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Photonic lenses with whispering gallery waves
at Janus particles
Igor V. Minin1, Oleg V. Minin1, Yinghui Cao2, Bing Yan3, Zengbo Wang3

and Boris Luk’yanchuk4*

We show that electric field on the plane surface of truncated sphere or cylinders (so called Janus particles) have sharp
resonances versus the depth of removed segment of a sphere or cylinder. These resonances are related to the excited
whispering gallery waves caused by truncation. It is a new mechanism of the field localization. Optimization of this effect
for cylinders permits to reach a super resolution in the line thickness, which can be used for contact optical lithography.
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Introduction
Development of  optical  lithography  with  nanoscale  res-
olution has been a long-standing goal  for  the nanotech-
nology  community1. Among  the  many  suggested  meth-
ods  there  were  a  lithography  with  transparent  dielectric
particles which were used as a microscopic lenses2−5. The
basic physical  features  of  this  technique can be well  un-
derstood  from  the  Mie  theory6 and  also  from  the  more
complicated problem “particle on surface” 7,8.  According
to these calculations, a transparent dielectric sphere with
a  diameter  of  more  than  three  wavelengths  of  radiation
incident  on  it  can  function  either  as  a  focusing  lens
(photon jet  mode)  or  as  a  resonator  concentrating  en-
ergy in the whispering gallery waves in the wall  region9.
A  similar  behavior  is  shown  by  a  transparent  cylinder.
The transition from the photon jet mode to the resonat-
or mode with whispering gallery waves occurs when the
size  of  the  sphere  or  the  radiation  wavelength  changes.
Both phenomena  are  perfectly  described  in  the  frame-

work  of  Mie  theory,  see  e.g.10.  New phenomena arise  in
particles in which a segment of a sphere or cylinder is re-
moved (Janus particles11,12). It is a typical design of solid
immersion  lens13,14.  It  is  known  that  parameters  of  a
photonic jet from a hemisphere (or hemicylinder) can be
very  different  from  the  parameters  of  a  jet  formed  by  a
whole sphere15 or cylinder16.

In the present paper we show that parameter of whis-
pering gallery waves can be also quite different from the
whole  sphere  or  cylinder.  Optimization  of  the  remote
segment thickness permits to create highly localized field
distribution. This effect in cylinders can be used for con-
tacting  optical  lithography  with  super  resolution  in  the
line thickness. 

Photonic nanojet: from geometrical optics
approximation to the Mie theory
A spherical  transparent  particle  can focus light.  This  ef- 
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fect  has  been  known  for  a  few  millennia:  for  example,
Pliny the Elder (AD 23–AD 79) reported on the incendi-
ary action of glass spheres9. This effect is  easy to under-
stand  under  geometric  optics  approximation17,18.  The
simplest  way  is  to  use  ray  tracing19 and  Snell’s  law20,21

(this technique has been known since Kepler). Refracted
rays  form  a  caustic,  which  is  presented  by  parametric
equation (here all coordinates  and  are normalized by
particle radius, ): 

xc =

[
1− 1

2

√
n2 − 1+ cos2φ− 2cosφ√
n2 − 1+ cos2φ− cosφ

cosφ

]
cosψ,

yc = secψ sinφ+ xctanψ , (1)

ψ = 2
[
φ− arcsin

(
sinφ
n

)]
.where 

Such  caustic  is  presented  by  cuspoid  curve22,23,  as  in
Fig. 1.  The  singularity  point  (geometrical  optics  focus24)
is situated at 

xs = xc |φ→0 =
n

2 (n− 1)
. (2)

xs → ∞ n → 1 xs → 1 n → 2
n > 2

NA = n sinχ χ

φ = arccos

√
n2 − 1
3

Thus,  at  and  at .  When
 the caustic is situated inside the sphere, this is the

case of  materials  with  a  high refractive  index.  Such ma-
terials are used in optically resonant dielectric nanostruc-
tures25,  while  materials  with  a  refractive  index  of  less
than  two9 are the  main  materials  for  most  optical  com-
ponents (lenses, optical fibers, etc.). This caustic was ana-
lyzed  in  a  number  of  papers  due  to  the  problem  of
photonic nanojet, see ref.9 and references there. From the
Eq.  (1) one  should  define  the  numerical  aperture

, where the angle  calculated at the surface

of the particle,  i.e.,  at . This estima-

NA = n
√

4− n2

3

I =
[
sinφa

/
yc
(
φa

)]2
, φa = arccos

√
(n2 − 1)/3.

tion  yields . Maximal  field  enhance-

ment  in  the  focal  point  can  be  estimated  as
 where 

Position of  geometrical  optics  focus  can  be  approxim-
ated by 

xf =
2n6 + 9n4 + 48n2 − 32
6n2 (2+ n2)

√
3 (n2 − 1)

. (3)

q = 2πR/λ ≫ 1 R λ

ℓmax = q+ 4.05 q1/ 3 + 2

The  solution  with  ray  tracing  yields  just  a  qualitative
picture of light focusing. One can compare this solution
with the exact solution which follows from the Mie the-
ory6.  However,  the  approximation  of  geometrical  optics
is  valid  just  for  sufficiently  big  size  parameter

 (here  is radius of the particle and  is
radiation  wavelength).  Thus,  exact  solution  requires  the
summation  of  a  large  number  of  terms,

26, in a multipole expansion even
for moderate sphere sizes. For such big particles one can
use  the  method  of  uniform  caustic  asymptotic18.  The
lowest nontrivial  order  correction  for  the  field  distribu-
tion  is  related  to  Bessoid  integral.  This  integral  appears
naturally in the paraxial approximation24. Results of cal-
culations are shown in Fig. 2.

Qsca = σsca/(πR2) σsca

Q(e)
ℓ

Q(m)
ℓ

ℓ

According  to  the  Mie  theory6,26 the scattering  effi-
ciency  (here  is scattering cross sec-
tion) can be expressed as a sum of electric  and mag-
netic  scattering efficiencies associated with the mul-
tipolar moment of  the order multipoles: 

Qsca =

∞∑
ℓ=1

(
Q(e)

ℓ + Q(m)
ℓ

)
, Q(e)

ℓ =
2
q2m

(2ℓ+ 1) |aℓ|2,

Q(m)
ℓ =

2
q2m

(2ℓ+ 1) |bℓ|2 , (4)
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Fig. 1 | (a)  Ray  tracing  for  a  big  particle  with  radius .  We  introduce  the  incidence  angle  and  the  refraction  angle  inside  the  sphere

. The ray enter into the particle at the point with coordinates  and . The angles  and  are given by 

and .  Two  close  rays  and  (corresponding  to  angles  and )  emerged  from the  sphere  after  the  second  refraction  are

crossing at  the caustic point .  This yields the Eq. (1) for caustic.  (b)  The shape of the caustic from the Eq. (1) for the

sphere with  is shown by dashed black line.
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aℓ bℓwhere  the  electric  and  magnetic  scattering amp-
litudes are defined by formulas 

aℓ =
ℜ(a)

ℓ

ℜ(a)
ℓ + iℑ(a)

ℓ

, bℓ =
ℜ(b)

ℓ

ℜ(b)
ℓ + iℑ(b)

ℓ

, (5)

ℜ(a,b)
ℓ ℑ(a,b)

ℓwith  and coefficients expressed by
 

ℜ(a)
ℓ = npψℓ

(qp) ψ′
ℓ
(qm)− nmψℓ

(qm) ψ′
ℓ
(qp) ,

ℑ(a)
ℓ = npψℓ

(qp) χ′ℓ (qm)− nmχℓ (qm) ψ
′
ℓ
(qp) ,

ℜ(b)
ℓ = npψℓ

(qm) ψ′
ℓ
(qp)− nmψℓ

(qp) ψ′
ℓ
(qm) ,

ℑ(b)
ℓ = npχℓ (qm) ψ

′
ℓ
(qp)− nmχ′ℓ (qm) ψℓ

(qp) . (6)

ψ
ℓ
(z) =

√
πz
2
Jℓ+ 1

2
(z)

χ
ℓ
(z) =

√
πz
2
Nℓ+ 1

2
(z)

m
p

nm np

qm = q nm qp = q np

q
q = ωR/ c = 2πR/λ

Here  the  functions  and

 are  expressed  through  the  Bessel

and Neumann functions10.  We use the subscripts  and
 to denote the values referring to the external media and

the  particle,  with  refractive  indices  and , respect-
ively. In the expressions above,  and .
The  symbol  represents  the  so-called  size  parameter,
defined as .

cℓ
dℓ

The electric and magnetic fields inside the particle are
expressed  through  the  internal  scattering  amplitudes 
and  given by6
 

cℓ =
inp

ℜ(a)
ℓ + iℑ(a)

ℓ

, dℓ =
inp

ℜ(b)
ℓ + iℑ(b)

ℓ

. (7)

aℓ bℓ

|cℓ|2 |dℓ|2

|aℓ|2 |bℓ|2

Although  the  denominators  of  these  amplitudes  are
the  same  as  in  amplitudes  and  in Eq.  (5),  which
means that position of these resonances are close, the nu-
merators  of Eq.  (7) never  tends  to  zero.  As  a  result  the
values  of  amplitudes  and  are  not  restricted  by
unity as amplitudes  and  in Eq. (5), but increase
with  values  of  size  parameter  and  refractive  index.  To
compare amplitudes it is convenient to introduce partial

internal scattering efficiencies, similar to those in Eq. (4): 

F(e)
ℓ =

2
q2m

(2ℓ+ 1) |cℓ|2, F(m)
ℓ =

2
q2m

(2ℓ+ 1) |dℓ|2 . (8)

cℓ dℓ

ℓ

q < qtr
ℓ

q = qtr qtr ∼= ℓ

E H
Eℓ=ℓres ∑

ℓ̸=ℓres

Eℓ

It leads to specific variation of  and  amplitudes at
the  big  values. Namely,  the  amplitudes  of  these  func-
tions are quite small up to some threshold values, ,
which are of  the order of 10,27,  see an example in Fig. 3.
The  first  narrow  resonance  at ,  where ,
plays a  dominant role  in the Mie theory.  The total  elec-
tric field  (similar in ) can be presented as a sum of a
single  resonant  term with  a  narrow spectrum and

the field from all other nonresonant terms  with a

broad  spectrum.  The  interference  of  the  signals  with a
broad  and  narrow  spectums  yields  the  Fano  resonance,
which  produces  the  narrow  resonances  in  the  intensity.
These  resonances  in  electric  and  magnetic  fields  greatly
exceed corresponding  resonances  in  the  scattering  effi-
ciency10.

The  electric  and  magnetic  fields  can  be  defined
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Fig. 2 | (a) Distribution of intensity calculated from the Mie theory with n = 1.5 and q = 70. Such distribution is typical for Bessoid matching solu-

tion, see e.g., Fig. 5 in ref.24. (b) Intensity distribution according to Bessoid approximation24 (solid blue line) and from the Mie theory (dotted red
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Π(e) =
∑

Π(e)
ℓ

Π(m) =
∑

Π(m)
ℓ

through  the  derivations  of  the  electric, ,
and  magnetic, ,  Debye  potentials17. In-
side the particle these potentials are presented by17
 

Π(e)
ℓ = cℓ

iℓ+1

k2
2ℓ+ 1
ℓ (ℓ+ 1)

ψ
ℓ
(kr) P(1)

ℓ (cosθ) cosφ ,

Π(m)
ℓ = dℓ

iℓ+1

k2
2ℓ+ 1
ℓ (ℓ+ 1)

ψ
ℓ
(kr) P(1)

ℓ (cosθ) sinφ . (9)

k kR = qpHere  is the wave vector inside the particle, .

ψ
ℓ
(kr)

qp
ℓ ψ

ℓ

qp ℓ

From  the Eq.  (9) one  explains  the  physical  origin  of
the whispering gallery waves (WGW) formation28. Argu-
ment spherical Bessel function  varies from zero in
the center of the particle till parameter  on the surface
of the particle.  Thus,  at  big  values  function is  close
to zero till  to critical value  which is by the order of ,
see  in Fig. 4(a).  If  the  first  zero of  the  Bessel  function is
located near the radius of the sphere, then almost the en-
tire field of this wave will be located in a very narrow re-
gion  near  the  surface  of  the  sphere.  This  is  the  WGW
case. The  angular  field  modulation  is  presented  by  Le-
gendre function, see in Fig. 4(b).

qp ≫ 1

The WGW  can  be  interpreted  as  a  wave  of  total  in-
ternal reflection of the ray propagating along the surface
of the dielectric sphere28.  However, if  the interface has a
curvature (as in the case of the sphere), then the internal
reflection is not complete: part of the wave still seeps out
of the ball out. One can see this leakage in Fig. 4(b). It oc-
curs  through  the  white  triangles  situated  on  the  surface
of  the particle.  The leakage is  the smaller,  the larger  the
radius  of  the  ball  in  comparison  with  the  wavelength.
That is, for the existence of WGW, the sphere must have
a  rather  sick  radius  in  comparison  with  the  wavelength
of  light,  i.e.,  it  needs  the  condition .  Calculations
with the Mie theory show that the WGW structure in the

electric field intensity  can be seen even at  the size  para-
meter by the order of ten, see in Fig. 5. 

Janus particle: from geometrical optics to
the whispering gallery waves.

h

One can  examine  the  light  focusing  by  truncated  cylin-
der or a sphere,  see in Fig. 6.  Truncated segment can be
replaced by a similar portion of different material – such
structures are called as Janus particles29. We use notation

 for the height of truncated segment. In particular case
replaced portion  can  be  an  air  or  vacuum.  In  simula-
tions (here and below) the models were built  by using a
finite  integral  technique  (FIT)  realized  in  commercial
software  package  -  CST  Microwave  Studio.  Tetrahedral
meshes and triangular grids were fitted with ‘open space’
boundary  condition  along  all  directions  (x,  y,  z) to  ap-
proach  better  accuracy  for  simulation.  Mesh  sizes  were
set to λ/15 for particle and λ/10 for background. The ray
tracing technique applied for truncated sphere yields the
following shape of the caustics: 

zc = 1− h− secβ
n

(1− n2sin2β)3/ 2

cosφ−
√
n2 − sin2φ

·
[
cosφ

√
n2 − sin2φ+ (1− h+ cosφ) sec2β

·
(
cosφ−

√
n2 − sin2φ

)
+ sinφ

√
n2 − sin2φ tanβ

]
,

(10)
 

yc = yout − (zc − 1+ h) tanγ,
yout = sinφ− (1− h+ cosφ) tan (φ− θ) ,

γ = arcsin [n sin (φ− θ)] ,

β = φ− θ, θ = arcsin

(
sinφ
n

)
. (11)

The singularity point this Janus particle situated at 
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zf = zc |φ→0 = 1− 2
n
+

1
n− 1

+ h
(
1
n
− 1

)
. (12)

n = 1.33
zf = 2.015

h = 0.07
zf = 2.509

The basic  effect  with  Janus  particle  is  related  to  vari-
ation  of  focal  length  in  comparison  with  the  initial
sphere. For example, the sphere with  has the fo-
cal  point  situated  at .  After  small  truncation
with  corresponding  Janus  particle  has  a  focal
point  with ,  i.e.,  truncation  yields  the  longer
focus.  The  ray  tracing  technique19 approximation  gave
qualitatively correct description of focusing properties of
transparent dielectric.

The truncated particle presents a solid immersion lens
(SIL) which can overcome diffraction limit13. It could be
noted that physical principles of truncated spherical SIL,
for  which  aberration  free  focusing  occurs  and  also
known  as  Weierstrass  SIL,  is  based  on  compressing  the
emitted light into a small NA by decreasing of the refrac-
tion  angle  of  the  transmitted  light,  measured  from  the
optical axis. This occurs when the sphere is truncated to
a  thickness h = r (l  +  l/n),  where r is  the  radius  of  the

sphere,  and h corresponds  to  the  aplanatic  focus,  see  in
ref.17 (page 253) and ref.30. Similar SIL have been used in
optical  microscopes  and photolithography31.  Analysis  of
the  photonic  nanojet  with  truncated  spherical  particle
shows that the maximal intensity in the focal point is less
than those produced by spherical particle, but the effect-
ive focal length can be much greater15.

n = 1.5 n = 1.3

2R = 5 λ q = 5π ≫ 1

E2 = 17
h = d/R = 0.03

E2 = 23.5
h = 0.04

We repeated a similar numerical  analysis  for a differ-
ent design of Janus particles and found some new effects.
As  an  example,  we  show  in Fig. 7 the  cylindrical  Janus
particle consisting from two half cylinders with different
refractive index:  for the bottom part and 
for  the  upper  part.  The  diameter  of  a  whole  cylinder  is
equal to .  Thus,  the size parameter .
At normal condition one can see a usual photon nanojet
with  maximal  field  enhancement  at  the  focal
point.  A small  truncation with  leads  to
the  field  redistribution  due  to  strong  WGW  excitation
with  maximal  field  enhancement .  A  further
truncation  with  practically  restore  the  initial
photon nanojet. A similar behavior can be seen for mag-
netic intensity variation.

n = 1.5
q = 2πR/λ = 100

d = 0.015R

An example  of  truncation  effect  for  the  intensity  dis-
tribution  is  shown  in Fig. 8.  Namely,  for  the  cylinder
with  refractive  index  and  big  size  parameter

 we  can  see  a  number  of  oscillations
with maximal intensity around the particle.  These oscil-
lations  depend  on  light  polarization  and  the  depth  of
truncated layer. Amplitudes of these resonances are typ-
ically about 10% of average intensity with field enhance-
ment about 25. However, for some small truncation with

 we can see in Fig. 8 resonance for TM polar-
ized light with field enhancement in the hot spots on the
surface. It  looks  like  resonant  excitation of  surface  elec-
tromagnetic wave within the plane disk of the truncated
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surface. The singularity related to phase discontinuity at
the line where the spherical (or cylindrical) surface cross
the  plane  surface  leads  to  change  of  the  Snell’s  law  to
generalized  laws  of  reflection  and  refraction32. Accord-

ing to  this  law occurs  the  variation of  critical  angles  for
total internal reflection. At some value of phase gradient
there is a critical angle of incidence above which the re-
flected  beam  becomes  evanescent32. Under  the  approx-
imation of  geometrical  optics  this  phase  gradient  de-
pends  on  the  thickness h of truncated  element  and  re-
fractive index n. In Fig. 9(c) one can see the result of in-
terference  of  two  evanescent  waves.  We also  found  that
the  efficiency  of  the  excitation  of  whispering  gallery
waves strongly depends on the h value.

Optimization  of  this  effect  for  cylinders  permits  to
reach a super resolution in the line thickness which can
be used for contacting optical lithography 

Truncated nanowires for near field optical
lithography
The most powerful modern lithographic technique is re-
lated to usage of focused electron beams33 or ion beams34
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(e.g. a focused helium ion beam35). These techniques per-
mit to  realize  patterning  fidelity  at  nanometer  scale  di-
mensions.  However,  beam technology is  associated with
very expensive and complex equipment. In addition, it is
rather slow.

Over  the  past  decades,  a  number  of  new  ideas  have
been  proposed  to  create  a  fast-lithographic  technique
that allows mass production of structures with a scale of
tens of nanometers. Among these ideas, for example, an
evanescent  interferometric  lithography36−38 can be  men-
tioned.  Other  techniques  involve  laser  induced  tip-as-
sisted Atomic Force Microscope (AFM)39 or a Near-field
Scanning  Optical  Microscope  (NSOM)40,41.  Finally,  we
should  mention  ‘plasmon  printing’ technology42−44.  The
later  relies  on  the  surface  plasmon  resonance  occurring
in  metal  nanoparticles,  which  can  produce  sub-
wavelength structures.

Returning  to  lithography  using  Janus  particles,  we
note once  again  the  resonance  properties  of  small  trun-
cation  of  the  cylinder,  see  in Fig. 10.  Here  we  show  the
maximal intensities inside and outside particle. Each res-
onance corresponds  to  resonant  excitation  of  whisper-
ing gallery waves. Similar resonances existing within the
nontruncated particles as well (see e.g., movie in supple-
mentary materials in ref.9). The difference is that in trun-
cated  particles  these  resonances  are  sharper.  We  also
draw attention to the fact that in Janus particles the mag-
netic nanojet mode appears to be more contrasting com-
pared  to  nontruncated  particles9.  It  gave  the  additional
functionality to work with magnetic materials.
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n = np/nm

Depending  on  truncation  parameter h and  radiation
wavelength,  one  can  realize  situation  with  a  single,
double, or quadruple-maximums distributions in the in-
tensity on  the  plane  truncated  surface.  Having  the  spa-
cing  between  cylinders  as  additional  parameter  we  can
imagine  lithographic  technique  schematically  presented
in Fig.11.  The number  of  cylinders  with  refracted index

 are  embedded  into  matrix  with  refracted  index
.  It  is  equivalent to situation when the cylinders

with  relative  index  are  situated  in  vacuum.
The surface of this matrix can be polished to reach a pre-
cise truncation.
 
 

Laser
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Fig. 11 | Schematic  for  a  lithographic  process  with  truncated
cylinders. Here  a  thin  protected  layer  between  the  matrix  and

photoresist plays an important role of anti-reflective coating, depend-

ing on the thickness of the coating.
 

We performed  a  modeling  of  this  technique  to  ana-
lyze the  patterning  fidelity  at  nanometer  scale  dimen-
sions. The length of the lines can be on a scale of centi-
meters. 

Conclusions
A  spherical  resonator  cannot  have  an  infinite  quality
factor (Q-factor45) due to the violation of the total intern-
al  reflection on a  curved surface.  Recently,  many efforts
have been made to increase the Q-factor of spherical and
dielectric  resonators  using  bound  states  in
continuum46,47. Our research shows that the use of Janus
particles  also  contributes  to  an  increase  in  the  figure  of
merit and  an  increase  in  the  electric  and  magnetic  in-
tensity components  near  the  surface  of  the  distant  ele-
ment of the particle. The effect is resonant in relation to
the volume of the removed fraction of the substance and
is observed in the size range R: 5 λ ~ 15 λ. The removal of
a surface feature in a Janus particle plays a role similar to
that of a diamond cut. The smallest cut diamonds are on
the  order  of  one  millimeter,  while  the  discussed  Janus
particles are a thousand times smaller.
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