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ABSTRACT Hand-eye calibration enables proper perception of the environment in which a vision guided
robot operates. Additionally, it enables the mapping of the scene in the robots frame. Proper hand-eye
calibration is crucial when sub-millimetre perceptual accuracy is needed. For example, in robot assisted
surgery, a poorly calibrated robot would cause damage to surrounding vital tissues and organs, endangering
the life of a patient. A lot of research has gone into ways of accurately calibrating the hand-eye system
of a robot with different levels of success, challenges, resource requirements and complexities. As such,
academics and industrial practitioners are faced with the challenge of choosing which algorithm meets the
implementation requirements based on the identified constraints. This review aims to give a general overview
of the strengths and weaknesses of different hand-eye calibration algorithms available to academics and
industrial practitioners to make an informed design decision, as well as incite possible areas of research
based on the identified challenges. We also discuss different calibration targets, which is an important part
of the calibration process that is often overlooked in the design process.

INDEX TERMS Calibration target, camera-world transform, computer vision, hand-eye calibration, robot-
hand transform, rotation, translation, vision guided robot.

I. INTRODUCTION
Industrial robots have been around for decades, first gaining
popularity in the automotive industry [1]. Automotive plants
were suitable for early industrial robots because the tasks
in these plants involve a high level of repeatability, large
payloads, and moderate speeds. Robots are also being used
in a growing number of sectors, such as chicken deboning in
the food industry [2]–[4], drug manufacturing in the pharma-
ceutical industry [5], [6], and aircraft engine construction in
the aerospace industry [7]–[9]. According to the International
Federation of Robotics (IFR), over 1.7 million new industrial
robots will be deployed globally in 2021 [10], and vision
systems are now becoming a major component of many

The associate editor coordinating the review of this manuscript and
approving it for publication was Huiyu Zhou.

industrial robots as they improve the capabilities of robots
in operation. For example, vision guided robots can allow
for variability in the positioning of work object or deviations
in programmed pathway without breaking the production
flow [11]–[13].

Emerging applications demand that industrial robots not
only be faster, but also be able to accurately identify and
find parts that are randomly placed on moving conveyors,
containers, or on pallets [14]–[16]. Machine vision systems,
which have been around for decades, are now being used in
conjunction with robotics to aid automation systems in the
processing of such components [17], [18].

Vision guided robotics (VGR) are rapidly becoming a key
enabler for the automation of a broad range of processes in a
wide range of industries. A typical vision guided robot has
a camera attached close to the robot hand or gripper with
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FIGURE 1. Vision guided robot for pick-and-place application [19].

which it can perceive the work environment (Figure 1). The
two major areas in the field of computer vision are the 2D
and 3D technologies. In a flat plane relative to the robot,
a 2D VGR device processes the captured images of randomly
place pieces. These images are 2D projections of the 3D
spatial pieces, which results in loss of depth information.
A 3D VGR device on the other hand, can process parts that
are randomly positioned in three dimensions (i.e., X-Y-Z)
and can also accurately determine the 3D orientation of each
part. In practice, 2D machine vision is typically accom-
plished using a digital camera and a software that analyses
a digital image of the part’s 2D position and orientation in
preparation for robotic handling or processing [20], [21].
The 3D vision system on the other hand, uses sensors like
laser displacement, structured light and stereo camera capable
of generating a point cloud representation of a surface in
the 3D space [22]–[24]. The point cloud enables the spatial
reconstruction of a 3D scene, which facilitates the handling
of a wide variety of complex objects in a challenging environ-
ment, thereby enhancing the capabilities of robots for vision
guided applications. One particular advantage is being able
to pickup objects placed on a surface with irregular height,
which would be difficult for the 2D vision system.

Applications of vision guided robots include part assem-
bly [25], bin picking [26], inspection [27] etc. These robots
can either have the camera mounted in a fixed position with
a fixed field of view (eye-to-hand configuration), or have the
camera mounted on the hand of the robot (eye-in-hand con-
figuration), so that new images can be acquired by changing
the point of view of the camera. However, the robot can only
perceive the 3D world based on its own base frame. In order
for the robot to obtain an accurate estimate of the 3D position
and orientation of a part relative to its own base within the
work volume, it is necessary to know the relative position and
orientation between the hand and the robot base, between the
camera and the hand, and between the object and the camera.
These three tasks require the calibration of robot [28]–[30],
camera [31], [32], and robot hand-to-camera (hand-eye) [33],
[34]. Robot calibration is needed because, despite the fact
that robots have very good repeatability, they are poor when
it comes to absolute accuracy, due to inherent differences
between the ideal and actual kinematic parameters. Camera
intrinsic calibration is required to ensure that the images cap-
tured are of accurate dimensions and free of lens distortion,
which would otherwise introduce errors in the measurement

estimates being fed back to the robot during operation. Hand-
eye calibration ensures that the measurements made by the
camera is converted to the reference used by the robot for
measurement. The focus of this review is on hand-eye cali-
bration and its associated challenges to robotic vision system.

The rest of the paper is organised as follows. Section II
introduces the problem of hand-eye calibration, Section III
discusses the different hand-eye calibration algorithms.
A comparative analysis of calibration target is given in
Section IV, while common challenges associated with
hand-eye calibration is presented in Section V. Finally a
conclusion is given in Section VI.

II. HAND-EYE CALIBRATION
The perception of the environment by robot can be
accomplished using a camera. This enables navigation and
manipulation of objects in an unknown and dynamic environ-
ment. This vision system involves the perspective projection
and mapping of a 3D world coordinate point onto a 2D
image plane, which can be achieved using a pinhole camera
model [35] as shown in Figure 2.

FIGURE 2. Pinhole camera model.

From Figure 2, an optical ray passing through a 3D world
point P through the optical centre Oc intersects the image
plane at a point p located a distance of f (focal length)
from the optical centre. To obtain the point p in the image
plane Oi(u, v), the world coordinate points Ow first has to be
transformed to the camera coordinate at Oc. This is achieved
using the transformation Equation (1). From Equation (1),
the camera coordinate points Pc = (xc, yc, zc) are realised
from world coordinate points Pw = (xw, yw, zw) using the
rigid body homogeneous transformation matrix H c

w(
Pc

1

)
= H c

w

(
Pw

1

)
, (1)

Equation (1) can also be expressed as
xc
yc
zc
1

 =
(
Rcw tcw
0T1×3 1

)
xw
yw
zw
1

 , (2)

where Rcw and tcw denote rotation and translation, respectively,
from the world to camera coordinate frames. These parame-
ters are regarded as the extrinsic parameters of the camera.
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The projection of the points in the camera coordinate onto
the image plane based on the pinhole camera model is given
by Equation (3). (

u
v

)
=

f
zc

(
xc
yc

)
, (3)

FIGURE 3. Relationships between component frames for vision guided
robot.

The task of computing the relative 3D position and ori-
entation between the camera and the robot hand in an eye-
on-hand configuration, where the camera is rigidly attached
to the robot hand, is known as hand-eye calibration. More
specifically, this is the task of computing the relative rotation
and translation (homogeneous transformation) between two
coordinate frames, one centred at the camera lens centre, and
the other at the robot hand. Figure 3 shows the relationships
between the different components frame of a vision guided
robot operation. To ensure easy operation of the robot, all
commands to the robot are referenced to the robot base frame.
Hence, for a complete identification of the object based on
the robot base frame, all the relationships must be obtained.
While the relationship between the robot base and the robot
hand can be realised from the robot kinematic model, the rela-
tionship between the camera and the world (see Equation (1))
can be obtained from camera calibration. This results in the
relationship between the camera and the robot hand need to
be computed. This relationship cannot be measured directly
because [33]

1) the measurement path may be obstructed by the geom-
etry of the sensor, the robot or other parts of the system

2) the hand and camera frames are unreachable. The cam-
era frame is unreachable because it is the intersection of
various link axes while the camera frame is unreachable
because its origin is at the focus point inside the camera.

Since the direct measurements are difficult, other
approaches have been investigated to solve the prob-
lem. Earlier approaches used non-linear optimisation of a
model that coupled the robot forward kinematics with the
hand-eye system [36]. These techniques are quite expen-
sive computationally and require estimation of a large
number of variables. In view of that, the most common
technique used [33], [37]–[39] is based on solving the homo-
geneous transform equation according to Equation (4), where
Ac1c2 and B

h1
h2

are the homogeneous transform matrices for the
motion of the camera and robot hand, respectively, between
two positions 1 and 2, and X ch is the required robot hand to
camera homogeneous transform. If the position and orien-
tation of the hand are known, the position and orientation
of the camera can be simply computed, vice versa. The

object can then be located with respect to the robot base
and locating information from different views can be fused.
The first challenge encountered during hand-eye calibration
is usually the estimation of the pose of the camera relative
to the world as the hand pose can easily be acquired from
the robot forward kinematic chain. Depending on how the
camera pose is estimated, the hand-eye calibration can be
regarded as either target-based or targetless. Target-based
hand-eye calibration takes advantage of specially made visual
features of known dimensions called calibration objects or
target - whose origin is set as the origin of the world frame
- to estimate the pose of the camera using special algorithms
like the Perspective-n-Point [50]. Targetless hand-eye cali-
bration without a calibration target uses techniques such as
in structure from motion [42], [48], tool motion tracking [49]
etc, to estimate the pose of the camera with respect to the
world. These methods can prove useful when taking the size
and weight of the calibration object into considerations as
well as the size of the work space for the robot motion. These
considerations for a calibration object usually come into play
when there is strict limitation of payload of a mobile robot
such as in space application, or sterility of the setup inmedical
applications. In this review, only techniques based on target-
based hand-eye calibration are considered.

Furthermore, it is important to note that the methods pre-
sented in this review focus primarily on the deterministic
formulation. Therefore, this review is by nomeans an exhaus-
tive list of the approaches to hand-eye calibration for visual
guided robots. We note that there are other key methods
available, which include (but not limited to) model based
[40], [41] and probabilistic [43]–[47] formulation of the
hand-eye calibration problem. The intent of this review is to
act as a guide to academics and industrial practitioners from
which further research in this topic area can be incited.

III. HAND-EYE CALIBRATION ALGORITHMS
A. HOMOGENEOUS TRANSFORM EQUATION
Based on the work of Shiu and Ahmad [33], the hand-eye
transform can be obtained by solving the homogeneous trans-
form equation given by

Ac1c2X
c
h = X chB

h1
h2

, (4)

where, Ac1c2 and B
h1
h2

are the homogeneous transform matrices
representation of the relative motions of the attached camera
and the robot hand between two points, respectively, while
X ch is the required transform between the robot hand and the
camera as shown in Figure 4. Ac1c2 and Bh1h2 can be expressed
as the product of two rigid body transform given by

Ac1c2 = Ac1w (A
c2
w )
−1, (5a)

Bh1h2 = Bh1b (Bh2b )−1, (5b)

where Ac1w ,Ac2w and Bh1b ,Bh2b are the poses of the camera
with respect to the world frame or calibration object, and the
poses of the robot hand and with respect to the robot base,
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respectively, for different robot positions. Equation (4) can
be represented in a matrix form as(

RA EtA
0T 1

)(
RX EtX
0T 1

)
=

(
RX EtX
0T 1

)(
RB EtB
0T 1

)
, (6)

where R is a 3× 3 rotation matrix and Et is a 3× 1 translation
vector. Hence, the calibration operation involves obtaining
sets of robot hand and camera poses as shown in Figure 5.
While the hand poses can easily be obtained from the robot
forward kinematics using the joint encoder readings, the cam-
era pose is usually estimated by observing a set of 3D points
provided by a calibration object and their corresponding 2D
images using Perspective-n-point algorithm [50], [51]. While
this formulation shows a more intuitive way to represent
and solve the hand-eye problem, estimating the hand-eye
transform based on Equation (4) is not trivial. This is because
the Special Euclidean SE(3) group structure of the homo-
geneous matrices must be preserved in the solution. Hence,
the solution to this form of matrix equation using general
matrix algebra [52] would not work.

FIGURE 4. Hand-eye calibration setup.

Finding methods of solving the homogeneous transform
equation that meet this requirement has been the focus of
majority of the research in hand-eye calibration. Several
solutions have been proffered over the years, each with its
strengths andweaknesses. They can be grouped based on how
the rotation and translation parameters are estimated as sep-
arated or simultaneous solutions. In the separated solutions,
the rotation parameter is first estimated based on representing
Equation (6) as(

RARX RAEtX +EtA
0T 1

)
=

(
RXRB RXEtB +EtX
0T 1

)
. (7)

hence,

RARX = RXRB, (8a)

RAEtX +EtA = RXEtB +EtX . (8b)

If RX is known, then Equation (8b) becomes linear and EtX
can then be estimated. The different techniques that focus on
the parametrisation of RX include, Angle-axis [33], [37], Lie
algebra [38], Quaternions [39] and Kronecker product [53].

FIGURE 5. Calibration process flow using homogeneous transform
equation.

For the details of the implementations of these algorithms,
see the listed references above. Based on the practical con-
siderations, generally, this group of solutions is computa-
tionally fast but suffers in terms of accuracy, especially in
the translation estimates. This is due to the assumption that
no relationship exist between the rotation and translation
parameters, hence, their separate estimation. However, these
two parameters are tightly coupled with high level of non-
linearity [54] and estimating them separately would lead to
propagation of errors from the rotation estimates onto the
translation estimates.

The simultaneous solutions provide a way of solving for
the rotation and translation parameters simultaneously, either
analytically or by way of numerical optimisation. Represen-
tative implementations based on analytical approach include
Quaternions [55], Screw motion [56], Dual Quaternions [57],
Kronecker product [58], Dual Tensor [59], and Dual Lie
algebra [60], while implementations based on numerical opti-
misation include Gradient/Newton optimisation method [61],
Linear-matrix-inequality [62], Alternative linear program-
ming [63], and Pseudo-inverse [64]. These methods can gen-
erate highly accurate results and generally avoid the problem
stated earlier for the separated solutions. However, their
implementations are usually complex, which may affect their
computational speed. Furthermore, the optimisation methods
may suffer from the problem of not guaranteeing conver-
gence, being trapped in a local minima of the cost function
or dependent on a good starting estimate. A comparison of
these approaches based on the accuracy and the computa-
tional speed is shown in Table 1. The accuracy criteria is
based on the Euclidean norm of the combined rotation and
translation error (unitless) for N robot movements derived
from Equation (4), as given by Equation (9). The computation
time is in seconds, based on execution on a MacBook Pro
2017 with i7-3.5Ghz CPU along with the MATLAB r2018a
software [65].

Error =
1
N

√√√√ N∑
i=1

‖AiX − XBi‖2. (9)

It is important to note that the values in Table 1 can only
be considered as an overview of what can be expected, espe-
cially due to the fact that it is devoid of any measurement
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uncertainty. This is a largely ignored area of research when
considering hand-eye calibration, as only a hand-full of works
[45], [54], [65], [66] has takenmeasurement uncertainty into
consideration given the large number of research outputs in
this area. However, it is important to note that the accuracy
of the calibration methods can be improved by increasing
the number of robot movements used during the calibration
process, maximising the angular spread between the differ-
ent robot movements, minimising the distance between the
camera and the calibration target and minimising the distance
moved by the robot arm between two positions [37].

B. REPROJECTION ERROR MINIMISATION
The homogeneous transform equation relies on the hand and
camera pose information to estimate the hand-eye transfor-
mation. As such, errors in these pose estimates will affect the
end result of the calibration.While the hand pose errors can be
minimised by calibrating the robot [67], through reprojecting
the image of the calibration pattern at each hand position
and minimising the error between the real image and the
reprojected image, the required hand-eye transform can then
be estimated as shown in the process flow in Figure 6.

FIGURE 6. Calibration process flow using reprojection error minimisation.

Reprojection error minimisation is a well-known technique
used in computer vision for pose estimation [68], [69], 3D
measurements [70] and shape reconstruction [71], [72], with
high level of accuracy and robustness. It shows how precise
an estimated 3D world point X̂ recreates the true projection
x on the image (see Figure 7). If P is the projection matrix
of the camera, then the image projection x̂ can be expressed
as x̂ = PX̂ , where e(x, x̂) represents the reprojection error
is the Euclidean distance between x and x̂. By minimising e
the true projection matrix can be obtained, and if the camera
calibration is known, then the pose of the camera can be
realised implicitly.

The main advantage of this technique over the homoge-
neous transform equation is that it directly takes images of
the calibration object without requiring explicit pose estimate
of the camera, which may otherwise contribute to errors.
The Perspective-n-point algorithm is usually used in the
estimation of the camera pose information from the pat-
tern images [73], [74]. However, this can be problematic
when using cameras with narrow field of view such as in

FIGURE 7. Reprojection error.

FIGURE 8. Source-detector projection model. Light ray from the source
passes through a world object P and is projected on the detector at
point p.

thermographic cameras [75]. Furthermore, the formulation
of the homogeneous transform equation is perfectly suited to
normal cameras, whose optics are modelled using the pinhole
camera projection model. When considering vision sensors
with different optics, such as in X-rays with source-detector
projectionmodel (see Figure 8), it becomes difficult to use the
homogeneous transform formulation as the typical pinhole
projection model does not provide a proper representation
of its optics. One way of achieving this is by using pose
graph optimisation [76], which estimates relatives pose of an
object based on a network of observed pose sequences. With
pose graph optimisation, it becomes possible to extend the
calibration to vision sensors with different optical projection
model like in source-detector model, where the source pose
and the detector pose can be reliably represented in the pose
graph.

C. ARTIFICIAL NEURAL NETWORK
Artificial neural network (ANN) is motivated by the neural
system in the brain and is one of the most commonly used
tools in machine learning [77]. In its basic form, it consists
of layers of interconnected nodes, each representing a mathe-
matical function. The strength of ANN comes from its ability
to model highly non-linear functions that map an input to an
output (see Figure 9). Hence, its application in pattern recog-
nition [78], robotics [79], signal and image processing [80]
and non-linear system state estimation [81]–[83] have been
very successful. An ANN model is obtained by training the
network with a set of input and corresponding output data
to obtain a set of optimised network parameters. The trained
model with its optimised parameters can then be applied to
an appropriate input to get the expected output.

Employing ANN in hand-eye calibration can be thought
of as finding a mapping between the hand coordinate with
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TABLE 1. Speed and accuracy comparison of different approach to solving the homogeneous transform equation. Speed is in milliseconds while the
accuracy is unitless, based on the Euclidean norm of the combined rotation and translation given by equation (9).

FIGURE 9. A simple artificial neural network with two hidden layers.

respect to the robot base and the respective image coordi-
nate of the calibration object. This problem can be posed
as A = fn(B), where A and B are the robot’s hand coor-
dinate and calibration image coordinate respectively and fn
is the function depicting the non-linear ANN model. With
a trained model, the required hand coordinate for a corre-
sponding object position as observed from the camera can be
obtained. An advantage of this formulation is that it can be
used without the knowledge of the camera parameters or pose
estimation [84]. This comes from the strong ability of ANN to
generalise non-linear relationships between variables, which
also makes it suitable for handling noise [84].

While ANN has some comparative advantages over the
methods of homogeneous transform equation and reprojec-
tion error minimisation, it is important to note that the solu-
tions provided by ANN are usually unexplainable [85]. This
can lead to mistrust of the system and difficulty in trou-
bleshooting problems. Furthermore, the performance of an
ANN model is highly dependent on the network structure
used [87] for which there is no definitive rule for appropriate
specification. As such, it is common to select a network
structure based on trial-and-error and users experience.

Parameter over-fitting is another limitation of ANN [88].
This is usually attributed to the failure to properly gener-
alise the model on the available data set, where the model
is too simple that could not learn enough, or the model is
too complex that it learn too much and over-fits the data.
Techniques for preventing over-fitting includes simplifying a
complex model, stopping the training early when error starts
to increase, data augmentation and regularisation [89].

Table 2 shows a comparison of the methods of
homogeneous transform equation, reprojection error min-
imisation and artificial neural network for hand-eye
calibration.

FIGURE 10. Different types of calibration patterns [92].

IV. CALIBRATION TARGET
The calibration target (object) is a very important piece of a
calibration process, be it for camera calibration or hand-eye
calibration. This subject is rarely discussedwhen dealingwith
calibration and often times, the decision to use a particular
calibration target is not objective with more focus on lens dis-
tortion modelling and parameter optimisation [90]. Calibra-
tion patterns such as checkerboards and circles are the most
used [91] (see Figure 10). This is due to the ease of which
they can be created with sufficient accuracy, and their data
points can be obtained easily using standard image processing
algorithms [91]. During calibration, the calibration pattern
captured by the camera can undergo perspective or non-
linear distortion, or both. While the perspective distortion
is due to the relative 3D position of the points, the non-linear
distortion is due to camera lens distortion. How the resulting
distortion affects the different calibration patterns determines
their reliability.
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TABLE 2. Homogeneous transform equation vs reprojection error minimisation vs artificial neural network for hand-eye calibration.

A. CHECKERBOARD TARGET
Checkerboard target is the most common calibration pat-
tern [93]–[96]. The interest points are the corners of the
squares, which can be detected as the intersection of the
lines that makeup the square edges. Mathematically, these
intersection points are the saddle points, which can easily be
detected as points, where the first derivative goes to zero. The
detection algorithm usually starts by binarising the image,
followed by filtering to ensure that the size and organisation
meet the dimension and structure specified by the user. The
main disadvantage of checkerboard targets is that it is usually
difficult to get the exact boundary of the corners [97]. How-
ever, the detection of the corners of the squares can usually
be done with sufficient level of accuracy because the corners,
being infinitely small are mostly invariant to perspective and
lens distortion [91].

Because of the alternating colours of adjacent squares,
the checkerboard target can be made rotation-invariant
by making the number of rows and columns even and
odd, respectively, or vise-versa. Otherwise, with both rows
and column either even or odd, the pattern creates a
180-degree ambiguity that can be problematic for multi-
camera calibration, where similar point needs to be identi-
fied by multiple cameras like in the calibration with stereo
cameras.

B. CIRCULAR GRID TARGET
Circular grid targets are based on circles with the feature point
being at the centre of the circle. Appropriate circles in the
target can be detected using characteristics like circularity and
convexity, and bad featured circles can be eliminated. While
the circles themselves are easy to detect and to be filtered,
unlike the checkerboard target, they are not invariant under
perspective and lens distortion as shown in Figure 11. Under
perspective projection, the circles are imaged as ellipses.
Ideally, this can be solved using image rectification, however,
the additional lens distortion on the ellipses adds some bias
to the detected points, which in general would require a more
complex algorithm to correct.

Just as in checkerboard targets, the circular grid target can
bemade rotation invariant formulti-camera view. This is done
by using asymmetric grid pattern as shown in Figure 12.

C. DISCUSSIONS
Checkerboard and circular grid are the most widely used
patterns for vision system calibration. The choice of pattern

FIGURE 11. Circular grid under perspective (left) and lens (right)
distortion [92].

FIGURE 12. Asymmetric circular grid pattern [98].

used depends on the application constraints such as accuracy,
complexity of detection algorithm, distortion, etc. The fea-
ture points for checkerboard pattern are the intersection of
the lines that can easily be obtained using standard corner
detection strategies [99]. For circular grid patterns, the feature
point commonly used is the centre of mass of the circle pixels.
Often times the estimated position of checkerboard corner,
or circle centre do not fall at the exact point and further
computation would be required for sub-pixel accuracy [91].
Generally, the mathematics involved for realising sub-pixel
accuracy for circular grids is much more complex than for
checkerboard pattern [91]. This complexity is compounded
by the fact that the feature point for circular grid is affected
by both radial and perspective bias. Hence the accuracy of
circular grid depends on how well the true centre of the
circle can be determined. Figure 13 illustrates the effect of
radial distortion on the accurate detection of the features
for checkerboard and circular targets. In this illustration the
radial distortion coefficient k1 as given in Equation (10) is
increased from −2 to 2, where ki, i = 2, 3, . . . are the
distortion coefficients, rd is the distortion radius, (xu, yu)
and (xd , yd ) are the undistorted and distorted image points
respectively. Table 3 shows a summary of the comparison
between the properties of checkerboard and circular grid
patterns.

xu = xd (1+ k1r2d + k2r
4
d + · · · ) (10a)

yu = yd (1+ k1r2d + k2r
4
d + · · · ). (10b)
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TABLE 3. Comparison of checkerboard and circular grid calibration patterns.

FIGURE 13. Accuracy evaluation for feature points detection for
checkerboard (corners and edges) and circular grid (centroid and conics)
targets for increasing levels of radial distortion k1 [91].

FIGURE 14. CharuCo target [100].

D. OTHER CALIBRATION TARGETS
Other calibration targets exist with the aim of overcoming
the limitations of the checkerboard and circular calibration
targets. Most of these come with some form of encoding
marker. An example of such is the CharuCo target shown
in Figure 14.

In the CharuCo target, the light squares are uniquely
encoded. Thus, this makes CharuCo target possible to carry
out calibration even with part occlusion or poor image condi-
tions such as in inhomogeneous lighting, while maintaining

the advantage that the intersection of the square edges or
interest points can easily be recovered, when an ordinary
checkerboard or circular grid target under these conditions
would normally fail. The main drawback of this calibration
target is the complex algorithm required for the detection and
decoding of the patterns.

V. COMMON CHALLENGES OF HAND-EYE CALIBRATION
Hand-eye calibration is an active field of research in robotics
and computer vision mainly due to the importance of pre-
cision and accuracy in these industries. For example, while
an accuracy level of 1 mm may be required for spot welding
operation in the automotive industry, an accuracy measure of
at least ten to twenty-fold would be required in the aerospace
industry [101]. Similar accuracy levels can also be found in
robotic applications in the health industry, where safety is of
utmost importance [102]. Achieving this level of accuracy is
a major challenge in hand-eye calibration for robots due to
a number of factors such as data asynchronicity, noise and
limited motion range.

A. DATA ASYNCHRONICITY
The hand-eye calibration problem is constrained on data from
two sources: the eye (camera) and the hand (robot). This
constraint requires correspondence in the data stream from
both sources, which may not be practically possible, resulting
in temporal misalignment in the data [103]. This temporal
misalignment may be due to the differences in the operat-
ing frequency of the sensors, difficulty in synchronising the
trigger for the data capture on both sources or missed data
in either stream. Many solutions to hand-eye calibration are
offline in nature [38], [39], [53], [64], where the calibration
setup is made, complete pose data set for both the hand and
the eye with respect to the robot base and world, respectively,
are acquired, and computation of the required hand-eye trans-
form made. Regardless of the fact that the acquisition of both
sets of data are made in discrete steps, data asynchronicity
still forms a major problem which affects the correspondence
of the data. Offline calibration nonetheless is not suitable
for certain applications. An example is in critical operations
like robot assisted surgery (RAS), where frequent changes
in setup and recalibration is an expensive operation that
must be dealt with on the fly [104]. This type of application
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require online calibration [105], where data is continually
being captured and used to update the calibration algorithm,
rendering the need for data synchronisation on both sources
very apparent.

One solution to the problem of temporal misalignment
is the use of timestamp [106]. By timestamping the data
from both sources, users could manually or programmat-
ically synchronise the data streams and also avoid miss-
ing data. Cross-correlation techniques can also been used
to achieve data synchronisation for hand-eye calibration as
in [107], [108]. Normalising and resampling the data before
the cross-correlation operation can be used to ensure that
differential data length caused by time delay or different
sampling rate do not affect the result. A more elegant solution
can be found in the use of a real-time embedded operating
system for the control of the data capture and synchronisation
operation [109]. This, however, would require compatibility
with different sensors and robot systems and can quickly
make the setup less attractive in terms of cost and complexity.

B. NOISE
Noise is a major problem in hand-eye calibration, which
arises as a result of perturbations in the robot-camera assem-
bly. This causes some degree of uncertainty in the calibration
results. A direct impact of the noise in hand-eye calibration
is the need to use measurements from multiple coordinate
frames (greater than the theoretical minimum) for the estima-
tion of the hand-eye transform [37]. The required hand-eye
transform is estimated from a system of equations based
on the rigid body transform of the robot-camera assembly,
which normally results in an overdetermined system [33].
In an ideal scenario, with no noise in the system, because
the measurements are physically constrained to be consistent
with the robot-camera assembly, the set of equations could
be solved by a simple least square method. Since there are
more equations than unknowns in the presence of measure-
ment noise, the equations becomes inconsistent and multiple
frames or robot motions would be required to accurately
estimate the system variables.

Noise in robot hand-eye calibration can be categorised into
two forms. These are noise as a result of the robot motion
and the camera motions. Noise from the robot motion directly
affects the kinematic model of the robot as they are caused by
measurements from the joint encoders or optical trackers in
the robot. The error in measurement can be due to various
factors such as kinematic errors, non-kinematic errors and
joint errors.
• Kinematic Errors: Kinematic errors are related to and
have direct impact on the kinematic model of the
robot [110], [111]. These may be due to manufacturing
and assembly tolerances, geometry of the robot compo-
nents such as orthogonality or parallelism or the position
of the reference frame.

• Non-Kinematic Errors: Unlike kinematic errors,
non-kinematic errors are due to the mechanical
characteristics of the robot components such as

stiffness, blacklash elasticity and impact of
temperature [112], [113].

• Joint Errors: Joint errors are directly related to the error
in motion measured at individual joints of the robots
by the joint encoders and are caused by the sensors
themselves [114], [115].

Noise from the camera motions is a direct consequence of
camera calibration, which can result from low camera quality,
poor calibration parameter estimates, low quality calibration
pattern etc. These errors, while they can be small from a
camera calibration perspective [116], can be propagated to
the estimates of the hand-eye calibration.

C. LIMITED MOTION RANGE
The range of allowable motion of the robot hand during cali-
bration have a direct impact on the results of the calibration.
Large motions in the robot hand has the effect of suppressing
noise in the setup that can arise due to perturbations [37].
Despite this advantage, not every application is able to permit
a wide motion range. In RAS, only a small motion range
of the surgical tool is permitted. This is usually constrained
to within the vicinity of the trocar entry ports [112]. This is
done to minimise the damage that can be done to surrounding
tissues at the entry ports [117]. In pick-and-place applications
like in sorting and assembly facilities, the constraint is the
field of view of the camera outside in which the operation of
the robot is not feasible [118]. In other instances, the robot
motion is limited to a particular area to provide a safe envi-
ronment in which human operators can operate [119], [120].
In these applications, the robot is controlled by an embedded
control system that specifies and limits the motion of the hand
to a given work space.While the allowable range of motion of
the robot hand cannot always be controlled, a lot of gain can
be achieved by implementing proper path planning algorithm
and pose selectionmethods to obtain awell-conditioned robot
hand-eye constraints [37], [121], [122].

VI. CONCLUSION
In this review, different solutions to hand-eye calibrationwere
discussedwith the aim of presenting their strengths andweak-
nesses. The purpose was to provide necessary information
that would be required for implementation by academics
and industrial practitioners, as well as encourage further
research. The most common formulation of the problem
requires finding a solution to the homogeneous transform
equation AX = XB. A lot of research have be done in this
area, with solutions found using angle-axis representation
of the rotation parameter, Lie algebra, Quaternions, Dual
Quaternions, Screw motion, Kronecker product as well as
using optimisation techniques. Each of the resulting algo-
rithms differ in their level of accuracy and computational
requirement, which needs to be taken into account by aca-
demics or industrial practitioners depending on their design
constraints. Alternate methods that solve the problem using
reprojection error minimisation and artificial neural network
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are also presented. The main advantages with the method of
reprojection error minimisation are error avoidance due to
camera pose estimation and the ability to work with camera
models (e.g. like source-detection model used for X-rays)
other than the pinhole projection model. While the method of
artificial neural network also simplifies the problem by using
only images taken by the camera, network parametrisation
and over-fitting may limit its usage.

Different considerations for choice of calibration pattern
are also discussed, with checkerboard and circular grid pat-
terns being the most common calibration targets. While
sub-pixel accuracy can be achieved using either of the target
choices, circular grid targets usually require more complex
algorithms. How the patterns respond to perspective and lens
distortion play a huge role their reliability, with circular grid
targets being more susceptible to distortions that must be
corrected. The CharuCo target on the other hand embeds
encodings on its pattern to avoid the limitations of the most
commonly used checkered board pattern.

Finally, we discuss about some common challenges that
are expected in the calibration of robots eye-hand system.
While proper planning and appropriate calibration setup can
improve the calibration estimate, it is sometimes difficult to
meet all the conditions for improved accuracy and a compro-
mise has to be made. Data asynchronicity, noise and limited
motion range are identified as some of the challenges of hand
eye calibration that can also gain improvement from proper
path planning, calibration setup and robot calibration prior to
hand-eye calibration. In general, for accurate vision guided
robotic operation, there has to be proper calibration of the
robot to correct the joint variables and robot parameter, cali-
bration of the camera to determine its accurate pose relative
to world measurements, and then calibration of the hand-eye
system to obtain the transformation of the camera relative to
the robots hand.
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