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Abstract—We address the problem of attack signal estimation
in industrial control systems that are subjected to actuator false
data injection attack (FDIA) and where the sensor measurements
are corrupted by non-negligible high-frequency measurement
noise. The actuator FDIA signal is categorized as disturbance
to be estimated and subsequently compensated, based on the
concept of extended state observer (ESO). We investigate the
efficacy of two alternatives to conventional ESO namely, cascade
ESO (CESO) and low-power higher-order ESO (LHESO), that
guarantee improved estimation performance in case of noisy
measurement data as well as time-varying attack signals. Sim-
ulation results under different types of FDIAs demonstrate the
advantages of designed schemes in comparison to conventional
linear and nonlinear ESOs, using network motion control system
as an illustrative example.

Index Terms—actuator false data injection attack, industrial
control system, extended state observer, measurement noise.

I. INTRODUCTION

Technological advancements in the filed of digital com-
munication have resulted in rapid adoption of networked
control systems (NCSs) in the industrial setting due to various
advantages such as increased flexibility in architecture, lower
installation cost, easier maintenance and improved reliability,
compared to a conventional control systems [1], [2]. NCSs
are characterized by remote sensors located near the physical
system which collect and transmit data to control systems over
a communication network. However, this interaction between
the physical and cyber (communication) layer also gives rise to
security issues as the system becomes susceptible to malicious
cyber attacks at the sensor or actuator side and carries the
risk of damaging the control system [3]–[6]. Over the years,
an increasing number of cyber attacks on industrial control
systems are being witnessed due to a proliferation of NCSs
in the industrial setting, with over 16000 attacks reported
in 2013 alone [3]. Intrusion detection and design of attack
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resilient cyber-physical industrial control systems is therefore
of paramount importance to ensure safe and reliable operation
of NCSs [7]–[11].

A number of attack detection, isolation, estimation and
control methods have been investigated in [3], [12]–[17].
References [3], [12] present a detailed survey on intrusion
detection and recent advancements on the security issue in
industrial cyber-physical systems along with the advantages
and limitations of different techniques. A distributed nonlinear
observer relying on higher-order sliding mode structure was
constructed in [13] to estimate the system states along with
unknown constant power load in a DC micro-grid scenario
considering FDIA on the sensors. In [14], a bank of unknown
input observers (UIO) were constructed for estimation of sys-
tem states as well as the attack signal without using the input
signals. An extended state observer (ESO) based approach
was investigated for estimation of actuator FDIA in [15] in
the context of a networked motion control platform where the
attack signal was categorised as disturbance. It is to be noted
that observer based estimation techniques studied in [13]–[15]
are susceptible to high-frequency measurement noise that gets
added during data collection. Furthermore, high-gain nature
of the observers employed in [13], [15] give rise to numerical
issue during practical implementation on fixed point digital
signal processors due to finite word length.

Motivated by the aforementioned facts, we introduce two al-
ternatives to conventional ESO, namely cascade ESO (CESO)
[18], [19] and low-power higher-order ESO (LHESO) [20],
that offer a promising solution to the problems associated
with high-gain observers and analyze their effectiveness in the
context of intrusion detection and attack signal estimation in
a cyber-security setting considering the case of a networked
motion control platform, similar to [15]. The present approach
relies on attack signal estimation based on the difference
between expected and actual system output under a specified
control signal. An FDIA on the actuator side is considered
in which the malicious data is added to the control sig-
nal during transmission over the communication network.
However, unlike [15], we also consider the effect of high-978-1-6654-7902-8/22/$31.00 ©2022 IEEE



frequency measurement noise that is often inevitable in sensor-
based data acquisition. In particular, we show that the ability
of CESO and LHESO to accurately estimate time-varying
signals makes them a better alternative to conventional ESO.
Furthermore, the low-power structure of LHESO limits the
maximum observer gain to be implemented to ‘two’ which
in turn takes care of the numerical issue associated with the
practical implementation in a digital setting [21], [22]. We also
highlight a major limitation of nonlinear ESO (NESO) in terms
of oscillations around the steady state operating point which
happens due to over-amplification of measurement noise. In
addition, an attack decoupling control law is used to mitigate
the effect of FDIA and make the industrial control system
resilient to cyber attacks.

Remaining sections in this paper are organised as follows:
Section II deals with the problem formulation considering
actuator FDIA on a networked motion control system. Con-
ventional linear and nonlinear ESOs are briefly revisited in
Section III in the context of attack signal estimation. Section
IV introduces two noise suppressing ESOs, i.e. CESO and
LHESO, for attack signal estimation and highlights struc-
tural properties that result in superior estimation performance.
Numerical study using Simulink/MATLAB environment is
carried out in Section V to highlight the effectiveness of
the designed schemes. The papers ends in Section VI with
a summary of conclusions.

II. PROBLEM FORMULATION

In this paper, we consider a second order networked motion
control platform studied in [15] and expressed as follows:

ẋ1 = x2

ẋ2 = −ax2 + bu

ym = x1 + ν,

(1)

where x1, x2 denote the position and speed of the motor,
respectively and ym is the sensed value of positions which is
acted upon by an additive high-frequency measurement noise
signal denoted by ν. A direct structure is considered for the
networked control system which comprises a controller and a
remote unit connected via a communication channel [1]. The
remote unit further contains a physical plant i.e. servo motor,
actuator and sensor for position feedback.

We consider a scenario where the system defined in (1) is
subjected to a cyber attack at the actuator side, as shown in
Fig. 1, where the attack signal is denoted by ∆u. System (1)
under actuator FDIA can be expressed as

ẋ1 = x2

ẋ2 = −ax2 + b[u+∆u]

= −ax2 + bu+ ϑ

ym = x1 + ν,

(2)

where ϑ = b∆u denotes the net effect of attack signal on the
dynamics of motion control platform.

Considering that the system model in (1) is accurate, the
attack signal (∆u) can be estimated by using the concept of

Fig. 1: Block diagram of ESO based attack resilient networked
motion control platform.

extended state observer where the unknown FDIA signal is
categorised as additive disturbance term. Including ϑ in the
state space model, the augmented dynamics for (2) is obtained
as 

ẋ1 = x2

ẋ2 = −ax2 + ϑ+ bu

ϑ̇ = h

ym = x1 + ν,

(3)

where h denotes the derivative of ϑ.

III. CONVENTIONAL EXTENDED STATE OBSERVERS

In order to estimate the system states x1, x2 as well as the
disturbance ϑ, an extended state observer is designed for the
system defined in (3) and following assumptions are made to
ensure the stability of ESO:

Assumption 1: Derivative of ϑ i.e. h = ϑ̇ is bounded in the
manner |h| ≤ µ1 [18].

Assumption 2: Measurement noise ν is bounded and the
bound is given by |ν| ≤ µ2 [19].

A nonlinear extended state observer (NESO) is designed for
(3) following the general design approach given in [23] which
gives 

e1 = ym − x̂1

˙̂x1 = x̂2 + β1 · ς1(e1)
˙̂x2 = −ax̂2 + ϑ̂+ bu+ β2 · ς2(e1)
˙̂
ϑ = β3 · ς3(e1),

(4)

where β1, β2, β3 denote observer gains and ςi(e1) is the
nonlinear error function which is expressed as

ςi(e1) = fal(e1, αi, δ) =


e1

δ1−αi
|e1| ≤ δ

|e1|αisign(e1) |e1| > δ,
(5)

where δ is the threshold value. However, the NESO is difficult
to analyse and tune due to its nonlinear nature and large num-
ber of tuning parameters. Furthermore, the small error large
gain nature of the fal(·) function [24] results in significant
noise amplification around steady state and contaminates the
attack signal estimate.

In order to have a simpler implementation as well as tuning,
a linear ESO (LESO) was proposed in [25] where the nonlinear
function ςi is replaced by e1. Furthermore, the observer gains



are parameterized in terms of an observer bandwidth denoted
by ωo such that βi = ϵiω

i
o where ϵi is a positive constant.

However, high-gain nature of LESO also results in noise
amplification in the obtained estimates as evidenced by the
following estimation error bound obtained for a third order
ESO [26]:

lim
t→∞

∥x̃∥ ≤ κ1|h|ω−1
o + κ2|ν|ω2

o

≤ κ1µ1ω
−1
o + κ2µ2ω

2
o ,

(6)

for some ωo ≥ ω∗
o , where κ1, κ2 are some positive constants,

∥x̃∥ :=
√
x̃T x̃ denotes the Euclidean norm of x̃ := x − x̂,

x := [x1, x2, ϑ]
T and x̂ := [x̂1, x̂2, ϑ̂]

T . The aforementioned
inequality in (6) makes it clear that an increase in ωo attenuates
the effect of disturbance (h) by O(ω−1

o ) on the estimation
error, however, the effect of measurement noise (ν) is am-
plified by O(ω2

o). This relation in turn forces a compromise
between fast and accurate disturbance estimation and noise
contamination of the estimates, while selecting the observer
bandwidth. In addition, escalation of observer gains to ωn+1

o ,
where n is the system order, gives rise to numerical issue
during practical implementation on fixed-point digital signal
processors [26]. These problems are addressed in the following
sections by introducing alternatives to the conventional ESO
structure.

IV. NOISE SUPPRESSING EXTENDED STATE OBSERVERS

A. Cascade Extended State Observer

Cascade ESO [18], [19], attempts to overcome the noise
amplification issue through virtual decomposition of the total
disturbance into N number of components and then estimating
each component via a set of N cascaded ESO where the output
of ESO in each level acts as a reference for subsequent level.
In doing so, the noise sensitivity of the final set of estimates
obtained from CESO is improved due to filtering at each level.
In this paper, a two level CESO is designed for system defined
in (3), using the following expression:

Σ1 :=


˙̂x1,1 = x̂1,2 + l1,1(ym − x̂1,1)

˙̂x1,2 = −ax̂1,2 +
ˆ̃
ϑ1 + bu+ l1,2(ym − x̂1,1)

˙̂
ϑ̃1 = l1,3(ym − x̂1,1),

Σ2 :=


˙̂x2,1 = x̂2,2 + l2,1(x̂1,1 − x̂2,1)

˙̂x2,2 = −ax̂2,2 +
ˆ̃
ϑ1 +

ˆ̃
ϑ2 + bu+ l2,2(x̂1,1 − x̂2,1)

˙̂
ϑ̃2 = l2,3(x̂1,1 − x̂2,1),

(7)

where li,j , i = {1, 2}, j = {1, 2, 3}, denote the observer gains,
and x̂1,1 acts as a reference signal for Σ2. The estimate of
attack signal is obtained as ϑ̂ =

ˆ̃
ϑ1 +

ˆ̃
ϑ2 while x̂2,1, x̂2,2 are

the final state estimates which can be used in feedback control
design. The expression for estimation error bound is similar
to (6) and can be obtained following the approach highlighted
in [18], [19].

Similar to LESO, the estimates of Σ1 are directly affected
by measurement noise and have a relative degree of unity
which is the primary reason behind poor noise suppression.
However, cascade ESO attempts to overcome this limitation
in Σ1 by selecting a lower observer bandwidth compared to
LESO, hence, the noise content in ˆ̃

ϑ1 is relatively low. There-
fore, CESO results in improved noise suppression compared
to LESO despite having the same relative degree between
ϑ̃ := ϑ− ϑ̂ and ν, i.e., unity [20]. However, CESO still suffers
from the numerical implementation issue as the observer gains
escalate to O(ωn+1

oi ), i = {1, 2}.
Remark 1: An interesting feature of CESO that relies on

virtual decomposition of disturbance is that it naturally em-
beds a higher-order ESO (HESO) or generalized proportional
integral observer (GPIO) [27] type property into the resulting
structure, i.e., CESO is able to accurately estimate ramp-type
attack signals where ϑ̈ = 0 despite being designed based on
the assumption that ϑ is constant in steady-state. However,
the output estimate (x̂2,1) is not accurate in the time-varying
case and results in a steady-state error if it is used in feedback
control design.

B. Low-power Higher-order Extended State Observer

In order to overcome both the issues associated with high-
gain ESO, i.e., noise amplification as well as numerical
implementation, a low-power higher-order ESO is designed
for (2) using the structure introduced in [26]. In this case, the
disturbance is assumed to be time varying such that ϑ̈ = 0,
which gives

ϑ1 = ϑ, ϑ̇1 = ϑ2, ϑ̇2 = 0, (8)

and is included in (2) to obtain the following augmented
model: 

ẋ1 = x2

ẋ2 = −ax2 + ϑ+ bu

ϑ̇1 = ϑ2

ϑ̇2 = g,

ym = x1 + ν,

(9)

where g is second derivative of the non-zero residual term that
does not match the assumed disturbance form in (8). Following
assumption is made on the disturbance ϑ in order to ensure
the input-to-state stability of LHESO:

Assumption 3: Second derivative of attack signal given by
ϑ̈ = g is bounded in the sense |g| ≤ µ3.

An LHESO is designed for the system defined in (9) having
two state augmentations, using the following expression:

Π1 : =

{
˙̂x1 = ˆ̄x2 + γ1ωo(ym − x̂1)
˙̄̂x2 = −aˆ̄x2 +

ˆ̄ϑ1 + bu+ γ̄1ω
2
o(ym − x̂1),

Π2 : =

 ˙̂x2 = −ax̂2 +
ˆ̄ϑ1 + bu+ γ2ωo(ˆ̄x2 − x̂2)

˙̄̂
ϑ1 = ˆ̄ϑ2 + γ̄2ω

2
o(ˆ̄x2 − x̂2),

Π3 : =


˙̂
ϑ1 = ˆ̄ϑ2 + γ3ωo(

ˆ̄ϑ1 − ϑ̂1)
˙̄̂
ϑ2 = γ̄3ω

2
o(

ˆ̄ϑ1 − ϑ̂1),

(10)



where ˆ̄x2,
ˆ̄ϑ1 act as reference signal for sub-blocks Π2,Π3

and γi, γ̄i, (i = 1 to 3) denote observer parameters. The upper
bound for estimation error can easily be obtained based on the
approach given in [26] and results in the following expression:

lim
t→∞

∥χ̃∥ ≤ κ3|g|ω−1
o + κ4|ν|ω3

o

≤ κ3µ3ω
−1
o + κ4µ2ω

3
o ,

(11)

for some ωo ≥ ω∗
o , where κ3, κ4 are some positive constants

and χ̃ = [x1, x2, x2, ϑ1, ϑ1, ϑ2]
T − [x̂1, ˆ̄x2, x̂2,

ˆ̄ϑ1, ϑ̂1,
ˆ̄ϑ2]

T .
The aforementioned inequality presents a similar compromise
between disturbance rejection and noise attenuation and a
straightforward comparison of the noise dependent terms in the
inequalities (6) and (11) might indicate that noise amplification
is more prominent in LHESO i.e. O(ω3

o), due to the inclusion
of an extra augmented state. However, the bounds obtained
in terms of measurement noise in both the inequalities is
conservative in the sense that the frequency content of the
noise signal is not taken into consideration. Particularly for
ϑ̃, it can be shown using frequency domain analysis that the
relative degree with respect to measurement noise is unity in
case of LESO as well as CESO and 3 in case of LHESO [26].
Therefore, LHESO results in better noise suppression in the
high frequency range compared to LESO and CESO.

Remark 2: Design of LHESO based on the disturbance
model in (8) is in contrast to the assumption in LESO
and NESO that the disturbance is constant in steady state
and hence, results in better estimation of time-varying attack
signals. In particular, LHESO results in the asymptotic con-
vergence of estimation error to zero for ramp attack signals,
in the absence of measurement noise as is evident from (11).

V. NUMERICAL ANALYSIS

Numerical simulations were performed in
Simulink/MATLAB environment using a fixed step-size
of 0.5 ms and ode4 Runge-Kutta solver. In order to simulate
the effect of sensor noise ν, a high frequency noise signal
was generated by passing a band-limited white noise having
noise power 107 and maximum frequency content of 100 Hz,
through an 8th order high-pass Butterworth filter having a
pass-band edge frequency of fH = 150π rad/s. Parameters
of the servo motor were selected as a = 113.72 and b = 10.72
based on [15]. NESO and LESO parameters were also kept
same as [15] while CESO and LHESO parameters were
selected using a similar approach with the same bandwidths,
in order to have a fair comparison. The estimator parameters
used in the present study are listed in Table I. It is to be
noted that the observer parameters selected for LESO, CESO,
and LHESO in Table I do not place the observer poles at
−ωo due to the deviation of considered model from pure
integrating structure, however, the resulting structure is stable
nonetheless as the poles are located in the left half of the
s-plane. Following type of attack signals are considered for
evaluating the efficacy of the designed estimators:

S1: Bias Attack is characterized by a constant attack signal
where the adversary adds a constant value (ρ1) to the control
signal in the attack duration and is given by

ϑ(t) =

{
ρ1, t ∈ (ti, tf )

0, otherwise.
(12)

The following two bias attacks are considered in the present
study: S1(a) - ρ1 = 5 for t ∈ (1, 3)s and S1(b) - ρ1 = 10 for
t ∈ (1, 1.05)s. If the time duration of this attack is reduced
and magnitude is increased so as to maximize the damage, it
becomes an impulse attack similar to S1(b).

S2: Ramp Attack is represented by a continuously increas-
ing signal that rises with a constant slope (ρ2) and is expressed
as

ϑ(t) =

{
ρ2 · (t− ti), t ∈ (ti, tf )

0, otherwise.
(13)

A slope of 30 units per second is used to simulate the effect
of ramp type attack signal in the interval t ∈ (1, 3)s.

S3: Geometric Attack starts by slowly drifting the control
signal from its actual value and maximizes the damage towards
the end of the attack. It is given by the following expression:

ϑ(t) =

{
ρ3 · ρ(t−ti)

4 , t ∈ (ti, tf )

0, otherwise,
(14)

where ρ3 = 2, ρ4 = 5, ti = 1s and tf = 3s are selected for
simulation study.

S4: Sinusoidal Attack is represented using the following
expression:

ϑ(t) =

{
ρ5 sin (2πf(t− ti)), t ∈ (ti, tf )

0, otherwise,
(15)

where ρ5, f denote the amplitude, frequency and were se-
lected as ρ5 = 20, f = 0.05, 0.5, 1 Hz, to evaluate the
estimation performance of different ESOs.

Simulation results for attack scenarios S1 to S4 are shown in
Fig. 2. It is observed that LHESO and CESO are able to ensure
better estimation accuracy despite the noisy measurement. Par-
ticularly in case of time-varying attack signals considered in
S2, S3 and S4, LHESO and CESO result in significantly lower
estimation error compared to LESO and NESO, with LHESO
being more accurate (lower peak-to-peak error amplitude in S4
and smaller error value in S3) and having lower noise content
among the two due to a higher relative degree (3 as opposed
to 1 in case of CESO). Furthermore, large oscillations can be
observed in case of NESO which is due to the small error high
gain feature implemented via fal(·) function and leads to the
over-amplification of measurement noise.

A. Actuator FDIA Decoupling

The estimate of attack signal can be used in combination
with feedback control law to cancel the effect of FDIA on
the networked motion control platform. Assuming u as the
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NESO, green-LESO, red-CESO, black-LHESO)



TABLE I: Estimator parameters used in the numerical study

Estimator Parameters

NESO β1 = 400, β2 = 2000, β3 = 89900, δ = 0.01, αi = 1/2i−1

LESO ωo = 100rad/s, β1 = 3ωo, β2 = 3ω2
o , β3 = ω3

o

CESO ωo1 = 50rad/s, ωo2 = 100rad/s,
li,1 = 3ωoi, li,2 = 3ω2

oi, li,3 = ω3
oi, i = {1, 2}

LHESO ωo = 100rad/s, γ̄1 = 3, γ̄2 = 1, γ̄3 = 1/3,
γ1 = γ2 = γ3 = 2

feedback control signal, an attack decoupling control law of
the form

ū = − ϑ̂

b
+ u = −∆û+ u, (16)

can be used to negate the effect of attack signal on the motion
control platform as shown in Fig. 1. In order to analyse the
effectiveness of the designed schemes in negating the effect
of FDIA on the networked motion control platform, we apply
the attack decoupling control law given in (16) and subtract
the output of the affected system from the output of a system
that is not under attack. The error between desired output and
actual output under the effect of actuator FDIA and sensor
noise is denoted by ey and gives an idea regarding the attack
resilience of the proposed schemes. Simulation plots obtained
for attack scenarios S1-S4 in Fig. 3 highlight the superiority
of LHESO and CESO in dealing with time-varying attack
signals considered in S2-S4. Although NESO results in higher
accuracy compared to LESO in S2 and S3 due to its nonlinear
nature, the oscillation near steady state in S1 and S4 present a
significant disadvantage in terms of practical implementation
on real systems where measurement noise is always present.

VI. CONCLUSION

An ESO based actuator FDIA signal estimation approach
was investigated in the present work. Through simulation
study performed on a networked motion control platform, it
was demonstrated that CESO and LHESO present a much
better alternative to conventional linear and nonlinear ESO
structures in terms of accuracy while estimating time varying
FDIA signals as well as suppressing the effect of high-
frequency measurement noise on the obtained estimates. In
particular, it was shown that LHESO yields the best estimation
performance while simultaneously addressing the numerical
issue that restricts implementation of high-gain observers on
fixed-point digital signal processors.
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