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Abstract—Out of various moving average filter (MAF)-based
Q1

5
phase-locked-loop (PLL), quasi type-1 PLL (QT1-PLL) is widely6
adopted due to its fast dynamic performance, implementation7
simplicity, and harmonics rejection abilities. However, the perfor-8
mance of QT1-PLL deteriorates in the presence of an off-nominal9
frequency unbalanced grid voltage component. Moreover, the10
sensitivity towards the fundamental frequency negative sequence11
(FFNS) component is high. Hence, this paper proposes a novel12
enhanced QT1-PLL solution that is insensitive to unbalance in13
the grid voltage signal during off-nominal frequency conditions.14
The proposed adaptive phase detector makes it possible to esti-15
mate both the fundamental frequency positive sequence (FFPS)16
and FFNS components with a high degree of immunity against17
harmonics. Notably, the pre-loop separation of the FFPS and the18
FFNS components helps suppress the second harmonic oscillations19
for improving the parameter estimation accuracy. The loop-filter20
design of QT1-PLL remains unaffected and requires a proportional21
gain to estimate the fundamental phase and frequency information.22
To address the DC offset issue, a modified delayed signal cancel-23
lation method is also proposed, which can theoretically eliminate24
the DC offset for any arbitrary delay length. A small-signal model25
of the proposed PLL is developed for the sake of stability analysis.26
Comparative numerical simulation and experimental results are27
provided with various variants of QT1-PLLs to demonstrate the28
performance improvement achieved with the proposed technique.

Q2

Q3

Q4

29

Index Terms—Phase locked-loop, delayed signal cancellation,30
moving average filter.31
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I. INTRODUCTION 32

THE penetration of grid-interfaced power electronic con- 33

verters into traditional electric power grid is increas- 34

ing day-by-day. They are used for various purposes such as 35

grid-integration of distributed energy resources [1]–[5], power 36

quality improvement [6], supplying domestic and industrial 37

loads [7], charging electric vehicles [8], to name a few. These 38

applications require grid-synchronous operation of the con- 39

verter with the grid. This process is commonly known as grid- 40

synchronization in the literature. Grid-synchronization necessi- 41

tates the real-time extraction of unknown grid voltage parame- 42

ters. As a result, a significant research attention has been given 43

to this problem in the last few decades. 44

Many fast, efficient, and accurate techniques are already 45

reported in the literature. Out of them, phase-locked loop 46

(PLL) [9]–[13] and it’s various variants are particularly popu- 47

lar. Traditional synchronous reference frame-PLL (SRF-PLL) 48

uses Park’s transformation as the phase detector and uses a 49

proportional-integral low-pass filter to estimate the unknown 50

grid frequency and phase. The SRF-PLL has fast convergence 51

speed and good disturbance rejection capability. However, this 52

PLL is designed for a balanced grid i.e. only the fundamental 53

frequency positive sequence (FFPS) component is present. In 54

practice, especially at the distribution network level, the grid 55

often has a level of phase unbalance, e.g., more than 50% of the 56

800 low voltage substations in Cardiff, U.K. have serious phase 57

unbalance [14]. So, enhanced filtering capability is essential to 58

ensure efficient operation of PLL under the presence of phase 59

unbalance i.e. both FFPS and fundamental frequency negative 60

sequence (FFNS) components exist simultaneously. 61

In the presence of phase unbalance, the phase detector of SRF- 62

PLL generates an undesirable double frequency components. To 63

eliminate the undesirable components, several solutions propose 64

the application of additional filtering stage(s) through pre-loop, 65

in-loop and a combination of both. In the case of pre-loop, filters 66

are applied in the stationary reference frame, i.e., αβ−frame 67

where as in-loop filters are applied in the synchronous reference 68

frame, i.e., dq−frame. In the case of hybrid filtering, filters are 69

applied at both stationary and synchronous reference frames. 70

Some popular filters proposed in the literature are: delayed 71

signal cancellation (DSC) [15]–[17], complex coefficient filter 72

(CCF) [18], [19], moving average filter [20]–[24], orthogonal 73

signal generator (OSG) filter such as second-order generalized 74

integrator (SOGI) [25], adaptive notch filter (ANF) [26], to 75
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name a few. In addition to the filter-based SRF-PLLs, multiple76

reference frame-based SRF-PLLs such as double decoupled77

SRF-PLL [27] are also popular in the literature.78

Delayed signal cancellation (DSC) [15]–[17], [28] is a pop-79

ular technique to eliminate the FFNS from the measured grid80

voltages at the point of common coupling. In order to make81

DSC-PLL immune to harmonics, multiple DSC operators are82

used in cascade. So, prior information about the grid harmonics83

is needed.. Moreover, in the case of off-nominal frequency84

operation, frequency-adaptive DSCs are proposed [29]. This85

can potentially increase the computational complexity. By using86

cross-coupling between two CCF, CCF-PLL [18], [19] can87

extract grid-synchronized FFPS and FFNS components. CCF88

is very suitable for selective harmonic elimination. However,89

multiple CCFs are required to eliminate the effect of harmonics90

which causes additional computational burden.91

OSG-PLLs operate in the stationary reference frame, i.e.,92

αβ−frame and uses OSGs to separate the FFPS and FFNS com-93

ponents followed by traditional SRF-PLL. OSGs typically have94

band-pass (cf. SOGI [25]) or notch (cf. ANF [26]) characteris-95

tics. To enhance the harmonic robustness of OSG-PLLs, multiple96

parallel OSGs are often recommended in the literature [30]. This97

can be computationally complex. Moreover, discretization of98

parallel OSGs is not straightforward, specially for high-order99

harmonics. Multiple reference frame PLLs use multiple SRFs100

to separate the FFPS and FFNS components. In the case of101

DDSRF-PLL, two cross-coupled reference frames operating at102

opposite instantaneous phases are used. This helps to make the103

PLL insensitive to FFNS components. However, the presence of104

harmonics and/or DC-offset deteriorates the performance. This105

necessitates the application of several reference frames where106

each operates at the relevant instantaneous phases. This kind107

of structure is complex and not suitable for low-cost embedded108

devices-based real-time implementation.109

MAF-PLLs [20]–[24] provides an interesting solution to elim-110

inate the effect of harmonics and/or DC offset. Here, MAF is111

used to eliminate the effect of FFNS component. Depending on112

the MAF window length, MAF-PLL can be very effective to113

block all harmonics and DC offset. However, this comes at the114

cost of slow dynamic response [20]. To enhance the convergence115

speed of MAF-PLL, quasi type-1-PLL (QT1-PLL) is proposed116

in [21]. The QT1-PLL uses the idea of frequency-adaptive117

demodulation [31]. An advantage of this approach is that118

only a proportional loop-filter can estimate the unknown grid-119

frequency whereas proportional-integral loop filter is required120

for conventional MAF-PLL. However, QT1-PLL is sensitive to121

off-nominal FFNS component. Since, fundamental frequency122

tuned MAFs are used in QT1-PLL, it cannot completely block123

the FFNS component if they appear at off-nominal frequency124

condition. To speed-up the convergence speed of QT1-PLL, hy-125

brid QT1-PLL (HQT1-PLL) [22] is proposed. In this case, DSC126

operators are applied in the αβ−frame whereas MAF is applied127

in the dq−frame. However, fast dynamic response comes at the128

cost of sacrificing the high phase margin. Moreover, HQT1-PLL129

is also sensitive to off-nominal FFNS component. To reduce130

the effect of off-nominal frequency FFNS component sensitivity131

of QT1-PLL, total QT1-PLL (TQT1-PLL) is proposed in [24].132

Fig. 1. Overview of QT1-PLL [21].

In this case, a third-order non-adaptive MAF is proposed. This 133

MAF has same window length as QT1-PLL but has significantly 134

lower steady-state errors in the presence of off-nominal FFNS 135

component. However, this comes at the cost of high sensitivity 136

to sub- and inter-harmonics. In [32], the authors have proposed 137

the application of all-pass filter (APF) [33] as the sequence 138

components separator for HQT1-PLL. Although this technique 139

can reduce the sensitivity, however, APF on its own has limited 140

filtering capability. This can be a limiting factor when the grid 141

voltage has inter- and/or sub-harmonics components. Similar 142

line of investigation is considered in [34] where third-order 143

generalized integrator is considered as the pre-loop filter. It is to 144

be noted here that none of the QT1-PLL techniques discussed 145

in this section can extract the FFNS component with high de- 146

gree of harmonic immunity. This limits their application where 147

sequence extraction is important [35]. 148

Comparative analysis in [23] shows that out of various MAF- 149

PLLs, QT1-PLL is very suitable for grid-connected converters. 150

This motivates the current work of improving the performance 151

of QT1-PLL. Our main objective is to use QT1-PLL for FFPS 152

and FFNS sequence extraction. For this purpose, an enhanced 153

phase detector is constructed in this work. This phase detector 154

can separate the FFPS and FFNS initial phase-angle and am- 155

plitudes. Output of the phase detectors are passed through a 156

proportional loop-filter to estimate the unknown frequency and 157

instantaneous phase of the grid voltage. A small-signal model 158

is derived through analytical calculations and constructive gain 159

tuning procedures are developed for the proposed enhanced 160

QT1-PLL. Finally, the performance of the proposed technique 161

is verified through simulation and experiments on a PWM- 162

controlled voltage source inverter. In contrast to the conventional 163

QT1-PLLs, the proposed approach is insensitive to off-nominal 164

FFNS component. Moreover, it can extract FFPS and FFNS 165

components unlike conventional QT1-PLLs. These are the main 166

contributions of this work. 167

The rest of this paper is organized as follows: Section II 168

summarizes the conventional QT1-PLL. Development of the 169

proposed enhanced QT1-PLL is given in Section III. Results and 170

discussions are given in Section IV. Finally, concluding remarks 171

are given in Section V. 172

II. QUASI TYPE-1 PLL: BRIEF OVERVIEW 173

This section summarizes the basic idea of the conventional 174

QT1-PLL as proposed in [21]. Block diagram of the QT1-PLL 175

is given in Fig. 1. To analyze the phase detector of the QT1-PLL, 176

let us consider the three-phase grid voltages in α, β−frame as: 177

vα(t) = V cos (ωt+ φ) , (1)
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vβ(t) = V sin (ωt+ φ) , (2)

where the amplitude, angular frequency, and the initial phase-178

angle are given by V , ω, and φ, respectively. The instantaneous179

phase of the signals (1) and (2) is given by Θ = ωt+ φ ∈180

[0, 2π). The voltages in (1) and (2) are converted into the181

synchronous reference frame (d, q) by applying the Park-type182

transformation and given by:183 [
vd
vq

]
=

[
cos (ω̂t) sin (ω̂t)
− sin (ω̂t) cos (ω̂t)

] [
vα
vβ

]
. (3)

From (3), the direct and quadrature-axis voltages can be184

rewritten as:185

vd = vα cos (ω̂t) + vβ sin (ω̂t) ,

=
V

2
[cos {(ω − ω̂) t+ φ}+ cos {(ω + ω̂) t+ φ}]

+
V

2
[cos {(ω − ω̂) t+ φ} − cos {(ω − ω̂) t+ φ}] . (4)

vq = vβ cos (ω̂t)− vα sin (ω̂t) ,

=
V

2
[sin {(ω + ω̂) t+ φ}+ sin {(ω − ω̂) t+ φ}]

− V

2
[sin {(ω + ω̂) t+ φ} − sin {(ω − ω̂) t+ φ}] . (5)

In the quasi-locked condition i.e. ω̂ ≈ ω, it can be assumed186

that ω − ω̂ ≈ 0. Then, (4) and (5) can be simplified as:187

vd ≈ V cos (φ) . (6)

vq ≈ V sin (φ) . (7)

It is to be noted here that only whenφ = ±nπ, n = 0, 1, 2, . . .,188

vd ≈ V and vq ≈ 0 which is the same as the output of the phase189

detector of SRF-PLL [9]. From (6) and (7), the initial phase-190

angle can be estimated as:191

φ̂ = atan2 (vq, vd) , (8)

where atan2 is the double quadrant arctangent function. In the192

above analysis, it is assumed that the grid is balanced and does193

not contain any harmonics. In practice, the grid is unbalanced,194

then, the FFNS component will appear as a double the funda-195

mental frequency component in (6) and (7). Similarly, odd-order196

harmonics in the grid voltage will also appear as even-order197

harmonics in (6) and (7). These high frequency components198

will introduce ripple in the estimated phase-angle. Hence, the199

frequency even-order AC components can be filtered out by us-200

ing a moving average filter (MAF) of window length,Tw = T/2,201

where T is the period of the fundamental component. The202

transfer function of the MAF in continuous and discrete-time203

are given by204

GMAF (s) =
(
1− e−Tws

)
/Tws. (9)

GMAF (z) =
1

N

1− z−N

1− z−1
, (10)

where N = T/Ts with Ts being the sampling period. There are205

three major issues that affect the performance of the standard206

QT1-PLL. Firstly, the phase detector part does not use any207

gain i.e. no design freedom. Secondly, off-nominal frequency 208

negative-sequence component will introduce high frequency rip- 209

ple in the estimated phase. Finally, it is not capable of extracting 210

the FFNS component. These issues will be addressed in the next 211

section. 212

III. ENHANCED QT1-PLL 213

In this section, the proposed modifications are detailed. First, 214

the development of the proposed modified delayed signal can- 215

cellation (DSC) is detailed. Then, tunbale phase detector is given 216

followed by the small-signal model-based stability analysis and 217

tuning of the proposed PLL. For the remainder of this Section, 218

let us consider the unbalanced grid voltages in the αβ−frame 219

as: 220

vα = V 0
α + V + cos

(
ωt+ φ+

)
+ V − cos

(
ωt+ φ−) , (11)

vβ = V 0
β + V + sin

(
ωt+ φ+

)− V − sin
(
ωt+ φ−) , (12)

where DC offsets are denoted by V 0
α and V 0

β , the superscript + 221

and − indicate the positive- and negative-sequence component 222

and the remaining variables retain the same meaning as defined 223

in Section II. 224

A. DC Offset Rejection 225

To reject DC offset, half-cycle DSC is a popular solution in the 226

literature [22], [24], [28], [32]. In this work, we are considering a 227

modified version of the DSC method for DC offset rejection. For 228

this purpose, let us consider the delayed versions of the signals 229

(11) and (12) as given below: 230

vntdl = vα (t− ntd) , (13)

for l ∈ {α, β}, n = 1, 2 with td being the basic time delay. Let 231

us denote the DC offset-free version of the signals (11) and (12) 232

as v∅α and v∅β . Then, these signals can be estimated using (11), 233

(12), and (13) as given below: 234

v∅l = vl +
0.5

cos (ωtd)− 1

(
vl − 2 cos (ωtd) v

td
l + v2tdl

)
. (14)

Using (14), DC offset-free signals can be estimated using any 235

arbitrary amount of time-delay as opposed to the half-cycle delay 236

requirement of traditional DSC method. To implement (14), real- 237

time information of the grid frequency ω is required. However, 238

real-time frequency adaptation can complicate the modeling 239

and tuning process. As such, frequency-fixed version of (14) 240

is considered similar to [22], [24], [32] where the frequency ω 241

is substituted by its nominal value. However, this will introduce 242

amplitude and phase attenuation in the off-nominal frequency 243

condition. So, compensation of these deviations need to be 244

considered. For this purpose, transfer function of the filter (14) 245

needs to be considered. Then, based on the developed transfer 246

function, quantification of the amplitude and phase attenuation 247

need to be studied. Filter (14) has the same transfer function of 248

convention half-cycle DSC if td = T/4 is considered. For this 249

value of td, the total delay of the proposed DSC filter (14) is 250

the same as the standard DSC, i.e., T/2. As such, this value 251

of td is selected. For this value, transfer function of (14) in the 252
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phasor-form is given by:253

Gαβ
DSC(s) =

(
1− e−2tds

)
/2. (15)

Let us consider that ω = ωn +Δω, where ωn is the nominal254

value and Δω is the deviation. Then, the amplitude and phase255

of transfer function (15) can be found as [36]:256 ∣∣∣Gαβ
DSC(s)

∣∣∣ ≈ 1− kv (Δω)2 , (16)
257

∠Gαβ
DSC(s) = −kφΔω, (17)

where kv = T 2/32 and kφ = T/4. From (16) and (17), it is258

clear that in the off-nominal frequency case, amplitude and259

phase attenuation are characterized by kv and kφ. As such,260

compensation of these pre-loop filter induced attenuation need261

to be considered in the in-loop of the PLL. It is to pointed out here262

that as a particular case of (14), convention half-cycle DSC filter263

can be be obtained. However, unlike conventional DSC, (14)264

can eliminates DC offset for any value of td. Moreover, despite265

the transfer functions being equal for td = T/4, the dynamic266

response is not the same for our DSC and the conventional267

counterpart.268

Transfer function (15) in the dq-frame is given by:269

Gdq
DSC(s) =

(
1 + e−2tds

)
/2. (18)

Transfer function (18) will be used for small-signal modeling270

purpose later in Section III-C.271

B. Tunable Phase Detector272

To develop the phase detector with tunable gain, let us con-273

sider the offset-free signal in (11) and (12), i.e., v∅α and v∅β . By274

applying basic trigonometric identities, expressions of v∅α and v∅β275

can be expanded and rewritten into the parametric form as [37],276

[38]:277

v∅α = ΩT
αθα, (19)

v∅β = ΩT
β θβ , (20)

where278

Ωα = Ωβ =
[
cos (ωt) sin (ωt)

]T
,

θα =

[
θα1
θα2

]
=

[
V + cos (φ+) + V − cos (φ−)
−V + sin (φ+)− V − sin (φ−)

]
,

θβ =

[
θβ1
θβ2

]
=

[
V + sin (φ+)− V − sin (φ−)
V + cos (φ+)− V − cos (φ−)

]
,

with the unknown parameter vectors being denoted by θα, θβ279

while Ωα and Ωβ denote the known information vector. To280

estimate the unknown parameter vectors θα and θβ from the281

measured voltages vα and vβ , let us consider the estimated282

voltages as v̂∅α = ΩT
α θ̂αand v̂∅β = ΩT

β θ̂β . Let us define the param-283

eter vector estimation error as θ̃α = θα − θ̂α and θ̃β = θβ − θ̂β .284

Then, the output estimation error can be written as:285

ṽ∅α = v∅α − v̂∅α = ΩT
α θ̃α. (21)

ṽ∅β = v∅β − v̂∅β = ΩT
β θ̃β . (22)

Let us consider the following Lyapunov-like function with 286

ke > 0: 287

V
(
θ̃α, θ̃β

)
=

1

2

(
θ̃Tαk

−1
e θ̃α + θ̃Tβ k

−1
e θ̃β

)
. (23)

Time-derivative of (23) leads, 288

V̇ = −θ̃Tαk
−1
e

˙̂
θα − θ̃Tβ k

−1
e

˙̂
θβ . (24)

Let us select the parameter vector update laws as: 289

˙̂
θα = keΩαṽ

∅
α. (25)

˙̂
θβ = keΩβ ṽ

∅
β . (26)

By plugging in the update laws (25) and (26) into (24), one 290

can get that: 291

V̇ = −
(
ṽ∅α

)2

−
(
ṽ∅β

)
≤ 0.

This proves the boundedness of the parameter vector es- 292

timation error. Parameter update laws (25) and (26) can be 293

used to extract the amplitude and phase angles. In obtaining 294

the update laws, it is assumed that the information vectors Ωα 295

and Ωβ are known a priori. In practice, the grid frequency is 296

unknown. In this case, an estimate of the grid frequency has 297

to be used. By considering the estimated grid frequency, the 298

unknown parameter estimation laws can be written in the scaler 299

form as: 300

˙̂
θα1 = ke cos (ω̂t) ṽ

∅
α. (27)

˙̂
θα2 = ke sin (ω̂t) ṽ

∅
α. (28)

˙̂
θβ1 = ke cos (ω̂t) ṽ

∅
β . (29)

˙̂
θβ2 = ke sin (ω̂t) ṽ

∅
β . (30)

From the estimated parameters, direct- and quadrature-axis 301

positive- and negative-sequence voltages can be obtained as: 302

v+d =
θ̂α1 + θ̂β2

2
. (31)

v+q =
θ̂β1 − θ̂α2

2
. (32)

v−d =
θ̂α1 − θ̂β2

2
. (33)

v−q =
−θ̂α2 − θ̂β1

2
. (34)

Similar to QT1-PLL, estimated direct and quadrature-axis 303

positive- and negative-sequence voltages will also be passed 304

through MAF to enhance the harmonic robustness. Then, the am- 305

plitude and phase-angle of the positive- and negative-sequence 306

voltages can be obtained as: 307

V̂ + =

√(
v+d

)2
+
(
v+q

)2
. (35)

V̂ − =

√(
v−d

)2
+
(
v−q

)2
. (36)

φ̂+ = atan2
(
v+q , v

+
d

)
. (37)



IE
EE P

ro
of

AHMED et al.: QUASI TYPE-1 PLL WITH TUNABLE PHASE DETECTOR FOR UNBALANCED AND DISTORTED THREE-PHASE GRID 5

Fig. 2. Block diagram of the proposed enhanced QT1-PLL.

φ̂− = atan2
(
v−q , v

−
d

)
. (38)

Using (35)–(38) and the estimated ω̂t, FFPS and FFNS can308

easily be obtained. Block diagram of the proposed tunable phase309

detector based enhanced QT1-PLL for the FFPS case is given310

in Fig. 2.311

C. Small-Signal Modeling and Tuning312

1) Small-Signal Modeling: The considered parameter esti-313

mation technique described by (27)–(30) is nonlinear in nature314

and not very suitable to find an analytical formula to tune the315

phase detector gain ke. To find an explicit gain tuning formula,316

let us consider the FFPS phase-angle dynamics by using (37):317

˙̂
φ+ =

v̇+d v
+
q − v+d v̇

+
q(

v+d
)2

+
(
v+q

)2 . (39)

By substituting (27)–(32) into (39), it can be found that:318

˙̂
φ+ =

V̂ + sin(φ̂+)(
˙̂
θα1 +

˙̂
θβ2)− V + cos(φ̂+)(

˙̂
θβ1 − ˙̂

θα2)

2
(
V̂ +

)2 ,

=
ke sin(Θ̂

+)ṽ∅α − ke cos(Θ̂
+)ṽ∅β

2V̂ +
,

=
keV

+ sin(Θ+ − Θ̂+)

2V̂ +

+
ke{V̂ − sin(Θ̂+ + Θ̂−)− V − sin(Θ− + Θ̂+)}

2V̂ +
. (40)

In the quasi-locked condition, V + ≈ V̂ +, V − ≈ V̂ −, Θ+ ≈319

Θ̂+, and Θ− ≈ Θ̂−. In this case, V̂ − sin(Θ̂+ + Θ̂−)−320

V − sin(Θ̂− + Θ̂+) ≈ 0. Moreover, by applying small-angle ap-321

proximation formula, one can obtain that sin(Θ+ − Θ̂+) ≈322

(Θ+ − Θ̂+) ≈ φ+ − φ̂+. Then, (40) can be simplified as:323

˙̂
φ+ ≈ ke

2
(Θ+ − Θ̂+),

Fig. 3. Gain tuning results for +2 Hz step test.

≈ (ke/2)(φ
+ − φ̂+). (41)

From (41), the phase-angle transfer function can be obtained 324

as: 325

GPD(s) = φ̂+(s)/φ+(s) = 1/τes+ 1, (42)

where τe = 2/ke. From the transfer function (42), it is clear 326

that the considered phase detector has a first-order dynamics. 327

As such, the gain ke can be tuned by using the formula: 328

ke = 8τ−1
s , (43)

where τs is the desired settling time. Using the transfer function 329

(42) and the block diagram of the proposed enhanced QT1-PLL 330

(cf. Fig. 2), the small-signal model can be obtained as shown in 331

Fig. 4. 332

2) Tuning: The proposed technique has three tuning parame- 333

ters. They are: phase detector gainke and the frequency estimator 334

gain kp. The proposed phase detector can be considered as the 335

observer while the loop-filter can be considered as the controller. 336

In traditional observer-based control system, the observer’s con- 337

vergence speed is typically selected as significantly faster than 338

the controller’s convergence speed. Similar idea is considered 339

here also to tune the phase detector gainke. To tune this again, we 340

assume a quarter cycle convergence time i.e. τs = T/4. With this 341

value of τs, the phase detector gain can be found as ke = 1600 342

from (43). 343

Finally, to tune the loop-filter parameter kp, we have con- 344

sidered settling time-based tuning approach similar to [22], 345

[24], [32]. For this purpose, frequency step test of +2 Hz is 346

considered. Then, the settling time (within 2% of the final value) 347

are calculated for different values ofkp. Results of the simulation 348

are given in Fig. 3. The lowest settling time is obtained for 349

kp = 61. As such, this value has been considered. This value 350

corresponds to a phase margin of ≈ 37.8◦ which is within the 351

widely accepted 30◦ − 60◦ limit. 352

To validate the developed small-signal model and the tuning 353

procedure, a validation test is performed. In this test, suddenly 354

the grid voltage undergoes a +15◦ phase-angle step change. 355

Response of the model versus the actual estimator is given in 356

Fig. 5. Result shows that the small-signal model developed in 357

this section is fairly accurate to capture the nonlinear dynamics 358

of the proposed technique. 359
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Fig. 4. Small-signal model of the proposed enhanced QT1-PLL: (a) basic
model and (b) alternative feedback representation with kt = 1+ kpkφ.

Fig. 5. Small-signal model validation for +15◦ phase angle step change with
ke = 1600, kp = 61, td = 0.005 and Tw = 0.01.

TABLE I
CONTROL PARAMETERS OF THE SELECTED TECHNIQUES.

IV. RESULTS AND DISCUSSIONS360

In this Section, performance of the proposed technique is361

going to be investigated. Proposed technique is based on the362

idea of QT1-PLL. As such QT1-PLL [21] and hybrid QT1-PLL363

(HQT1-PLL) [22], and a recent variant of HQT1-PLL named364

fast hybrid - PLL (FH-PLL) [32] are considered as comparison365

techniques. Control parameters are given in Table I. All four366

techniques are implemented in Matlab/Simulink with a sampling367

frequency of 10 kHz.368

A. Simulation Results369

1) Test-I: Balanced to Off-Nominal Frequency Unbalanced370

Grid: Effectiveness of the comparative techniques under unbal-371

anced fault at off-nominal frequency condition is tested in this372

test. Pre-fault grid is made ofV + = 1∠0◦. Post-fault grid is com-373

posed of
−→
V +1 = 0.733∠45◦ [p.u.] and

−→
V −1 = 0.211∠− 45◦374

[p.u.] at f = 52Hz. Simulation results are given in Fig. 6.375

Results show that both FH-PLL and the proposed technique376

have no steady-state oscillation in the steady-state parameters377

whereas this is not the case for QT1- and HQT1-PLLs. In terms378

of frequency estimation convergence time, the proposed tech-379

nique took 55 msec. to converge whereas FH-PLL took 68msec.380

Fig. 6. Test-I: Simulation results.

Similarly, the phase estimation error convergence time of the 381

proposed technique was 6msec. faster compared to FH-PLL.The 382

proposed technique was very rapid to estimate the amplitudes of 383

FFPS and FFNS components as shown in Fig. 6(d). The conver- 384

gence time is roughly two cycle which shows the effectiveness 385

of the proposed method as a sequence extraction tool. 386

2) Test-II: Balanced to Off-Nominal Frequency Unbal- 387

anced and Biased Grid: Here, the post-fault grid is com- 388

posed of
−→
V +1 = 0.733∠45◦ [p.u.] and

−→
V −1 = 0.211∠− 45◦ 389

[p.u.] at f = 48Hz. Moreover, unequal DC offsets of 390

0.07, 0.06, 0.05 p.u. are added in phase a, b, and c, respectively. 391

Simulation results for Test-II are shown in Fig. 7. Similar to 392

Test-I, steady-state values by QT1- and HQT1-PLLs are outside 393

the settling band. In terms of frequency estimation convergence 394

time, the proposed technique took 58msec. to converge whereas 395

FH-PLL took 12msec. more than the proposed technique. Sim- 396

ilarly, the phase estimation error convergence time of the pro- 397

posed technique was 14msec. faster compared to FH-PLL. 398

3) Test-III: Balanced to Off-Nominal Frequency Unbal- 399

anced and Distorted Grid: Here, the post-fault grid is com- 400

posed of
−→
V +1 = 0.733∠45◦ [p.u.] and

−→
V −1 = 0.211∠− 45◦ 401

[p.u.],
−→
V +5 = 0.0625∠45◦,

−→
V −5 = 0.0625∠− 45◦,

−→
V −11 = 402

0.0625∠180◦, −→
V +13 = 0.0625∠− 180◦, and 570Hz inter- 403

harmonics of 0.0625∠90◦ at f = 52Hz. Simulation results are 404

given in Fig. 8. Results in this test are consistent with the previous 405

two cases. Peak-to-peak oscillation in the estimated frequency 406
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Fig. 7. Test-II: Simulation results.

by the proposed technique is 6 times higher for QT1-PLL407

compared to the proposed technique. In case of phase estimation408

error, the ratio is almost 4 times. Similar performance improve-409

ment by the proposed technqiue can also be seen compared to410

FH-PLL. Total harmonic distortion is also the lowest for the411

proposed technique. This is due to the fact that the MAFs are412

used in all the comparative techniques, however, they are tuned at413

the fundamental frequency. This makes the techniques sensitive414

to frequency variation. However, the proposed technique is415

significantly less sensitive to same frequency condition despite416

having the same fundamental frequency tuned MAFs. This is417

due to the low-pass filter characteristics of the proposed phase418

detector. This characteristics also helps to extract the FFPS and419

FFNS amplitude with extremely low total harmonic distortion420

(THD) as can be seen in Fig. 8(d). Low THD sequence extraction421

is very important to satisfy strict grid-integration standards for422

distributed generation systems.423

Comparative time-domain summary of the selected tech-424

niques are given in Table II.425

B. Experimental Results426

The experimental setup, shown in Fig. 9, is used to validate the427

proposed enhanced QT1-PLL Here, a PWM-controlled three-428

phase inverter is used to emulate the adverse grid voltage signal.429

Three GW Instek GDP-100 high voltage differential probe are430

used to measure the voltages at the load-side. Parameters of the431

emulator are given in Table III.432

Fig. 8. Test-III: Simulation results.

Fig. 9. Test setup.

In the first test, a symmetrical voltage sag of 0.5 p.u. is 433

considered. Performances of the comparative techniques are 434

given in Fig. 11. Results show that the proposed technique and 435

QT1-PLL had a peak overshoot of ≈ 1 Hz while it is ≈ 1.15 Hz 436

for HQT1- and FH-PLLs. Frequency estimated by the proposed 437

technique returns back to the nominal value in roughly 2 cycles 438

whereas it is slightly higher for the other techniques. 439

In the second test, −2 Hz frequency sag is considered. Per- 440

formance of the comparative techniques are given in Fig. 10. 441

Except QT1-PLL, the other techniques have first-order response. 442

Although the dynamic responses are similar, the proposed tech- 443

nique show less sensitivity to switching and measurement noises 444
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Fig. 10. Comparative experimental results for −0.5 p.u. voltage sag.

Fig. 11. Comparative experimental results for −2 Hz frequency sag.

Fig. 12. Comparative experimental results for distorted grid.

TABLE II
COMPARATIVE SUMMARY OF THE SELECTED TECHNIQUES.

NA - Not applicable as the steady-state value is outside of the band

TABLE III
SYSTEM PARAMETERS.

compared to the other techniques. As all the techniques are tuned 445

using phase margin, dynamic responses will be similar. How- 446

ever, the presence of low-pass filter-like phase detector makes 447

the proposed technique less sensitive to off-nominal frequency 448

components and/or various noises. 449

In the final test, suddenly diode rectifier which is a highly 450

nonlinear load is added to generate distorted grid. Performance 451

of the comparative techniques are given in Fig. 12. The pro- 452

posed technique had a peak overshoot of 0.4 Hz while it is 453

0.5 Hz, 0.55 Hz and 0.6 Hz for QT1-, HQT1-, and FH-PLL, 454
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respectively. Moreover, the proposed technique’s steady-state455

accuracy is also better than the comparative techniques due to456

the presence of low-pass filter-like phase detector.457

Experimental results in Figs. 10–12 show that the proposed458

technique has very good dynamic performance and high steady-459

state accuracy. These results validate the performance of the460

proposed PLL.461

V. CONCLUSION462

This paper proposed an enhanced QT1-PLL that eliminates463

the limitation of conventional QT1-PLLs. The proposed tech-464

nique uses a novel enhanced phase detector that can separate the465

FFPS and FFNS components. This makes the proposed tech-466

nique insensitive to off-nominal FFNS component. Moreover, a467

novel DC offset rejection filter is also proposed. A systematic468

procedure for small-signal modeling and tuning is provided for469

the proposed PLL. Comparative performance analysis using470

various challenging test scenarios showed that the proposed471

technique is very suitable for unbalanced and distorted grid.472

It has fast convergence speed, high degree of immunity to grid473

abnormalities and it is easy to tune and implement. Thanks to the474

FFPS and FFNS extraction capabilities, the proposed PLL is a475

very suitable candidate to be used as a grid-synchronization tool476

inside fault-tolerant controller of grid-connected converters.477
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[28] F. Sevilmiş and H. Karaca, “Implementation of enhanced non-adaptive 576
cascaded DSC-PLLs for renewable energy systems,” Int. J. Elect. Power 577
Energy Syst., vol. 134, 2022, Art. no. 107470. 578

[29] S. Gude and C.-C. Chu, “Three-phase PLLs by using frequency adaptive 579
multiple delayed signal cancellation prefilters under adverse grid condi- 580
tions,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3832–3844, Jul./Aug. 581
2018. 582

[30] P. Rodríguez, A. Luna, I. Candela, R. Mujal, R. Teodorescu, and F. 583
Blaabjerg, “Multiresonant frequency-locked loop for grid synchronization 584
of power converters under distorted grid conditions,” IEEE Trans. Ind. 585
Electron., vol. 58, no. 1, pp. 127–138, Jan. 2011. 586

[31] H. Ahmed, S. Biricik, and M. Benbouzid, “Enhanced frequency adaptive 587
demodulation technique for grid-connected converters,” IEEE Trans. Ind. 588
Electron., vol. 68, no. 11, pp. 11053–11062, Nov. 2021. 589

https://dx.doi.org/10.1109/TEC.2021.3079908


IE
EE P

ro
of

10 IEEE TRANSACTIONS ON ENERGY CONVERSION
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Abstract—Out of various moving average filter (MAF)-based
Q1

5
phase-locked-loop (PLL), quasi type-1 PLL (QT1-PLL) is widely6
adopted due to its fast dynamic performance, implementation7
simplicity, and harmonics rejection abilities. However, the perfor-8
mance of QT1-PLL deteriorates in the presence of an off-nominal9
frequency unbalanced grid voltage component. Moreover, the10
sensitivity towards the fundamental frequency negative sequence11
(FFNS) component is high. Hence, this paper proposes a novel12
enhanced QT1-PLL solution that is insensitive to unbalance in13
the grid voltage signal during off-nominal frequency conditions.14
The proposed adaptive phase detector makes it possible to esti-15
mate both the fundamental frequency positive sequence (FFPS)16
and FFNS components with a high degree of immunity against17
harmonics. Notably, the pre-loop separation of the FFPS and the18
FFNS components helps suppress the second harmonic oscillations19
for improving the parameter estimation accuracy. The loop-filter20
design of QT1-PLL remains unaffected and requires a proportional21
gain to estimate the fundamental phase and frequency information.22
To address the DC offset issue, a modified delayed signal cancel-23
lation method is also proposed, which can theoretically eliminate24
the DC offset for any arbitrary delay length. A small-signal model25
of the proposed PLL is developed for the sake of stability analysis.26
Comparative numerical simulation and experimental results are27
provided with various variants of QT1-PLLs to demonstrate the28
performance improvement achieved with the proposed technique.
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I. INTRODUCTION 32

THE penetration of grid-interfaced power electronic con- 33

verters into traditional electric power grid is increas- 34

ing day-by-day. They are used for various purposes such as 35

grid-integration of distributed energy resources [1]–[5], power 36

quality improvement [6], supplying domestic and industrial 37

loads [7], charging electric vehicles [8], to name a few. These 38

applications require grid-synchronous operation of the con- 39

verter with the grid. This process is commonly known as grid- 40

synchronization in the literature. Grid-synchronization necessi- 41

tates the real-time extraction of unknown grid voltage parame- 42

ters. As a result, a significant research attention has been given 43

to this problem in the last few decades. 44

Many fast, efficient, and accurate techniques are already 45

reported in the literature. Out of them, phase-locked loop 46

(PLL) [9]–[13] and it’s various variants are particularly popu- 47

lar. Traditional synchronous reference frame-PLL (SRF-PLL) 48

uses Park’s transformation as the phase detector and uses a 49

proportional-integral low-pass filter to estimate the unknown 50

grid frequency and phase. The SRF-PLL has fast convergence 51

speed and good disturbance rejection capability. However, this 52

PLL is designed for a balanced grid i.e. only the fundamental 53

frequency positive sequence (FFPS) component is present. In 54

practice, especially at the distribution network level, the grid 55

often has a level of phase unbalance, e.g., more than 50% of the 56

800 low voltage substations in Cardiff, U.K. have serious phase 57

unbalance [14]. So, enhanced filtering capability is essential to 58

ensure efficient operation of PLL under the presence of phase 59

unbalance i.e. both FFPS and fundamental frequency negative 60

sequence (FFNS) components exist simultaneously. 61

In the presence of phase unbalance, the phase detector of SRF- 62

PLL generates an undesirable double frequency components. To 63

eliminate the undesirable components, several solutions propose 64

the application of additional filtering stage(s) through pre-loop, 65

in-loop and a combination of both. In the case of pre-loop, filters 66

are applied in the stationary reference frame, i.e., αβ−frame 67

where as in-loop filters are applied in the synchronous reference 68

frame, i.e., dq−frame. In the case of hybrid filtering, filters are 69

applied at both stationary and synchronous reference frames. 70

Some popular filters proposed in the literature are: delayed 71

signal cancellation (DSC) [15]–[17], complex coefficient filter 72

(CCF) [18], [19], moving average filter [20]–[24], orthogonal 73

signal generator (OSG) filter such as second-order generalized 74

integrator (SOGI) [25], adaptive notch filter (ANF) [26], to 75

0885-8969 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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name a few. In addition to the filter-based SRF-PLLs, multiple76

reference frame-based SRF-PLLs such as double decoupled77

SRF-PLL [27] are also popular in the literature.78

Delayed signal cancellation (DSC) [15]–[17], [28] is a pop-79

ular technique to eliminate the FFNS from the measured grid80

voltages at the point of common coupling. In order to make81

DSC-PLL immune to harmonics, multiple DSC operators are82

used in cascade. So, prior information about the grid harmonics83

is needed.. Moreover, in the case of off-nominal frequency84

operation, frequency-adaptive DSCs are proposed [29]. This85

can potentially increase the computational complexity. By using86

cross-coupling between two CCF, CCF-PLL [18], [19] can87

extract grid-synchronized FFPS and FFNS components. CCF88

is very suitable for selective harmonic elimination. However,89

multiple CCFs are required to eliminate the effect of harmonics90

which causes additional computational burden.91

OSG-PLLs operate in the stationary reference frame, i.e.,92

αβ−frame and uses OSGs to separate the FFPS and FFNS com-93

ponents followed by traditional SRF-PLL. OSGs typically have94

band-pass (cf. SOGI [25]) or notch (cf. ANF [26]) characteris-95

tics. To enhance the harmonic robustness of OSG-PLLs, multiple96

parallel OSGs are often recommended in the literature [30]. This97

can be computationally complex. Moreover, discretization of98

parallel OSGs is not straightforward, specially for high-order99

harmonics. Multiple reference frame PLLs use multiple SRFs100

to separate the FFPS and FFNS components. In the case of101

DDSRF-PLL, two cross-coupled reference frames operating at102

opposite instantaneous phases are used. This helps to make the103

PLL insensitive to FFNS components. However, the presence of104

harmonics and/or DC-offset deteriorates the performance. This105

necessitates the application of several reference frames where106

each operates at the relevant instantaneous phases. This kind107

of structure is complex and not suitable for low-cost embedded108

devices-based real-time implementation.109

MAF-PLLs [20]–[24] provides an interesting solution to elim-110

inate the effect of harmonics and/or DC offset. Here, MAF is111

used to eliminate the effect of FFNS component. Depending on112

the MAF window length, MAF-PLL can be very effective to113

block all harmonics and DC offset. However, this comes at the114

cost of slow dynamic response [20]. To enhance the convergence115

speed of MAF-PLL, quasi type-1-PLL (QT1-PLL) is proposed116

in [21]. The QT1-PLL uses the idea of frequency-adaptive117

demodulation [31]. An advantage of this approach is that118

only a proportional loop-filter can estimate the unknown grid-119

frequency whereas proportional-integral loop filter is required120

for conventional MAF-PLL. However, QT1-PLL is sensitive to121

off-nominal FFNS component. Since, fundamental frequency122

tuned MAFs are used in QT1-PLL, it cannot completely block123

the FFNS component if they appear at off-nominal frequency124

condition. To speed-up the convergence speed of QT1-PLL, hy-125

brid QT1-PLL (HQT1-PLL) [22] is proposed. In this case, DSC126

operators are applied in the αβ−frame whereas MAF is applied127

in the dq−frame. However, fast dynamic response comes at the128

cost of sacrificing the high phase margin. Moreover, HQT1-PLL129

is also sensitive to off-nominal FFNS component. To reduce130

the effect of off-nominal frequency FFNS component sensitivity131

of QT1-PLL, total QT1-PLL (TQT1-PLL) is proposed in [24].132

Fig. 1. Overview of QT1-PLL [21].

In this case, a third-order non-adaptive MAF is proposed. This 133

MAF has same window length as QT1-PLL but has significantly 134

lower steady-state errors in the presence of off-nominal FFNS 135

component. However, this comes at the cost of high sensitivity 136

to sub- and inter-harmonics. In [32], the authors have proposed 137

the application of all-pass filter (APF) [33] as the sequence 138

components separator for HQT1-PLL. Although this technique 139

can reduce the sensitivity, however, APF on its own has limited 140

filtering capability. This can be a limiting factor when the grid 141

voltage has inter- and/or sub-harmonics components. Similar 142

line of investigation is considered in [34] where third-order 143

generalized integrator is considered as the pre-loop filter. It is to 144

be noted here that none of the QT1-PLL techniques discussed 145

in this section can extract the FFNS component with high de- 146

gree of harmonic immunity. This limits their application where 147

sequence extraction is important [35]. 148

Comparative analysis in [23] shows that out of various MAF- 149

PLLs, QT1-PLL is very suitable for grid-connected converters. 150

This motivates the current work of improving the performance 151

of QT1-PLL. Our main objective is to use QT1-PLL for FFPS 152

and FFNS sequence extraction. For this purpose, an enhanced 153

phase detector is constructed in this work. This phase detector 154

can separate the FFPS and FFNS initial phase-angle and am- 155

plitudes. Output of the phase detectors are passed through a 156

proportional loop-filter to estimate the unknown frequency and 157

instantaneous phase of the grid voltage. A small-signal model 158

is derived through analytical calculations and constructive gain 159

tuning procedures are developed for the proposed enhanced 160

QT1-PLL. Finally, the performance of the proposed technique 161

is verified through simulation and experiments on a PWM- 162

controlled voltage source inverter. In contrast to the conventional 163

QT1-PLLs, the proposed approach is insensitive to off-nominal 164

FFNS component. Moreover, it can extract FFPS and FFNS 165

components unlike conventional QT1-PLLs. These are the main 166

contributions of this work. 167

The rest of this paper is organized as follows: Section II 168

summarizes the conventional QT1-PLL. Development of the 169

proposed enhanced QT1-PLL is given in Section III. Results and 170

discussions are given in Section IV. Finally, concluding remarks 171

are given in Section V. 172

II. QUASI TYPE-1 PLL: BRIEF OVERVIEW 173

This section summarizes the basic idea of the conventional 174

QT1-PLL as proposed in [21]. Block diagram of the QT1-PLL 175

is given in Fig. 1. To analyze the phase detector of the QT1-PLL, 176

let us consider the three-phase grid voltages in α, β−frame as: 177

vα(t) = V cos (ωt+ φ) , (1)
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vβ(t) = V sin (ωt+ φ) , (2)

where the amplitude, angular frequency, and the initial phase-178

angle are given by V , ω, and φ, respectively. The instantaneous179

phase of the signals (1) and (2) is given by Θ = ωt+ φ ∈180

[0, 2π). The voltages in (1) and (2) are converted into the181

synchronous reference frame (d, q) by applying the Park-type182

transformation and given by:183 [
vd
vq

]
=

[
cos (ω̂t) sin (ω̂t)
− sin (ω̂t) cos (ω̂t)

] [
vα
vβ

]
. (3)

From (3), the direct and quadrature-axis voltages can be184

rewritten as:185

vd = vα cos (ω̂t) + vβ sin (ω̂t) ,

=
V

2
[cos {(ω − ω̂) t+ φ}+ cos {(ω + ω̂) t+ φ}]

+
V

2
[cos {(ω − ω̂) t+ φ} − cos {(ω − ω̂) t+ φ}] . (4)

vq = vβ cos (ω̂t)− vα sin (ω̂t) ,

=
V

2
[sin {(ω + ω̂) t+ φ}+ sin {(ω − ω̂) t+ φ}]

− V

2
[sin {(ω + ω̂) t+ φ} − sin {(ω − ω̂) t+ φ}] . (5)

In the quasi-locked condition i.e. ω̂ ≈ ω, it can be assumed186

that ω − ω̂ ≈ 0. Then, (4) and (5) can be simplified as:187

vd ≈ V cos (φ) . (6)

vq ≈ V sin (φ) . (7)

It is to be noted here that only whenφ = ±nπ, n = 0, 1, 2, . . .,188

vd ≈ V and vq ≈ 0 which is the same as the output of the phase189

detector of SRF-PLL [9]. From (6) and (7), the initial phase-190

angle can be estimated as:191

φ̂ = atan2 (vq, vd) , (8)

where atan2 is the double quadrant arctangent function. In the192

above analysis, it is assumed that the grid is balanced and does193

not contain any harmonics. In practice, the grid is unbalanced,194

then, the FFNS component will appear as a double the funda-195

mental frequency component in (6) and (7). Similarly, odd-order196

harmonics in the grid voltage will also appear as even-order197

harmonics in (6) and (7). These high frequency components198

will introduce ripple in the estimated phase-angle. Hence, the199

frequency even-order AC components can be filtered out by us-200

ing a moving average filter (MAF) of window length,Tw = T/2,201

where T is the period of the fundamental component. The202

transfer function of the MAF in continuous and discrete-time203

are given by204

GMAF (s) =
(
1− e−Tws

)
/Tws. (9)

GMAF (z) =
1

N

1− z−N

1− z−1
, (10)

where N = T/Ts with Ts being the sampling period. There are205

three major issues that affect the performance of the standard206

QT1-PLL. Firstly, the phase detector part does not use any207

gain i.e. no design freedom. Secondly, off-nominal frequency 208

negative-sequence component will introduce high frequency rip- 209

ple in the estimated phase. Finally, it is not capable of extracting 210

the FFNS component. These issues will be addressed in the next 211

section. 212

III. ENHANCED QT1-PLL 213

In this section, the proposed modifications are detailed. First, 214

the development of the proposed modified delayed signal can- 215

cellation (DSC) is detailed. Then, tunbale phase detector is given 216

followed by the small-signal model-based stability analysis and 217

tuning of the proposed PLL. For the remainder of this Section, 218

let us consider the unbalanced grid voltages in the αβ−frame 219

as: 220

vα = V 0
α + V + cos

(
ωt+ φ+

)
+ V − cos

(
ωt+ φ−) , (11)

vβ = V 0
β + V + sin

(
ωt+ φ+

)− V − sin
(
ωt+ φ−) , (12)

where DC offsets are denoted by V 0
α and V 0

β , the superscript + 221

and − indicate the positive- and negative-sequence component 222

and the remaining variables retain the same meaning as defined 223

in Section II. 224

A. DC Offset Rejection 225

To reject DC offset, half-cycle DSC is a popular solution in the 226

literature [22], [24], [28], [32]. In this work, we are considering a 227

modified version of the DSC method for DC offset rejection. For 228

this purpose, let us consider the delayed versions of the signals 229

(11) and (12) as given below: 230

vntdl = vα (t− ntd) , (13)

for l ∈ {α, β}, n = 1, 2 with td being the basic time delay. Let 231

us denote the DC offset-free version of the signals (11) and (12) 232

as v∅α and v∅β . Then, these signals can be estimated using (11), 233

(12), and (13) as given below: 234

v∅l = vl +
0.5

cos (ωtd)− 1

(
vl − 2 cos (ωtd) v

td
l + v2tdl

)
. (14)

Using (14), DC offset-free signals can be estimated using any 235

arbitrary amount of time-delay as opposed to the half-cycle delay 236

requirement of traditional DSC method. To implement (14), real- 237

time information of the grid frequency ω is required. However, 238

real-time frequency adaptation can complicate the modeling 239

and tuning process. As such, frequency-fixed version of (14) 240

is considered similar to [22], [24], [32] where the frequency ω 241

is substituted by its nominal value. However, this will introduce 242

amplitude and phase attenuation in the off-nominal frequency 243

condition. So, compensation of these deviations need to be 244

considered. For this purpose, transfer function of the filter (14) 245

needs to be considered. Then, based on the developed transfer 246

function, quantification of the amplitude and phase attenuation 247

need to be studied. Filter (14) has the same transfer function of 248

convention half-cycle DSC if td = T/4 is considered. For this 249

value of td, the total delay of the proposed DSC filter (14) is 250

the same as the standard DSC, i.e., T/2. As such, this value 251

of td is selected. For this value, transfer function of (14) in the 252
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phasor-form is given by:253

Gαβ
DSC(s) =

(
1− e−2tds

)
/2. (15)

Let us consider that ω = ωn +Δω, where ωn is the nominal254

value and Δω is the deviation. Then, the amplitude and phase255

of transfer function (15) can be found as [36]:256 ∣∣∣Gαβ
DSC(s)

∣∣∣ ≈ 1− kv (Δω)2 , (16)
257

∠Gαβ
DSC(s) = −kφΔω, (17)

where kv = T 2/32 and kφ = T/4. From (16) and (17), it is258

clear that in the off-nominal frequency case, amplitude and259

phase attenuation are characterized by kv and kφ. As such,260

compensation of these pre-loop filter induced attenuation need261

to be considered in the in-loop of the PLL. It is to pointed out here262

that as a particular case of (14), convention half-cycle DSC filter263

can be be obtained. However, unlike conventional DSC, (14)264

can eliminates DC offset for any value of td. Moreover, despite265

the transfer functions being equal for td = T/4, the dynamic266

response is not the same for our DSC and the conventional267

counterpart.268

Transfer function (15) in the dq-frame is given by:269

Gdq
DSC(s) =

(
1 + e−2tds

)
/2. (18)

Transfer function (18) will be used for small-signal modeling270

purpose later in Section III-C.271

B. Tunable Phase Detector272

To develop the phase detector with tunable gain, let us con-273

sider the offset-free signal in (11) and (12), i.e., v∅α and v∅β . By274

applying basic trigonometric identities, expressions of v∅α and v∅β275

can be expanded and rewritten into the parametric form as [37],276

[38]:277

v∅α = ΩT
αθα, (19)

v∅β = ΩT
β θβ , (20)

where278

Ωα = Ωβ =
[
cos (ωt) sin (ωt)

]T
,

θα =

[
θα1
θα2

]
=

[
V + cos (φ+) + V − cos (φ−)
−V + sin (φ+)− V − sin (φ−)

]
,

θβ =

[
θβ1
θβ2

]
=

[
V + sin (φ+)− V − sin (φ−)
V + cos (φ+)− V − cos (φ−)

]
,

with the unknown parameter vectors being denoted by θα, θβ279

while Ωα and Ωβ denote the known information vector. To280

estimate the unknown parameter vectors θα and θβ from the281

measured voltages vα and vβ , let us consider the estimated282

voltages as v̂∅α = ΩT
α θ̂αand v̂∅β = ΩT

β θ̂β . Let us define the param-283

eter vector estimation error as θ̃α = θα − θ̂α and θ̃β = θβ − θ̂β .284

Then, the output estimation error can be written as:285

ṽ∅α = v∅α − v̂∅α = ΩT
α θ̃α. (21)

ṽ∅β = v∅β − v̂∅β = ΩT
β θ̃β . (22)

Let us consider the following Lyapunov-like function with 286

ke > 0: 287

V
(
θ̃α, θ̃β

)
=

1

2

(
θ̃Tαk

−1
e θ̃α + θ̃Tβ k

−1
e θ̃β

)
. (23)

Time-derivative of (23) leads, 288

V̇ = −θ̃Tαk
−1
e

˙̂
θα − θ̃Tβ k

−1
e

˙̂
θβ . (24)

Let us select the parameter vector update laws as: 289

˙̂
θα = keΩαṽ

∅
α. (25)

˙̂
θβ = keΩβ ṽ

∅
β . (26)

By plugging in the update laws (25) and (26) into (24), one 290

can get that: 291

V̇ = −
(
ṽ∅α

)2

−
(
ṽ∅β

)
≤ 0.

This proves the boundedness of the parameter vector es- 292

timation error. Parameter update laws (25) and (26) can be 293

used to extract the amplitude and phase angles. In obtaining 294

the update laws, it is assumed that the information vectors Ωα 295

and Ωβ are known a priori. In practice, the grid frequency is 296

unknown. In this case, an estimate of the grid frequency has 297

to be used. By considering the estimated grid frequency, the 298

unknown parameter estimation laws can be written in the scaler 299

form as: 300

˙̂
θα1 = ke cos (ω̂t) ṽ

∅
α. (27)

˙̂
θα2 = ke sin (ω̂t) ṽ

∅
α. (28)

˙̂
θβ1 = ke cos (ω̂t) ṽ

∅
β . (29)

˙̂
θβ2 = ke sin (ω̂t) ṽ

∅
β . (30)

From the estimated parameters, direct- and quadrature-axis 301

positive- and negative-sequence voltages can be obtained as: 302

v+d =
θ̂α1 + θ̂β2

2
. (31)

v+q =
θ̂β1 − θ̂α2

2
. (32)

v−d =
θ̂α1 − θ̂β2

2
. (33)

v−q =
−θ̂α2 − θ̂β1

2
. (34)

Similar to QT1-PLL, estimated direct and quadrature-axis 303

positive- and negative-sequence voltages will also be passed 304

through MAF to enhance the harmonic robustness. Then, the am- 305

plitude and phase-angle of the positive- and negative-sequence 306

voltages can be obtained as: 307

V̂ + =

√(
v+d

)2
+
(
v+q

)2
. (35)

V̂ − =

√(
v−d

)2
+
(
v−q

)2
. (36)

φ̂+ = atan2
(
v+q , v

+
d

)
. (37)
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Fig. 2. Block diagram of the proposed enhanced QT1-PLL.

φ̂− = atan2
(
v−q , v

−
d

)
. (38)

Using (35)–(38) and the estimated ω̂t, FFPS and FFNS can308

easily be obtained. Block diagram of the proposed tunable phase309

detector based enhanced QT1-PLL for the FFPS case is given310

in Fig. 2.311

C. Small-Signal Modeling and Tuning312

1) Small-Signal Modeling: The considered parameter esti-313

mation technique described by (27)–(30) is nonlinear in nature314

and not very suitable to find an analytical formula to tune the315

phase detector gain ke. To find an explicit gain tuning formula,316

let us consider the FFPS phase-angle dynamics by using (37):317

˙̂
φ+ =

v̇+d v
+
q − v+d v̇

+
q(

v+d
)2

+
(
v+q

)2 . (39)

By substituting (27)–(32) into (39), it can be found that:318

˙̂
φ+ =

V̂ + sin(φ̂+)(
˙̂
θα1 +

˙̂
θβ2)− V + cos(φ̂+)(

˙̂
θβ1 − ˙̂

θα2)

2
(
V̂ +

)2 ,

=
ke sin(Θ̂

+)ṽ∅α − ke cos(Θ̂
+)ṽ∅β

2V̂ +
,

=
keV

+ sin(Θ+ − Θ̂+)

2V̂ +

+
ke{V̂ − sin(Θ̂+ + Θ̂−)− V − sin(Θ− + Θ̂+)}

2V̂ +
. (40)

In the quasi-locked condition, V + ≈ V̂ +, V − ≈ V̂ −, Θ+ ≈319

Θ̂+, and Θ− ≈ Θ̂−. In this case, V̂ − sin(Θ̂+ + Θ̂−)−320

V − sin(Θ̂− + Θ̂+) ≈ 0. Moreover, by applying small-angle ap-321

proximation formula, one can obtain that sin(Θ+ − Θ̂+) ≈322

(Θ+ − Θ̂+) ≈ φ+ − φ̂+. Then, (40) can be simplified as:323

˙̂
φ+ ≈ ke

2
(Θ+ − Θ̂+),

Fig. 3. Gain tuning results for +2 Hz step test.

≈ (ke/2)(φ
+ − φ̂+). (41)

From (41), the phase-angle transfer function can be obtained 324

as: 325

GPD(s) = φ̂+(s)/φ+(s) = 1/τes+ 1, (42)

where τe = 2/ke. From the transfer function (42), it is clear 326

that the considered phase detector has a first-order dynamics. 327

As such, the gain ke can be tuned by using the formula: 328

ke = 8τ−1
s , (43)

where τs is the desired settling time. Using the transfer function 329

(42) and the block diagram of the proposed enhanced QT1-PLL 330

(cf. Fig. 2), the small-signal model can be obtained as shown in 331

Fig. 4. 332

2) Tuning: The proposed technique has three tuning parame- 333

ters. They are: phase detector gainke and the frequency estimator 334

gain kp. The proposed phase detector can be considered as the 335

observer while the loop-filter can be considered as the controller. 336

In traditional observer-based control system, the observer’s con- 337

vergence speed is typically selected as significantly faster than 338

the controller’s convergence speed. Similar idea is considered 339

here also to tune the phase detector gainke. To tune this again, we 340

assume a quarter cycle convergence time i.e. τs = T/4. With this 341

value of τs, the phase detector gain can be found as ke = 1600 342

from (43). 343

Finally, to tune the loop-filter parameter kp, we have con- 344

sidered settling time-based tuning approach similar to [22], 345

[24], [32]. For this purpose, frequency step test of +2 Hz is 346

considered. Then, the settling time (within 2% of the final value) 347

are calculated for different values ofkp. Results of the simulation 348

are given in Fig. 3. The lowest settling time is obtained for 349

kp = 61. As such, this value has been considered. This value 350

corresponds to a phase margin of ≈ 37.8◦ which is within the 351

widely accepted 30◦ − 60◦ limit. 352

To validate the developed small-signal model and the tuning 353

procedure, a validation test is performed. In this test, suddenly 354

the grid voltage undergoes a +15◦ phase-angle step change. 355

Response of the model versus the actual estimator is given in 356

Fig. 5. Result shows that the small-signal model developed in 357

this section is fairly accurate to capture the nonlinear dynamics 358

of the proposed technique. 359



IE
EE P

ro
of

6 IEEE TRANSACTIONS ON ENERGY CONVERSION

Fig. 4. Small-signal model of the proposed enhanced QT1-PLL: (a) basic
model and (b) alternative feedback representation with kt = 1+ kpkφ.

Fig. 5. Small-signal model validation for +15◦ phase angle step change with
ke = 1600, kp = 61, td = 0.005 and Tw = 0.01.

TABLE I
CONTROL PARAMETERS OF THE SELECTED TECHNIQUES.

IV. RESULTS AND DISCUSSIONS360

In this Section, performance of the proposed technique is361

going to be investigated. Proposed technique is based on the362

idea of QT1-PLL. As such QT1-PLL [21] and hybrid QT1-PLL363

(HQT1-PLL) [22], and a recent variant of HQT1-PLL named364

fast hybrid - PLL (FH-PLL) [32] are considered as comparison365

techniques. Control parameters are given in Table I. All four366

techniques are implemented in Matlab/Simulink with a sampling367

frequency of 10 kHz.368

A. Simulation Results369

1) Test-I: Balanced to Off-Nominal Frequency Unbalanced370

Grid: Effectiveness of the comparative techniques under unbal-371

anced fault at off-nominal frequency condition is tested in this372

test. Pre-fault grid is made ofV + = 1∠0◦. Post-fault grid is com-373

posed of
−→
V +1 = 0.733∠45◦ [p.u.] and

−→
V −1 = 0.211∠− 45◦374

[p.u.] at f = 52Hz. Simulation results are given in Fig. 6.375

Results show that both FH-PLL and the proposed technique376

have no steady-state oscillation in the steady-state parameters377

whereas this is not the case for QT1- and HQT1-PLLs. In terms378

of frequency estimation convergence time, the proposed tech-379

nique took 55 msec. to converge whereas FH-PLL took 68msec.380

Fig. 6. Test-I: Simulation results.

Similarly, the phase estimation error convergence time of the 381

proposed technique was 6msec. faster compared to FH-PLL.The 382

proposed technique was very rapid to estimate the amplitudes of 383

FFPS and FFNS components as shown in Fig. 6(d). The conver- 384

gence time is roughly two cycle which shows the effectiveness 385

of the proposed method as a sequence extraction tool. 386

2) Test-II: Balanced to Off-Nominal Frequency Unbal- 387

anced and Biased Grid: Here, the post-fault grid is com- 388

posed of
−→
V +1 = 0.733∠45◦ [p.u.] and

−→
V −1 = 0.211∠− 45◦ 389

[p.u.] at f = 48Hz. Moreover, unequal DC offsets of 390

0.07, 0.06, 0.05 p.u. are added in phase a, b, and c, respectively. 391

Simulation results for Test-II are shown in Fig. 7. Similar to 392

Test-I, steady-state values by QT1- and HQT1-PLLs are outside 393

the settling band. In terms of frequency estimation convergence 394

time, the proposed technique took 58msec. to converge whereas 395

FH-PLL took 12msec. more than the proposed technique. Sim- 396

ilarly, the phase estimation error convergence time of the pro- 397

posed technique was 14msec. faster compared to FH-PLL. 398

3) Test-III: Balanced to Off-Nominal Frequency Unbal- 399

anced and Distorted Grid: Here, the post-fault grid is com- 400

posed of
−→
V +1 = 0.733∠45◦ [p.u.] and

−→
V −1 = 0.211∠− 45◦ 401

[p.u.],
−→
V +5 = 0.0625∠45◦,

−→
V −5 = 0.0625∠− 45◦,

−→
V −11 = 402

0.0625∠180◦, −→
V +13 = 0.0625∠− 180◦, and 570Hz inter- 403

harmonics of 0.0625∠90◦ at f = 52Hz. Simulation results are 404

given in Fig. 8. Results in this test are consistent with the previous 405

two cases. Peak-to-peak oscillation in the estimated frequency 406
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Fig. 7. Test-II: Simulation results.

by the proposed technique is 6 times higher for QT1-PLL407

compared to the proposed technique. In case of phase estimation408

error, the ratio is almost 4 times. Similar performance improve-409

ment by the proposed technqiue can also be seen compared to410

FH-PLL. Total harmonic distortion is also the lowest for the411

proposed technique. This is due to the fact that the MAFs are412

used in all the comparative techniques, however, they are tuned at413

the fundamental frequency. This makes the techniques sensitive414

to frequency variation. However, the proposed technique is415

significantly less sensitive to same frequency condition despite416

having the same fundamental frequency tuned MAFs. This is417

due to the low-pass filter characteristics of the proposed phase418

detector. This characteristics also helps to extract the FFPS and419

FFNS amplitude with extremely low total harmonic distortion420

(THD) as can be seen in Fig. 8(d). Low THD sequence extraction421

is very important to satisfy strict grid-integration standards for422

distributed generation systems.423

Comparative time-domain summary of the selected tech-424

niques are given in Table II.425

B. Experimental Results426

The experimental setup, shown in Fig. 9, is used to validate the427

proposed enhanced QT1-PLL Here, a PWM-controlled three-428

phase inverter is used to emulate the adverse grid voltage signal.429

Three GW Instek GDP-100 high voltage differential probe are430

used to measure the voltages at the load-side. Parameters of the431

emulator are given in Table III.432

Fig. 8. Test-III: Simulation results.

Fig. 9. Test setup.

In the first test, a symmetrical voltage sag of 0.5 p.u. is 433

considered. Performances of the comparative techniques are 434

given in Fig. 11. Results show that the proposed technique and 435

QT1-PLL had a peak overshoot of ≈ 1 Hz while it is ≈ 1.15 Hz 436

for HQT1- and FH-PLLs. Frequency estimated by the proposed 437

technique returns back to the nominal value in roughly 2 cycles 438

whereas it is slightly higher for the other techniques. 439

In the second test, −2 Hz frequency sag is considered. Per- 440

formance of the comparative techniques are given in Fig. 10. 441

Except QT1-PLL, the other techniques have first-order response. 442

Although the dynamic responses are similar, the proposed tech- 443

nique show less sensitivity to switching and measurement noises 444
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Fig. 10. Comparative experimental results for −0.5 p.u. voltage sag.

Fig. 11. Comparative experimental results for −2 Hz frequency sag.

Fig. 12. Comparative experimental results for distorted grid.

TABLE II
COMPARATIVE SUMMARY OF THE SELECTED TECHNIQUES.

NA - Not applicable as the steady-state value is outside of the band

TABLE III
SYSTEM PARAMETERS.

compared to the other techniques. As all the techniques are tuned 445

using phase margin, dynamic responses will be similar. How- 446

ever, the presence of low-pass filter-like phase detector makes 447

the proposed technique less sensitive to off-nominal frequency 448

components and/or various noises. 449

In the final test, suddenly diode rectifier which is a highly 450

nonlinear load is added to generate distorted grid. Performance 451

of the comparative techniques are given in Fig. 12. The pro- 452

posed technique had a peak overshoot of 0.4 Hz while it is 453

0.5 Hz, 0.55 Hz and 0.6 Hz for QT1-, HQT1-, and FH-PLL, 454



IE
EE P

ro
of

AHMED et al.: QUASI TYPE-1 PLL WITH TUNABLE PHASE DETECTOR FOR UNBALANCED AND DISTORTED THREE-PHASE GRID 9

respectively. Moreover, the proposed technique’s steady-state455

accuracy is also better than the comparative techniques due to456

the presence of low-pass filter-like phase detector.457

Experimental results in Figs. 10–12 show that the proposed458

technique has very good dynamic performance and high steady-459

state accuracy. These results validate the performance of the460

proposed PLL.461

V. CONCLUSION462

This paper proposed an enhanced QT1-PLL that eliminates463

the limitation of conventional QT1-PLLs. The proposed tech-464

nique uses a novel enhanced phase detector that can separate the465

FFPS and FFNS components. This makes the proposed tech-466

nique insensitive to off-nominal FFNS component. Moreover, a467

novel DC offset rejection filter is also proposed. A systematic468

procedure for small-signal modeling and tuning is provided for469

the proposed PLL. Comparative performance analysis using470

various challenging test scenarios showed that the proposed471

technique is very suitable for unbalanced and distorted grid.472

It has fast convergence speed, high degree of immunity to grid473

abnormalities and it is easy to tune and implement. Thanks to the474

FFPS and FFNS extraction capabilities, the proposed PLL is a475

very suitable candidate to be used as a grid-synchronization tool476

inside fault-tolerant controller of grid-connected converters.477
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