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Summary

Human visual attention is exquisitely specialized for and captured by social information
in naturalistic scenes, and this “social preference” begins as early as infancy. Recent visual
perception and neuroimaging research suggest that people also have high visual interest in
interacting dyads compared to non-interactors, supporting the idea that social interactions might
provide unique social information, above and beyond the mere presence of two people. Thus,
interactions might capture visual attention above other social information, a ‘preference’ that
could contribute, across development, to social learning processes. However, very little work has
directly examined if attention is more biased to social interactions than to other social
information in complex scenes, nor how and when such a bias may arise or change across
development.

In this work, across three free-viewing eye-tracking experiments, we investigate the
development of attention to social information in naturalistic, complex scenarios, in order to
better understand the role of social interactions in such processes. In experiment 1, scenes
contained dyads who were either interacting or not, while in experiment 2, dyads were presented
together with one or two additional non-interactors to evaluate developmental changes in
attention to social information when social interactions compete for attention with other social
information. In experiment 3, the pictures contained ambiguous social dyads and, after the free
viewing session, participants were asked to indicate whether they perceived the two agents as
interacting or not. Our aim in that experiment was to investigate age differences in the way pre-
existing knowledge about social events (e.g. the concept of what it means to be a social
interaction) might influence social attention.

In all three experiments, we compared attentional engagement and capture by social areas
of interest (i.e., human information) with non-social information (other scene elements), further
contrasted by whether scenes were interactive or not. Results revealed both children and adults
manifested a strong human attentional bias in the first two experiments, but a weaker bias in the
third, when the social information was ambiguous. This social bias towards human information
was moderated by the presence of a social interaction only in the first experiment, but not the
second or the third, and was moderated in a similar way across development. In experiment 2,

when interacting people were contrasted with non-interacting people in the same scene,



interacting people capture attention more quickly and engage it more strongly than other social
targets when there is one other agent in the scene for both adults and children. However, this
effect is smaller (and not significant) in children than for adults when an interaction competes
with a pair of non-interactors. This suggests interactions can take attentional priority, but that this
“interaction bias” increases across development, especially as scenes become more crowded and
complex. Finally in the third experiment, we find that adults were more likely to see ambiguous
scenarios as interactive compared to children. However, this difference was not reflected in the
way attention was oriented to social information, as the social bias was similar in the scenes
categorized as interactive or not and not different across development.

The results in this thesis are consistent with the idea that social interactions carry
additional information, compared to isolated humans, and even more importantly, that this ‘bias’
to attend to social interactions is present as early as six. Finally, the implications of these
findings for social attention and social development are discussed, followed by a discussion of

future theoretical and experimental questions left to explore.






Chapter 1. General Introduction

1. Rationale for the thesis & overview of the chapter

Human beings have evolved as social creatures, equipped since the first hours of life to detect
the social information surrounding them, and predisposed to learning how to make sense of it.
This bias towards ‘socialness’ contributes across the lifespan to the development of highly
specialized social understanding skills, reflected in high sensitivity to social information, brain
regions specialised for detecting and processing social cues, and especially the ability to learn
from observing others (i.e., social learning). Research looking into the human ability to perceive
faces and eyes has shown, for example, how tuned human visual attention and perception are
towards social information. This results in an attentional bias whereby we typically prefer to
attend to social rather than non-social information, as demonstrated across a variety of
experimental tasks and stimuli (briefly reviewed below). We know less about how human
attention filters and makes sense of the constantly changing, noisy, and complex social
information that bombards us, such as the wide variety of social interactions we observe between
other people. Understanding our bias towards “people watching”, and how we process social
cues from those we observe has recently received much more scientific attention. There is some
evidence that children use the encounters they observe to guide their own social choices (e.g.
Skinner et al., 2017) and some evidence that there is an added value of third party encounters
(Quadflieg & Westmoreland, 2019). Despite this, there is still relatively little exploration of how
visual attention operates in the context of observed social interactions, and there has been little
exploration of how the cognitive systems that support such social attentional processes develop.

Investigation of visual processing of observed social interactions has made some recent
progress. Indeed, recent research suggests that social interactions are processed differently than
individual figures; in other words, that interactions are treated differently than just the 'sum of
their "arts' (Walbrin & Koldewyn, 2019). Additionally, it seems that the human brain might be
highly tuned to the processing of interacting dyads, perhaps even to a similar extent as it is to
face, body and motion processing (Isik et al., 2017; Walbrin et al., 2018). Although it is clear

that there is early visual sensitivity to social interactions in infants and that young children can



learn from 3™-party encounters, it has recently been shown that the social brain is not yet fully
‘adult-like’, even at 12 years of age when processing social interactions.

Understanding how social interactions are perceived and processed in typical childhood is
particularly important in understanding adult social processing and how the ‘social brain’
develops. Although understanding these processes in neurodevelopmental disorders will also be
of great importance, social attention in neurodevelopmental disorders is complicated by reported
non-social differences in attention and executive function, particularly when social information is
embedded in naturalistic, cluttered, and complex scenes. Here, we focus on the development of
social attention across typical childhood, specifically looking at how the presence of a social
interaction may modify social attention in complex, naturalistic scenes.

Therefore, the purpose of this work has been to explore how spontaneous attention to social
information in complex scenarios develops across childhood and investigate the potential role of
social interactions in these processes. This is one of the first attempts to investigate these
questions using naturalistic scenes.

Study I investigates the influence of a social interaction on attentional orienting to social
information in complex scenes across pre-adolescent childhood. Study II introduces competition
between social interactions and other social information in the same scene, and Study III
investigates the role of pre-existing top-down social knowledge on social orienting of attention in

ambiguous social scenarios.

Overview of the chapter

In this chapter I will briefly outline some developmental aspects of visual attention, with a
focus on the tripartite model of visual attention proposed by Posner (Petersen & Posner, 2012;
M. 1. Posner & Petersen, 1990), scene exploration, and eye movements research. This will
provide a theoretical developmental context for the social attention research presented in this
thesis. I will then proceed with briefly reviewing the evidence for an attentional social bias in
development, and the research surrounding visual sensitivity to social interactions. Finally, I will
briefly discuss social orienting in scenes in neurodevelopmental disorders and discuss how that

literature informs our understanding of typical development.

2. Developmental aspects of visual attention



2.1 Attention

Attention is an umbrella term for a multi-componential process of allocation of brain
resources to accomplish behavioural tasks and goals (Atkinson & Braddick, 2012). Several
models of attention have been proposed, focusing on different features and functions (for reviews
see Carrasco, 2011; Chun et al., 2010; Kanwisher & Wojciulik, 2000; Knudsen, 2007; Petersen
& Posner, 2012; Posner & Petersen, 1990), but the most common aspect amongst models is the
conceptualization of attention as a filter selecting or limiting the processing of information
beyond perception so that only a small subset enters memory, or is used to support learning and
action (Rueda et al., 2015; Scerif, 2020). In the tripartite model of attention proposed by Posner
et al. (Petersen & Posner, 2012; M. I. Posner & Petersen, 1990; Michael 1. Posner & Boies,
1971), attention is conceptualized as an activation state preparing the individual for action.
Attention is a tool for selecting information from the environment based either on goals and
priorities or by ‘bottom-up’ stimulus-driven factors (e.g., sudden movement, salience). At the
same time, attention is also a fundamental instrument of action control and conflict monitoring
when we are doing as well as perceiving (Rueda et al., 2015). Therefore, in this model, attention
subserves three different functions: orienting, alerting, and executive control. In particular, the
orienting system flexibly engages and orients attention — first by orienting to the most
‘important’ inputs in the environment, then by disengaging and shifting attention between
different regions of visual space, depending on internal goals and representations (endogenous)
or based on stimulus saliency (exogenous) (Atkinson & Braddick, 2012; Colombo, 2001). The
alerting network, on the other hand, has the role of maintaining high sensitivity of the system to
incoming information, and is crucial in tasks that require sustained attention (Atkinson &
Braddick, 2012). Finally, the executive control network is involved in the regulation of responses
in a goal-directed effortful mode (Petersen & Posner, 2012; Pozuelos et al., 2014).

To assess these components and functions of attention, the most used task is the
Attentional Network Task (ANT) (Fan et al., 2002) and its variants, where the participant has to
decide the direction of the middle arrow out of a row of five. The three attentional networks are
evaluated through the measure of the response times under influence of warning cues, spatial

validity of the cues, and congruency of the flankers (Figure 1).
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Figure 1. Attention Networks as investigated by different methodologies (figure taken from
Rueda et al., 2015).

2.2 Development of visual attention and processing speed

Investigation of developmental processes of attention not only reveals how children attend to and
learn from their environment, but has the potential to offer important insights into how adult
attention works and how the adult cognitive state has been achieved over time (Amso & Scerif,
2015; Astle & Scerif, 2009). One way that developmental work provides insights is through
disentangling which attentional functions have a similar developmental trajectory. Do all
attentional functions develop together or do some skills develop before others? In addition,
understanding what is intelligible and relevant for cognitive systems in development is important
in order to understand what information has priority for learning and in the development of the
systems themselves, and to better understand neurodiverse functioning (Amso & Scerif, 2015;
Scerif, 2010, 2020). Indeed, attention is also an important tool to understand what pieces of
knowledge from the environment are selected based on their priority and usefulness for the
individual’s goals (Henderson, 2003) and what information is most important for individuals at
specific moments in development (Amso & Scerif, 2015; Soto-Icaza et al., 2015).

Research into the development of attention has been crucial in informing models of how

infants and children learn. To start with, as infants have limited motor abilities early in life,



visual attention is a fundamental tool for exploration and understanding of the environment,
giving infants an active role in their own development. The first signs of attentional development
(for reviews Colombo, 2001; Plude et al., 1994; Reynolds & Romano, 2016) is measured by the
way eye movement control develops. This control is already highly efficient at 4 months
(Colombo, 2001; Rueda et al., 2015; Scerif, 2020), when infants already show the ability to
control how they orient their eyes (and attention) towards peripheral stimuli (Atkinson &
Braddick, 2012). At this stage, infants transition from the “sticky” type of attention they show
prior to this, characterised by a difficulty in disengaging their attention from something they are
looking at and, thus, in shifting attention between locations and to disengage it (Johnson, 2001;
Plude et al., 1994; Scerif, 2020), to more controlled eye-movements that allow them to
voluntarily and flexibly shift their attention. During the first year of life, infants’ attention is
increasingly driven by internal factors, such as interest, including by a recognition of the novelty
of a stimulus (Scerif, 2020). Starting at 4-months, they can voluntarily shift attention between
different positions in space, and between that age and into the school years, executive control of
attention slowly increases and gets refined to allow goal-oriented management of the attentional
tools (Amso & Scerif, 2015; Colombo, 2001; Plude et al., 1994; Rueda et al., 2015).

While during adulthood visual attention is guided by endogenous and exogenous factors
in a balanced way depending on goals and task requirements (Chun et al., 2010; Henderson,
2003; Knudsen, 2007; Petersen & Posner, 2012; M. 1. Posner & Petersen, 1990), during
childhood exogenous and endogenous factors drive attention following separate developmental
trajectories, with exogenous effects emerging earlier compared to endogenous (for a review see
Scerif, 2010). In childhood, speed of processing improves as well, resulting in an enhanced
precision of information processing which settles and becomes ‘adult-like’ in middle
adolescence (Kail, 1991; Luna et al., 2008; Miller & Vernon, 1997). This research suggests that
in childhood many changes occur in the attentional tools.

Studies using the Attentional Network Task (Fan et al., 2002) based on the Posner model
of attention (Petersen & Posner, 2012) have investigated developmental changes in the three
attentional networks (Konrad et al., 2005; Mullane et al., 2016; Pozuelos et al., 2014; Rueda et
al., 2004) and have shown that their development shows separate trajectories. In particular, the
executive side of the attentional networks has received a lot of scientific attention and many

studies suggest that attentional control continues to develop until adulthood, showing change



throughout adolescence and young adulthood (Amso & Scerif, 2015; Crone, 2009). Less is
known, however, about the orienting and alerting systems, also termed the spatial and temporal
aspects of attention. Rueda et al. 2004 (similarly to Mullane et al., 2016) showed no important
qualitative changes in the covert orienting of attention between age 6 and 10, but performance
improved in speed and accuracy with age, and adults scored significantly better in attention
altering tasks compared to children (Rueda et al., 2004). More difficult variants of the ANT show
changes in both the alerting and executive networks between 6 and 11 years of age (Cowan et al.,
2010; Konrad et al., 2005; Mullane et al., 2016; Pozuelos et al., 2014), with the youngest
children benefitting the most from a warning auditory cue before target appearance, indicative of
younger children having greater difficulty in maintaining tonic alertness when monitoring targets
(Pozuelos et al., 2014). No significant changes were seen in the orienting attentional network,
although when comparing the youngest children with the older children (11-12-years-old), some
substantial differences were seen in performance, with slower and less accurate responses in the
youngest children when they had to reorient attention to the target, and increasing ability to
orient and reallocate attention with age (Pozuelos et al., 2014). Across these studies a common
factor that emerges is age related increases in both speed and accuracy, changes that go on until
adulthood in the executive network, but that seem pretty much ‘adult-like’ around 11-12 years of
age for the orienting and the alerting networks. This difference in trajectory suggest that the
orienting and alerting networks develop first.

Interestingly, attention and mechanisms regulating eye movements have overlapping
neural systems (Amso & Scerif, 2015), and develop concurrently. Indeed, it seems that basic eye
motor mechanisms are already adult-like at 8 years of age (Karatekin, 2007; Luna et al., 2008),
as indicated by children and adults showing similar peak velocities of saccades once the
movement has been initiated (Fukushima et al., 2000; see Luna et al., 2008 and Karatekin, 2007
for reviews), and by the fact that children of at least 8-years are as able as adults to adjust and re-
orient attention following task requirements (for a review, Plude et al., 1994). However,
initiating a voluntary oculomotor response to a visual target, independently of any cognitive task,
is much slower in children and only becomes mature during the teenage years (Fukushima et al.,
2000; Luna et al., 2008; Plude et al., 1994). This finding is consistent with a later development of

frontal cortex areas involved in the control of eye movements, and adult-like executive control of



saccades is not yet mature until adolescence, as indicated by a progressive decrease of errors in
anti-saccade tasks (e.g. Fukushima, 2000; see Karatekin, 2007 for a review).

Finally, these three attentional networks, despite working together, have separate (but
overlapping) brain networks (M. 1. Posner & Petersen, 1990). Konrad et al. (2005) have
investigated developmental changes in the neural circuits involved in these three key aspects of
attention. Brain data seemed to mirror behavioural findings of higher sensitivity to interference
and a weaker reorienting system in children, with decreased brain activity in the a priori defined
regions of interest for the three networks, and more distributed activation outside the pre-defined
regions, indicating less specificity of activation in the developmental sample. In particular, adults
showed greater activation in the alerting fronto-parietal network, orienting right inferior frontal
gyrus, temporo-parietal junction, and bilateral superior parietal cortex. Finally, the control
network induced greater activation in a frontal circuit including the anterior cingulate gyrus and
the dorsolateral prefrontal cortex (Konrad et al., 2005). This suggests that the networks
subtending executive control and reorienting of attention are not yet developed and tuned in 8-
12-year-old children, and might undergo further specialization towards more focal and less
distributed circuits during adolescence.

The work presented in this thesis investigates the development of visual attention through
free-viewing paradigms where participants freely explore complex, although static, naturalistic
scenes. Research showing slower voluntary oculomotor responses in children suggests our child
participants may be slower to orient towards information compared to the adults, but in general
the attentional tools necessary to orient to and explore social scenes are already in place in the

age-group we considered in this thesis.

2.3 Scene processing and exploration

In this section I will discuss briefly important aspects of scene processing and scene
exploration, with a focus on the developmental changes in these patterns, before briefly
describing the social attention literature.

As explained in the General Methods chapter, high quality visual perception happens only in
a small portion of the retina, the fovea, and the resolution of visual information decreases the
further away from the fovea (Holmqvist et al., 2011). Therefore, the eye has to move across a

scene in order to parse the visual information it contains in detail. As mentioned above, eye



movements and attention are highly linked: eye movements are the overt phenomenon of
attention allocation (Corbetta et al., 1998; Henderson, 2003), meaning that the portion of space
we gaze at is, under most circumstances, also the focus of our visual attention. Thus, many
researchers analyse eye-movements to better understand visual attention (see General Methods
chapter for details on the eye-tracking methodology).

When exploring a scene, people shift their eyes, and attention, to informative regions
(Buswell, 1935; Henderson, 2003; Yarbus, 1967). Attention and eye movements are therefore
also a tool to understand what is selected by the individual from the environment based on its
relevance (Henderson, 2003). When there are no task requirements and participants are allowed
to freely explore a scene, what they orient to and explore most in a scene can reveal which
aspects of the visual world are intrinsically compelling. Additionally, if an individual has more
time to explore the scene, typically the eye will return to the most informative regions of the
scene rather than exploring the whole area of the picture (for a review see Karatekin, 2007).
Humans can be very quick to understand a scene: we can get the gist of a many scenes from just
one (well-placed) single fixation (Henderson, 2003) and we can be very fast — as quick as 100 ms
(Greene & Oliva, 2009) or even 40ms (Castelhano & Henderson, 2008) — in categorizing objects
or even the context of the scene (Joubert et al., 2007; Rousselet et al., 2005).

Regions within scenes can be informative and guide attention and eye movements from two
perspectives: from a stimulus-driven (bottom-up) perspective and from a knowledge/goal based
(top-down) perspective (Henderson, 2003; Henderson & Hollingworth, 1999). There are
different models of stimulus-driven gaze control (see Henderson, 2003 for a review), but the
bottom line is that contrast, colour, intensity, and edge orientation can be informative about the
contents of a scene and are likely to capture and hold attention. However low-level features and
bottom-up models are not enough to explain gaze allocation in scene exploration (for reviews,
Henderson, 2003; Kaspar, 2013). Indeed, top-down factors can, and do, override bottom-up
drivers of attention, depending on the scene and the task. The top-down factors mostly
considered when investigating gaze allocation in scenes are task requirements (e.g., searching for
particular items), memory (e.g. familiarity with the stimulus), spatial and semantic information
(e.g., cups are usually on top of rather than beneath tables) and the observer’s goals (DeAngelus
& Pelz, 2009; Henderson, 2003; Kaspar, 2013). Important for the research presented in this

thesis is the fact that human vision highly benefits from the use of context in object search and



detection in a scene (Henderson & Hollingworth, 1999; Oliva et al., 2003; Torralba et al., 2006),
suggesting that scene viewing and exploration is not only guided by low level features, but also
and especially (Henderson & Hayes, 2018) by the semantics (i.e., the predicted relations between
the objects in a scene) and meaning of the scene.

The development of scene exploration has not received much research focus, but much of the
work that has been done has focused more on social scenes. This work generally shows that if a
social element is in the scene, it will grab attention (see below for detailed discussion of this
literature) and that social cues are more powerful than other factors that guide children’s
attention, especially when using naturalistic stimuli and free viewing tasks (for a review
Karatekin, 2007). However, there are several differences between children and adults in how
scenes are explored, as assessed through eye-movements. To start with, as mentioned above,
initiating a saccade is slower for children than for adults (Fukushima et al., 2000; Luna et al.,
2008; Plude et al., 1994; Rayner, 1998), but otherwise eye movements are similar across ages.
Helo et al. (2017) have investigated the role of semantics (i.e., the predicted relations between
the objects in a scene) and perceptual features of the scene on visual attention in 2-year-olds,
showing that toddlers were more influenced by the perceptual features of the scene compared to
adults, despite both groups showing effects of the semantics of the scene, indexed by detection of
object placement that was inconsistent with the typical semantics of such scenes (e.g., a tea-pot
in the bath or toothpaste on the stove; Helo et al., 2017). One of the few studies to investigate
scene exploration across development showed that 7-9-year-old children, compared to adults,
focus more on local details, and are more influenced by bottom-up processes, like the saliency
characteristics of the scene (Acik et al., 2010), while adults display more influence by top-down
processes, such as looking to task relevant aspects of scenes. Additionally, it would seem that
variability in gaze allocation across a scene decreases with age, suggesting that individuals
increase their alignment with group systematic viewing tendencies across development

(Kirkorian et al., 2012).

2.4 Summary of the section
Attention is multi-component construct, referring to the processes involved in allocation of
cognitive resources, information filtering and selection, together with maintenance of an

activation state of the individual and control of action, as conceptualized coherently by the
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tripartite model of attention. The three functions of alerting, orienting and control have been
shown to be separate in both behaviour and in the brain.

The childhood years see many cognitive changes as indicated by a general improvement in
the speed and accuracy of processing information. However, basic attentional orienting skills are
already in place by 8 years of age, and peak saccade velocity is similar to adults at that age.
However, processes involving executive control of attention and the initialisation/control of eye
movements continue to develop throughout adolescence, changes that are mirrored in brain
imaging data that suggests late development of frontoparietal circuits involved in attention,
changes that continue into young adulthood.

Scene exploration is regulated by both low-level features such as salience, and top-down
processes, such as task, motivation, memory and knowledge about relations between objects.
Little research has investigated developmental changes in scene exploration, but there is some
evidence that attention is more influence by low-level features in the scene during childhood, and
is increasingly driven by meaning and other top-down processes across middle-childhood and

adolescence.

3. The social bias in attention and the development of social attention

In this section I will provide context for social attention research and review some evidence
of social tuning and social bias in human visual attention. I will proceed with a description of
developmental changes in social attention, and describe how my thesis research is positioned

relative to the current state of art.

3.1 Social vision

Humans have evolved as exquisitely social beings: the complexity typical of living in big
social groups has contributed immensely to the development of large brains in humans and the
need for the complex cognitive skills that are characteristic of humans (Dunbar & Shultz, 2007).
The social skills needed to guide social behaviour and way in which the human brain is tuned to
detect and understand social cues are both described by the field of ‘social vision” (Nakayama,
2011; Papeo, 2020).

People’s eyes, faces, and body cues give away a great deal of information about their goals

and intentions (Nummenmaa & Calder, 2009), and it is generally agreed that human beings
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become experts, since early in life, at looking to other people to catch relevant social cues,
including cues to relationships and personality in order to make social inferences and decisions
(Quadflieg & Westmoreland, 2019). This developing expertise contributes, across the lifespan, to
the development of a wide range of complex social skills (Quadflieg & Westmoreland, 2019;
Soto-Icaza et al., 2015). Given this, a great deal of research has looked into the processes that
drive human vision towards social information, how the extraction of social information happens
mechanistically, and how this ‘social bias’ contributes to the understanding of the complex social
environment.

Faces have long been the focus of social perception research, and a variety of methods and
paradigms have shown that thanks to its range of movements and expressions, the face is a very
efficient social communication tool (for a review, Jack & Schyns, 2017). Indeed, a face can
provide interesting insights about one’s direction of attention (Langton et al., 2000), emotions
(Langton et al., 2000), goals and intentions (Quadflieg & Westmoreland, 2019), or even social
status (Cloutier & Gyurovski, 2014; Quadflieg & Westmoreland, 2019). What’s more, a great
deal of research has shown that human vision is driven to detect and understand other people’s
gaze, perhaps for its potential to communicate other people’s attentional state and thus interests,
together with their mental and emotional states (Birmingham & Kingstone, 2009; Langton et al.,
2000; Risko et al., 2016).

Interestingly, simple perception of human information seems to not need awareness, as
assessed by methods similar to continuous flash suppression (Gobbini et al., 2013) and even
more, a whole human figure in a naturalistic scene is granted privileged access to awareness
(Gray et al., 2018), suggesting the strength of the specialization of human vision for social
information.

Furthermore, people are highly skilled in extracting human information — like a body form —
even from impoverished dynamic stimuli like point-light walkers, created from the digital
capture of the motion of a person with lights attached to the main joints, while walking or doing
a variety of other actions (Neri et al., 1998; Pavlova & Sokolov, 2000). Additionally, we can
recognize features such as sex, age, emotions from these impoverished stimuli (Ma et al., 2006).

This evidence suggests how action and human movement recognition might be crucial for
one’s survival as it allows ready prediction of others’ intentions, and as a consequence, a better

understanding of one’s environment (Thompson & Parasuraman, 2012). Additionally, it suggests
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and brings a strong support to a deeper investigation of attentional processes to complex social

information presented in this work.

3.2 Social brain

This social tuning of vision is mirrored in the function of the brain and its specialized
structures for processing of social information (C. D. Frith, 2007). Similar to the behavioural
research, a great deal of brain research has been dedicated to the investigation of how humans
process faces and face identity. Indeed, there is enough evidence to support the existence of
specialized brain networks for extraction of information from faces and that allow humans to
promptly recognise familiar faces and crucial features like emotions, attentional state, and focus
of attention. The central hub of this face perception network is in the fusiform gyrus, the
fusiform face area FFA (for a review, Kanwisher & Yovel, 2006), but also includes regions in
the inferior occipital gyrus (occipital face area, OFA; Hoffman & Haxby, 2000), and in the
superior temporal sulcus (STS; Deen et al., 2015). As seen earlier in this chapter, a fair amount
of research has been dedicated to gaze perception and detection, and this includes brain research,
which has shown that a wide network is recruited in the detection and understanding of eye-gaze,
with the STS at the core of this network (Birmingham & Kingstone, 2009; Langton et al., 2000;
Nummenmaa & Calder, 2009), but including also some regions in the amygdala, fusiform gyrus,
and medial prefrontal cortex (for a review, Birmingham & Kingstone, 2009).

Body and body parts perception and processing seem to recruit a set of specialised areas such
as the extrastriate body area (EBA) and the fusiform body area (FBA) (for a review, Downing &
Peelen, 2016). Indeed, neuropsychological evidence and TMS studies have shown EBA to be
recruited not only in response to isolated human figures but also in the detection of people in
more cluttered scenes and in other tasks involving the human body, such as body shape
discrimination, as well as movement and action perception (Downing & Peelen, 2016). In
addition, there is some evidence that EBA is involved in detecting and coding for facing bodies,
as opposed to non-facing dyads, and thus may also be involved in at least some aspects of social
interaction processing (Abassi & Papeo, 2020).

When taking a wider look at the person perception and social cognition literature, the
suggestion is that the STS may be a central hub for the processing of important cues for social

understanding and social cognition (Allison et al., 2000; Deen et al., 2015; Zilbovicius et al.,
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2006). Indeed, evidence shows that this region has multiple sub-areas that respond selectively to
certain types of social information, such as the human voice and language processing, dynamic
faces (Deen et al., 2015), gaze direction (E. A. Hoffman & Haxby, 2000; Nummenmaa & Calder,
2009; Puce et al., 1998), mouth movements (Puce et al., 1998), moving hands and body
movement (Allison et al., 2000), biological motion and action processing (Deen et al., 2015;
Thompson & Parasuraman, 2012), and socially interacting dyads (Isik et al., 2017; Walbrin et al.,
2018; Walbrin & Koldewyn, 2019). Accurate face, body and action recognition and the
extraction of inferences about other that can be guided by face and body language (Quadflieg &
Westmoreland, 2019) is thought to principally be supported by the network of social perception
regions described above, though this interpretation is not uncontroversial. However, human
social skills also involve higher order attributions about other humans, including understanding
the unstated contents of others’ minds, often called Theory of Mind (ToM). Such mentalising
processes are thought to be supported by a network of regions that are specifically involved in
such mentalizing processes. The main structures recruited in tasks that require either implicit and
explicit inferences about other people’s mental states include the dorsomedial prefrontal cortex
(dmPFC) (U. Frith & Frith, 2003; Spunt & Adolphs, 2015) — which would seem to be able to
distinguish a mental state representation from physical events —, a sub-region of the STS when
participants are performing false belief tasks (Deen et al., 2015) — potentially involved in
determining agency —, other regions in the temporal poles (Castelli et al., 2000; U. Frith & Frith,
2003) — likely recruiting semantic social knowledge — and the temporoparietal junction (TPJ) (R.
Saxe et al., 2006).

Thus, it would seem that there are three main interconnected systems involved in social
perception and social processing. Indeed, the structures involved in face and body information
analysis could be considered a person perception network including regions involved in face,
body and motion perception — occipital face area (OFA), FFA, FBA, pSTS —, that works hand in
hand with an action perception network that recruits regions in the inferior parietal lobule (IPL)
and inferior frontal gyrus (IFG), and higher order mentalizing processing in a network
connecting the dmPFC, TPJ, the precuneus and the anterior temporal lobe (aTL) regions
(Quadflieg & Koldewyn, 2017). Furthermore, some would suggest that at the crossroad of these
networks the STS plays a central role (Yang et al., 2015), integrating social information from

auditory and visual domains (Redcay, 2008), bringing together form information from the ventral
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visual stream with motion information from the dorsal stream, and through its links to frontal,

parietal, auditory, and visual regions (Zilbovicius et al., 2006).

3.3 The question — social attention

In this section I will first provide a clarification of some terms used throughout this work.

To start with, the scientific literature is various about what “social attention” is. Authors often
use ‘social attention’ to refer to the orienting to and capture of visual attention by targets that are
being attended by other humans (Birmingham et al., 2009b; Birmingham & Kingstone, 2009;
Smilek et al., 2006). For example, when looking at a picture of someone looking at an object, we
are likely to follow their gaze and also look at that same object. When used in this way, ‘social
attention’ is used as attention to the attentional states of other social targets, as indicated by their
orienting of gaze, head, and body orientation (Birmingham & Kingstone, 2009; Nummenmaa &
Calder, 2009). Indeed, Birmingham & Kingstone (2009) refer to social attention as the orienting
to and selection of the gaze as a means to understand what is important in the world, by taking
the focus of attention of other humans as a point of reference.

However, ‘social attention’ has also been used much more broadly to refer to attention to any
social target. In this definition, ‘social attention’ would include attention to faces, bodies,
emotional expressions, actions, etc. Given the communicative value of social targets and the
number of important social cues to goals and intentions given through body posture, and facial
expressions (Nummenmaa & Calder, 2009), together with the high sensitivity of human vision to
picking up these cues (Quadflieg & Westmoreland, 2019), attention to social targets is a vital
first stage of visual information processing that eventually leads to the understanding and
analysis of the intentions and mental states of other individuals (Allison et al., 2000). Indeed, this
idea of social attention — a tool for visual exploration of human information — is how the term
‘social attention’ is used in the current work. The goal of the research included in this
dissertation was to investigate the initial stages of attentional orienting, and later attentional
engagement, to social information like human beings in a scene. In particular, the focus of the
current work is the attentional selection of human information compared to non-human
information, referred to as a “social or human bias”, and how this selection operates on different

levels of complexity at different stages in development, depending on the moderation by the
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presence of social interactions, social content (i.e. number of people in the scene) or social

ambiguity.

3.4 A social bias

Research investigating the human attention ability that contributes to the extraction of visual
information generally supports the idea that humans have an attentional bias towards faces, and
especially eyes (Birmingham & Kingstone, 2009), as well as bodies. For example, covert
attention paradigms have investigated the strength of social information to act as distractors in
visual search tasks, by slowing down search times. Indeed, in a visual search task where
participants had to look for a non-social stimulus — i.e. a butterfly — in a 6-element array, search
time was greater when a face was among the distractors compared to trials where there were only
non-social distractors (Langton et al., 2008). Additionally, when the social elements became the
search target, the non-social distractors were not as efficient in capturing attention and slowing
down search times. Similarly, Ro et al. (2007) show this interference effect is also shown when
distractors are body parts rather than just faces and, importantly, is valid also in naturalistic
scenarios (Ro et al., 2007). Indeed, Doherty et al. (2017) show that a human figure can slow
down search times for an object in a scene, suggesting human information receives attentional
priority even in more cluttered scenarios (Doherty et al., 2017). Downing et al. (2004) show that
unexpected and task-irrelevant human body silhouettes can be resistant to inattentional blindness
by being detected more frequently compared to other stimuli, like objects or scrambled versions
of the body figures (Downing et al., 2004). Finally, in a visual search task where participants
search for a scene depicting humans in an array of scenes containing machines, and vice-versa,
the search for human scenes had shallower search slopes and the on target fixations were on
average shorter for people compared to machines (Mayer et al., 2015), suggesting that human
information might be easier to process.

A great deal of support for a social bias also comes from overt paradigms, where orienting,
capture, and engagement of attention to social information as measured by eye movements is the
main experimental question. Indeed even early work on scene exploration (Yarbus, 1967) has
demonstrated an attentional interest towards a human figure when viewing scenes, such as
paintings or pictures. Most of the work on attentional engagement and capture of human

information has focused on the importance of gaze as a source of information about others’
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attentional states and targets (Birmingham & Kingstone, 2009), although other research suggests
an interest in the human body as a whole (Bindemann et al., 2010; Sue Fletcher-Watson et al.,
2008). When presented with two scenes, one containing a person and the other without, the
majority of the fixation time goes to the scene containing the human, and in particular to the
human area of interest (Sue Fletcher-Watson et al., 2008). Furthermore, when participants freely
explored naturalistic scenes with one or three people, human information — eyes, heads, bodies —
were the main objects of interest, while non-social items — foreground and background objects —
were looked at later and less frequently (Birmingham et al., 2008). Similarly, when viewing
scenes containing multiple people having social interactions, typically developing participants
showed more looking time to the people in the scene compared the background (Riby &
Hancock, 2008).

As in covert attentional paradigms, a human figure in a scene can act as a distractor also by
capturing the first fixation to the scene even when the participant is not searching for a social
target (Doherty et al., 2017). One would argue that this early attentional capture by human
information could be explained by ‘low level’ visual features that have influence over early
perceptual processes, but research suggests that this process is not entirely dependent on factors
like saliency in the scene (Birmingham et al., 2009a; Résler et al., 2017). Additionally, either
when searching for a human scene among machine scenes, or vice-versa, the human target
captured on average more first fixations than the non-social target (Mayer et al., 2015). Other
studies have looked into exploration of more complex scenes depicting multiple people and even
in such cluttered scenes the data demonstrates an attentional bias to human information
compared to non-social information, with attention to eyes, faces and heads as the regions that
receive the most attentional focus, followed by bodies and background elements (Flechsenhar &
Gamer, 2017; Klin et al., 2002; Riby & Hancock, 2008). Although these are important insights
into attentional processes to more complex and cluttered information, these studies don’t
disentangle how increasing the level of complexity of the social scene might affect social

attention, nor whether the content of the social information influences the degree of ‘social bias’.

3.5 Bottom-up and top-down aspects of social attention
Importantly, many models of scene perception suggest that low-level, stimulus-driven

saliency, such as contrast, luminosity, and edges will capture attention (Henderson, 2003 for a
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review). While one might argue that early attentional capture by social objects might be
influenced by lower-level elements such as the visual saliency in the scene, it has been shown
that actually the presence of social information is a better predictor of early attentional orienting
to a certain position in space compared to high saliency, indicating that attentional orienting to
social information might be reflexive (Flechsenhar & Gamer, 2017; Rosler et al., 2017), or at the
very least that attention to social information overrides visual saliency driven attentional
mechanisms (Birmingham et al., 2009a; End & Gamer, 2017; Langton et al., 2000; Rosler et al.,
2017). This research clearly suggests that the human attentional bias is at least partially
automatic in nature and also independent of low level features (Ristic & Kingstone, 2005; Rosler
et al., 2017). On the other hand, there is also considerable evidence suggesting that top-down
knowledge can influence perception and attention (Abdel Rahman & Sommer, 2008; for a
review see Collins & Olson, 2014), and this can go as far as top-down increase of category
specific response in specialised brain structures after participants are exposed to new visual
information which helps to disambiguate initially meaningless stimuli (Dolan et al., 1997). The
influence of top-down knowledge has not yet been much explored in social attention but for
example, feature attribution to the same ambiguous stimulus — namely thinking the stimulus is a
car with wheels or a face with eyes — can influence social orienting, by inducing a face-like cuing
effect only when the stimulus is thought to be a face (Ristic & Kingstone, 2005). Similarly, this
attentional cuing effect was found to be strongest when the viewed stimuli — a face or a robot —
were thought to have intentionality compared to just being inanimate objects (Wiese et al.,
2012). This research suggests an interesting interplay between automatic processing and
semantic knowledge about visual information, strengthening the idea that visual attention and
visual perception are not only guided by bottom-up processes related to low-level features of the

scene, but also by the relevance of what is being observed.

3.6 Development of social attention

In this section I will not treat in detail the development of social perception, since much of
this research has been carried out in infancy or has focused on face perception, and both are
beyond the scope of this dissertation. I will, instead, focus on discussing the literature around

social orienting in childhood.
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Given the developed end state of the adult ‘social brain’, which is very well equipped to
select human information and social categories (Papeo, 2020), it is natural to expect that at least
some attentional processes are, since early in life, operative to select human information. As a
consequence, a great deal of developmental research in area has focused on infancy in order to
determine whether there is a ‘social bias’ to attention even at the very beginning of life. This
research has shown that a bias to social information, at least for some stimuli, is already in place
since the first few months of life (Bertenthal & Boyer, 2015; Gliga & Csibra, 2007; Soto-Icaza et
al., 2015). This bias potentially allows early social detection and facilitates early social learning,
which has been shown to be fundamental for the development of the social brain (Soto-Icaza et
al., 2015) and later language skills. Indeed, the detection of faces and eyes, as well as orienting to
face-like stimuli and the ability to orient to intact biological motion seem to develop within the
first year of life, although refinement of many of these skills continues throughout childhood (for
details see Bertenthal & Boyer, 2015; Mondloch et al., 2003; Reynolds & Roth, 2018; Soto-Icaza
et al., 2015; Taylor et al., 2004). In particular, since the very first days of life, infants show signs
of an ability to perceive faces, as suggested by their gaze following behaviour, and especially of
gaze processing, as shown by a preference for direct gaze compared to averted gaze (for a
review, Gliga & Csibra, 2007). Thus, the building blocks of social vision and person perception
are already in place very early, including a preference for and bias towards social stimuli.

However, research on how social orienting may change across development, and especially
during childhood is very limited. Unsurprisingly, research agrees that there is a general
preference in typical developing children for social information that is seen across ages (Chita-
Tegmark, 2016). It is, however, unclear whether and how these preferences change across the
childhood years. We know for example that 9-months-olds, similarly to adults, prefer fixating a
face compared to the rest of a social scene (Frank et al., 2009) and during the first year of life
they very quickly become good at discriminating different gaze directions (Gliga & Csibra,
2007). Additionally, during the first year of life attention to faces increases rapidly. This increase
continues but slows down in childhood before once again showing an increase again in early
adolescence (Amso et al., 2014). The handful of studies that have investigated social attention in
childhood generally show the presence of a social attentional bias, for example as indicated by a
preference in pre-schoolers (2-5 years old) to attend to a face or a dancing human instead of an

object or a moving shape in paired preference paradigms (Pierce et al., 2011; Sasson &
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Touchstone, 2014). Similarly, at 9-years, children’s attention is attracted by a human figure
depicted in a scene (Van Der Geest et al., 2002) and this can also act as stronger distractor
compared to non-social distractors in the search for non-social targets (Doherty et al., 2019).
Interestingly, in this study, although both children and adults were sensitive to the social
distractor, children’s first fixation was captured more often by the social element compared to
the adults, suggesting that children actually have a stronger social bias than do adults. Also
Elison et al. (2012) show an age related increase in attention to social elements in an array
containing faces/people and objects in a group of 2-18 year olds (Elison et al., 2012).

Furthermore, it seems like younger groups might be more sensitive to the manipulation of
social content (e.g., the number of people depicted in a scene) compared to adults (Stoesz &
Jakobson, 2014), as children shift their attention from faces to bodies as the number of the people
increases, a shift in attention that isn’t seen for adults. Although this data would suggest an
increase in attention towards social information across middle childhood, Amso et al. (2014)
show only a very mild increase from 6 to 12 years old in the proportion of social information (in
this case faces) that children attended in scenes (Amso et al., 2014). This set of studies suggests
that conclusions around sensitivity and attention to social information across childhood,
especially in more complex scenarios, are still unclear. Additionally, given all the behavioural
and neural changes in social brain and social communication skills happening during
adolescence (Blakemore, 2017; Choudhury et al., 2006), extending this research to more
thoroughly investigate what skills and tools children have for social understanding to support
further and more complex social development as they enter adolescence seems necessary. There
are also many aspects of social perception and attention that have not yet received much, if any
developmental attention. For example, as they enter school, children’s social world begins to
extend beyond the family nucleus and their social experience becomes more independent. Both
bring many cognitive changes relevant to engaging with and understanding observed social
interactions (Carpendale & Lewis, 2004; Eccles, 1999), therefore it seems crucial to understand
how attentional processes support and interact with this development.

Finally, studies about theory of mind in development show that implicit mentalizing
processes happen already at 18 months of age — e.g. pretend play —, at 3 years old children
already start distinguishing between a physical story and a mental state story, and between 4 and

6 years of age children are able to make more explicit inferences, including being able to
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verbalize the mental reasons behind false beliefs (for a review, U. Frith & Frith, 2003). All this
means that some pretty complex social processing beyond simple perception is already taking
place in early childhood, but it is unclear how attention supports these processes.
Electrophysiology evidence in infancy shows that some neural structures in the posterior
temporal regions specialised for face and eye detection are already in place in the first months of
life (Gliga & Csibra, 2007; Soto-Icaza et al., 2015). Although the infant brain in general is
continuously changing throughout childhood and beyond (Mills et al., 2014), some regions are
‘in place’ earlier than others. Indeed, cortical thickness in some structures in the social brain
(mPFC, pSTS and TPJ) seem to peak around 9/10 years of age and then this cortex, with some
exceptions, thins until early adulthood, where it plateaus until late adulthood (for details see
Mills et al., 2014; Soto-Icaza et al., 2015). Such results suggest that these ‘social brain’ structures
are developing across childhood before going through refinement and consolidation during
adolescence. The exact correspondence between these structural changes and behavioural skills
and abilities is not yet clear, however. Some structures involved in social reasoning and social
perception are already highly functionally distinct in early childhood (3 years of age)
(Richardson et al., 2018), while others continue to specialize throughout childhood and
adolescence until adulthood, including FFA (Peelen et al., 2009), STS (Ross et al., 2014;
Walbrin et al., 2020), EBA (Ross et al., 2014), and regions involved in theory of mind like the
TPJ (R. R. Saxe et al., 2009).

Taken together, this set of research suggests indeed that humans and their brains come
furnished with a set of tools and mechanisms that allow early interpretation and understanding of
social information, particularly important in predicting other people’s actions — something that is
important for survival. At the same time, refinement of these mechanisms and the brain regions
that support them continues throughout childhood as higher order social inferences and skills

become necessary (Soto-Icaza et al., 2015).

3.7 Summary of the section

Human vision and brain are especially tuned and specialized for social information
processing, and equipped for a proper understanding and information extraction from the social
world. These tools have been very well investigated in infancy, especially for what regards

perception of and attention to faces and eyes, but very little is known about how social
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information is attended throughout childhood, and more importantly, how it is selected in a
typically noisy environment, such as naturalistic scenarios. Despite knowing that there is in
general a preference for social information compared to non-social stimuli also in pre-adolescent
groups, and some changes and specializations happen in the social brain in this period, it is
unclear how selection of this information changes compared to adulthood.

The research discussed in this section brings strength to the idea that compared to an adult
social brain, the developing social skills system and brain is not yet fully tuned to the social
environment, therefore suggesting that some differences in the way children extract and orient

towards social information should be expected.

4. Social interactions

In this section I will provide a discussion of the current evidence for a specialized mechanism
for social interaction perception and review the limited literature regarding attentional orienting
and selection of social interactions in adult vision. I will then also review what we know about
the development of social interaction perception, describe why third party encounters may be
important in development as well as the work that has been done to investigate this in childhood.
Finally, I will discuss some of the evidence suggesting that social interaction perception may be

specifically altered in some neurodevelopmental disorders.

4.1 Third party encounters and social learning

Before discussing the research regarding third party encounters, I will describe some
evidence as to why social interactions might be important especially in development. As
explained above, humans look at other humans, are interested in other people’s behaviour and
interests, and, importantly, since early in life they learn from other people (Bertenthal & Boyer,
2015; Quadflieg & Westmoreland, 2019; Soto-Icaza et al., 2015). While research on isolated
single figures and social stimuli has resulted in important insights about person perception and
the social brain, humans in the natural world are often seen while engaged in social interactions,
and certainly are always perceived as having the potential to interact with other humans (Papeo,
2020). Visual systems may be specialized to perceive relations between entities more generally
(Hafri & Firestone, 2021), but humans seem to be particularly good at people watching and

especially tuned to interactions between conspecifics. Social interactions are very rich constructs
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that involve a wide variety of verbal and non-verbal behaviours, as well as a wide range of social
cues that signal or predict such interactive behaviours. In addition, there are a variety of contexts
and settings in which interactions occur, as well as a wealth of emotional exchanges and
purposes that drive them (De Jaegher et al., 2010). Given the amount of rich information being
exchanged during a social interaction, it is intuitive that when we observe social interactions
from a third party perspective, we observe important exchanges that convey unique information
that can be a crucial source of social learning (Quadflieg & Koldewyn, 2017; Quadflieg &
Penton-Voak, 2017; Quadflieg & Westmoreland, 2019). As we will see in a deeper look at past
research, humans seem to be biologically drawn to and interested in making judgments and
inferences about social interactions, and this might be because other people’s interactions are a
great source of scenarios where social rules, social dynamics, relationships and intentions of
other future interaction partners are applied and demonstrated (Quadflieg & Koldewyn, 2017;
Quadflieg & Penton-Voak, 2017). Additionally, although we are not always accurate in
impression formation, we automatically use interactive information to draw inferences about
other people’s personalities and characters by observing them interacting, forming relationships,
and navigating in the social world (Quadflieg & Westmoreland, 2019).

Crucially, past research has shown how interactions can be a rich stage for social learning,
especially early in life. Some research into observational learning in infants (e.g. Lee &
Rutherford, 2018) demonstrates that even young children are pretty good at imitating others after
observing them, but as they develop, children are able to extract information also from more
complex situations that involve more than just single individuals. In particular, when 4/5 year-
olds observed a video of an experimenter exhibiting positive or negative behavioural biases
towards as interaction partner, children later expressed preference for (though pointing at their
choice) and exhibited prosocial behaviour (giving a toy) towards the person that was favoured by
the adults in the video (Skinner et al., 2017). Additionally, in the same experiment, the authors
created a group membership manipulation, demonstrating that children were also able to
generalize the bias of the experimenter to other people belonging to the same group. What’s
more, already at 5 years of age, children are able to understand social status (Brey & Shutts,
2015; Over & Carpenter, 2015) and can correctly attribute friendship to two interactants

(Nurmsoo et al., 2012) just by observing nonverbal behaviour.
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4.2 People watching

As mentioned earlier in the chapter, there is a recent wealth of social perception literature
that shows that adults are very skilled at perceiving and detecting interacting dyads, suggesting a
potential perceptual bias to perceive social interactions compared to other social targets, such as
single agents or not interacting agents. A wide variety of behavioural paradigms and stimuli have
been used to investigate this, from impoverished point-light motion stimuli, simplified 3D
mannequins, and animated simple shapes to naturalistic figures of whole humans, together with
the manipulation of different social cues (for a review, Quadflieg & Koldewyn, 2017).
To start with, the human ability to extract communicative information from very impoverished
stimuli it is well established. Indeed, while Bente et al. (2001) show that mental attributions are
similar for real life interacting individuals and 3D animations of the same individuals (Bente et
al., 2001), Manera et al. (2010) show that we are able to recognize communicative actions and
interactions from simple brief presentations of point-light agents, suggesting that human vision
might not need much visual information to detect or recognize a social interaction from a
stimulus. Point-light agents have also been used to show that the visual system preferentially
selects a meaningfully interacting dyad to reach awareness, when the two eyes are presented with
competing information (Su et al., 2016). This would suggest that visual sensitivity to social
interactive information may happen in an automatic and reflexive way and in response to
minimal information. Indeed, the recognition of an event happening between two actors (e.g.
kicking or pushing) in a naturalistic picture, can happen in a very brief period of time — seeing
such a picture for just 73ms was enough for participants to be able to recognize both the action
and the actors’ roles (agent vs patient) in the scene (Hafti et al., 2013).

Facing direction is a particularly important cue for determining whether two agents are
interacting or not. Moreover, it is a cue that is relatively simple to manipulate and thus has been
widely used in work probing social interaction perception. In particular, we seem to have visual
sensitivity to pairs of bodies (with and without the head depicted) facing each other compared to
agents not facing each other in detection and recognition tasks, an effect that does not apply to
pairs of facing objects or humans facing objects (Papeo et al., 2017; Papeo & Abassi, 2019). The
facing direction of a partner can also improve emotion recognition. In particular, the emotional
expression of one face is modulated by the emotion of the another face only when the two were

facing each other but not when they were facing away (Gray et al., 2017).
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Another cue that has been investigated in social interaction research is the synchrony
between the actions of two dynamic figures. Indeed, in the attempt to disrupt the perception of
social interaction between two point-light fighters, Neri et al. (2006) manipulated different levels
of synchrony between the two agents. They showed that when presented with one unobscured
fighter and one embedded in noise, it was easier to correctly infer the presence of the second
agent when the two actions were synchronised than when they were not, suggesting that the
synchrony typical of a social interaction facilitates person and action perception (Neri et al.,
2006). Additionally, it has been shown that when fluency — the smoothness of action — and
contingency of movements between two interactants (two kinematic characteristics typical of
social interactions) were disrupted, participants rated the actions as unnatural (Georgescu et al.,
2014). With a similar approach, Manera et al. (2011) used dyads of point-light agents and noise
masking to investigate the processing of communicative behaviour. Indeed, they show that when
an agent was paired with another portraying a “coherent” communicative gesture, the latter was
easier to discriminate among visual noise, compared to a non-communicative pairing (Manera et
al., 2011). Furthermore, two shapes moving in a contingent, synchronous, and mutual way are
often seen as having a social interaction, which participants providing rich narratives about the
perceived encounter (Castelli et al., 2000; Santos et al., 2010; J. Schultz et al., 2005; R. T.
Schultz et al., 2003). Indeed, we can distinguish between different types of interactions between
shapes (Isik et al., 2017; Walbrin et al., 2018), suggesting human attention and vision is strongly
tuned to capture this kind of information even from simple motion and action cues, and even
when human information is missing. What’s more, it has been shown that two interacting agents
seem to be processed and perceived as more than the sum of the two agents, and are grouped
more as a unique chunk of meaningful information (e. g. Adibpour et al., 2021; Ding et al., 2017)
than as separable objects that must be individually recognised and processed.

This research shows clearly how cues typically indicating social interactions enhance and
facilitate social perception and attention, supporting once again their high biological value.

Very few studies have investigated attentional orienting to social interactions, and even
fewer paradigms have manipulated interactive content across stimuli. One paradigm that has
been used to investigate visual attention to interactions are visual search tasks, where there seems
to be a search asymmetry for upright body dyads, meaning that facing bodies are found faster

and with higher accuracy when searched for among non-facing bodies than when non-facing
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pairs are searched for among interacting dyads (Papeo et al., 2019). Facing dyads seem to have a
perceptual and attentional advantage (Papeo & Abassi, 2019; Vestner et al., 2019) when they are
looked for among same facing direction pairs, although some researchers suggest that this
attentional advantage for facing dyads might be produced by an attentional cuing hot-spot effect
that is created by facing agents compared to non-facing figures (e.g. Vestner et al., 2020, 2021).
Interestingly, while facing direction does not work in this way for some objects (i.e., chairs;
Papeo & Abassi, 2019) a similar advantage is seen for facing pairs of objects when those objects
direct spatial attention in a Posner-style attentional cueing paradigm (Vestner et al., 2020,
Vestner et al, 2021). In visual search tasks, then, attentional cuing mechanisms may partially
explain the search advantage for social interactions. However, another finding suggests that
interactions do not only have an influence on attentional orienting/capture but also on the
engagement of attention. In a pilot study later used with ASD and TD children, typical adult
participants saw pairs of real facing or non-facing agents at the same time on a single grey
background, in a 10 seconds free viewing paradigm. Despite having more than sufficient time to
fully explore both dyads, participants spent significantly more time looking at the facing pairs
compared to the non-facing pairs (Stagg et al., 2014). Furthermore, although not naturalistic, this
is the only study in our knowledge to have shown a preference in looking times for social
interactions compared to non-interactions in a multiple people scenario.

However, most of these studies have investigated attention towards social interactions
using tightly controlled schematic stimuli, and the few studies investigating social attention in
naturalistic scenes have not explored the role of dyadic social interactions compared to non-
interacting dyads. To our knowledge there is only one study manipulating the social content and
the interactive element in observed scenes, with the aim to investigate social attention in more
complex scenes, and in particular attention to the eyes. During a 15 seconds free viewing
paradigm, Birmingham et al. (2008) used scenes depicting either one or 3 people, either being
active (doing something independently), inactive (doing nothing independently) or interacting
(the 3 people in the scenes were doing something together). Interestingly, the authors show that
attention to the eyes increases when the number of agents involved increased, but they show no
difference in the fixations proportions across the AOIs (eyes, heads, bodies, foreground and
background objects) between the scenes depicting 3 people interacting and the “independently

active” scenarios, suggesting no influence of the presence of an interaction on attention within
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the scene (Birmingham et al., 2008). In contrast, Kujala et al., 2012 show that when adults freely
viewed pairs of humans interacting in a friendly manner or facing away, their attention was
driven to the heads (rather than bodies) more in the facing condition compared to the facing
away condition (Kujala et al., 2012) Although attention specifically to the head vs body is not a
measure used in the current work, this research is worth mentioning because it suggests that
social attention patterns change when a social interaction is introduced into the scene, but also
that it might be attention fo the dyad where these differences occur.

The neural basis of social interaction perception has been investigated with a variety of
paradigms, methods and stimuli (Quadflieg & Koldewyn, 2017). Indeed, increasing evidence
suggests the posterior superior temporal sulcus (pSTS) as a central hub for the visual perception
of social interactions (Isik et al., 2017; Quadflieg et al., 2015; Walbrin et al., 2018; Walbrin &
Koldewyn, 2019), and not only does it distinguish between interacting dyads and non-interacting
dyads or single agents, but also between different kinds of social interactions (Walbrin &
Koldewyn, 2019), even when explicit social inferences are not a required by the in-scanner task
(Walbrin et al., 2018). Additionally, it seems like the pSTS region might be tuned also for
extraction of interactive content in social scenarios without explicitly human content (J. Schultz
et al., 2005, Isik et al., 2017, Walbrin et al., 2018).

Although the pSTS has been shown to be selective in the visual perception of interacting
dyads compared to pairs of independent actors when participants were not performing specific
tasks, other structures are recruited, depending on the experimental task utilised. Even when
using more naturalistic scenarios and free viewing paradigms it is shown that a set of structures
involving the amygdala, dorsomedial prefrontal cortex, IFG, aSTS and precuneus are recruited
for the processing of relations between humans even when no specific task is performed
(Iacoboni et al., 2004; Kujala et al., 2012; Wagner et al., 2016). Simlarly, during categorization
of point-light displays as acting together or independently, a wide network was recruited
including the pSTS, TPJ, anterior superior temporal sulcus (aSTS), dorsal mPFC, and inferior
frontal gyrus (IFG) (Centelles et al., 2011). Additionally, the IFG, STG and pSTS among other
areas, were more activated when participants viewed videos of contingent interactions compared
to a pair composed of an agent and its mirrored version (Georgescu et al., 2014). Furthermore, it
seems for example that activity in the EBA, a region usually involved in processing of bodies, is

increased when the bodies are facing compared to when they’re not facing, similar to what
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happens in LOC when functionally related objects are presented (Abassi & Papeo, 2020),
suggesting that in the human visual structures two bodies facing each other might be processed
as a whole unit, similarly to how bodies are perceived as more than the sum of different body
parts. Similarly, when participants viewed different pairs of full-body interactions, not only did
the EBA show, similarly to pSTS, an ability to distinguish between different kinds of social
interactions, but the activity in this region showed a dyadic information effect (Walbrin &
Koldewyn, 2019). This research would suggest that the EBA might contain unique dyadic
information which could result from processing socially interacting dyads as a whole, and not
simply as just the sum of the agents involved in the interaction. Therefore, it seems like social
brain structures involved in social interaction perception, person perception, and action
perception, are not only sensitive to a series of physical cues between interactants, but are able to
pick up on more complex social information and meaning from the dyads.

To summarise, research on the brain representations of social relations between humans
has shown a wider network than the simple processing of single faces or bodies, such as dmPFC,
IFG, aSTS, EBA, TPJ, pSTS depending on the complexity of the task or the stimulus used. This
research suggests that social interactions from third person perspective have a special status and
role for human vision and in the human brain, therefore it is natural to suspect that some

attentional privileges might derive from this special status.

4.3 People watching across development

Despite the above discussed research showing a special place for social interactions in the
adult social brain and vision, there is relatively little research explicitly investigating change in
attention and visual perception of social interactions or more complex social information across
development, especially during middle to late childhood and adolescence. What little evidence
there is suggests that the ability to discriminate between interacting and non-interacting humans
develops as early as 4 months old, with infants becoming capable of shifting their attention
between speakers that face each other compared to non-facing speakers, and this ability seems to
increase across the first year of life (Augusti et al., 2010; Handl et al., 2013). What’s more, at 6
months, infants can discriminate between different types of interactions, by showing a preference
for a pair of agents exhibiting helping behaviour, compared to those that hindering each other

(Hamlin et al., 2007). This suggests an early ability to evaluate and understand complex
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interactive behaviour. At 4 years of age, children are able to explicitly distinguish a social
interaction from a pair of agents acting independently side by side from a set of impoverished
stimuli like point-light actions, although this ability doesn’t seem to be adult-like until after 7
years of age (Centelles et al., 2013).

Although this research suggests that the ability to infer complex social information from
impoverished stimuli seems to be present in children as young as 4 years old, as explained earlier
in the chapter, the aim of the work in this dissertation is to investigate attentional orienting to
more complex information, such as social interactions embedded in naturalistic scenes.
Therefore, even though the scarce literature would suggest that the ability to make higher order
social inferences might be already ‘adult like’ by 9 years of age, it is unclear how spontaneous
attentional capture might be influenced by the complexity of the social scene and the presence or
absence of social interactions. To our knowledge, there is only one developmental study that has
investigated attention to interacting pairs compared to non-interacting pairs. The results show
that typically developing children of approximately 9 years of age looked for longer at 2 agents
facing each other when presented together with another pair of agents that did not face each other
(Stagg et al., 2014). Crucially, even though this study suggests an attentional bias to social
interactions also in pre-adolescent childhood, in this study age related differences in this pattern
of attention were not investigated, and the figures were presented isolated from any background
context, which might provide important extra information that could either facilitate processing
of social interaction or, on contrary, hinder such mechanisms because of the increased
complexity and competition for attentional resources.

When investigating preferential looking between a social scene containing social interactions
and a non-social scene (all scenarios depicted moving geometric shapes), Shaffer et al. (2017)
show a preference for the social scene in 5-17 years old children, but they don’t find any change
in looking behaviour with age (Shaffer et al., 2017). However, in this research, the presence or
the absence of interactive information has not been explicitly manipulated and the paradigm is
more a measure of preference for social information compared to non-social information and not
necessarily the attentional capture of and engagement to social interactions compared to non-
interactions when both are portrayed by social targets. Similarly, although they have not
explicitly manipulated the interactive content in the scene, Hanley et al. (2012) show that

differences in social processing between TD and Asperger groups are evident only when a social
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scene becomes more complex, for example when it depicts naturally occurring dyadic
interactions, compared to only isolated faces (Hanley et al., 2013). This research increases the
suspicion that if adding interactive content to a scene can increase differences seen between
typically developed groups and clinical populations, similar manipulations could reveal
developmental differences between different age-groups in social attention to interactive
scenarios.

Although behavioural developmental research on the topic of social interaction perception is
limited, neuroimaging research would suggest that social brain structures specialised for social
interaction perception are still undergoing tuning for fine perception of social interactions in pre-
adolescent childhood (Sapey-Triomphe et al., 2017; Walbrin et al., 2020). Indeed, when 6-year-
old children were showed videos of point-light displays depicting social interactions and
independent actions, although the right pSTS was activated by the interaction condition in both
groups, the selectivity of this region for interacting dyads did not become similar to the adults
until around 9 years old in the right hemisphere, and was not adult-like in the left hemisphere
(Walbrin et al., 2020). Furthermore, the selectivity to bodies in EBA and to faces of the face area
of the STS did not show this developmental change, suggesting that although the neural
structures supporting social interaction perception might be already sensitive in childhood, they
are not yet to fully tuned for this purpose. Similarly, Kirby et al. (2018) show also that although
the pSTS responds also to stimuli of single biological motion agents (e.g. walking or painting),
compared to scrambled stimuli, there is no clear developmental change in response to simple
biomotion walkers in 7-13 years old children (Kirby et al., 2018), suggesting that documented
age-related differences in the pSTS might be specific to information needed to specifically
decode and perceive social interactions.

Interestingly, brain research shows that not only does the number of neural structures
involved in the perception of interacting dyads seem to increase from childhood to adulthood,
but it appears that in childhood the areas recruited were more visual perception areas, while
adults recruit a wider network, including more areas involved in mentalizing and higher social
inferences (Sapey-Triomphe et al., 2017; Walbrin et al, 2020). This research suggests that from
childhood to adulthood there is a process of refinement of the social brain functionality towards
perhaps a deeper understanding and meaning extraction from the social world. Not only does the

sensitivity to social interactions change across childhood in the pSTS, but also mentalizing
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networks (including TPJ, precuneus, dorsal, medial and ventromedial PFC) which are recruited
when making higher order social inferences, undergo functional specialization between 3 and 12

years (Richardson et al., 2018).

4.4 Neurodevelopmental research

In this final section I would like to mention some of the neurodevelopmental research on
social attention, suggesting other reasons why attention to social interactions deserves further
investigation.

It is widely established that social attention skills are disrupted in some neurodevelopmental
disorders (Williams syndrome, ASD) in quite predictable ways. Indeed, it is generally known
that ASD children orient their attention less towards social information compared to their
typically developing peers. In particular, thanks to a wide variety of tasks and methods it is
generally agreed that autistic individuals show decreased spontaneous attention towards the eyes
of faces/humans in eye-tracking paradigms (Chita-Tegmark, 2016; Elison et al., 2012; Frazier et
al., 2017; Papagiannopoulou et al., 2014), and importantly, in naturalistic scenes (Klin et al.,
2002; Riby & Hancock, 2008; Williams et al., 2013). However, the nature and extent of these
behavioural or attentional differences appears to vary substantially depending on the complexity
and type of information being presented and on the task that individuals are asked to perform.
Indeed, as shown in a recent meta-analysis, it would seem that even though autistic participants
show overall reduced social attention through a variety of experimental stimuli and tasks used,
compared to TD groups, the only factor that could reliably predict the effect size of this
reduction was the amount of social content in the scene (e.g., the number of people depicted in
the stimuli; Chita-Tegmark, 2016). Another meta-analysis suggests that the largest differences
between TD and ASD groups in attention to social areas of interest like faces and eyes were
driven by the presence of a social interaction in the scene (Frazier et al., 2017). Additionally,
when Hanley et al. (2012) investigated attention to isolated faces and naturally occurring dyadic
interaction scenes, differences in orienting to social information between the control group and
the group with Asperger’s syndrome occurred during only when viewing more complex stimuli,
such as naturalistic social interactions; differences between groups were not evidence for isolated
faces. Similarly, when showing arrays of still people and objects, moving faces and objects, and

videos of children involved in a playful social interaction, the differences in social attention
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patterns between the TD and the ASD group became evident only when social interactions arrays
were shown, suggesting that it is not only the motion or dynamic information in video stimuli,
but the complexity of social information/cues conveyed by social interactions that actually
distinguishes accurately between these two groups (Chevallier et al., 2015). Together, the
evidence suggests that autistic individuals may attend to social interactions differently, raising
the possibility that interactive content may be able to reveal developmental change in social

attention as well as differences between typically developing and neurodiverse groups.

4.5 Summary of the section

Social interactions have been shown to be important theatres of human social exchange, and
observing them from a third party perspective can provide an important source of information for
social learning. The human brain seems to be highly tuned to picking up the unique cues typical
of social interactions, but it is unknown how attention supports these processes. Some research
suggests a preference to attend social interactions compared to non-interacting individuals but
more research is needed. Additionally, even less is known about development. Children’s brains
are not yet fully specialized for the perception of interacting dyads, but somehow children are
able to promptly learn social norms and rules from observation of interactions, suggesting
attention might help selection of important interactive information from the environment.
Additionally, social attention in demonstrably different in autism, though only reliably when
scenes are socially complex, including when they contain social interactions, providing another

reason for further investigation in this field.

5. Aims of the work and overview of thesis chapters

The aims of this work are, in the first place, to investigate how visual attention to social
targets is altered in the presence of a social interaction, and to investigate whether attention to
interactions changes during pre-adolescent childhood. Additionally, we aimed to investigate
spontaneous attention to interactions by using free-viewing paradigms and naturalistic scenes.
Therefore, in the first experimental chapter, we investigate attentional patterns — as measured by
eye movements - in naturalistic scenes containing either an interacting dyad or a pair of humans
who are not interacting, in both adults and in children aged between 6 and 12. A second aim in

the current work is to investigate the strength of any social interaction bias by manipulating the
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social content — i.e. number of people — in scenes as well as pitting social interactions against
other social targets in the same scene. In the second experimental chapter therefore, dyads and
other social agents in the scene are competing for attentional resources. Again, we also
investigate developmental change by collecting data in both typical adults and children (6-12
years old) and adults. Lastly, it is unclear how top-down knowledge about social interactions
changes across development, and such knowledge may influence attentional patterns in
naturalistic scenarios. Therefore, in the third experimental chapter, we investigate social attention
and its development in both adults and 6-12 year-old children in ambiguous social scenarios,
where a dyad might be considered interactive or not depending on the viewer’s internal construct
of social interactions. We investigate whether children and adults perceive these scenes
differently, and whether the way in which a scene is categorised influences how participants
attend to social information in the scene.

Therefore, the novelty of the work here presented is first of all in the clear investigation of
attention to social interactions in naturalistic scenarios in pre-adolescent childhood, in the use of
a wide variety of real life settings, and in the investigation of the role of social interactions for
human attention when there is competition between different social targets and when the
information presented is ambiguous. Finally, outside specific questions around the processing of
social interactions, this work should provide additional information around social orienting and

social scene processing in childhood.
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Chapter 2. General methods

1. Overview of the chapter

In this chapter I will outline and justify the main methodology, design details and
statistical approach used in the three empirical chapters. I will start by describing the samples
used for this research, then explain the research design and its suitability for the research
questions and provide a brief theoretical introduction to eye-tracking methodology. I will
continue with a detailed description of the stimulus choice procedure for each of the three
experiments and finally, I will describe the multilevel modelling analysis approach used in this

work.

2. Participants

To address the outlined research questions, the initial plan was the recruitment of an adult
and a developmental sample, including children 6-12 years of age and teenagers 13-17 (see
Appendix A for pre-registrations of each experiment). Unfortunately, the COVID-19 pandemic
interrupted data collection from both the child and adolescent sample. In fact, we were scheduled
to start testing in the first secondary school the week of the first lock-down. Although we waited
and hoped, we were not able to begin testing in schools again, nor recruit young participants to
be tested in the University setting. Thus, the final sample included in the dissertation was not the
one we planned for. We recruited, therefore, a total of 54 children 6-12 years old (M = 8.76, SD
=1.72; 28 females) and 101 adults (M = 21.75, SD = 5.29; 70 females, 1 other) but do not
include any adolescent data. All participants took part in all three experiments. Indeed, although
the experiments were designed separately, we designed the paradigm to facilitate data collection
so that we could collect data for all three experiments in the same session. Data from all child
participants are included in the analyses reported in the three empirical chapters, while 3 adult
participants were removed from all analysis, 2 because they were older than our targeted 18-35
age-range, and 1 because of sleepiness-induced poor eye-tracking data quality. The final pool of

adult participants was composed of 98 adults (M = 21.15, SD = 2.97; 70 females, 1 other).
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Adults were mostly recruited through the university participant pool (SONA), but we also
recruited through advertising on social media in the community. For the most part, children were

recruited through a local primary school, but three were also recruited through word of mouth.

3. Research design

All the research questions in this work verted around the investigation of spontaneous
gaze behaviour in response to complex scenarios depicting social interactions and investigated
what, if any, developmental changes in such processes might take place during childhood.
Therefore, the aim was to measure attentional orienting mechanisms in such experimental
conditions.

All three experiments involved collection of eye-tracking data during a free exploration
paradigm where no other task was required. As shown in past work, eye movements are very
sensitive to the task participants are performing (Fletcher-Watson et al., 2008; Yarbus, 1967) so
although there are a multitude of experimental paradigms that could allow more specific probing
of attention to social interactions, in this work we first hoped to probe how social interactions are
naturally attended to in the absence of any overt goal.

There are any number of potential measures that can be extracted from eye-tracking data
but in trying to establish spontaneous gaze-behaviour to social interactions in complex scenes,
we used a constrained set of well-established measures: dwelling time to measure engagement
and time to first fixation to measure attentional capture. These two measures are the most
commonly used measures in eye-tracking research of social attention.

The experimental manipulation in all experiments was through the choice of stimuli, in
particular through changing the number of people in the scene as well as the ambiguity of the
social content in the scene. This type of manipulation allowed us to measure ‘spontaneous’
attention while also testing specific hypotheses and is also easy to implement with a
developmental sample.

The choice to use naturalistic stimuli was made for two different reasons. First, using
scenes that are more similar to ‘real life’ takes the current work one step away from most of the

research on attention to social interactions (Papeo et al., 2019; Stagg et al., 2014; Vestner et al.,
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2019) which has used the facing direction of dyads to imply social interactions isolated from any
background or context. Second, as our aim was to probe spontaneous attention to social
interactions as might occur in a real life scenario, we chose to use complex, cluttered and varied
scenes. Furthermore, a great deal of research has shown the benefits of using naturalistic stimuli
for attentional research, as they provide context to the social information being viewed
(Birmingham et al., 2009b; Smilek et al., 2006). Additionally, some research on groups with
neurodevelopmental disorders shows that patterns of attention to social information change when
the scenes become more cluttered and complex, rather than when social information is
represented through isolated figures (Chevallier et al., 2015, 2016; Chita-Tegmark, 2016; Hanley
et al., 2013).

It is important, however, to acknowledge the costs of using such varied and complex
stimuli. Using such stimuli greatly increases the difficulty of controlling low-level visual features
and saliency and being certain that the conditions are matched on non-social factors that could
potentially drive attention in scene exploration (Itti, 2005; Itti & Koch, 2000). One way we
addressed this was to colour match all stimuli with one sample stimulus (see below, section “5.1
Common procedures’). We also chose scenes specifically to represent similar locations and
items across interactive and non-interactive scenes, and that scenes across conditions were
roughly matched on the size of human AOIs and that the distance between interactors was
similar to that between non-interactors. Additionally, much prior work has shown that attention
to social information overrides visual saliency driven attentional mechanisms (Birmingham et
al., 2009a; End & Gamer, 2017; Langton et al., 2000; Rosler et al., 2017) and that saliency can’t
predict early attention in free-viewing paradigms (Holmqvist et al., 2011, pp. 459). As our
hypotheses and research questions are focused on the social information in scenes, we feel
(relatively) certain that our analyses are not much impacted by low-level visual features of these
scenes used across the three experiments. Finally, we relied on the sheer diversity of visual
content across the scenes we used. All stimuli are extremely different from one another (see
Appendix for details), so much so that it would be very hard to find any one single factor that

might drive attention other than our experimental manipulations.

4. Eye-tracking methodology



37

4.1 Introduction to eye-tracking

The surrounding world is very rich in information but the human eye can only access
relatively small portions of information in any detail at any one instant. Indeed, the fovea - the
region of the retina with the highest resolution - encompasses only approximately 2 degrees of
visual angle, and the further from the fovea information falls on the eye, the lower the resolution
and acuity of the retina. Eyes therefore have to move constantly to shift the fovea to different
positions in the visual scene in order to take in the details of a complex scene. In this way, a
sequence of images and information is constructed on the retina. Such movements are one way in
which visual information is selected by the human eye for further processing (Liversedge &

Findlay, 2000; Rayner & Castelhano, 2008).

Eye-tracking is an experimental tool used to record eye movement and position over
time, and is typically used to assess distribution and designation of visual attention on a visual
display.

The type of eye-tracking used in this work is a pupil-and-corneal reflection method,
where data is collected at a 1000 Hz sampling frequency — meaning that the device is recording
eye position 1000 times per second. Infrared light is shone towards the eyes, and reflected by the
cornea and collected by a camera. This reflective information, together with the relative position
of the pupil, gives the software the needed information to calculate the position of the eye over
time (Holmgqvist et al., 2011, pp. 39; Figure 1 for schematic representation of the process). The
quality of the data with this method is very sensitive to dry eyes, make-up (especially mascara),
and glasses (Holmgqvist et al., 2011, pp. 151-152). The remote set-up used in this work,
furthermore, uses a sticker marker to track the head, which increases the ability to accurately
track eye movements without the use of a chin rest, which makes the device very suitable for

developmental research.
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Image acqusition = |Image analysis = Gaze estimation

Raw data samples

Figure 1. Schematic overview of a video-based tracking process. Figure from Holmgqvist et al.
2011, pp. 44.

One of the most common gaze events that most eye-tracking measures rely on is the
fixation, which represents the state of the eye staying “still” for a certain amount of time, which
can last from a few tens of milliseconds to 200-300 ms. In reality, even during ‘fixation’, the eye
is not fully still, but continues to make small movements such as tremor, drift, and
microsaccades, typically considered noise in eye-tracking analyses (Duchowski, 2007, pp. 46).
During fixation, the eye collects visual input from one section of visual space, with detail
information available only from where the fovea rests. When repositioning the fovea, the eye
moves rapidly from one position to the another, a movement that is called a saccade. These quick
movements can last anywhere from 30 to 80 ms (Holmgqvist et al., 2011, pp. 41), can be
voluntary or reflexive, and represent a time during which the eye cannot receive new visual
input. They are pre-programmed and once the saccade has started it cannot be interrupted

(Duchowski, 2007, pp. 42).

4.2 Visual attention, cognitive processing, and eye-movements
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The eye-mind hypothesis states that what is fixated is what is being processed (Just &
Carpenter, 1980). Indeed, while visual attention anticipates eye movements by approximately
250 ms (Deubel, 2008), and attention and eye location can be separated (Michael I Posner et al.,
1980), in a complicated scene it takes an executive effort to do so (Rayner & Castelhano, 2008).
Therefore, attention and eye movements are tightly linked (Deubel & Schneider, 1996; Rayner,
2009), suggesting that when a viewer moves the eyes to a certain point in space, attention has
just been allocated to that same position in space. This makes eye-tracking methodology a very
useful technique for the investigation of attentional processes and even more so in development,
since it is a non-invasive measure (Hessels & Hooge, 2019). This is particularly true when there
are no task demands that encourage participants to attend to aspects of the scene covertly, for
instance performing a task at a central fixation while pictures are shown in the periphery. In a
free-viewing paradigm, like the ones used in this dissertation, participants have no reason to
separate visual attention from eye-movements and eye-movements are likely a good indication of
what participants are attending to and processing in a scene.

In this work two measures were used: dwelling time and time to first fixation to each area
of interest (AOI). Dwelling time was defined in the Data Viewer Software (SR Research, 2013)
as the time spent gazing within an AOI, including both fixations and saccades, in milliseconds
(ms). We used dwelling time as a measure of attentional engagement with either social or non-
social information in the scene. This measure can also indicate interest in a piece of visual
information (Holmgqvist et al., 2011, pp. 406).

Time to first fixation or “entry time” into an AOI is measured in milliseconds, relative to
the start of the trial, and is the first moment the eye enters the area of interest. This was used as a
measure of attentional capture by each AOI, indicating that the shorter the time to first fixation
the faster the gaze entered that region of the scene. Additionally, generally is thought that shorter
entry time indicates a higher ability to locate the piece of information of interest (Holmqvist et

al., 2011).

5. Materials
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In all three experiments we used naturalistic pictures, depicting humans in a variety of
settings and actions. For experiments in chapters 3 and 5, the pictures were selected and rated in
the same session by the same participants, while stimuli used in chapter 4 were selected and
rated in a separate session, by a different set of raters. In this section I will first outline the
common stimulus selection procedures, and then proceed with details on each set of pictures (see

Appendix B for full set of final pictures).

5.1 Common procedures
The rating procedure aimed to select the pictures to be used for each separate research
question and each separate experiment. Therefore, after selecting a larger set of pictures from
several on-line databases, pictures underwent rating for the level of interactiveness of the agents
depicted, and to obtain an agreed judgment over which people in the scene were involved in
interactions, if any. This rating was necessary to accurately assign pictures to the various
conditions (interacting, non-interacting or ambiguous) and to have a clear consensus around the
interpretation of the depicted social situations, except in the case of the ambiguous pictures
(chapter 5).
For all three experiments we selected pictures that met the following criteria:
e Emotionally neutral;
e Depicting a variety of ordinary life contexts (e.g., schools, library, market, shops, cafes,
public transport, bus stops);
e Depicting 2, 3 or 4 people (or easy to modify to depict that number of people (e.g.,
cutting the picture to eliminate an ‘extra’ person in the periphery of the scene));
e Not depicting people who directly face the camera or appear to be interacting with “off-
screen” agents;
e Depicting a variety of races, sexes and age-groups;
e Containing, as much as possible, people’s entire body (e.g., not partially cropped from

the scene).

After the initial choice of the scenes to undergo rating, each picture was subjected to a

Photoshop (version CC 2019) routine containing the following steps:
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e Neutralize to remove colour cast: “Adjustments — Match color” and selected the
“neutralize colour” option;

e Automatic colour match based on a picture sample using the “Adjustments — Match
colour” toll in photoshop where the image below (Figure 1) was used to match colour
schemes across all pictures in the stimulus set;

e Sharpen: “Filter — Sharpen — Sharpen”.

Figure 1. Sample picture used for the photoshop routine. From SUN database (Xiao et al., 2010).

After pre-processing with Photoshop, the selected pictures were resized to 400 x 400 px
to allow easy presentation in the PsyToolkit platform (Stoet, 2010, 2016), which was the

software we used for the rating survey.

5.2 Picture selection for chapter 3 and chapter 5
For these two chapters the rating survey had the aim to find pictures depicting two people
either having a clear social interaction, acting independently, or in an ambiguous social scenario

(where there was no clear consensus on whether the people were having a social interaction or

not).
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Pictures

The stimulus pictures were selected from the on-line database SUN (Xiao et al., 2010)
with the criteria mentioned above. The initial set of pictures was composed of 353 pictures,
which was then narrowed down by quality of the pictures, size of the human figures, diversity of
setting, and the ability to resize them to the desired configuration (i.e., depicting 2 people). The

final set of pictures which underwent rating was composed of 190 pictures.

Procedure

The rating survey was performed on-line through the Psytoolkit platform (Stoet, 2010,
2016). Participants were presented with one picture at a time and asked to answer the question
“How interactive is this picture?” on a slider Likert scale from 1 (“not interactive at all””) to 7
(“very interactive”), with the mark initially set on 1. Pictures were presented in a randomized

order and in a three-block structure to allow breaks.

Participants

Twenty-six university students (M = 24.77, SD = 4.03; range: 21 — 33; 16 females) took
part in this rating survey. Participants were recruited through social media and the university’s
participant pool system, and were given credits for their participation. Every participant gave
informed consent before proceeding to the experiment, and all procedures received ethical

approval at Bangor University (ethics protocol number: 2018-16360).

Results

The average interactiveness score for all pictures across all participants was M = 3.57, SD
= 1.40.

Pictures were then ordered in ascending order and we created 3 categories based on the
ratings: the top 33% (M =5.17, SD = 0.58, range: 4.35 — 6.46, N = 62) were assigned to the
interactive condition, the lowest 33% to the non-interactive condition (M = 1.94, SD = 0.46,
range: 1.12 — 2.72, N = 62) and the middle 33% to the ambiguous condition (M = 3.59, SD =
0.45, range: 2.8 —4.32, N = 66). Pictures then underwent a final selection step to take into
account the inter-rater agreement, which was calculated by assessing the percentage of scores for

any particular photo that agreed with the decided category.
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For the final set we selected 30 pictures for the interacting condition (M = 5.40, SD =
0.54, range: 4.77 — 6.16, agreement cut-off: M =77.28 %, SD = 12.21 %), 30 pictures for the
non-interacting condition (M = 1.86, SD = 0.40, range: 1.24 — 2.26, agreement on cut-off: M =
78.55 %, SD = 12.01 %) and 30 for the ambiguous social scenes experiment (M = 3.61, SD =
0.32, range: 2.96 — 3.61, agreement on cut-off: M =35.74 %, SD = 9.16 %) (see Appendix XX to
view picture set for each experiment). Importantly, the final set of pictures was very
heterogeneous in terms of settings (e.g., schools, public transport, public markets, shops), and

depicted ages and races.

5.3 Picture selection for chapter 4

Here, we selected pictures depicting three and four people to allow investigation of
attentional competition between interacting dyads and other social attention targets in naturalistic
scenes. Therefore, the chosen pictures underwent rating for the level of interactiveness of the
scene and to inform decision which two people were part of an interacting dyad in the scene, if

any.

Pictures

The stimulus pictures were selected from 4 on-line databases: “Recognizing Indoor Scenes”
(Quattoni & Torralba, 2009), “Discovering Groups of People in Images” (Choi et al., 2014),
“EMOTIC — Emotion Recognition in Context” (Kosti et al., 2017) and SUN (Xiao et al., 2010).
We used the same criteria listed above to guide our initial selection of photographs with the
additional criteria that ~50% of photos included a clear social interaction (by our estimate, at

least) while the other ~50% did not.

Procedure

A total of 114 pictures were selected, 64 of which depicted 3 people and 50 of which
depicted 4 people. Each picture was subjected to the Photoshop routine outlined above to obtain
a uniform colour scheme across all the pictures in the database, and pictures were again resized
to 400 x 400 px. We used Psytoolkit (Stoet, 2010, 2016) to present the rating survey to

participants.
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The pictures were judged for the level of interactiveness of the scene first, and then
participants were asked to indicate the interacting dyad in the scene, if any.

To allow participants to indicate which people were involved in an interaction, for each
picture, we used GNU Image Manipulation Program (The GIMP Development Team, 2019) to
apply numbers next to each human present in the scene, from left to right, to allow easy choice of

the interactive pair, if any (Figure 2 for an example).

a.

Figure 2. Example of original picture (a) and numbered picture (b) presented in the survey.

Pictures were presented in a randomized order and in a three-block structure to allow breaks
and make sure everyone would complete the experiment. For each picture, the participant viewed
first the original picture, without numbers, and was asked “How interactive is this picture?”
where the response was on a 1 (“not interactive at all”) to 7 (“very interactive”) slider Likert
Scale, with the marker initially placed at 1. Immediately after they registered a response,
participants viewed the numbered version of the same picture and were asked “If there are
people having a social interaction in this scene, which pair is it?”” where the response was a
choice among options containing each possible two-person combination of the people in the
scene, together with the option of “no interaction at all”, “everyone is interacting” and “3 people

are interacting” (for the four-people scenes).

Participants
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A total of 27 adults (M = 28.48, SD = 6.38; range = 21-50; 17 females) took part in this
survey. Participants were recruited through social media and the university’s SONA system, and
given university credits for their participation. Every participant gave informed consent before
proceeding to the experiment, and all procedures were approved by the ethical committee at

Bangor University (ethics protocol number: 2018—-16360).

Data analysis and results
The data from each question across all pictures were analysed separately and both taken into

consideration later to inform the final choice of stimuli for the eye-tracking experiment.

a. Interactiveness judgment

For each picture, the average rating was calculated across all participants. The average
interactiveness across all pictures and participants was M = 3.21, SD = 1.54. The pictures were
then ordered in ascending order, and the top 33% of the pictures were temporarily assigned as
“interactive”, while the bottom 33% were assigned as “non-interactive” (see Table 1 for details).
For each picture, inter-rater agreement was calculated by assessing the percentage of raters that
rated any particular photograph as being in the “agreed” category (i.e., below the cut-off
interactiveness score for non-interactive pictures and above the cut-off interactiveness score for

interactive pictures).

Table 1. Descriptive statistics, cut-off and distribution of the pictures based on interactiveness

ratings, with N as the number of pictures in the specific category.

Average
Condition People ) N Cut-off | Agreement on cut-off
rating
M=1.39 M=91.41%
3 25
(SD =0.28) (8D =6.74 %)
Non- Interactive M=1.63 =208 M=283.44%
4 13
(SD =0.33) (SD =9.28 %)
M=5.16 M =69.80 %
Interacti 3 19 >4.15
nteractive (SD =0.57) (8D =15.50 %)
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M=4382 M=61.62%
(SD=0.51) (SD = 14.63 %)

b. Dyad selection

For each picture, a percentage of agreement among the participants was calculated for each
possible answer to the dyad question (e.g. the percentage of people choosing that answer over the
total number of participants that answered that question). Following this, the correct answer to
the question was selected by taking the option with the highest agreement among raters. The
picture was considered categorized as “interactive” if the highest agreement among participants
was on a pair in the scene having a social interaction, as “non interactive” if the highest
agreement among participants was on the answer “no one is having an interaction” and as
“ambiguous” if the highest agreement was on the answer “everyone is interacting” or “three
people are interacting” (for the four-people scenes) (see Table 2 for details on the answer

categorization).

Table 2. Agreement categorization for the question regarding the interacting dyad in the scene.

Answer People Average agreement N

3 M=81.25% (SD=18.87%) 31

Non-Interactive 4 M=7249% SD=2157%) | 17
3 M=80.76 % (SD=17.52%) 25

Interactive 4 M=178.12% (SD = 17.66 % ) 26

c. Final picture selection

Surprisingly, there were pictures with a low interactiveness rating, or a low agreement over
whether a picture belonged in the interactive vs. non-interactive category, but with a very high
agreement on which dyad was involved in a social interaction, if any. This suggests that the
interactiveness question assessed the global interactiveness of the scene, which could lead to

ambiguity when more than two people are present in the scene. For the aims of this rating study -
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to select pictures with a high consensus about whether individual people in the scene were
interacting or not - the criterion of the agreement over the interacting dyad, if any, in the scene,
was the most important in providing information about whether a picture was ‘interactive’ or
‘non-interactive’.

Therefore, in choosing the pictures we considered first the pictures with at least 65%
agreement on the dyad question and, of these, only the pictures with a clear “interactive” or “non
interactive” answer (i.e., no pictures with an ambiguous answer like “all people are interacting”
or “three people are interacting”). Among these pictures, at least one of the following criteria
were used to select the final pictures:

e Belonging to the interactive/non-interactive range as defined by the rating cut-offs (Table 2);
e Inter-rater agreement above 70%;

Given these criteria, a total of 30 pictures containing 3 people and 22 pictures containing 4
people were selected, half of which were assigned to the “interaction” condition and half to the
“non-interaction” condition (Table 3 for details on the agreement and pictures distribution across

conditions).

Table 3. Rating statistics of the final set of pictures for each condition.

Condition People Agreement on | Interactiveness | Agreement on N
dyad rating rating
M=94.25% M=1.27 M=93.41%
. (8D =17.22%) (SD =10.19) (8D = 6.28%) b
Non-Interaction M=8530% | M=160 | M=80.56%
4 (SD=13.59%) | (SD=0.38) | (SD=22.16%) a
; M=287.57% M=4.63 M =59.83% s
(SD=10.71%) | (SD=0.72) | (SD=16.21%)
Interaction , | ME06% | M=45T [ M=5665% [
(8D =9.16%) (SD=0.77) | (SD=16.35%)
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The final database of pictures depicted a wide range of settings (e.g., airport, caffes, shops,
public transport, playground, school), ages, races and genders across conditions (see Appendix B

for pictures).

6. Procedures

In this section I outline details of the experimental procedures not mentioned in the
individual empirical chapters, for other information see each empirical chapter individually
(chapters 3-5).

The majority of the adult participants received university credits for their participation,
but some received also monetary compensation. They performed the experiment in the eye-
tracking laboratory at Bangor University. Children recruited through school performed the
experiment during class time, in a quiet and isolated space allocated for the purpose. A few
children, recruited through word of mouth, were tested in the eye-tracking laboratory at Bangor
University. Despite the diversity of environments, each participant wore noise-cancelling
headphones to mitigate any potential disruptions (e.g., people passing by an open window). A
similar set-up was used in each environment. No other person was present in the room aside
from experimenter(s) and the participant. For the developmental work, two experimenters were
present, while only one experimenter was present for adult participants. Experimenters were
always situated out of the participant’s sight (behind them, running the host computer), and
testing took place in a dimly lit room to reduce light artifacts. Sometimes, because of individual
differences in eye sensitivity to light, the lights in the room were turned off, though this was rare.

Data for all three experiments were collected in the same session, with stimuli across the
three experiments presented in a randomized order (see each empirical chapter for details on
procedures), followed by the categorization task that was used only for pictures relevant to the
third empirical chapter. Collecting the data across experiments, in random order, reduces the
probability that participants would intuit the research question of any given experiment.

For each participant the procedures were as it follows:

e The participant sat comfortably on a stable, still chair 80 cm from the screen;
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e The table was adjusted for the height of the participant to optimize their ability to
see the pictures clear, and to obtain the cleanest eye-tracking data;

e Calibration procedure and task were explained;

e Sticker for head tracking was put on participant’s forehead (participants had the
option of placing it themselves, with guidance and a mirror);

e The camera was focused in order to increase the precision of image acquisition;

e 13 points calibration was completed: given individual differences in pupil size,
glasses wearing, and eye movement characteristics, calibration not only allows
accurate calculation of gaze direction and gaze placement on the screen, but helps
to identify any need to correct angles, distances, or focus. Additionally, this
procedure helps with drift correction (see below). The calibration ‘chart’ is
constituted by a set of stimuli (i.e. dots) presented (Duchowski, 2007, pp. 87);

e Participants were asked to put on the noise-cancelling headphones;

e Free-exploration task, with breaks every 35 trials;

e Ambiguous pictures categorization task;

e Debrief.

During the experiment, drift correction procedures were put in place to allow the software
to correct for the fact that the measured samples tend to move away from the true gaze position
during the experiment (Holmgqvist et al., 2011, pp. 61). For the adults, this procedure was in
place before each trial — they had one central calibration point they had to fixate and then press
space bar to proceed. For children, this procedure was replaced by a 2.5 seconds long animated
gif at the centre of the screen in order to bring the participants’ gaze back to the centre of the
screen before each stimulus, and minimize drift error. For both groups, a drift correction

procedure was in place before the start of each of the four blocks.

7. Data analysis and statistical approach

In this section I will outline eye-tracking data extraction aspects for the three experiments

in this work, then proceed with a brief introduction to multilevel modelling and its benefits for

the current work, to finish with an outline of common statistical decisions used in this work.



50

7.1 Data extraction

Data were collected from both eyes but we then chose and used data from the best eye
based on manual checking of the data quality (i.e. calibration accuracy) or on notes taken about
which eye was likely best during the experimental session. We extracted dwelling time data and
time to first fixation (as defined in the “Eye-tracking methodology” section above). In line with
best practice (S. Fletcher-Watson et al., 2009), we only considered trials where dwelling time on
the picture was more than 33%. Additionally, as a saccade can last anywhere from 30 to 80ms
(Holmgvist et al., 2011, pp. 41), we took a conservative approach and considered only time-to-
first fixation times longer than 80 ms. When the time to first fixation was smaller than 80ms, we
considered the time to second fixation to that area of interest, and then the time to third fixation
if the value was still smaller than 80 ms. This was to ensure that time-to-first-fixation data were
actually indicative of attentional orienting processes, rather than sometimes reflecting pre-

emptive eye-movements.

7.2 Introduction to multilevel modelling

Hierarchical or multilevel modelling is a statistical approach that takes into consideration
the hierarchical (nested) structure of the data, and accounts for the lack of independence of errors
encountered in repeated measures or within subjects designs. Indeed, data are often hierarchical,
meaning that variables are often clustered or nested within each other (A. P. Field & Wright,
2011). Examples of such data come from educational research where students are grouped in
classes (taught by different teachers), in different schools (with different educational approaches
and policies), in different towns (different social demographics). Therefore, the variables of
interest can be influenced not only by the experimental conditions explicitly manipulated by
researchers, but by the different “contexts” within which data are gathered, for example different
teaching styles or different educational approaches within the school (A. Field et al., 2012; A. P.
Field & Wright, 2011). Typical statistical approaches that use measures of means differences,
such as ANOVAs, miss this intra-level variability, while hierarchical structures such as
multilevel modelling take this into account. These different “contexts” (e.g. teacher, class,
school) can be considered as different levels where confounding variance can happen. In the

educational example, for instance, the different levels would be the town at the highest level, and
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within each town nested are the schools, followed by the classrooms within each school and
finally the student at the first level (A. Field et al., 2012).

Furthermore, multilevel models are especially suited for repeated measures or within
subjects designs (A. Field et al., 2012), where stimuli or trials can be considered as nested within
individuals (L. Hoffman & Rovine, 2007). Indeed, in these cases, datapoints within each
participant are not independent, therefore residuals (errors) will be correlated, violating typical
assumptions of independence for ANOV As or regressions (A. P. Field & Wright, 2011). The
multilevel structure accounts for this lack of independence by calculating the intraclass
correlation (ICC), as a measure of the proportion of the total variability in the dependent variable
that can be attributed to the “context” (the class, the school, the town in the example above) (A.
Field et al., 2012; Twisk, 2006). Therefore, in these models, the participant can be considered at
the highest level, then within the participant each experimental condition is nested, at lower
levels, until the outcome variable is considered at the lowest level. The hierarchical structure
allows us to consider the “context” by modelling this interdependence, through inclusion of
random effects in different levels (see below) (A. P. Field & Wright, 2011).

Multilevel modelling also has the benefit of dealing very well with missing data (A. Field
et al., 2012) and with the lack of homogeneity of variance, as this variability can be modelled at
the level of the regression slopes (see below) (A. Field et al., 2012; A. P. Field & Wright, 2011).
Multilevel models can be considered as a more complex version of multiple regression models
(Twisk, 2006), with parameters being estimated at separate levels nested within each other.
Indeed, in traditional regression it is assumed that the parameters (slope and intercept) are fixed.
In multilevel models, these parameters are not fixed, but can instead be allowed to vary, and they
can vary at the different levels of the hierarchical structure (A. Field et al., 2012). In particular, in
a random intercept model, intercepts vary across the contexts defined by the structure of the
model (the classroom, the school or the town in the above example): this means that the
relationship between independent variables/predictors and outcome is constant across contexts
(has same slope) but it is located in a different position (different intercepts). In a random slope
model, slopes vary across levels in the structure, meaning that the relationship between the
variables is different at the different levels in the structure, but they are fixed at the same position

(same intercept). Finally, a model could allow both intercepts and slopes to vary across levels.
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Therefore, in a multilevel model, the fixed coefficients are the coefficients of the variables that
are assumed to be constant across the different levels of the model (more simply said, the
independent variables or the predictors), while the random coefficients indicate the variables that
are allowed to vary across levels, and either their slope or intercept, or both, may vary.

Once a model is built, its fit is assessed through a chi-square likelihood ratio test. The R
software used for the analyses in this work produces two adjusted versions of this value, the AIC
(Akaike’s information criterion) and the BIC (Schwarz’s Bayesian criterion). Both these criteria
are interpreted in a similar way as the log-likelihood, wherein the smaller its value the better the

model fit (A. Field et al., 2012).

Multilevel modelling assumptions

Being a complex extension of multiple regression, multilevel modelling shares similar
assumptions. There should not be zero variance in any of the fixed effects and no
multicollinearity (in other words, there shouldn’t be a perfect linear relationship between
predictors). Homoscedasticity implies that for each level of each predictor, the variance of the
residuals is constant, although hierarchical models can overcome this through modelling this
variability in the slopes (A. Field et al., 2012). Independence of errors is one assumption that is
“solved” by using multilevel models, as the hierarchical structure accounts for the lack of
independence (Twisk, 2006). Finally random coefficients are assumed to be normally distributed
around the overall model, and the errors in the model should be normally distributed (A. Field et

al., 2012).

7.3 Statistical approach and decisions
In this work we used multilevel models as an alternative to ANOVA (L. Hoffman &
Rovine, 2007) where each participant, picture, condition and AOI act as “contexts” for each
datapoint. Indeed, modelling the data as a hierarchical structure allows us to take into account
that each participant’s gaze behaviour is different from everyone else’s, and helps to account for
the naturalistic and complex nature of the scenes. Given the diversity of the stimuli we are using,
each picture will likely draw different gaze patterns from participants than other pictures. Multi-

level modelling allow us to capture and explain much more of this variability in the data
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compared to traditional ANOVAs, even though this method necessitates the use of more

sophisticated techniques and softwares.

Model building procedure

After assessing the need for a hierarchical model evaluating the variance at different
levels —i.e. random intercepts only models — we proceeded with a nesting procedure by adding
one factor at a time as fixed effects along with their respective interactions. We did not always
choose the best model as often interaction terms of interest to answer our research questions did
not necessarily improve the model fit. We used maximum likelihood estimation (ML) as a
method for model estimation and to allow comparison between models (A. Field et al., 2012).
Evidence suggests ML is better at estimating the parameters of fixed effects instead of the
REML approach (restricted maximum likelihood estimation; Twisk, 2006).
In R software there are various tool-box options, but here we used the nlme package (Pinheiro et
al., 2016), with the “Ime” function for model building, “anova” for model comparisons or
assessment of main effects and interactions within one specific model, and “summary” to assess
the degree of variance explained by the model and to visualize multicollinearity. Where
necessary, post-hoc comparisons were performed with the emmeans package (Lenth et al., 2018)

and we additionally used Tukey HSD correction for pairwise comparisons to avoid type I error.

Common statistical decisions

Multilevel modelling assumes that residuals (error) at each level are normally distributed.
In this work the time to first fixation data was always skewed, because of its very nature — i.e in
our data screening approach, this measure could never be smaller than 80 ms, no zeros were
included, and given the meaning of the measure, there is a natural limit to how late the gaze
would enter the AOI. Therefore the data was positively skewed, with a higher frequency of lower
values compared to higher values. As a consequence, the multilevel assumptions of normality of
residuals were often not met by time to first fixation models. Additionally, with multilevel
modelling the analysis considers raw data rather than means, therefore the size of the sample is
much bigger than what it would be if we used an analysis of variance approach. Normality tests
like Shapiro-Wilk or Anderson-Darling are very sensitive to large samples and, in such large

samples, extreme values are often not enough to influence the results. Therefore, whenever the
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distortion was substantial (graphical normality was clearly skewed) we proceeded with data
transformation (Tabachnick & Fidell, 2013). As indicated by Tabachnik et al. (Tabachnick &
Fidell, 2013) (although see below for outliers decisions), we proceeded by trying different
transformations that could help improve the graphical representation of residuals, but usually
were not able to fully ‘fix’ the skew in the time-to-first-fixation data.

In this work outliers in the data as defined by strong deviations from the group mean
were not eliminated. Indeed, while such procedures can be useful for central tendency based
approaches like ANOV As, in the case of hierarchical modelling it is not necessary. For instance,
while data were manually checked for quality and outliers were dropped when there was too
much missing gaze data, we kept extreme values as we considered such values to be indicative of
the specific gaze behaviour of that participant to that picture. Additionally, when outliers could
actually skew the distribution, which was rare, the distribution would be transformed rather than
removing data (see above).

Another data decision applied across the three experiments was to centre (by group
mean) the age in the developmental sample when assessing developmental changes in social
attention. This procedure is useful when data with a value of 0 is meaningless (as age is in this
case), therefore assigning a meaningful zero helps interpretation of the intercept (A. Field et al.,
2012). Finally, this procedure can help with multicollinearity between predictors (A. Field et al.,
2012).
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Chapter 3. Development of attention to social interactions in naturalistic

scenes

Note: Part of the work here presented, namely “Experiment 1” was submitted for publication and

is currently under (revision) review:

https://www.biorxiv.org/content/10.1101/2021.02.26.433078v1

Abstract

Human attention is easily captured by social information in naturalistic scenes, a “social
bias” present since infancy. Additionally, recent findings suggest people might also
preferentially attend to and more quickly detect interacting dyads compared to non-interactive
individuals. However, little work has investigated how interactive mechanisms influence
attention in naturalistic scenes, nor how these effects may change across development.

Here we recorded the eye-movements of 73 adults and 54 children in a free viewing experiment.
Naturalistic scenes contained dyads who were either interacting or not. We explored the
influence of the presence (vs. absence) of a social interaction on attentional orienting to social vs.
non-social information. Areas of interest (AOIs) were divided between “social” (entire human
figures in the scene) and “non-social” (all other elements). Results confirm a “social bias” in
both age groups, indicated by increased attentional engagement and faster capture by AOIs than
other scene elements. Crucially, this bias is increased by the presence of a social interaction, in

both groups in a similar way. Implications for social attention and its development are discussed.

Introduction

Successful navigation in the social world requires the ability to attend to and understand a
wide range of social cues in a cluttered and complex environment, skills that develop starting
very early in life. Human adults are indeed experts at extracting social information from the

surrounding world, and under most circumstances their attention is captured by and
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preferentially held by human information, including both faces and bodies (e.g. Doherty et al.,
2017; Fletcher-Watson et al., 2008). This "social attentional bias” seems to be automatic (Rosler
et al., 2017), relatively independent of low-level features of the scene, including saliency, and
resistant to top-down task demands (Flechsenhar & Gamer, 2017). Crucially, while this bias is
already present in infancy, it is considerably stronger in adulthood (Frank et al., 2012; Soto-Icaza
et al., 2015). Research investigating developmental changes in this social preference during pre-
adolescent childhood is, however, not conclusive (e.g., Doherty et al., 2019; Van Der Geest et

al., 2002).

Most prior research into this “social attentional bias” has focused on attention to isolated
individuals. In the social world, however, we often observe multiple people in a scene, and have
the opportunity to glean more complex and richer social information from observed social
interactions than we can from isolated individuals. Indeed, observed social interactions represent
a unique source of social information (e.g., about relationships between people) and social
learning (Papeo, 2020; Quadflieg & Koldewyn, 2017; Quadflieg & Penton-Voak, 2017). Recent
research suggests social interactions may be attended to and processed differently than are two
non-interactive individuals. For example, several studies suggest interacting dyads are processed
as a meaningful gestalt, similarly to a single individual rather than as two individual actors
(Papeo et al., 2019; Papeo & Abassi, 2019; Vestner et al., 2019; Walbrin & Koldewyn, 2019).
Similarly, in visual search tasks, two agents facing each other show a search advantage compared
to non-facing pairs (Papeo et al., 2017) or pairs facing the same direction (Vestner et al., 2020),
although it isn’t yet clear if, or under what circumstances, this effect is specific to human
information (e.g., Vestner, Over, Gray, & Cook, 2021; Vestner, Over, Gray, Tipper, et al., 2021).
However, very few studies have investigated how attention to social information is influenced by
the presence of social interactions in naturalistic scenes, and conclusions from those that have are
contrasting. Birmingham et al. (2008) used scenes depicting one or 3 people either being active
(doing something independently), inactive (independently doing nothing) or interacting (3 people
doing something together), to investigate attention to the eyes of the agents in the scene. The
level of activity and the number of people in the scene increased the attention to the eyes of the
agents, but they found no difference between interactive and independent active scenes in

fixation proportions towards human information. In contrast, Kujala and colleagues (2012)
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demonstrated that adults attend more to heads when freely viewing pairs of people facing each
other engaged in friendly interactions than when the same figures faced away from each other
(Kujala et al., 2012), and Villani et al. (2015) show that attention to faces and arms is increased
in interactive paintings compared to non-interactive ones. Importantly all this research has
focused on social attention but has not directly investigated how both social and non-social

attention may change in the presence of social interactions.

Like the adult literature, work investigating the development of social attention has
focused primarily on attention to isolated individuals. Work looking at the development of social
attention in mid-to-late childhood is also surprisingly sparse. Indeed, while infant research
suggests that the attentional bias towards human information and sensitivity to interactive social
information are both present in the first year of life, research about how social attention develops
across childhood is limited and shows contrasting results. Quite a number of studies have
investigated the attentional bias to human information in the light of comparisons between
typically developing and autistic individuals, showing that there is a preference towards social
information in typical mid-childhood that is reduced in Autism Spectrum Disorder (e.g., Riby &
Hancock, 2008; Sasson & Touchstone, 2014). The focus of this work has been on between-group
differences, however, so developmental change within this age group, or between age-groups, is
not discussed. Work that has looked at developmental change suggests that attentional capture by
social information is actually higher in 6-10 year-old children compared to adults (Doherty et al.,
2019) and that there may be a steep increase in social attention in early childhood followed by a
milder increase from age 5 into adulthood, particularly in the proportion of time participants

spend attending to social information in scenes (Amso et al., 2014).

Similarly, there is very little developmental research on how attention is allocated in
complex social scenes that contain social interactions, especially during childhood. We do know
that infants are sensitive to the presence of interactions. Indeed, the ability to distinguish
interacting from non-interacting dyads and shift attention appropriately between two conversing
adults compared to two non-facing adults is present already by 4 months of age (Augusti et al.,
2010; Handl et al., 2013). Additionally, at 6 months, infants also show a preference for a pair of

agents who help each other compared to those that compete with each other, suggesting an early
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sensitivity to higher-order social interaction processing (Hamlin et al., 2007). Infants also appear
to process a facing dyad as a unique chunk, similar to adults, while this is not true for non-facing
agents (Papeo et al., 2020). Research investigating attention specifically to social interactions has
rarely been carried out in later childhood, however. School-aged children show a greater
attention shift from faces to bodies when multiple people are in a scene compared to adults
(Stoesz & Jakobson, 2014), suggesting that they struggle a bit more than adults in processing
fine-grained social signals when scenes contain multiple social targets. To our knowledge,
however, there is only one study that has specifically investigated attention to social interactions
during childhood, showing that 9 year-old children looked longer at agents who were facing each
other when they were presented on screen at the same time as another pair of agents who were
not facing each other (Stagg et al., 2014). Although this research suggests that pre-adolescent
children show a bias to attend to interactions over other human targets, the focus of the research
was on autism rather than development, and children’s performance was not compared with that
of either younger or older age groups. In addition, similarly to the adult visual search studies
discussed above, the only interactive cue was the facing direction of the agents and stimuli were
presented isolated from a noisy real-life background. In real life, scenarios are much richer in
both the diversity of social cues and the amount of distracting clutter. Importantly, there is also
good reason to think that there may be developmental change in how attention is allocated to
social interactions in complex naturalistic scenes, as the brain structures supporting perception
and processing of social interactions are not yet fully developed in children 6-11 years old, both
structurally (Mills et al., 2014) and functionally (Sapey-Triomphe et al., 2017; Walbrin et al.,
2020).

In the current study we investigate the influence of social interactions on social attention
in cluttered naturalistic scenes in adults (exp. 1), and assess whether the influence of social
interactions on social attention changes during pre-adolescent childhood (exp. 2). To do so, we
evaluated looking behaviour during a free viewing paradigm where participants viewed
naturalistic scenes depicting either two people interacting or not. We expect to re-confirm the
social attentional bias to human information in both age groups, including both faster capture by
and more attentional engagement to humans compared to non-social scene elements. We also

expect this social bias to be increased in pictures containing social interactions. Additionally, in
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line with the developmental imaging data showing an increase with age in neural sensitivity to
social interactions, while we expect that children will show a social bias to social interactions,
we expect the difference between interactive and non-interactive scenes to be smaller than in

adults.

General methods

Both studies were pre-registered with an a priori sample size calculation in G Power
(Erdfelder et al., 2009; Faul et al., 2007) to obtain a large effect size (Cohen’s f = .40), and reach
80% power (a <.05).

All participants had normal or corrected-to-normal vision.

Stimuli and apparatus

The stimuli were selected from an online database (SUN, Xiao et al., 2010) to be
emotionally neutral, to depict a variety of ordinary life contexts (e.g. schools, shops, markets),
and to not contain any agent looking directly at the camera or at a (presumed) off-screen
individual.

The initial stimulus set contained 127 pictures, depicting either 2 people having a social
interaction or two people acting independently (see Appendix B1 for the full set of pictures).
Twenty-six independent judges rated the pictures for ‘level of interactiveness’ on a Likert scale
from 1 (“Not interactive at all”’) to 7 (“Very interactive). The 30 pictures receiving the lowest
and the 30 receiving the highest average score were selected to be part of the “non-interactive”
and “interactive” conditions, respectively (see “Materials” section in the General Methods
chapter).

Each picture in the final set was pre-processed in Photoshop (version CC 2019) by
neutralizing the colour cast (“match color — neutralize color” option), matching it for colour
scheme with one sample picture (“match color” option) and sharpening (“sharpen” option) (see
Chapter 2: “General methods - Materials” section for details on the picture selection process).
The pictures were presented in PsychoPy 2 (Peirce et al., 2019) on a 380 x 215 mm (1920 x 1080
pX) monitor on a grey background and each picture had a size of 860 x 860 pixels (13.6° x 13.6°

visual angle). Each stimulus was presented with the screen centre-most margin 60 pixels either to
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the left or right from the fixation cross, (0.85° visual angle). The data was collected with an
EyeLink Portable Duo Tracker with remote binocular system at a 1000hz sampling rate. Data
from both eyes were collected, but we used monocular data for the analysis, choosing which

eye’s data to use individually for each participant, based on calibration accuracy.

Procedure

Participants sat comfortably on a stable, non-swivelling chair approximately 80 cm from
the screen and freely viewed a total of 142 pictures: 60 pictures belonged to this experiment,
while the rest belonged to two other experiments that will not be discussed here. All stimuli were
fully randomized so that each participant saw the pictures in a different order.

Before the task began, a 13-point calibration procedure was carried out for each
participant. Every stimulus was presented for 5s and presentation side for each picture was

counterbalanced across participants.

Data preparation

For each picture two areas of interest (AOIs) were defined with the “freehand” option in
Eyelink Data Viewer (SR Research, 2013). The social AOIs contained the whole of both human
figures in the scene, while the non-social AOIs contained everything else in the scene. We
extracted dwelling time —including fixations and saccades, spent inside each AOI — as a measure
of attentional engagement with social and non-social information in the scene. Time to first
fixation — time the eye took to enter a specific AOI for the first time for each picture — was used

as a measure of attentional capture by social and non-social information.

Experiment 1

Aim

In the first part of this work the goal was to re-confirm the presence of a social attentional
bias, i.e., more attention given to social information compared to non-social information, in adult
participants in cluttered naturalistic scenes, and investigate the influence of social interactions on

this bias.
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Participants
The sample size analysis established a sample of 70 adults (pre-registered on

AsPredicted; https://aspredicted.org/blind.php?x=se7k7b) (see Appendix Al for pre-

registration). Seventy-three adult participants were recruited, but data from two participants
outside our age range and one who was inattentive due to sleepiness during the experiment were
removed. The final adult sample was composed of 70 participants (M = 21.07, SD = 2.63, range
= 18-35; 47 female and 1 other). Participants provided informed consent and received either
money or university credits as compensation. All procedures were approved by the ethical

committee at Bangor University (ethics protocol number: 2018-16360).

Procedure

Participants were asked to freely observe the pictures through both an oral explanation of
the experiment and an on-screen visual prompt at the start of the session. A drift correction
procedure was carried out before each picture was presented, where participants had to fixate a
calibration point at the centre of the screen and then press the space bar to proceed to the next trial.
These between-trial procedures served to draw participants’ gaze back to the centre of the screen
before the beginning of the next trial.

The procedure consisted of 4 blocks of 35 trials and lasted around 20 minutes.

Participants could take short breaks to rest their eyes between blocks if needed.

Data analysis

Trials that had less than 33% of total engagement time with the target picture were
treated as missing (e.g., S. Fletcher-Watson et al., 2009), and this included both off-screen
looking time and missing data due to poor signal or blinks. This procedure led to the loss of 0.24
% of trials, with a range of 0-2 trials per participant.

For each of the two measures — dwell time and time to first fixation — we used a separate
model. After assessing the variance in the dataset, for each of the two measures, we analysed the
data using multilevel modelling with a 2x2 design (nlme package (Pinheiro et al., 2016)) using a
four-level hierarchical model. At the highest level we modelled participant information, and,
nested within each participant, the social content of the scene (i.e., interacting or non-interacting)

was modelled as a third level predictor, while AOI type (i.e., human or background) was
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modelled at the second level. The measure — time to first fixation or dwell time — for each AOI

was modelled at the first level, nested within trial and participant. Finally, pairwise comparisons

were performed using post-hoc Tukey’s HSD using emmeans package in R (Lenth et al., 2018).
All supplementary materials for this chapter are in Appendix C.

Results

Attentional Engagement

We analysed dwelling time to each area of interest (AOI) in each picture to investigate
overall attention to human information compared to the background — our measure of the social
attentional bias — and whether the presence of a social interaction in the scene influenced the
amount of attention given to social or non-social regions in a cluttered scene. The relationship
between the different conditions and dwell time showed significant variance in intercepts across
participants, conditions, and area of interest (SD = 261.97, y%(3) = 342.26, p < .001). While
social and non-social AOIs were not significantly different in size from each other, the area of
AOIs can influence both capture and engagement. Thus, we added area of the AOIs in pixels as a
random effect to the model. This procedure helps to mitigate any effect of difference in the size
of the humans across pictures, as well as the naturally larger size of the background compared to
the humans (see Supplementary materials S1 for details on AOI sizes). The addition of the AOI
size to the model did not create a significantly different model from the above mentioned model
(SD = 886.18, x2(4) = 0.00, p = .99). Therefore, in the final model, we set the fixed effects in the
model as the type of scene and the type of AOI, while our random effects were at the participant,
condition, AOI, and AOI size levels.

The model showed a non-significant main effect of type of scene (interactive or not),

F(1,69)=0.42,p=.52, n2p= 0.01 with attention to interactive scenes (M = 1804.73, SD =

920.09) and non-interactive scenes (M = 1782.92, SD = 928.70) being similar. There was a
significant main effect of AOI type (social vs non-social), F(1,138) = 18.84, p <.001, nzpz 0.12,

with overall more attention to the social AOIs (M = 1866.17, SD = 932.92) compared to the non-
social regions (M = 1721.49, SD = 910.20). Additionally, the analysis revealed a significant
interaction between type of scene and type of AOI, F(1,138) =43.35, p <.001, nzpz 0.24

(Figure 1). In particular, dwell time was greater for social information (M = 1986.53, SD =
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910.75) compared to the background (M = 1622.93, SD = 8§93.27) in the interactive scenes ,
t(138) =7.73, p <.001, d = 0.66, while within the non-interactive pictures, visit time was similar
for social information (M = 1745.58, SD = 939.49) and non-social AOIs (M = 1820.25, SD =
916.49), t(138) = -1.59, p = .31, d = -0.14. This suggests that the presence of a social interaction
increases the amount of attention given to social information. Indeed, significantly more
attention was given to the human AOIs in the interactive scenes compared to the corresponding

AOQIs in the non-interactive scenes, #(69) = 5.12, p <.001, d = 0.62.
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Figure 1. Violin plot for mean dwell time for AOI and scene type. Error bars represent 95%

confidence intervals.

Attentional Capture

We analysed time to first fixation to each AOI in each picture to explore capture by social
information in cluttered scenes and determine whether the presence of a social interaction altered
this time. Missing data on capture measurement due to never gazing in the AOI were 2.14 % of

data for all areas of interest and participants.
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Time to first fixation was transformed (logarithm in base 10) to meet multilevel
modelling assumptions, However, after transforming the data, the structure of the model and the
results did not change, therefore we present the untransformed data here to facilitate
understanding and interpretation of the results. See Supplementary materials n. S2a for details on
the transformation and the full analysis and results using transformed data.

The model assessment showed significant variance in intercepts between participants,
condition and area of interest (SD = 217.84, x2(3) = 395.81, p <.001). We added size as a
further random effect, and this model did not differ significantly from the originally planned one
(SD = 685.55, x%(4) = 0.00, p = .99). Therefore, similar to the prior analysis, we set the fixed
effects in the model as the type of scene and the type of AOI, while our random effects were at

the participant, condition, AOI and size levels.

The model showed a non-significant main effect of type of scene (interactive or not),

F(1,69)=0.19, p = .89, n2p< 0.001) with capture to interactive scenes (M = 673.33, SD =

713.73) and non-interactive scenes (M = 676.40, SD = 724.94) being similar. The main effect of
AOQOI type —i.e. social and non-social — did reach significance, F(1,138) = 423.33, p <.001, n2p=

0.75, with overall faster orienting to social AOIs (M = 483.98, SD = 535.80) compared to non-
social regions (M = 867.52, SD = 822.22). Additionally, the analysis revealed an interaction
between type of scene and type of AOI, F(1,138) =21.56, p <.001, n2p= 0.14 (Figure 2).

Indeed, while participants were faster to orient to social information compared to non-social in
both interactive [social (M = 440.54, SD = 462.51); non-social (M =910.34, SD = 836.14),
#(138) =17.85, p <.001, d = 1.52] and non-interactive scenes [social (M = 528.11, SD = 598.08);
non-social (M = 824.77, SD = 806.03), #(138) = 11.24, p <.001, d = 0.96], participants looked at
social information earlier in interactive than non-interactive scenes, #(69) =3.33, p=.01,d =

0.40.
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Figure 2. Violin plot for mean time to first fixation for AOI and scene type. Error bars represent

95% confidence intervals.

Discussion

Here, using complex naturalistic scenes depicting pairs of people either interacting or not,
we re-confirmed a previously demonstrated (Doherty et al., 2017; Flechsenhar & Gamer, 2017,
Sue Fletcher-Watson et al., 2008; Rosler et al., 2017) overall social attentional bias to human
information both in engagement and capture, irrespective of scene type. Additionally, when
scenes contained a social interaction, participants were faster to look at and spent more time
attending human information in the scene. These results are in line with previous research that
suggest that interactive dyads are attended to and processed differently than non-facing agents
(Papeo et al., 2017; Papeo & Abassi, 2019; Stagg et al., 2014; Vestner et al., 2019, 2020), at least
in adulthood.

Interestingly, our results also suggest that the presence of a social interaction moderates
attention more weakly in attentional capture than in attentional engagement. If true, this could

suggest that interactive information primarily influences the later stages of scene exploration,
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after the basic social relevance of the information has already been processed. Indeed, it seems
likely that social information first captures attention in the early stages of scene exploration
regardless of scene type, and then holds it for longer when the agents are engaged in social
interaction. This would suggest a hierarchy of social information in scenes, where all human
information automatically orients attention and is then further prioritised when an interaction is
present.

After investigating the basic mechanisms of social attention to naturalistic scenes and
showing that in adults the presence of a social interaction will increase the attention to human
information in the scene, in the next section we investigate these processes in pre-adolescent
childhood and then explore eventual developmental differences between children and adults in
these processes. Indeed, while brain imaging research has shown that brain structures supporting
social interaction perception are not yet tuned in this period of development (Sapey-Triomphe et
al., 2017; Walbrin et al., 2020), behavioural research has shown that the ability to parse social
interactions and learning observationally form them is already in place by school years (e.g.,
Skinner et al., 2017). Therefore experiment 2 aims to clarify how the social attentional bias

changes across childhood, and whether it is influenced by the presence of a social interaction.

Experiment 2

Participants

The power analysis (pre-registered on AsPredicted;

https://aspredicted.org/blind.php?x=sk8st6) (Appendix A2) for the developmental sample

established a sample of 90 youths between 6 and 18 years old for adequate power to detect a
possible three-way interaction. Unfortunately, we were forced to end data collection in March
2020 due to the COVID-19 pandemic, having collected data only from younger participants aged
6 - 12. Thus, the final developmental sample was composed of 54 children (M = 8.76, SD = 1.72;
range = 6-12; 28 female). Children gave assent and each child’s guardian(s) gave consent for
them to participate. Each child received their choice of small toys as compensation. All
procedures were approved by the School of Psychology’s Ethics committee at Bangor University

(ethics protocol number: 2019-16586)
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Procedure

The procedure was broadly similar to the one followed with adult participants. Children
were verbally instructed to freely observe the pictures but did not receive text instructions. We
also removed the drift correction procedure before every trial. Instead, as the task was split in 4
blocks of 35 trials, a drift correction procedure was carried before each block. Between trials,
children were presented with an animated gif at the centre of the screen for 2.5 seconds as a fixation
point to draw their gaze back to the centre of the screen before the start of the next trials. Unlike
adults, however, they did not need to hit a key to proceed. The experiment lasted around 20 minutes
and participants could take short breaks to rest their eyes between blocks if needed. Children filled
in a “sticker chart” as they completed different steps in the task to further encourage task

engagement and motivation.

Data analysis

As we did for the adult group, we treated trials with less than 33% of total engagement
time with the picture as missing (e.g., S. Fletcher-Watson et al., 2009). For the developmental
group this led to the loss of 3.06% of trials, with a range of 0 — 17 trials per participant.
Considering the range of data loss in this group (0% - 28% per participant), during the model
building procedure we explored whether the number of missing trials influenced experimental
effects. We found that although the missing trials unsurprisingly produced a significant effect on
the total dwelling time F(1,51) = 18.28, p <.001, nzp = (0.26), the presence of the missing trials

as a predictor in the model did not eliminate any of the effects of interest (see Supplementary
material n. S3a for details). We thus feel confident that missing trials did not drive any effects of
our experimental variables (i.e., condition, AOI) in the data. Our final model does not, therefore,
include the number of missing trials as a fixed effect.

As in the adult analysis, for each measure (i.e., dwell time, time to first fixation) we used
a separate multilevel model with a 2x2 design (nlme package; (Pinheiro et al., 2016)) using a
four-level hierarchical model. At the highest level we modelled participant information, and,
nested within each participant, the social content of the scene (i.e., interacting or non-interacting)
was modelled as a third level predictor, while AOI type (i.e., human or background) was

modelled at the second level. The measure — time to first fixation or dwell time — for each AOI
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was modelled at the first level, nested within trial and participant. To look at developmental

change across our age-range, the age of each participant was modelled as a continuous predictor.
Results

Attentional Engagement

We analysed dwelling time to each AOI in each picture to investigate the presence of a
social attentional bias in cluttered scenes in pre-adolescent children, and to explore whether the
presence of a social interaction in the scene had any effect on this bias. The relationship between
type of information in the scene and dwell time showed significant variance in intercepts across
participants, condition, and area of interest (SD = 297.38, y%(3) = 220.21, p <.001). As in the
adults group model, we added the area of the AOIs in pixels as a random effect. This model did
not differ significantly from the originally planned one — SD = 1060.08, y%(4) = 0.00, p = .99.
Therefore, the model had age, type of scene and AOI as fixed effects, and participant, type of
scene, AOI and AOI size as random effects.

The model showed a non-significant main effect of age (F(1,52) = 1.86, p = .18, r)zp=

0.03), suggesting that there was very little change in overall attentional engagement across our
age range. Similar to the adult analysis, there was also a non-significant main effect of type of

scene, F(1,52) =0.04, p =0.84, n2p< 0.001) with similar attention given to interactive scenes (M

=1830.14, SD = 1092.89) and non-interactive scenes (M = 1823.34, SD = 1110.45).
Unsurprisingly, the main effect of information — i.e. social and non-social — did reach

significance, F(1,104) = 68.34, p <.001, nzpz 0.40, with overall more attention given to social

AOIs (M =1989.44, SD = 1098.06) compared to non-social regions (M = 1664.09, SD =
1081.01). Additionally, as in the adult group, the analysis revealed a significant interaction
between type of scene and type of AOI, F(1,104) =30.93, p <.001, n2p= 0.23 where children
spent more time gazing within social AOIs (M =2101.30, SD = 1058.53) than at the background
(M =1558.98, SD =1059.22), t(104) = 9.77, p < .001, d = 0.93 in the interactive scenes. In non-
interactive scenes, however, dwell time was similar for social (M = 1875.93, SD = 1125.79) and
non-social AOIs (M = 1770.75, SD = 1092.72), (104) = 1.87, p = 0.19, d = 0.18. Additionally,

and again similar to the adult findings, children gave significantly more attention to the human
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AOQIs in the interactive scenes compared to the corresponding AOIs in the non-interactive scenes,

#(52) = 4.08, p < .001, d = 0.52 (Figure 3).
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Figure 3. Violin plot for mean dwell time for AOI and scene type. Error bars represent 95%

confidence intervals.

There was no significant interaction between age and scene type (£(1,52) =0.02, p = .89,

n2p< 0.001), but there was a significant interaction between age and type of information in the
scene, collapsing across scene-type (F(1,104) =12.80, p <.001, n2p= 0.10), where the slope of

the linear relationship between age and dwell time differed between AOI type (#(104) =-3.57, p
<.001, d = -0.34). Interestingly, this difference is maximal at the youngest ages, and we see a
mild decrease in attention to social AOIs and a steeper increase in attention to non-social AOIs
across the age-range (Figure 4). The three-way interaction between age, scene and AOI did not
improve the model fit significantly, and when tested, was not significant (#(1,104) =0.15, p =

.70, n2p< 0.001 (Figure 5).



Dwell time (ms)

71

24001
2200 1
2000 AOI
~+- Social
1800 1 —=- Background
1600 A
1400 1
6 7 8 9 10 11
Age

Figure 4. Average dwell time to social and background AOIs across scenes in relation to age in

the developmental group. Width of the bands represent 95% confidence intervals.
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Attentional Capture
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We analysed time to first fixation to each AOI in each stimulus to investigate the
presence of a social bias in attentional capture in pre-adolescent children, and to explore whether
a social interaction in the scene had any effect on how quickly either social or non-social
information captured attention. Missing data for our capture measure due to never gazing in the
AOI were 3.82 % of data for all areas of interest and participants.

Time to first fixation was transformed (logarithm in base 10) to meet multilevel
modelling assumptions. However, after transforming the data, the structure of the model and the
results did not change, therefore we present here the untransformed data to facilitate
understanding and interpretation of the results. See Supplementary materials n. S2b for details on
the transformation and the full analysis and results from transformed data.

The model assessment showed significant variance in intercepts between participants,
condition and area of interest (SD = 217.13, y2(3) = 253.92, p<.001). After controlling for the
correlated error, participants’ centred age within this group was modelled as a continuous
predictor. When we added area of the AOIs in pixels as a random effect, the model did not
change significantly from the originally planned one — SD = 713.53, y%(4) = 0.00, p = .99.
Therefore, the model here shown had age, type of scene and AOI as fixed effects, and
participant, type of scene, AOI and AOI size as random effects.

There was a main effect of age, F(1,52) =3.99, p =0.05, nzpz 0.07, with younger

children tending to be slightly slower to look at AOIs, collapsed across AOI and scene type. This
trend, however, seems to be primarily driven by an interaction between age and AOI type

(F(1,104)=7.29, p= .01, nzp = 0.07). The slopes of the linear relationship between time to first

fixation and age in the two different AOIs were significantly different (#(104) =2.69, p =.01,d =
0.26), although this difference is best characterised by a decrease in first-fixation time to non-
social information across age, while attentional capture time for social AOIs remains relatively
steady (Figure 6). Despite this, the social bias in attentional capture is maintained across
development and the interaction between age and type of scene is not significant (F(1,52) = 0.04,

p =84, n2p< .001. As in adults, the three-way interaction between age, type of scene, and type
of AOI neither improved the model fit nor was significant (F(1,104) = 0.02, p = .90, n2p< .001)

on the attentional capture, meaning that there was no developmental change in the way attention
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was captured by social and non-social information in interactive and non-interactive scenes

(Figure 7).
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Figure 6. Average time to first fixation to social and background AOIs across scenes in relation

to age in the developmental group. Width of the bands represent 95% confidence intervals.
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Attentional capture did not differ by type of scene (F(1,52) = 0.001, p = 0.97, n2p< .001),

with non-interactive scenes (M = 708.97, SD = 748.58) capturing the first fixation as quickly as
did interactive scenes (M = 709.47, SD = 743.65). Instead, as predicted, there was a significant
main effect of AOI type, F(1,104) =309.83, p <.001, n2p= 0.75, with faster orienting of

attention to the social AOIs (M =518.71, SD = 549.03) compared to the non-social regions (M =
903.17, SD = 861.33). Additionally, as in the adult data, there was a significant interaction
between type of scene and type of AOI, F(1,104) =7.61, p = .01, nzpz 0.07 (Figure 8). Indeed,

like adults, children were faster to orient to social information (M = 490.84, SD = 502.07)
compared to the background (M = 935.83, SD = 874.19), #(104) =14.43, p <.001,d=1.42 in
both interactive and, to a lesser extent, non-interactive scenes (social: M = 547.66, SD = 592.68;
non-social: M = 870.38, SD = 847.26; 1(104) = 10.43, p < 0.001, d = 1.02). Unlike in adults,
however, the difference between capture by interactive humans and non-interactive humans did

not reach significance in post-hoc analyses, #52) =-1.85, p = 0.20, d = -0.26.
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Figure 8. Violin plot for mean time to first fixation for AOI and scene type. Error bars represent

95% confidence intervals.
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Developmental changes in social attention between children and adults

Attentional engagement

So far, we have assessed children and adults separately and looked at developmental
change only within our child group. To assess developmental change between children and
adults, age was modelled as a categorical predictor (children vs. adults), and we followed the
same model building procedures and logic that we have used previously. Additionally, since
children and adults differed in the amount of missing data, we added this as a fixed effect in the
model to explore the possibility that the amount of available data explain some of the variance,
and therefore have an influence on our effects of interest. Missing trials produced a significant

effect on the total dwelling time F(1,121) = 19.49, p <.001, nzp = 0.14), but this factor did not

change any of the effects of interest (see Supplementary material n. S3b for details). We
therefore continued the model building without including number of missing trials as a fixed
effect. The final model included age-group, type of scene, and AOI as fixed effects, allowing
intercepts to vary at participant, condition, AOI and AOI size level.

Reassuringly, there was no main effect of age-group on overall attention to the scene,

F(1,122)=1.37,p = .25, n2p= 0.01. Unsurprisingly, given the results of both separate adult and
child group analyses, there was no main effect of scene-type (F(1,122) =0.37, p = .54, n2p<

0.01) and the main effect of area of interest remained highly significant (F(1,244) = 74.47, p <

.001, nzpz 0.23) with overall more attention given to social information (M = 1918.99, SD =

1008.77) compared to non-social information (M = 1696.90, SD = 987.35), irrespective of age
group and scene type — i.e. interactive or not. Likewise, the interaction between condition and

area of interest was maintained, F(1, 244) =72.21, p <.001, nzpz 0.23, with more attention

given, across groups, to the social information (M = 2035.88, SD = 978.55) than the background
(M =1595.43, SD = 968.50, #2445) = 12.33, p < 0.001, d = 0.79) in interactive scenes, while
there was essentially no difference in attention to the two types of AOIs (social: M = 1801.23,
SD = 1025.06; non-social: M =1799.12, SD = 995.70) in the non-interactive scenes (#244) =
5.50.41, p=.99, d = 0.03) (Figure 10).
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The interaction between age group and type of scene was not significant (£(1,122) =
0.07, p=.79, n? s 0.001 but there was a significant interaction between age group and type of
AOI (F(1, 244) = 12.01, p < .001, nzp = 0.05 (Figure 9). In particular, while both children
(1(244) =8.27, p <0.001, d = 0.53; social: M = 1989.44, SD = 1098.06; non-social: M =
1664.09, SD = 1081.01) and adults (#(244) =4.22, p <0.001, d = 0.27 ; social: M = 1866.17, SD
= 932.92; non-social: M =1721.49, SD = 910.20) looked at social information for longer
compared to the non-social information, this difference was larger for children. Indeed, children

looked for longer at the social information than did adults, #(122) =3.27, p = .01, d = 0.30, while

there was no between-group difference in looking time to non-social information, #(122) = -1.62,

p =29 d=0.15.
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Figure 9. Violin plot for mean dwelling time for AOI and age-group. Error bars represent 95%

confidence intervals.
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Finally, the three-way interaction between age-group, type of scene and type of AOI not
only did it not improve the model fit, but also produced a non-significant effect (#(1,244) = 0.00,
p=.99, n2p= 0.00) (Figure 10; see Supplementary materials n. S4 for descriptive statistics).
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Figure 10. Violin plot for mean dwelling time for type of scene and AOI, in the two age-groups.

Error bars represent 95% confidence intervals.

Attentional capture

Time to first fixation was transformed (logarithm in base 10) to meet multilevel
modelling assumptions. However, after transforming the data, the structure of the model and the
results did not change, therefore we present here the untransformed data to facilitate
understanding and interpretation of the results. See Supplementary materials n. S2c¢ for details on
the transformation and the full analysis and results from transformed data.
We used the same hierarchical structure with age modelled as a categorical predictor as above to
assess possible differences between children and adults in attentional capture. Here, we see a

significant main effect of age-group, F(1,122) =5.75, p = .02, n2p= 0.04 with children (M =
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709.22 , SD = 746.03) being slower to orient attention to the scene compared to the adults (M =
674.86 , SD = 719.30).

The main effects of scene (£(1,122) = 0.01, p = .94, n2p< 0.001) and AOI remained
unchanged (F(1,244) =713.61, p <0.001, n2p= 0.75) with faster orienting towards social
information (M = 498.74, SD = 541.70) compared to non-social information (M = 882.59, SD =
839.11), irrespective of age group and scene type — i.e. interactive or not. Similarly, the
interaction between scene type and AOI was maintained across groups, F(1, 244) =27.58, p <

.001, n2p= 0.10 with slightly faster orienting to social information in interactive scenes and

faster orienting to non-social information in the non-interactive scenes (Figure 11).
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Figure 11. Violin plot for mean time to first fixation for type of scene and AOI. Error bars

represent 95% confidence intervals.

As in the dwell-time analyses, there was no interaction between age group and type of

scene (£(1,122)=0.03, p=0.87, n2p< 0.001. In contrast to the dwell-time analyses, there was

also no interaction between age group and type of AOI (£(1,244) = 0.00, p = .99, nzp =0.00),
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with children and adults being similar in orienting to different types of information in the scenes
—1.e. social or non-social. Finally, as in the dwell time analysis, the three-way interaction
between age-group, type of scene and AOI did not improve the model fit, and when included in

the model, did not produce a significant effect (F(1, 244) = 0.80, p = .37, nzpz 0.00 (Figure 12;

see Supplemental materials S4 for descriptive statistics).
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Figure 12. Violin plot for mean time to first fixation for type of scene and AOI, in the two age-

groups. Error bars represent 95% confidence intervals.

General discussion

Here, we demonstrate both a general attentional bias towards social information in
complex scenes, and that this bias is increased in the presence of a social interaction in both
adults and in pre-adolescent children. Indeed, although children spend more time looking at
social information across all scenes, regardless of interactive content, they show a similar pattern
to adults in both how their attention is captured by social information and how they prioritise

social information more in interactive, as compared to non-interactive, scenes.
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The general social bias in both children and adults is consistent with much previous
literature showing a general attentional preference towards social information (e.g., Bindemann
et al., 2010; Doherty et al., 2017, 2019; Sue Fletcher-Watson et al., 2008; Rosler et al., 2017;
Sasson & Touchstone, 2014; Van Der Geest et al., 2002). Our results in this regard contrast with
prior research in two ways. First, we find that children engage with social information more than
adults do across scene type, a result potentially driven by the youngest children. This contrasts
with some prior findings that suggest a slow increase in social attentional engagement across
childhood and adolescence (Amso et al., 2014). This finding may suggest either than children
need more processing time to understand social content in complex scenes or that social elements
play a more important role in scene perception in children than in adults. Secondly, our findings
suggest that there is no developmental change between middle-childhood and young adults in
how much more quickly attention is captured by social than non-social information. This finding
contrasts somewhat with Doherty et al. (2019) who, during a non-social visual search task, show
greater attentional capture from social information in pre-adolescent children compared to adults.
Importantly, however, the two studies measure different aspects of social attention. Indeed, while
we use a free exploration task, Doherty et al. use a visual search task in which attention to social
distractors must be inhibited to correctly perform the task. Thus, in contrast to our data, Doherty
et al. may be measuring age differences in the ability to suppress interference from social
information while doing a non-social task rather than how attention is spontaneously captured by
social information in the absence of another task. Interestingly, the possible influence of general
developmental mechanisms is echoed in our current finding of children being generally slower to
orient to the scenes compared to the adults, likely due to development differences in processing
speed which continues to increase into adolescence (Luna et al., 2008), and ongoing
development of the orienting attentional network in childhood (Pozuelos et al., 2014).

This work also contributes to a small but growing body of work suggesting that observed
social interactions may be processed differently than the same number of individuals engaged in
independent tasks (Papeo & Abassi, 2019; Vestner et al., 2019; Walbrin & Koldewyn, 2019).
The current work extends previous research by looking at the moderating effect of social
interactions on social attention in childhood. Given that infants are able to distinguish between
two people facing compared to non-facing, and prefer the facing pair (e.g., Augusti et al., 2010;

Handl et al., 2013), it is perhaps unsurprising that children also attend preferentially to social
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interactions. We were, however, surprised that the presence of a social interaction increases
social attention to human information in scenes just as much in children as it does in adults. That
this ‘adultlike’ moderation effect of social interactions is present as early as 6 years of age
suggests that prioritized attention to social interactions may be of special importance in social
development and social learning. In line with this idea, children as young as 5 are able to learn
social norms from observation of others’ behaviors and interactions (e.g. Skinner et al., 2017),
suggesting not only perceptual sensitivity to interactions but “higher-order” social cognitive
abilities that rely on interactive information from relative early in development.

The lack of developmental change in attention to social interactions both within our child
group and between children and adults is somewhat surprising considering the substantial
structural (Mills et al., 2014) and functional (Walbrin et al., 2020) differences between children
and adults in social brain structures that support social interaction perception. This apparent
disconnect suggests that developmental changes in brain regions that support social interaction
perception do not reflect changes in spontaneous attentional mechanisms. Instead, they may
reflect changes in higher order social-cognitive processing. Indeed, future studies could
investigate the extent to which attentional prioritization of interactions in both children and
adults reflects automatic processing or a deeper understanding of social information, by
investigating how social knowledge relates to social attention patterns across childhood and
adolescence. Similarly, it will be important to investigate the extent to which these attentional
patterns, and their similarity between children and adults, are maintained in scenes where social
interaction information competes with other social information and when participants are
performing tasks, rather than simply observing the scene, as in the current study. Understanding
how mechanisms of attention to social interactions develops across stimuli and paradigms has
the potential to offer important insights into how social brain regions interact and develop to
support the detection, discrimination, and selection of important social information in the
environment (Amso & Scerif, 2015).

Finally, the fact that the presence of a social interaction strongly moderates engagement
with social information but alters attentional capture less strongly, might reflect the possibility
that social information captures attention regardless of the clutter in the scene, but engages it for
longer only when it is relevant and interesting. Indeed, it would seem that social information first

captures attention in the early stages of scene exploration regardless of scene type, and then



82

holds it for longer when the agents are engaged in social interaction. This suggests a hierarchy of
social information in scenes, where all human information automatically orients attention and is
then further prioritised when an interaction is present. Such hierarchical mechanisms could be
further studied by putting different types of social information — e.g interacting and non-
interacting individuals — in direct competition for attentional resources within the same scene.
There are, however a few limitations to the current study. In the first place, the
developmental analyses would be more strongly supported if we had been able to obtain our
intended sample size — as planned from the pre-registered power analyses — which in the current
study was not possible due to the interruption of data collection by the ongoing COVID-19
pandemic. While our results show little evidence of developmental differences between groups,
we do not have the power to be certain that smaller developmental changes are not present.
Additionally, our stimuli were purposefully chosen to reflect a wide range of scenarios. As such,
many aspects of the pictures are not well controlled. While this very heterogeneity is also a
strength of the study, it remains possible that some unintended visual aspect of the scenes
differed systematically between interactive and non-interactive scenes. This heterogeneity also
means that it is difficult to pinpoint the visual information and social cues that identify a scene as
interactive, or not. Unlike many other studies, these cues are not singular (i.e., facing direction)
but instead differ from scene to scene. Similarly, we deliberately used scenes without strong
emotional content, yet few ‘real-life’ interactions are truly ‘neutral’. Future studies could
investigate the influence of emotional content on attention to social interactions, both to better
reflect real life scenarios and attentional patterns and to understand how emotional and
interactive content uniquely influence attentional patterns. First, however, future work will need
to investigate how the influence of interactive content on attentional engagement is altered when
interactions are present in the same scene as other social targets. Indeed, in the work presented in
Chapter 4 we investigate these mechanisms in multiple people pictures, where social interactions

have to directly compete for attention with one or two other non-interacting individuals.
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Chapter 4. Development of the attentional priority of social interactions in

naturalistic scenes

Abstract

Human visual attention is specialized for capture and engagement of social information in
naturalistic scenes, and this pattern of “social bias” is present since infancy. Recent research,
additionally suggests that people preferentially attend to and more quickly detect interacting
dyads compared to non-interactors. However, very little work has examined interactive
mechanisms in complex scenes depicting multiple people, nor how such mechanisms arise and
change across development. How does social attention change across development when there is
competition between targets? In this work, we recorded eye-movements in 98 adults and 54
children in a free viewing experiment while participants viewed naturalistic scenes where pairs
of people were either interacting or not, and were depicted with either one or two additional non-
interacting individuals. We find an attentional bias to social information in both engagement and
capture, but this bias was not moderated by the presence of an interaction in the scene nor by the
age of the participants. However, when interacting and non-interacting humans compete for
attention in the same scene, the interacting dyad captures attention more quickly and engaged it
for longer when there is one other person in the scene across both age groups. When the
competitor is another (non-interacting) pair, only adults show a significant effect of interaction.
These results suggest that in complex social scenes with multiple social targets, interactions take
attentional priority, but this priority is weaker for children and when social content in the scene
increases. These findings and their implication for both scene perception and social development

are discussed.

Introduction

As deeply social beings, humans are drawn to and highly skilled in understanding visual
information that gives clues about other people’s relationships, intentions and mental states
(Quadflieg & Westmoreland, 2019). As a result, attentional processes that support social

understanding are honed from an early age, including those that support preferential looking to
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‘human information’ like faces, bodies, and actions. Specifically, interacting people are of
special interest, as they contain key interpersonal cues and may uniquely support both social
understanding and social learning, especially across development (e.g., Quadflieg & Penton-
Voak, 2017; Skinner et al., 2017). Additionally, real world scenarios are typically cluttered and
involve multiple people, often interacting with each other. Adults are very good at selecting
important social information, even when the scenes involve many different physical, social and
emotional contexts (e.g., Birmingham et al., 2008; Quadflieg & Westmoreland, 2019). But how
do our attentional systems develop to support the detection, selection, and understanding of
interpersonal cues in cluttered environments?

The primary purpose in the current study is to investigate how social attention in complex
scenarios develops in childhood and how social interactions might influence these patterns of
attention. Additionally, we explore how social interactions compete with other social information
for human attention. To answer these questions, we use a free exploration paradigm to examine
attention to social information (e.g. humans) and especially social interactions, in a variety of
naturalistic scenes containing multiple people, in 6-12 years old children and adults.

Most social attention research supports the existence of a strong attentional bias to social
information in scenes, as indicated by the fact that we easily and spontaneously orient to and
preferentially process bodies, faces and eyes as compared to non-social information (e.g.,
Bindemann et al., 2010; Birmingham et al., 2009; Doherty et al., 2017; Fletcher-Watson et al.,
2008; Mayer et al., 2015). Additionally, the orienting of attention to social information in scenes
appears to be automatic and unintentional (Rosler et al., 2017) and can certainly occur
orthogonally to the task participants are actually performing (Flechsenhar & Gamer, 2017).
Interestingly, much of the developmental research on this social bias has been done with infants,
showing that they develop a broad preference for social stimuli during the first year of age (for
reviews see Bertenthal & Boyer, 2015; Soto-Icaza et al., 2015). It is very likely, however, that
these processes may undergo changes across childhood and adolescence that have not been fully
explored (Bertenthal & Boyer, 2015; Soto-Icaza et al., 2015). Indeed, research exploring this
social attentional bias during childhood is inconclusive. For example, when performing a non-
social visual search task that included both social and non-social distractors, children and adults
were both more sensitive to the social distractors, but children’s attention was more often

captured by social information compared to the adults (Doherty et al., 2019). This would suggest
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that children’s attention is more sensitive to social information in naturalistic pictures yet Amso
et al. (2014) show a mild increase from 6 to 12 years in the proportion of social information that
children attend to in a free viewing paradigm, suggesting the social bias increases across
development. These contrasting results, albeit from quite different paradigms, suggest further
investigation of the social bias in development is needed, especially regarding cluttered
naturalistic scenarios.

What’s more, much of our understanding of the ‘human bias’ in attention comes from
work on isolated single individuals, separated from other social agents. This literature has
provided invaluable insights into how we select social information and is an excellent starting
place for understanding the mechanisms that support our perception of more complex social
scenarios, such as interactions between two or more people (Papeo, 2020). Indeed, observed
social interactions provide social cues that are rarely if ever encountered when observing
individuals, including cues that provide clear understanding of social roles, relationships between
people, and the social intentions of future interaction partners (Quadflieg & Koldewyn, 2017,
Quadflieg & Penton-Voak, 2017). Interestingly, recent research shows that we might process
interacting pairs as more than just the sum of two agents, both in the brain (Isik et al., 2017;
Walbrin & Koldewyn, 2019) and in behavioural tasks (e.g., Ding et al., 2017; Papeo et al., 2017).
Such results suggest that human perception includes specialisation for detecting and processing
interactive information. Additionally, tightly controlled behavioural studies show a search
advantage for dyads that face each other compared to non-facing pairs (Papeo et al., 2019) or
pairs that face in the same direction (Vestner et al., 2020), although this advantage may be driven
by gaze-based spatial attentional cuing, rather than specifically social or interactive cues
(Vestner et al., 2020). Further, when participants were presented with pairs of facing or non-
facing dyads at the same time, they spent more time looking at the facing pairs compared to the
non-facing pairs (Stagg et al., 2014), suggesting an attentional preference for interacting dyads
compared to non-facing individuals. Although this evidence suggests an attentional bias towards
social interactions, so far this research has relied almost entirely on tightly controlled stimuli that
show figures and dyads taken out of context. To our knowledge, only one study has investigated
attention to dyadic interactions in naturalistic scenes, showing that attention to human
information is increased when viewing a scene that includes a dyadic social interaction,

compared to scenes with two non-interacting people (Skripkauskaite et al., under review). These
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findings suggest that interactive information can drive attention in complex scenes, effects that
may differ when scenes contain multiple social targets and when interactive information is in
direct competition with other social targets.

There is also relatively little research explicitly investigating how attention towards social
interactions may change across development, especially during middle to late childhood. What
little evidence there is suggests that the ability to discriminate between interacting and non-
interacting humans develops as early as 4 months old, with infants being able to shift their
attention between speakers that face each other compared to non-facing speakers (Augusti et al.,
2010; Handl et al., 2013) and that they can even discriminate between different kinds of
interactions (Hamlin et al., 2007). Although these findings suggest that infants and children have
the ability to detect social interactions, we currently have only limited knowledge about the
attentional mechanisms underlying this skill in childhood. In chapter 3 we’ve shown that just like
the adults, when two people are interacting in a scene, attention to social information is increased
compared to the scenes in which they are not interacting. Additionally, to our knowledge, only
one study specifically investigated attention to interactions in development. Stagg et al. (2014)
investigated attention to interacting pairs in childhood, demonstrating that 9-years-olds looked
for longer at two agents facing each other than pairs of agents who were not facing when the two
pair-types were presented together. Although this suggests that there is an attentional bias to
social interactions also in pre-adolescent childhood, age related changes in this pattern of
attention in much more complex scenes have not been investigated. Additionally, investigating
attention to social interaction in naturalistic complex scenes may reveal important extra
information about developmental changes in social attention as contextual information could
either facilitate processing of social interaction or, on the contrary, hinder such mechanisms
through competition for limited attentional resources.

There is good reason to think that there may be a developmental change in the way
children process and attend to social interactions, as the brain systems that support this
processing (e.g. Walbrin et al., 2018) are not yet adult-like in pre-adolescent children both
structurally (Mills et al., 2014) and functionally (Sapey-Triomphe et al., 2017; Walbrin et al.,
2020). If the neural system underlying social interaction perception is not yet fully “tuned” at 6,
this could have ‘carry-over’ consequences for how children and adolescents detect, attend to,

and process social interactions, especially when faced with complex naturalistic scenes.
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Work investigating social attention in neurodevelopmental disorders also supports the
idea that social interactions in a scene may change how children attend to it. Although social
attention processes are altered in quite predictable ways in neurodevelopmental disorders such as
ASD and Williams syndrome (Chita-Tegmark, 2016; Frazier et al., 2017; Klin et al., 2002; Riby
& Hancock, 2008; Williams et al., 2013), the nature and extent of these behavioural or
attentional differences appears to vary substantially depending on the complexity and type of
information being presented. Indeed, a recent meta-analysis suggests that although autistic
participants show overall reduced social attention across a variety of experimental stimuli and
tasks, the only factor that predicted the effect sizes of such reductions was the amount of ‘social
content’ in the scene (e.g., the number of people depicted in the stimuli) (Chita-Tegmark, 2016).
Additionally, another meta-analysis suggests that the largest differences between ASD and
typically developing (TD) groups in attention to social areas of interest like faces and eyes were
driven by the presence of a social interaction in the scene (Frazier et al., 2017). This evidence
suggests that the presence of a social interaction in a socially cluttered scene, depicting multiple
people, might influence attention orienting in unexpected ways, and unveil developmental
change in social attentional orienting.

Interestingly, very little research has manipulated either social content or the presence of
social interactions explicitly. Research that has tackled such questions most often has used
tightly controlled stimuli with isolated figures taken out of context. However, although
experimental control over stimuli is important, the social world is complex and rich and using
naturalistic scenes has the advantage of more closely mimicking the competition for attention —
between social and non-social clutter in the first place, and between different social agents in the
second place — that is usual in everyday experience. Studies have rarely investigated how
increasing the social content of a scene by adding additional people nor how manipulating the
interactive content through including social interactions within the scene might affect social
attention. To our knowledge, there is only one study that has done so. During a free viewing
paradigm, Birmingham et al., (2008) used scenes containing either one or 3 people who were
either active (doing something independently), inactive (doing nothing independently) or
interacting (the 3 people did something together). Interestingly, the authors showed that
increasing the number of people in the scene, especially if the 3 people were active

(independently or interacting), increased the attention to the eyes of the agents, indicating a
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change in the pattern of attention when multiple people are involved. However, they show no
difference between “interactive” and “independent” active scenes in fixation proportions across
ROIs (eyes, heads, bodies, foreground and background objects), suggesting no influence of
“Interactiveness” on attention within the scene.

Finally, developmental research on multiple people scenarios and interactions is very
limited. When viewing static or dynamic scenes, children (6-8 years old) shift their attention
from faces to bodies as the number of people in scene increases, and this shift is more marked in
children than in adults (Stoesz & Jakobson, 2014), but it is unclear whether the type of social
content matters and how this changes in development.

To summarize, on one side, while it is established that there is a human attentional bias in
naturalistic scenes that is present from early infancy, there is little evidence about how that bias
may change during childhood and adolescence. Similarly, neuroimaging and behavioural
evidence support a perceptual bias towards interacting dyads, which again, may change during
childhood. In particular, it is still unclear how, and if, social interactions might compete with
other social information for human attention and, if so, to what extent this competition might be
different in pre-adolescent childhood.

In the present study, we investigate spontaneous social attention in complex naturalistic
scenes containing more than two people across development, and explore the strength of the bias
to social interactions when other social targets (e.g., other human agents) are present in the same
scene.

In the light of previous literature, we expect to find: 1. a stronger bias to humans in adults
compared to children, across all scenes; ii. that the bias to human figures in naturalistic scenes is
moderated by the presence of a social interaction in the scene, with a stronger effect in adults
compared to children; and iii. that both groups will give interacting dyads attentional priority,
when presented together with another person or a pair of non-interacting agents, and that this

effect will again be stronger in adults compared to children.

Methods

Participants
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Two groups participated in this study, an adult group and a group of children aged 6 -12
years. Power analyses were performed in G Power (Erdfelder et al., 2009; Faul et al., 2007) and
were pre-registered on AsPredicted.

For the adults group (pre-registered on AsPredicted:
https://aspredicted.org/blind.php?x=hz9ay7) (Appendix A3 and A4) data collection was planned
to proceed until we would reach the sample size indicated by the power analysis — 231
participants necessary to reach 80% (a <.05) and a medium effect size (Cohen’s f=0.25) — or
until 31% of July 2020, whichever would come first. We recruited 101 participants, of which 3
were eliminated, one due to sleepiness and two for being out of our desired age range. Our final
adult group included therefore a total of 98 adults (M =21.15, SD = 2.97; range = 18-35; 70
females, 1 other). This sample size is enough to reach a large effect size (Cohen’s f = 0.40), with
80% power (a <.05).

The developmental power analysis suggested 90 participants in order to detect a large
effect size (f = 0.40) and reach 80% of power (a < .05), or the pre-registered plan to cease data
collection at the end of the academic year (21 of July 2020), whichever would come first
(AsPredicted: https://aspredicted.org/blind.php?x=4ju8ug). We therefore collected data from 54
children (M = 8.76, SD = 1.72; range = 6-12; 28 females) who were all included in the final
developmental group. All participants had normal to corrected vision. Adults gave informed
consent, and received money or university credits as compensation for their participation.
Children gave assent, and each child’s guardian gave consent for them to participate, and they
received toys as compensation. All procedures were approved by the ethical committee at

Bangor university (ethics protocols: 2018-16360 and 2019-16586).

Stimuli and apparatus

The stimulus pictures were selected from 4 online databases (Choi et al., 2014; Kosti et
al., 2017; Quattoni & Torralba, 2009; Xiao et al., 2010). They were chosen to be emotionally
neutral, and to depict a variety of ordinary life contexts (e.g. schools, shops, markets). Scenes
contained 3 or 4 people where either all were not engaged in social interactions, or where one
dyad was interacting, while either 1 or 2 other people were not.

Twenty-six independent judges rated the pictures for interactiveness on a 1-7 Likert scale

and were then asked to explicitly indicate the interacting dyad in each scene, if any (see


https://aspredicted.org/blind.php?x=hz9ay7
https://aspredicted.org/blind.php?x=4ju8ug
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“Materials — Picture selection for chapter 4 section in the General methods chapter for details
on the rating experiment). First, out of the initial 114 selected pictures (64 depicting three people
and 50 depicting four people) the lowest-scoring 33% of the pictures (cut-off interactiveness
score < 2.08) were chosen for the non-interactive condition, and the highest-scoring 33% (cut-off
> 4.15) were chosen for the interactive condition. The final set of pictures, which included 22
pictures depicting 4 people and 30 pictures depicting 3 people, were selected from these pools to
include equal numbers of interactive and non-interactive pictures that also had the highest level
of agreement across judges regarding which was the interacting dyad in the scene, if any, (rater
agreement > 65%).

All pictures were matched for colour with one sample picture using Photoshop (version
CC 2019), neutralised to remove colour cast (“adjustments — match colour — neutralize colour”
option) and sharpened (“filter — sharpen” option).

Stimuli were presented on a 1920 x 1080 px screen, on grey background, using Psychopy
2 (Peirce et al., 2019). Each picture had a size of 860 x 860 pixels (13.6° x 13.6° visual angle)
and was presented in a location shifted either right or left of center, with the centre-most edge 60
pixels left or right of the fixation cross (0.85° visual angle).

An EyeLink Portable Duo tracker (EyeLink x, SR Research, Ontario, Canada) with
remote binocular system at 1000 hz sampling rate was used to collect data from both eyes, but
monocular data were used for the analyses. Which eye’s data was used was based on each

participant’s individual calibration accuracy.

Procedure

Participants sat comfortably on a stable chair approximately 80 cm distant from the
screen. They viewed a total of 142 pictures in randomised order, in 4 blocks of 35 trials each.
These blocks not only contained the pictures for this task, but also pictures belonging to other 2
experiments not discussed here. Breaks were allowed between blocks, after which another drift
correction procedure was performed.

Adults were instructed through on-screen written instructions to freely observe the
pictures for 5 seconds, with no other specific instructions, while children were verbally

instructed to do so.
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Before the task, a 13 point calibration procedure was carried out for participants in both
groups. Instructions appeared on the screen for the adult group, while the calibration procedure
was explained verbally for children.

For adults, a drift correction procedure was carried out before each picture was presented,
where participants were asked to fixate a calibration point at the centre of the screen before
pressing the space bar to proceed through the task. Children were presented with an animated gif
at the centre of the screen for a duration of 2.5 seconds as a fixation point between each stimulus.
In both cases, this served to draw participants’ gaze back to the centre of the screen before the

beginning of the next trial. The experiment took around 20 minutes to complete.

Data analysis

Two areas of interest (AOIs) were defined for each picture using the “freehand” option in
Eyelink Data Viewer (SR Research, 2013). One AOI included all visible human information
(faces, bodies) that was not occluded by other objects while the other AOI consisted of all other
information in the scene (objects, background elements). We extracted a measure of dwelling
time in each AOI (with fixations and saccades) as a measure of attentional engagement. We
measured attention capture as the time to first fixation for each area of interest.

Each participant viewed every picture, which were chosen so we could assess the
influence of 3 factors: number of people in the scene (3 or 4), whether a two-person interaction is
taking places in the scene (interactive or not) and the AOI type (humans or background).

Trials with less than 33% of total engagement time with the stimulus were considered
missing. These trials included off-screen looking time, poor signal, missing data, and blinks.

We used multilevel modelling (nlme package in R, Pinheiro et al., 2016) to perform two
different levels of analyses to answer our two main research questions. The first level analysis
assessed developmental change in the attentional bias to humans in complex scenes and the
extent to which this bias was moderated by social interactions across all the pictures. The second
level analysis investigated the attentional competition between social interactions and other
social information, so only interactive pictures were entered into this analysis.

Unless stated otherwise, time to first fixation data in all the parts of the analysis were
transformed to meet multilevel modelling assumptions. When the model with transformed data

and the one with untransformed data did not differ in structure and outcome effects, we present
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the untransformed data for ease of understanding. Details about all transformations and analyses

using the transformed data are in the Supplementary materials n. S5 (Appendix D).

Part 1: Development of the attentional social bias in cluttered scenes

Aim

The first goal of this work was to investigate developmental changes in the attention to
social information compared to non-social information — i.e. the social attentional bias — and the
role of social interactions in moderating this bias also in more complex scenes, independently of

the number of the people in the scene — i.e., 3 and 4 people scenes were merged.

Data analysis

The data cleaning procedure described above led to the loss of 0.31% of trials within the
adult group (range of 0 -1 trials per participant), and 3.24% of trials within the child group (range
of 0 - 4 trials per participant).

We used a four-level hierarchical model for each of our two measures (dwell time; time-
to-first-fixation). The structure of the model was as it follows: participant information modelled
at the fourth and highest level, the social content of the scene — i.e., whether an interaction was
present or absent - was nested within each participant at the third level, and the type of AOI
(human, background) was nested at the second level; the first level included either the measure
of dwelling time or time to first fixation for each AOI, trial and participant. Age-group (child,
adult) was modelled as a categorical predictor. Additionally, pairwise comparisons were

performed using post-hoc Tukey’s HSD with the emmeans package in R (Lenth et al., 2018).

Results

Attentional engagement

The relationship between conditions and dwell time showed significant variance in
intercepts across participants, type of scene and area of interest (SD = 323.86, y%(3) =851.17, p
<.001).



94

After setting participant, condition and AOI as random effects, we found that overall
attention to the scenes was similar between children (M = 1831.97, SD = 1117.75) and adults (M
=1801.43, SD = 952.02), resulting in a non-significant main effect of age-group (F(1,150) =
1.23,p=.27, nzpz .01). Similarly, equal time was spent looking at the interactive (M = 1818.51,

SD=1015.21,) and the non-interactive scenes (M = 1805.62, SD =1010.66) (F(1,150) = 0.29, p
=.59, n2p= .002), and this was similar for children (interactive: M = 1842.43, SD = 1112.06;

non-interactive: M = 1821.50, SD = 1123.53) and adults (interactive: M = 1805.72, SD = 959.27;
non-interactive: M = 1797.13, SD = 944.79); F(1,150) = .05, p = .82, nzp <.001.

As predicted, all participants showed a social attentional bias, with more attention given
to human areas of interest (M = 2033.90, SD = 998.66) compared to the background (M =
1590.23, SD =977.97) — F(1, 300) = 342.88, p < .001, n2p= .53, and this effect was moderated

by age group — F(1,300) = 10.87, p = .001, n2p= .03. Indeed, children looked at background

information (M = 1664.75, SD = 1091.21) for longer compared to the adults (M = 1550.38, SD =
909.25), #(150) =-3.11, p = .01, d = - 0.25, while attention to human information was similar
between the two groups (children: M = 1999.19, SD = 1119.16; adults: M =2052.47, SD =
927.40), ((150) = 1.55, p = .41, d = 0.13 (Figure 1).
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Figure 1. Violin plot for mean dwell time for AOI and age-group. Error bars represent 95%

confidence intervals.

Finally, there was a significant interaction between type of scene and region (F(1,300) =

18.36, p <.001, n? - .06). In particular, surprisingly, more attention was given to the social

AOQIs in the non-interactive scenes (M = 2078.55, SD = 980.87) compared to the interactive
scenes (M =1989.29, SD = 1014.29), #(150) =2.44, p = 0.06, d = 0.20, and more attention was
given to the background in the interactive (M = 1647.73, SD = 987.13) compared to the non-
interactive (M = 1532.69, SD = 965.41) scenes, #(150) =3.26, p = .01, d = 0.27, while still
presenting a strong human bias in both types of scenes (interactive: #(300) = 8.97, p <.001, d =
0.52; non-interactive: #(300) = 14.67, p < .001, d = 0.85).

Additionally, this effect was similar in the two age-groups, as the three-way interaction
between age-group, condition and AOI did not improve the fit of the model, and was not

significant (F(1,300) = .05, p = .83, n2p< .001) (Figure 2; see Supplementary materials n. S1,

Table S1a for descriptive statistics).
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Figure 2. Violin plot for mean dwell time for children and adults across types of scenes and

AOIs. Error bars represent 95% confidence intervals.

Exploratory analyses

Since the presence of a social interaction in the scene moderated attention to human
information in the opposite direction compared to our prediction, we conducted exploratory
analyses to investigate the potential cause for these results. First, we investigated which pictures,
between the three and the four people scenes, are driving this effect. Therefore, we introduced
the number of people in the scene as a further fixed effect to a similar hierarchical model to the
one used above, with the two age-groups merged in one sample (see Supplementary Materials n.
S2 — 2a for details). The analysis revealed that the “inverse” interaction moderation was driven
by the three people pictures, while the same effect was not found in the four people pictures
(Figure 3). In particular, while in the three people pictures significantly more attention was given

to the non-interactive humans (M = 2169.10, SD = 1003.61) compared to the interactive (M =
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1938.91, SD =1010.47), (151) =5.92, p <.001, d = 0.48, the same is not true for the four
people pictures (non-interactive: M = 1955.49, SD = 935.45; interactive: M = 2057.78, SD =
1015.76; t(151) =-2.39, p = .20, d = -0.19). Additionally, in the three people pictures, more
attention was given to background information in the interacting scenes (M = 1670.51, SD =
997.72) compared to the non-interactive (M = 1424.11, SD = 998.06) - #(151) =-6.33, p <.001,
d =-0.52 — while in the four people pictures there was no difference (interactive: M = 1616.77,
SD = 972.01; non-interactive: M = 1680.25, SD = 898.67; ((151)=1.47, p = .84, d = 0.12).
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Figure 3. Violin plots for mean dwell time for AOIs across types of scenes. All contrasts social

>background were significant at p < .001. Error bars represent 95% confidence intervals.

Considering the unexpected effect was driven by the pictures depicting three people, we
explored further the effect of another factor on these patterns of attention: size of the AOIs in
each scene (see Supplementary materials n. S3 — 3a for details on the size of the AOIs in the 3
and 4 people interactive and non-interactive scenes).

We performed a similar hierarchical model on the three people pictures, with participant,

type of scene and AOI as random effects, and type of scene, AOI and size of the AOI as fixed
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effects, to investigate the role of the size of the AOI in moderating social orienting in interactive
and non-interactive scenes (see Supplementary Materials n. S3 — 3b for details).
Unsurprisingly, the AOI area had an effect on the dwelling time (£(1,8372) = 2969.39, p <.001,

nzp = .26) showing that the larger the AOI, the more attention it received. This was not,

however, moderated by either type of scene (£(1,8372) = 0.25, p = .61, nzp <.001), AOI
(F(1,8372)=0.41, p = .52, nzp <.001) or both (F(1,8372) =0.94, p = .33, nzp <.001),

suggesting that AOI size in the three people pictures cannot explain the inverted interaction

effect found on social orienting in these scenes.

The second factor we considered as a potential contributor to this effect was the idea that
interacting dyads may be processed differently compared to independent individuals. Indeed, a
growing literature suggests that interacting dyads are processed as unique “gestalts” (e.g., Ding
et al., 2017b; Papeo et al., 2019; Walbrin & Koldewyn, 2019). In other words, interacting dyads
may be processed as a single ‘unit’ and treated as one object. If true, the area between them
might attract more attention than other regions of the background, including the space between
non-interacting people. In the way that AOIs were defined, we had originally included this space
between interactants in the background AOI. To explore the possibility that the space between
interactants might be attracting more attention other areas of the background, we performed an
analysis on the attention given to the space between the two interacting agents in pictures
depicting 3-people, the space between the interacting and the non-interacting individual (mixed
space) in the interactive scenes, and the average space between the non-interacting individuals in
the non-interactive pictures. We expected that holistic processing of the interacting agents
compared to a piecemeal visual scan of the non-interacting individuals would result in the space
between interactants receiving more attention when participants fixated the centre of the ‘object’,
while mixed and non-interactive space would not receive such ‘extra’ attention because
participants would be scanning individuals instead. Therefore, we expected the interactive space
would show higher dwell times compared to either of the non-interactive spaces (see
Supplementary Materials n. S4 for details on how the spaces were created). In a hierarchical
model including participant information as a random effect, and type of AOI (interactive space,

mixed space, non-interactive space) as a fixed effect, we find a main effect of AOI (F(1,4932) =
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55.34, p <.001, nzp = 0.02), with attention to the interactive interpersonal space (M = 382.88,
SD = 498.89) higher than the mixed space (M = 226.93, SD =417.69), 1(4932)=10.01,p <
.001, d = 0.14 and the non-interactive space (M = 270.80, SD = 351.73), 1(4932) = 8.09, p <
.001, d = 0.12, and more attention given to the non-interactive space compared to the mixed

space, #(4932) =3.07, p=.01, d = 0.04 (Figure 4).
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Figure 4. Violin plot for mean dwell time for interpersonal spaces. Error bars represent 95%

confidence intervals.

Unfortunately, because of the naturalistic and heterogeneous nature of the scenes used in
this study, the number of pictures depicting 4 people that showed a clear configuration of
interpersonal space (e.g., non-interacting people were sometimes on opposite sides of the

interacting dyad) was not large enough to perform the same analysis, though it would have been



100

informative to contrast the interpersonal space between interacting dyads and non-interacting

individuals.

As the space between interactors might be driving the unexpected results in the
moderation of social orienting by social interactions, we then also investigated whether this
pattern was similar between our age groups. We first performed an exploratory analysis on all
pictures with a model with a 2 (age-group) x 2 (people in the scene) x 2 (type of scene) x 2
(AOI) structure of predictors to investigate whether the pattern found in the merged groups —i.e.,
more attention to humans in the non-interactive scenes compared to the interactive scenes in the
3 but not in the 4 people pictures, is similar between adults and children. The results suggest that
these effects are different between children and adults, showing a significant four-way

interaction (F(1,14978) = 6.47, p = .002, r)zp <.001; details of the analysis are in the

Supplementary materials n. S2 — 2b) between age-group, number of people in the scene, type of
scene and AOI (Figure 5). In particular, the inverse interaction effect in the three-people scenes
was present only in adults, with more attention to humans in the non-interactive scenes compared
to the interactive scenes (#150) =5.77, p <.001, d = 0.47), and more attention to the interactive
background compared to the non-interactive (#(150) = 5.78, p <.001, d = 0.47). However, this
was not true in the four people pictures for adults (human: #(150) =2.77, p = .18, d = 0.23;
background: #(150) =2, p =.79, d = 0.16) and also not true for children, as they spent the same
amount of time looking at interactive and non-interactive human information (#(150) =2.22, p =
.59, d =0.18) and at interactive and non-interactive background (#150) = 2.9, p = .13, d = 0.24)
in both three-people and four-people scenes (human: #150) = 0.28, p = 1, d = 0.02; background:
#(150)=0.22, p=1,d =0.02; Table S2d in Supplementary materials n. S2 for descriptive
statistics). It is important to note, however, that children numerically show the same pattern as
adults and that this analysis was already exploratory (i.e., a post-hoc, unplanned analysis), and
that we did not have adequate power to be confident about the results of this analysis,
particularly considering that the key contrast is a four-way interaction. Thus, these results need to

be interpreted with considerable caution and replicated in future work.
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of social content, and human and background information. All contrasts human — background are

significant at p <.001. Error bars represent 95% confidence intervals.

These results suggest that children might show less holistic processing of interacting
dyads than adults. To look at this possibility, we performed a final exploratory analysis which is
a repeat of the analysis shown in Figure 4, but adding age-group as a factor. Contrary to our

expectation, the main effect of AOI (£(1,4930) = 55.37, p <.001, nzp = 0.02 did not interact
with age (£(1,4930)=1.71, p = .18, nzp < 0.001; Figure 6), as a similar pattern was seen in both

groups (Supplementary materials n. S4 for details on the analysis). Indeed, children actually paid
more attention to the interpersonal space between interactors (M = 311.95, SD = 483.14)
compared to the adults (M = 281.58, SD = 384.21), F(1,150) =4.52, p = .04, nzp =0.03.



102

Children Adults
5000 1 s eckid
[ 1 [ ]
* %k k * %k %k

4000 4
©»
£ 3000
(O]
=
) )
e 2000
a

1000 1

O - l

T T T T

Interactive  Mixed Not-interactive Interactive Mixed Not-interactive

Type of space

Figure 6. Violin plot for mean dwell time (ms) for interpersonal spaces in the two age-groups.

Error bars represent 95% confidence intervals.

These results suggest that the developmental differences in attention to the three people
pictures observed in the analysis in Figure 5 were most likely due to a lack of statistical power to

support similar effects in children as were found in the adults.

Attentional capture

The time to first fixation data was transformed (logarithm in base 10) to meet multilevel
modelling assumptions (see Supplementary materials n.S5 — 5a for details on transformation).
Since the models after transformation showed different effects compared to the untransformed
data, here we report the transformed data.

The relationship between conditions and the transformed time to first fixation showed

significant variance in intercepts across participants, type of scene and area of interest (SD =
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0.08, x%(3) = 288, p < .001). After setting participant, condition, and AOI as random effects, the
model included age-group as between subjects effect, and type of scene and AOI as within
subjects fixed effects.

We found that children were generally slower to orient to the scenes (M = 2.70, SD =
0.31) compared to the adults (M = 2.66, SD = 0.32). In other words, there was a significant main
effect of age-group (F(1,150) =35.4, p <.001, nzp =.19) but the type of scene had no effect on

the time to first fixation (F(1,150) = 0.4, p = .54, nzp =.003) with similar time taken to orient to

the interactive (M =2.67, SD= 0.31) and the non-interactive (M = 2.68, SD = 0.32) scenes. As
predicted, participants showed a human bias also in attentional capture (main effect of AOI (F(1,

300) =326, p <.001, n2p= .52), orienting faster to the human elements of the scene (M = 2.62,

SD = 0.26) compared to the background (M = 2.73, SD = 0.36).
Age-group did not interact significantly with the type of scene (F(1,150) = 1.6, p = .21,
nzp =.01), nor with AOI-type (F(1,300) =24, p= .12, nzpz .01). This suggests that children

were similar to adults in how they oriented to the two types of scenes and two types of AOIs
(Children: interactive scenes: M = 2.69, SD = 0.31; non-interactive scenes: M =2.71, SD = 0.32;
social AOIs: M =2.65, SD = 0.27; background AOIs: M =2.75, SD = 0.34. Adults: interactive
scenes: M = 2.66, SD = 0.32; non-interactive scenes: M =2.66, SD = 0.32; social AOIs: M = 2.60,
SD = 0.25; background: M =2.72, SD = 0.37).

There was, however, a significant interaction between type of scene and AOI, F(1,300) =

29.7, p <.001, nzp =.09. Indeed, again against our expectations, participants were faster to look

at social information in the non-interactive scenes (M = 2.61, SD = 0.25) compared to the
interactive scenes (M = 2.64, SD = 0.27), (150) = -2.83, p = .02, d = - 0.23, while orienting to
background information was faster for interactive scenes (M = 2.71, SD = 0.35) compared to the
non-interactive scenes (M = 2.75, SD = 0.37), #(150) = -4.28 , p <.001, d = -0.35) although the
social bias to attend to human information first was maintained in both types of scenes
(interactive: #(300) = -8.29, p <.001, d = - 0.48; non-interactive: #300) =-15.37, p <.001, d = -
0.89) (Figure 7; see Table S5b and Figure S5a in Supplementary materials n. S5 for

untransformed data).
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As with the dwell-time analysis, this effect was not moderated by age, as the three-way
interaction between age-group, type of scene, and AOI did not improve the fit of the model, and

was not significant (£(1,300) = 0.3, p = .60, nzp <.001) (Figure 7).
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Figure 7. Violin plot for mean log transformed time to first fixation to social and non-social AOI
across types of scenes in the two age-groups. All contrasts human — background are significant at

p <.001. Error bars represent 95% confidence intervals.

Exploratory analyses

As for the dwelling time measure, the presence of a social interaction in the scene
moderated capture by human information in the opposite direction compared to what we
expected. Therefore, we conducted the same exploratory analyses that we used to look at dwell-
time in order to investigate the potential cause for these results. We first performed an analysis
where the number of people in the scene was added as a further fixed effect, while age-groups
were merged, resulting in a model with a 2 (people in the scene) * 2 (type of scene) * 2 (AOI)
structure of predictors (see Tables S2e and S2f in Supplementary Materials n. S2 — 2¢ for details)

to investigate which group of pictures was driving this effect. The analysis revealed that the
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“inverse” interaction moderation was again driven by the 3-people pictures and was not seen in
the 4-people pictures (Figure 8). In other words, there was a three-way interaction between

number of people, type of scene and AOI (£(1,14565) =12.6, p <.001, nzp <.001). In the three

people pictures time taken to first fixate the non-interactive humans (M = 2.59, SD = 0.25) was
significantly shorter compared to the interactive (M = 2.63, SD = 0.27), ((151) =-3.97, p = .001,
d =-0.32, while the same was not true for the four people pictures (non-interactive: M = 2.63, SD
= 0.26; interactive: M =2.64, SD = 0.27; #(151) =-0.99, p = .99, d = -0.08). Additionally, in the
three people pictures, participants were faster to orient to the background in the interacting
scenes (M =2.72, SD = 0.35) compared to the non-interactive scenes (M = 2.77, SD = 0.38) -
#(151)=-5.22, p <.001, d = -0.42 — while in the four people pictures there was no difference
(interactive: M =2.71, SD = 0.35; non-interactive: M =2.72, SD = 0.35; (151)=1.17,p=.97,d
=0.10) (Figure 8).
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Figure 8. Violin plot for mean transformed time to first fixation for AOIs across types of scenes.
All contrasts human — background are significant at p <.001. Error bars represent 95%

confidence intervals.

To assess whether the size of the AOI might be important in driving these effects, we
performed a similar hierarchical model on the three people pictures, with participant, type of
scene and AOI as random effects, and type of scene, AOI and size of the AOI as fixed effects, to
investigate the role of AOI size in moderating social orienting in interactive and non-interactive
scenes (see Supplementary Materials n. S3 — 3¢ for details).

Unsurprisingly, the AOI area had an effect on the time to first fixation (#(1,8085) =
640.3, p <.001, nzp =.07) — meaning the larger the AOI, the stronger the attentional capture —

although this was not moderated by the type of scene (F(1,8085) = 3.5 p = .06, nzp <.001). It
was, however, moderated by AOI-type (F(1,8085)=21,3, p <0.001, nzp =.003) but there was
no 3-way interaction between size, scene-type, and AOI-type (£(1,8085) = 0.4, p = .50, nzp <
.001.

Interestingly, although the three-way interaction was not significant, (¥(1,8085) = 0.4, p

=.50, nzp <.001), post-hoc comparisons on the interaction between AOI-type and type of scene
(F(1,302) =25.7, p <.001, nzp = .08) showed that the time taken to fixate the human AOI in the

non-interactive scenes compared to the interactive scenes was no longer significantly different
(#(151) =-1.61, p = .37, d = -0.13), and capture by the interactive background was not different
from the non-interactive (#(151) =-1.67, p = .34, d = -0.14). This suggests that adding the area of
the AOIs to the model contributes to partially explaining the inverse effects found in the main

analysis in the three-people pictures.
Interim discussion

In this first set of analyses we reconfirm a social attentional bias to human information
also in more complex naturalistic displays, in both pre-adolescent children and adults. We find
that children and adults are similar in the way they deploy attention to social information,

although children engage more with non-social information compared to adults. Additionally,
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although a social interaction in the scene moderated attention to social information in the
opposite direction to what we expected, exploratory analyses suggest this may be explained by
holistic processing of the interacting dyads, in both age groups. Finally, we find that attentional
capture in naturalistic displays can be greatly influenced by the size of regions of interest, with
important future methodological implications.

Our strong social bias findings echo previous research showing a strong preference for
and orienting to human information in scenes across a variety of attentional tasks using
naturalistic scenarios (Birmingham et al., 2008; Doherty et al., 2017; Flechsenhar & Gamer,
2017; Sue Fletcher-Watson et al., 2008; Rosler et al., 2017). We extend this finding by showing
that children aged 6 -12 years, show the same pattern of social capture and engagement as the
adults, despite the clutter in the scenes. This is partially contrasting with previous research
showing mild increases in social engagement across childhood (Amso et al., 2014) or even
greater capture by social information in children (Doherty et al., 2019), although this difference
in findings is likely the result of methodological differences between studies. Indeed, our study
focuses on more global attention to social information compared to just face information as in
Amso et al. (2014). As a result, we may therefore be losing some of the fine-grained attentional
patterns across development specific to faces. Additionally, in our study participants were simply
asked to freely view the scene. Thus our results capture spontaneous attention, while participants
were performing non-social visual search task in Amso et al.’s work, which may also have
measured components of executive functioning and children’s ability to suppress interference
from distractors (both social and not).

Interestingly, while no developmental differences were found in attention to social
information, children were more engaged than adults by background information, perhaps
suggesting either that they needed more contextual information to process these complex social
scenes, or that they have not yet fully developed the ability to filter out irrelevant information
when faced with so much visual information. Indeed, previous research shows that as the
complexity of naturalistic scenes and/or social information increases (e.g., including multiple
people or adding motion) children’s looking behaviour changes as they use mechanisms to deal
with high attentional demands, for example more off-screen time (Stoesz & Jakobson, 2014).

Additionally, this difference in non-social attention could be further explained by differences in
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general attentional capacities between children and adults, which are not yet fully developed
until late adolescence (Amso & Scerif, 2015).

Given our own prior results when investigating two-people scenes (Skripkauskaite et al.,
n.d.), the fact that the presence of a social interaction did not moderate social attention in these
more complex scenes was surprising. Indeed, these findings contrast with prior literature
suggesting the important role that social interactions play in visual attention in adults (Papeo,
2020; Papeo et al., 2017, 2019; Vestner et al., 2019) and in children (Stagg et al., 2014). Our
findings do, however, match findings from the one prior study looking at interactive vs non-
interactive scenes containing more than two people, though interactive content was not the focus
of that particular study (Birmingham et al., 2008). One reason why we might not see a
moderating effect of social interaction here is because of the complexity of the scenes and the
diversity of the interactive cues that were present in our stimulus set. Although the naturalistic
nature of these scenes is a strength in measuring spontaneous attention, any potential bias
towards interactive scenes might obscured by the sheer variability in scene and cue-type.
Additionally, we contrasted social attention in interactive and non-interactive scenes using a
measure of attention to all human AOIs, regardless of whether they were interacting or not,
which may dilute any potential attentional bias to interactive, but not non-interactive,
individuals. In the following analyses, constrained to only interactive scenes, we investigate this
possibility by looking at attentional differences between interactive and non-interactive people
present in the same scenes.

Unexpectedly, more attention was given to non-interacting individuals compared to
interacting agents, a pattern that was opposite to our hypothesis. Additional exploratory analyses
suggested that this pattern of results may be the result of a holistic processing of interacting
agents where more attention is dedicated to the interpersonal space between interactive, but not
non-interactive, individuals. These results are in line with previous research showing a holistic
processing of interacting dyads compared to two non-interactive individuals (Papeo et al., 2019;
Papeo & Abassi, 2019; Walbrin & Koldewyn, 2019). However, these results must be treated with
caution as they were exploratory and, especially when investigated developmentally, lack
sufficient power. These exploratory results do, however, suggest the need for future studies to
investigate these processes in more controlled but naturalistic scenarios. Crucially, although

results in our developmental sample are underpowered, they suggest that interactive dyads may
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be processed holistically also in childhood, adding to a small but important literature looking at

social interaction processing in childhood (Stagg et al., 2014; Walbrin et al., 2020).

Part 2: Social attentional competition of social interactions across development

Aim

In this second set of analyses, we investigate how social interactions compete for
attentional resources when other social targets are in the scene, and explore developmental
changes in this attentional competition. Therefore, for this second aim, only the pictures
containing social interactions were considered. We first consider only data from the adult sample
(n = 98), then we proceed by investigating whether there are any developmental changes across
pre-adolescent childhood (n = 54) and finally consider whether and how these patterns differ

between children and adults.

Data analysis

The total of 26 interactive pictures — 11 depicting 4 people and 15 depicting 3 people,
were selected after the data screening procedures for part one were applied. Similarly to the first
part, we used a separate hierarchical model for each of the two measures — dwell time and time
to first fixation — and we analysed the data using multilevel modelling (nlme package (Pinheiro
et al., 2016)). In each model, at the highest level we modelled participant information, and,
within each participant the type of scene (depicting three or four people). The type of AOI
(interacting or not) was then nested within each scene at the 3" level, with the type of AOI
(interacting or not-interacting human) modelled at the 2" level, and the measure (dwell time or
time-to-first-fixation) was modelled at the first level, nested within each trial and participant.
Finally, pairwise comparisons were performed using post-hoc Tukey’s HSD using emmeans

package in R (Lenth et al., 2018).

a. Attentional competition of social interactions (adults)

Results
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Attentional engagement

The relationship between conditions and dwell time showed significant variance in
intercepts only across participants and number of people in the scene (SD = 66.90, y2(3) = 9.74,
p =.002).

Therefore, we set participant and number of people as random effects, and our fixed
effects were the number of people in the scene and the type of human (interacting or not
interacting).

We found that dwell time was significantly longer for the three people pictures (M =
637.67, SD = 474.57) compared to the four people pictures (M = 523.18, SD = 357.44); F(1,97)
=91.08, p <.001, nzpz 48. As expected, more time was spent looking at the interacting humans
(M =612.25, SD = 394.18) compared to the humans not involved in a social interaction (M =
566.30, SD = 466.93), F(1,4884)=15.02, p <.001, nzpz .003. Finally this attentional advantage
for interacting humans was not moderated by the number of people in the scene, F(1,4884) =
0.28, p = .60, n2p< .001 (Figure 9; see Supplementary materials n. S1, Table S1b for descriptive
statistics), although post-hoc comparisons show that this advantage was only statistically

significant in the three people pictures (#(4884) = 3.29, p = .004, d = 0.05) but not in the four
people pictures (#(4884) =2.12, p=.11,d =0.03).
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Figure 9. Violin plot for mean dwell time (ms) for interacting and non-interacting humans in

three and four people pictures. Error bars represent 95% confidence intervals.

Attentional capture

Time to first fixation was transformed (square root) to meet multilevel modelling
assumptions, but as the structure of model and the results did not change as a consequence of
transformation, we present the untransformed data for ease of understanding (see Supplementary
materials n. S5 — 5b for transformed data).

The measure of attentional capture showed variance at participant, scene and AOI level,
(SD =209.07, x%(3) = 143.96, p < .001). Our fixed effects were therefore, as for the dwelling
time, number of people in the scene and type of human AOI — i.e., interacting or not-interacting.
We found that speed of orienting to the scenes containing 3 (M = 1012.86, SD = 973.27) or 4
people (M =1014.61, SD = 906.44) was not significantly different (#(1,97) = 0.004, p = .95, nzp

<.001). However, as predicted, participants were significantly faster to orient to the humans
involved in a social interaction (M = 819.75, SD = 799.51) compared to not interacting humans

(M =1229.43, SD = 1043.18), F(1,194) = 226.39, p <.001, n?. = .54. Additionally, this effect
p ) y

was different for the two types of pictures, F(1, 194) = 35.45, p <.001, nzp =.15. In particular,
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the difference in capture by interacting (M = 761.44, SD = 772.39) versus non-interacting
humans (M = 1312.54, SD = 1095.81), was stronger for the three-people pictures, #194) = -
15.27, p <.001, d = - 1.10, while it was milder for the four-people pictures (interacting human:
M =903.94, SD = 830.32; non-interacting human: M = 1127.11, SD = 965.27), {(194) =-5.36, p
<.001, d =-0.39) (Figure 10).
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Figure 10. Violin plot for mean time to first fixation (ms) for interacting and non-interacting

humans in three and four people pictures. Error bars represent 95% confidence intervals.

b. Attentional competition of social interactions in pre-adolescent childhood

In this section, for both measures, age was modelled as a continuous predictor, while

number of people in the scene and type of human were the between-subjects predictors.

Results

Attentional engagement



113

Dwelling time data was transformed (square root) to meet multilevel modelling
assumptions (see Supplementary materials n. S5 — 5c for details), but since the results did not
change after the transformation, we present here the untransformed data.

The relationship between conditions and dwell time showed significant variance in
intercepts across participants, number of people in the scene and type of human AOI (SD =
82.37, x2(3) =4.36, p = .04).

In the model that included age, number of people in the scene and type of human
(interacting or not interacting) we found that age had no effect on the dwelling time to these

scenes, F(1,52) =0.00, p = .99, n2p= .00, and did not interact significantly with the type of scene
(F(1,52)=0.05,p = .83, n2p< .001) or with the type of AOI (F(1,104) =0.01, p = .94, n2p<
.001.

As was true for adults, children’s dwell time was significantly longer for the three people

pictures (M = 616.63, SD = 603.21) compared to the four people pictures (M = 498.24, SD =
453.05), a main effect of number of people F(1,52) =32.37, p <.001, n2p= .38. Similarly, more

time was spent looking at the interacting humans (M = 630.45, SD = 513.73) compared to the
humans not involved in a social interaction (M = 501.93, SD = 572.08), main effect of AOI,
F(1,104) =39.07, p <.001, n2p= .27. Unlike for adults, this effect was moderated by the number
of people in the scene F(1,104) =8.12, p = .01, n2p= .07 (Figure 11). Indeed, only the three
people pictures showed a significant difference in dwell time between interacting humans (M =
706.13, SD = 532.87) and non-interactors (M = 527.12, SD = 654.38), #(104) = 6.60, p <.001, d
= 0.65. While children attended more to interactors than non-interactors numerically in the 4-

people scenes, this difference was not significant (interacting: M = 528.50, SD = 468.23; non-
interacting: M = 467.98, SD = 435.65; (104) =1.93, p=.21,d=0.19).
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Figure 11. Violin plot for mean dwell time (ms) for interacting and non-interacting humans in

three and four people pictures. Error bars represent 95% confidence intervals.

Interestingly, age also further moderated this relationship, F(1,104) = 7.64, p = .01, n2p=
.07 (Figure 12) with a constant advantage to the interacting humans in both types of pictures

until 11 years of age.
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Figure 12. Mean dwell time (ms) for interacting and non-interacting humans in three and four

people pictures across childhood years. Width of bands represent 95% confidence intervals.
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Attentional capture

Time to first fixation was transformed (logarithm in base 10) to meet multilevel
modelling assumptions, but as the model and the results did not change as a consequence of the
transformation, we present the untransformed data (see Supplementary materials n. S5 — 5d for
transformed data).

The measure of attentional capture showed variance at participant, scene, and AOI level,
(SD =177.93, x%(3) = 8.72, p = .003). The model included age as a continuous predictor and
number of people in the scene and type of human AOI —i.e., interacting or not-interacting — as
categorical predictors.

Developmental increase in the speed of orienting to the scenes reached a trend level — age

main effect (F(1,52) = 3.67, p = .06, nzp =.07). Additionally age did not interact significantly
with the type of scene (not significant interaction F(1,52) =0.20, p = .66, nzpz .004) or with the
type of AOI (F(1,104) = 0.28, p = .60, nzpz .003).

Participants were equally fast to orient to the pictures depicting 3 (M = 1034.77, SD =
1032.84) or 4 people (M = 1068, SD = 1020.43), (F(1,52) = 0.66, p = .42, nzp =.01), but within

the scenes, as expected, children were on average faster to look at the interacting humans (M =
882.45, SD = 911.41) than the non-interactors (M = 1251.97, SD = 1120.01), F(1,104)=73.57,p
<.001, nzp = 41. Finally, this effect was different for the two types of pictures, F(1, 104) =

23.12, p <.001, nzp = .18. In particular, the difference in capture by interacting (M = 801.71, SD
= 834.77) versus non-interacting humans (M = 1355.23, SD = 1183.20), was seen only in the
three-people pictures, #104) =-9.59, p <.001, d = -0.94, while there was no significant

difference in the four-people pictures (interacting human: M = 1000.15, SD = 1002.07; non-
interacting human: M = 1138.38, SD = 1035.49), (104) =-2.14, p = .13, d =-0.21) (Figure 13).



116

*kk
5000 1 —
o 40001
E
=
.-
‘é 3000 1 AOI
f I Interacting human
w . -
& 2000 Non interacting human
e
()
E
™ 1000 1
04
3 4
Number of people

Figure 13. Violin plot for mean time to first fixation (ms) for interacting and non-interacting

humans in three and four people pictures. Error bars represent 95% confidence intervals.

The three way interaction between age, number of people in the scene, and type of human

did not improve the model fit and was not significant, F(1,104) = 0.001, p = .98, n2p< .001

(Figure 14), suggesting this advantage in capture by interacting humans was constant across
childhood.
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Figure 14. Mean time to first fixation (ms) for interacting and non-interacting humans in three
and four people pictures across childhood years. Width of bands represent 95% confidence

intervals.

c. Developmental changes in the attentional competition of social interactions

In this section, for both measures, age was modelled as a categorical predictor — children
vs adults — while number of people in the scene and type of human were the between subjects

predictors.

Results

Attentional engagement

Dwell time data was transformed (square root) to meet multilevel modelling assumptions
(see Supplementary materials n. S5 — Se for details). Dwelling time showed variance at
participant, scene and AOI level, (SD = 1.65, x?(3) = 16.01, p <.001).

General attentional engagement with the scenes was significantly shorter for children (M
=20.07, SD = 12.76) compared to the adults (M =21.91, SD = 10.44), (F(1,150) =24.20, p <
001, nzp =.14), and this was true for both types of scenes, F(1,150) = 0.18, p = .67, nzp =.001.
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Additionally more attention was given to the pictures depicting 3 people (M = 22.04, SD =
12.03) compared to the four people pictures (M = 20.24, SD = 10.23), F(1,150) = 50.33,p <
.001, nzp = .25, and this was similar for the two groups.

Unsurprisingly, in general more attention was given to the humans included in a social
interaction (M = 22.73, SD = 10.09) compared to the independent humans (M = 19.82, SD =
12.29), F(1,7492) = 135.79, p <.001, nzp =.02. This was moderated by age, F(1,7492) = 18.16,

p <.001, nzp =.002. Unpacking this interaction revealed that although both groups show a

strong attentional priority to interacting humans (children: interacting human: M = 22.27, SD =
11.60; non-interacting human: M = 17.91, SD = 0.31; #(7492) =9.33 , p <.001, d = 0.11; adults
- interacting human: M = 22.98, SD = 9.18; non-interacting human: M = 20.85, SD = 11.47,
#(7492) = 6.33, p <.001, d = 0.07)), adults actually attended more to non-interacting humans
than children did, #150) = 6.13, p <.001, d = 0.50. There was, however, no significant
difference between groups attention to interacting humans (#150) = 1.75, p = .29, d = 0.14)
(Figure 15).
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Figure 15. Violin plot for transformed mean dwell time (ms) in the two age-groups, for

interacting and non-interacting humans. Error bars represent 95% confidence intervals.
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This attentional advantage was also different depending on the number of people in the

scene, F(1,7492) =36.26, p <.001, nzp = .01, with less attention to the interacting humans in the

four people pictures (M = 20.82, SD = 10.20) compared to the three-people pictures (M = 24.14,
SD =9.78), t(150)=-9.38, p <.001, d = -0.77) but no difference in the attention given to the
non-interacting humans (3 people pictures: M = 19.94, SD = 13.60; 4 people pictures: M =
19.66, SD = 10.23), 1(150) =-0.004 , p = 1.0, d < 0.001). However, while the difference between
attention to interactive and non-interactive humans is smaller in the 4-person scenes, the pattern
is similar (i.e., more attention to interactors and non-interactors) and when collapsing across
children and adults, there is a significant difference for both 3-people (#7492) = 13.73, p <.001,
d = 0.04), and 4-people scenes, #7492) = 3.05, p = .01, d = 0.04.

However, this effect was different between age-groups, F(1,7492) = 36.26, p <.001, nzp

=.001 (Figure 16; see Supplementary materials n. S5 — 5Se for descriptive statistics of
transformed and untransformed data). Indeed while there are no developmental differences in the
attention given to the interactors in either three person (#(150) = 0.24 , p = 1.0, d = 0.02) or 4-
person scenes (#(150) =2.35, p=.16,d = 0.19), children pay less attention than adults to non-
interactors in the 3-person scenes (#(150) = 6.67, p <.001, d = 0.54), an effect that is smaller in
the 4-person scenes (#(150) =3.05, p =.03, d = 0.25). Additionally, when looking at the two age
groups separately, neither children (#7492) =2.24 , p = .19, d = 0.03) nor adults (#(7492) =2.11
,p=".24,d = 0.02) show significant attentional priority in the 4 people pictures, while both do in
the three people pictures (children: (7492) = 11.69 , p <.001, d = 0.14; adults: (7492) =7.26 ,p
<.001, d = 0.08).
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Figure 16. Violin plot for transformed mean dwell time (ms) in the two age-groups, for
interacting and non-interacting humans in three and four people pictures. Error bars represent

95% confidence intervals.

Attentional capture

Time to first fixation was transformed (logarithm in base 10) to meet multilevel
modelling assumptions, but as the model and the results did not change as a consequence of the
transformation, we present the untransformed data (see Supplementary materials S5 — 5f for
details on transformation and model details with transformed data). The measure of attentional
capture showed variance at participant, scene and AOI level, (SD =201.1, xy?(3) = 54.72, p <
.001).

After setting participant, condition and AOI as random effects, the fixed effects were the
same as in the dwell-time analysis and included number of people in the scene and type of
human AOI —i.e., interacting or not-interacting.

General speed of orienting to the scenes was statistically similar for children (M =

1049.33, SD = 1027.32) and adults (M = 1013.61, SD = 945.17), (F(1,150) = 2.13, p = .15, nzp =

.01) and the type of scene had no effect on the time to first fixation — F(1,150) = 0.27, p = .60,
nzp =.002 — with similar time taken to orient to the scenes depicting 3 (M =1019.96, SD=
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992.89) and 4 (M = 1032.42, SD = 946.15) people, which was similar for the two groups,
F(1,150)= 0.16, p = .69, nzp =.001.

Both groups showed an advantage for interacting individuals in attentional capture (M =
840.88, SD = 839.30) compared to the non-interacting individuals (M = 1236.60, SD = 1068.08),
F(1,300)=295.37, p <.001, n2p= .50, and this was not moderated by age, F(1, 300) =0.70, p =
40, n2p= .002. This effect did, however, vary with the number of people in the scene, F(1, 300)

=58.54, p <.001, nzpz .16) where the difference in time-to-first-fixation between interacting

humans and non-interactors was larger for the three people pictures (interacting humans: M =
775.05, SD = 794.06; non-interacting humans: M = 1325.64, SD = 1123.17; #(300) = -16.78, p <
.001, d =- 0.97) than for the four people pictures (interacting humans: M = 936.25, SD = 892.51;
non-interacting humans: M = 1130.84, SD = 988.74; 1(300) = -4.86, p < .001, d = - 0.28) (Figure
17).
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Figure 17. Violin plot for untransformed mean time to first fixation (ms) for interacting and
non-interacting humans in three and four people pictures. Error bars represent 95% confidence

intervals.

Finally, the three-way interaction between age, number of people in the scene and type of

human did not improve the model fit and was not significant, F(1,300) = 0.77, p = .38, nzp =
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.003 (Figure 18; see Supplementary materials n. S1 — 1¢ for descriptive statistics). Despite this,
planned post-hoc comparisons show that while both groups show an attentional advantage for
interacting individuals in the three people pictures (children: #300) =-10.2, p <.001, d =- 0.59;
adults: #(300) =-14.79, p <.001, d = - 0.85), only adults showed this effect in the four people
pictures as well (children: #300) =-2.28, p = .18, d = - 0.13; adults: #(300) =-5.2, p <.001,d = -
0.30).
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Figure 18. Violin plot for untransformed mean time to first fixation (ms) in the two age-groups,
for interacting and non-interacting humans in three and four people pictures. Error bars represent

95% confidence intervals.

Exploratory analyses
However, for consistency, given that in part 1 we also considered the size of the AOIs
across conditions to verify our effects, we decided to do the same here (see Supplementary
materials n. S3 — 3d for details on the size of the human AOIs in the 3 and 4 people pictures).
Since in the three people pictures the interacting humans seem to show much variability
and potentially drive the effects of attentional priority seen in part 2, we decided to re-run the
developmental analyses for dwelling time (Supplementary materials S2 — 2d) and time to first

fixation (Supplementary materials S2 — 2¢) without 3 of the pictures depicting three people
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where the interacting humans were much greater in average size than the non-interacting human.
These analyses show that nothing changes in the effects, lending strength to the idea that this
attentional priority did not depend on the size of the interacting AOIs compared to the non-

interacting.

General discussion and conclusions

In this work we reconfirm a strong attentional bias to human information in complex
scenes in adults and children, but find little indication of developmental changes to social
information, nor age-related differences in the influence of social interactions when comparing
scenes containing social interactions with scene that contain only independent agents. Crucially,
when social interactions have to compete for attentional resources with other social target in the
same scene, they capture attention first and engage it for longer in both groups, although this
effect is smaller in children and is reduced as the number of social targets increases. Exploratory
analyses suggest some evidence that interactions might be perceived/processed as a single
unit/gestalt, a mechanism that may not be fully developed in childhood.

This research first of all extends the literature on social orienting literature (Birmingham
et al., 2008; Doherty et al., 2017, 2019; Sue Fletcher-Watson et al., 2008; Rosler et al., 2017;
Stagg et al., 2014) by showing that pre-adolescent children and adults are extremely similar in
the way they orient to and engage with social information, even in complex naturalistic scenes
with multiple social targets. This work also largely supports prior work showing an attentional
advantage for interacting dyads (Papeo et al., 2019; Skripkauskaite et al., n.d.; Stagg et al., 2014;
Vestner et al., 2020), although this advantage is more clearly demonstrated in multi-person
scenes when interactive information is in direct competition is other social information. Indeed,
both groups manifest an apparent lack of sensitivity to the presence of a social interaction when
scenes that contain a social interaction are compared to scenes depicting only independent
agents, congruent with some prior findings (Birmingham et al., 2008). Follow-up exploratory
analyses, however, suggest that this insensitivity to interactive content might be explained at
least partially by holistic processing of interacting dyads, where interacting agents are processed
and scanned together, while independent humans must be attended to, and processed, separately.

Although these exploratory results must be interpreted cautiously and will need to be replicated,
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they are coherent with prior studies showing that interactions are processed holistically and as
‘more than the sum of their parts’ (Ding et al., 2017; Papeo, 2020; Walbrin & Koldewyn, 2019).
Importantly, exploratory analyses suggest similar processes for both children and adults,
although these results are underpowered.

As for attentional engagement, it would seem that social interactions’ ability to hold
attention weakens with the addition of other targets in the scene (i.e. pattern seen in the 4 people
pictures). This attentional priority is in line with the stream of research showing attentional
advantages of social interactions (Papeo et al., 2017, 2019; Vestner et al., 2019; Villani et al.,
2015). Moreover, we add novel findings by showing a similar pattern in pre-adolescent
childhood. Indeed, also 6-12 years old children give attentional priority to social interactions in a
constant trend across childhood, by showing capture and engagement of attention when one other
socially relevant target is in the scene. When the competitors are two, it would seem that
children’s attentional capture is not sensitive enough to show this interaction advantage as in
adults. There has been very little research on the developmental changes of processing of social
interactions (Augusti et al., 2010; Hamlin et al., 2007; Handl et al., 2013; Stagg et al., 2014;
Walbrin et al., 2020) and our findings extend greatly these investigations. Additionally, Stagg et
al. (2014) found a preference of children of 9 years of age in looking at two facing figures when
presented together with two non-facing figures, while we don’t find such effect in the four
people pictures. This might be because our stimuli are much more complex and naturalistic,
suggesting that clutter in the scene makes this interaction bias harder to break through
attentionally in childhood. Future studies should investigate the role of social interactions for
attention when visual perception resources are reduced. Interestingly, some research might
suggest this effect could be driven by an attentional “hot-spot” facing dyads create (Vestner et
al., 2020) but our naturalistic displays are too various and heterogeneous in the structure of the
interactions — i.e. often the interacting agents don’t even face each other or are also far away
from each other — to drive this attentional priority effect.

It is surprising, and contrary to our original hypotheses, that we find so little difference
between children and adults in how they allocate spontaneous attention to these complex multi-
person scenes. Indeed, we know from prior work that social attention is not fully ‘adult-like’ in
pre-adolescent childhood (Amso & Scerif, 2015) and that regions of the ‘social brain’ that
support the perception of social interactions are not yet fully tuned (Mills et al., 2014; Sapey-
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Triomphe et al., 2017; Walbrin et al., 2020). Social interactions seem to override these early
developmental features, and are given priority even in childhood, manifested by capturing and
holding attention even when the scene is complex and cluttered. This suggests a hierarchy of
social information, where a single individual has attentional priority over objects and background
elements but less priority than a social interaction between two individuals. That attention to
social interactions is already ‘adult-like’ in middle childhood lends strength again to the idea that
social interactions play a fundamental role early in life, even when attentional tools are not fully
developed. Indeed social learning, predicting others’ behaviours and decisions, impression
formation, emotional recognition and social decisions all rely heavily on the ability to orient to
and attentionally select social cues, and perhaps particularly interactive cues, from noisy
environment (Quadflieg & Koldewyn, 2017; Quadflieg & Penton-Voak, 2017; Quadflieg &
Westmoreland, 2019; Skinner et al., 2017). It is important, however, to note that our task here
captures spontaneous attention rather than goal or task-directed attention. Differences between
children and adults in social attention to social interactions may emerge in the context of
attentional tasks or when attentional resources are taxed.

We did see developmental differences between children and adults in two areas. First,
children appeared to pay more attention to background information compared to the adults,
potentially reflecting either the need for more contextual information to process complex scenes,
or a less developed executive control system (Amso & Scerif, 2015; Federico et al., 2017). It
could, however, also reflect children’s natural viewing behaviour (Ag¢ik et al., 2010), where
children are more likely to explore all of a scene than are adults. The overall slower orientation
to scenes in children and the greater attention to background compared to adults may suggest
weaker attentional control. Similarly, Stoesz et al. (2014) showed that when multiple elements
were added to the scene or motion was included, children showed a pattern of disengaging
attention from relevant but potentially too complex elements of the scene, by for example
looking off screen more often for more complex stimuli. Additionally, later stages of social
attention might be influenced by factors like ‘top-down’ social knowledge about the ‘usual’
configuration of social scenarios, which are likely not fully developed in childhood. This might
indicate that more attentional resources need to develop to be able to cope with all the social

information in the four people pictures. Future studies could investigate the role of social
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knowledge in parsing complex social scenes, as well as how the influence of such knowledge on
social attentional orienting changes across development.

There are a few limits to the current research that need consideration. In the first place
our developmental sample would benefit from a greater size — for example completing the
sample originally planned for in our a priori power analyses. Therefore, the developmental
findings should be interpreted with caution. Additionally, the analyses investigating attentional
competition in the 4-person scenes is relies on eye-gaze data form only 11 scenes. Thus, the
different findings from 3-person and 4-person scenes will require replication. Future
investigations into mechanisms of social attention to social interactions in such competitive
situations should consider increasing the number of stimuli, especially if using a diversity of
contexts and environments, as we have here. Finally, future studies should consider more
carefully the relative size of AOIs when designing experiments looking at attentional capture by

social information, especially when using naturalistic complex scenarios.
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Chapter 5. Development of attention to ambiguous social scenes and the role

of social knowledge

Abstract

Human attention supports exploration of complex and noisy environments through
facilitating the processing of important elements and filtering out distractors. Starting in the very
first hours of life, humans display an attentional preference for social information. The
attentional prioritisation of social information has been shown to be automatic in nature, but can
be moderated by top-down knowledge that contributes to the interpretation and prioritization of
what is being observed. The influence of top-down knowledge is especially apparent when
scenes are noisy and ambiguous. Despite this, we don’t yet know how social attention to compex
scenes is influenced by ambiguous information during childhood. One source of top-down social
knowledge for parsing complex scenes is people’s understanding of the usual ‘characteristics’
that identify when individuals are engaged in a social interaction. Understanding the influence of
such knowledge is important because not only are social interactions a ubiquitous feature of
social scenes but prior research suggests an attentional preference for social interactions that is
similar for children and adults. However, research has not yet looked into how the interplay
between social knowledge and the perception of social interactions can influence attentional
orienting. In this study we recorded the eye movements of 73 adults and 54 children in a free
viewing experiment. Ambiguous naturalistic scenes depicted a dyad that could either be
interpreted as interacting or not. After the eye-tracking session, participants indicated whether
they had perceived each scene as interactive or not. Here, we aimed to investigate developmental
changes in the way top-down information about social events (e.g., what a social interaction
usually looks like) might influence social attention. Areas of interest (AOIs) were divided
between “social” (entire human figures in the scene) and “non-social” (all other elements). We
show that adults show a stronger bias to interpret ambiguous scenes as interactive compared to
children, but that this categorisation had no influence on attention to social information in the
scenes. We show a general attentional social bias in engagement and capture in both groups,

across scenes but whether a scene was seen as interactive or not did not change how attention
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was allocated for either children or adults. Implications for social attention and the development

of social knowledge are discussed.

Introduction

As social animals, human beings are constantly immersed in complex social information,
and must learn to make decisions and predictions based on social cues. To do so, we must be
able to quickly and readily detect, extract, and understand the most relevant social cues, even
when they are embedded in complex scenes. We have thus developed cognitive systems since
early in life that are well tuned for such processes and their reflexive — i.e. automatic — nature is
well established (e.g. Flechsenhar & Gamer, 2017; Rosler et al., 2017). Additionally, these
automatic processes that select and process social information are in constant communication
with ‘higher-order’ processes that inform our social beliefs, knowledge and behaviour. Our
knowledge and beliefs about people and social contexts then feeds back to guide our perceptual
and voluntary attentional systems (Collins & Olson, 2014; Dolan et al., 1997; Wiese et al.,
2012). In the real world, the information surrounding us is most often noisy and ambiguous so
that we often need to use our knowledge to disambiguate social situations. One excellent source
of knowledge about complex social scenes that can guide our understanding are the social
interactions that we have observed across our lives. Indeed, social interactions seem to carry
unique value for social learning across development, informing action prediction, social decision
making, and more general social scene understanding (Quadflieg & Westmoreland, 2019). At the
same time, recent evidence suggests that our attention is captured and held by social interactions
(Papeo et al., 2019; Skripkauskaite et al., n.d.; Stagg et al., 2014; Vestner et al., 2019).
Additionally, as seen in chapter 3 of this work, this effect holds strongly also in complex
naturalistic scenes. Yet, despite these attentional effects and the demonstrated value of social
interactions in building social context knowledge (Quadflieg & Westmoreland, 2019), most of
what we know about the interplay between reflexive attentional mechanisms and higher order
knowledge in social attention comes from depictions of single agents and mostly through the
study of adult populations.

Much prior research has shown that human attention is strongly tuned to social information

both when individuals are presented individually and in naturalistic, cluttered scenes. Adult
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viewers show a strong social attentional bias as indicated by more time spent looking at faces,
bodies, and whole human figures in a variety of attentional tasks (Bindemann et al., 2010;
Birmingham et al., 2009a; Doherty et al., 2017; Sue Fletcher-Watson et al., 2008). Findings from
developmental work are heterogeneous, but despite mostly focusing on infants (Bertenthal &
Boyer, 2015), developmental work generally supports the idea of a similar social preference
being present also in childhood (Soto-Icaza et al., 2015; Van Der Geest et al., 2002) and even
from the very start of life (Bertenthal & Boyer, 2015; Reynolds & Roth, 2018; Taylor et al.,
2004). Despite this, depending on the stimuli and the experimental paradigm, children are either
more sensitive than adults to social information (Doherty et al., 2019), show a weaker attentional
preference for social stimuli than do adults, or show a mild developmental increase in such
preferences across childhood and adolescence (Amso et al., 2014). However, this body of
research has mostly focused on attention to isolated humans, and has not yet looked at the
influence of more complex social information, such as social interactions, which can provide a
much richer source of social information.

Indeed, recent and ongoing research suggests the human visual system may be tuned to
social interactions across a variety of experimental designs (Papeo, 2020; Quadflieg &
Koldewyn, 2017; Quadflieg & Penton-Voak, 2017). Regions in the human brain also appear to
be strongly sensitive to interactive content, as opposed to simply human information, across
several stimulus types (e.g. Walbrin & Koldewyn, 2019), and this is true for both adults and
children, although regions sensitive to interactive information are not fully ‘tuned’ until
adulthood (Sapey-Triomphe et al., 2017; Walbrin et al., 2020). Attention research has shown a
search advantage for facing dyads compared to non-facing agents (Papeo et al., 2019; Vestner et
al., 2020), and in naturalistic scenes, interacting humans to hold attention for longer compared to
non-interacting agents (Skripkauskaite et al., n.d.; Stagg et al., 2014; Villani et al., 2015). How
such ‘tuning’ takes place across development, however, is not yet clear as very little research has
looked at the perception of social interactions in childhood or adolescence, although many
studies have used interacting dyads to look at other research questions (e.g., Chevallier et al.,
2015; Riby & Hancock, 2008; Stoesz & Jakobson, 2014). One relevant study does, however,
suggest that the preference for attending to interacting dyads is also present in childhood, relative
to non-facing agents (Stagg et al., 2014). Similarly, we also know that as early as 5 years of age,

children are able to learn and draw social inferences from third party encounters (Brey & Shutts,
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2015; Over & Carpenter, 2015; Skinner et al., 2017), indicating that even young children
naturally attend to and are able to parse observed social interactions. That social interactions are
preferentially attended to and readily understood by even young children lends strength to the
proposal that social interactions have biological and evolutionary value, as containing a great
deal of unique information to supports processes that are important in social species like social
learning and social discrimination (i.e., choosing social partners) across development (Over &
Carpenter, 2015; Quadflieg & Penton-Voak, 2017; Quadflieg & Westmoreland, 2019; Skinner et
al., 2017).

Another crucial aspect of the human attentional bias is that research has shown that it
might be purely reflexive and automatic in nature as well as being relatively independent of low-
level features of the stimulus (Birmingham et al., 2009a; End & Gamer, 2017; Langton et al.,
2000; Ristic & Kingstone, 2005; Rosler et al., 2017). Whether the ‘social bias’ is purely
automatic is still, however, a matter of debate. Indeed, research suggests that while this bias does
not appear to be sensitive to the kind of task that participants are performing (Doherty et al.,
2017; Flechsenhar & Gamer, 2017) top-down processes such as beliefs and knowledge about
what the viewer is seeing are able to modulate both perception and the details of automatic social
orienting. Indeed, feature attribution to the same ambiguous stimulus — namely thinking the
stimulus is a car with wheels vs. a face with eyes — can influence social orienting, by inducing a
face-like cuing effect only when the stimulus is thought to be a face (Ristic & Kingstone, 2005).
Similarly, this kind of attentional cuing effect was found to be strongest when the viewed stimuli
— a face or a robot — were thought to have intentionality compared to just being inanimate (Wiese
et al., 2012). Finally, the modulation of perception by top-down knowledge can go so far as
enhancing the response of category-specific brain structures after participants learn new visual
information that helps identify initially meaningless stimuli (Dolan et al., 1997). Together, this
research suggests an interesting interplay between bottom-up automatic processes and top-down
knowledge so that visual attention and visual perception can operate together to evaluate the
social and biological relevance of the attended stimulus.

Crucially, although the social value and the attention-driving qualities of interactive
information have both been demonstrated, the interplay between automatic social orienting and
top-down ‘knowledge’ modulation has not been investigated in complex scenes that include

possible social interactions. Additionally, it is unknown how, and how early these processes start
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operating, therefore investigating them across development appears crucial. Indeed, we know
that social understanding develops since early in life (Soto-Icaza et al., 2015) and in Chapter 3
we have seen that children are similar to adults in the way their attention is preferentially
captured and engaged by social interactions, but it is not known how and when social knowledge
extends to more complex information like social interactions nor its relationship with visual
attention.

In this study we ask whether pre-existing top-down knowledge and consequent
interpretation of a human dyad can modulate orienting of attention in complex scenes. In other
words, if participants see a scene as containing a social interaction, will that change how they
attend to the social information in the scene compared to how they would have attended to the
same scene if it did not depict a social interaction? Can knowledge and the way visual
information is interpreted activate interaction specific social orienting by increasing attentional
capture and engagement to humans that are perceived as interacting compared to when they are
not (Skripkauskaite et al., n.d.)? The answer to these questions could have fundamental
implications not only for the way our social-cognitive system works, but would also highlight the
importance of understanding how social knowledge and social exposure refine and tune social
attention across development.

Thus, the aim of this work was to 1. Investigate attention to socially ambiguous scenes, and
assess whether pre-existing top-down knowledge and beliefs about a social scene can modulate
social orienting- 2. Explore whether children and adults interpret ambiguous scenes similarly as
well as how this interpretation influences social attentional orienting in ambiguous scenes across
development.

In Experiment 1, we investigated whether considering a picture as interactive or not
influences social orienting in adults, then investigated the same phenomenon in children aged 6
to 12 years to explore developmental changes in Experiment 2, and finally we investigate
possible differences between children and adults. For both groups, we expected that categorising
pictures as interactive would moderate social orienting, resulting in more attention to social
information in the scenes categorized as interactive compared to the ones considered to be non-
interactive (Skripkauskaite et al., n.d.). Additionally, while we have shown in chapter 3 that
children are very similar to adults in the way they engage and orient attention to social

interactions, those scenes were chosen to be unambiguous and were based on adult judgments,
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therefore we don’t know whether children deal with social ambiguity in the same way. We
expected developmental differences in the way the scenes are interpreted and expected children

would categorise fewer scenes as interactive compared to adults.

General methods

Both studies pre-registered on AsPredicted and power analyses were performed in G
power (Erdfelder et al., 2009; Faul et al., 2007) meant to reach 80% of power (a <.05) and to
detect a large effect size (Cohen’s = .40) of social categorization and AOI on participants’

attention. All participants had normal or corrected-to-normal vision.

Stimuli & apparatus

All stimuli were selected from an on-line open database (SUN database, Xiao et al.,
2010). We chose the pictures to represent various ordinary life contexts (e.g. schools, shops,
markets), to be as emotionally neutral as possible, and to depict two people either having a social
interaction or not — i.e., involved in independent actions. The initial stimulus set included 127
pictures, and they were rated by 26 naive participants for the level of “interactiveness” on a
Likert scale from 1 (“non-interactive at all”) to 7 (“very interactive”). The 30 pictures that were
most ‘in the middle’ in the ratings were selected for this study (cfr. Skripkauskaite et al., n.d.) as
raters were not able to categorise them as clearly interactive or non-interactive. Mean
interactiveness scores were between 2.92 and 4.08 (M = 3.59, SD = 0.45) (see “Materials”
section in General Methods chapter for details; Appendix B3 for full set of stimuli).

Each picture was pre-processed with Photoshop (version CC 2019) where it was
neutralized to remove colour cast (“adjustments — match color — neutralize color”), automatically
matched for colour with a picture sample and finally, sharpened (“filter — sharpen”).

The scenes were presented on a grey background, using Psychopy 2 (Peirce et al., 2019), on a

380 x 215 mm (1920 x 1080 px) screen. Each stimulus had a size of 860 x 860 pixels (13.6° x

13.6° visual angle) and was presented with the margin closest to the centre either shifted to the
left or right from the fixation cross by 60 pixels (0.85° visual angle) so that participants had to
move their eyes from the central fixation in order to view the picture. All data were collected

with an EyeLink Portable Duo Tracker (EyeLink x, SR Research, Ontario, Canada) with remote
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binocular set up at a 1000hz sampling rate. Data were collected from both eyes, but only data
from one eye was used for the analysis. We choose each participant’s ‘best’ eye by looking at the

calibration accuracy.

Procedure

Each participant sat comfortably on a stable, still chair at 80 cm from the screen and
freely viewed 142 pictures: 30 pictures were part of this experiment, while the other 112 pictures
belonged to two other experiments and will not be further discussed here. However, all pictures
were emotionally neutral, naturalistic scenes that all contained between 2 and 4 human figures.
All stimuli were fully randomized to ensure a different presentation order for each participant,
and presentation side for individual pictures was counterbalanced across the sample.

Participants were asked to keep their attention on the screen and freely view each picture
for 5 seconds with no other specific request, except to return their gaze to the central fixation
cross between trials in order to move to the next picture. After participants had viewed all the
stimuli and taken a short break, they were shown a physical copy of each of the 30 ‘ambiguous’
pictures in this experiment, and were asked to categorize them into two separate piles by
answering the question “Are the people in the scene having a social interaction or not?”. How
each scene was categorized by each participant was then recorded by the experimenter. Before
the free viewing session started, a 13-point calibration procedure was carried out for each

participant.

Data preparation

We created hand-drawn areas of interest (AOIs) for each picture using the “freehand”
option in Eyelink Data Viewer (SR Research, 2013): one social AOI that included all visible
parts of the two humans in the scene, and one non-social AOI that including everything else in
the scene excluding the human AOI (i.e., all background elements and all objects).

Dwelling time, which for our purposes included both fixations and saccades, measured
the time spent looking at each AOI in milliseconds (ms) and was extracted as a measure of
attentional engagement with social and non-social information in the scene. Attentional capture

was measured through the time to first fixation for each AOI, defined as the time in milliseconds
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that the eye took to look at a specific AOI for the first time in each scene (i.e., how long before a
participant looks at the social vs. the non-social information).

For each participant and for each picture, we therefore had two measures of engagement
and two of capture, divided by attention to social vs. non-social information as well as the post-
hoc judgment of the stimulus by each participant as interactive or non-interactive.

Unless stated otherwise, time to first fixation data in all 3 parts of the analysis were
transformed (logarithm in base 10) to meet multilevel modelling assumptions. In the manuscript
we present the untransformed data for ease of understanding, and details about all
transformations and the analyses using models to assess transformed data are included in the

Supplementary materials n. S2 (Appendix E).
Part 1 — Attention to ambiguous social scenes

Aim

The main goal of the first part of this work was to investigate the social bias in socially
ambiguous naturalistic scenes and the role of feature attribution — i.e. perceiving a scene as
depicting a social interaction or not — in moderating attentional orienting and engagement.
Besides re-confirming a social attentional bias — i.e. more attention to the social information
compared to the background — across all scenes, we expected that scenes later categorized as
interactive would show an increased attention to human information compared to when that same

scene was categorized as non-interactive (cfr. Skripkauskaite et al., n.d.).

Participants

The a priori power analysis indicated a sample of 70 adults (pre-registered on
AsPredicted: https://aspredicted.org/HB2 J6Y) (Appendix AS), calculated based on pilot dwell
time data showing increased attention to human figures in photographs judged as interactive by

independent judges (nzp =.68). We recruited 73 participants but data from two participants were

eliminated because they were out of our desired age-range (18-35) and one because of poor
tracking data quality due to sleepiness. The final sample thus consisted of 70 participants (M =
21.07, SD = 2.63, range = 18-35; 47 female and 1 other). All participants provided informed

consent and received either monetary compensation or university credit for their participation.


https://aspredicted.org/HB2_J6Y
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All procedures were approved by the ethical committee at Bangor University (ethics protocol

number: 2018-16360).

Procedure

Participants were instructed to freely explore the pictures, both through on-screen
visually-presented instructions and orally. Participants did not know that they would be asked to
categorise the pictures before viewing them and researchers did not mention interactive content,
simply stating that the pictures would be shown one at a time and that they should keep their
attention on the pictures. Before the presentation of each stimulus, the participant performed a
drift correction procedure, in which they had to fixate a calibration point at the centre of the
screen and then press the space bar to proceed to the next scene. These between-trial procedures
served to draw participants’ gaze back to the centre of the screen before the start of each trial.
The entirety of the eye-tracking procedure lasted around 20 minutes and consisted of 4 blocks of
35 trials each. Participants could take breaks between blocks and rest their eyes if necessary, and

another drift correction procedure was performed before each re-start.

Data analysis

Trials with less than 33% of total time of engagement with the stimulus were treated as
missing (S. Fletcher-Watson et al., 2009) — which including both off-screen time and missing
data because of poor signal or blinks. In the adult group, this produced the loss of 0.42 % trials,
which represents between 0 -2 trials per participant.

We specified separate models for dwelling time and time to first fixation. After assessing
the variance in the dataset, we analysed the data using multilevel modelling with a 2 x 2 structure
of predictors (nlme package (Pinheiro et al., 2016) in a hierarchical model. The model structure
was pre-registered as a four-level model, with participant information at the highest level, trial
information with the participants’ categorization (interacting or non-interacting) nested within
participant information at the 3" level, AOI type (human or background) at the second level, and
the dependent variable (dwell-time or time-to-first-fixation) at the first level. Despite this, the
model building procedure showed that participant’s scene categorization and participant
information were in fact not nested. In particular, categorization of the scene and participant

information were revealed to be at the same level, which is not surprising considering that every
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participant had their own categorization of any given scene as interacting or not. Therefore with
participant variance, the categorization scores also varied. Additionally, for each model we
added the size of the AOI as a random factor to account for variance in the size of AOIs across
pictures and the fact that the background AOI is always bigger in size than the human AOIs. We
then compared the originally planned model — a three-level model with participant information
at the highest level, AOI type at the second, and the dependent for each AOI at the first level,
nested within trial and participant — with the model including size as a random factor, and in
every case the two models were not statistically different (all p’s > .99). Post-hoc pairwise

comparisons were performed using Tukey’s HSD (emmeans package (Lenth et al., 2018)).

Results

Categorization results
On average adults categorized a higher proportion of scenes as interactive (M = 60.67, SD = 12.43)
compared to non-interactive (M = 38.90, SD = 12.21; #(69) = 7.4, p <.001, d = 0.89) (Figure 1).
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Figure 1. Average proportion of scenes categorized as interacting vs non-interacting. Error bars

represent 95% confidence intervals.

Attentional engagement

The model building procedure indicated that there was significant variance of intercepts
across participants and type of AOI — social or background — SD = 257.26, y%(2) = 185.21, p <
.001, and adding the area of the AOIs in pixels as a random effect did not alter the model
significantly from the above mentioned — SD = 843.41, ¥2(3) =0, p = .99. Therefore, in the final
model, participant, AOI and size of the AOI were set as random effects, and participant’s scene
categorization and the type of AOI were set as fixed effects.

Dwelling time was not significantly different for scenes categorized as interactive (M =
1802.10, SD = 887.53) compared to the ones categorized as non-interactive (M = 1790.33, SD =
876.14) —F(1,4040) = 0.09, p = .76, n2p< .001. As expected, more time was spent looking at the

human AOIs (M = 1864.05, SD = 890.47) compared to the background (M = 1730.95, SD =
870.63). In other words, there was a main effect of AOI, F(1,69)=7.29, p = .01, nzpz .07.

Finally, contrary to our prediction, this social attentional bias was not moderated by the type of
scene. In other words, scenes categorized as interactive (social: M = 1869.89, SD = 895.70;
background: M = 1734.31, SD = 874.39) were not attended to differently to those that were
categorised as non-interactive (social: M = 1854.93, SD = 882.72; background: M = 1725.73,
SD = 865.23) — F(1,4040) = 0.004, p = .95, n2p< .001 (Figure 2). Although the interaction

between categorization and type of AOI was not significant, we performed planned post-hoc
comparisons which did not reveal any difference between scene-types but instead show that
when the scenes are split by their categorization, the human bias weakens to trend levels in both
types of scenes (interacting: #69) = 2.45, p = .06, d = 0.30; non-interacting: #69) = 2.27, p = .08,
d=0.27).
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Figure 2. Violin plot for mean dwelling time (ms) to social and background AOIs in scenes

categorized as interacting and non-interacting. Error bars represent 95% confidence intervals.

Attentional capture

In the model for the time to first fixation (see Supplementary materials n. S2- 2a for
details on the log-transformation and the full analysis and results from transformed data),
participant and AOI showed significant variance of intercepts — SD = 202.72, x2(2) = 179.77, p
<.001, and adding area of the AOIs in pixels as a random effect did not change the model
significantly from the originally planned one — SD = 658.52, x2(3) =0, p = .99.

Participants were equally fast to orient to the scenes categorized as interactive (M =
655.74, SD = 708.57) as to the ones categorized as non-interactive (M = 653.77, SD = 660.38) —
F(1,3958) = 0.0001, p = .99, n2p< .001. As predicted, attentional capture was faster for the

human AOIs (M = 486.35, SD = 472.50) compared to the background (M = 827.24, SD =
822.26) characterised by a main effect of AOI, F(1,69) =152.54, p <.001, nzpz .69. As in the

dwell-time analysis, this social attentional bias was not moderated by the type of scene so that

scenes categorized as interactive (social: M = 484.10, SD = 472.94; background: M = 831.12,
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SD = 852.09) showed a similar social bias to those categorised as non-interacting (social: M =

489.87, SD = 472.06; background: M = 821.18, SD = 773.92); F(1,3958) = 0.07, p = .80, n? <

.001 (Figure 3).
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Figure 3. Violin plot for mean time to first fixation (ms) to social and background AOIs in
scenes categorized as interacting and non-interacting. Error bars represent 95% confidence

intervals.

Interim discussion

In this section we show that when asked to decide whether two people are having a social
interaction in a socially ambiguous scene, adults seem to be more likely to consider the scene as
interacting. Against our predictions, despite showing an attentional bias to social information in
both engagement and capture, this bias did not change depending on whether the viewer
considered the scene to be interactive or not. On one hand, this is not surprising because the

scenes are the same regardless of whether they are categorised as interactive or not. On the other
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hand, this result was contrary to our expectations because non-ambiguous interactive cues clearly
drive engagement and capture in prior work. One interpretation of this result is that top-down
semantic judgement about the scene might not modulate visual attention and that the visual
properties of the scene, including social objects and cues, primarily drive attention, particularly
during this kind of ‘free-exploration’ task. On the other hand, this result may reflect our choice to
measure “spontaneous” knowledge rather than openly manipulating interactive categorisation,
for example through priming procedures (Ristic & Kingstone, 2005; Wiese et al., 2012).
Interestingly, although we cannot directly compare the two, the social bias in attentional
engagement appears to be milder than that seen for less ambiguous scenes (cfr. Chapter 3) but
just as robust for capture. This indicates that participants’ attention was first strongly captured by
the human component of the scene, in line with previous social scenes research (Birmingham et
al., 2009a; Sue Fletcher-Watson et al., 2008) but perhaps, given the ambiguity of the scene, more
attention was then given to the background, resulting in a milder engagement bias. This suggests
that when the scene is harder to disambiguate or interactive information is less diagnostic, there

1s more need for contextual information to understand the scene.

Part 2 — Attention to ambiguous social scenes in pre-adolescent childhood

Participants

Our a priori power analysis (pre-registered on AsPredicted:

https://aspredicted.org/L.9K_KRS) (Appendix AS) for the developmental group indicated a

sample of 90 children and teenagers between 6 and 18 years to have enough power to detect a
three-way interaction, and pre-registered the intention to stop data collection at 90 participants or
by the 315 December 2020. Unfortunately, we were forced to interrupt data collection due to the
COVID-19 pandemic and were unable to resume data collection before the end of 2020. Thus,
we were only able to collect data from 6-12 year-old children and were unable to collect data
from our planned adolescent sample. Therefore, this sample included 54 participants across a
narrower-than-planned age-range (M = 8.76, SD = 1.72; range = 6-12; 28 female). Each child
gave informed assent to participate, and each child’s guardian(s) signed a consent form. Children

received a small toy of their choice as compensation as well as small prizes, such as stickers and
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pens. All procedures were approved by the School of Psychology’s Ethics committee at Bangor
University (ethics protocol number: 2019-16586).

Procedure

Our procedure here was nearly identical to that used with the adults. To minimize written
content, children were verbally instructed regarding the task, and received additional instruction
about staying (relatively) still and keeping their attention focused on the screen. One significant
change in procedure is that children did not have a drift correction procedure before each trial, as
we found that this caused confusion and frustration. Instead, we carried out drift correction
procedures only between blocks. In order to draw participants’ gaze back to the centre of the
screen before each stimulus, children were shown an animated gif at the centre of the screen for
approximately 2.5 seconds as a fixation point, without the need to press a key to proceed.
After the free-viewing session, children sorted pictures into interactive or non-interactive (two-
alternative forced choice decision). They were instructed to look carefully at each picture and
decide whether the two people in the scene were having a social interaction or not. With the
youngest children, before the sorting task, we gave a brief explanation of what a social
interaction is, where children were encouraged to think about whether people in the scene were
doing something with each other or not. Finally, as a way to increase motivation and engagement
with the task, children completed a “sticker chart” as they progressed through different steps in

the procedure.

Data analysis

As in the adult data, trials with less than 33% of total engagement with the stimulus were
treated as missing. This led to the loss of 2.35 % of the total trials with a range of 0 — 9 trials per
participant. Similar modelling procedures were carried as in the adult analysis. The pre-
registered analysis was a four-level hierarchical model with a 2 x 2 structure of predictors (nlme
package (Pinheiro et al., 2016)) with participant information at the highest level, and nested
within each participant the scene categorization — interacting or non-interacting — followed by
the AOI information and finally at the first level our measure, nested within trial and participant.
As for the adult sample analysis, the hierarchical model building procedure indicated that scene

categorization and participant information were at the same level (thus not truly nested),
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therefore the final model included only three-levels: participant information at the third level,
AOQI type at the second level, and the dependent variable — dwelling time or time or time to first
fixation — at the first level, nested within trial and participant. Post-hoc pairwise comparisons
were performed using Tukey’s HSD (emmeans package; Lenth et al., 2018). Additionally, to
allow investigation of developmental change across the included age-range, participants’ age was

modelled as a continuous predictor.

Results

Categorization results

On average, children categorised an equal proportion of pictures as interactive (M =
52.16, SD = 16.10) as non-interactive (M = 46.67, SD = 16.58), #53)=1.61,p=.11,d=0.21),
but the proportion of scenes categorised as interactive increase with age (Figure 4). Indeed, age
interacted significantly with scene categorization in the children’s group, #104) = 2.10, p = .04,
d =0.21, with an increasing proportion of scenes categorized as interactive from 9 years on

(Supplementary materials n. S3 for descriptive statistics by age).
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Figure 4. Average proportion of categorization of the scenes as interacting or non-interacting, in

relation to age in the developmental group. Width of bands represents 95% confidence intervals.

Attentional engagement

In the developmental sample there was significant variance of the intercepts across
participants and type of AOI — social or background - SD = 256.84, y2(2) = 68.12, p <.001 and
when adding the area of the AOIs in pixels as a random effect (see Supplementary materials n.
S1 for details on AOI size), this model did not differ significantly from the originally planned
one — SD = 1072.12, y*>(3) = 0, p = .99. Therefore, participant, AOI and size of the AOI were set
as random effects, and participant’s scene categorization and type of AOI were set as fixed
effects while age was modelled as a continuous predictor. Additionally, age of participants was
group mean centered.

The overall attention given to scenes, collapsed across AOI type, did not change with

age, F(1,52)=2.64,p = .11, nzp = .05. Additionally, overall dwelling time was not significantly

different for scenes categorized as interactive (M = 1852.42, SD = 1105.10) compared to those
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categorized as non-interacting (M = 1839.62, SD = 1102.22) — F(1,3028) = 0.01, p = .92, n2p<

.001, and this was not moderated by the age of the participants — F(1,3028) = 0.003, p = .95,
n2p< .001.

Unsurprisingly, children spent more time looking at the human AOIs (M = 1927.62, SD
= 1103.47) compared to the background (M = 1765.40, SD = 1098.13) with a main effect of
AOl F(1,52)=17.32,p= .01, nzpz .12 that was similar across all ages, F(1,52) = 1.49, p = .23,

n2p= .03. However, contrary to our predictions, but similar to the adult data, this social

attentional bias was not moderated by the type of scene. Children did not attend to social
information in interactive scenes (social: M = 1927.85, SD = 1107.07; background: M =
1777.00, SD = 1098.61) any differently than in non-interactive scenes (social: M = 1927.36, SD
= 1100.03; background: M = 1751.89, SD = 1098.17); F(1,3028) =0.17, p = .68, n2p< .001

(Figure 5). Although the interaction between categorization and type of AOI was not significant,
exploratory post-hoc comparisons show that when the scenes are split by their categorization, the
human bias is weaker in both scene types, much as in the adult data [interactive scenes: #(52) =
2.20, p = .10, d = 0.30; non-interactive scenes: #(52) = 2.46, p = .06, d = 0.34. Additionally, no
differences were found in the attention to the two types of backgrounds (all p’s > .99).
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Figure 5. Violin plot for mean dwelling time (ms) to social and background AOIs in scenes

categorized as interacting and non-interacting. Error bars represent 95% confidence intervals.

The three-way interaction between age, categorization of the scene, and AOI did not
improve the model fit, only reached trend levels, and had a very small effect size — F(1,3028) =
341,p=.07, nzpz .001 (Figure 6). However, if this nearly significant interaction can be

replicated in a study with sufficient power to properly assess a three-way interaction, this
possible finding suggests that the social bias in engagement is slightly stronger in the youngest

children compared to the older, echoing similar findings in Chapter 3.
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Figure 6. Average dwell time to social and background AOIs in scenes categorized as interacting

and non-interacting in relation to age in the developmental group. Width of the bands represent

95% confidence intervals.

Attentional capture

In our time to first fixation model (see Supplementary materials n. S2 — 2b for details on
transformation and analyses with log-transformed data), participant and AOI showed significant
variance of intercepts — SD = 171.74, x(5) = 61.94, p <.001. As in the dwelling time model, we
added area of the AOIs in pixels as a random effect. This model did not differ significantly from
the originally planned one — SD = 722.84, y*(5) =0, p = .99.

The overall speed of orienting to the scenes did not change with age, F(1,52) = 0.04, p =

.84, nzp < .001. Additionally, participants were equally fast to orient to the scenes categorized

as interacting (M = 707.68, SD = 726.14) compared to the ones categorized as non-interacting
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(M =708.98, SD = 763.87; F(1,2896) = 0.0003, p = .99, n2p< .001), and this was not moderated
by the age of the participants — F(1,2896) = 06, p = .80, n2p< .001. Unsurprisingly, participants

were faster to look to the human AOIs (M = 557.68, SD = 596.92) compared to the background
(M =863.76, SD = 841.98; F(1,52) = 104.16, p <.001, n2p= .67), and this ‘social capture’ effect

was similar for children across our age-range, F(1,52) =0.88, p = .35, n2p= .02.

Contrary to our expectations, this social attentional bias was not moderated by the type of
scene — i.e. whether children categorized a particular scene as interacting (social: M = 558.27,
SD = 601.44; background: M = 861.01, SD = 807.07) or non-interacting (social: M = 557.00,
SD = 592.06; background: M = 866.98, SD = 881.77); F(1,2896) = 0.01, p = .92, n2p< .001

(Figure 7).
kK % %k
5000 1 1 1

o 4000 1
E
c
0 ;
T 3000 1 AOI
X
- Social
0
& 2000 Background
L
Q
E
F 1000 1

O -

Interacting Non-Interacting

Type of scene

Figure 7. Violin plot for mean time to first fixation (ms) to social and background AOIs in

scenes categorized as interacting and non-interacting. Error bars represent 95% confidence

intervals.

Finally, the three-way interaction between age, categorization of the scene and the AOI

did not improve the model fit, and when analysed, was not significant — F(1,2896) = 1.60, p =
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21, n2p= .001 (Figure 8), meaning that the social bias in attentional capture did not change

depending on the way the scene was categorised nor as a function of age.
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Figure 8. Average time to first fixation (ms) to social and background AOIs in scenes
categorized as interacting and non-interacting in relation to age in the developmental group.

Width of the bands represent 95% confidence intervals.

Part 3 — Development of attention to ambiguous social scenes

Data analysis

In this section of the work the aim is to assess developmental changes between children
and adults. Given the gap in age between our children and adults, age in this case was modelled
as a categorical predictor (children vs. adults) rather than a continuous predictor as in the child-
only analyses. The models used here have a similar structure to the ones used in the previous
sections with the final model including age-group, type of scene as categorized by each
participant, and AOI as fixed effects, allowing intercept to vary at participant, AOI, and size of
the AOIs level.

Results

Categorization results
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As might be expected from prior analyses, on average, there were more scenes
categorized as interactive (M = 56.96, SD = 14.71) compared to non-interactive (M =41.45, SD
=14.51), F(1,122) =73.91, p <.001, n2p= .38 and this was moderated by age (Figure 9). Indeed,

age-group interacted significantly with scene categorization F(1,122) = 15.56, p < .001, n2p=

.11, with adults categorizing a much higher proportion of scenes as interactive (M = 60.67, SD =
12.43) compared to children (M = 52.16, SD = 16.10), #(244) = 3.31, p = .004, d = 0.21, but there
was also a weaker developmental difference for scenes categorized as non-interacting (children:

M =445, SD = 16.58; adults: M =38.90, SD =12.21); (244) =-2.27, p = .08, d =-0.15.
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Figure 8. Average proportion of categorization of the scenes as interacting or non-interacting,

children and adults. Error bars represents 95% confidence intervals.

Attentional engagement
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When assessing dwelling time, there was significant variance of intercepts across
participants and type of AOI, SD = 258.50, x?(2) = 234.83, p <.001, and the model including
the area of the AOIs in pixels as a random effect did not differ significantly from the originally
planned one — SD = 947.03, x*(3) =0, p = .99.

The overall amount of attention given to the scenes did not change with age, F(1,122) =

1.34,p= 25,7 = .01, with children (M = 1846.51, SD = 1103.61) and adults (M = 1797.50,

SD = 883.01) spending a similar amount of time attending to the scenes. As might be expected
from prior analyses but contrary to our original hypothesis, dwelling time was not significantly
different for scenes categorized as interacting (M = 1822.17, SD = 980.28) compared to the ones
categorized as non-interacting (M 1813.50, SD = 989.04) — F(1,7070) = 0.11, p = .74, n2p< .001,

and this was true for both children and adults — F(1,7070) = 0.002, p = .96, n2p< .001.

All participants spent more time looking at the human AOIs (M = 1891.31, SD = 987.82)
compared to the background (M = 1745.73, SD = 974.72) — main effect of AOI, F(1,122) =
14.32, p =.0002, nzpz .11, and this was similar for children (social: M = 1927.62, SD =

1103.47; background: M = 1765.40, SD = 1098.13) and adults (social: M = 1864.05, SD =
890.47; background: M = 1730.95, SD = 870.63), F(1,122) =0.11, p = .74, n2p< .001. This

social attentional bias was not moderated by whether the participants saw the scene as interacting
(social: M =1893.01, SD = 985.60; background: M = 1751.33, SD = 970.01) or non-interacting
(social: M = 1888.98, SD = 991.18; background: M = 1738.03, SD = 981.42) — F(1,7070) =
0.13,p=.72, n2p< .001. Finally, this was similar for children and adults, F(1,7070) =0.11, p =

74, n2p< .001 (Figure 9; see Supplementary materials n. S3 for descriptive statistics), but when

we analyse the three-way interaction, the social bias weakens, as every social > background

contrast loses power, underlining the similarity between children and adults.
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Figure 9. Violin plot for mean dwelling time (ms) to social and background AOIs in scenes
categorized as interacting and non-interacting in the two groups. Error bars represent 95%

confidence intervals.

Attentional capture

In our time to first fixation model (see Supplementary materials S2 — 2c¢ for details on
log-transformation and details on analyses with transformed data), participant and AOI showed
significant variance of intercepts — SD = 192.22, y%(2) = 236.91, p < .001 and when size of the
AOI was added as a random effect, the model did not change significantly (SD = 685.94, y%(3) =
0,p=.99).

Although the overall speed of orienting to the scenes was significantly slower for
children (M = 708.28, SD = 743.68) compared to adults (M = 654.97, SD = 690.07), F(1,122) =

7.03, p = .01, nzp = .05, participants were equally fast to orient to the scenes categorized as
interacting (M = 676.16, SD = 715.89) as to the ones categorized as non-interacting (M =
679.42, SD =710.75) — F(1,6856) = 0.001, p = .98, n2p< .001, and this was similar for children
(interacting: M = 707.68, SD = 726.14; non-interacting: M = 708.98, SD = 763.87) and adults
(interacting: M = 655.74, SD = 708.57; non-interacting: M = 653.77, SD = 660.38); F(1,6856) =
0.00, p = .99, n2p= .00.
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Unsurprisingly, more capture was driven by the human AOIs (M = 516.63, SD = 529.99)
compared to the background (M = 842.65, SD = 830.72) indexed by a main effect of AOI,
(F(1,122) =255.37, p < .001, n2p= .68), but this effect was not strongly moderated by age,

F(1,122) =0.70, p = .41, n2p= .01, but exploratory post-hoc comparisons show that children

were slower to orient to social information compared to adults (children: M = 557.68, SD =
596.92; adults: M = 486.35, SD = 472.50; t(122) = 2.46, p = .05, d = 0.22) but no developmental
difference was found in the capture by background information (children: M = 863.76, SD =
841.98; adults: M = 827.24, SD = 822.26; t(122) = 1.30, p = .46, d = 0.12). However, this likely
simply reflects the generally slower orienting for children compared to adults, combined with the
fact that the first fixation for both groups is almost always to the human information in the scene.
As might be expected from prior analyses, the social attentional bias was not moderated
by the type of scene [interactive (social: M = 513.30, SD = 528.38; background: M = 842.86, SD
= 834.63) or non-interactive (social: M = 521.20, SD = 532.33; background: M = 842.36, SD =
825.56); F(1,6856) = 0.04, p = .85, n2p< .001] and it was not different between age-groups as

there was no evidence of a three-way interaction between scene-type, AOI-type, and age-group,

F(1,6856) =0.06, p = .80, n2p< .001 (Figure 10; see Supplementary materials n. S3 for

descriptive statistics).
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scenes categorized as interacting and non-interacting in the two groups. Error bars represent 95%

confidence intervals.

General discussion

In this work, we aimed to investigate the role of spontaneous social knowledge in
modulating the social attentional bias in adults and pre-adolescent children, specifically
investigating if seeing an ambiguous scene as depicting a social interaction (vs. being non-
interactive), would influence how participants attended to social information in the scene.
Against our predictions, we found no clear influence of seeing the same scene as interactive vs.
non-interactive on social attention in either children or adults. There is, however, a
developmental difference in how scenes were categorised, where adults were much more likely
to ‘see’ scenes as interactive compared to the children as a group, with this difference likely
being driven primarily by the youngest (< 9 years old) children. Additionally, while the human
attentional bias was large and reliable in our attentional capture measure, this bias was weaker

and less reliable in our measure of attentional engagement than has been reported in previous
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work looking at unambiguously interactive vs. non-interactive scenes. Although we could not
make that comparison directly in the current data set, this suggests that ambiguous social scenes
are explored differently than scenes that are less socially ambiguous, with participants attending
more to background information in ambiguous scenes.

That adults categorized more scenes as interactive compared to children might be
indicative of adults having either more complex social knowledge, more experience with and
exposure to social interactions, or a larger bias to interpret social content as interactive even in
ambiguous situations. On the other hand, we cannot rule out that younger children struggled
more with the concept of “interaction” and categorised the pictures more randomly than did
either older children or adults. However, that children look more ‘adult-like’ in how they
categorise scenes from 9 years of age is consistent with research showing that 9-12-year-old
children were more similar to adults in the way category specific brain structures responded to
social interactions, while the same regions in younger children were less “tuned” to interactive
information (Walbrin et al., 2020). Additionally, structural development of temporal social brain
regions appears to peak at around 9 years of age (Mills et al., 2014) suggesting that it is at this
age that a wider network is available for processing social information in more complex
scenarios such as ambiguous scenes that might contain social interactions.

The lack of modulation by spontaneous social knowledge about social interactions on
orienting to social information contrasts somewhat with past research on the topic (Ristic &
Kingstone, 2005; Wiese et al., 2012). In these studies feature attribution or interpretation of
visual information was deliberately manipulated, resulting in moderated attentional patterns
while in our data scene categorisation is spontaneous and had no effect on the way social
attention was deployed. This is suggestive of two possibilities: either top-down information
cannot modulate attentional mechanisms towards social interactions, or that attentional
modulation requires a clear manipulation of knowledge or top-down information about the
stimuli. It may also matter that we ask for categorisation affer participants’ first viewing of the
scenes, when eye-tracking data was collected. While we deemed this necessary, so as not to bias
participants to look for interactions, we cannot be certain that they ‘saw’ the stimuli the same
way when viewed for a 2" time. How likely is it that participants might see the scenes
differently the 2™ time than they did the first? How might our results have been different if they

were tasked with categorising the scenes in the first place? Looking at attentional patterns while
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participants are assessing ambiguous dyads for ‘interactiveness’ could, in future work, help to
clarify these questions.

Finally, the finding of a social bias in capture and engagement also in complex and socially
ambiguous scenes is consistent with past research investigating attention to social information in
naturalistic scenes (Bindemann et al., 2010; Birmingham et al., 2008; Doherty et al., 2017;
Flechsenhar & Gamer, 2017; Sue Fletcher-Watson et al., 2008). Interestingly, our findings
extend this research by showing that attentional engagement to human information is weakened
statistically compared to what we saw in the Chapter 3, suggesting perhaps a need to use more
contextual information to interpret and disambiguate the scene. This finding makes intuitive
sense, as it supports the idea that social information always captures attention but then is engaged
differently depending on the type of social information: if there is a clear social interaction,
social objects hold attention for longer compared to when interactive content is absent
(Skripkauskaite et al., n.d.) but if the scene is interactively ambiguous, this bias to social
information is milder because more contextual (background) exploration is necessary to extract
meaning.

The current research has several limitations. First, similarly to the other chapters, analyses
evaluating developmental changes between children and adults could benefit from a greater
sample size. Similarly, the addition of the originally planned adolescent sample is needed to
clarify how and when changes in the interpretation of ambiguous dyads becomes ‘adult-like’.
Additionally, future research should consider directly manipulating the knowledge around the
ambiguous stimuli to better disentangle the influence of top-down processes in attention to social
interactions, for example by using priming methods. Indeed, inducing feature attribution
participants by explicitly telling them that what they are viewing is a social interaction (or not),
may be a better measure of how knowledge and interpretation of visual information influences
social attention.

Despite the limitations, this study extends research on the interplay between social
knowledge and attentional orienting by demonstrating that while there are indeed developmental
changes in the way social information is interpreted, those interpretation differences do not
greatly modify social attention across age group, informing future directions in developmental

research.
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Chapter 6. General discussion

Much research has established the exquisitely social nature of humans and their brains,
by showing how tuned we are towards social information, especially faces, since very early in
life. However, the vast majority of available research looking at social perception across
development has focused on face and gaze perception in infancy, therefore it is unknown how
attention to and perception of more complex social information develops in childhood. What’s
more, humans act socially in noisy and cluttered environments. Thus, we do not only have to be
able to process isolated, individual faces, but are bombarded by a variety of social information
and cues embedded in complex scenes. Recent research investigating ‘people watching’ has
suggested a special place for observed social interactions in human vision. Yet, research into
how our attention orients us to these complex sources of information is limited. How do humans
become so skilled at detecting and understanding interactive cues in adulthood? How do we deal
with the flood of visual information we’re constantly bombarded with and how do we extract the
social cues/information we need to be successful throughout life? Interestingly, although the
social brain in middle childhood is not yet as specialized for social processing as it is in
adulthood, there is evidence that children can use the social interactions they observe to make
informed social decisions. How does attention support these processes in childhood? How does
attention to social interactions change across development?

The general purpose of this work was to explore the development of attentional orienting
to social information in complex naturalistic scenarios and investigate the role of social
interactions in those processes. In particular, the research questions addressed across the three
empirical chapters were as it follows:

1. How does attention to complex naturalistic social scenes change across middle childhood,
and does it differ from how social attention operates in young adulthood?

2. Does the social attentional bias change across pre-adolescent childhood, and does it differ
between children and adults?

3. What is the role of social interactions in the way naturalistic scenes are attended to?

4. Does attention to social interactions change across development and is it any different in

adulthood?
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5. How do social interactions compete for attention with other social targets across
development?

6. Does an individual’s social knowledge influence their attention to social information, and
does the extent of this influence change across pre-adolescent childhood, and between

childhood and adulthood?

In this chapter I will summarise the findings from each empirical chapter and then provide a
synthesis of the findings across the three chapters. This will be followed by a discussion of the
main findings around the social attentional bias across both age groups, and the conditions in
which an attentional bias to social interactions can occur, as well as the implications of these
findings for human vision and development. The potential implications of this research for scene
exploration research across development and social development will then be discussed. Finally,
I will discuss some of the strengths and limitations of the research presented here, and suggest

potential future lines of research and open questions, to then conclude with a brief summary.

1. Summary of findings

In study I (chapter 3) the aim was to investigate developmental changes in attention to
naturalistic social scenes as well as the influence of social interactions on attentional orienting to
social information. We found a consistent social bias in attentional engagement and capture in
complex scenes, and that this bias towards social information increases in the presence of a
social interaction in a similar way in both children and adults. Additionally, we found that the
youngest children are in general slower to orient to all scenes as well as being more engaged by
social information. In general, however, children and adults were similar in the extent to which
they prioritised social information generally, and interactive information specifically.

In study II (chapter 4) we looked at social attention in scenes with multiple human agents (3
or 4), and at the attentional competition between social interactions and other social targets in the
same scene. We find a strong social attentional bias in both children and adults, even in these
more complex social scenes. Indeed, contrary to our expectations, we found no developmental
changes in social attention across childhood or between children and adults, although children

spent more time looking at the background compared to the adults. As in study II, we also find
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that children are slower than adults in orienting to the scenes. Exploratory analyses suggest that
social interactions might be processed in a holistic way, and that — if true — this holistic
processing occurs similarly in children and adults. As this finding was post-hoc and exploratory,
however, it needs to be replicated in a follow-up study designed to test that hypothesis more
directly. Importantly, when social interactions have to compete for attentional resources with
other social targets in the same scene, they capture attention first and engage it for longer in both
groups, although this effect is (somewhat) smaller in children and is reduced in effect size as the
number of social targets increases.

In study III (chapter 5) we investigated developmental changes in attention to ambiguous
social scenes, the role of pre-existing top-down social knowledge in orienting attention in
ambiguous social scenes, and how the effect of this knowledge changed across childhood, and as
compared to adulthood. Children, especially the youngest children, categorise fewer scenes as
interactive than do adults. Additionally, as in both other studies, we found children to be slower
to orient to the scenes compared to the adults. However, contrary to our expectations,
interpreting a scene as interactive or non-interactive had no effect on how social attention was
deployed for either adults or children. In other words, unlike our findings in scenes of
unambiguous social interactions, how a scene was categorised did not influence either how
quickly or for how long social information in the scene captured and engaged attention.
Although our data demonstrate strong attentional capture by social information across age-
groups and scenes, the social bias in attentional engagement was milder than was seen in non-
ambiguous interactive scenes, with participants spending more time spent looking at the

background.

2. Synthesis of findings across the three studies

Here I will synthesize the main findings as grouped by each research question, before proceeding

to interpretation of the findings.

1. How does attention to complex naturalistic social scenes change across middle

childhood, and does it differ from how social attention operates in young adulthood?
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Consistently throughout the three studies, we find that children are in general slower to
orient to the scenes compared to the adults, and this effect seems to be driven mainly by the
youngest children. With age, children orient more quickly to both social and non-social
information, potentially reflecting general improvement in processing skills. When the scene is
especially complex — namely when it contains multiple people — children seem to look more at

the background compared to the adults.

2. Does the social attentional bias change across pre-adolescent childhood, and does it
differ between children and adults?
When a scene is socially unambiguous (Study I), the youngest children look for longer at
social information compared to adults, a difference that slowly decreases with age. However, in
more complex scenes, and in ambiguous scene, there were no developmental differences

between groups in the attentional bias towards social information.

3. What is the role of social interactions in the way naturalistic scenes are attended to?

When only two people are in a scene and they are clearly interacting, looking times and
attentional capture by human information (the social bias) are stronger, compared to when the
two people are not interacting. Additionally, when an interacting dyad competes for attention
with other social targets, the interacting dyad captures attention more quickly and holds it for
longer. If the scene is socially ambiguous — i.e. if it is not clear whether the two individuals are
having a social interaction or not — and interactive cues are missing or unclear, this modulation

of attention is not seen, even if a participant categorises the scene as interactive.

4. Does attention to social interactions change across development and is it any different
from adulthood?

Both children and adults are engaged in a similar way by social interactions, but only
adults show this bias in attentional capture as well. This difference is likely the consequence of
children being generally slower to orient their attention. Both children and adults may process
interacting dyads holistically, and they both prioritize social interactions when they are
competing for attention with other social targets, although this effect is weaker for children when

more than one additional person is present in a scene.
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5. How do social interactions compete for attention with other social targets in children
and adults?

Both children and adults prioritize social interactions when they compete for attention,
although this effect is weaker for 4-people pictures than for three, and slightly more variable in
children than adults. Interactive information is prioritised by both groups, for both attentional
capture and engagement, for 3-people pictures. This effect does not reach significance for
children in 4-people pictures, and is not significant for attentional engagement for adults. When
the two groups are merged, however, the prioritisation of social interaction reaches significance
for both measures and both 3 and 4 person pictures, suggesting these developmental differences
might be due to lack of statistical power to detect this effect rather than a true between-groups

difference.

6. Does an individual’s social knowledge influence their attention to social information, and
does the extent of this influence change across pre-adolescent childhood, and between
childhood and adulthood?

Adults are more likely to see ambiguous human dyads as interacting compared to children,

and this difference is mainly driven by the youngest children (<9 years of age). Despite this
difference in categorisation, there was both no influence of social knowledge/categorisation on

the way social attention was deployed, and no developmental differences.

3. The current research within the Posner attentional framework

In the current work attention was conceptualized as a system subtending three main different
functions as indicated by the tripartite model of attention (M. 1. Posner & Petersen, 1990;
Michael I Posner & Boies, 1971): alerting, orienting and executive control. In particular, the
three experiments discussed here explored the development of the orienting of attention to social
interactions in complex, naturalistic scenarios.

In this light, attention plays a role in filtering out information that is not needed, preparing
individuals for action, action control and conflict monitoring (Rueda et al., 2015). In particular,

the orienting system flexibly engages and shifts attention between different regions of visual
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space, selecting relevant information from the environment, based on both stimulus-driven
factors (exogenous) and internal factors like goals and priorities (endogenous) (Colombo, 2001;
M. 1. Posner & Petersen, 1990).

Previous research on developmental changes in the three attentional systems has shown that
while there are changes across childhood within the alerting and executive control systems, the
orienting functions are qualitatively pretty stable between 6 and 10 years of age (Mullane et al.,
2016; Rueda et al., 2004). Our data is consistent with this, as indicated by there being little-to-no
evidence of developmental differences between middle childhood and adulthood in the way
attention was engaged and captured by information across the three experiments. The main
developmental change presented in this work, namely the generally slower capture by scenes in
the children’s group compared to the adults, is also consistent with developmental research in
attentional orienting (Pozuelos et al., 2014; Rueda et al., 2004) and research findings that show
slower saccade initiation in this age-group across stimuli and paradigms (Fukushima et al., 2000;
Luna et al., 2008; Plude et al., 1994).

Another important aspect in the work presented here is the consistent finding of a social
attentional bias across all three studies and that this bias was similar across the two age-groups,
including a strong social interaction bias in study I. The ability to orient to relevant information
in the environment has important consequences for development, from both a social and
cognitive perspective (Amso & Scerif, 2015; Frischen et al., 2007; Soto-Icaza et al., 2015).
Therefore, the early orienting to and capture of attention by social information and especially
social interactions in a way similar to adults, provides strong evidence of the importance of
observed social information for cognitive and social development as well as for social learning
(see below for a more detailed interpretation of these results in terms of social development).
Within this framework, the current results provide at least a partial answer to the question of how
humans become so skilled at detecting and understanding interactive cues by adulthood. Indeed,
the evidence this work provides of an orienting system already seemingly highly tuned to
complex social situations strongly suggests that such tuning might have high developmental and
biological value (Papeo, 2020; Quadflieg & Westmoreland, 2019).

Additionally, attention in the tripartite model of attention is not only conceptualized as a tool
to regulate the selection of information and prioritize information based on its relevance at

specific moments (M. 1. Posner & Petersen, 1990), but also as a tool of action selection and
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preparation (M. L. Posner & Petersen, 1990; Michael I Posner, 2012; Rueda et al., 2015).
Attention is especially important in development, for thoughts and actions regulation (Michael I
Posner & Fan, 2008). Why is social information - especially pertaining to social interactions - so
relevant for the exchange between individuals and their environment?

In the adult attentional system, the Posner model posits a balanced interplay between
automatic attentional orienting, the selection of information through stimulus-based activation of
the visual system (exogenous), and direction of attention to specific information because of its
importance for future actions and goals (endogenous) (Henderson, 2003; Knudsen, 2007,
Petersen & Posner, 2012; Rueda et al., 2015). Interestingly, in study III we don’t have a clear
indication of whether top-down factors influence the orienting of attention to social interactions,
therefore it may be that the attentional bias to social interactions found in the other two studies
might be more driven by stimulus-based cues to interaction rather than semantic knowledge or
cognitive concepts around social interactions. However, the fact that the attentional bias becomes
much weaker when a scene is socially ambiguous suggests that actually, when stimulus-based
cues are not enough to interpret the scene, more contextual information is needed. This goal-
oriented drive to further explore the scene suggests an involvement of top-down mechanisms that
increase exploration rather than being strongly different between scenes that participants
eventually decide are interactive vs. not. Interesting questions remain open around the interplay
between exogenous cues and top-down factors that would deserve more future investigations.

Finally, this work investigated basic orienting abilities to complex social scenarios, however,
as mentioned below in the “Future research and remaining questions”, the next natural step
would be to investigate whether, when, and how information about social interactions overrides
the control systems of attention, but also, explore the strength of the orienting network, by
probing its shifting and disengagement functions with social information. Indeed, orienting
systems are involved in tasks such as information selection, shifting of attention, engagement
and disengagement, and all these functions might be influenced by social information to different

extents, which also provides material for future investigations.

4. Why is human information so important?
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The most consistent result is the presence of a strong social attentional bias in all three
studies and in both age-groups. This is unsurprising, considering that a great deal of past research
has demonstrated that people show a preference to attend social information across a variety of
stimuli and tasks (Bindemann et al., 2010; Doherty et al., 2017; Sue Fletcher-Watson et al.,
2008; Rosler et al., 2017; Sasson & Touchstone, 2014; Van Der Geest et al., 2002). We do
extend this research, however, by examining this social bias in childhood and demonstrating that
mostly there are no substantial developmental changes in this preference, with the exception of
when children view unambiguous two-person scenes. Indeed, our findings in this case are in
contrast with prior research: we find that children spend more time looking at social information
in unambiguous dyadic social scenes compared to the adults (independently of whether dyads are
interacting, or not), while Amso (2014) shows an increase in engagement across childhood and
into young adulthood. This contrast might be due to methodological differences as we consider
the whole human AOI in the scene instead of just faces. Additionally, while Doherty et al. (2019)
show greater capture by social information in children, we don’t find this developmental
difference. Again, however, this might reflect important methodological differences between
paradigms: we measure spontaneous orienting in social attention through a free-viewing
paradigm, while more executive functions are necessary in the task used by Doherty et al.
(2019). In fact, the differences they report in speed of processing and executive functioning are
mirrored in our finding of children being slower in general to orient to the scene, in line with
research showing that processing speed and saccade initiation are still developing during
childhood (Luna et al., 2008).

That social information is prioritised so strongly across a wide variety of scenes, in
different social content and across levels of complexity and that this prioritisation is so strongly
similar in children and adults makes a great deal of sense considering the evolutionary value of
social information for human beings (Dunbar & Shultz, 2007). Indeed, starting from very early
in life our attentional systems are tuned to social information in order to orient us to learn from
other people (Gliga & Csibra, 2007; Papeo, 2020; Quadflieg & Westmoreland, 2019; Soto-Icaza
et al., 2015). What is striking here is that this interest holds steady across childhood and doesn’t
differ from adults despite the fact that social brain structures (Mills et al., 2014; Walbrin et al.,

2020) and attentional abilities (Pozuelos et al., 2014) are still developing, supporting the
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importance of attentional orientation to social information for observational learning in early

childhood (Carpendale & Lewis, 2004; Eccles, 1999; Lee & Rutherford, 2018).

5. Why are social interactions so important?

We also find that two humans having a social interaction attract more attention than two
people not interacting, both in scenes where they are the only social targets and when
interactions are competing for attention with other social information. This is consistent with
research showing that social interactions might be processed differently than two people acting
independently (Papeo & Abassi, 2019; Vestner et al., 2019; Walbrin & Koldewyn, 2019) in
several ways. First, we show that social interactions increase engagement of attention, and more
importantly they do this across development with no developmental differences between children
and adults. While the developing social brain is not yet fully tuned to social interactions (Walbrin
et al., 2020), children are able to orient attention promptly to social interactions. Again, the lack
of developmental change between children and adults suggests that the information collected
during the observation of social interactions might be crucial in development of a child’s “higher
order” social skills, especially through facilitating learning from observed interactions (Brey &
Shutts, 2015; Over & Carpenter, 2015; Skinner et al., 2017). Indeed, interacting dyads are a rich
source of information about social norms, social cues, relationships, and personalities that can
inform future social decisions and social learning (Quadflieg & Koldewyn, 2017; Quadflieg &
Penton-Voak, 2017; Quadflieg & Westmoreland, 2019; Skinner et al., 2017). The fact that the
developing brain might be tuned to attend to this information preferentially supports the idea that
social interactions have biological and evolutionary value.

One strong contribution of this work is that it investigated the conditions under which
social interactions might attract attention or be processed differently. When social interactions
are directly competing with other social targets (Study II), we find that they capture and hold
attention more than competing social targets. However, while in the Study I we find a clear
moderation of social attention by social interactions, in the most complex scenes in Study II this
doesn’t seem to be true, contrasting with prior literature suggesting the important role that social
interactions play in visual attention in adults (Papeo, 2020; Papeo et al., 2017, 2019; Vestner et
al., 2019) and in children (Stagg et al., 2014). One reason for these differences might be the
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complexity of the scenes and the diversity of the interactive cues that were present in our
stimulus set. Additionally, exploratory post-hoc analyses suggested that this pattern of results
may be the result of holistic processing of interacting agents where more attention is dedicated to
the interpersonal space between interactive, but not non-interactive, individuals. These results are
in line with previous research showing a holistic processing of interacting dyads compared to
two non-interactive individuals (Papeo et al., 2019; Papeo & Abassi, 2019; Walbrin &
Koldewyn, 2019). However, these results must be treated with caution as they were post-hoc and
exploratory and, especially when investigated developmentally, lack sufficient power to be

reliably interpreted.

A social hierarchy

Importantly, the investigation of social interactions in these scenes can also inform the
processing of social information more broadly. Indeed, that the social interaction bias and social
bias differ in strength across different scenes, suggests a potential hierarchy of social information
in scenes. Indeed, we found attentional capture by human information across all conditions and
participants, but the measure of attentional engagement was moderated more strongly by
different conditions. This suggests an automatic mechanism of early attentional orienting to
social information which can be only mildly modified by social interactive content. At later
attentional stages, social information will hold attention for the longest when people in the scene
are interacting, at last if the scene is not ambiguous and not too socially cluttered. If the scene
becomes crowded with social targets, social interactions have to “fight” for attention with other
social targets, While interactions are prioritised, this effect becomes smaller as more targets are
added. Future studies should investigate to what extent and under what circumstances social
interactions can win the fight for attentional resources. The work here presented suggests that
when competing with one other human, interactions will capture and hold attention for longer,
suggesting an attentional hierarchy of social information, where a single individual has
attentional priority over objects and background elements but less priority than a social
interaction between two individuals. When competing with two other humans, however,
interactions will capture attention more quickly, but later engagement will be shared to a greater
extent with non-interacting people in the same scene. Future studies could investigate this

potential hierarchy of social information more carefully in order to disentangle the role of the
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dyads vs individuals, as well as the number of the people in the scene and the type of social
content. Finally, when the scene is socially ambiguous, attention is shifted more to the
background (as indicated by a milder social bias seen in engagement) after initially being
captured by the social info, potentially suggesting the importance of context in interpreting a
socially ambiguous situation. The fact that some of these effects in the attentional hierarchy are
milder in childhood (namely the ability to hold attention weakens with the addition of two other
targets in the scene), suggests that at least a part of these processes depend on the social
experience of the child. Future studies should both investigate this hierarchy with more power in

childhood and investigate how this hierarchy may change during adolescence.

6. Insights on scene exploration across development

The findings in this work consistently inform also on some aspects of scene processing, and
especially on the developmental changes in these processes.

The fact that children were often slower to orient to scenes compared to adults is in line with
research showing that saccade initiation is slower in childhood and continues developing until
adulthood (Fukushima et al., 2000; Luna et al., 2008), as well as replicating prior studies that
showed children to have slower performance in tasks investigating the orienting network (e..g.
Pozuelos et al., 2014)

Our results from study III (Chapter 5) indicates that when a scene is hard to interpret or
ambiguous socially, contextual information is crucial. This is in line with research on scene
perception (Henderson & Hayes, 2018; Henderson & Hollingworth, 1999; Oliva et al., 2003;
Torralba et al., 2006) suggesting that context is fundamental to understand relations between
objects in the scene. In the case of our study, these ‘objects’ are likely the humans depicted in the
scene, and participants may have looked more at background elements in order to disambiguate
whether people were interacting, or not. This finding also again highlight the importance of using
naturalistic stimuli to investigate these processes, especially in childhood.

Indeed, in study II (Chapter 4) involving the exploration of multiple people scenes, the fact
that children look for longer at background information compared to the adults might either
suggest that children need more contextual information when a scene is too complex, or simply

they have not yet fully developed the ability to filter out irrelevant info, which is in line with
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prior research on attention in development (Amso & Scerif, 2015; Federico et al., 2017; Pozuelos
et al., 2014). However, it could also reflect children’s natural viewing behaviour (Ag¢ik et al.,

2010), where they are more likely to explore all of the scene compared to adults.

7. Insights on social understanding across development

Study III greatly informs on the developmental differences in what is considered to be a

social interaction or at least ambiguous social scenes interpretation.

The fact that in Study III we find that adults are more biased to interpret an ambiguous dyad
as interacting compared to children, and especially children that are younger than 9 years,
suggests either that a bias to see dyads as interactive is gained through social experience or that
there are developmental differences in the concept itself (i.e., the internal representation of social
interactions). Research suggests that by age 6 children are already equipped with a fair amount of
social knowledge that gives them good insight into social situations and the ability to learn from
such scenarios (Brey & Shutts, 2015; Carpendale & Lewis, 2004; Over & Carpenter, 2015; Soto-
Icaza et al., 2015). However, the results in Study III suggest that higher order social information

processing is still developing and being tuning in middle childhood.

8. Strengths and limitations

The strengths of the research presented here are mainly in the novelty of the aims, and in the
use of naturalistic stimuli to investigate attention to social interactions in complex, close-to-real-
life scenarios. Additionally, we investigated these processes across development in an area that
has not yet received much scientific interest. Thus, this works makes a strong contribution to
both social interaction research and, more generally, to the developmental social attention
literature.

The use of naturalistic stimuli contributes to the ongoing debate about which factors could
drive attentional orienting towards social interactions, namely the disconnect between research
suggesting that the attentional bias to interacting dyads is due to the added biological value of
social interactions (e.g. Abassi & Papeo, 2020; Papeo, 2020; Papeo et al., 2019) and other

research suggesting an attentional cueing account, where social interactions drive attentional
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capture and engagement by creating an attentional “hot-spot” because of the converging
attentional cues generated by the facing direction of the agents (e. g. Vestner et al., 2020;
Vestner, Gray, et al., 2021; Vestner, Over, et al., 2021). Interaction is not cued by facing
direction alone in our stimulus set. Indeed, our social scenarios are too varied and heterogeneous
and facing direction is not always the strongest cue to whether two people are interacting or not.
Indeed, often the interacting agents don’t directly face or look at each other. This suggests that
the attentional cueing account is not the only factor to influence attentional priority given to
interactions, though attentional cues from facing and eye-gaze direction are likely influential in
at least some scenarios.

Although the use of heterogeneous, naturalistic scenes was a strength of this set of studies,
the choice of stimuli also had some negative consequences. Variability in the size of AOlIs, the
distance between agents, and the complexity of backgrounds all likely contributed to variability
in how attention was allocated across scenes. Although interactive and non-interactive scenes
usually did not differ substantially on important measures like AOI size, they were not always
matched in terms of the variance in such measures. Even small systematic differences in some
visual aspects of the scenes could change attention. Indeed, we have seen that the size of the
AOQIs sometimes can drive early processes of attention (Chapter 4).

The developmental results might be more strongly supported by a higher sample size, as
originally planned for in pre-registered power analyses. This was not possible in the current set
of studies due to the interruption of data collection by the ongoing COVID-19 pandemic. Thus,
where we found no developmental difference between groups, we cannot be certain of a true null

effect.

9. Future research and remaining questions

While the research presented here has added to our understanding of attentional orienting to
social interactions across development, there are open questions left to address to fully
understand these mechanisms.

First, our stimuli were purposefully chosen to be emotionally neutral. What role might
emotional content play in moderating attention to social interactions?

Secondly, we found developmental differences in the way ambiguous social scenes were

categorized. How might the categorisation of ambiguous scenes (as interactive or not) change
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during adolescence? What are the factors that might influence this development — e.g. amount of
social exposure, size of social network, development of social semantic cognition? Are there
individual differences in social knowledge that might increase (or decrease) the bias to see dyads
as interactive?

Perceptually, it is different to explore a scene depicting two, three, or four people and the
amount of ‘social content’ is unlikely to scale linearly with each additional agent. What is the
role of the social hierarchy in overriding attentional control limits, and especially, under different
cognitive load manipulations (e.g Lavie, 1995, 2010; Lavie et al., 2014). How good is a single
face, body, or human figure compared to an interacting dyad — or a non-interacting dyad — in
breaking through attentional control under different cognitive load conditions?

Lastly, we don’t find an effect of pre-existing social interaction knowledge on how attention
is allocated in ambiguous social scenes. Would this be different if such scenes were investigated
through priming methods (e.g. Ristic & Kingstone, 2005), specifically through priming

participants to interpret the same scene as interactive or not?

10. Conclusion

Results across three free exploration experiments show that children and adults are extremely
similar in the way they exhibit an attentional bias to social information across a variety of
naturalistic social scenes. What’s more, this research demonstrates the importance of social
interactions across childhood, by showing that children have increased visual sensitivity to
interacting individuals in a similar way to adults. Both children and adults show increased
attention to humans when they are interacting, and prioritise them in a scene with multiple
people. These processes don’t seem to depend, at least strongly, on the amount of social
information, although children differ from adults in this respect. Altogether, these results suggest
a social hierarchy of attention, where interactions might be sitting at the top, as that this
hierarchy is already in place in childhood. Future investigations should extend these findings to
development during adolescence, and to investigation of this social hierarchy and social

interactions when other components of social attention are taxed, like attentional control.
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Appendix A — Pre-registrations

1. Pre-registration of “Attention to social interactions in naturalistic scenes” in

Chapter 3 (#32797)

1) Have any data been collected for this study already?
It's complicated. We have already collected some data but explain in Question 8 why readers
may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?
Does attentional social bias increase if the observed humans are part of a social interaction?

3) Describe the key dependent variable(s) specifying how they will be measured.
Eye-tracking data (time to first fixation and dwell time towards areas of interest in the scene
(e.g., humans, background) will be collected during free-viewing of naturalistic scenes
depicting social interactions or not.

4) How many and which conditions will participants be assigned to?

This is a within participant design with four repeated measures. Based on the ratings of 26
independent judges, 60 photographs depicting two agents have been selected and assigned to
either the interactive (n = 30) or non-interactive (n = 30) condition. Two areas of interest
(human and background AOIs) were further defined for each photograph.

5) Specify exactly which analyses you will conduct to examine the main
question/hypothesis.

The time to first fixation data and dwell time data will be analysed separately using linear
mixed-effect (multilevel) modelling in R (R Development Core Team, 2015), if applicable.
To be more specific, a basic comparison of a model where the intercept is held constant and
one where it is allowed to vary between participants will be conducted first to determine
whether hierarchical structure should be taken into account.

If so, the eye-tracking data on interactive and non-interactive photographs will be analysed
using a four-level hierarchical model with a 2x2 design. The participant information will be
modelled at the highest (fourth) level. Nested within each participant, trial information with
the social content of the scene (interacting or non-interacting) will be modelled as a third
level predictor, whilst AOI type (human or background) as predictor will modelled at the
second level. Finally, time to first fixation or dwell time per each AOI will be modelled at the
first level, nested within each trial and participant.

If the initial comparison suggests that hierarchical modelling of random intercepts would not
result in an increased model fit, two 2 (scene: interacting or non-interacting) x2 (AOI: human
or background) repeated measures ANOVA would be conducted instead.
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6) Describe exactly how outliers will be defined and handled, and your precise rule(s)
for excluding observations.

Participants who have failed the calibration procedure or otherwise did not produce accurate
data (e.g. due to technical issues or sleepiness) will be fully excluded. Specific trials where
participants have engaged with the target for less than 33% of the time will also be removed.
If that results in the participant having less than 33% of usable trials, they will also be
removed from any further analysis. Finally, if assumptions regarding a normal distribution of
residuals are violated, the steps outlined by Tabachnick and Fidell (2007) to ensure the most
efficient correction of distribution will be utilised.

7) How many observations will be collected or what will determine sample size?
No need to justify decision, but be precise about exactly how the number will be determined.

The recruitment will carry on till data is collected from 70 participants (not including
sessions with technical issues). As there are no reliable power calculations for multilevel
modelling, sample size was determined with an a priori power calculation based on ANOVA
of the pilot dwell time data (n2 = 0.68). The power calculation was designed to reach 80%
power (a <.05) to detect a large effect size (Cohen's f=.40) of AOI and scene type on
participants' time to first fixation or dwell time.

8) Anything else you would like to pre-register?

(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)
Only pilot data has so far been collected, analysed, and presented in a poster form. Pilot data
will not be included in the main analysis. The main data collection has been started, but no
data has yet been extracted.
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2. Pre-registration of “Development of attention to social interactions in naturalistic

scenes” in Chapter 3 (#3821)

1) Have any data been collected for this study already?
It's complicated. We have already collected some data but explain in Question 8 why readers
may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?
Does attentional bias to social interactions exist in childhood and adolescence? Does it change
throughout development?

3) Describe the key dependent variable(s) specifying how they will be measured.
Eye-tracking data (time to first fixation and dwell time towards human and background) will be
collected during free-viewing of naturalistic scenes depicting two agents.

4) How many and which conditions will participants be assigned to?

This is a within participant design with four repeated measures. Based on the ratings of 26
independent judges, 60 photographs depicting two agents have been selected and assigned to
either the interactive (n = 30) or non-interactive (n = 30) condition. Two areas of interest (human
and background AOIs) were defined for each photograph.

5) Specify exactly which analyses you will conduct to examine the main
question/hypothesis.

The time to first fixation data and dwell time data will be analysed separately using multilevel
modelling in R (R Development Core Team, 2015). The eye-tracking data on interactive and
non-interactive photographs will be analysed using a four-level hierarchical model. The
participant information will be modelled at the highest (fourth) level, where participants’ age will
be included as a predictor. Nested within each participant, trial information with the social
content of the scene (interacting or non-interacting) will be modelled as a third level predictor,
whilst AOI type (human or background) as predictor will modelled at the second level. Finally,
time to first fixation or dwell time per each AOI will be modelled at the first level, nested within
each trial and participant.

The participants’ age at the time of data collection will be modelled either as a continuous, or a
categorical variable. The decision will be made before the models are fitted based on the
graphical visualisation of the data. If a potential linear relationship is observed, age will be used
as a continuous variable. If a quadratic relationship between age and social interaction attention
is suggested, instead, age will be used as a categorical variable.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for
excluding observations.

Only participants who have failed the calibration procedure or otherwise did not produce
accurate data (e.g. due technical issues or sleepiness) will be fully excluded. Otherwise, only
specific trials where participants have engaged with the target for less than 33% of the time will
be removed. Finally, if normal distribution of residuals were violated, the steps outlined by
Tabachnick and Fidell (2007) to ensure the most efficient correction of distribution will be
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utilised.

7) How many observations will be collected or what will determine sample size?
No need to justify decision, but be precise about exactly how the number will be determined.

The aim is to collect the data for at least 90 youths (< 18 years) in order to detect large effects
(Cohen's = .40, a <.05, 1-B = 0.80), but no more than the 222 children and adolescents
necessary to detect a medium sized effect (Cohen's f= .25, a <.05, 1-f = 0.80). Data collection
will cease at the end of the 2019/2020 academic year (July 21st), thus an exact number will
depend on participants available by then.

8) Anything else you would like to pre-register?

(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)
Questionnaire data from a measure of social communication difficulties will be collected for the
adolescents in the sample. Therefore, sample size permitting, additional exploratory analysis
predicting attentional engagement with and orienting to social interactions based on their
questionnaire self-reports will be conducted.
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3. Pre-registration of “Attentional competition of social interactions in naturalistic

scenes” in Chapter 4 (#33540)

1) Have any data been collected for this study already?
It's complicated. We have already collected some data but explain in Question 8 why readers
may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?

Is there an attentional bias towards social interactions in naturalistic scenes containing multiple
people (i.e., more than two people)? If so, how is this attentional bias altered by increasing the
attentional competition with other social stimuli by increasing the number of people in the scene?

3) Describe the key dependent variable(s) specifying how they will be measured.
Eye-tracking data (time to first fixation and dwell time in pre-defined human and background
areas of interest) will be collected during a 5 second free-viewing of naturalistic scenes that
either depict social interactions, or not. Scenes will contain 3 or 4 people.

4) How many and which conditions will participants be assigned to?

This is a whithin-subjects design where participants view all scenes. Based on the ratings of 26
independent judges, 30 photographs depicting three agents and 22 photographs depicting four
agents have been selected and assigned in equal number to either the interactive or non-
interactive condition. Thus, there are two relevant factors - number of people in the scene (3 or
4) and whether a two-person interaction is taking place in the scene (interactive or not).

5) Specify exactly which analyses you will conduct to examine the main
question/hypothesis.

Areas of interest (AOIs) have been defined for each picture. These include each human as
separate AOIs and all background elements as a single AOI. For some analyses, we will combine
all human AOIs into a single AOI (human). The time to first fixation data and dwell time data to
these AOIs will be analysed separately using linear mixed-effect (multilevel) modelling in R (R
Development Core Team, 2015), if applicable. To be more specific, a basic comparison of a
model where the intercept is held constant and one where it is allowed to vary between
participants will be conducted first to determine whether hierarchical structure should be taken
into account.

If so, separate multilevel analyses will be conducted for each research question. For the first
research question the model will have a 2 (scene: interacting or non interacting) x 2 (number of
people in the picture: 3 or 4) x 2 (AOI: human or background) predictor structure. For the second
research question only the interactive pictures will be analysed, and the model will have a 2
(number of people in the picture: 3 or 4) x 3 (AOI: interacting humans, non interacting humans
and background) predictor structure.

If there's no variance at the participant level, ANOVAs with the same structure or predictors will
be carried out.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for
excluding observations.
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Only participants who have failed the calibration procedure or otherwise did not produce
accurate data (e.g. due to technical issues or sleepiness) will be fully excluded. Otherwise, only
specific trials where participants have engaged with the target for less than 33% of the time will
be removed. If that results in the participant having less than 33% of usable trials, they will also
be removed from any further analysis. Finally, if assumptions regarding a normal distribution of
residuals are violated, the steps outlined by Tabachnick and Fidell (2007) to ensure the most
efficient correction of distribution will be utilised.

7) How many observations will be collected or what will determine sample size?
No need to justify decision, but be precise about exactly how the number will be determined.

Data collection will continue until 231 participants are reached or until 31st of July 2020,
whichever comes first. Sample size was determined with a priori power calculation designed to
reach 80% power (a <.05) to detect a medium effect size (Cohen's f=.25) of AOI, scene type
and people in the scene on participants' time to first fixation or dwell time.

8) Anything else you would like to pre-register?

(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)
Only pilot data has so far been collected and analysed, and will not be included in the main
analysis.
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4. Pre-registration of “ Development of the attentional priority of social interactions in

naturalistic scenes” in Chapter 4 (#38336)

1) Have any data been collected for this study already?
It's complicated. We have already collected some data but explain in Question 8 why readers
may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?

Does the attentional bias towards human information persist in naturalistic scenes containing
more than two people, and is it moderated by the presence of interactive content in the scene?
How is the attentional bias to social interactions, if any, altered by increasing the attentional
competition with other social stimuli through the number of people in the scene? Furthermore,
how do these attentional mechanisms change across development?

3) Describe the key dependent variable(s) specifying how they will be measured.
Eye-tracking data (time to first fixation and proportional dwell time in pre-defined human and
background areas of interest - AOIs) are collected during a 5 second free-viewing of naturalistic
scenes that either depict social interactions or not. Scenes will contain 3 or 4 people.

4) How many and which conditions will participants be assigned to?

This is a mixed design. All participants view all scenes. Based on the ratings of 26 independent
judges, 30 photographs depicting three agents and 22 photographs depicting four agents have
been selected and assigned in equal number to either the interactive or non-interactive condition.
Thus, there are three relevant within-subject factors - number of people in the scene (3 or 4),
whether a two-person interaction is taking place in the scene (interactive or not) and the AOI
type (humans or background). The between-subject factor is age [adults (18-35) and
developmental group (6-17 - see below)] (adults' data is discussed in AsPredicted#33540).

5) Specify exactly which analyses you will conduct to examine the main
question/hypothesis.

Separate multilevel modelling analyses will be conducted for each research question, if possible.
The participant information will be modelled at the highest level where participants’ age will be
included as a predictor for both research questions. For both research questions the model will
have other 2 predictors. For the first one these will be scene (interacting or non-interacting) and
AOI (human or background), while for the second these will be AOI (interacting humans, non-
interacting humans, within the interacting pictures) and number of people in the picture (3 or 4).
If there is no variance at the participant level within each group, mixed ANOVAs with the same
predictors will be carried out.

The participants’ age at the time of data collection will be modelled either as a continuous or a
categorical variable. The decision will be made based on the graphical visualisation of the data.
If a linear relationship is observed, age will be used as a continuous variable. If a quadratic
relationship between age and social interaction attention is suggested, age will be used as a
categorical variable.
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6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for
excluding observations.

Only participants who have failed the calibration procedure or otherwise did not produce
accurate data (e.g. due to technical issues or sleepiness) will be fully excluded. Otherwise, only
specific trials where participants have engaged with the target for less than 33% of the time will
be removed. If trial exclusion results in the participant having less than 33% usable trials, they
will also be removed from any further analysis. Finally, if assumptions regarding a normal
distribution of residuals are violated, the steps outlined by Tabachnick and Fidell (2007) to
ensure the most efficient correction of distribution will be utilised.

7) How many observations will be collected or what will determine sample size?
No need to justify decision, but be precise about exactly how the number will be determined.

Data collection will continue until we have 90 participants in the developmental sample (for the
adult sample power analysis, see AsPredicted#33540) in order to detect a large effect size
(Cohen's f=.40) and reach 80% power (a <.05), but we will not collect more than the 222
youths necessary to detect a medium effect size (Cohen’s £=.25), or will cease at the end of the
academic year, on 21st of July 2020 , whichever comes first.

8) Anything else you would like to pre-register?
(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)
Data collection has been already started, but no data has yet been extracted and/or analysed.
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5. Pre-registration of “Attention to ambiguous social scenes” in Chapter 5 (#32800)

1) Have any data been collected for this study already?
It's complicated. We have already collected some data but explain in Question 8 why readers
may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?
Does gaze processing of ambiguous social scenes depend on whether they are perceived as
depicting an interaction between two people or not?

3) Describe the key dependent variable(s) specifying how they will be measured.
Eye-tracking data (time to first fixation and dwell time) will be collected during free-viewing of
naturalistic scenes depicting two human agents.

4) How many and which conditions will participants be assigned to?

This is a within participant design with 4 repeated measures. Based on the ratings of 26
independent judges, 30 photographs depicting two agents have been selected as ambiguous
pictures. These pictures were chosen as they could not be categorised as clearly interactive or
non-interactive. Each picture instead will be categorised by each participant as either interactive
or not-interactive, in their own view. Two areas of interest (human and background AOIs) were
further defined for each photograph.

5) Specify exactly which analyses you will conduct to examine the main
question/hypothesis.

The time to first fixation data and dwell time data will be analysed separately using linear mixed-
effect (multilevel) modelling in R, if applicable. A basic comparison of a model where the
intercept is held constant and one where it is allowed to vary between participants will be
conducted first to determine whether hierarchical structure should be taken into account.

If so, the eye-tracking data on ambiguous photographs will be analysed using a four-level
hierarchical model with a 2x2 design. The participant information will be modelled at the highest
(fourth) level. Nested within each participant, trial information with the participants’
categorisation (interacting or non-interacting) will be modelled as a third level predictor, whilst
AOI type (human or background) will modelled at the second level. Finally, raw data per each
AOI will modelled at the first level, nested within each trial and participant.

If the initial comparison suggests that hierarchical modelling of random intercepts would not
result in an increased model fit, two 2 (scene: interacting or non-interacting) x2 (AOI: human or
background) repeated measures ANOVA would be conducted instead. Averages for
interacting/non-interacting conditions would need to be calculated on person by person basis
depending on their categorisation of the pictures.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for
excluding observations.

Participants who did not produce accurate data (e.g. due to calibration, technical issues or
sleepiness) will be fully excluded. Specific trials where participants have engaged with the target
for less than 33% of the time will also be removed. If that results in the participant having less
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than 33% of usable trials, they will also be removed from further analysis. Finally, if
assumptions of normal distribution are violated, the steps outlined by Tabachnick and Fidell
(2007) to ensure the most efficient correction of distribution will be utilised.

7) How many observations will be collected or what will determine sample size?
No need to justify decision, but be precise about exactly how the number will be determined.

Data will be collected from 70 participants. Sample size was determined with an a priori power
calculation based on the pilot dwell time data showing increased attention to human figures in
photographs judged as interactive by independent judges (n2 = 0.68). The power calculation was
designed to reach 80% power (a < .05) to detect a large effect size (Cohen's f = .40) of AOI and
scene categorisation on participants' gaze behaviour.

8) Anything else you would like to pre-register?
(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)
The data collection has now started, but no data has yet been extracted or analysed.
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6. Pre-registration of “Development of attention to ambiguous social scenes” in

Chapter 5 (#43713)

1) Have any data been collected for this study already?
It's complicated. We have already collected some data but explain in Question 8 why readers
may consider this a valid pre-registration nevertheless.

2) What's the main question being asked or hypothesis being tested in this study?

Does the way participants allocate attention within ambiguous social scenes depend on whether
the scene is perceived as containing a social interaction or not? Does the extent to which visual
attention within a scene is influenced by the perceived social content change across
development?

3) Describe the key dependent variable(s) specifying how they will be measured.
Eye-tracking measures (time to first fixation and dwell time in defined areas of interest — AOIs)
collected during 5 seconds of free exploration of naturalistic scenes depicting two human agents.

4) How many and which conditions will participants be assigned to?

This is a mixed design with four repeated measures, and age as a between subjects factor. Based
on the ratings of 26 independent judges, 30 photographs depicting two agents have been selected
as ambiguous pictures. These pictures were chosen as they could not be categorised as clearly
interactive or non-interactive. Each picture instead is categorised as interactive or non-interactive
by each participant. Two areas of interest (human and background AOIs) were defined for each
photograph. The between-subject factor is age [adults (18-35) and developmental group (6-17 -
see below)] (adults' data is discussed in AsPredicted#32800).

5) Specify exactly which analyses you will conduct to examine the main
question/hypothesis.

The time to first fixation data and dwell time data will be analysed separately using linear mixed-
effect (multilevel) modelling in R, if applicable. The participant information will be modelled at
the highest level where participants’ age will be included as a predictor. Nested within each
participant, trial information with the participants’ categorisation (interacting or non-interacting)
will be modelled as a third level predictor, whilst AOI type (human or background) will
modelled at the second level. Finally, raw data per each AOI will modelled at the first level,
nested within each trial and participant.

If there is no variance at the participant level within each group, mixed ANOV As with the same
predictors will be carried out.

The participants’ age at the time of data collection will be modelled either as a continuous, or a
categorical variable. The decision will be made before the models are fitted based on the
graphical visualisation of the data. If a potential linear relationship is observed, age will be used
as a continuous variable. If a quadratic relationship between age and social interaction attention
is suggested, instead, age will be used as a categorical variable.

6) Describe exactly how outliers will be defined and handled, and your precise rule(s) for
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excluding observations.

Only participants who have failed the calibration procedure or otherwise did not produce
accurate data (e.g. due to technical issues or sleepiness) will be fully excluded. Otherwise, only
specific trials where participants have engaged with the target for less than 33% of the time will
be removed. If trial exclusion results in the participant having less than 33% usable trials, they
will also be removed from any further analysis. Finally, if assumptions regarding a normal
distribution of residuals are violated, the steps outlined by Tabachnick and Fidell (2007) to
ensure the most efficient correction of distribution will be utilised.

7) How many observations will be collected or what will determine sample size?
No need to justify decision, but be precise about exactly how the number will be determined.

Data collection qill continue until we have 90 participants in the developmental sample (for the
adult power analysis, see AsPredicted#32800) in order to detect a large effect size (Cohen's
f=.40) and reach 80% power (a < .05). ). Because of the Covid-19 pandemic, however, we are
uncertain of our ability to recruit this sample in a reasonable time frame, and so may be forced to
halt data collection before reaching 90 participants if we have been unable to collect a full
sample before 31st December, 2020.

8) Anything else you would like to pre-register?
(e.g., secondary analyses, variables collected for exploratory purposes, unusual analyses planned?)
Data collection has been already started, but no data has yet been extracted and/or analysed.
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Appendix B — Stimuli

1. Stimuli used in Chapter 3
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Figure §2. Stimuli set used in the non-interactive condition.
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2. Stimuli used in Chapter 4

Figure §3. Stimuli set used in the interactive condition.



209

Figure S4. Stimuli set used in the non-interactive condition.
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3. Stimuli used in Chapter 5

Figure S4. Stimuli set used in the ambiguous condition.



211

Appendix C — Supplementary materials for chapter 3

S1: AOI size information in pixels

Table S1a. Main effects and interactions for a 2 (type of scene) x 2 (type of AOI) mixed
ANOVA on the AOI size in pixels.

Predictor Df F - value | p-value 772p
Type of scene 1,58 0.00 .99 <.001

AOI 1,58 207.16 <.001 78

scene * AOI 1,116 7.99 .01 .06

Table S1b. Pairwise comparisons for the scene*AOI interaction, corrected with HSD Tukey for

multiple comparisons.

Group Contrast Df t-value | p- value d
Interactive scenes Social - Background 116 -8.18 <.001 |-0.76
Non-Interactive scenes Social - Background 116 -12.18 <.001 |-1.13
Social AOI Interactive — Non-interactive 116 1.99 A5 0.19
Background Interactive — Non-interactive 116 -2 14 -0.19

Table Sic. Descriptive statistics for AOI sizes across conditions.

Type of scene AOI Mean area (px) SD
Social 259379.99 104248.82
Interactive
Background 505413.42 104861.75
Non-interactive Social 199358.06 127111.07
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Figure Sla. Violin plots for mean size of AOIs (px) across interactive and non-interactive
scenes. Error bars represent 95% confidence intervals. Only significant — at p <.05 level —

comparisons shown.

S2: Data transformation information across the chapter

2a. Logl0 transformation of the time to first fixation data in Experiment 1.

The Anderson-Darling test for normality (4 = 643.25, p <.001) and visual inspection of
residuals showed that this data was positively skewed, therefore a logarithm in base 10
transformation was applied to the data to reduce skewness. After transformation, however, the
Anderson test for normality was still significant (4 = 141.24, p <.001) although the
transformation improved the graphical shape of the distribution.

In the model with the transformed data, results were similar to those found using the
untransformed data, resulting in a main effect of AOI type but no main effect of type of scene,

and an interaction between the two.
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Participant, type of scene and AOI were set as random effects, SD = 0.11, y%(3) =555.29,p <
.001, and when we added the size of AOIs as a random effect, the model did not change

significantly, SD = 0.31, x?(3) = 0.00, p = .99.

See Table S2a for main effects, Table S2b for descriptive statistics and Figure S2a for mean

transformed time to first fixation across conditions.

Table S2a. Main effects and interactions in the model with a 2 (type of scene) * 2 (AOI)

structure, for time to first fixation in experiment 1.

Predictor numDF denDF F - value | p- value Uzp
Type of scene 1 69 0.0 91 .00
AOI 1 138 559.8 <.001 .80

Type of scene*AOI 1 138 37.6 <.001 21

Table S2b. Descriptive statistics for transformed time to first fixation to each AOI, in each

condition in experiment 1.

Type of scene AOI Mean SD
Social 2.55 0.23
Interactive
Background 2.80 0.36
Social 2.60 0.27
Non-interactive
Background 2.75 0.37
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Figure S2a. Violin plots for transformed mean time to first fixation for human and background

AQIs in interactive and non-interactive scenes. Error bars represent 95% confidence intervals.

2b. Log10 transformation of the time to first fixation data in Experiment 2.

The Anderson-Darling test for normality (4 = 505.78, p <.001) and visual inspection of
residuals showed that this data was positively skewed, therefore a logarithm in base 10
transformation was applied to the data to reduce skewness. After transformation, however, the
Anderson test for normality was still significant (4 = 129.78, p <.001) although the

transformation improved the graphical shape of the distribution.

In the model with the transformed data, results were similar to those found using the
untransformed data, resulting in a main effect of age and a main effect of AOI type but no main
effect of type of scene, and an interaction between the age and AOI as well as an interaction
between scene-type and AOL.

Participant, type of scene and AOI were set as random effects, SD = 0.11, y2(3) =411.98, p <
.001, and when we added the size of AOIs as a random effect, the model did not change
significantly, SD = 0.30, xy%(3) = 0.00, p = .99.
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See Table S2c¢ for main effects, Table S2d for descriptive statistics and Figures S2b, S2¢ and S2d

for mean transformed time to first fixation across conditions and ages.

Table S2c. Main effects and interactions in the model with an age * 2 (type of scene) * 2 (AOI)

structure, for time to first fixation in experiment 2.

Predictor numDF denDF F - value | p- value "y
Age 1 52 5.35 .03 .09
Type of scene 1 52 0.05 .83 <.001
AOI 1 104 419.15 <.001 .80
Age*type of scene 1 52 0.16 .70 <.001
Age*A0l 1 104 7.96 <.001 .07
Type of scene*AOI 1 104 12.76 <.001 A1
Age*scene*AOl 1 104 0.25 .62 <.001

Table S2d. Descriptive statistics for transformed time to first fixation to each AOI, in each

condition in experiment 2.

Type of scene AOI Mean SD
Social 2.60 0.24
Interactive
Background 2.82 0.35
Social 2.63 0.26
Non-interactive
Background 2.79 0.35
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confidence intervals.

2c. Logl0 transformation of the time to first fixation data in analysis comparing children and
adult.

The Anderson-Darling test for normality (4 = 1144.7, p <.001) and visual inspection of
residuals showed that this data was positively skewed, therefore a logarithm in base 10
transformation was applied to the data to reduce skewness. After transformation, however, the
Anderson test for normality was still significant (4 = 267.12, p <.001) although the

transformation improved the graphical shape of the distribution.

In the model with the transformed data, results were similar to those found using the
untransformed data, resulting in a main effect of age and a main effect of AOI type but no main
effect of type of scene, an interaction between scene-type and AOI, and no moderation of AOI or

scene by age.
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See Table S2e for main effects, Table S2f for descriptive statistics and Figures S2e for mean

transformed time to first fixation across conditions, AOIs and ages.

Table S2e. Main effects and interactions in the model with a 2 (age-group) * 2 (type of scene) * 2

(AOI) structure, for transformed time to first fixation in the developmental change analysis.

Predictor numDF denDF F - value | p- value Uzp
Age 1 122 19.9 <.001 14
Type of scene 1 122 0.1 .82 <.001
AOI 1 244 953.9 <.001 .80
Age*type of scene 1 122 0.0 .90 .00
Age*A0l 1 244 0.4 .55 <.001
Type of scene*AOI 1 244 47.9 <.001 .16
Age*scene*AOl 1 244 2 .16 .01

Table S2f. Descriptive statistics for transformed time to first fixation to each AOI, in each

condition and age-group in the developmental change analysis.

Age-group Type of scene AOI Mean SD
Social 2.60 0.24

Interactive
Background 2.82 0.35

Children
Social 2.63 0.26
Non-interactive

Background 2.79 0.35
Social 2.55 0.23

Interactive
Background 2.80 0.36

Adults

Social 2.60 0.27

Non-interactive

Background 2.75 0.37
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Figure S2e. Violin plots for transformed mean time to first fixation for human and background
AOIs in interactive and non-interactive scenes, in the two age-groups. Error bars represent 95%

confidence intervals.

S3: Missing trials modelling

3a. Models of the dwelling time and time to first fixation including the number of missing trials
as a fixed effect in experiment 2.

For each of the two measures, we performed a model including age, type of scene, AOI, and
missing trials as fixed effects, and participant, type of scene, and type of AOI as random effects.

See Tables S3a and S3b for the main effects of the two models.

Table S3a. Main effects and interactions in the model with an age * 2 (type of scene) * 2 (AOI) *

missing trials structure, for dwelling time in experiment 2.
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Predictor numDF denDF F - value | p- value 772p
Age 1 51 1.98 17 .04
Type of scene 1 52 0.04 .84 <.001
AOI 1 104 73.33 <.001 41
Missing trials 1 51 17.87 <.001 .26
Age*type of scene 1 52 0.03 .86 <.001
Age*A0l 1 104 13.74 <.001 A2
Type of scene*AOI 1 104 33.17 <.001 24
Age*scene*AOI 1 104 0.16 .69 <.001

Table S3b. Main effects and interactions in the model with an age * 2 (type of scene) * 2 (AOI) *

missing trials structure, for time to first fixation in experiment 2.

Predictor numDF denDF F - value | p- value Uzp
Age 1 51 3.99 .05 .07
Type of scene 1 52 0.001 97 <.001
AOI 1 104 310.84 <.001 75
Missing trials 1 51 0.33 57 .01
Age*type of scene 1 52 0.04 .84 <.001
Age*AOl 1 104 7.31 .01 .07
Type of scene*AOI 1 104 7.64 .01 .07
Age*scene*AOI 1 104 0.02 .90 <.001

3b. Models of the dwelling time and time to first fixation including missing trials as a fixed

effect in the developmental changes analysis.
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For each of the two measures, we performed a model including age, type of scene, AOI and
missing trials as fixed effects, and participant, type of scene, type of AOI as random effects. See

Tables S3c¢ and S3d for the main effects of the two models.

Table S3c. Main effects and interactions in the model with a 2 (age-group) * 2 (type of scene) * 2

(AOI) * missing trials structure, for dwelling time in the developmental changes analysis.

2

Predictor numDF denDF F - value | p-value Ny
Age 1 121 1.42 24 .01
Type of scene 1 122 0.39 .54 <.001
AOI 1 244 77.25 <.001 24
Missing trials 1 121 19.49 <.001 .16
Age*type of scene 1 122 0.53 .82 <.001
Age*AOl 1 244 12.46 <.001 .05
Type of scene*AOI 1 244 74.91 <.001 23
Age*scene*AOl 1 244 0.00 .99 <.001

Table S3d. Main effects and interactions in a 2 (age-group) * 2 (type of scene) * 2 (AOI) *

missing trials model, for time to first fixation in the developmental changes analysis.

Predictor numDF denDF F - value | p-value Uzp
Age 1 121 5.73 .02 .05
Type of scene 1 122 0.01 .94 <.001
AOI 1 244 717.30 <.001 75
Missing trials 1 121 1.77 19 .01
Age*type of scene 1 122 0.02 .88 <.001
Age*AOl 1 244 0.00 .99 .00
Type of scene*AOI 1 244 27.73 <.001 .10
Age*scene*AOl 1 244 0.80 .37 <.001




S4: Developmental model descriptive statistics

Table S4a. Descriptive statistics for dwelling time to each AOI, in each condition and in each

age-group.

Age-group Type of scene AOI Mean SD
Social 2101.30 1058.53
Interactive
Background 1558.98 1059.22
Children
Social 1875.93 1125.79
Non-interactive
Background 1770.75 1092.72
Social 1986.53 910.75
Interactive
Background 1622.93 893.27
Adults
Social 1745.58 939.49
Non-interactive
Background 1820.25 916.49
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Table S4b. Descriptive statistics for time to first fixation to each AOI, in each condition and in

each age-group.

Age-group Type of scene AOI Mean SD
Social 490.84 502.07
Interactive
Background 935.83 874.19
Children
Social 547.66 592.68
Non-interactive
Background 870.38 847.26
Social 440.54 462.51
Interactive
Background 910.34 836.14
Adults
Social 528.11 598.08
Non-interactive
Background 824.77 806.03
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Appendix D — Supplementary materials for chapter 4
S1. Descriptive statistics across the main text

Table S1a. Descriptive statistics for dwelling time (ms) in each age-group, condition and AOI for

Part 1.

Age-group Scene AOI Mean SD

Social 1962.21 1123.69
Interactive

Background 1722.64 1087.60
Social 2036.18 1113.80
Background 1606.81 1092.14

Children (N = 54)

Non-interactive

Social 2003.77 950.54
Interactive

Background | 1607.67 926.69
Adults (N =98)

Social 2101.20 901.19
Non-interactive

Background 1493.05 887.95

Table S1b. Descriptive statistics for dwelling time (ms) to each AOI, in the interactive three and

four people pictures, in part 2a.

People | AOI - Human Mean SD
Interacting 663.31 409.83
3 Not interacting 612.02 530.38
Interacting 542.50 360.42
’ Not interacting 503.86 353.55
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Table Sic. Descriptive of untransformed time to first fixation in the two age-groups, in three and

four people pictures, to interacting and non-interacting individuals, for part 2c.

Age-group People AOQI - Human Mean SD
Interacting 801.71 834.77
3
Not-interacting 1355.23 1183.20
Children (N = 54)
Interacting 1000.15 1002.07
4
Not-interacting 1138.38 1035.49
Interacting 761.44 772.39
3
Not-interacting 1312.54 1095.81
Adults (N =98)
Interacting 903.94 830.32
4

Not-interacting 1127.11 965.27

S2. Other models

2a. Analysis of the dwelling time with a 2 (people) x 2 (type of scene) x 2 (AOI) structure in part
1.

The structure of the variance within the model after adding the number of people as a
fixed factor did not change: random effects were participant, condition and AOI (SD =

323.86, x*(3) = 851.17, p <.001). See Table S2a for main effects.

Table S2a. Main effects and interactions in the model with a 2 (number of people in the scene) *

2 (type of scene) * 2 (AOI) structure, for exploratory analyses of dwelling time in Part 1.

Predictor numDF denDF F -value | p-value Uzp
people 1 14982 3.03 .08 <.001
type of scene 1 151 0.28 .60 .002

AOI 1 302 335.94 <.001 .53
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scene * AOI 1 302 17.99 <.001 .06
people * AOI 1 14982 23.14 <.001 .002
scene * people 1 14982 0.14 71 <.001

people * scene * AOI 1 14982 107.16 <.001 0.01
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Figure S2a. Violin plot for mean dwell time for AOIs across types of scenes. Error bars represent

95% confidence intervals.

Table S2b. Descriptive statistics for dwelling time (ms) in the 3 and 4 people pictures, in each

condition and AOI for Part 1 — exploratory analyses.

Number of people Scene AOI Mean SD
Social 1938.91 1010.47
3 Interactive
Background | 1670.51 997.72




Social 2169.10 1003.61
Non-interactive
Background 1424.11 998.06
Social 2057.78 1015.76
Interactive
Background | 1616.77 972.01
4
Social 1955.49 935.45
Non-interactive
Background 1680.25 898.67

226

2b. Analysis of the dwelling time with a 2(age-group) x 2 (people) x 2 (type of scene) x 2 (AOI)

structure in part 1 — Exploratory analyses.

Table S2c. Main effects and interactions in the model with a 2 (age-group) * 2 (number of people

in the scene) * 2 (type of scene) * 2 (AOI) structure.

Predictor numDF | denDF | F-value | p- value n,
age-group 1 150 1.22 27 0.01
type of scene 1 150 0.29 .59 <0.001
AOI 1 300 342.81 <.001 0.53
people 1 14978 3.03 .08 <0.001
age * scene 1 150 0.05 .82 <0.001
age * AOI 1 300 10.87 .001 0.03
age * people 1 14978 1.56 21 <0.001
scene * AOI 1 300 18.36 <.001 0.06
scene * people 1 14978 0.14 1 <0.001
age * scene * AOI 1 300 0.05 .83 <0.001
people * scene * AOI 2 14978 65.21 <.001 0.01
age * people * scene 1 14978 0.14 71 <0.001
age * people * scene * AOI 2 14978 6.47 .002 <0.001
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Table S2d. Descriptive statistics for dwelling time (ms) in each age-group, by scenes varying by

number of people, social content and AOL.

Age-group People Scene AOI Mean SD
Social 1939.39 1123.37
Interactive
Background | 1702.39 110.33
3 Social 2083.02 1135.46
Non-interactive
Background | 1512.32 1133.50
Children (N = 54)
Social 1992.96 1124.35
Interactive
A Background | 1749.92 1056.56
Social 1972.40 1081.31
Non-interactive
Background | 1735.49 1020.14
Social 1938.65 945.36
Interactive
Background | 1653.56 932.28
3
Social 2215.19 922.42
Non-interactive
Background | 1376.87 914.27
Adults (N =98)
Social 2092.72 950.82
Interactive
Background | 1545.00 915.73
4
Social 1946.47 847.78
Non-interactive
Background | 1650.76 825.55

2c. Analysis of the time to first fixation with a 2 (people) x 2 (type of scene) x 2 (AOI) structure

in part 1 — Exploratory analyses.

Table S2e. Main effects and interactions in the model with a 2 (number of people in the scene) *

2 (type of scene) * 2 (AOI) structure for time to first fixation in part 1 — Exploratory analyses.

Predictor

numDF denDF

F - value

p- value

2

Ty

people

1 14565

0.3

.59

<.001
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type of scene 1 151 0.4 .55 .003
AOI 1 302 323.3 <.001 52

scene * AOI 1 302 29.8 <.001 <.001
people * AOI 1 14565 26.7 <.001 .002
scene * people 1 14565 0.3 .62 .09

people * scene * AOI 1 14565 12.6 <.001 <.001

Table S2f. Descriptive statistics for transformed time to first fixation to each AOI, across types of

scenes and different number of people.

People Scene AOI Mean SD
Social 2.63 0.27

Interactive
Background 2.72 0.35
3 Non- Social 2.59 0.25
interactive Background 2.77 0.38
Social 2.64 0.27

Interactive
Background 2.71 0.35

4

Non- Social 2.63 0.26
interactive Background 2.72 0.35

2d. Models of dwelling time without the pictures with extremely large interacting humans in the

Exploratory analyses in part 2c.

Table S2g. Main effects and interactions in the model with a 2 (age-group) * 2 (number of people
in the scene) * 2 (AOI) structure for square root transformed dwelling time in part 2c —

Exploratory analyses.

Predictor numDF denDF | F-value | p- value n,
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age 1 150 20.02 <.001 <.001
people 1 150 5.69 .02 <.001
AOI 1 6592 68.64 <.001 32
age*people 1 150 0.05 .82 <.001
people*AOI 1 14565 14.14 <.001 .002
age*AOI 1 6592 7.85 .01 .09
age*people*AOI 1 6592 3.76 .05 <.001
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Figure §2b. Violin plot for mean square root dwell time for AOIs across types of scenes for part

2c¢ — Exploratory analyses. Error bars represent 95% confidence intervals.

2e. Models of time to first fixation without the pictures with extremely large interacting humans

in the Exploratory analyses in part 2c.

Table S2h. Main effects and interactions in the model with a 2 (age-group) * 2 (number of people

in the scene) * 2 (AOI) structure for time to first fixation in part 2c — Exploratory analyses.

2

Predictor numDF denDF F - value | p- value ny
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age 150 2.15 A5 .01
people 150 0.38 .54 <.001
AOI 300 184.89 <.001 38
age*people 150 0.15 .70 <.001
people*AOI 300 32.78 <.001 <.001
age*AOI 300 1.94 17 <.001
age*people*AOI 300 0.08 78 <.001
Children Adults
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Figure S2c. Violin plot for mean time to first fixation for AOIs across types of scenes for part 2¢

— Exploratory analyses. Error bars represent 95% confidence intervals.

S3. AOI size information in pixels

3a. Size in pixels of the AOIs for the part 1 of the manuscript. The human AOI size for this part

was calculated by summing the area of all the humans in the scene.

Table S3a. Descriptive statistics of AOI size across types of scenes (interactive or non-

interactive), in 3 and 4 people scenes.
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Number of people | Type of scene AOI Mean area (px) SD
Social 236829.35 149505.40
Interacting
; Background 546053.76 148704.87
Non- Social 190466.39 98728.34
interacting Background 524726.00 129910.31
Social 191828.78 133692.74
Interacting
A Background 592568.08 132905.95
Non- Social 258886.95 129208.32
interacting Background 599237.02 112235.09

Table S3b. Main effects in an ANOVA with a 2 (number of people) x 2 (type of scene) x 2 (type
of AOI) structure, on the AOI size in pixels.

Predictor Df F -value | p-value Uzp
people 1,48 0.001 .98 <.001
type of scene 1,48 0.00 .99 .00
AOI 1,48 167.94 <.001 78
scene * AOI 1,96 0.14 71 <.001
people*condition 1.96 0.00 .99 .00
people*AOI 1,96 5.14 .03 .05
people*scene*AOI 1,96 0.29 .60 <.001
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Figure §3a. Violin plots for mean size of AOIs (px) across 3 and 4 people scene, in the

interactive and non-interactive conditions. Error bars represent 95% confidence intervals.

3b. Model on the pictures depicting three people, with participant, type of scene and AOI as
random effects, and type of scene, AOI and size of the AOI as fixed effects, to investigate the
role of the size of the AOI in moderating social orienting in interactive and non-interactive
scenes. Intercepts were therefore, similarly to the models used for the main analysis, allowed to
vary at participant, condition and AOI level (SD = 340.63, y%(3) = 398.41, p <.001). See table

S3c¢ for main effects.

Table S3c. Main effects and interactions in the model with a 2 (type of scene) * 2 (AOI)

structure, and area of AOI as continuous predictor.

Predictor numDF denDF F-value | p-value lep
type of scene 1 151 0.09 .76 <.001
AOI 1 302 380.51 <.001 .56
area 1 8372 2969.39 <.001 .26
scene * AOI 1 302 37.60 <.001 A1
area * scene 1 8372 0.25 .61 <.001
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area * AOI 1 8372 0.41 .52 <.001

scene * AOI * area 1 8372 0.94 33 <.001

3c. Model on the pictures depicting three people, with participant, type of scene and AOI as
random effects, and type of scene, AOI and size of the AOI as fixed effects, to investigate the
role of the size of the AOI in moderating time to first fixation in interactive and non-interactive
scenes. Intercepts were therefore, similarly to the models used for the main analysis, allowed to
vary at participant, condition and AOI level (SD = 0.80, y%(3) = 143.96, p < .001). See table S3d

for main effects.

Table S3d. Main effects and interactions in the model with a 2 (type of scene) * 2 (AOI)
structure, and area of AOI as continuous predictor for time to first fixation in part 1 —

Exploratory analyses.

Predictor numDF denDF F - value | p- value Uzp
type of scene 1 151 0.6 45 .004

AOI 1 302 335.6 <.001 .53

area 1 8085 640.3 <.001 .07

scene * AOI 1 302 25.7 <.001 .08
area * scene 1 8085 3.5 .06 <.001
area * AOI 1 8085 21.3 <.001 .003
scene * AOI * area 1 8085 0.4 .50 <.001

3d. Size in pixels of the AOIs for the part 2 of the manuscript. The human AOI size for this part

was calculated by averaging the area of all the humans in the scene per condition.

Table S3e. Descriptive statistics of human AOI size in the interactive 3 and 4 people scenes (part

2 of the main text).



Number of
Type of human Mean area (px) SD
people
; Interacting 90447.79 67234.26
Non-interacting 55933.77 30619.67
Interacting 43494.58 34747.44
4
Non-interacting 52419.81 44462.59

Table S3f. Main effects in an ANOVA with a 2 (number of people) x 2 (type of human AOI)

structure, on the AOI size in pixels, for part 2.

Predictor Df F -value | p-value 772p
people 1,48 3.58 .06 .07
type of AOI 1,48 1.5 23 .03
people*AOI 1,96 2.66 A1 .05
250000 1 [ - 1
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Figure S3a. Violin plots for mean size of AOIs (px) across 3 and 4 people scene, in the

interactive and non-interactive conditions. Error bars represent 95% confidence intervals.

S4. Interpersonal spaces analysis for exploratory analyses in part 1

4a. Space analysis in part 1.

For each 3-person picture that contained a social interaction (number of scenes) we
created hand-drawn AOIs of the space between the two interacting humans, between the
interacting human and the non-interacting human in the interactive scenes, and the space
between each pair of non-interacting humans in the non-interactive scenes. For each interactive
scene we had, therefore, a dwell time value for the interactive space and one for the mixed space,
and for each non-interactive scene a dwell time value for the non-interactive space, given by the
average dwell time to all the spaces in the scene.

The same cleaning procedures were followed as for the main analysis. Additionally,
because an interactive space was necessary in this analysis, we excluded 5 pictures from the
interactive category either because the interactive space was interrupted by a human or there was

no interactive space at all (give an example of why this might be).

Table S4a. Descriptive statistics for dwelling time (ms) in each age-group, and type of

interpersonal space.

Age-group AOI — spaces Mean SD
Interactive 380.06 545.72
Children (N = 54) Mixed 256.14 510.50
Non-interactive 300.18 412.55
Interactive 384.38 472.47
Adults (N =98) Mixed 211.41 358.13
Non-interactive 255.07 313.39
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Table S4b. Descriptive statistics for time to first fixation in each age-group, and type of

interpersonal space.

Age-group AOI — spaces Mean SD
Interactive 1310.10 1192.94
Children (N = 54) Mixed 1670.41 1444.46
Non-interactive 1051.85 1096.12
Interactive 1368.12 1177.34
Adults (N =98) Mixed 1550.11 1328.16
Non-interactive 1111.55 1123.42

S5. Data transformations

Sa. Details on time to first fixation log-transformation in part 1.

The Anderson-Darling test for normality (4 = 1420.7, p <.001) and visual inspection of
residual values showed that the time to first fixation data is positively skewed, therefore a
logarithm in base 10 was applied to the data to improve skewness. After transformation, the
Anderson test for normality was still significant (4 = 436.26, p <.001) although the graphical

shape of the distribution improved.

Table S5a. Descriptive statistics for log-transformed time to first fixation in each age-group,

condition and AOI, for part 1 analyses.

Age-group Scene AOI Mean SD
Social 2.66 0.28
Interactive
Background 2.73 0.33
Children (N = 54)
Social 2.65 0.27
Non-interactive
Background 2.77 0.35

Adults (N =98) Interactive Social 2.62 0.27
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Background 2.70 0.36
Social 2.59 0.24

Non-interactive
Background 2.74 0.37

Table S5b. Descriptive statistics for untransformed time to first fixation in each age-group,

condition and AOL.

Age-group Scene AOI Mean SD
Social 609.37 685.38
Interactive
Background 758.85 782.85
Children (N = 54)
Social 579.31 631.77
Non-interactive
Background 850.34 848.58
Social 536.73 540.94
Interactive
Background 750.82 810.77
Adults (N =98)
Social 476.30 465.29

Non-interactive

Background 819.85 838.58
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Figure S5a. Violin plot for mean untransformed time to first fixation to social and non-social
AOI across types of scenes in the two age-groups. All contrasts between human and background

are significant at p <.001. Error bars represent 95% confidence intervals.
5b. Square root transformation details of time to first fixation in part 2.a

The Anderson-Darling test for normality (4 = 234.09, p <.001) and visual inspection of
residual values showed that the time to first fixation data is positively skewed, therefore square
root transformation was applied to the data to improve skewness. After transformation the
Anderson test for normality was still significant (4 = 117.76, p <.001) although the graphical
shape of the distribution improved.

We used the same model reported in the main manuscript with the transformed data: participant,
type of scene, and type of human were set as random factors, (SD =2.94, y?(3)=51.43,p <

.001). The main effects using the transformed data are very similar to those reported in the main
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text, with a main effect of AOI-type and an interaction between the number of people in a scene

and the AOI-type. See Table S5¢ for main effects.

Table S5c. Main effects and interactions in the model with a 2 (number of people) * 2 (AOI)

structure for transformed time to first fixation in part 2.a

Predictor numDF denDF F - value | p- value Uzp
number of people 1 97 0.64 43 .01
AOI (type of human) 1 194 234.624 <.001 .55
people * AOI 1 194 37.48 <.001 .16

Table S5d. Descriptive statistics for transformed time to first fixation to each AOIL, in the three

and four people pictures for analysis in part 2.a

People | AOI - Human Mean SD
Interacting 25.30 11.02
3 Not interacting 33.12 14.70
Interacting 27.62 11.89
) Not interacting 30.75 13.48
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Figure S5b. Violin plot for transformed mean time to first fixation for interacting and non-
interacting humans in the three and four people pictures, for analysis in part 2.a. Error bars

represent 95% confidence intervals.

Sc. Details on square root transformation in the attentional engagement in part 2b

The Anderson-Darling test for normality (4 = 65.35, p <.001) and visual inspection of
residual values showed that dwelling time data was positively skewed, therefore a square root
transformation was applied to improve skewness. After transformation the Anderson test for
normality was still significant (4 = 12.33, p <.001) although the graphical shape of the
distribution improved.

Similarly to the results in the main text, in this model, participant, type of scene and type
of human were set as random factors, (SD = 2.43, y2(3) = 16.68, p <.001), and the main effects
were number of people in the scene and type of human (interacting or not interacting).

See Table S5e for main effects.
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Table S5e. Main effects and interactions in the model with a 2 (number of people) * 2 (AOI)

structure for transformed dwelling time in part 2b.

Predictor numDF denDF F -value | p-value 772p
age 1 52 0.03 .86 <.001
number of people 1 52 11.64 .001 18
AOI 1 104 83.68 <.001 45
people * AOI 1 104 27.73 <.001 21
age * people 1 52 0.40 .53 .01
age * AOI 1 104 0.13 72 .001
age * people * AOI 1 104 4.40 0.04 .04

Table S51. Descriptive statistics for transformed dwelling time to each AOI, in the three and four

people pictures, for part 2b.

People | AOI - Human Mean SD
Interacting 24.05 11.30
3 Not interacting 17.52 14.84
Interacting 19.87 11.58
) Not interacting 18.42 11.36
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Figure S5c. Violin plot for transformed mean dwelling time for interacting and non-interacting

humans in the three and four people pictures, for part 2b. Error bars represent 95% confidence

intervals.
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Figure S5d. Transformed mean dwelling time for interacting and non-interacting humans in the
three and four people pictures across childhood. Width of bands represent 95% confidence

intervals.

5d. Details on logarithm in base 10 transformation of time to first fixation data in part2b
The Anderson-Darling test for normality (4 = 142.99, p <.001) and visual inspection of

residual values showed that time to first fixation data were positively skewed, therefore a
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logarithm in base 10 transformation was applied to improve skewness. After transformation the
Anderson test for normality was still significant (4 = 30.27, p <.001), although the graphical
shape of the distribution improved.

As reported in the main text using the untransformed data, in this model, participant, type
of scene and type of human were set as random factors, (SD = 0.06, y%(3) = 8.57, p = .003), and
the main effects were number of people in the scene and type of human (interacting or not

interacting). See Table S17 for main effects.

Table S5g. Main effects and interactions in the model with a 2 (number of people) * 2 (AOI)

structure for transformed time to first fixation in part 2b.

Predictor numDF denDF F -value | p-value 772p
age 1 52 4.27 .04 .08
number of people 1 52 1.60 21 .03
AOI 1 104 79.11 <.001 43
people * AOI 1 104 20.74 <.001 17
age * people 1 52 0.04 .84 <.001
age * AOI 1 104 0.03 .85 <.001
age * people * AOI 1 104 0.01 0.92 <.001

Table S5h. Descriptive statistics for transformed time to first fixation to each AOI, in the three

and four people pictures for analysis in part 2b.

People | AOI - Human Mean SD
Interacting 2.76 0.32

3 Not interacting 2.96 0.39
Interacting 2.84 0.36

) Not interacting 2.89 0.37




o
»

@
(=)
M

N
»
A

Log10 time to first fixation (ms)

]

i

4

Number of people

244

Interacting human
Non interacting human

Figure S5e. Violin plot for log transformed mean time to first fixation for interacting and non-

interacting humans in the three and four people pictures. Error bars represent 95% confidence

intervals.
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Figure S5f. Transformed mean time to first fixation for interacting and non-interacting humans in

the three and four people pictures across childhood. Width of bands represent 95% confidence

intervals.

Se. Details on square root transformation of dwelling time data in part2c
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The Anderson-Darling test for normality (4 = 96.81, p <.001) and visual inspection of
residual values showed that dwelling time data were positively skewed, therefore a square root
transformation was applied to improve skewness.

After transformation the Anderson test for normality was still significant (4 = 42.45, p <.001)
although the graphical shape of the distribution improved.

Table S5i. Descriptive statistics for transformed (square root) dwelling time (ms) in each age-

group, condition and AOI for part 2c.

Age-group People AOI - Human Mean SD
Interacting 24.05 11.30
3
Not-interacting 17.52 14.84
Children (N = 54)
Interacting 19.87 11.58
4
Not-interacting 18.42 11.36
Interacting 24.18 8.87
3
Not-interacting 21.23 12.71
Adults (N =98)
Interacting 21.34 9.34
4
Not-interacting 20.33 9.51

Table S5j. Descriptive statistics for untransformed dwelling time (ms) in each age-group,

condition and AOI for analyses in part 2c.

Age-group People AOI - Human Mean SD

Interacting 706.13 532.87

3
Not-interacting 527.12 654.38

Children (N = 54)

Interacting 528.50 468.23

4
Not-interacting 467.98 435.65

Adults (N = 98) 3 Interacting 663.31 409.83




Not-interacting 612.02 530.38
Interacting 542.50 360.42

4
Not-interacting 503.86 353.55
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5f. Details on logarithm in base 10 transformation of time to first fixation in part2c

The Anderson-Darling test for normality (4 = 375.99, p <.001) and visual inspection of
residual values showed that time to first fixation data were positively skewed, therefore a
logarithm in base 10 transformation was applied to improve skewness. After transformation the
Anderson test for normality was still significant (4 = 74.56, p < .001) although the graphical
shape of the distribution improved.
The same model was used as in the main text with participant, type of scene, and type of human
set as random factors, (SD = 0.07, y2(3) = 53.26, p < .001), and the main effects were age-group,
number of people in the scene and type of human (interacting or not interacting). See Table S21

for main effects.

Table S5k. Main effects and interactions in the model with a 2 (age-group) * 2 (people in the

scene) * 2 (AO]) structure for transformed time to first fixation for part 2c.

Predictor numDF denDF F -value | p-value Uzp
age 1 150 1.3 27 .009
number of people 1 150 33 21 .02
AOI 1 300 295.5 <.001 .50
people * AOI 1 300 56.7 <.001 16
age * people 1 150 0.0 .99 .00
age * AOI 1 300 1.2 .28 .004
age * people * AOI 1 300 0.1 .76 <.001
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interacting and non-interacting humans in the three and four people pictures. Error bars represent

95% confidence intervals.

Table S51. Descriptive statistics for transformed (logarithm in base 10) time to first fixation (ms)

in each age-group, condition and AOI for part 2c.

Age-group People AOI - Human Mean SD
Interacting 2.76 0.32

3
Not-interacting 2.96 0.39

Children (N = 54)

A Interacting 2.84 0.36
Not-interacting 2.89 0.37
Interacting 2.74 0.32

3
Not-interacting 2.95 0.39

Adults (N =98)

A Interacting 2.81 0.34
Not-interacting 2.89 0.38
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Appendix E — Supplementary materials for chapter 5

S1: AOI size information in pixels

Table S1a. Descriptive statistics of AOI sizes across conditions for the adult sample.

Type of scene AOI Mean area (px) SD
Social 212286.13 105769.54
Interacting
Background 568078.75 105327.00
Social 190466.39 98728.34
Non-interacting
Background 590320.98 98722.62
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Figure Sla. Violin plot for mean size of AOIs (px) across scenes categorized as interacting and

non-interacting in the adult sample. Error bars represent 95% confidence intervals.
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Since each participant made their own personal categorization of the scenes as interacting
or not, each participant had a different set of pictures in each category. Therefore the size of the
AOI in the two types of scenes are different for each group, because individuals in the two
groups categorized the scenes differently. In particular, adults categorised more scenes are
interactive than did children. Here, for the adult and the child groups separately, we show the

size of AOIs in the pictures as categorized by the participants.

Table S1b. Descriptive statistics of AOI sizes across conditions in the children’s group.

Type of scene AOI Mean area (px) SD
Social 208046.64 96552.89
Interacting
Background 601640.51 95978.51
Social 202050.75 111695.25
Non-interacting
Background 578653.87 111742.26
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Figure S1b. Violin plot for mean size of AOIs (px) across scenes categorized as interacting and

non-interacting. Error bars represent 95% confidence intervals.
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S2. Data transformations

2a. Transformation of time to first fixation data, and analysis of transformed time to first fixation
in the adult sample

The Anderson-Darling test for normality (4 = 304.43, p <.001) and visual inspection of
residual values showed that the time to first fixation data is positively skewed, therefore a
logarithm in base 10 transformation was applied to the data to reduce skewness. After
transformation, however, the Anderson test for normality was still significant (4 = 78.10, p <
.001) although the graphical shape of the distribution was much improved. When the
transformed data was entered into the model, results were entirely similar to those found using
the untransformed data, resulting in a main effect of AOI type but no main effect of
categorization and no interaction between categorisation and AOI type. Participant and type of
AOI were set as random factors, (SD = 0.1, y%(2) = 155.58, p <.001), and the fixed effects were
the categorization of the scene as interacting or non-interacting, and the AOI — human or
background. When the size of the AOIs was added as a random effect, the model did not change
significantly — SD = 0.31, ¥2(3) = 0.00, p = .99.

See Table S2a for main effects, Table S2b for descriptive statistics, and Figure S2 for

mean transformed time to first fixation across conditions.

Table S2a. Main effects and interactions in the model with a 2 (categorization) * 2 (AOI)

structure in the adult sample.

Predictor numDF denDF F - value | p- value 772p
categorization 1 3958 0.43 Sl <.001

AOI 1 69 177.41 <.001 72
categorization * AOI 1 3958 0.00 1.00 0.00

Table S2b. Descriptive statistics for transformed time to first fixation to each AOI, in the scenes

categorized as interacting and non-interacting in the adult sample.
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Figure S2a. Violin plot for transformed mean time to first fixation for human and background

AOQIs in scenes categorized as interacting and non-interacting in the adults sample. Error bars

represent 95% confidence intervals.

2b. Transformation of time to first fixation data, and analysis of transformed time to first fixation

in the developmental sample



252

The Anderson-Darling test for normality (4 = 269.44, p <.001) and visual inspection of
residual values showed that the time to first fixation data is positively skewed, therefore a
logarithm in base 10 transformation was applied to the data to improve skewness. However, even
after transformation, the Anderson test for normality was still significant (4 = 77.31, p <.001)
although the graphical shape of the distribution was improved. Participant and type of AOI were
set as random factors, (SD = 0.1, y2(2) = 94.54, p < .001), and the fixed effects were the
categorization of the scene as interacting or non-interacting and the AOI — human or background.
The centred age was modelled as a continuous predictor. When the size of the AOIs was added
as a random effect, the model did not change significantly — SD = 0.31, y%(3) = 0.00, p = .99. As
in the data reported in the main manuscript text, the only significant effect shown was a main
effect of AOI, where children were faster to look at human AOIs than at any other information in
the scene.

See Table S2c for main effects, Table S2d for descriptive statistics, Figure S2b for mean
transformed time to first fixation across conditions and Figure S2c for transformed time to first

fixation across conditions in relation to age.

Table S2c. Main effects and interactions in the model with log10 transformed data.

Predictor numDF denDF | F - value | p- value n° P

age 1 52 1.79 .19 .03
categorization 1 2896 0.13 T2 <.001

AOI 1 52 128.36 <.001 71
age*categorization 1 2896 0.07 .79 <.001
categorization*AQOI 1 2896 0.24 .63 <.001

age*AOI 1 52 1.09 .30 .02
age*categorization* AOI 1 2896 0.63 43 <.001

Table S2d. Descriptive statistics for transformed time to first fixation to each AOI, in the scenes

categorized as interacting and non-interacting.
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Figure §2b. Violin plot for transformed mean time to first fixation for human and background

AOIs in scenes categorized as interacting and non-interacting in the developmental group. Error

bars represent 95% confidence intervals.
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Figure S2c. Average log transformed time to first fixation (ms) to social and background AOIs in
scenes categorized as interacting and non-interacting in relation to age in the developmental

group. Width of the bands represent 95% confidence intervals.

2c. Transformation of time to first fixation data, and analysis of transformed time to first fixation
in the developmental model in part 3

The Anderson-Darling test for normality (4 = 572.05, p <.001) and visual inspection of
residual values showed that the time to first fixation data is positively skewed, therefore a
logarithm in base 10 transformation was applied to the data to improve skewness.

After transformation the Anderson test for normality was still significant (4 = 153.4, p <.001)
although the graphical shape of the distribution improved.

In this model participant and type of AOI were set as random factors, (SD = 0.1, y2(2) =
263.67, p <.001), and when size of the AOIs was added as a random effect, the model did not
change significantly — SD = 0.31, y%(3) = 0.00, p = .99.See Table S8 for main effects, Table S9
for descriptive statistics, and Figure S6 for mean transformed time to first fixation across

conditions in the two age-groups.
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Table S2e. Main effects and interactions in the model with log10 transformed data for

developmental model of time to first fixation in part 3.

2

Predictor numDF denDF | F - value | p- value "y

age 1 122 17.5 <.001 A3
categorization 1 6856 0.1 76 <.001

AOI 1 122 302.9 <.001 71
age*categorization 1 6856 0.4 .53 <.001
categorization*AOI 1 6856 0.1 73 <.001

age*AOI 1 122 0.3 .59 .003
age*categorization*AOI 1 6856 0.1 72 <.001

S3. Descriptive statistics

Table S3a. Descriptive statistics for average proportion of the scenes categorized as interacting

and non-interacting, for each age in the developmental group.

Age Scene Mean SD
Interacting 50.83 9.95
° Non interacting 47.50 10.32
Interacting 46.19 22.79
’ Non interacting 47.86 23.12
Interacting 48.10 12.00
’ Non interacting 50.95 12.13
Interacting 56.19 15.80
’ Non interacting 42.38 14.62
Interacting 59.09 11.06
0 Non interacting 40.00 13.17
Interacting 53.33 13.50
! Non interacting 42.12 16.14




Table S3b. Descriptive statistics for a 2 (age-group) * 2 (type of categorization) * 2 (AOI)

interaction for dwelling time (part 3 in the main manuscript).

Age-group | Scene categorization AOI Mean SD
Social 1927.85 | 1107.07
Interacting
Background | 1777.00 | 1098.61
Children
Social 1927.36 | 1100.03
Non interacting
Background | 1751.89 | 1098.17
Social 1869.89 | 895.70
Interacting
Background | 1734.31 | 874.39
Adults
Social 1854.93 | 882.72
Non interacting
Background | 1725.73 | 865.23

Table S3c. Descriptive statistics for a 2 (age-group) * 2 (type of categorization) * 2 (AOI)

interaction for untransformed time to first fixation in part 3 of the main manuscript.

Age-group | Scene categorization AOI Mean SD
Social 558.27 601.44
Interacting
Background | 861.01 807.07
Children
Social 557.00 592.06
Non interacting
Background | 866.98 881.77
Social 484.10 472.94
Interacting
Background | 831.12 852.09
Adults
Social 489.87 472.06
Non interacting
Background | 821.18 773.92
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