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Abstract 1 

 Early and accurate diagnosis is key to mitigating the impact of infectious diseases, along with 2 

efficient surveillance. This however is particularly challenging in aquatic environments due to hidden 3 

biodiversity and physical constraints. Traditional diagnostics, such as visual diagnosis and 4 

histopathology, are still widely used, but increasingly technological advances such as portable Next 5 

Generation Sequencing (NGS) and Artificial Intelligence (AI) are being tested for early diagnosis. The 6 

most straightforward methodologies, based on visual diagnosis, rely on specialist knowledge and 7 

experience but provide a foundation for surveillance. Future computational remote sensing methods, 8 

such as AI image diagnosis and drone surveillance, will ultimately reduce labour costs whilst not 9 

compromising on sensitivity, but they require capital and infrastructural investment. Molecular 10 

techniques have advanced rapidly in the last 30 years, from standard PCR through loop-mediated 11 

isothermal amplification (LAMP) to NGS approaches, providing a range of technologies that support 12 

the currently popular eDNA diagnosis. There is now vast potential for transformative change driven 13 

by developments in human diagnostics. Here we compare current surveillance and diagnostic 14 

technologies with those that could be used or developed for use in the aquatic environment, against 15 

three gold standard ideals of high sensitivity, specificity, rapid diagnosis, and cost-effectiveness.  16 

 17 

Keywords: Aquatic Diagnostics, Aquatic Disease, Disease Surveillance, Molecular Diagnostics, Visual 18 

Diagnosis, eDNA 19 

 20 

1. Introduction 21 

The increased demand for protein to sustain the growing human population could be largely 22 

fulfilled by aquaculture1. In 2018, global aquaculture production reached 114.5 million tons (valued at 23 

£192.95 billion), but further growth is required to sustain a population predicted to reach 9.7 billion 24 

by 2050 1,2 and replace other less sustainable protein sources. Therefore, facilitating the growth and 25 

health of managed fish is a priority, with arguably the greatest challenge to this being infectious 26 

disease. Prevention and early detection of pathogens are essential to reduce the estimated £4.2 billion 27 

annual losses to aquaculture worldwide3,4, with parasites accounting for losses of £47-134 million 28 

annually to the UK industry alone5. All animals are subject to disease, with infectious disease outbreaks 29 

exacerbated by environmental disturbance (habitat loss or destruction, pollution, urbanization, ocean 30 

acidification, climate shift; reviewed by Cable et al.6), population density, diet and intrinsic host factors 31 

(immune status, genetics, life-stage, reproductive status7,8). The old adage ‘prevention is better than 32 

cure’ still applies with regards to control of infectious disease, but the wider impacts need to be 33 

considered if prevention, for example, contributes to antimicrobial resistance or other environmental 34 
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impacts. Non-chemical interventions, good husbandry, stress reduction, environmental enrichment, 35 

dietary supplements, water quality maintenance, stock movement restrictions, quarantine measures, 36 

genetically resistant stocks, and regular surveillance all contribute to prevention9, but complete 37 

harmony is difficult to achieve10. Even the best management strategies cannot guarantee protection 38 

from disease outbreaks and effective mitigation requires early detection diagnostics: identifying the 39 

pathogens, and if possible, quantifying them.  40 

Typically, fish health is first assessed visually through general indicators such as behaviour and 41 

appearance. Routine monitoring of fish health is more challenging than for terrestrial livestock due to 42 

variable and fluctuating water conditions. Turbidity, sediment type, turbulence and the weather can 43 

all affect visibility and obscure detection of clinical signs11,12. Like any infectious disease, early diagnosis 44 

of aquatic pathogens is vital to minimise morbidity and mortality; once a pathogen or group of 45 

pathogens is identified, early intervention can reduce the chances of mass mortalities. For parasites 46 

such as Saprolegnia parasitica which cause rapid host death (24-48 hours) with no effective cure, early 47 

diagnosis is key to reduce population-level losses13. The goals for early diagnosis can be categorised 48 

under four pillars: sensitivity, specificity, speed and cost (infrastructure, consumables, and labour). 49 

This review assesses the range of early diagnostic techniques currently used in aquaculture, the 50 

ornamental trade, wild fisheries and aquatic research, and considers future developments. As novel 51 

diagnostic techniques are brought to the forefront for human health, greatly accelerated by the SARS-52 

CoV-19 pandemic, this provides potential for translation to animal health methods. Early detection 53 

and identification of problem pathogens will allow for effective implementation of control strategies 54 

minimising losses and the spread of infection. 55 

 56 

2. Considerations when Selecting Aquatic Diagnostics  57 

As Emerging (and re-emerging) Infectious Diseases become more common, we must consider 58 

technologies utilised in other fields or currently in development for use in aquatic systems, bearing in 59 

mind the Technology Readiness Level (TRL; scaled 1-7). This metric defines the maturity of a 60 

technology in relation to development, with 1 reporting the research backing the technology and 7 61 

representing the operational testing stage14. Diagnostic techniques showing promise with a TRL 1-3 62 

are in their infancy and will require further development before implementation. Although the TRL is 63 

primarily applied to terrestrial technologies, it does flag technologies that could be transferred to 64 

aquatic systems but doing so is not simple as there are significant challenges regarding the variable 65 

and dynamic aquatic environment. 66 

The natural aquatic environment is constantly in flux and resident fish are subject to variations 67 

in water quality, oxygen concentrations, light levels, enrichment, competitors, and predators, 68 
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all potentially influencing disease susceptibility. These factors also impede disease surveillance, for 69 

example, through difficulty in observation and sample obtainment. Many fish, especially those in the 70 

ornamental trade, are transferred long distances to reach the end user and this movement also 71 

increases susceptibility and disease risk through mechanical disturbances15 and reduced water quality 72 

from increased CO2 and build-up of other toxic compounds16. Within intensive aquaculture systems, 73 

water quality including dissolved oxygen levels are controlled, but stocking density is often pushed to 74 

its limit, which can also affect disease susceptibility17, 18. For many species, high densities increase 75 

stress, as is the case with Atlantic salmon (Salmo salar) resulting in increased disease susceptibility18. 76 

For territorial species, such as Nile tilapia (Oreochromis niloticus), high densities can lower stress, as 77 

social aggression is reduced19 and consequently so too is disease susceptibility20. So, disease mitigation 78 

is critically dependent on the system and species. The number of aquatic species cultured greatly 79 

outnumbers those in terrestrial environments, with around 600 aquatic species farmed commercially1. 80 

This means there is no “one-size-fits-all” solution for aquatic diagnostics and each method must be 81 

tailored towards the culturing system and species.  82 

Resources for aquatic disease diagnosis arise from academic, governmental, and independent 83 

organisations. They vary greatly across sectors and geographic regions, and all rely heavily on local 84 

specialist knowledge. Within intensive aquaculture, commercial diagnosis routinely utilises off-site or 85 

company veterinarians and scientific laboratories, particularly when the pathogens are cryptic21. For 86 

aquafarmers with limited or no technology including internet access, alternative diagnostic 87 

technologies such as tele-diagnosis systems can be employed22,23. With growing consciousness of the 88 

effects of overfishing on global aquatic ecosystems, funding is being put in place to aid transitions to 89 

sustainable fishing and the development of aquatic and coastal jobs. Ensuring sustainability is a 90 

concern and efforts vary globally. The European Union put in place the European Maritime and 91 

Fisheries Fund (EMFF) to support sustainability24, with funding split between fisheries and 92 

aquaculture, monitoring and enforcement of rules, data collection to improve future knowledge, and 93 

to the blue economy through creation and growth of marine jobs. In Asia, the fisheries refugia 94 

approach was implemented with the goal of bringing together the fisheries and environmental sectors 95 

of the South China Sea, aiming to reduce fishing pressures and aid in habitat management25. With the 96 

outcome of the fisheries refugia concept resulting in local sustainability of target species, such as 97 

lobsters (Panulirus spp. and Thenus orientalis) and tiger prawns (Penaeus monodon) by implementing 98 

seasonal closing so that the populations can recover26.  99 

Projects such as the fisheries refugia allocate areas, however one key issue with aquaculture 100 

is site occupation, with farms requiring large areas for enclosures and associated infrastructure. Open 101 

water systems pose additional problems for disease, with spillover/spillback effects between natural 102 
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and farmed populations27. One approach to combat this is the development of inland ‘mega-farms’, 103 

self-contained units, which prevent disease transmission between wild and farmed fish, allowing 104 

treatments to be more targeted thereby reducing pollution28. For recreational angling, city centre 105 

fisheries provide those with limited countryside access an ‘authentic’ fishing experience from within 106 

the city limits. Indoor angling prevents fish from being impacted by weather conditions, inflowing 107 

pathogens, invasive non-native species and predators, but requires large setup and maintenance 108 

costs. Similar small inner-city venues for small scale locally produced food are appearing with tilapia, 109 

for example grown alongside salad crops in aquaponic systems29. All these onshore/inland facilities 110 

face optimisation challenges, with husbandry and housing conditions (e.g., lighting, enrichment, flow 111 

rate) varying between species and facility, in addition to very strict biosecurity, which is why diseases 112 

in these facilities have not been eliminated9. As productivity of these indoor aquatic industries is still 113 

limited by infectious disease, the development of novel diagnostic techniques is vital for continued 114 

growth.  115 

The health of farmed fish and responsible usage of aquatic resources is managed across 116 

different scales; from local/regional to trans-national and global efforts. On a regional or national 117 

level, fish health may be managed by governmental agencies, such as the UK Centre for Environment 118 

Fisheries and Aquaculture Science30 and the National Oceanic and Atmospheric Administration 119 

(NOAA). At an international or transnational level, the Asia-Pacific Fishery Commission (APFIC)31 and 120 

the Ornamental Fish International (OFI) organisations, amongst others, contribute to fish health 121 

management32. Wild fish stocks may be managed by different governmental organisations: in England 122 

and Wales this is the Environment Agency (also responsible for stocked fish), and for Scotland the 123 

Marine Scotland Directorate Fish Health Inspectorate. Intergovernmental organisations, such as 124 

INFOFISH and GLOBEFISH, provide information to fisheries worldwide. Aquaculture and the 125 

ornamental trade may also benefit from the advice of nutrition companies. Food additives are 126 

increasingly included in fish diets to boost the immune system to reduce disease susceptibility33,34. If 127 

farmers are experiencing problems with specific pathogens, then specialist vets can provide targeted 128 

advice to combat the infection. However, there is an increasing number of emerging diseases, such as 129 

puffy skin disease or red-mark syndrome, for which the causal agents are unknown so relying on 130 

treatments/interventions by vets is problematic35. 131 

All fish stocks need to be regularly surveyed for pathogens, but progressive budget cuts over 132 

recent decades have reduced routine surveillance, such that now surveys only tend to be conducted 133 

for research or in response to a disease outbreak36. This is a global problem, especially in Europe, Asia, 134 

Africa and South America, with survey results suffering bias through false or inaccurate reporting, 135 

which further complicates risk assessments37. Without regular surveys of fish health, prevention (and 136 
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indeed early warning of wider ecosystem problems) becomes increasingly difficult, but early 137 

diagnostics can at least help maintain fish health of current stocks.   138 

The next three sections (3-5) cover the three main categories of diagnosis, visual, cellular and 139 

molecular, whilst providing details on specific techniques and example pathogens to highlight how 140 

such techniques have been applied. 141 

 142 

3. Visual Diagnosis 143 

Visual diagnosis can range from traditional methods of noting changes in behaviour and 144 

condition to remote sensing through drones and AI diagnosis (Figure 1; Table 1).  145 

 146 

3.1 Visual observation for clinical signs and diagnosis 147 

In situ, aberrant behaviour of fish, often followed or accompanied by altered physiology or 148 

morphology, are typically early indicators of ill health, often observed via manual surveillance. 149 

Common clinical signs include increased opercular rate, gasping at the surface, loss of equilibrium, 150 

lesions or abrasions, and string-like faeces38. Observation can often be the earliest form of diagnosis 151 

within the fish trade, especially for those lacking resources or access to more complex methods. 152 

Identification of such characteristics may lead to a more detailed examination for pathogen presence 153 

or a full post-mortem, the sensitivity of which relies on the experience and expertise of the observer. 154 

Large ectoparasites and or pathogens that cause visible clinical signs can be detected by sight alone. 155 

For example, Saprolegnia parasitica, a parasite of particular importance to aquaculture, presents as 156 

“fluffy” white patches on the body, head and fins of fish, (which may present from 1 to 4 days post-157 

infection) distinguishable from the water’s surface whilst the fish is submerged39. Adult crustacean 158 

parasites, such as freshwater (Argulus spp.)4 (Figure 2a) and marine lice (Caligus or Lepeophtheirus 159 

spp.), both of which result in huge economic losses to industry, can aggregate in large numbers on the 160 

body or gills of a fish, visible by eye. But the variety of pathogens and prevalence of cryptic species 161 

often results in low specificity of diagnosis solely through observation. Visual diagnosis can be time-162 

consuming depending on the number of fish and the species of both host and pathogen. Diagnostic 163 

features may also change during disease progression and secondary pathogens might obscure clinical 164 

signs of the primary pathogen41. Certain diseases present distinct clinical signs, such as ulcerations, 165 

lesions or exophthalmia, but the causal agents remain unknown; such as in red-mark syndrome or 166 

puffy skin disease (Figure 2b). Unfortunately, many observable clinical signs present once infection is 167 

established and as such most visual based diagnostic methods (visual observation, microscopy, 168 

remote sensing and AI) are applied as active methods to combat infection as opposed to preventing 169 

infections from establishing.  170 
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Microscopy is often the next step in visual diagnosis, accuracy of which is again dependent on 171 

the expertise of the observer. For microscopic diagnostics, mucus scrapes or tissue sections of the fish 172 

are commonly utilised. For example, Chilodonella hexasticha, a ciliated protozoan fish parasite, can be 173 

visualised from skin/mucous scrapes without the need for staining42, likewise for larger pathogens 174 

such as Diplostomum or Trichodina species. Microscopic diagnosis relies on the pathogen being 175 

morphologically distinct, which within the cacophony of aquatic pathogens, is a rarity. For 176 

gyrodactylids, with >400 Gyrodactylus species described, the majority are morphologically cryptic, 177 

requiring sequencing, or electron microscopy, to differentiate species43. For the many thousands of 178 

Gyrodactylus species, and other fish pathogens, as yet undescribed, sequencing alone is problematic 179 

without a morphological reference description, so a combined approach is required43. Other than 180 

equipment and labour costs, light microscopy is relatively cheap, but the main caveat is user error, 181 

which affects the specificity of diagnosis and means low level infections can be overlooked. Diagnosis 182 

of fish disease through these traditional methods is highly skill dependent, with variation occurring 183 

between the individual carrying out the diagnosis44. Microscopy can generate quantified data, but 184 

again is dependent on the accuracy of the diagnostician and the representative samples. Many aquatic 185 

pathogens, including viruses, are undetectable through light microscopy and require electron 186 

microscopy, which is costly45, and increasingly difficult to find suitable facilities.  187 

Certain external clinical signs can be difficult to diagnose and may require additional measures 188 

to improve accuracy. Ulceration, erosion of the skin from mechanical or chemical means, is a common 189 

sign of disease in fish, particularly for ectoparasites feeding on the dermis. Ulcers lead to 190 

haemodilution and osmotic imbalance in the fish, and often secondary infection. Mortality inducing 191 

ulcers are detectable by eye, whereas early-stage ulcers were difficult to detect visually until Noga38 192 

suggested a fluorescein test commonly used in terrestrial diagnosis for corneal ulceration. The fish is 193 

immersed in fluorescein that enters the damaged epithelial layer and allows skin damage to be 194 

visualised under UV46. Compared to histology (see 3.2 below), fluorescein is more sensitive at targeting 195 

ulcers, lower cost and faster with complete coverage of the fish. Due to high sensitivity but low 196 

specificity however, the method will pick up on minor ulcerations that may have been caused by 197 

handling or regular activity and are not attributable to pathogens47. High concentrations of fluorescein 198 

may be toxic to fish, but short exposure (approx. 6 minutes) at doses (0.1-0.2 mg per ml) used 199 

experimentally did not negatively affect fish38,47,48. Fish anaesthetised with tricaine 200 

methanesulphonate, however, may present false negatives as tricaine subdues the fluorescent 201 

reaction, or false positives as unbuffered tricaine causes epithelial damage49. Fluorescein is a useful 202 

non-lethal methodology for ulcer visualisation but not for pathogen diagnosis.  203 

 204 
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3.2 Histopathology 205 

Histology can be a valuable diagnostic tool if host and or pathogen tissue is available. It can 206 

be useful for routine monitoring or once infection has been established, but internal examination 207 

requires sacrifice of the target species. Sample processing involves the use of chemical preservatives 208 

such as 10% formalin (or even Bouin’s fluid, potentially explosive when dry) for tissue fixation, 209 

embedding (in paraffin or resin), sectioning, affixing onto a slide and staining38 using generic (such as 210 

Haematoxylin and Eosin) or more specific (e.g., Periodic Acid-Schiff) stains50,51. Slides are then 211 

examined for tissue abnormalities or direct pathogen identification (Figure 3). Histology is a valuable 212 

diagnostic method for many diseases, such as furunculosis and syncytial hepatitis of tilapia, and the 213 

cryptic salmonid disease ulcerative dermal necrosis (UDN) is currently only detectable through 214 

histology52,53. Diagnosis of furunculosis, caused by Aeromonas salmonicida salmonicida, however 215 

requires a minimum of two days post-infection and can take up to 7 days54. Similarly, samples of fish 216 

muscle can be used to diagnose Aphanomyces invadans histologically after 7 days through 217 

visualisation of hyphae, and the formation of granulomas is apparently only after 14 days55. 218 

Histopathological detection tended to be the go-to diagnostics for pathogens of invertebrates, 219 

including mycobacterial infection in Red-clawed crayfish (Cherax quadricarinatus)56,57. This speaks to 220 

the accuracy and availability of histology as a diagnostic tool but in recent years it has become less 221 

popular due to the cost and development of novel technologies. Histopathology can be cost-intensive 222 

compared to other visual diagnostics (~£35 per slide) but cheaper than molecular techniques (see 5 223 

below). Histological diagnoses require several days but provides high specificity for target pathogens 224 

and semi-quantitative results depending on the replicates analysed.  225 

Immunohistochemistry (IHC) targets specific pathogens with antibodies58,59. Tetracapsuloides 226 

bryosalmonae, the causative agent of proliferative kidney disease, for example, can be detected 227 

through kidney tissue staining with a monoclonal antibody and counter stain60 (Figure 3), and the 228 

bacterial agent of rainbow trout fry syndrome (Flavobacterium psychrophilum) is detectable in fish 229 

tissue through IHC61. Potential non-specific binding, cross-reactivity of antibodies62, ischemia of 230 

antigens63 and a lack of standardised methods64,65 mean IHC is not deployed as an initial diagnostic 231 

method, but as confirmation if a particular pathogen or pathologies are suspected and as with 232 

histology only provides semi-quantitative results.  233 

 234 

3.3 Remote Sensing 235 

Fish suffering infection will often remain at the surface, in a moribund state and can be picked 236 

up by farmers, workers or environmental officers patrolling the water body, but surveying of wild 237 

stocks is challenging. This is time-consuming and limited to accessible sites. Drones can be 238 
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implemented to refine this process, by applying an appropriate resolution to the camera, being able 239 

to survey the entire water body from the air, and potentially providing images for immediate 240 

diagnosis66. Advances in remote sensing techniques have allowed developments in visual diagnosis, 241 

especially for terrestrial organisms, and are expanding to the aquatic environment. Remote sensing, 242 

which utilises remote-controlled technologies to transmit or record images or video directly67, is 243 

increasingly used for wildlife monitoring, where unmanned aerial vehicles (UAV or drones) gather real-244 

time data68. UAVs have been used to conduct aquatic aerial surveys of macrofauna, such as sharks and 245 

crocodiles, with current developments paving the way for underwater surveys69,70. The benefits to 246 

UAV diagnosis include increased survey coverage, less risk to personnel, repeatability and reduced 247 

operational costs71. Applications of UAVs for disease diagnosis are still developing but have been 248 

successfully applied in agriculture72,73. UAVs could be useful for detecting large aquatic ectoparasites, 249 

such as sea lice, or those which cause visible external signs, like the white patches of S. parasitica. The 250 

crux of remote sensing diagnosis is its autonomy and extended reach compared to human 251 

observation; however, it is still limited in its sensitivity and specificity, requiring visible clinical signs to 252 

make a diagnosis. Thus, early diagnosis with remote sensing at this stage is unlikely, but it could be a 253 

valuable tool for combating outbreaks once they occur.  254 

Not all infected fish rise to the surface, so underwater surveys may be required. Autonomous 255 

underwater vehicles (AUVs), fully functional below the water’s surface, possess a 360° camera or 256 

“eye”, allowing for high throughput detection in challenging environments. AUVs have been successful 257 

at marine macrofauna74 and invertebrate75 identification, highlighting their potential for aquatic 258 

disease diagnosis. The “Stingray” drone designed by Norwegian engineer Esben Beck utilised stereo-259 

cameras to detect lice on a fish, and then deployed lasers to kill the lice76. Although no current data is 260 

available on the efficacy of “Stingray”, field tests and feedback from industry are positive, with drone 261 

deployment throughout Norwegian and Scottish salmon farms76. Technologies such as the “Stingray” 262 

combat infections in real time, allowing detection as soon as a louse infects a host, and represents a 263 

middle ground between early detection and detection after infection has been established. Remote 264 

sensing for pathogen detection and diagnosis is still in its infancy but it presents significant potential 265 

for remote detection and quantification of pathogens in an elusive and difficult environment.  266 

 267 

3.4 Artificial-Intelligence (AI) and Diagnostic Software 268 

Gaining sufficient experience to accurately assess and diagnose fish diseases takes years, 269 

hence interest in Artificial Intelligence (AI) to automate diagnosis through digital image processing77. 270 

AI programs are capable of learning and developing through experience78. But for each taxon, 271 

comprehensive training and test image databases are needed for AI disease detection 272 
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development79,80. Images for training AI must be good resolution with no replicated images and must 273 

include the pathogen on different backgrounds from different angles. Once training is complete, a 274 

new set of images is required for validation. The strength of the training images will influence the 275 

sensitivity and specificity of the diagnostic capability of the AI. AI detection can also be applied to 276 

video footage; similar issues occur, but with the additional need to account for sudden light changes 277 

and multiple objects in the field of view81. A key problem for AI diagnosis of fish pathogens is the lack 278 

of suitable image databases, but citizen science projects could provide such images. Successful image 279 

detection has been achieved for epizootic ulcerative syndrome, caused by the oomycete parasite 280 

Aphanomyces invadans, using different image processing techniques, where the most successful 281 

technique successfully identified A. invadans 86% of the time82, but such methods have yet to be 282 

tested on large databases. 283 

The Fish-Vet diagnostic tool, originally developed by Zeldis and Prescott41 as a desktop 284 

application for PC, was an early attempt at a diagnostic program for aquatic diseases. The software 285 

evolved into a free aquatic diagnostic app (FishVetApp), which provides information and images of 95 286 

fish diseases, covering ornamental, food and wild fish. The FishVetApp is currently in development for 287 

mobile devices, allowing it to be more widely used in the field. Others have created web-based aquatic 288 

disease diagnosis systems, such as the Fish-Expert implemented in Northern Chinese cities to fish 289 

farmers, fishery experts and fish vets with reported positive feedback83. This program at inception 290 

held information for 126 fish diseases from 9 fish species83 but does not appear to have been updated. 291 

At the farming level, the program was quite complex and inaccessible to many, and some farms lacked 292 

the necessary resources (e.g., microscopes, water quality equipment) to gather the required 293 

information83.  294 

Clearly, we are in the early stages of remote diagnosis but automating the process through 295 

the application of AI and machine learning approaches has the potential to establish a robust high-296 

throughput process with the potential for quantification. They do, however, rely heavily on reference 297 

databases and further technology development. Misdiagnosis still may occur due to the generic nature 298 

of clinical symptoms of many fish diseases and difficulty controlling for secondary infection.  299 

 300 

4. Cellular Diagnostics  301 

4.1 Microbiology 302 

Fish microbial diseases are highly prevalent, as both primary and secondary infections, driven 303 

by stress (water quality, poor nutrition, temperature) or other infections84. Diagnosis has historically 304 

involved isolation and culturing of the causative agent. Direct placement or swabbing of diseased 305 

tissue or mucus onto agar is a common method for aquatic bacterial diagnosis, and for some aquatic 306 
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fungal-like pathogens, followed by analysis of biochemical and morphological traits85. Such methods 307 

are selective and susceptible to contamination, requiring serial subculturing to obtain a pure strain of 308 

the causative agent. The causative agent of bacterial kidney disease (Renibacterium salmoninarum) is 309 

particularly fastidious and grows slowly on regular agar, requiring a specialized agar for rapid growth 310 

with a ‘nurse’ microbe86. It also takes time to isolate colonies and observe definitive growth, with 311 

reports from 2 weeks87 up to 19 weeks for subclinical level infections88. In contrast, the oomycete 312 

pathogen S. parasitica is regularly cultured on potato dextrose agar (PDA) by obtaining small tufts of 313 

mycelia from infected fish and embedding them within the agar, producing growth within 2-4 days89. 314 

Culture dependent methods are limited to pathogens with known nutrient requirements, subject to 315 

contamination even with antibiotics in the media, and, for long-term culturing, can be labour 316 

intensive. Culturing as a means of diagnosis is unreliable when trying to verify causal agents of 317 

polymicrobial infections90. In addition, genetic alteration of microbes may occur over time resulting in 318 

strains unrepresentative of natural communities. Culture-independent methods have been 319 

instrumental in not only identifying pathogenic microbes but revealing the key role of microbiomes 320 

(all microbes within an organism) for fitness, immunity and life span of fish91. Following successful 321 

culturing, routine PCR is often carried out for pathogen confirmation, and sequencing if species-level 322 

identification is required. 323 

Though the rise of molecular techniques in recent years has reduced the need for culture-324 

dependent techniques, diagnosis of some pathogens still necessitates these methods. Every organism 325 

naturally hosts a range of microbes. This microbiome varies between individuals, species and 326 

populations, so understanding what constitutes a ‘natural’ or core microbiome is important for 327 

identifying any dysbiosis, disrupted microbiota. As a diagnostic tool, the microbiome can indicate 328 

health status92 as microbiota diversity will alter upon host infection90, treatment93 and environmental 329 

stressors. Microbiome dysbiosis could be used for diagnosis but requires context specific knowledge 330 

on what constitutes a natural/healthy microbiome for the target species. Xiong et al.94 for example, 331 

identified a core microbiome representative of healthy shrimp (Litopenaeus vannamei), which could 332 

be used to compare against unhealthy shrimp with 91.5% accuracy. Such knowledge is essential for 333 

microbiome-based diagnostics, but feasibility comes into question when considering the vast number 334 

of economically important aquatic species, which are subject to a range of variables all potentially 335 

impacting the natural microbiome. Fish microbiomes naturally contain both virulent and avirulent 336 

pathogens, residing at non-lethal thresholds, which typically do not require intervention and are the 337 

baseline against which dysbiosis should be compared. Many fish farms (over)use antibiotics as a 338 

proactive treatment, which in turn can promote antimicrobial resistance. In extreme examples, where 339 

fish are bred and maintained in sterile environments this could even lead to gnotobiotic fish (which 340 
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harbour no or reduced microbes). Like any animal with limited prior infection exposure, gnotobiotic 341 

fish are at greater risk from common diseases95, which can lead to increased mortality96, so in this case 342 

extreme prevention is not better than a cure. We can monitor for dysbiosis through non-invasive 343 

faecal samples97 or skin swabs98, as well as sampling of tissues. Typically, this identifies microbes to 344 

species level, but does not confirm whether strains are virulent or not99 so interpretation of 345 

microbiome data is an important area to focus on now that the molecular methodologies are well 346 

developed. Also, more studies need to consider the entire assemblage of microbiota and host - the 347 

holobiont100 - rather than just target bacterial species.  348 

  349 

4.2 Biochemistry 350 

Biochemical methods for diagnostics encompass a variety of techniques all of which utilise 351 

some form of biochemical signal to conduct the diagnosis. These techniques vary from those which 352 

detect chemical signals (volatile organic compounds, or VOCs) released during infection (e.g. Pawluk 353 

et al.101 who identified chemical cues from infected and uninfected fish), to biosensors that use 354 

biochemical reactions to detect (optical, volatile, electrochemical or mass-sensitive) chemical 355 

compounds. When considering their application to aquatic diagnostics, the information gained from 356 

these health parameters is currently too general for diagnostics, especially in a preventative context, 357 

and the benefits would not outweigh the costs.  358 

 359 

4.3 Serology 360 

While commonly used in terrestrial veterinary practices, serology is used less in aquatic 361 

diagnostics due to insufficient development of methodologies102. Until 2012, The World Organisation 362 

for Animal Health (OIE)’s Manual of Diagnostic Tests for Aquatic Animals stated that serological 363 

detection was not an accepted method of diagnosis for fish pathogens103, although this has since been 364 

removed104. Serology can directly identify pathogens, such as Trypanosoma carassii a parasite of 365 

cyprinids105, or indicate signs of irregular immune function, such as haemoglobin levels or differential 366 

leukocyte counts, caused by a pathogen106. The enzyme-linked immunosorbent assay (ELISA) is a rapid 367 

serological test through which antigens in fish sera are detected via a visual colour change, caused by 368 

an enzyme-chromogen complex102,107. ELISA is available for a range of aquatic disease diagnoses 369 

including Renibacterium salmoninarum108, Mycobacterium spp.109 and Aeromonas salmonicida107, and 370 

is often used in conjunction with molecular techniques. Agglutination assays, specifically slide 371 

agglutination, have been applied successfully to aquatic pathogens, such as Vibrio and Pseudomonas, 372 

and they offer a rapid method for detecting a wide range of bacterial pathogens110. 373 
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Serology in terrestrial medicine has a wide range of applications within testing and 374 

diagnostics, with significant advances into the early detection of cancers. One such novel technique is 375 

utilising immunosignatures where serum from an individual is challenged with an array (tens of 376 

thousands to millions) of random-sequence peptides to determine the binding of patient's 377 

antibodies111. The most informative peptides are then identified, based on their ability to differentiate 378 

between diseases. Similar diagnoses have been applied to diabetes, Alzheimer’s and infectious 379 

diseases111. The wide applicability of this technique in human medicine indicates potential application 380 

to the diagnostics and monitoring of infectious aquatic diseases. Terrestrial infectious disease 381 

outbreaks often spur diagnostic development, providing potential for translation to the aquatic 382 

environment. For example, diagnosis of the Ebola virus requires serological samples, but methods 383 

have changed from traditional viral culturing from these samples to molecular diagnosis112. There are 384 

serology-based rapid diagnostic tests (RDTs) available for malaria, which can have high sensitivities 385 

and limits of detection113, and utilises small (15 µl) samples of blood, producing results within one 386 

minute114. RDTs could be transferred to aquaculture for aquatic disease diagnosis, but the issue 387 

remains of choosing an appropriate target for diagnosis. 388 

 389 

5. Molecular Techniques 390 

The rapid development of our ability to amplify and sequence genetic material has 391 

revolutionised every aspect of biological sciences, from behavioural and evolutionary fields to medical 392 

and veterinary sciences. Molecular diagnosis ranges from standard PCR to next-generation sequencing 393 

and environmental DNA techniques (Figure 4; Table 2). Whilst molecular techniques have advanced 394 

rapidly, what now limits their application is the logistics of sampling, storage and transport costs. 395 

Storage and transport of samples for molecular analyses can significantly impact the quality of results, 396 

with tissue degrading over time, if not fixed sufficiently or kept at low temperatures. Standard agents 397 

for transporting tissue include formalin (mostly used for histological samples, rarely for molecular 398 

samples due to the inhibitory downstream effects) or a high percentage molecular grade ethanol 399 

(>90%), and samples are usually cooled for long-term storage115. Storage by desiccation with silica has 400 

been effectively used for tissues116,117 and faecal samples118 from terrestrial animals, and potentially 401 

could be utilised more for fish119. Desiccation is short-term and requires samples to be transferred to 402 

ethanol for long-term storage but is extremely useful for air transport120. When testing for infectious 403 

diseases, care must be taken when transporting potentially infective samples. For example, with Ebola 404 

samples there is the need to integrate with regional labs for regular testing requiring transport logistics 405 

to be addressed for collection of blood samples which are a biohazard. Developments are arising into 406 

new stabilising methods that allow for easier/safer transport of genetic material, such as Whatman® 407 
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FTA® Cards. For small samples, the Whatman® FTA® Cards remove many of these issues121. The target 408 

organism (size dependent) or DNA is swabbed onto a sterile FTA card® without the need for fluids. 409 

The cards can be kept at room temperature, eliminating the need for freezers, excessive storage space 410 

and transport of flammable liquids. FTA cards® have been successfully used for the preservation of 411 

fish buccal cells and mucus, as a cheap alternative to freezing or commercial extraction kits121,122. 412 

Brown trout (Salmo trutta) and northern pike (Esox Lucius) DNA was successfully extracted non-413 

invasively with no cross-contamination from FTA cards®121. Storage of parasite DNA on FTA cards® has 414 

been successful, such as with samples containing parasites and parasite eggs123,124. DNA can be 415 

maintained on cards for years at room temperature and amplified following standard protocols125, but 416 

experimentally detectable viral RNA (Genus Betanodavirus) decreased after four weeks even when 417 

cards were stored at 4°C122. A review of 47 studies indicated the maximum storage time for viral RNA 418 

on FTA cards® ranged from one to eight months at temperatures from -20°C to 37°C126. Therefore, if 419 

using FTA cards as preservation tools, it is recommended to process the samples within a year whilst 420 

maintaining them at a maximum of 22°C. Not all diagnostics will target DNA, some require RNA. 421 

However, difficulties arise with storage and transport of RNA as it rapidly degrades in tissue and water 422 

samples, therefore requires immediate storage at -80°C or use of protective reagents such RNAlater. 423 

One of the greatest advantages of molecular techniques, is that they facilitate a pro-active approach 424 

to diagnostics, capable of identifying potential infective pathogens before an outbreak or significant 425 

infection can take hold.  426 

 427 

5.1 PCR and its Successors 428 

PCR revolutionised disease diagnosis, reducing reliance on culturing and histological methods. 429 

PCR amplifies target regions of DNA from tissue or environmental sources, providing 430 

presence/absence data. Standard PCR methods involve multiple thermoregulated cycles of 431 

denaturation, annealing, and extension to facilitate the amplification of a target fragment of DNA. 432 

Amplification is achieved by designing primers complementary to the regions flanking the target 433 

sequence. As the PCR cools post-denaturation, the primers anneal to these regions acting as initiation 434 

points for the thermal stable polymerase to generate new daughter strands during the extension 435 

phase of the reaction (reviewed by Innis et al.127). Each PCR cycle provides a doubling of the targeted 436 

fragment resulting in over a billion copies (1.07x109) from 30 amplification cycles. DNA generating 437 

products can be visualized through gel electrophoresis where the size (in bp) can be confirmed against 438 

known size markers; a visualization process that historically used the carcinogen ethidium bromide, 439 

but there are now alternatives, such as SYBR Safe128. Key to the success of PCR are the primers, which 440 

can either be designed specifically for a group or species of pathogens or non-specific/degenerate 441 
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when looking for more general groups of pathogens. Sequencing of PCR products is particularly 442 

beneficial for disease diagnostics to identify pathogens to species and even strain level, mainly if 443 

general primers have been used129.  444 

Quantitative PCR (qPCR, otherwise known as real-time PCR) is increasingly used for pathogen 445 

detection. This method utilises fluorescent primers to quantify the amplified product in real-time by 446 

comparing samples to known quantities represented by standard curves130. The cycling procedures for 447 

qPCR are the same as those for standard PCR, but the products are typically shorter (<200 bp). After 448 

each cycle, the intensity of fluorescence is measured, which indicates the quantity of DNA amplicons 449 

in the sample at the given time131. qPCR can potentially be utilised to diagnose any pathogen of 450 

interest, dependent on the assay design with the ability to detect specific genes and alleles. qPCR is 451 

widely used as it is high throughput, highly sensitive, reproducible, and rapid132 with reduced potential 452 

for cross-contamination131. Wide success has been achieved using qPCR for aquatic pathogen 453 

detection, including Anisakis133, Ichtyobodo134, viruses (viral haemorrhagic septicaemia)135 and 454 

bacteria (Flavobacterium psychrophilum132,136). Like all DNA methods, a limitation of qPCR is the 455 

inability to distinguish live and dead cells131, and it can take a long time to optimise the method. If 456 

targeting RNA, then this does measure active transcription, however there are issues in handling 457 

samples and the instability of RNA.  458 

Building upon qPCR, digital PCR (dPCR or ddPCR) amplifies the target and provides 459 

identification and quantification of nucleic acids, without the need for a standard curve. ddPCR 460 

partitions the sample into thousands of subset PCR reactions contained within nanodroplets, some 461 

containing the target (positive) and others not (negative)137,138. Fluorescent readings of these droplets 462 

identify the target using dye-labelled probes. The negative samples are then used to generate an 463 

absolute count, eliminating the need for standards or endogenous controls. Successful aquaculture 464 

application of ddPCR has led to the detection of Flavobacterium pschrophilum and Yersinia ruckeria 465 

from recirculating aquaculture systems139. When compared to qPCR, ddPCR has lower error rates, is 466 

more reproducible and the high cost is balanced by the quality of data obtained138. In contrast, ddPCR 467 

has a limited dynamic range for detection compared to qPCR but provides a similar level of 468 

quantification. Molecular methods encompass such a broad spectrum that the deciding factors of 469 

which to use often comes down to time, specificity and sensitivity. Nucleic acid amplification tests 470 

(NAATs), other than PCR, are often more complex but offer applicability or sensitivity140,141. 471 

 472 

5.2 Isothermal Amplification 473 

Notomi et al.142 developed loop-mediated isothermal amplification (LAMP) as an alternative 474 

to traditional PCR. In contrast to the multiple, fluctuating temperature-dependent steps (40-98°C) of 475 
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PCR, DNA is amplified by LAMP within isothermal conditions. LAMP merely requires a water bath to 476 

maintain ~65°C, with the addition of Bst (Bacillus staerothermophilus) polymerase to initiate the 477 

reaction. As a standard, four specifically designed primers that recognize six distinct regions within the 478 

target genome are used, but sensitivity can be increased by using six primers to target eight regions. 479 

RT-LAMP (reverse transcriptase) is highly specific; ten times more sensitive than reverse-transcriptase 480 

PCR when detecting nodavirus in Macrobrachium rosenbergii143. LAMP is also efficient and rapid, 481 

taking only 60 minutes including DNA/RNA extraction, compared to the 90-180-minute for regular PCR 482 

without DNA preparation142. Combining LAMP (including RT-LAMP) with chromatographic, lateral flow 483 

dipstick (LFD) is highly effective at confirming the products of the LAMP by hybridisation, allowing for 484 

rapid visualisation144. Colorimetric dyes, such as hydroxynaphthol blue and SYBR Green I, have high 485 

sensitivity for detecting pathogens, and can be more rapid than LAMP-LFD145. This combination of 486 

methods facilitated amplification of Taura syndrome virus in shrimp along with removing the need to 487 

use a DNA staining agent146. Detection of red seabream iridovirus (RSIV) was ten times more sensitive 488 

by LAMP than standard PCR147. There is the potential for contamination of target DNA in the final 489 

stages due to the high amplification, sensitivity is highly dependent on the designed primers, and the 490 

limit of detection may differ for LAMP compared to PCR148. By removing the need for expensive (and 491 

typically non-portable) thermocyclers and thermally-sensitive reagents, LAMP-based detection 492 

methods hold great promise for rapid aquatic pathogen diagnosis in the field and low-income regions. 493 

LAMP is one of a growing number of isothermal amplification methodologies, each with their 494 

own benefits and detriments149. Recombinase polymerase amplification (RPA) substitutes the heat 495 

denaturation step of traditional PCR with two proteins (Escherichia coli RecA recombinase and single-496 

strand DNA binding protein) and is carried out over a consistent temperature (often 37°C). This 497 

amplification is even more rapid than LAMP, occurring within 5 to 20 minutes. For aquatic infections, 498 

RPA has successfully detected Flavobacterium columnare150, Vibrio parahaemolyticus151 and 499 

Tetracapsuloides bryosalmonae152 to name a few significant aquatic pathogens. RPA is cost-effective, 500 

highly specific and sensitive and is a rapid methodology for diagnosis, especially when combined with 501 

LFD153. 502 

 503 

5.3 eDNA 504 

Environmental DNA (eDNA) methods have the potential to greatly improve our ability to 505 

detect and monitor pathogens in aquatic environments, be that as whole cells or free-floating DNA. 506 

eDNA can follow a targeted or passive method; targeted following standard PCR, qPCR or LAMP 507 

methodologies to determine presence/absence or abundance of a target species, whilst the passive 508 

approach uses primers sharing conserved binding sites to sequence communities of organisms154. 509 
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During water sample collection, differing filter sizes affect sample sensitivity; larger pores let more 510 

material into the sample, clouding the purity of the target DNA, whilst smaller pores aid in targeting 511 

DNA but are prone to clogging and limit the volume of water that can be filtered. Optimal sample 512 

volume is dependent on the target species and habitat, but minimal volumes suggested are 1 L of 513 

sample water and 14 µl of extracted eDNA155. Where Huver et al.156 filtered samples of 500 ml and 514 

Wittwer et al.157 filtered varying volumes of 1.6 L to 10 L, both found successful detection of their 515 

target. Novel water collection methods have arisen for both low (up to 5 litres) and high (up to 50 516 

litres) volume sampling, with programmable samplers collecting water over variable tidal flows and 517 

cycles (www.appliedgenomics.co.uk/detect158). These programmable sample collectors are one 518 

solution to the larger logistical issue regarding eDNA, sample collection, transportation, and storage. 519 

Factoring in the costs of sample collection and analysis are often at the forefront of our mind, the 520 

costs and logistics of transporting samples to and/or from sample sites and laboratories is a less 521 

discussed but equally important issue and one of the main challenges going forward before this can 522 

be an effective tool. Deciding on optimal sample volume and replicates are also key variables that 523 

need to be evidenced with further research, likely being dependant on target DNA and ecological 524 

knowledge of the field site and target organism. Just as water bodies show stratification, so does the 525 

associated DNA. eDNA samples should match the known location of the target species or, if the sample 526 

site is deep, be sampled throughout the water column to represent accurate species distribution and 527 

presence. eDNA technologies are consistently evolving, with new technologies applicable within 528 

laboratory settings and in field, but perhaps one of the most significant recent advances reducing the 529 

problem of transporting water samplers is the eDNA Sampler Backpack (Smith-Root). This kit pumps 530 

the water directly on to filters impregnated with preservatives so that the eDNA is stored in this easily 531 

transportable form for up to two months, without any need to transport water itself. Similar filters 532 

can be used for smaller laboratory experiments with hand-held pumps. Successful preservation 533 

enables sampling across more remote, larger areas for longer periods of time. Whilst many studies 534 

have focussed on spatial use of eDNA, the method has also been successfully applied temporally, 535 

providing insight into seasonal biodiversity of water bodies159. For both spatial and temporal studies 536 

though, there are many variables that must be considered when applying DNA methods, such as 537 

turbidity, UV exposure and flow rate.  538 

eDNA is most effective in shallow waters where the benefits of eDNA outweigh regular 539 

trapping methods160. Most experimental studies utilise water samples when targeting DNA, but 540 

sediment is a viable alternative161. Asian carp (Hypophthalmichthys spp.) DNA was more concentrated 541 

(8-1,800 times) in sediment compared to water162, but sedimentary eDNA is more likely to present 542 

past-species occupancy due to resuspension and transport163. The relative benefit of sediments 543 

http://www.appliedgenomics.co.uk/detect
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compared to water for eDNA sampling is debatable and will depend on the target and the habitat. 544 

Drones may be deployed to collect water samples once the desired volume or sampling period has 545 

been achieved, or drones could collect smaller water samples ad hoc164,165. Methods such as these can 546 

be adjusted depending on the target, with buoys collecting water column samples or coring for benthic 547 

demersal layer sampling. False positives may arise due to the introduction or transportation of DNA 548 

into the water body, whilst certain species release DNA at a sub-detection threshold, leading to false 549 

negatives163. Water quality also impacts eDNA success, with acidity of water increasing degradation of 550 

environmental DNA166. As eDNA methods become widely implemented, protocols continue to be 551 

optimised to overcome issues with sample purity, accurate species detection and choice of target 552 

genomic material but as new pathogens emerge, at the moment, each requires method optimisation.  553 

Current eDNA techniques target DNA, which may be present in tissue, living, dead or dormant 554 

(e.g., cysts, spores, or eggs). DNA within water or sediment samples may not be indicative of active 555 

infectious stages of a pathogen, but if environmental RNA (eRNA) is targeted this does indicate active 556 

gene transcription. Detection of fish pathogens through eRNA has not been utilized thus far but there 557 

is potential167. Targeting eRNA can direct users towards the infective stage of a pathogen. Utilising 558 

eRNA poses additional challenges as RNA is less stable than DNA, degrading rapidly, and current costs 559 

are high168. The greatest benefit of RNA is targeting specific genes only expressed at certain life stages, 560 

providing high specificity, but the origins of environmental RNA are poorly understood168. The choice 561 

of targeting RNA or DNA is highly dependent on the target pathogen. To date, eDNA has been 562 

successfully applied to a range of pathogens from iridovirus in red sea bream169, ranavirus’ in 563 

amphibians170 to chytrid fungus in bullfrogs171. The aquatic host range for eDNA applicability ranges 564 

from fish and amphibians172 to crustaceans157. eDNA has great potential to predict disease outbreaks. 565 

One study assessed Batrachochytrium dendrobatidis presence before amphibian die-off events, where 566 

detection was successful before the mass mortality events171. eDNA has also been used to predict 567 

Chilodonella hexasticha prevalence in relation to water quality, although no association was 568 

identified173.  569 

eDNA can potentially be a more reliable method of pathogen detection than traditional 570 

approaches. For example, eDNA and qPCR detection of signal crayfish (Pacifastacus leniusculus) is 571 

more reliable than physical trapping157. Such molecular methods can also be conducted year-round, 572 

they are not seasonally dependent, and can monitor prevalence; eDNA detection of the trematode 573 

Ribeiroia ondatrae from water samples matched 90% of those detected through necropsy of 574 

amphibians156. DNA in water remained traceable after 21 days in the laboratory at 25°C, so sample 575 

identification can occur up to three weeks post-sampling. Logistically, eDNA can be twice to ten times 576 

more cost-efficient than traditional sampling (see review by Smart et al.174).  577 
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 578 

5.4 Next-Generation Sequencing and Bioinformatics 579 

Next generation sequencing (NGS) technologies provide massive parallel sequencing 580 

capability generating millions of high-quality reads, far exceeding the targeted Sanger sequencing 581 

approaches (reviewed by Behjati and Tarpey175). NGS falls into two broad categories: 1) sequencing 582 

covering entire (or representation of) genomes/transcriptomes (“shotgun sequencing”) or 2) 583 

massively parallel sequencing of specific sequence fragments (ampliconseq).  584 

For shotgun approaches, bioinformatics is used to map sequence reads to available reference 585 

sequences, or they can be used for de-novo assembly of genomes or transcriptomes. Sequences can 586 

be derived from a single or a mixture of organisms, allowing characterisation of individuals or 587 

communities (meta-omics). Infections are rarely monopathogenic, and often are either caused by or 588 

lead to multiple pathogens within a host. Metagenomic/transcriptomic applications derive sequence 589 

data from all nucleic acids present in a sample/tissue, but demands significant sequencing depth, 590 

which can be costly both in direct NGS costs but also in computational time for analysis. Metagenomics 591 

allows characterisation of all genomes within a given sample whilst metabarcoding describes the 592 

species present on a taxonomic level176. Successful application of metagenomics, such as detection of 593 

parasites within swine faeces including first time discovery of Blastocystis within swine faeces177, and 594 

metabarcoding, such as describing ape parasite assemblages from faecal samples178, have been 595 

applied terrestrially but less so for aquatic environments. 596 

 Targeting NGS towards specific genetic sequences, or ‘barcodes’, with high taxonomic 597 

resolution and where significant database resources exist allows the technology to efficiently provide 598 

community species composition, an approach referred to as metabarcoding. Interpretation of NGS 599 

data is improving rapidly with development of databases, such as GenBank and the Barcode of Life 600 

Data System179 which in Jan 2021 held >9,154k barcodes yielding 713k unique sequences representing 601 

320 species180 whilst Genbank has over 226 million sequences as of February 2021181. Metabarcoding 602 

of eDNA is a potential path for aquatic development of these techniques as it allows the 603 

characterization of the species and communities contributing to their ecosystems from a simple water 604 

sample182.  605 

Classical NGS platforms, such as Illumina sequencers, have technical limitations associated 606 

with the length of individual sequences generated (<300 bp from a single read) and also require 607 

substantive capital infrastructure investments. Recent innovations in microfluidics and pore-based 608 

sequencing, such as those supplied by Oxford Nanopore, provide mobile/desktop sequencers that can 609 

generate significantly longer sequence reads, routinely >100 kb in length.  Platforms using this 610 

technology include the PromethION for ultra-high throughput centralized infrastructure, as well as the 611 
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MinION platform, a portable sequencer able to generate long reads in real-time with field capability. 612 

NGS has successfully identified aquatic viruses45, with nanopore technology leading the way through 613 

detection of salmonid alphavirus135 and infectious salmon anaemia virus, and sequencing the full 16S 614 

rRNA gene of the sea louse Caligus rogercresseyi (see Gonçalves et al.183). NGS issues primarily arise 615 

around substantial costs and the quality of data produced, but error rates are still improving.  616 

The need for real-time disease diagnostics has been highlighted by the SARS-CoV-19 617 

pandemic, resulting in tests that can provide quantifiable results in 90 minutes. Methods such as the 618 

LamPORE (able to analyse 96 samples in one hour) and laboratory free DnaNudge for example, could 619 

be repurposed for animal diseases, in the aquatic environment substituting a cheek swab for a mucus 620 

or water sample and alternative primers. Concerns immediately arise over costs, as to scale these tests 621 

for national COVID testing would cost around £100 bn, current tests number 350,000 per day aiming 622 

to upscale to 10 million per day184. Applying these tests to aquaculture and fisheries would never 623 

match this scale but would require significant monetary input184. But as with all novel technologies, 624 

costs rapidly decrease with time. Also, quality of data and portability will improve with the potential 625 

to revolutionise diagnostics of emerging diseases and cryptic pathogens. 626 

 627 

6. Recommendations and Conclusions 628 

The lack of transference of terrestrial techniques to the aquatic environments is due to issues 629 

of translation, changing something suited for terrestrial applications to the aquatic environment is not 630 

easily done, and requires significant interest and/or funding. The recent thrust in diagnostic 631 

development will result in progress not only for human medicine, but diagnostics across disciplines 632 

Advances in early pathogen diagnosis have typically been driven by infections of terrestrial hosts, 633 

highlighted by the current COVID-19 crisis. One benefit of this pandemic has been the rapid increase 634 

in efficient and rapid diagnostic techniques, such as lateral flow immunochromatographic assays 635 

providing results within 90 minutes or adapted LAMP technology. Such advances will hopefully boost 636 

the entire diagnostic field, including aquatic pathogens but as previously stated, will require a 637 

significant driver to bring in financial support. Lateral flow tests have always had potential for disease 638 

diagnosis but were relegated primarily to pregnancy tests due to the lack of sufficient drivers to 639 

develop the technology for other users185. The COVID-19 crisis demanded utilisation of every tool 640 

available, and thus the potential of lateral flow tests was harnessed for rapid diagnostics of the virus 641 

and informs how we can turn the retrospective into a reactive approach186. The diagnostic potential 642 

of many terrestrial diagnostic methods will not be translated for aquaculture without sufficient 643 

ecological or monetary drivers. Indeed, even human neglected diseases are facing the same hurdles187.  644 

Nevertheless, here we evaluated a variety of diagnostic methods in light of the three pillars for a gold 645 
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standard diagnostic technique: high sensitivity, low cost, and speed. Going forward, emphasis should 646 

be put on two main techniques to advance aquatic diagnostics: AI for visual diagnosis and eDNA for 647 

molecular diagnostics. AI has the potential to drastically reduce the time required to survey fish for 648 

disease whilst simultaneously allowing for higher throughput but requires significant input in 649 

“teaching” the AI to detect specific diseases. eDNA enables detection and quantification both on-site 650 

and in the laboratory, making it one of the most versatile diagnostic techniques once sampling 651 

methods have been optimised. As our knowledge of these pathogens increases so do our 652 

technological advances, where preventing pathogen outbreaks from occurring is the end-goal and 653 

these techniques aid this. Human medicine receives more monetary support for research on novel 654 

diagnostic methods, but there is always potential for these methods to be transferred to the aquatic 655 

environment should the industry or researchers take the time to adapt them.  656 
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