Nnet-

survival model on GCUH. This is encouraging as it indicates the identified techniques can 

produce suitably calibrated models. 

When considering the results with respect to IBS, the worst four models are less distinct and 

no longer entirely made up of the individual tree models. In particular, the survival tree using a 

one-step likelihood splitting function is ranked sixth for both hospitals and the modified CURT is 

eighth on RH. As when considering concordance, there is some between-hospital consistency for 

the top performers with RIST and RSF being common to both. Also consistent with consideration 

of concordance-ranked results, the Cox regression model exhibited lower relative performance on 

the more complex problem.  

To summarise, models were found to be D-calibrated on both hospitals with only one 

exception. This poorly calibrated model for GCUH, Nnet-survival, also demonstrated the greatest 

discrimination on this hospital, highlighting the expected trade-off between discrimination and 

calibration and need to measure both aspects. When comparing hospitals, it was noted that RH is 

more complex than GCUH and is also characterised by less competitive performance of the 

statistical survival model (Cox regression). In terms of the measure used for model ranking, some 

variation was observed in both the best and worst models when using concordance versus IBS. 

Most notable is the variation in the worst performing models, where concordance ranking found 

individual tree models to be substantially worse than all others on both hospitals but IBS ranking 

of these four models was less severe. Finally, while differences related to hospital and measures 

considered manifested in notable differences in relative model performance, some models 

demonstrated strong performance in all instances, most notably the RIST model. 
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Table 5. Final Model Performance for GCUH 

 Ordered by Concordance Ordered by IBS 

Rank Method  
Time-

Dependent 
Concordance 

D-Calibration 
p-value (k=10) 

IBS Method 
Time-

Dependent 
Concordance 

D-Calibration 
p-value (k=10) 

IBS 

1 Nnet-survival 72.1235% 3.7668% 0.1243 RSF 70.9374% 73.2305% 0.12050 

2 Cox Regression 72.0204% 93.8873% 0.1218 RIST 71.3790% 99.6067% 0.12096 

3 Cox-nnet 71.6616% 5.3971% 0.1224 Cox Regression 72.0204% 93.8873% 0.12177 

4 
Time-Coded 

ANN 
71.5640% 47.5766% 0.1233 CURE 71.2976% 66.4773% 0.12191 

5 RIST 71.3790% 99.6067% 0.1210 Cox-nnet 71.6616% 5.3971% 0.12242 

6 CURE 71.2976% 66.4773% 0.1219 
Survival Tree 
(Likelihood) 

68.7104% 99.2736% 0.12326 

7 BART 71.2200% 72.2484% 0.1239 
Time-Coded 

ANN 
71.5640% 47.5766% 0.12331 

8 RSF 70.9374% 73.2305% 0.1205 BART 71.2200% 72.2484% 0.12389 

9 
Survival Tree 
(Likelihood) 

68.7104% 99.2736% 0.1233 CURT V2 68.3680% 97.6678% 0.12392 

10 
Survival Tree 
(Log Rank) 

68.4682% 77.6016% 0.1239 
Survival Tree 
(Log Rank) 

68.4682% 77.6016% 0.12394 

11 CURT V2 68.3680% 97.6678% 0.1239 Nnet-survival 72.1235% 3.7668% 0.12426 

12 CURT V1 0.0000% 99.9787% 0.1491 CURT V1 0.0000% 99.9787% 0.14915 
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Table 6. Final Model Performance for RH 

 
Ordered by Concordance Ordered by IBS 

Rank Method 
Time-

Dependent 
Concordance 

D-Calibration 
p-value (k=10) 

IBS Method 
Time-

Dependent 
Concordance 

D-Calibration 
p-value (k=10) 

IBS 

1 CURE 70.0901% 51.4138% 0.1326 Nnet-survival 69.3910% 26.9462% 0.1300 

2 RIST 70.0790% 94.5840% 0.1311 RIST 70.0790% 94.5840% 0.1311 

3 Cox-nnet 69.9858% 12.3572% 0.1322 RSF 69.5290% 99.4790% 0.1312 

4 Cox Regression 69.9082% 97.5226% 0.1328 Cox-nnet 69.9858% 12.3572% 0.1322 

5 
Time-Coded 

ANN 
69.8737% 83.3974% 0.1342 CURE 70.0901% 51.4138% 0.1326 

6 BART 69.6933% 79.0386% 0.1337 
Survival Tree 
(Likelihood) 

65.9155% 87.1188% 0.1328 

7 RSF 69.5290% 99.4790% 0.1312 Cox Regression 69.9082% 97.5226% 0.1328 

8 Nnet-survival 69.3910% 26.9462% 0.1300 CURT V2 66.9108% 99.4329% 0.1330 

9 CURT V2 66.9108% 99.4329% 0.1330 BART 69.6933% 79.0386% 0.1337 

10 
Survival Tree 
(Likelihood) 

65.9155% 87.1188% 0.1328 
Time-Coded 

ANN 
69.8737% 83.3974% 0.1342 

11 
Survival Tree 
(Log Rank) 

65.0441% 71.1968% 0.1345 
Survival Tree 
(Log Rank) 

65.0441% 71.1968% 0.1345 

12 CURT V1 55.8811% 79.9270% 0.1367 CURT V1 55.8811% 79.9270% 0.1367 
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6 Discussion 

The above results provide an empirical demonstration of the ability of various survival 

modelling techniques to capture the aspects of model performance relevant for managerial 

decision-making. This section considers the results with respect to machine learning and 

statistical techniques, development of models for the proposed applications, and influence of 

performance measures. 

The variability in model rankings as a function of both hospitals and basis for ranking have 

several implications. Focusing first on comparisons between the two hospitals, the Cox regression 

model had slightly worse relative performance on the more complex problem represented by RH 

for both ranking metrics. This is consistent with more general expectations regarding machine 

learning techniques being most promising for more complex problems. The relative ranking of 

the Cox-nnet and Cox regression models is consistent with the expectation of better machine 

learning performance on more complex problems. Cox-nnet represents a machine learning 

(ANN) extension of the statistical Cox model. This machine learning extension ranked below the 

statistical model on the less complex problem (GCUH) for both ranking measures, but this was 

reversed for the more complex problem (RH).  

This variability is also relevant for the applications being proposed, particularly as the aspects 

of model performance being measured were motivated by these applications. Focusing on ERP, 

ERPP, and Expected Readmissions, these three applications consider the actual probabilities 

produced by the underlying model to identify acceptable levels of risk, probabilities of 

readmission, and expected readmissions respectively. If the underlying model is not well-

calibrated, it cannot be reliably used for these applications. Further, to effectively improve and 

support administrative decision-making, the underlying models must also account for patient-

specific characteristics in produced survival functions. The results demonstrate that a range of 

models may be suitable for these applications, being both well-calibrated and with relatively high 

discrimination. Across both bases for ranking and hospitals, RIST was most consistently high-
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performing, with Cox regression and Cox-nnet also of note. The best models in each scenario, 

however, were not consistent. As it appears unlikely that any single technique will be optimal 

across applications and settings, an institution aiming to apply a survival model in one of these 

applications should consider a breadth of models, with this work’s results providing an informed 

starting point. A similar conclusion is relevant for the DRR application. In its simplest form, only 

model discrimination is important for DRR. This changes little, with model ranking between 

hospitals when only considering discrimination also being variable. It should also be noted that 

some element of calibration is likely to be desirable in a model applied for DRR, as this would 

support cost-benefit analyses for prospective interventions and improvement measurement for 

prior interventions. Again, driven by the variability in discrimination ranking and by the likely 

requirement for some level of calibration, institutions should consider a range of potential models 

to assess the range of discrimination-calibration combinations available for this application. This 

is particularly pertinent in the healthcare setting, where the magnitude of financial and patient 

welfare costs makes marginal improvement important. 

Linked to the need for a context- and application-specific balance of both discrimination and 

calibration, the use of IBS for model selection and evaluation bears discussion. It has previously 

been noted that the IBS equation can be formulated as a sum of a calibration and discrimination 

component [54], making it a useful measure given these are the aspects of model performance 

determined to be relevant for managerial decision-making. It does not, however, explicitly report 

the contribution of these components. When considering concordance, the two survival tree 

models and the two CURT models performed notably worse than all other models, but this was 

less pronounced when ranked based on IBS. In particular, the survival tree using a splitting 

function based on a one-step likelihood was ranked sixth on both GCUH and RH. This is relevant 

and surprising because while almost all models exhibited acceptable D-calibration this model was 

characterised by notably lower discrimination. This may indicate that future research should 

consider modification of the IBS measure to adjust the relative balance between calibration and 
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discriminations components, depending on the model applications considered. For example, the 

RH survival tree is ranked sixth in terms of IBS but only generates 20 unique survival curves 

which may be insufficient for certain applications. The emphasis placed on calibration by the 

unadjusted IBS measure and its use in model selection may also have been a contributor to almost 

all models being D-calibrated. 

7 Conclusion 

The major contribution of this work has been to identify relevant survival techniques for a 

range of practical applications supporting managerial decision-making for readmissions, as well 

as determining appropriate performance measures linked to these applications. This involved the 

proposal of four applications of survival models to support decision-making, three of which have 

not been suggested in prior research. Facilitating this, ten previously unconsidered machine 

learning techniques were identified and empirically assessed in terms of performance measures 

determined to be appropriate for these applications. Key conclusions of this work are: 

 The relevant aspects of survival model performance for practical applications 

supporting managerial decision-making are the discrimination and calibration of risk 

over time predictions. Appropriate measures capturing these aspects are time-

dependent concordance and D-calibration, neither of which have been used in prior 

readmission research.  

 Many machine learning survival techniques are applicable for readmission modelling 

but have not been considered in previous readmission research. 

 Machine learning survival techniques can improve on the most common statistical 

survival technique, particularly on more complex readmission problems, but no single 

technique is expected to consistently offer the best performance across applications 

and contexts.  
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 Survival techniques, both machine learning and statistical, can capture relevant 

aspects of readmission risk for a variety of applications supporting managerial 

decision-making. 

It is expected that the suggested applications, which complement current classification model 

applications, should motivate greater consideration of survival techniques in future readmission 

research. In particular, the RIST, Cox-nnet, and Cox regression techniques should be prominent 

in future research, though considering a wide range of techniques is important to achieve the best 

combinations of discrimination and calibration in different settings. Secondary contributions of 

this work are in the provision of empirical findings comparing various machine learning survival 

techniques and in adding to the readmission research specific to Australia. 

Future research should expand on this work in several areas. First, future research should 

establish the generalisability of the presented findings in terms of region, data sources, and cohort 

definitions. Secondly, the use of IBS for model selection implicitly assigns a relative weighting to 

calibration and discrimination, which could be modified to account for context-specific needs. 

Thirdly, as an initial proposal, the DRR and ERP model applications were considered in the 

general sense, and so detailed recommendations were not made as to how they should be 

implemented. Future research should aim to establish guidelines for the practical implementation 

of the proposed applications and assess the value derived from them.  
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8 Appendices 

Appendix A – Feature Recoding 

Prior to model construction, the Postcode field and AdmitWardCode fields were modified to 

reduce their dimensionality. The Postcode field was transformed to represent whether the 

patient’s home address was from the inner city, outer city, or other.Error! Reference source not 

found.  

Table A.1 iGC Feature Definition 

iGC Field Values Corresponding Postcodes Values 
InnerGC 4214-4220, 4226-4230 
OuterGC 4208-4210, 4212, 4221, 4223-4225, 4270-4272, 4275 
Other All others 

 

Similarly, the AdmitWardCode field detailed the ward code the patient was admitted to. This 

field contained 70 unique values across both hospitals, with the seven most frequent values 

making up almost 90% (88.28%) of all observations. The possible values differ between the two 

hospitals and thus the recoding for this field was done for each hospital separately. For each 

hospital, the relative frequency of values was generated using the training data. All codes with a 

relative frequency below 5% were collected in an “Other” category.  
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Appendix B – Search Grids 

In this appendix, the search grid of hyperparameters considered for the various machine learning techniques in this work are shown. The final 

hyperparameter values for the final models are bolded. 

Table B.1 Search Grid Hyperparameters (Survival Trees) 

Model Type Parameters Varied Parameter Values Considered GCUH RH 

Survival Tree – One 
Step Likelihood 

Cost-complexity 
parameter 

0.00010, 0.00015, 0.00020, …, 
0.0090 

0.0004 0.001 
0.00100, 0.00200, 0.00300, …, 

0.01000 
Survival Tree – Log 

Rank Statistic 
Node depth 2, 3, 4, …, 20 7 6 

 

Table B.2 Search Grid Hyperparameters (CURT V1) 

Model Type Parameters Varied Parameter Values Considered GCUH RH 

CURT 
Model for conditional 

survival function 

Survival Tree – Log Rank Statistic 
Survival Tree – Log 

Rank Statistic 
Survival Tree – Log 

Rank Statistic 
Random Survival Forest 

Log-normal AFT 
Log-logistic AFT 
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Table B.3 Search Grid Hyperparameters (CURT V2) 

Model Type Parameters Varied Parameter Values Considered GCUH RH 

CURT 

Model for conditional 
survival function 

Survival Tree – Log Rank Statistic 
Survival Tree – Log 

Rank Statistic 
Survival Tree – Log 

Rank Statistic 
Random Survival Forest 

Log-logistic AFT 
Log-normal AFT 

Cost-complexity 
parameter 

0.000010, 0.000015, 0.000020, …, 
0.000095 

0.000035 0.00045 
0.000100, 0.000150, 0.000200, …, 

0.000950 
0.00100, 0.00200, 0.00300, …, 

0.01000 
 

Table B.4 Search Grid Hyperparameters (Random Survival Forest) 

Model Type Parameters Varied Parameter Values Considered GCUH RH 

Random Survival 
Forest 

Number of trees 500, 750, 1000 1000 750 
Covariates considered 

at each split 
1, 2, 3, …, 8 3 3 

Terminal node size 3, 15 15 15 
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Table B.5 Search Grid Hyperparameters (CURE)  

Model Type Parameters Varied Parameter Values Considered GCUH RH 

CURE 

Model for conditional 
survival function 

Survival Tree – Log Rank Statistic 
Random Survival Forest 

Survival Tree – Log 
Rank Statistic Random Survival Forest 

Number of trees 100, 250, 500, 750, 1000 750 500 
Covariates considered 

at each split 
1, 2, 3, …, 8 5 6 

Terminal node size 3, 10, 20 20 20 
 

Table B.6 Search Grid Hyperparameters (RIST) 

Model Type Parameters Varied Parameter Values Considered GCUH RH 

RIST 

Number of trees 30, 40, 50, 60, 70 60 60 
Covariates considered 

at each split 
3, 5, 7 7 5 

Terminal node size 10, 20, 30, 40, 50, 100 20 20 
Imputation cycles 1, 2, 3 2 1 

 

Table B.7 Parameters used in the BART Model (GCUH) 

Model Type Parameter Parameter Values Considered 

BART (GCUH) 

Number of trees 50 
Draws from the 

posterior 
200 

Burn-in sample 250 
Thinning 10 
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Table B.8 Parameters used in the BART Model (RH) 

Model Type Parameter Parameter Values Considered 

BART (RH) 

Number of trees 50 
Draws from the 

posterior 
500 

Burn-in sample 250 
Thinning 10 

 

Table B.9 Search Grid Hyperparameters (Nnet-survival) 

Model Type Parameters Varied Values Considered GCUH RH 

Nnet-survival 

Hidden layers and 
nodes 

1 layer, 5 nodes 

2 layers, 15 and 10 
nodes 

2 layers, 15 and 10 
nodes 

1 layer, 10 nodes 
1 layer, 15 nodes 

2 layers, 10 and 10 nodes 
2 layers, 15 and 10 nodes 

Epochs 100, 200, 300, …, 1500 600 1100 
Mini-batch size 128, 256, 512 256 128 

Regularisation penalty 
(L2) 

exp (−4), exp(−5), exp (−6) exp (−5) exp (−5) 

Intervals 20, 30, 40 20 40 
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Table B.10 Search Grid Hyperparameters (Time-Coded ANN) 

Model Type Parameters Varied Values Considered GCUH RH 

Time-Coded ANN 

Hidden layers and 
nodes 

1 layer, 5 nodes 

1 layer, 10 nodes 1 layer, 20 nodes 

1 layer, 10 nodes 
1 layer, 15 nodes 
1 layer, 20 nodes 

2 layers, 10 and 10 nodes 
2 layers, 15 and 10 nodes 

Epochs 100, 200, 300, …, 1500 700 1300 

Mini-batch size 
128, 256, 512, 1024, 2048, 4096, 

8192 
2048 2048 

Regularisation penalty 
(L2) 

exp (−4), exp(−5), exp (−6) exp (−6) exp (−6) 

 

Table B.11 Search Grid Hyperparameters (Cox-nnet) 

Model Type Parameters Varied Values Considered GCUH RH 

Cox-nnet 

Hidden layers and 
nodes 

1 layer, 8 nodes 

1 layer, 14 nodes 2 layers, 7 and 4 nodes 
1 layer, 14 nodes 
1 layer, 21 nodes 

2 layers, 5 and 5 nodes 
2 layers, 7 and 4 nodes 

Epochs 50, 100, 200, 500, 600, 1000 1000 1000 
Regularisation penalty 

(L2) 
exp (−5), exp (−6) exp (−6) exp (−6) 

Batch normalisation Yes, No No No 
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Appendix C – ANN Implementation Details 

Several other details of model implementation were not varied but should be specified: 

 Activation function – The ReLU activation function was used in the hidden layers of 

all candidate Nnet-survival models and time-coded ANN models, and the sigmoid 

activation function was used in the output layer to ensure predictions were in the 

range [0,1]. To remain consistent with the original implementation [11], the 

hyperbolic tangent activation function was used for the Cox-nnet model rather than 

ReLU. 

 Data Processing – All data were converted to a numeric format for model training and 

all covariates were standardised based on the entire training data for each hospital 

through the usual approach for networks: 𝑥 ,
∗ = 𝑥 , − 𝜇 /𝜎 . The same 

standardisation parameters were used for training and test data.  

 Variables – For each hospital, variables with low predictive value were not included. 

The variables used in ANN construction were those which were included in any form 

in the final Cox regression model or would have been included in a logistic regression 

model using the three-stage process described in Section 4.3.14.4.1 under AIC or 

BIC. This included 14 out of 19 available variables. 
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